
chow CS420/520-CH5-Memory-3/24/00--Page 1-

Memory Hierarchy Design
Principle of Locality
• Temporal Locality
• Spatial Locality

Smaller Hardware is faster
Price/Performance
 Consideration (Amdahl’s Law)

A memory access is said to have a hit (miss) in a memory level, if the data is
found (can not be found) in the level.

Hit rate (Miss rate)—is the fraction of memory accesses (not) found in the level.
Hit time—the time to access data in a memory level including the time to decide if

the access is a hit or miss.
Miss penalty—the time to replace a block in a level with the corresponding block

from the level below, plus the time to deliver the block to CPU
=the time to access the first word on a miss+the transfer time of remaining words

Access Time Transfer Time

Memory Hierarchy

cache (SRAM)

Memory Level Price’99 Speed Size

primary memory (DRAM)

disk

$50-200

$25-50

$1-2

Fast

M

Slow

Small

M

Large

: cache blocks

: page

(8-35ns)

(60-120ns)

(8-20ms)

per MBytes access time

Expensive

Cheap

M

chow CS420/520-CH5-Memory-3/24/00--Page 2-

A Memory Access Scenario in A system with
Cache and Virtual Memory (Paging)

code A1

code A2

...

code A10

data A1

data A2

Program A

code A1

data A1

code A2

data A1

code A10
...

code B1

code B11

code B2 code B10
...

data B1

code A1 data A1 code B1

data B1
...

... 256KB

16MB

1.2GB

CPU

mvi $1, #0
mvi $2, #9
lw $3, (4000)
lw $4, (4004)

DISK

Main Memory

Cache

CPU

code A1

1 clockcycle

10 clockcycles

600k clockcycles 4KB page

cache block size = 32B

chow CS420/520-CH5-Memory-3/24/00--Page 3-

Evaluating Performance of a Memory Hierarchy

Average Memory Access Time is a better measure than the Miss rate.
Average Memory Access Time = Hit time + Miss rate * Miss penalty

Relationship between block size and
Average access time, Miss penalty, Miss rate

Block size

Miss Rate

Block size

Miss penalty = Access Time
+

Transfer Time

Block size

Average access time

chow CS420/520-CH5-Memory-3/24/00--Page 4-

Goal of Memory Hierarchy:
to reduce execution time, not the no. of misses

⇓
Computer designers favor a block size with the lowest average access time

rather than the lowest miss rate.

Four Questions for Classifying Memory Hierarchies
Q1: Where to place a block in the upper memory level? (Block placement)
Q2: How to find a block in a memory level? (Block identification)
Q3: Which block should be replaced on a miss? (Block replacement)
Q4: What happens on a write? (Write strategy)

0101101000100000100101011101101001 01110

Block address Block-offset # of bits decided
by the size of
the upper memory
level

IndexTag

chow CS420/520-CH5-Memory-3/24/00--Page 5-

Caches
The memory level between CPU and main memory.
Cache: a safe place for hiding or storing things.

Webster’s New World Dictionary of the American Language,
Second College Edition (1976)

Block (line) size 4-128 bytes

Hit time 1-4 clock cycles (normally 1)

Miss penalty 8-32 clock cycle

(Access time) (6-10 clock cycles)

(Transfer time) (2-22 clock cycles)

Miss rate 1%-20%

Cache size 1KB-256KB

chow CS420/520-CH5-Memory-3/24/00--Page 6-

Q1: Where to place a block in a cache?
(Block placement)

Direct mapped cache—a fixed place for a block to appear in a cache.
e.g., the location = (block-frame address) modulo (no. of blocks in cache).

Fully Associative cache—a block can be placed anywhere in the cache.
Set Associative cache—a block can be placed in a restricted set of places.
If there are n blocks in a set, the cache placement is called n-way set associative.

0 1 2 3 4 5 6 7Block
no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4

0 1 2 3 4 5 6 7Block
no.

2-way Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

set
0

set
1

set
2

set
3

(12 mod 8)

chow CS420/520-CH5-Memory-3/24/00--Page 7-

8 KB direct-mapped data cache in AXP 21064

chow CS420/520-CH5-Memory-3/24/00--Page 8-

Q2: How to find a block in a cache?
(Block identification)

Caches include an address tag (which gives part of block address) on each block.
A valid bit is attached to a tag to indicate if the information in the block is valid.

0 1 2 3 4 5 6 7Block
no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4

0 1 2 3 4 5 6 7Block
no.

2-way Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

set
0

set
1

set
2

set
3

(12 mod 8)

no. no.

Data

Tag

Search

1
2

1
2

1
2

chow CS420/520-CH5-Memory-3/24/00--Page 9-

Q3: Which block should be replaced on a miss?
(Block replacement)

For the direct-mapped cache, this is easy since only one block is replaced.
For the fully-associative and set-associative cache, there are two strategies:
• Random
• Least-recently used (LRU)—replace the block that has not been access for a

long time. (Principle of temporal locality)

Figure 5.4

Table 1:The LRU blocks for a sequence of block-frame addresses. Assume there are 4 blocks.

Block-frame address 3 2 1 0 0 2 3 1 3 0

LRU block number 0 0 0 0 3 3 3 1 0 0 2

chow CS420/520-CH5-Memory-3/24/00--Page 10-

Q4: What happens on a write?
(Write strategy)

Reads dominate cache accesses. All instructions accesses are reads.
Write policies (options when writing to the cache):
• Write–through—The information is written to both the cache and main mem.
• Write–back—The information is only written to the cache; the modified cache

block is written to main memory only when it is replaced.
A block in a write–back cache can be either clean or dirty, depending on whether

the block content is the same as that in main memory.
For the write back–cache,
• uses less memory bandwidth, since multiple writes within a block only

requires one write to main memory.
• a read miss (which causes a block to be replaced and therefore) may result in

writes to main memory.
For the write–through cache,
• a read miss does not result in writes to main memory.
• it is easier to implement.
• the main memory has the most current copy of the data.

chow CS420/520-CH5-Memory-3/24/00--Page 11-

Dealing with Write Miss

There are two options (whether to bring the block into the cache):
• Write–allocate—The block is loaded into the cache, followed by the write-hit

actions above.
• No–write–allocate—The block is modified in the main memory and not loaded

into the cache.

In general, the write–back caches use write–allocate.
⇒ hoping that there are subsequent writes to the same block.

The write–through caches often use no–write–allocate.
⇒ since the subsequent writes also go to the main memory.

chow CS420/520-CH5-Memory-3/24/00--Page 12-

Dealing with CPU write stall
CPU has to wait for the writes to complete during write-through.
This can be solved by having a write buffer and let CPU to continue while the

memory is updated using data in write buffer.
Write merging: allow multiple writes to the write buffer to be merged into a single

entry to be transferred to the lower level memory.

Figure 5.6

chow CS420/520-CH5-Memory-3/24/00--Page 13-

Miss rate vs. block size

Figure 5.7

chow CS420/520-CH5-Memory-3/24/00--Page 14-

Split Caches vs. Unified Caches
Assume the percentage of instruction references is about 75%.
Why instruction-only caches have lower miss rates than data-only caches?
Example: Which cache performs better, 32KB split cache(16KB instruction

cache+16KB data cache) or 32 KB unified cache? Assume a hit takes one clock
cycles, a miss costs 50 clock cycles. A load or store (data cache) hit takes two
clock cycles on a unified cache.

Ans: Use average memory access time formula.
Average Memory Access Time (AMAT) = Hit time + Miss rate * Miss penalty.
AMATsplit=AMATsplit,instruction cache + AMATsplit, data cache

=75%x(1+0.64%x50) + 25%x(1+6.47%x50)
=(75%x1.32) + (25%x4.235) = 0.990+1.059 = 2.05

AMATunified = 75%x(1+1.99%x50) + 25%x(2+1.99%x50)
=(75%x1.995) + (25%x2.995) = 1.496+0.749 = 2.24

The split cache, which offers two memory ports per clock cycle, performs better.

chow CS420/520-CH5-Memory-3/24/00--Page 15-

Cache Performance

CPU time=(CPU-execution clock cycles+Memory-stall clock cycles)*cycleTime.
CPU time=IC*(CPIexecution+(Memory-stall clock cycles/IC))*cycleTime.

IC: instruction count.
CPU time=IC*(CPIexecution+MAPI*MissRate*MissPenalty)*cycleTime.

where MAPI: Memory Accesses Per Instruction.
Example 1. VAX cache miss penalty is 6 clock cycles. All instructions normally

take 8.5 clock cycles (ignoring memory stall). Miss rate=11%. Average 3
memory references per instruction. What is the impact on performance when
the behavior of the cache is included?

Answer:
CPU timeconsider cache=IC*(8.5+3.0*11%*6)*cycleTime=IC*10.5*cycleTime.
CPU timedid not consider cache=IC*8.5*cycleTime.

Example 2. Assume a machIne with lower CPI, CPI=1.5. Cache miss penalty is 10
clock cycles. Miss rate 11%. Average 1.4 memory reference per instruction.

Answer:
CPU timeconsider cache=IC*(1.5+1.4*11%*10)*cycleTime=IC*3.0*cycleTime.
CPU timedid not consider cache=IC*1.5*cycleTime. impact on this machine larger

chow CS420/520-CH5-Memory-3/24/00--Page 16-

Cache Block Placement Trade-off
Is 2-way associative better than direct-mapped?

2-way associative cache requires extra logic to select the block in the set⇒ longer
hit time ⇒ longer CPU clock cycle time.

Will the advantage in lower miss rate offset the slower hit time?
Example (page 387). CPIexecution=2, DataCacheSize=64KB, Clockcycletime=2ns,

Miss Penalty=70ns (35CPUClockcycles), MemoryAccesPerInstuction=1.3.
CPUwith direct-mapped cache CPUwith 2-way associative cache

ClockCycleTime 2ns 2*1.1=2.2ns
Miss rate(Fig.5.9) 0.014 0.010
Average Mem Access Time 2+0.014*70 2.2+0.010*70

=2.98ns =2.90ns
CPU time=IC*(CPIexecution*ClockCycleTime

+MemoryAccesPerInstuction*MissRate*MissPenalty*ClockCycleTime)
CPU time IC*(2.0*2+1.3*0.014*70) IC*(2.0*2.2+1.3*0.010*70)

=IC*5.27 =IC*5.31
Since the CPU time is the bottom line evaluation metric and direct-mapped cache

is simpler to build, in this case the direct-mapped cache is preferred.

chow CS420/520-CH5-Memory-3/24/00--Page 17-

Improving Cache Performance
Caches can be improved by:
• Reducing miss rate
• Reducing miss penalty
• Reducing hit time

Often there are related, improving in one area may impact the performance in the
other areas.

chow CS420/520-CH5-Memory-3/24/00--Page 18-

Reducing Cache Misses
Three basic types of cache misses:
• Compulsory - The first access to a block not in the cache. (first reference

misses, cold start misses).
• Capacity - since the cache cannot contain all the blocks of a program, some

blocks will be replaced and later retrieved.
• Conflict - when too many blocks try to load into its set, some blocks will be

replaced and later retrieved.

Figure 5.10

chow CS420/520-CH5-Memory-3/24/00--Page 19-

Figure 5.9

chow CS420/520-CH5-Memory-3/24/00--Page 20-

Reducing miss rate by Larger Block Size

Larger blocks takes advantage of spatial locality.
Larger blocks increase the miss penalty and reduce the number of blocks.

Figures 5.11 & 5.12 & 5.13

chow CS420/520-CH5-Memory-3/24/00--Page 21-

Select the block size that minimizes AMAT
Assume the memory system takes 40 cycles overhead and then delivers 16 bytes

every 2 clock cycles. Figure 5.13 shows the results on AMAT.
Example 394: AMATblocksize=16B, cachesize=1KB= 1+(15.05%x42)=7.321 clock

cycles.

Figure 5.13

chow CS420/520-CH5-Memory-3/24/00--Page 22-

Reducing miss rate by Higher Associativities
Assume the clockcycletime will be stretched to 1.10, 1.12, and 1.14 times of 1-

way clockcycletime, for 2-way, 4-way, and 8-way set associative cache.
Using Figure 5.9 miss rate, Figure 5.14 shows the AMAT for set associativities

trade-off.

Figure 5.14.

chow CS420/520-CH5-Memory-3/24/00--Page 23-

Reducing Miss Rate by Victim Cache

• contains blocks that are discarded from a cache miss
• checked on a miss, if matched, victim block and cache block are swapped.
• A four entry victim cache removed 20% to 95% of the conflict misses in a 4KB

direct-mapped data cache.

Figure 5.15.

chow CS420/520-CH5-Memory-3/24/00--Page 24-

Reducing miss rate by Hardware Prefetching of
Instructions and Data

CPU contains steams buffers (e.g., each 32 byte long). Each time an instruction/
data (e.g.,4 bytes) is fetched from cache, the whole block is loaded from cache
into the stream buffers. (e.g., one stream buffer miss followed by 7 consecutive
hits if no branch instructions in between.)

For an instruction/data fetch, CPU first looks to see if it is in the stream buffer.
Jouppi [1990] found that a single instruction buffer would catch 15% to 25% of the

misses from a 4-KB direct-mapped instruction cache with 16-byte block.

chow CS420/520-CH5-Memory-3/24/00--Page 25-

Reducing miss rate by
Compiler-Controlled Prefetching

An alternative to hardware prefetching is to let compiler generate prefetch
instructions to request for the data before they are needed.

• Register prefetch - load the value into a register.
• Cache prefetch - load the value into the cache.

A faulting prefetch instruction can cause virtual address faults or protection
violation.

A nonfaulting prefetch instruction does not cause virtual address faults or
protection violation, it simply turns into no-ops.

The goal of a nonfaulting cache prefetch design is to overlap the CPU execution
with the prefetching of data.

Loops are key targets for compiler-controlled prefetching.
Example (page 403): Assume 8-KB direct-mapped data cache with 16-byte

blocks, it is a write-back cache with write allocate. Each element of a or b are
double precision floating point number (8 bytes), 3rwos and 100 columns for a
and 3 rows and 101 columns for b. How many misses will be generated for the
following code? for (i=0; i<3; i++)

for (j=0; j<100; j++)
a[i][j] = b[j][0]*b[j+1][0];

chow CS420/520-CH5-Memory-3/24/00--Page 26-

Ans: In C language, elements in a 2 dimension array are arranged in column
major order, e.g., a[0][0] followed by a[0][1]...a[0][99]a[1][0]...a[1][99]a[2][0]...
Unlike Fortran which arranged in row major order.

Among the 300 accesses to a, 150 (with even column index) will be miss, the
other 150 will be hit.

Assume that cache is large enough without having conflict or capacity
misses, the 2*100*3 accesses to b will only have 101 misses. Since after
b[0][0]...b[100][0] are loaded into the cache, the remaining accesses to them
will be cache hit.

Totally we have 150+101=251 cache misses.
Here is the code that uses nonfaulting cache prefetching:

for (j=0; j<100; j++) { /* due to long miss penalty=50cycles */
prefetch(b[j+7][0]); /*need to prefetch 7 iterations in advance */
prefetch(a[0][j+7]); /* actually we only need to fetch 50 times for a*/
a[0][j] = b[j][0]*b[j+1][0];}

for (i=1; i<3; i++)
for (j=0; j<100; j++) {

prefetch(a[i][j+7]);
a[i][j] = b[j][0]*b[j+1][0];}

Only a[i][0,2,4,6] and b[0-6][0] causing cache misses. 3*4+7=19.
We trade 251-19=232 caches with 400 prefetch instructions!

chow CS420/520-CH5-Memory-3/24/00--Page 27-

Compiled-Controlled Prefetching

Example (page 404): Calculate the time saved in the above example.
Ignore instruction cache misses.
Assume prefetch can overlap with each other and with cache misses.
The original loop takes 7 clock cycles per iteration.
The first prefetch loop takes 9 clock cycles (one cycle per prefetch instruction)
The second prefetch loop takes 8 clock cycles per iteration.
A miss takes 50 clock cycles.
Ans:

Timeoriginal loop = instruction execution+cache misses penalty

= 300x7+251x50=14650 clock cycles.
Timeprefetching loops = instruction execution+cache misses penalty

=(100x9+200x8) + (11x50+8x50)=900+1600+550+400=3450 cycles.
Speedup = 14650/3450 = 4.2.
The prefetch code is 4.2 times faster.

The accesses of array a benefit from spatial locality.
The accesses of array b benefit from temporal locality.

chow CS420/520-CH5-Memory-3/24/00--Page 28-

Reducing Miss Rate by Compiler Optimizations
1. Merging Arrays

This technique reduces misses by improving spatial locality.
If we access multiple arrays in the same dimension with the same index at the

same time, these accesses can interfere with each other and generate conflict
misses.

Solution-> combine elements to form a single compound array. A single cache
block can contain the desired elements

/*before */ /* after */
int val[SIZE]; struct merge {
int key[SIZE]; int val;

int key;};
for (i=0; i<SIZE; i++) struct merge m[SIZE];

val[i] = f(key[i]); for (i=0; i<SIZE; i++)
m.val[i] = f(m.key[i]);

chow CS420/520-CH5-Memory-3/24/00--Page 29-

Reducing Miss Rate by Compiler Optimizations
2. Loop Interchange

Reordering of code to maximize the use of data in a cache block.

/* before*/ /* after */
for (j=0; j<100; j++) for (i=0; i<5000; i++)

for (i=0; i<5000; i++) for (j=0; j<100; j++)
x[i][j] = 2*x[i][j]; x[i][j] = 2*x[i][j];

The original code skip through memory in strides of 100 words
while the revised code accesses all the words in the cache block before going to

the next one.
It does not affect the number of instructions executed, unlike prior example.

chow CS420/520-CH5-Memory-3/24/00--Page 30-

Reducing Miss Rate by Compiler Optimizations
3. Loop Fusion

By fusing multiple loops which access the same arrays into a single loop, the data
that are fetched into the cache can be used repeatedly before swapped out.

This technique reduces misses via improved temporal locality. Explain.

/* before */ /* after */
for (i=0; i<N; i++) for (i=0; i<N; i++)

for (j=0; j<N; j++) for (j=0; j<N; j++) {
a[i][j]=1/b[i][j] *c[i][j]; a[i][j]=1/b[i][j] *c[i][j];

for (i=0; i<N; i++) d[i][j]=a[i]j]+c[i][j];}
for (j=0; j<N; j++)

d[i][j]=a[i]j]+c[i][j];

In the fused loop, the second statement freeloads on the cache accesses of the
first statement.

chow CS420/520-CH5-Memory-3/24/00--Page 31-

Reducing Miss Rate by Compiler Optimizations
4. Blocking

Modify a loop into a nested loop so that the submatrices referenced in the inner
loop can be fit in the cache.

B is called the blocking factor.

chow CS420/520-CH5-Memory-3/24/00--Page 32-

chow CS420/520-CH5-Memory-3/24/00--Page 33-

Reducing Miss Penalty:
Give Priority to Read Misses Over Writes

Example: (Page 411)

chow CS420/520-CH5-Memory-3/24/00--Page 34-

Reducing Miss Penalty:
Give Priority to Read Misses Over Writes

Solution 1: let read miss wait until the write buffer is empty. This increase the read
miss penalty (on MIPS M/1000 is about 1.5).

Solution 2: Check the content of write buffer on a read miss. If there is no conflicts
and the memory system is available, let the read miss go head (fetch the block).

In case of write back cache and a read miss will replace a dirty memory block.
Solution 1: write dirty block first, then read block.
Solution 2: copy dirty block to write buffer, then read block, then write buffer to

memory.

chow CS420/520-CH5-Memory-3/24/00--Page 35-

Reducing Miss Penalty:
Sub-block Placement

Dilemma in designing a cache that must fit on the chip:
• Tag too big (can’t fit on the chip or too slow), solution is large block.
• But large block increases the miss penalty.

Solution: Sub-block placement.
• A valid bit is added to units smaller than the full block, called sub-blocks.
• Only a single sub-block need to be read in a miss.
• Match of tag and valid bit is set indicate that the word is in the cache.
• Smaller miss penalty than full block.

Figure 5.21

chow CS420/520-CH5-Memory-3/24/00--Page 36-

Reducing Miss Penalty:
Early Start and Critical Word First

• Early start - As soon as the requested word of the block arrives, send it to the
CPU and let CPU continue execution.

• Critical word first - Request the missed word first from the memory, and send
it to CPU as soon as it arrives; let CPU continue execution while filling the
rest of the words in the block.

chow CS420/520-CH5-Memory-3/24/00--Page 37-

Reducing Miss Penalty:
Second-level Cache

Add another level of memory between the original cache and memory to capture
some of the memory accesses that would go to main memory.

AMAT = HittimeL1+MissrateL1xMissPenaltyL1
MissPenaltyL1=HittimeL2+MissrateL2xMiss PenaltyL2.

AMAT = HittimeL1+MissrateL1x(HittimeL2+MissrateL2xMissPenaltyL2)

Local miss rate: Missrate L2 for the second level cache.
Global miss rate: MissrateL1 x MissrateL2.

example page 417.

chow CS420/520-CH5-Memory-3/24/00--Page 38-

Miss rate vs. Cache size

figure 5.32

chow CS420/520-CH5-Memory-3/24/00--Page 39-

Example Page 420.

chow CS420/520-CH5-Memory-3/24/00--Page 40-

Main Memory

DRAM (Dynamic RAM) vs. SRAM (Static RAM)
Two measures of Memory Latency
• Access Time—the time between Tread is requested and Tthe word arrives

• Cycle Time—the minimum time between two requests to memory.
(the address line need to be stable for the next access)

DRAM SRAM
need to be refreshed Yes≈every 8msec No

takes ≈
circuit per bit cell less more
capacity 4~8x 1x
cycle time 8~16x 1x
price 8~16x 1x
used in (virtually) Main memory Cache

cycle time > access time cycle time = access time
Ferroelectric Memory—Fast Non-volatile Memory vs. EPROM

Size AccessTime×

chow CS420/520-CH5-Memory-3/24/00--Page 41-

page B-30-33

Figure 5.30

chow CS420/520-CH5-Memory-3/24/00--Page 42-

Organizations to Achieve Higher Mem. Bandwidth
Memory Bandwidth:No. of bytes that can be transferred in a time unit(clockcycle)?

chow CS420/520-CH5-Memory-3/24/00--Page 43-

Four-way Interleaved Memory

chow CS420/520-CH5-Memory-3/24/00--Page 44-

Wider Main Memory vs. Interleaved Memory

Assume the basic memory organization takes 1 cycle to send address; 6 cycles to
access a word; 1 cycle to transfer a word. For reading a block size of 4 words,

Time(cycles) Memory Bandwidth(bytes/cycle)
Basic memory width of 1word 4x(1+6+1)=32 16 bytes/32 cycles = 0.5
Memory with width of 2words 2x(1+6+1)=16 16 bytes/16 cycles = 1
Memory with width of 4words 1x(1+6+1)=8 16 bytes/8 cycles = 2

CPIaverage=CPIexecution+MemoryAccesPerInstuction*MissRate*MissPenalty
Example: Use CPIaverage to evaluation trade-off between the wide and interleaved memory.

Assume that the clock cycle time and instruction counts do not change.
For BlockSize(BS in word unit)=1, MemoryBusWidth(MBW in word unit)=1,
MissRate=15%,(10%,5%for BS=2,4) MissPenalty=8cycles. MemoryAccessPerInstruction=1.2,
AverageCyclesPerInstruction (ignoring cache miss)=2

MissRate CPIaverage
BS=1, MBW=1, no interleaving 15% 2+(1.2*15%*8) =3.44
BS=2, MBW=1, no interleaving 10% 2+(1.2*10%*2*8) =3.92
BS=2, MBW=1, interleaving 10% 2+(1.2*10%*(1+6+2)) =3.08
BS=2, MBW=2, no interleaving 10% 2+(1.2*10%*1*8) =2.96
BS=4, MBW=1, no interleaving 5% 2+(1.2*5%*4*8) =3.92
BS=4, MBW=1, interleaving 5% 2+(1.2*5%*(1+6+4)) =2.66
BS=4, MBW=2, no interleaving 5% 2+(1.2*5%*2*8) =2.96

chow CS420/520-CH5-Memory-3/24/00--Page 45-

Virtual Memory
is a technique to
• share a small physical main memory among many processes.
• facilitate programmers to write programs whose size is larger than main

memory. Make physical main memory size invisible to programmers.
• relieve programmers the burden of writing code swap routine to move

overlay program segment in/out of main memory.
• protect memory space for different processes.
• enable relocation of program anywhere in the main memory.
• reduce the time to start a program, why?

Physical main memory is divided into fixed length blocks, called pages. A miss is
called page fault

If blocks are variable length, they are called segments. A segment miss is called
segment fault.

When a page fault happens, the page will be brought in from the disk.

chow CS420/520-CH5-Memory-3/24/00--Page 46-

Mapping Virtual Address to Physical Address
Memory Mapping (Address Translation): CPU produces virtual addresses that are

translated by a combination of hardware and software to physical addresses
which are used in access main memory.

Figure 5.36

chow CS420/520-CH5-Memory-3/24/00--Page 47-

Page vs. Segment

Paging VM system: fixed size blocks, called pages. 4KB-64KB

Segment VM system: variable size blocks, called segments. 1B-216B~232B

Figures 5.38-9

chow CS420/520-CH5-Memory-3/24/00--Page 48-

Q1: Where to place a block in main memory?
(Block placement)

Because the horrendous cost of a miss (the DRAM speed and the disk speed are
4 orders of magnitude apart), OS designer always pick lower miss rates to allow
blocks to be placed anywhere in main memory. (Fully associative)

Figure 5.37

chow CS420/520-CH5-Memory-3/24/00--Page 49-

Q2: How to find a block in main memory?
(Block identification)

Example. Size of page table. For a 28-bit virtual address and a 4KB page and 4

bytes per page table entry, the page table has 216=64K entries and 256KB
(equivalent of 64 pages). It is quite big and the address translation is quite slow.

To reduce the size of page table, some machines apply a hashing function on the
virtual page no. to get a value btw 0~4K-1 and use an Inverted page table—
one entry per physical pages in main memory. A 16MB physical memory needs
4B*16MB/4KB=16KB (4 pages) for the inverted page table.

To reduce the address translation time, a special cache called TLB for that.

virtual page no. page offset

virtual address

12 bits16 bits

page
table

main
memory

physical page-frame no.
(16MB)

(4K pages)

chow CS420/520-CH5-Memory-3/24/00--Page 50-

Q3: Which block should be replaced on a virtual memory
miss? (Block replacement)

• Replacement on cache miss is controlled by hardware;
Replacement on virtual memory miss is controlled by OS.

• OS tries to replace Least-Recent Used (LRU) block.
• To help estimate the “freshness” of the blocks, many OS provide a use bit or

reference bit.
- set it when the page is accessed
- and periodically clears them.

Q4: What happens on a write?

• Write through is too expensive. 0.7M~6M cycles
• Always use write back.

chow CS420/520-CH5-Memory-3/24/00--Page 51-

Translation-Lookaside Buffer: TLB

To reduce the virtual-to-physical address translation time, a cache called
Translation-Lookaside Buffer (TLB first used in IBM 370) is used to keep the
most recent address translation.

A TLB entry contains
• the tag field that holds the virtual page number, and
• the data field that holds the corresponding physical page-frame number,

protect field, use bit, and dirty bit.

Combine cache with virtual memory

Is there a way to reduce the cache hit time?

TLBvirtual
address

physical
address Cache Main

Mem

data not
in cache

data in cache

CPU

⇒ modified cache hit time = address translation time + original cache hit time

chow CS420/520-CH5-Memory-3/24/00--Page 52-

How to combine cache with virtual memory

The following technique reduce the hit time. It uses the page offset to search the
tags. This allows the search for a matched tag in cache and the address
translation in TLB to be performed in parallel.

TLB is smaller and faster than the cache-address-tag memory ⇒ simultaneous
TLB reading need not slow down cache hit time.

Drawback of this technique is that the direct-mapped cache can be no bigger than
a page. Assume 16KB cache and block size=16bytes ⇒ there are 1K blocks.

If the page offset has 12 bits, then only the upper 8 bit will be used to identify the
block location in cache.⇒ only can identify 256 blocks=4KB.

TLB

Cache

virtual
address

physical page
address

virtual page no.

page offset
S

tags

matched
physical page
address

? data=
¦

cache miss

≠

chow CS420/520-CH5-Memory-3/24/00--Page 53-

AXP 21064 TLB (32 entries)

chow CS420/520-CH5-Memory-3/24/00--Page 54-

Selecting a Page Size
Reasons for large page size:
• smaller page table
• can use page offset to index cache, allow concurrent operations
• Transferring larger pages to or from secondary storage is more efficient.
• The number of TLB entries may be restricted by the chip size/design.

Reasons for smaller page size:
• waste less storage. (many processes are small)

The text, heap, and stack segments of a program can not fit exactly into a
page.
The term for this unused memory in a page is internal fragmentation.

• start-up time faster. (take less time to load).

AXP 21064 allows multiple page sizes: 8KB, 64KB, 512KB, and 4096KB.

chow CS420/520-CH5-Memory-3/24/00--Page 55-

Exercise on Cache+Virtual Memory

Consider a memory system with
virtual address=32 bits
2-way set associative TLB
total entries in TLB=512
page size=2KB
physical address=36 bits
2-way set associative cache
total cache data size=256KB
line size=block size(BS)=32B

e f g

=

MUX

=

physical address

datacache

hh

a b c

=

MUX

=

virtual address

ph
ys

ic
al

 a
dd

re
ss

d

TLB

d

Show the size of the labelled fields
a=32-b-c=32-8-11=13
b=log2(entries/associativity)

c=log2(page size)=log2(211)=11
d=36-c=36-11=25
e=36-f-g=36-12-5=19
f=log2(datasize/(assoc.*BS))

g=log2(BS)=log2(32)=5

a = TLB tag field
b =TLB index field
c= page offset

d = physical page frame address field
e = cache tag field f = cache index field

g = block offset

=log2(512/2)=log2(256)=8

=log2(2
18/(2*25)=12

h=32*8=256bits

chow CS420/520-CH5-Memory-3/24/00--Page 56-

Exercise on Cache+Virtual Memory (continue)

• 0.4 data references/instruction -> MAPI=1.4
TLB miss rate=0.1%, TLB miss penalty=25 cycles

•
b) Find the average memory access time for a 4W block size.

assume 1 clock cycle for the hittime,

= AMATTLB cache

= (1+0.001*25)+(1+0.015*6*4)=2.175

Block size with 8W has the lowest AMAT=2.165.

Table 1:
Size

Block Miss Rate
per reference

1W 4%

2W 2.2%

4W 1.5%

8W 1%

16W 0.8%

chow CS420/520-CH5-Memory-3/24/00--Page 57-

There is a trace-driven cache simulator called dinero in ~cs520/dinero/bin
Given a trace (the history of instruction and data reference of a program) and

instruction cache size and data cache size, associativity of the cache,
replacement policy, and write policy),

For example, the following command
dinero -b32 -u32K -a1 < eg.din > eg32k.out

size=32btyes using a trace input file eg.din and generated output to eg32k.out.
The man page is in ~cs520/dinero/man. The eg.din is in ~cs520/dinero/demo.

Donot copy them. They are big.
Exercise: use eg.din as a trace and compare the performance of 128KB unified

DEC3100 has a cache with the second design.
There will be an exercise in homework#3 similar to the above exercise.

chow 3/24/00--Page 58-

>dinero -b32 -u64K -a1 < ~cs520/traces/benchmarks/tex.din > tex.cache
---Dinero III by Mark D. Hill.
CMDLINE: dinero -b32 -u64K -a1
CACHE (bytes): blocksize=32, sub-blocksize=0, Usize=65536, Dsize=0, Isize=0.
POLICIES: assoc=1-way, replacement=l, fetch=d(1,0), write=c, allocate=w.
CTRL: debug=0, output=0, skipcount=0, maxcount=10000000, Q=0.

---Simulation begins.
 Metrics Access Type:
 (totals,fraction) Total Instrn Data Read Write Misc
 ----------------- ------ ------ ------ ------ ------ ------
 Demand Fetches 832477 597309 235168 130655 104513 0

1.0000 0.7175 0.2825 0.1569 0.1255 0.0000

 Demand Misses 1537 130 1407 343 1064 0
0.0018 0.0002 0.0060 0.0026 0.0102 0.0000

 Words From Memory 12296
 (/ Demand Fetches) 0.0148
 Words Copied-Back 8648
 (/ Demand Writes) 0.0827
 Total Traffic (words) 20944
 (/ Demand Fetches) 0.0252

---Execution complete.
43.7u 11.1s 0:57 95% 92+470k 950+1io 0pf+0w

chow CS420/520-CH5-Memory-3/24/00--Page 59-

Cache-Coherency Problem (CPU-I/O)

Data are accessed concurrently by CPU and I/O. For the write-back cache, I/O
devices may access the old copies of data in the main memory.

Figure 5.46

chow CS420/520-CH5-Memory-3/24/00--Page 60-

Homework # 3

Prob. 1. Use dinero and the cc1.din trace to evaluate the following caches with
block size=32bytes, (which one has the lowest missed rate):
a) 256KB unified directed mapped write-through cache. (use -ww option)
b) 256KB unified directed mapped write-back cache.
c) 256KB unified 2-way associated write-back cache.
d) 128KB instruction + 128KB data directed mapped write back cache.
e) 192KB instruction +64KB data directed mapped write back cache.

Prob. 2. Exercise on Cache+Virtual Memory
Consider a memory system with virtual address=34 bits, fully associative TLB,

total entries in TLB=1024, page size=8KB, physical address=36 bits, direct map
cache, total cache data size=256KB, block size=32B.

a) What are the tag field sizes in TLB and cache?
b) Assume 0.5 data references per instruction, TLB miss rate=0.14%, TLB miss

penalty=20 cycles, cache miss penalty=6 cycles+#words in a block, the miss
rate for block size of 4 words is 1.4% while the miss rate for block size of 8
words is 1%. Which block size offers better performance?

Prob. 3. Given the following addresses from cache to main memory of DEC3000
model 800. Assume there is no time gap between the accesses.

chow CS420/520-CH5-Memory-3/24/00--Page 61-

a) Find the total time it takes to deliver all the blocks, 32 bytes, to the cache.
Assume the main memory are 1024MB and 256bit wide. It uses 16Mx1 page

mode DRAMs with 30 ns access time when data is in the column latch is
needed (row address matches previous row address,) 120 ns access time
when data is not in the column latch (row address does not match previous row
address.) It takes 10 ns to deliver addresses to the main memory and 10 ns to
transfer data back to cache.

20d
1fc780
7fffccb0
1fd77c
223
54
7fffcc9c
56
6a
b) repeat a) with 4-way interleaved memory bank, 64bit wide bus.

chow CS420/520-CH5-Memory-3/24/00--Page 62-

Interesting Project:
Memory System Evaluation Program

The attached program, when runs on a computer system, it prints the timing
results of memory accesses to an integer array. By varying the stride of
accesses to the array, we will get different timing results due to cache hits/
misses. The results allow us to know the size of the cache and the block. The
following Figure shows the time results on SPARCstation 1+.

chow CS420/520-CH5-Memory-3/24/00--Page 63-

Interesting Project:
Memory System Evaluation Program

Since the runtime of the program goes up dramatically when cache sizes above
64K are tried, we conclude that all previous expriments fit in cache and so the
cache must be 64 KBytes.

Since the block size of the cache impacts the number of hits a stream of
references of a given stride length at which the program begins to exhibit
different behavior. We conclude the line size is 64 Bytes.

Potential Semester Project:
Extend the code so that it plots the curves (gnuplot or plot program of your choice)

and answer the cache/block size of the system being evaluated. Answer 5.3c.
verify the results on DEC3100, SparcClassic.

For graduate students, in additon to the above effort, extend the code to detect
the size of the secondary cache, verify the results on DEC3000.

chow CS420/520-CH5-Memory-3/24/00--Page 64-

Solution to Homework # 3

Prob. 1. Use dinero and the cc1.din trace to evaluate the following caches with
block size=32bytes, (which one has the lowest missed rate):
a) 256KB unified directed mapped write-through cache. (use -ww option)

ans: miss rate = 0.0098
b) 256KB unified directed mapped write-back cache.

ans: miss rate = 0.0098
c) 256KB unified 2-way associated write-back cache.

ans: miss rate = 0.0078
d) 128KB instruction + 128KB data directed mapped write back cache.

ans: miss rate = 0.0097
e) 192KB instruction +64KB data directed mapped write back cache.

ans: miss rate = 0.0085.
The 2-way set associate write back cache has the best performance.

Prob. 2. Exercise on Cache+Virtual Memory
Consider a memory system with virtual address=34 bits, fully associative TLB,

total entries in TLB=1024, page size=8KB, physical address=36 bits, direct map
cache, total cache data size=256KB, block size=32B.

chow CS420/520-CH5-Memory-3/24/00--Page 65-

a) What are the tag field sizes in TLB and cache?
Ans: For fully set assocative TLB, the set associativity is the number of entries in

the TLB. There is no index field in the partition of the virtual address. The size of

page offset field is log2(8K)=log2(213)=13 bits. The size of tag field = 34-13=21
bits.

The size of block offset field = log2(32)=5 bits. The size of index field =
log2(#of entries in cache)=log2(256K/32)=log2(8K)=13 bits. The size of tag
field=36-13-5=18 bits.

b) Assume 0.5 data references per instruction, TLB miss rate=0.14%, TLB miss
penalty=20 cycles, cache miss penalty=6 cycles+#words in a block, the miss
rate for block size of 4 words is 1.4% while the miss rate for block size of 8
words is 1%. Which block size offers better performance?

Ans: Let x and y be the hit times of TLB and cache.
For 4 word block, AMAT=(x+0.0014*20)+(y+0.014*(6+4))=x+y+0.168
For 8 word block, AMAT=(x+0.0014*20)+(y+0.01*(6+8))=x+y+0.168.
The two block size offer the same performance based on AMAT.

Prob. 3. Given the following addresses from cache to main memory of DEC3000
model 800. Assume there is no time gap between the accesses.

chow CS420/520-CH5-Memory-3/24/00--Page 66-

a) Find the total time it takes to deliver all the blocks, 32 bytes, to the cache.
Assume the main memory are 1024MB and 256bit wide. It uses 16Mx1 page

mode DRAMs with 30 ns access time when data is in the column latch is
needed (row address matches previous row address,) 120 ns access time
when data is not in the column latch (row address does not match previous row
address.) It takes 10 ns to deliver addresses to the main memory and 10 ns to
transfer data back to cache.

Address Board
Address

Row
Address

Column
Address Match?

Deliver
Address

Time

Memory
Access
Time

Data
Transfer

Time

0000020d 00 000 20d first access, no 10 120 10

001fc780 00 1fc 780 000≠1fc, no 10 120 10

7fffccb0 7f ffc cb0 first access, no 10 120 10

001fd77c 00 1fd 77c 1fc≠1fd, no 10 120 10

00000223 00 000 223 1fd≠000, no 10 120 10

00000054 00 000 054 000=000, yes 10 30 10

7fffcc9c 7f ffc c9c ffc=ffc, yes 10 30 10

Sub Total = 70 660 70

Total Time= 70+660+70=800 nsec

chow CS420/520-CH5-Memory-3/24/00--Page 67-

b) repeat a) with 4-way interleaved memory bank, 64bit wide bus.

Address Board
Address

Row
Address

Column
Address Match?

Deliver
Address

Time

Memory
Access
Time

Data
Transfer

Time

0000020d 00 000 20d first access, no 10 120 40

001fc780 00 1fc 780 000≠1fc, no 10 120 40

7fffccb0 7f ffc cb0 first access, no 10 120 40

001fd77c 00 1fd 77c 1fc≠1fd, no 10 120 40

00000223 00 000 223 1fd≠000, no 10 120 40

00000054 00 000 054 000=000, yes 10 30 40

7fffcc9c 7f ffc c9c ffc=ffc, yes 10 30 40

Sub Total = 70 660 40

Total Time= 70+660+280=1010 nsec

chow CS420/520-CH5-Memory-3/24/00--Page 68-

chow CS420/520-CH5-Memory-3/24/00--Page 69-

Solution to HW#3
Prob. 1. Use dinero and the tex trace to evaluate the following caches with block

size=32bytes, (which one has the lowest miss rate):
a) 256KB unified directed mapped write-through cache. (use -ww option)
b) 256KB unified directed mapped write-back cache.
c) 256KB unified 2-way associated write-back cache.
d) 128KB instruction +128KB data directed mapped write back cache.
e) 192KB instruction +64KB data directed mapped write back cache.

Sol. miss rate of 1a) = 0.16%
miss rate of 1b) = 0.16%
miss rate of 1c) = 0.15%
miss rate of 1d) = 0.16%
miss rate of 1e) = 0.16%

1c) has the lowest miss rate.
Note that write through and write back option will not affect the miss rate
No. of instruction references of the tex trace is higher but the instruction miss
rate is lower. Instead of increasing the instruction cache size, we should
increase data cache size. It will be interesting to find out, given 256KB cache
memory, which organization gives the lowest miss rate.

chow CS420/520-CH5-Memory-3/24/00--Page 70-

Solution to HW#3
Prob. 2a)

a b c

=

MUX

=

virtual address (32 bits)

ph
ys

ic
al

 a
dd

re
ss

d

TLB

Show the size of the labelled fields
a=32-b-c=32-9-12=11
b=log2(entries/associativity)

c=log2(page size)=log2(4K)=12
d=36-c=36-12=24
e=36-f-g=36-12-5=19
f=log2(datasize/(assoc.*blocksize)

g=log2(blocksize)=log2(32)=5

e f g

=

MUX

=

physical address

datacache

=log2(1024/2)=9t1

t2

=log2(256K/(2*32))=12

Tag field size of TLB = t1=a=11 bits
Tag field size of cache=e=19 bits.

d
c

a = TLB tag field
b =TLB index field
c= page offset

d = physical page frame address field
e = cache tag field f = cache index field

g = block offset

chow CS420/520-CH5-Memory-3/24/00--Page 71-

Solution to HW#3

Prob. 2b) Assume the hittime is 1 cycle for both TLB and cache.
Average Memory Access Time4w=AMATTLB+AMATcache

=(1+ 0.0014*22)+(1+ 0.014*(6+4))=2.1708 cycles
Average Memory Access Time8w=AMATTLB+AMATcache

=(1+ 0.0014*22)+(1+0.01*(6+8))=2.1708 cycles
Both block sizes have the same performance.

Prob. 2c) CPI=CPIexec+CPITLB+CPIcache=CPIexec+
(MAPI*(hittime+missrate*misspenalty))TLB+
(MAPI*(hittime+missrate*misspenalty))cache

=1.35+(1+0.5)*2.1708
=4.6062

chow CS420/520-CH5-Memory-3/24/00--Page 72-

Caches in SuperSPARC Microprocessor

• Each set of the cache is required to be equal to the minimum MMU (TLB)
page size (4KBytes).

• SPARC MBus is a 64-bit multiplexed bus implementing cache coherence
protocol with modified, owned, exclusive, shared, and invalid states.

• A basic MBus cacheable memory reference transfer 32-bytes of data.

chow CS420/520-CH5-Memory-3/24/00--Page 73-

Caches in Motorola 88110 Superscalar RISC µp
• 40 (40) entry fully associative instruction (data) address TLB
• 32-entry branch target instruction cache.
• 64-bit bus with Multiprocessor cache snooping protocol. (write invalidate)

chow CS420/520-CH5-Memory-3/24/00--Page 74-

Caches in HP Precision Architecture RISC µp
• Use off-chip caches which can be very large and help achieve “balanced

performance” across wide variety of applications.
• Most µps with on-chip caches still need additional secondary caches.
• Processors which donot cycle their secondary caches with the same

frequency suffer large first level cache miss penalties.
• CPU chip contains a Unified TLB with 120 fixed sized full associative entries

and 16 variable sized entries.

chow CS420/520-CH5-Memory-3/24/00--Page 75-

Evaluating Two-level Caches

Average memory-access time = Hit timeL1+Miss rateL1*
(Hit timeL2+Miss rateL2*Miss penaltyL2)

Example. For 1000 memory references there are 40 misses in the first level and
20 misses in the second level cache.

The miss rateL1=40/1000=4%. The local miss rateL2=20/40=50%. The global
miss rate for the second-level cache is 20/1000=2%.

• The speed of the first level cache affects the clock rate of CPU.
• The speed of the second level cache only affects the miss penalty of the first

level cache.

Project 16: Design and implement a two-level cache simulator based on the
dinero source code.

chow CS420/520-CH5-Memory-3/24/00--Page 76-

Page Mode DRAM

chow CS420/520-CH5-Memory-3/24/00--Page 77-

DRAM Size and Performance

chow CS420/520-CH5-Memory-3/24/00--Page 78-

i486 internal structure

chow CS420/520-CH5-Memory-3/24/00--Page 79-

Internal frequency doubling used by 486DX2

To avoid emission electromagnetic waves. (proportion to freq4)
To avoid the speed mismatch between external memory (2nd level cache) and the

CPU. A SRAM of 12 ns access time corresponds to a clock frequency of
80MHz. But we have to design a system that tolerates the signal propagation
delay.

A 66MHz 486DX2 operates with an external clock of 33 MHz and internally it
doubles the frequency to 66 MHz.

