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Multiaccess Problem
How to let distributed users (efficiently) share a single broadcast channel?
⇒  How to form a queue for distributed users?
� The protocols we used to solve this multiaccess problem are called 

multiaccess protocols. They are the lower sublayer of Data Link Control layer 
in the OSI model. 

� The queueing theory studies properties of waiting queues. The mathematical 
formula of queueing theory can be used to evaluate the efficiency of different 
queueing system designs. In our applications, the efficiency of various 
multiaccess protocols.

MTSO

cellular network

Coaxial cable, Fiber, Twisted Pair, Bus
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Queueing Theory (See Appendix A1-3, Ch 5.5.1)

Parameter of interest to queueing analysis:
λ average (avg, or mean) arrival rate (requests/sec) (packets/sec)
µ avg service rate (requests/sec) (packets/sec)
ρ=λ/µ utilization or traffic density, the ratio of system load to system capacity
N avg no.of requests in the system, including those in buffers and in servers.
Tw avg waiting time for a request at the buffer
Ts avg service time for a request
T avg delay in the system = Ts +Tw; its inverse is the avg system throughput.
PB probability of request lost (due to buffer full situation)
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Poisson Process
The random process used most frequently to model the arrival pattern.

The statistics of the Poisson process can be observed at any starting time:
1. Prob[instance occurrence in (τ, τ+∆t)] = λ∆t+o(∆t); λ is mean arrival rate;
2. Prob[no instance occurrence in (τ, τ+∆t)] = 1- λ∆t+o(∆t);
3. Arrivals are memoryless An arrival in one time interval of length ∆t is 

independent of arrivals in previous or future intervals.
o(∆t) implies that other terms are higher order in ∆t and approaches 0 faster than 

∆t. Prob[2 or more arrivals in (τ, τ+∆t)] = o(∆t).
Note that the probability is independent of t.

* * * * * *
arrival instance∆t

τ τ+∆t

chow Queueing—11/7/01—Page 4-

Poisson Distribution
Let N(∆t) = no. of arrivals in the interval (τ, τ+∆t) Prob[N(∆t)=k] = (λ∆t)k*e−λ∆τ/k!

E[N(t)=k] = mean value

variance
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Interarrival Time in Poisson Process
The interarrival time of the Poisson process is an exponential random variable with probability 

density function f(t)=λe-λt, where t is the time between successive arrivals.
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Queueing Model Classification

Service times  X

M = exponential

D = deterministic 
G = general

Service Rate:

µ = 1/ E[X]

Arrival Process / Service Time / Servers / Max Occupancy

Interarrival times τ
M = exponential 

D = deterministic

G = general

Arrival Rate:

λ = 1/ E[τ ]

1 server

c servers

infinite

K customers

unspecified if 

unlimited

Multiplexer Models:  M/M/1/K, M/M/1, M/G/1, M/D/1
Trunking Models:  M/M/c/c, M/G/c/c
User Activity:  M/M/∞, M/G/ ∞
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M/M/1 Queue
Poisson arrival process, exponential service time, single server
pk=Prob[k customers in the system]
To analyze M/M/1 Queue, let us examine its system behavior described by the 

following state transition diagram. State number represent the number of 
customers in the system.

At equilibrium state the following equations hold

Alternatively, 
Solving  where  by definition
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M/M/1 Queue & Little’s Law
Little’s Law  where T is the mean delay inside the system.
Mean delay for M/M/1 system

 

where C= server service rate in # operations/sec (#bits/sec for transmission 
system)

 = mean # operations/customer (#bits/packet for TX system)
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Evolution of Queues

multiple queues→single queue multiple servers→single queue shared server
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Why we use statistical multiplexing?
Advanced Queueing analysis presents the following interesting result:

 while 
where (m,λ,C) is a system with m servers, total capacity C, arrival rate λ,

T is the total system delay and W is the waiting time in the queue.
Sharing a single high speed server increase “contention” delay in the queue but 

decrease overall delay due to much shorter service time.

T 1 λ C, ,( ) T m λ C, ,( )≤ W 1 λ C, ,( ) W m λ C, ,( )≥
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Scale factor of M/M/1 Queueing System

 if λ ↑ and C ↑ so that  remains constant, then T↓.

This benefit is in additional to economy of scale.

T
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1 ρÐ
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Application of Queueing Theory
Case 1. Terminal Concentrators:

mean packet length 1/µ’=1000bits/packet
input lines traffic are Poisson process with mean arrival rate λi=2 packets/sec.
Q1: What is the mean delay experienced by a packet from the time the last bit ar-

rives at the concentrator until the moment that bit is retransmitted on the output 
line?

Use , where λ = 4xλi=8, µ’C=9.6packets/sec.

→ T=1/(9.6–8)=0.625 sec.
Q2: What is the mean number of packets in the concentrator, including the one in 

service?
A: Use the little’s law N=λT=8x0.625=5!

Terminal Concentrator

shared high speed line

4800bps

4800bps

9600bps

T
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Application of Queueing Theory
Dedicated vs. Shared Channels:

Eight parallel sessions using this 64kbps line. Each session generates Poisson 
traffic with λi=2 packets/sec. Packet lengths are exponentially distributed with 
a mean of 2000 bits. 

There are two design choices: 
a) Each session is given a dedicated 8kbps channel (via FDM or TDM).
b) Packets of all sessions compete for a single 64kbp shared channel.

Which one gives a better response time?
A: a) For 8kbps channel, λ=2packets/sec, µ’=1/2000 packets/bit, C=8000bits/sec, 

µ’C=4 packets/sec, T=1/(µ’C-λ)=1/(4–2)=0.5 sec.
b) For 64kbps shared channel, λ=8x2=16packets/sec, µ’=1/2000 packets/bit, 

C=64000bits/sec, µ’C=32 packets/sec, T=1/(µ’C-λ)=1/(32–16)=0.0667sec.
Reason?
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M2

64kbps line


