

Our textbook	Weighted co for thas a ISBN number t this number is a pro	ode used in Error Detect 0-13-162959-X. oper ISBN number	ISBN number ction er we proceed as fol	lows:
	Number	SUM	SUM of SUM	
	0	0	0	=
	1	1	1	
	3	4	5	
	1	5	10	
	6	11	21	
	2	13	34	
	9	22	56	165 mod 11
	5	27	83	=0
	9	36	119	
	10=X	46	165=11x15	 a correct ISBN numbe
chow		С	S522—Encoding and Error Co	

Transmitted frame: 11010110111110

chow

cs622-10/31/01--Page 11-

characters with 12-bit checksum. CRC-16 and CRC-CCITT are popular for 8-bit characters with 16-bit checksum. CRC-32 are used in IEEE802 standards with 32bit checksum. The following definitions are from "Coding Theory: The Essentials" by Hoffman et al. What is a primitive polynomial? (It was referenced in properties 2a above). Let $K = \{0, 1\}$. Let K[x] be the set of polynomials whose coefficients are in K. • Let f(x), g(x), d(x) be a polynomial whose coefficients are in K. They are called polynomials over K. Let K[x] be the set of polynomials whose coefficients are in $\{0, 1\}$. if f(x)=g(x)d(x), then d(x) is a divisor of f(x). A **proper divisor** of f(x), say p(x), is a polynomial over K, if p(x)!=1, p(x)!=f(x). f(x) is said to be **irreducible** if it has no proper divisors in K[x]. An irreducible polynomial over K of degree n, n>1, is said to be **primitive** if it • is not a divisor of $1+x^m$ for any $m<2^n-1$. Examples of primitive polynomial: $1+x+x^2$ is not a factor of $1+x^m$ for any m<3=2²-1(1+x; 1+x²) \Rightarrow it is primitive. $1+x+x^3$ is not a factor of $1+x^m$ for any m<7=2³-1--> it is primitive. $1+x+x^2+x^3+x^4$ is irreducible but there is a m=5<15=2⁴-1 where $1+x^{5}=(1+x)(1+x+x^{2}+x^{3}+x^{4})$. $1+x+x^{2}+x^{3}+x^{4}$ is a factor of $1+x^{5}$. CS522—Encoding and Error Control—10/31/01—Page 14 chow

(inderse)									
Ÿ	CRC Generation Using Shift Registers								
	Encoder for $g(x) = x^3 + x + 1$								
	i(x) = x	$x^{3} + x^{2}$ g	$_{0} = 1$	$g_1 = 1$		$g_3 = 1$			
	i (x	x) → +-	reg 0	→ + + reg 1	reg 2				
	clock	input	reg 0	reg 1	reg 2				
	0	-	0	0	0				
	1	1= <i>i</i> ₃	1	0	0				
	2	1= <i>i</i> ₂	1	1	0				
	3	$0=i_1$	0	1	1				
	4	$0=i_0$	1	1	1				
	5	0	1	0	1				
	6	0	1	0	0				
	7	0	0	1	0				
		check bits:	$r_0 = 0$	$r_1 = 1$	$r_2 = 0$				
chow				CS522—Encoding and	l Error Control—	10/31/01—Page 16			

Γ.		
Ē		
7	Perform polynomial division	11110010
	$x^7 + x^6 + x^5 + x^4 + x^1$	100000111/1111000000000000
	$x^{8}+x^{2}+x+1$ $x^{15}+x^{14}+x^{13}+x^{12}$	100000111
	x^{15} + x^9 + x^8 + x^7	111001110
	$x^{14}+x^{13}+x^{12}+x^9+x^8+x^7$	110010010
	x^{14} + x^{8} + x^{7} + x^{6}	100000111
	x ¹³ +x ¹² +x ⁹ + x ⁶	100101010
	v13, v7, v6, v5	<u>100000111</u> 101101000
	<u> </u>	100000111
	$X^{-+}X^{+} + X^{+} + X^{-}$	11011110
	$\frac{X^{12}}{2}$ + $\frac{X^{0}+X^{3}+X}{2}$	<u>x</u> ⁴
	$x^9 + x^7 + x^6 + x^6$	x ⁴
	x ⁹ +	$x^{3}+x^{2}+x^{1}$
	$x^7 + x^6 + x^6$	$x^4 + x^3 + x^2 + x^1$
	The CRC bit is 11011110	
	b. Can this code detect single errors? Explain w	/hy.
	Ans: Yes. Condition 1 in Figure3.60 indicates to more than one term. Since g(x) has 4 terms, it	detect single errors, G(x) must have t will detect all single errors.
	chow	CS522—Encoding and Error Control—10/31/01—Page 19

