
chow cs420/520-CH3-Pipelining-5/14/99--Page 1-

Pipelining
The key implementation technique used to make fast CPUs. 
Multiple instructions are overlapped in execution.

Pipe Stage
IF
ID

EX
MEM

WB

Instr. i+4
Instr. i+3

Instr. i+2

Instr. i+1

Instr. i

Instr. i+5
Instr. i+6

Instr. i-1

Instr. i

Instr. i+1

Instr. i-1

time/stage

60+5
60+5

60+5
60+5

60+5

50
50
60

50

50

All stages must be 
ready to proceed 
at the same time.

The time to move 
instruction one step 
down the pipeline 
(called machine cycle) 
is determined by the 
slowest pipe stage.

Pipelined Non-pipelined

5 nsec pipeline overhead
due to synchronization among stages

Speedup AverageInstructionTimeWithoutPipeline
AverageInstructionTimeWithPipline

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
260
65

------------------ 4= = =



chow cs420/520-CH3-Pipelining-5/14/99--Page 2-

Pipeline Designer’s Goal and limits
l Goal → Balance the length of the pipeline stages.

l More stages→fewer operations/stage→smaller clock cycle time/stage
→allow to maintain a low CPI.

l But clock cycle time > (latch overhead+clock skew) 
and there is a limited number of operations to performance per instruction.
—Latches are used among stages to keep instruction’s intermediate values. 
—Clock signals reach different stages at different time≡clock skew.

l Pipelining increases the CPU instruction throughput (no. of instructions/sec)
but does not reduce the execution time for an individual instruction. 
In fact, the execution time increases due to the pipeline overhead. 
(260 vs. 325 nsec).

50
50

100
50
50

50
50
50
50
50

50
50

50
50

50

100100

pipeline with 
parallelized stages 

unbalanced stages
balanced stages

divide stage 3
into two stages



chow cs420/520-CH3-Pipelining-5/14/99--Page 3-

DLX without Pipelining
The five cycle

Instruction Fetch (IF) Cycle:

IR ← Mem[PC]

NPC ← PC+4
Instruction Decoding/Register Fetch (ID) Cycle:

A ← Regs[IR6..10]

B ← Regs[IR11..15]

Imm ← ((IR16)16##IR16..31)

A and B are wo temporary registers.
Decoding is done in parallel with the reading of registers A and B.

Execution/effective address (EX) cycle:



chow cs420/520-CH3-Pipelining-5/14/99--Page 4-

DLX without Pipelining
EX and MEM Instruction Cycle

Execution/effective address (EX) cycle: (depend on instruction type)
l Memory reference: (Load or Store instructions)

ALUoutput ← A + Imm; (compute the address)
l Register-Register ALU instructions: (op indicated by instruction decoding)

ALUoutput ← A op B;
l Register-Immediate ALU instructions: (LI R3, #3)

ALUoutput ← A op Imm;
l Bracnch:

ALUoutput ← NPC + Imm; (branch target address, NPC=PC+4)
Cond ← (A op 0); (here op can be EQ or NE)

Memory access/branch completion (MEM) cycle: 
l Memory reference: 

LMD ← Mem[ALUoutput] or (load instruction)
Mem[ALUoutput] ← B; (store instruction);

l Branch:
if (cond) PC ← ALUoutput else PC ← NPC (next istruction)



chow cs420/520-CH3-Pipelining-5/14/99--Page 5-

DLX without Pipelining
WB Instruction Cycle

Write-back (WB) cycle: 
l Load instruction:

Regs[IR11..15] ← LMD;
l Register-Register ALU instructions: 

Regs[IR16..20] ← ALUoutput;
l Register-Immediate ALU instructions: (LI R3, #3)

Regs[IR11..15] ← ALUoutput;

Note that in this implementation, branch instructions take 4 cycles,
others take 5 cycles.



chow cs420/520-CH3-Pipelining-5/14/99--Page 6-

DLX Datapath



chow cs420/520-CH3-Pipelining-5/14/99--Page 7-

Basic DLX Pipeline
Clock #

instruction # 1 2 3 4 5 6 7 8 9
instruction i IF ID EX MEM WB
instruction i+1 IF ID EX MEM WB
instruction i+2 IF ID EX MEM WB
instruction i+3 IF ID EX MEM WB
instruction i+4 IF ID EX MEM WB

IF: Instruction Fetch
ID: Instruction Decode
EX: Execution stage
MEM: Memory Stage
WB: Write Back (to register)



chow cs420/520-CH3-Pipelining-5/14/99--Page 8-

Pipeline Stages and Their Resource Utilization

IM: Instruction Memory

DM: Data Memory

CC: Clock Cycle

write to register is 
perform in first half
of WB stage so that
the result can be read
by the instruction 
downstream in the 2nd
half of ID stage.



chow cs420/520-CH3-Pipelining-5/14/99--Page 9-

Pipeline Registers of DLX

registers
contain values
and control info from stage to stage

NPC NPC

IR A

B

Imm

IR

ALUoutput

cond

LMD

ALUoutput
IR IR

B

addr

Din
Dout



chow cs420/520-CH3-Pipelining-5/14/99--Page 10-

Instruction Execution on DLX Pipeline
ADDI R1, R0, #1000

IF: IF/ID.IR ← Mem[PC]; 
IF/ID.NPC, PC ← (if EX/MEM.cond {EX/MEM.NPC} else {PC+4});
(at the initialization of pipeline, EX/MEM.cond is set to 0.)

ID: ID/EX.NPC ← IF/ID.NPC; ID/EX.IR ← IF/ID.IR;
ID/EX.A ← Regs[IFI/ID.IR6..10=0]; ID/EX.B ←Regs[IF/ID.IR11..15=1](not used)

ID/EX.Imm ← (IF/ID.IR16)16##IF/ID.IR16..31;

EX: EX/MEM.IR ← ID/EX.IR; 
EX/MEM.ALUoutput ← ID/EX.A + ID/EX.Imm
EX/MEM.cond ← 0; (indicating not a branch)

MEM: MEM/WB.IR ← EX/MEM.IR;(why waste MEM step, not skip?)
MEM/WB.ALUoutput ← EX/MEM.ALUoutput;

WB: Regs[MEM/WB.IR11..15] ← MEM/WB.ALUoutput

0 56 1011 1516 31
Opcode

ADD

rs1

0

rd

1

Imm

1000



chow cs420/520-CH3-Pipelining-5/14/99--Page 11-

Instruction Execution on DLX Pipeline
LW R2, 0(R1)

IF: IF/IR.IR ← Mem[PC]; 
IF/ID.NPC, PC ← (if EX/MEM.cond {EX/MEM.NPC} else {PC+4});
(At the initialization of pipeline, EX/MEM.cond is set to 0.)

ID: ID/EX.NPC ← IF/ID.NPC; ID/EX.IR ← IF/ID.IR;
ID/EX.A ← Regs[IFI/ID.IR6..10=1]; ID/EX.B ← Regs[IF/ID.IR11..15];(not used)

ID/EX.Imm ← (IF/ID.IR16)16##IF/ID.IR16..31;

EX: EX/MEM.IR ← ID/EX.IR; 
EX/MEM.ALUoutput ← ID/EX.A + ID/EX.Imm; (compute the address)
EX/MEM.cond ← 0; (indicating not a branch)

MEM: MEM/WB.IR ← EX/MEM.IR;
MEM/WB.LMD ← Mem[EX/MEM.ALUoutput];

WB: Regs[MEM/WB.IR11..15=2] ← MEM/WB.LMD

0 56 1011 1516 31
Opcode

LW

rs1

1

rd

2

Imm

0



chow cs420/520-CH3-Pipelining-5/14/99--Page 12-

Instruction Execution on DLX Pipeline
BEQZ R2, L

IF: IF/IR.IR ← Mem[PC]; 
IF/ID.NPC, PC ← (if EX/MEM.cond {EX/MEM.NPC} else {PC+4});
(at the initialization of pipeline, EX/MEM.cond is set to 0.)

ID: ID/EX.NPC ← IF/ID.NPC; ID/EX.IR ← IF/ID.IR;
ID/EX.A ← Regs[IFI/ID.IR6..10=2]; ID/EX.B ← Regs[IF/ID.IR11..15];(not used)

ID/EX.Imm ← (IF/ID.IR16)16##IF/ID.IR16..31;

EX: EX/MEM.ALUoutput ← ID/EX.NPC + ID/EX.Imm; (branch target address)
EX/MEM.cond ← (ID/EX.A == 0)

Note that EX/MEM.cond affect the PC value, therefore the fetch of next instruction 
(the 3rd instruction after BEQZ). The 1st and 2nd instruction after BEQZ, in IF and 
ID stages, will have to be aborted if the branch is taken.

0 56 1011 1516 31
Opcode

BEQZ

rs1

2

rd

not used

Imm

4



chow cs420/520-CH3-Pipelining-5/14/99--Page 13-

Instruction Execution on DLX Pipeline
SW 30(R1), R3

IF: IF/IR.IR ← Mem[PC]; 
IF/ID.NPC, PC ← (if EX/MEM.cond {EX/MEM.NPC} else {PC+4});
(At the initialization of pipeline, EX/MEM.cond is set to 0.)

ID: ID/EX.NPC ← IF/ID.NPC; ID/EX.IR ← IF/ID.IR;
ID/EX.A ← Regs[IFI/ID.IR6..10=1]; ID/EX.B ← Regs[IF/ID.IR11..15=3];

ID/EX.Imm ← (IF/ID.IR16)16##IF/ID.IR16..31;

EX: EX/MEM.IR ← ID/EX.IR; EX/MEM.B ← ID/EX.B;
EX/MEM.ALUoutput ← ID/EX.A + ID/EX.Imm (compute address)
EX/MEM.cond ← 0; (indicating not a branch)

MEM: MEM/WB.IR ← EX/MEM.IR;
 Mem[EX/MEM.ALUoutput] ← EX/MEM.B;

0 56 1011 1516 31
Opcode

LW

rs1

1

rd

3

Imm

30



chow cs420/520-CH3-Pipelining-5/14/99--Page 14-

Pipeline Hazard—
The Major Hurdle of Pipelining

Hazards: Situations that prevent the next instruction from execution during its 
designated clock cycle.
Three classes of hazards:
l Structural hazards—arise from resource conflicts when the hardware can’t 

support all possible combinations of instructions in simultaneous, overlapped 
execution.

l Data hazards—arise when an instruction depends on the result of a previous 
instruction currently in the pipeline.

l Control hazards—arise from changing the PC such as branch instructions
For branch-taken situation, the instruction fetch is not in regular 
sequence, the target instruction is not available.

Simple solution to the hazards → stall the pipeline.
All instructions before the stalled instruction continue
All instructions after the stalled instruction are also stalled.

Stall the pipeline → Degrade the performance.



chow cs420/520-CH3-Pipelining-5/14/99--Page 15-

Pipeline Performance

A pipelined machine’s 

PipelineSpeedup=

If we ignore the pipeline overhead, then 

PipelineSpeedup ClockCycleTimeWithoutPipelining CPIWithoutPipelining×
ClockCycleTimeWithPipelining CPIWithPipelining×

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

idealCPI CPIWithoutPipelining
PipelineDepth

-------------------------------------------------------------------=

PipelineSpeedup ClockCycleTimeWithoutPipelining idealCPI PipelineDepth××
ClockCycleTimeWithPipelining CPIWithPipelining×

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

CPIWithPipelining idealCPI PipelineStallClockCyclesPerInstruction+=

ClockCycleTimeWithoutPipelining idealCPI PipelineDepth××
ClockCycleTimeWithPipelining idealCPI PipelineStallClockCyclesPerInstruction+( )×
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

PipelineSpeedup idealCPI PipelineDepth×
idealCPI PipelineStallClockCyclesPerInstruction+
-------------------------------------------------------------------------------------------------------------------------------------------------------------=



chow cs420/520-CH3-Pipelining-5/14/99--Page 16-

Structure Hazard: load with a single memory port

In CC4, load instr. at
MEM stage writes data to
memory, while Instr.3 
at IF stage, tries to 
read the instruction from

memory

Separate data cache
with instruction cache
solve this structure hazard.



chow cs420/520-CH3-Pipelining-5/14/99--Page 17-

Stall Instruction Execution

Assume instr1
is not load or store;
otherwise...

instr 3 delays one cycle



chow cs420/520-CH3-Pipelining-5/14/99--Page 18-

Why would a designer allow structural hazards?
l Reduce cost
l Reduce the latency of the unit.

A non-pipelined or not fully pipelined unit has a shorter total delay than a fully 
pipelined unit.

Example. Floating point units in both CDC 7600 and MIPS R2010 choose shorter 
latency approach.

Note that unless there are high frequency or high concentration of consecutive 
floating point instructions, we will not be able to benefit from a fully pipelined 
floating point unit.

100
100
100
100
100

Pipelined FP
Unit

non-pipeline FP
Unit

Integer Instr.

Integer Instr.

Integer Instr.
Integer Instr.
Integer Instr.

FP Instr.

FP Instr. 450

Integer Instr.

Which of the two FP units performs better with the following
instruction stream pattern?



chow cs420/520-CH3-Pipelining-5/14/99--Page 19-

Data Hazards
The order of access to operands is changed by the pipeline versus the normal 
order encountered by sequentially executing instructions.
Example. A data hazard involving register operands

ADD R1, R2, R3; R1← (R2)+(R3)

SUB R4, R5, R1; R4 ← (R5)-(R1)

ADD Writes the value of R1 in the WB pipe stage at cycle 5, 
but SUB reads the value of R1 in the ID pipe stage at cycle 3.
If originally, (R1)=1, (R2)=2, (R3)=3, (R5)=5, what will be the value of R4, 
after the execution of the above instruction sequence on the DLX pipeline 
machine at page 136 that does not handle the data hazard?



chow cs420/520-CH3-Pipelining-5/14/99--Page 20-

Forwarding Technique for Solving Data Hazards
The forwarding technique is also called bypassing or short-circuiting.
l The ALU result is fed back to the ALU input latches for the next instruction.
l If the forwarding hardware detects that the previous ALU operation has 

written the register corresponding to a source for the current ALU operation, 
control logic selects the forwarded result as ALU input rather than the value 
read from the register file.

Reduce the number of instructions that
must be bypassed by

l Do the register writes in the first half of WB stage.
l Do the register reads in second half of ID stage.

In Fig. 3.10, this reduces the no. of instructions that must be bypassed from 3 to 2.



chow cs420/520-CH3-Pipelining-5/14/99--Page 21-

The Bypass Unit
It requires 
l Latches, Multiplexers (MUX).
l Comparators which examine if adjacent instructions share a destination and 

a source.
l ALU result buffers



chow cs420/520-CH3-Pipelining-5/14/99--Page 22-

l



chow cs420/520-CH3-Pipelining-5/14/99--Page 23-

Other Types of Data Hazard
l The above data hazards involve register operands.
l The accesses to memory operands in some pipelined machines can also 

create data hazards.
l Will memory reference hazards happen in DLX?
l Cache misses could cause the memory references to get out of order if we 

allow the processor to continue working on later instructions. 
Give a scenario.
→ Solution: stall the pipeline until the missed data is accessed.

Forwarding results to more than one unit
Example:ADD R1, R2, R3

SW 25(R1), R1
We need to forward the value of R1 to ALU for the effective address 25(R1)

and as data for preparing the storing.
Recall that the EX stage of the SW instruction includes the following operations:
l EX/MEM.ALUoutput←ID/EX.A+(ID/EX.IR16)16##ID/EX.IR16..31 and 
l EX/MEM.B←ID/EX.B



chow cs420/520-CH3-Pipelining-5/14/99--Page 24-

Three Types of Data Hazards
consider two instructions i and j, with i occurring before j.
l RAW (Read After Write) 

j tries to read a source before i writes it.
→ j incorrectly gets old value.

l WAW (Write After Write)
j tries to write an operand before it is written by i.
→ leaving the operand with old value written by i.

l WAR (Write After Read)
j tries to write a destination before it is read by i.
→ i incorrectly get new value.

fig in p151
Assume load memory stage takes two cycles
LW R1,0(R2) IF ID EX MEM1 MEM2 WB
ADD R1, R2, R3 IF ID EX WB



chow cs420/520-CH3-Pipelining-5/14/99--Page 25-

In DLX, which one will happen?
l DLX reads are early in the ID pipe stage and writes are late in the WB stage.

→ No WAR hazard.
l WAW happens only when there are more than one write in the pipeline.

DLX writes registers only in the WB stage and stall pipeline when cache miss 
or long MEM cycles.
→ Therefore it avoids the WAW hazard.

l DLX only has RAW hazard.
l RAR (Read After Read) is not a hazard.



chow cs420/520-CH3-Pipelining-5/14/99--Page 26-

Pipeline Interlock for Load Data Hazard
Load data hazard cannot be eliminated by forwarding alone.
Need a hardware, called pipeline interlock, to preserve the right execution order.

memory data in LMD too late for SUB

The only solution is 
to stall SUB by one cycle.



chow cs420/520-CH3-Pipelining-5/14/99--Page 27-

stall one cycle

all instructions
after SUB are stalled
one cycle too.



chow cs420/520-CH3-Pipelining-5/14/99--Page 28-

Pipeline Scheduling
The compiler rearranges the code sequence to avoid the pipeline stalls.
Assume there are instructions available for this rearrangement.
Example.
If A=B+C is followed by D=E-F, then the following scheduled code can avoid stall.

LW Rb, B
LW Rc, C
LW Re, E ; swapped with next instruction to avoid stall
ADDRa, Rb, Rc
LW Rf, F
SW A, Ra ; store/load interchanged to avoid stall in SUB
SUBRd, Re, Rf
SW D, Rd

Both load interlocks (LW Rc, C/ADD Ra, Rb, Rc and LW Rf, F/SUB Rd, Re, Rf) 
are eliminated. The ADD result is forwarded to SMDR for the EX stage of SW.



chow cs420/520-CH3-Pipelining-5/14/99--Page 29-

Control Hazards
Control hazard are problems caused by executing branching/jump instructions on 

a pipeline machine.
A branch that changes the PC to its target address is called a taken branch.
What will be the result of R2 after the execution of the following instruction 

sequence with the pipeline described in page 136?

ADDI R2, R0, #5
ADDI R1, R0, #10
BNEZ R1, L2
ADDI R2, R0, #4
SUBI R3, R0, #5
OR R5, R6, R7
L2: ADD R4, R1,R0

2000
2004
2008
200C
2010
2014
2018



chow cs420/520-CH3-Pipelining-5/14/99--Page 30-

Control Hazard
They can also cause a greater performance loss than data hazards
Example: If instr. i is a taken branch, the PC is not changed until the end of MEM 

stage. If we stall instr. i+1 after detecting that instr. i is a control instruction, this 
implies a stall of three cycles.

Assume 14%of instr. are control instr. and an ideal CPI of 1→ 

, a significant loss.

Figure 3.21. p 162

Branch instr. IF ID EX MEM WB
Branch successor IF stall stall IF ID EX MEM WB
Branch successor+1 IF ID EX MEM WB
Branch successor+2 IF ID EX MEM
Branch successor+3 IF ID EX
Branch successor+4 IF ID
Branch successor+5 IF

Speedupreal

Speedupideal
---------------------------------------

1 PipelineDepth×
1 0.14 3×+

-----------------------------------------------------

1 PipelineDepth×
1

-----------------------------------------------------
----------------------------------------------------- 0.70= =



chow cs420/520-CH3-Pipelining-5/14/99--Page 31-

Reduce Two Stalled Cycles in a Branch
l Find out whether the branch is taken or not (zero test), earlier in the pipeline.
l Compute the branch taken address earlier. Move from EX stage to ID stage.

Imm

NPC
A

require a new adder



chow cs420/520-CH3-Pipelining-5/14/99--Page 32-

Frequency of Control Instructions
l For SPEC subset integer benchmarks, on average, 13% forward condition 

branches, 3% backward conditional branches, and 4% unconditional 
branches.

l For SPEC subset FP benchmarks, on average, 7%, forward condition 
branches, 2% backward conditional branches, and 1% unconditional 
branches. FP programs have fewer branches.



chow cs420/520-CH3-Pipelining-5/14/99--Page 33-

Reducing Pipeline Branch Penalties
1. Predict-not-taken scheme.

2. Predict-taken scheme. In DLX, it is not useful since we need to generate 
target address at ID stage. Work for machines which set condition code and 
generate target address earlier.

3. Delay-branch-scheduling scheme.

Untaken branch IF ID EX MEM WB
instr. i+1 IF ID EX MEM WB
instr. i+2 IF ID EX MEM WB
instr. i+3 IF ID EX MEM WB  
instr. i+4 IF ID EX MEM WB
      
Taken branch IF ID EX MEM WB
instr. i+1 IF idle idle idle idle
branch target IF ID EX MEM WB
branch target+1 IF ID EX MEM WB  
branch target+2 IF ID EX MEM WB



chow cs420/520-CH3-Pipelining-5/14/99--Page 34-

Predict-not-taken
l If the branch is untaken → no stall.
l If the branch is taken → one clock-cycle stall;

stop the pipeline and restart the fetch.

Predict-taken
l Apply to situations where the target address is known before the branch 

outcome.
l For DLX pipeline, the target address and branch outcome are known at the 

same stage. Therefore, there is no advantage using this scheme.
l There is always one clock-cycle stall, if predict-taken scheme is used in DLX 

pipeline.

Delay branch slots: The sequential instructions between branch instruction and 
branch target instruction are called in delay branch slots. They will be executed no 
matter what. Therefore better no affect the computation if branch is taken.



chow cs420/520-CH3-Pipelining-5/14/99--Page 35-

Delayed-branch-scheduling
Rearrange the code sequence just like pipeline-scheduling for data hazards.



chow cs420/520-CH3-Pipelining-5/14/99--Page 36-

Criteria for Delay-branch-scheduling
l 50% of branch delays are filled with instructions “from before branch”.

Scheduling strategy Requirements
Improves performance 

when?

From before branch Branch must not depend 
on the results of resched-
uled instructions

Always

From targe Must be OK to execute 
rescheduled instruction if 
branch is not taken. May 
need to duplicate instruc-
tion

When branch is taken. 
May enlarge program if 
instructions are dupli-
cated

From fall through Must be OK to execute 
instructions if branch is 
taken

When branch is not 
taken.



chow cs420/520-CH3-Pipelining-5/14/99--Page 37-

Reducing Pipeline Control Hazard

Original Code

I1 ADDI R1, R0, #1

I2 LW R2, 1500(R0)

I3 LW R7, 2500(R0)

I4 ADDI R3, R0,#200

I5 L1: SLLI R5, R1, #2

I6 LW R6,5000(R5)

I7 ADD R6,R6,R2

I8 ADD R6,R6,R7

I9 SW 0(R5), R6

I10 ADDI R1,R1,#1

I11 SLE R4,R1, R3

I12 BNE R4, L1

I13 L2: SW 2000(R0), R1

Delay Branch scheduling
From “before”

I1 ADDI R1, R0, #1

I2 LW R2, 1500(R0)

I3 LW R7, 2500(R0)

I4 ADDI R3, R0,#200

I13 L2: SW 2000(R0), R1

Delay Branch Scheduling
From “targe”

I1 ADDI R1, R0, #1

I2 LW R2, 1500(R0)

I3 LW R7, 2500(R0)

I4 ADDI R3, R0,#200

I14 L2: SW 2000(R0), R1



chow cs420/520-CH3-Pipelining-5/14/99--Page 38-

Reducing Pipeline Control Hazard

Original Code

I1 ADDI R1, R0, #1

I2 LW R2, 1500(R0)

I3 LW R7, 2500(R0)

I4 ADDI R3, R0,#200

I5 L1: SLLI R5, R1, #2

I6 LW R6,5000(R5)

I7 ADD R6,R6,R2

I8 ADD R6,R6,R7

I9 SW 0(R5), R6

I10 ADDI R1,R1,#1

I11 SLE R4,R1, R3

I12 BNE R4, L1

I13 L2: SW 2000(R0), R1

Delay Branch scheduling
From “before”

I1 ADDI R1, R0, #1

I2 LW R2, 1500(R0)

I3 LW R7, 2500(R0)

I4 ADDI R3, R0,#200

I5 L1: SLLI R5, R1, #2

I6 LW R6,5000(R5)

I7 ADD R6,R6,R2

I8 ADD R6,R6,R7

I9 ADDI R1,R1,#1

I10 SLE R4,R1, R3

I11 BNE R4, L1

I12 SW 0(R5), R6

I13 L2: SW 2000(R0), R1

Delay Branch Scheduling
From “targe”

I1 ADDI R1, R0, #1

I2 LW R2, 1500(R0)

I3 LW R7, 2500(R0)

I4 ADDI R3, R0,#200

I5 L1: SLLI R5, R1, #2

I6 LW R6,5000(R5)

I7 ADD R6,R6,R2

I8 ADD R6,R6,R7

I9 SW 0(R5), R6

I10 ADDI R1,R1,#1

I11 SLE R4,R1, R3

I12 BNE R4, L1+4

I13 SLLI R5, R1, #2

I14 L2: SW 2000(R0), R1



chow cs420/520-CH3-Pipelining-5/14/99--Page 39-

Type of Exceptions
Exceptions are harder to handle in pipeline machines due to overlapping of 
instructions. It may be difficult to judge which one should be allowed to finish or 
what pipeline stage information to be saved.
l Page fault
l Integer arithmetic overflow or underflow
l FP arithmetic anomaly.
l Misaligned memory access (if alignment is required).
l Memory-protection violation.
l Undefined instruction.
l Power failure
l Hardware malfunction.
l Invoke OS server (trap)
l Tracing instruction execution.
l Breakpoint
l I/O device request



chow cs420/520-CH3-Pipelining-5/14/99--Page 40-

Dealing with Interrupts
When an interrupt occurs, the pipeline must be safely shut down and the state 

saved so that the instruction can be restarted in the correct state.
Three basic steps to save the pipeline state safely:
l Force a trap instruction into the pipeline on the next IF.
l Until the trap is taken, turn off all writes for the faulting instruction and for all 

the instructions that follow in the pipeline.
→ This prevents any state changes from instructions that will not be

 completed before the interrupt is handled.
l The interrupt handling routine saves the PC of the faulting instructions 

immediately.
Problem: What if the faulting instruction is in a branch delay slot and the branch 

was taken? Which instructions need to be restarted?
Solution: We need to save addresses of the instructions in the branch delay slots 

and the branch target. (Is that right?)
l Note that the addresses of the instructions in the branch delay slots and the 

branch target are not sequential → can not just save one address.



chow cs420/520-CH3-Pipelining-5/14/99--Page 41-

Precise Interrupt
If the pipeline can be stopped so that the instructions just before the faulting 

instruction are completed and those after it can be restarted from scratch, the 
pipeline is said to have precise interrupts.

Problems: On some machines, the faulting instruction such as FP exceptions, 
may writes its result before the interrupt is handled.

Supporting precise interrupts is a requirement in many systems.
Solutions: Save old (new) register contents in additional register files to be used 

for recovering the state after interrupt.

History File

Register

File

Source Data

To Functional Units

Dest. Reg. 
History

used only
on interrupt

Result Bus

Contents
Buffer

Future File

Future
File

Source Data

To Functional Units

Arch.
used only
on interrupt

Result Bus

File

(working)

(backup)



chow cs420/520-CH3-Pipelining-5/14/99--Page 42-

Multiple Interrupts

LW IF ID EX MEM(1) WB
ADD IF ID EX(2) MEM WB
(1): A data page fault interrupt
(2): An Arithmetic interrupt They occur at the same time.

IF stage: Page fault; misalignment memory access; memory-protection violation
ID stage: Undefined or illegal opcode
EX stage: Arithmetic exception
MEM stage: Page fault on data accessl; misalignment memory access; memory-
protection violation.
WB stage: none.

How to handle this case?
l First, deal with the data page fault.
l Then, restart the execution.



chow cs420/520-CH3-Pipelining-5/14/99--Page 43-

Interrupt may occur out of order

LW IF ID EX MEM(1) WB
ADD IF(2) ID EX MEM WB
(1): A data page fault interrupt
(2): An instruction page fault interrupt.
(2) occurs earlier than (1), even though (2) is a later instruction.

How to solve this problem?
Approach 1: Complete precise
l Each instruction carries a status vector and each interrupt is posted in the 

status vector.
l The interrupt status vector is checked when an instruction enters WB stage.
l If any interrupts are posted, they are handled in the order

i.e., the interrupt corresponding to the earliest pipe stage is handled first.
l In DLX machine, no state is changed until WB. Therefore DLX has precise 

interrupts if this approach is used.
Approach 2: handle an interrupt as soon as it appears.



chow cs420/520-CH3-Pipelining-5/14/99--Page 44-

Handle Multicycle Operations
FP operations, integer multiply, and integer divide take multicycle in execution.
New DLX Pipeline allows EX cycle to be repeated as many times as needed and 

use multiple FP functional units.



chow cs420/520-CH3-Pipelining-5/14/99--Page 45-

Latency and Initiation Interval of Functional Unit
Latency: the number of intervening cycles between an instruction that produces a 

result and an instruction that uses the results.
Initiation interval: the number of cycles that must elapse between issuing two 

operations of a given type.

Latency = the number of pipeline stages of the function unit - 1.
Note that the instructions that follow the current instruction will be issued at least 

one cycle later.Why FP divide has 24 cycles latency?

Functional unit Latency Initiation interval

Integer ALU 0 1

Data memory (integer and FP loads) 1 1

FP add 3 1

FP multiply 6 1

FP divide(also integer divide and FP sqrt) 24 24



chow cs420/520-CH3-Pipelining-5/14/99--Page 46-

DLX with pipelined FP Multiplier and FP Adder



chow cs420/520-CH3-Pipelining-5/14/99--Page 47-

Deal with Pipeline Hazards
When we want to issue a new FP instruction, we take the following steps:
l Check for structural hazard—Wait until the required functional unit is not busy
l Check for a RAW data hazard—Wait until the source registers are not listed 

as destinations by any of the active EX stages in the functional units.
l Check for forwarding—test if the destination register of an instruction in MEM 

or WB is one of the source registers of the FP instruction.
In additional to the above hazard prevention steps, we must 
l handle the situation where both FP loads and FP operations reach WB 

simultaneously and compete for FP register file for write.
→ allow a single instruction to enter MEM stage and stall others;

give high priority to the instruction with longest latency.
(since it most likely to cause bottleneck)

l The above scheme stalls instructions after ID stage (different than the integer 
pipeline).

l handle WAR and WAW hazards, which could happen because instructions 
with the different execution cycles.



chow cs420/520-CH3-Pipelining-5/14/99--Page 48-

WAW Hazards
DIVF F0, F2, F4 ; FP divide takes 24 clock cycles
SUBF F0, F8, F10; FP sub takes less than 4 clock cycles

How could this code sequence happen?
How to resolve this WAW hazard?
l Delay the issues of SUBF until DIVF enter MEM.
l Stamp out the result of DIVF by detecting the WAW hazard.

Is there a WAW hazard in the following code sequence?
DIVF F0, F2, F4
MULTF F5, F0, F1
SUBF F0, F8, F10



chow cs420/520-CH3-Pipelining-5/14/99--Page 49-

RAW Hazard

Structural Hazard

l At clock cycle 11, all three instructions try to write to the regiester file. If there 
is only one port, this is a structural hazard.

instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
LD F4,0(R2) IF ID EX MEM WB
MULTD F0, F4, F6 IF ID stall M1 M2 M3 M4 M5 M6 M7 MEM WB
ADDD F2, F0, F8 IF ID stall stall stall stall stall stall stall A1 A2 A3 A4 MEM
SD F2, 0(R2) IF ID stall stall stall stall stall stall stall stall stall stall MEM

instruction 1 2 3 4 5 6 7 8 9 10 11
MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
… IF ID EX MEM WB
… IF ID EX MEM WB
ADDD F2, F4, F6 IF ID A1 A2 A3 A4 MEM WB
… IF ID EX MEM WB
… IF ID EX MEM WB
LD F8, 0(R2) IF ID EX MEM WB



chow cs420/520-CH3-Pipelining-5/14/99--Page 50-

Out Of Order Completion
DIVF F0, F2, F4
ADDF F10, F10, F8
SUBF F12, F12, F14

ADDF and SUBF expect to complete before DIVF completes
If
l DIVF causes a FP-arithmetic interrupt,
l ADDF has already completed and destroy the value of F10,
l SUB has not completed,

then we can not restore the state to what is was before the DIVF;
→ this is an imprecise interrupt.

To have a precise interrupt:
l use history file as that used in CYBER 180/900, VAXes.
l use future file.
l keep enough information for the trap-handling routine to restart.
l A hybrid scheme—allow the instr. issue to continue only if it is certain that all 

instructions before the issuing instr. will complete without causing an interrupt.



chow cs420/520-CH3-Pipelining-5/14/99--Page 51-

Performance of a DLX FP Pipeline Page 190

# of stall cycles for each types of FP operations. It is about 46% to 59% of the latency of the 
functional units. It is generated by running 5 FP SPEC benchmarks.

Statistics for each type of FP operations

Very few divide structural hazards 
due to low frequency



chow cs420/520-CH3-Pipelining-5/14/99--Page 52-

# of Stalls per Instruction

The compiler tries to schedule both load and FP delays before it schedules 
branch delays.Why?



chow cs420/520-CH3-Pipelining-5/14/99--Page 53-

Exercise #6
Given the following DLX code,

ADDI R1, R0, #1 ;; keep the value of i in register R1

LW R2, 1500(R0) ;; keep the value of C in R2
LW R7, 2500(R0) ;; keep the value of D in R7

ADDI R3, R0, #200 ;; keep the loop count, 200, in R3

L1: SLLI R5, R1, #2 ;; multiply i by 4

LW R6, 5000(R5) ;; calculate address of B[i]

ADD R6, R6, R2 ;; B[i]+C

ADD R6, R6, R7 ;; B[i]+C+D

SW 0(R5), R6 ;; A[i]=B[i]+C+D

ADDI R1, R1, #1 ;; i++

SLE R4, R1, R3

BNEZ R4, L1

L2: SW 2000(R0), R1 ;; save final value of i to memory 

a) Identify the data hazards that can be solved by the forwarding techniques.

b) Are there stalls due to data hazard even though the forwarding techniques is used?
How would you improve that?

c) Are there control hazards? How would you resolve that?



chow cs420/520-CH3-Pipelining-5/14/99--Page 54-

d) How many clock cycles are needed for the execution of the above code if the pipeline in Figure 
3.22 with the forwarding hardware?
(Note that the loop count is 200.)

e) Show the improved code after the pipeline-scheduling technique is applied to avoid the stalls 
caused by the pipeline hazards?

f) How many clock cycles are needed for the execution of your improved code using the pipeline 
mentioned in part d)?



chow cs420/520-CH3-Pipelining-5/14/99--Page 55-

Solution to Exercise #6
a) ADD R6,R6, R7 has a source operand R6 and is waiting for the result of ADD R6, R6, R2.

SW 0(R5), R6 has a source operand R6 and is waiting for the result of ADD R6,R6, R7.
SLE R4,R1,R3 has a source operand R1 and is waiting for the result of ADDI R1,R1,#1.
BNEZ R4,L1 has a source operand R4 and is waiting for the result of SLE R4,R1,R3.

b) As it can be seen in the pipeline execution pattern table above, the ADD R6,R6, R7 will have a 
stall cycle at Cycle 9 to wait for the data from memory 5000(R5). This can not be eliminated by 
the forwarding technique. The forwarding technique did, however, shorten the stall from two 
cycles to one. The best way to improve this situation is to do pipeline scheduling by moving an 
independent instruction, such as ADDI R1,R1,R3, to fill this load delay slot.

c) Yes, there is control hazard. The instruction SLLI after the BNEZ will have to be stalled for at 
least one cycle. We solve this problem by pipeline scheduling. We can either move an indepen-
dent instruction from before BNEZ such as SW o(R5), R6 to fill the branch delay slot, or we can 
move an independent instruction from after BNEZ such as SLLI. Note that in latter case, we 
need to modify BNEZ R4, L1 to BNEZ R4, L1+4 and add one additional instruction SLLI 
R5,R1,#2 to the program. Compared with the two approaches, the latter is one instruction 
longer and take one more cycle to finish the program (the execution of the last SLLI is a waste). 

d) It takes 4 cycles before the loop, takes 10 cycles including 2 stall cycles in the loop, and takes 5 
cycles to finish the execution of SW 2000(R0), R1. In total, it take 4+10*200+5=2009 cycles.



chow cs420/520-CH3-Pipelining-5/14/99--Page 56-

Homework #6
Problem. Pipeline hazards and Pipeline Scheduling.
Given the following DLX code that computes Y=X-a*Y where X and Y are integer vectors of 100 

elements.
ADDI R1, R0, #1 ;; keep the value of i in register R1
LW R2, 1500(R0) ;; keep the value of a in R2
ADDI R4, R0, #100 ;; keep the loop count, 100, in R4

L1: SLLI R5, R1, #2 ;; multiply i by 4

LW R6, 5000(R5) ;; load X[i] with its address = 5000+R5
LW R7, 6000(R5) ;; load Y[i] with its address = 6000+R5
MULT R7, R2, R7 ;; b*Y[i]

SUB R7, R6, R7 ;; X[i]-b*Y[i]
SW 6000(R5), R7 ;; Y[i]=X[i]-b*Y[i]
ADDI R1, R1, #1 ;; i++

SLE R8, R1, R3
BNEZ R8, L1

L2: SW 2000(R0), R1 ;; save final value of i to memory 

a) Is there a pipeline hazard between MULT R7, R3, R7 and SUB R7, R6, R7? If there is a pipeline 
hazard, what is its type and how to solve it?



chow cs420/520-CH3-Pipelining-5/14/99--Page 57-

Homework #6
b) Is there a pipeline hazard between SUB R7, R6, R7 and SW 6000(R5), R7? If there is a pipeline 

hazard, what is its name and how to solve it?
c) The ADDI R1, R1, #1 can be scheduled to be executed after LW R6, 5000(R5) to fill the delay slot and 

avoid one stall cycle. But there is another instruction that is also a good candidate to fill that delay slot 
(probably a better candidate.) Please identify the instruction.

d) Show the improved code after pipeline-scheduling is applied to avoid all possible pipeline hazards.
Problem 2. Assume that same pipeline on Page 190. For the following code

LW F6, 5000(R5) ;; load X[i] with its address = 5000+R5
LW F7, 6000(R5) ;; load Y[i] with its address = 6000+R5
MULTF F7, F2, F7 ;; a*Y[i]

SUBF F7, F6, F7 ;; X[i]-a*Y[i]
SW 6000(R5), F7 ;; Y[i]=X[i]-a*Y[i]

a) Show the pipeline stages for the execution of the above code segment. Note that here MULTF is single 
precision FP multiply and SUBF is a single precision FP subtraction.

b) Idenfy all pipeline hazards.



chow cs420/520-CH3-Pipelining-5/14/99--Page 58-



chow cs420/520-CH3-Pipelining-5/14/99--Page 59-

Solution to Homework #6
Problem 1. Pipeline hazards and Pipeline Scheduling.
Given the following DLX code that computes Y=X-a*Y where X and Y are integer vectors of 100 

elements.
ADDI R1, R0, #1 ;; keep the value of i in register R1
LW F2, 1500(R0) ;; keep the value of a in F2
ADDI R3, R0, #100 ;; keep the loop count, 100, in R3

L1: SLLI R5, R1, #2 ;; multiply i by 4

LW F6, 5000(R5) ;; load X[i] with its address = 5000+R5
LW F7, 6000(R5) ;; load Y[i] with its address = 6000+R5
MULTF F7, F2, F7 ;; a*Y[i]

SUBF F7, F6, F7 ;; X[i]-a*Y[i]
SW 6000(R5), F7 ;; Y[i]=X[i]-a*Y[i]
ADDI R1, R1, #1 ;; i++

SLE R8, R1, R3
BNEZ R8, L1

L2: SW 2000(R0), R1 ;; save final value of i to memory 

a) (5pts) Is there a pipeline hazard between MULTF F7, F2, F7 and SUBF F7, F6, F7? If there is a 
pipeline hazard, what is its type and how to solve it?

Ans: There is a RAW hazard since SUBF is waiting MULTF to generate its second source operand. It will 
take 7 cycles for the floating point multiplier to generate the value. The pipeline need to be stalled for 6 



chow cs420/520-CH3-Pipelining-5/14/99--Page 60-

cycles. The speed up the execution the floating pointer multiplier will forward the result to the floating 
point adder that executes the SUBF.

There is also a WAW hazard since SUBF also generates the result that overwrite F7 value. The 
solution to the RAW hazard mentioned above also solves this WAW hazard. 

b) (5pts) Is there a pipeline hazard between SUBF F7, F6, F7 and SW 6000(R5), F7? If there is a pipeline 
hazard, what is its name and how to solve it?

Ans: There is a RAW hazard since SW is waiting SUBF to generate its second source operand. It can be 
solved by stalling the execution of SW for 3 cycles.

c) (5pts) The ADDI R1, R1, #1 can be scheduled to be executed after LW F7, 6000(R5) to fill the delay 
slot and avoid one stall cycle. But there is another instruction that is also a good candidate to fill that 
delay slot (probably a better candidate.) Please identify the instruction. 

Ans: We can schedule LW F6, 5000(R5) to be executed after LW F7.
d) (15 pts) Show the improved code after pipeline-scheduling is applied to avoid all possible pipeline 

hazards. Here we assume that there are 6 cycle latency on the multiplication. Take that the into your 
consideration when scheduling the code.

Ans: It turns out that without loop unrolling we can not avoid the stall of the pipeline. Here is the best we 
can do using pipeline scheduling.

ADDI R1, R0, #1 ;; keep the value of i in register R1
LW F2, 1500(R0) ;; keep the value of a in F2
ADDI R3, R0, #100 ;; keep the loop count, 100, in R3

L1: SLLI R5, R1, #2 ;; multiply i by 4
LW F7, 6000(R5) ;; load Y[i] with its address = 6000+R5
LW F6, 5000(R5) ;; load X[i] with its address = 5000+R5



chow cs420/520-CH3-Pipelining-5/14/99--Page 61-

MULTF F7, F2, F7 ;; a*Y[i]
ADDI R1, R1, #1 ;; i++

SLE R8, R1, R3
SUBF F7, F6, F7 ;; X[i]-a*Y[i]
BNEZ R8, L1

SW 6000(R5), F7 ;; Y[i]=X[i]-a*Y[i]
L2: SW 2000(R0), R1 ;; save final value of i to memory 
ADDIR1, R0, #1 F D X M B

LWF2, 1500(R0) F D X M B

ADDI R3, R0, #100 F D X M B

SLLIR5, R1, #2 F D X M B

LWF7, 6000(R5) F D X M B

LWF6, 5000(R5) F D X M B

MULTFF7, F2, F7 F D X1 X2 X3 X4 X5 X6 X7 M B

ADDIR1, R1, #1 F D X M B

SLER8, R1, R3 F D X M B

SUBFF7, F6, F7 F D S S S S X1 X2 X3 X4 M B

BNEZR8, L1 F S S S S D X M B

SW6000(R5), F7 F D S S X M



ADDI R1, R0, #1;; keep the value of i in register R1
LW F2, 1500(R0) ;; keep the value of a in F2
ADDI R3, R0, #100 ;; keep the loop count, 100, in R3

L1: SLLI R5, R1, #2 ;; multiply i by 4

LW F7, 6000(R5) ;; load Y[i] with its address = 6000+R5
LW F6, 5000(R5) ;; load X[i] with its address = 5000+R5
MULTF F7, F2, F7 ;; a*Y[i]

SUBF F7, F6, F7 ;; X[i]-a*Y[i]
SW 6000(R5), F7 ;; Y[i]=X[i]-a*Y[i]
LW F9, 6004(R5) ;; load Y[i] with its address = 6000+R5

LW F8, 5004(R5) ;; load X[i] with its address = 5000+R5
MULTF F9, F2, F9 ;; a*Y[i]
SUBF F9, F8, F9 ;; X[i]-a*Y[i]

SW 6004(R5), F9 ;; Y[i]=X[i]-a*Y[i]
ADDI R1, R1, #2 ;; i++
SLE R8, R1, R3

BNEZ R8, L1

ADDI R1, R0, #1;; keep the value of i in register R1

LW F2, 1500(R0) ;; keep the value of a in F2
ADDI R3, R0, #100 ;; keep the loop count, 100, in R3

L1: SLLI R5, R1, #2 ;; multiply i by 4
LW F7, 6000(R5) ;; load Y[i] with its address = 6000+R5

LW F6, 5000(R5) ;; load X[i] with its address = 5000+R5
MULTF F7, F2, F7 ;; a*Y[i]
LW F9, 6004(R5) ;; load Y[i] with its address = 6000+R5

LW F8, 5004(R5) ;; load X[i] with its address = 5000+R5
ADDI R1, R1, #2 ;; i++
SLE R8, R1, R3

MULTF F9, F2, F9 ;; a*Y[i]
SUBF F7, F6, F7 ;; X[i]-a*Y[i]
SW 6000(R5), F7 ;; Y[i]=X[i]-a*Y[i]

SUBF F9, F8, F9 ;; X[i]-a*Y[i]
SW 6004(R5), F9 ;; Y[i]=X[i]-a*Y[i]
BNEZ R8, L1



chow cs420/520-CH3-Pipelining-5/14/99--Page 63-

e) How many time we have to unroll the loop to avoid the stall comletely?

Ans: 

SLLIR5, R1, #2 F S S D X



chow cs420/520-CH3-Pipelining-5/14/99--Page 64-

Homework #6
Problem 1. Pipeline hazards and Pipeline Scheduling.
Given the following DLX code that computes Y=X-a*Y where X and Y are integer vectors of 100 

elements.
ADDI R1, R0, #1 ;; keep the value of i in register R1
LW F2, 1500(R0) ;; keep the value of a in F2
ADDI R3, R0, #100 ;; keep the loop count, 100, in R3

L1: SLLI R5, R1, #2 ;; multiply i by 4

LW F6, 5000(R5) ;; load X[i] with its address = 5000+R5
LW F7, 6000(R5) ;; load Y[i] with its address = 6000+R5
MULTF F7, F2, F7 ;; a*Y[i]

SUBF F7, F6, F7 ;; X[i]-a*Y[i]
SW 6000(R5), F7 ;; Y[i]=X[i]-a*Y[i]
ADDI R1, R1, #1 ;; i++

SLE R8, R1, R3
BNEZ R8, L1

L2: SW 2000(R0), R1 ;; save final value of i to memory 

a) (5pts) Is there a pipeline hazard between MULTF F7, F2, F7 and SUBF F7, F6, F7? If there is a 
pipeline hazard, what is its type and how to solve it?



chow cs420/520-CH3-Pipelining-5/14/99--Page 65-

Homework #6
b) (5pts) Is there a pipeline hazard between SUBF F7, F6, F7 and SW 6000(R5), F7? If there is a pipeline 

hazard, what is its name and how to solve it?
c) (5pts) The ADDI R1, R1, #1 can be scheduled to be executed after LW F7, 5000(R5) to fill the delay 

slot and avoid one stall cycle. But there is another instruction that is also a good candidate to fill that 
delay slot (probably a better candidate.) Please identify the instruction.

d) (15 pts) Show the improved code after pipeline-scheduling is applied to avoid all possible pipeline 
hazards. Here we assume that there are 6 cycle latency on the multiplication. Take that the into your 
consideration when scheduling the code.



chow cs420/520-CH3-Pipelining-5/14/99--Page 66-

Homework #7
Problem 3. DLX pipeline with multiple cycle functional units.
Assume we have the same DLX pipeline as that shown in Figure 6.28. The multiplier takes 10 cycles, the 

FP adder takes 5 cycles, and the divider takes 20 cycles to complete its computation.
a) (10pts) Identify all the pipeline hazards in the following sequence of code.

DIVF F0, F2, F4
DIVF F6, F8, F10
ADDF F0, F0, F6
SUBF F6, F4, F10

b) (10pts) For each pipeline hazard, explain how it can be handled.
c) (10pts) After mechanisms are installed to avoid the pipeline hazards, how many clock cycles are 

needed to execute the above code, including all the pipe stages?
Problem 4. (10 points) Select and view any of the following tapes in CS420/520 library reserve.

David Patterson, “The design & development of SPARC”
Phil Hester, “Superscalar RISC Concepts and the RS6000”
Michael Mahon, “HP precision architecture”

I suggest that you watch a tape in group so that you can discuss, but you can also watch it individually.
a) What topic in the tape impresses you most?
b) Write one paragraph on the new thing that you learn from the speaker.

c) Your opinions/suggestions on the use of these video tapes. (This is a feedback question.)



chow cs420/520-CH3-Pipelining-5/14/99--Page 67-

Solution to Homework #7
1.a) There is a RAW data hazard. It can be solved by forwarding the result of 

MULT to replace the Rs2 operand for the SUB operation. It can also be 
solved by pipeline scheduling by moving ADDI and SLE instructions between 
MULT and SUB.

1.b) There is a RAW data hazard. It can be solved by forwarding the result of SUB 
to replace the Rd operand for the SW operation. It can also be solved by 
pipeline scheduling by moving ADDI and SLE instructions between SUB and 
SW.

1.c) LW R7, 6000(R5).
1.d) ADDI R1, R0, #1 ;; keep the value of i in register R1

LW R2, 1500(R0) ;; keep the value of a in R2
LW R3, 2500(R0) ;; keep the value of b in R3
ADDI R4, R0, #100 ;; keep the loop count, 100, in R4

L1: SLLI R5, R1, #2 ;; multiply i by 4

LW R6, 5000(R5) ;; load X[i] with its address = 5000+R5
LW R7, 6000(R5) ;; load Y[i] with its address = 6000+R5
MULT R6, R2, R6 ;; a*X[i]

MULT R7, R3, R7 ;; b*Y[i]
ADDI R1, R1, #1 ;; i++



chow cs420/520-CH3-Pipelining-5/14/99--Page 68-

SLE R8, R1, R3
SUB R7, R6, R7 ;; a*X[i]-b*Y[i]

BNEZ R8, L1
SW 6000(R5), R7 ;; Y[i]=a*X[i]-b*Y[i]

L2: SW 2000(R0), R1 ;; save final value of i to memory 

2.a) Possible Interrupts
ADDI R1, R0, #1 IF page fault
LW R2, 1500(R0) MEM page fault
LW R3, 2500(R0) MEM page fault
ADDI R4, R0, #100

L1: SLLI R5, R1, #2

LW R6, 5000(R5) MEM page fault
MULT R6, R2, R6 Arithmetic fault
LW R7, 6000(R5) MEM page fault

MULT R7, R3, R7 Arithmetic fault
SUB R7, R6, R7 Arithmetic fault
SW 6000(R5), R7 MEM page fault

ADDI R1, R1, #1
SLE R8, R1, R3
BNEZ R8, L1

L2: SW 2000(R0), R1 MEM page fault



chow cs420/520-CH3-Pipelining-5/14/99--Page 69-

2.b) There are three instances where an LW or SW is followed by an ALU 
instruction. But the pipeline interlock mechanism will delay the MULTs for one 
cycle therefore no two interrupts can happen in the same cycle. The ADDI 
after SW will not overflow.

2.c) If there is a multiple interrupt in the same cycle, the MEM page fault should be 
served before the EX stage arithmetic fault to be taken care of.

3.a&b) There is a structural hazard between 1st and 2nd DIVF since there is only 
one FP division unit. The 2nd DIVF has to be stalled.
There is a RAW data hazard between 2nd DIVF and ADDF via F6. ADDF has 
to be stalled until F6 is ready to be read.
There is a structure hazard between ADDF and SUBF. SUBF has to be 
stalled.
There is a potential WAW data hazard between 2nd DIVF and SUBF via F6 
but it won’t happen due to the stall to avoid the structural hazard.
There is a potential WAR data hazard between ADDF and SUBF via F6 but it 
won’t happen due to the stall to avoid the structural hazard.
There is a potential WAW data hazard between 1st DIVF and ADDF via F0 
but it is avoided due to the stall.
There is also a RAW hazard between 1st DIVF and ADDF via F0.



chow cs420/520-CH3-Pipelining-5/14/99--Page 70-

3.c)  54 cycles are needed.

1 2 3 4 22 23 24 42 43 44 47 48 49 52 53 54

DIVF F0,F2,F4 IF ID EX EX EX MEM WB

DIVF F6,F8,F10 IF ID S S EX EX EX MEM WB

ADDF F0, F0, F6 IF S S ID S S EX EX EX MEM WB

SUBF F6, F4, F10 S S IF S S ID S S EX EX EX MEM WB


