
chow CS522—Encoding and Error Control—10/31/01—Page 1

Error Control Techniques
Model of a conventional signaling system

Two categories of error control techniques
1. ARQ (automatic-repeat-request)

buffering, error-detection-codes, acknowledgment channel, retransmission.
2. FEC (forward error control)

error-correction codes (put enough redundancy information for correction).
FEC is inferior to ARQ except when

1. an acknowledgment channel is not available or expensive, or, even dangerous!
(e.g. deep space comm. such as Voyage II)

2. the small fraction of correctable error patterns has almost all the
 probability weight.

Source SinkEncode Decode

Noise

Channel

1. random errors
2. burst errors

data bits

check bits
codeword

m

r
n bits

n=m+r

chow CS522—Encoding and Error Control—10/31/01—Page 2

Arithmetic Checksum

Error detection at the higher layer is usually done by ordinary arithmetic operations.
This is simpler in software but somewhat less effective than a CRC.

Standard technique is to view packet as sequence of k numbers of n bits each,
say x1, x2,..., xk.

Checksum is then the n bit number x1+x2+...+xk using ordinary arithmetic with no
carry.

Alternatively, checksum might be 2n bits; first n bits is (sum) x1+x2+...+xk and second
n bits is (sum of sum) x1+2x2+3x3+...+kxk.

Example: In TCP, n=16, checksum is 16 bits and one’s complement of the sum.
In ISBN, the data are radix 10 digits, checksum is radix 11 digit (with 10 represented
as X) and is (sum of sum of all digits)/11.

chow CS522—Encoding and Error Control—10/31/01—Page 3

Weighted code used in ISBN number
for Error Detection

Our textbook has a ISBN number 0-13-162959-X.
To check that this number is a proper ISBN number we proceed as follows:

Number SUM SUM of SUM

0 0 0

1 1 1

3 4 5

1 5 10

6 11 21

2 13 34

9 22 56

5 27 83

9 36 119

10=X 46 165=11x15

165 mod 11
=0

a correct
ISBN number

chow CS522—Encoding and Error Control—10/31/01—Page 4

Coding Theory
“Coding and Information Theory”, by Richard Hamming, Prentice-Hall.
A code consists of the rule/algorithm for computing check bits from data bits and for
generating codewords from data bits and check bits.
The coding algorithm defines the legal or illegal codewords.
For fixed length codes,
For x, y ∈ the set of codewords, Hamming distance, Hd(x,y) is the no. of 1’s in d, and
d=x⊕ y.
The Hamming distance of a code, C, is Hd(C)=min{z | z = Hd(x,y) where x, y are code-
words of C, and x≠y}.
To detect d (single) errors, we need a code C with Hd(C)=d+1.
To correct d errors, we need a code C with Hd(C)=2d+1.
Exercise: Prove the Hd(odd parity code) = 2.
For single error correcting code, where m(r) is the no. of data(check) bits,

How many check bits is required? Prove that r must satisfy (m+r+1) ≤ 2r.

Each of 2m msgs has n illegal codes at Hamming distance 1 from it.
⇒ Each of 2m msgs requires n+1 bit patterns from 2n bit patterns.
⇒ (n+1)2m ≤ 2n ⇒ (m+r+1)2m ≤ 2m+r ⇒ (m+r+1) ≤ 2r.

For m=8, 8+r+1≤2r, ⇒ r=4.

chow CS522—Encoding and Error Control—10/31/01—Page 5

Hamming’s Single Error Correcting Code (SECC)
� It can correct single bit error. Invented by Richard Hamming.
� Codewords are encoded with check bits interleaved with data bits in the

following order with check bits C0 C1 C2, C3, ..., Cn in position 1, 2, 8,..., 2n

3 5 6 7 9 1011 Data bit Positions
CoC1D1C2D2D3D4C3D5D6D7D8D9D10D11D12D13D14D15

To generate the codeword,
� First line up the data bits on postions 3,5,6,7,9,...
� For each bit with value 1, use its bit positions in the codeword to generate

binary parity bit pattern contributing to the check bits.
e.g. if D1 is 1, then since its position in the codeword is 3, it contributes binary
parity pattern of 0011. if D is 1, since its codeword position is 7, it contributes
binary parity pattern of 0111.
- The binary bit pattern corresponds to check bit Cn...C2C1C0. Therefore 0011
pattern implies the contribution of 1 to the parity bit computation of check bits
C0 and C1.
- Reverse the binary bit pattern and align them beneath check bits, since in
the codeword, the parity bits are lined up with C0C1C2C3... order.

chow CS522—Encoding and Error Control—10/31/01—Page 6

� For each check bit, counting the parity bit contributing to it by all data bits and
generate the check bit using the even parity bit.
In the following example, C0 receives 1 parity bit contributed by D1 and
another by D4. With even number of parity bit contribution, we generate bit 0
for C0. For C2, only D4 contribute one parity bit, therefore, we generate bit 1
for C2 to make the total number of bit 1 even.

� After check bits are generated, the codeword is sent to the receiver.

Decoding SECC
� After receiving the codeword, the receiver will set aside those check bits and

recompute the check bits only based on the data bits.
� If a check bit computed by the receiver is different from the received check

bit, then mark the check position with X.
� For each error check bit position, add the value 2(check bit position) to a variable

error_location. For example, in the following example, we have C0, C1, and
C2 error. We add error_location=20+21+22=1+2+4=7. This indicates that bit
position 7 in the codeword is wrong. Let us correct it by complementing its
value.

chow CS522—Encoding and Error Control—10/31/01—Page 7

Hamming’s Single Error Correcting Code
3 5 6 7 9 1011 Data bit Positions

CoC1D1C2D2D3D4C3D5D6D7D8D9D10D11D12D13D14D15
H 1 0 0 1 0 0 0 Message C3C2C1C0

1 1 D1 is 1 in position 3⇒ contribute 0 0 1 1
1 1 1 D4 is 1in position 7⇒ contribute 0 1 1 1
0 0 1 1 0 0 1 0 0 0 0 Encode the check bits using even parity

X bit 7 Error
0 0 1 1 0 0 0 0 0 0 0 Receive
1 1 only D1 is 1 in position 3⇒ contribute 0 0 1 1
1 1 0 0 Regenerate Check bits
X X X Errors in the check bits
1+2+ 4=7 X position of error is bit 7.
0 0 1 1 0 0 1 0 0 0 0 Corrected Message

a 1 1 0 0 0 0 1 ASCII code
1 1 D1 is 1 in position 3⇒ contribute 0 0 1 1
1 1 D2 is 1 in position 5⇒ contribute 0 1 0 1
1 1 1 D7 is 1 in position 11⇒ contribute 1 0 1 1
1 0 1 1 1 0 0 1 0 0 1 Encoded a

Exercise: Illustrate how the receiver corrects bit 6 error in a Hamming code of ‘U’?

chow CS522—Encoding and Error Control—10/31/01—Page 8

Exercise on Hamming Code
Illustrate how the receiver correct bit 6 error in the Hamming code of ‘U’=1010101.
Hamming’s Single Error Correcting Code

 3 5 6 7 8 9 10 11 Positions
CoC1D1C2D2D3D4C3D5D6D7D8D9D10D11D12D13D14D15

C0 checks positions 1, 3, 5, 7, 9, 11, 13, 15,...(make it even parity.)
C1 checks positions 2, 3, 6, 7, 10, 11, 14, 15,...
C2 checks positions 4, 5, 6, 7, 12, 13, 14, 15,...
C3 checks positions 8, 9, 10, 11, 12, 13, 14, 15, 24, 25,...
U 1010101 Message

1 0 1 0 1 0 1 Data bits
1 1 1 1 0 1 0 0 1 0 1 Encode

X bit 6 Error
1 1 1 1 0 0 0 0 1 0 1 Code Received
 1 0 0 0 1 0 1 Data bits Received
1 0 0 0 Regenerate Check bits Using Received Data
 X X Errors in the check bits,

2+ 4=6 X Add the weight of error checkit position=6.
 1 0 1 0 1 0 1 Reverse bit 6⇒ Corrected Message

chow CS522—Encoding and Error Control—10/31/01—Page 9

Burst Error Correction
Arrange k Hamming codewords in a matrix

Use k*r check bits to correct a single burst error of length k.
Trade-off is the delay increases from n/C to k*n/C where C is the link capacity.
ECC vs. EDC

For error rate=10-6, 1000-bit data per block, and a msg=1000 blocks is to be sent,
use odd parity code (EDC),

Msg=106 bits ⇒ only one bit error ⇒ only one error block needs retransmit

⇒ the overhead is (1001+1000x1)/1001x1001 ≈ 0.002;
use ECC,

1000+r+1 ≤ 2r ⇒ r=10 ⇒ each codeword has 1010 bits,

the overhead is 10/1010 ≈ 0.0099.

0 0 1 1 0 0 1 0 0 0 0
1 0 1 1 1 0 0 1 0 0 1

0 0 1 1 0 0 1 0 0 0 0
M

send bits
columnwise

chow CS522—Encoding and Error Control—10/31/01—Page 10

Polynomial Code, Cyclic Redundancy (CRC) Code
Polynomial Code, also called CRC code, is a class of Error Detecting Codes, it uses
polynomial arithmetic to calculate the check bits.
A bit string can be represented as a polynomial with coefficient 0 or 1.

110001⇒ M(x) = x5+x4+1, degree of M(x) = 5.

x4M(x)=x9+x8+x4⇒ 1100010000 multiply x4 is equivalent to “logical shift” M(x) to left
by 4 bit. Polynomial arithmetic:

It sends checksumed code (frame) T(x)=xrM(x)–(xrM(x)%G(x)) where M(x) is the msg
and G(x) is the generator polynomial. T(x) is divisible by G(x). G(x) has degree of r.
Assume that T(x)+E(x) is received, here E(x) represents the error bits,

If T(x)+E(x) is not divisible by G(x), then error is detected.
If T(x)+E(x) is divisible by G(x), then
case 1. E(x)=0, no error.
case 2. E(x)!=0, and E(x) is divisible by G(x). What are these E(x)s?

10011011
11001010
01010001

10011011
11001010
01010001

+ – 11 | 1011
11

11

1
11

110

remainder+ and - are same xor operation; no carry-over

chow cs622-10/31/01--Page 11-

chow CS522—Encoding and Error Control—10/31/01—Page 12

Exercise on CRC code

Assume we use generator polynomial G(x)=x4+x+1 for computing the checksum of a
frame.

a) Given data=11111111, what is the check sum?

b) Transmission frame T(x)= 111111110100
c) If not bit was corrupted, the Receiver receives T(x)
d) Receiver performs T(X)/G(x) and remainder =0 (Shown in the middle).

That indicates no error.
c2) Assume bit 5 errors, receiving frame R(x)=111101110100
d2) The Receiver performs R(x)/G(x) and get 1000 as remainder (Shown in the right)

That indicates the frame got garbled.

11111111010010011
11101100

10011
11001
10011
10101
10011

11010
10011
10011
10011

0000 remainder

11110111010010011
11100100

10011
11011
10011
10001
10011

10001
10011

1000 remainder

11111111000010011
11101100

10011
11001
10011
10101
10011

11010
10011
10010
10011

0100 checksum

chow CS522—Encoding and Error Control—10/31/01—Page 13

CRC Code
It can be shown [PETE61] that all the following are not divisible by G(x).

1. All single-bit errors E(x)=xi. If G(x) contains two terms. E(x)!= G(x)*H(x)

2. All double-bit errors E(x)=xi+xj=xi(1+xj-i), if G(x) has a factor with at least three
terms. i th and jth bits have errors.

2a. All double-bit errors E(x)=xi+xj=xi(1+xj-i), if G(x) is a primitive with degree of c and
the length of codeword is less than 2c-1. It implies that j-i <=2c-1.
3. Any odd number errors, i.e.,E(x=1)=1, as long as G(x) contains a factor (x+1).

If G(x)=(x+1)*H(x), then G(x=1)=0*H(x)=0 ⇒ E(x=1)=1 != G(x=1)
4. Any burst error for which the length of the burst is less than the length

of checksum.
5. Most larger burst errors.
Four version of G(x) are widely used:

CRC-12= x12+x11+x3+x2+x1+1=(x+1)(x11+x2+1)

CRC-16= x16+x15+x2+1=(x+1)(x15+x+1)

CRC-CCITT= x16+x12+x5+1

CRC-32= X32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1
They all contain x+1 as prime factor. CRC-12 is used for transmission of streams of 6-

chow CS522—Encoding and Error Control—10/31/01—Page 14

bit characters with 12-bit checksum. CRC-16 and CRC-CCITT are popular for 8-bit
characters with 16-bit checksum. CRC-32 are used in IEEE802 standards with 32bit
checksum.
The following definitions are from “Coding Theory: The Essentials” by Hoffman et al.
What is a primitive polynomial? (It was referenced in properties 2a above).
� Let K={0,1}.
� Let K[x] be the set of polynomials whose coefficients are in K.
� Let f(x), g(x), d(x)be a polynomial whose coefficients are in K. They are called

polynomials over K.
� Let K[x] be the set of polynomials whose coefficients are in {0, 1}.
� if f(x)=g(x)d(x), then d(x) is a divisor of f(x).
� A proper divisor of f(x), say p(x), is a polynomial over K, if p(x)!=1, p(x)!=f(x).
� f(x) is said to be irreducible if it has no proper divisors in K[x].
� An irreducible polynomial over K of degree n, n>1, is said to be primitive if it

is not a divisor of 1+xm for any m<2n-1.
� Examples of primitive polynomial:

1+x+x2 is not a factor of 1+xm for any m<3=22-1(1+x; 1+x2)⇒ it is primitive.
1+x+x3 is not a factor of 1+xm for any m<7=23-1--> it is primitive.
1+x+x2+x3+x4 is irreducible but there is a m=5<15=24-1 where
1+x5=(1+x)(1+x+x2+x3+x4). 1+x+x2+x3+x4 is a factor of 1+x5.

chow CS522—Encoding and Error Control—10/31/01—Page 15

1+x+x2+x3+x4⇒ is not primitive. (It can not detect double errors separated by
5 bits in the code word, since (1+x5)%1+x+x2+x3+x4 is zero.
CRC-16 polynomial (1+x)(x15+x+1). Here x15+x+1 is a primitive polynomial
since it is not factor of 1+xm for any m < 215-1=32,767.
If the length of the codeword is less than 32,767, CRC-16 can detect all
double errors.

� case 3. E(X)=x4+x2+1 ⇒ 3bit errors ⇒ odd number of errors
x3+x2

x+1 x4+ x2+ 1
x4+x3

x3+x2

x3+x2

1 with remainder!=0⇒ not divisible.
(x+1) can not divide E(x) with odd number of terms.

�

chow CS522—Encoding and Error Control—10/31/01—Page 16

CRC Generation Using Shift Registers

 g (x) = x 3 +x +1

reg 0 reg 1 reg 2++

g3 =1

 i (x)

g0 =1 g1 =1 i (x) = x 3 +x 2

Encoder for

clock input reg 0 reg 1 reg 2

0 - 0 0 0

1 1=i3 1 0 0

2 1=i2 1 1 0

3 0=i1 0 1 1

4 0=i0 1 1 1

5 0 1 0 1

6 0 1 0 0

7 0 0 1 0
check bits: r0 = 0 r1 = 1 r2 = 0

 g (x) = x 3 +x +1

reg 0 reg 1 reg 2++

g3 =1

 i (x)

g0 =1 g1 =1 i (x) = x 3 +x 2

Encoder for

clock input reg 0 reg 1 reg 2

0 - 0 0 0

1 1=i3 1 0 0

2 1=i2 1 1 0

3 0=i1 0 1 1

4 0=i0 1 1 1

5 0 1 0 1

6 0 1 0 0

7 0 0 1 0
check bits: r0 = 0 r1 = 1 r2 = 0

chow CS522—Encoding and Error Control—10/31/01—Page 17

Implement CRC using Shift Registers

Given a Generator Polynomial G(x)=gnXn+...+g2X2+g1X1+g0X0,

� Create n registers, label them reg0, to regn-1 from left to right. e.g.,
g(x)=x3+x+1; n=3; draw reg0 to reg3-1=reg2;

� For each non-zero terms, gi , 0<=i<n, (n not included) draw an exclusive-or
operator on the left of regi and a line with arrow from the right of regn-1 to the
top of the exclusive-or operator. Write a label “gi” to the right of the arrow.

� Draw horizontal lines with arrow that connect all the exclusive-or operators
and registers along the way.

Reg0 Reg1 Reg2

Reg0 Reg1 Reg2+ +
g0

g1

Reg0 Reg1 Reg2+ +
g0

g1
i(x)

chow CS522—Encoding and Error Control—10/31/01—Page 18

Exercise
Prob. 1. Chapter 3-42. ATM uses an eight-bit CRC on the information contained in the
header. The header has six fields:
First 4 bits: GFC field
Next 8 bits: VPI field
Next 16 bits: VCI field
Next 3 bits: Type field
Next 1 bit: CLP field
Next 8 bits: CRC

a. The CRC is calculated using the following generator polynomial: x8 + x2 + x + 1.
Find the CRC bits if the GFC VPI Type, and CLP fields are all zero and the VCI field
is 00000000 00001111. Assume the GFC bits correspond to the highest-order bits in
the polynomial.

Ans: Generator polynomial: g(x)=x8 + x2 + x + 1
Information: 0000 00000000 00000000 00001111 000 0

i(x)=x7 + x6 + x5 + x4

Encoding: degree of 8, x8 i(x)=x15 + x14 + x13 + x12

chow CS522—Encoding and Error Control—10/31/01—Page 19

Perform polynomial division

x7+ x6+ x5+ x4+ x1

x8+x2+ x+1 x15+x14+x13+ x12

x15+ x9+x8+ x7

x14+x13+ x12+x9+x8+ x7

x14+ x8+ x7+x6

x13+x12+ x9+ x6

x13+ x7+ x6+x5

x12+x9+ x7+ x5

x12+ x6+x5+ x4

x9+ x7+ x6+ x4

x9+ x3+ x2+x1

 x7+ x6+ x4+x3+ x2+x1

The CRC bit is 11011110

b. Can this code detect single errors? Explain why.
Ans: Yes. Condition 1 in Figure3.60 indicates to detect single errors, G(x) must have

more than one term. Since g(x) has 4 terms, it will detect all single errors.

11110010
100000111 1111000000000000

100000111
111001110
100000111
110010010
100000111
100101010
100000111

101101000
100000111

11011110

chow CS522—Encoding and Error Control—10/31/01—Page 20

c. Draw the shift register division circuit for this generator polynomial.
Ans:

G(x)=g8x8 +g2 x2 +g1x +g0 1 Here degree of n=8.
� Draw 8 registers with label "Reg i" i=0, 7.
� For each non-zero term gi, 0<=i<n (n not included), draw an exclusive or

symbol (circle with +) to the left of regi and and a line with arrow from the
right of regn-1 to the top of the exclusive-or operator. Write a label “gi” to
the right of the arrow.
Here g2, g1, and g0 are non-zero terms.

� Draw horizontal lines with arrow that connect all the exclusive-or operators
and registers along the way.

Reg0⊕ Reg1⊕ Reg2⊕ Reg3 Reg4 Reg5 Reg6 Reg7

g0 g1 g2 g8

chow CS522—Encoding and Error Control—10/31/01—Page 21

Correction on CRC-16, page 164
� There is an error in CRC-16 page 164.
� CRC-16 = (x+1)(x15+x+1)=X16+x15+x2+1 (there is no x term. they cancel out)

x15+ x+1
x x+1

x15+ x+1
x16+ x2 + x
x16+x15+x2 + 1

�

