Computer Science Master’s Project

Available Bandwidth Measurement using Real Time Operating Systems

Dennis S. Knoop

1. Committee Members and Signatures:

 Approved by Date

 __________________________________ _____________

 Advisor: Dr. Edward Chow

 __________________________________ _____________

 Committee member: Dr. Charles Shub

 __________________________________ _____________

 Committee member: Dr. Dushan Badal

Table of Contents

1. Introduction

a. Abstract

b. Historical Background

i. ?????
2. Real Time Operating Systems

a. Real-Time System Concepts

b. µC/OS-II

c. RTLinux

i. Time Facilities

ii. Scheduling Threads

iii. Running RTLinux Programs
3. Linux

a. Schedulers

i. SCHED_OTHER

ii. SCHED_RR

iii. SCHED_FIFO

4. Network protocols

a. TCP/IP

b. UDP

c. ICMP

5. Available Bandwidth measurement
a. Basic Concepts

b. Vern Paxson
c. Fujitsu Labs
6. Available Bandwidth Management tool using RTLinux

7. Available Bandwidth Management tool using Linux alternate schedulers

8. Results

9. Conclusion

10. Future

Appendix A
Source Code

Appendix B
Sample runs

Appendix C
Presentation Slides

Appendix D
Bibliography

2. Introduction

a. Abstract

There has been a large amount of work done in the area of bandwidth analysis and two tools used to determine available bandwidth are bprobe and cprobe developed by Bob Carter and Mark Crovella of Boston University. Their tools use a series of ICMP echo request messages separated by known time gaps. The echo reply message gap is recorded and is used to determine the loss of the circuit in question. If the gap increases, there is not enough bandwidth for the message. The general concept is sound, but creating consistent initial gaps and messages is difficult. The start times can vary greatly over a large number of messages. Using a Real-Time Operating System should improve the accuracy of the tool.

The tools created by Carter and Crovella have been modified at the University of Colorado at Colorado Springs to create a new tool, known as the Available Band Width Management tool (ABWM). ABWM uses a known message/packet size, number of messages, and destination host, chosen by the user. The problem is that the sending gap between messages is set within the program and is dependent on the program processing through the function that sends the probe message. If the timing of the probing message can be controlled the tool will be improved.

Real-Time Operating Systems provide a means to improve the timing of events by decreasing the number of interrupts allowed to disrupt processing. By adding another level of abstraction Real-Time Operating Systems are able to control interrupts or use a new priority system to handle the normal interrupt service routine. Time critical task are handled first and normal task are set to lower priorities. Not all real-time systems are the same. Real-Time Operating Systems can be divided into two types; hard and soft. In a Soft real-time system, task are preformed as fast as possible. However, in a Hard real-time system, task have to be preformed on time.

My plan is to build a controlled environment to test a link between two nodes and determine the available bandwidth using the current ABWM tool. I plan to improve the probing by running the tool in a hard real-time environment. This will be the difficult part. The current ABWM tool will need modifications to run within a real-time operating system and the real-time operating system chosen will determine the modifications necessary. I propose that running the tool in a real-time operating system will improve the performance of the ABWM tool and give a more accurate measurement of the available bandwidth.

Historical Background

Real Time Operating Systems

Most general purpose operating systems are designed to optimize average performance and try to give every process a fair share of compute time [Barabanow]. However, real-time systems need more precise timing and predictable performance. Real-time operating systems attempt to provide this additional requirement by providing a method to prioritize the most critical portion of the code. There are several real-time operating systems and methods to increase the timing accuracy. I looked at two real-time operating systems; RTLinux and µC/OS-II. But before I discuss the details of the two real-time operating systems researched, I present a few basic real-time concepts. These terms were taken primarily from the MicroC/OS-II text [Labrosse].
Real-Time System Concepts

The IEEE definition of a real-time system is “a real-time system is a system whose correctness includes its response time as well as its functional correctness” [Linux devices Lehrbaum]. The basic difference between real-time operating systems and normal systems is the emphasis on completing task within a specified time. However, not all real-time systems have this as their core requirement. Real-time systems can be divided into two major types; Soft and Hard. In a Soft real-time system, tasks are performed by the system as fast as possible, but the tasks don’t have to finish by specific times [Labrosse]. Soft real-time systems require timeliness, but it is not critical. In Hard real-time systems, tasks have to be preformed not only correctly but on time [Labrosse]. The system must be able to meet worst-case times. If you miss a deadline, you have under performed.

User Space vs. Kernel Space

Unlike most normal user applications most real-time applications run at a kernel level. Kernel-space code compared to user-space programs is more difficult to debug, is more likely to crash or hang the system, and is less convenient to communicate with the user-space tasks [linixdevices.com].

Foreground/Background Systems

Another name for this system approach is a super-loop. An application consists of an infinite loop that calls functions to perform the desired operation (background, also known as the task level) [Labrosse]. An Interrupt Service Routine (ISR) handles the asynchronous events (foreground, also known as the interrupt level). The ISR handles the critical operations to ensure they receive an adequate amount of processing time and complete in a timely manner. Many embedded systems use this technique including microwaves, telephones, and toys.

Critical sections of code

The critical code needs to be treated indivisibly, which means that once the code begins processing, the code must not be interrupted. Normally some method is used to disable interrupts until the code is complete or set the critical code to the highest priority that can not be interrupted.
Task/Thread

Tasks are programs that are simple in nature, which may be part of a larger program. Each thread is given a priority, set of registers, and its own stack. The task is normally some kind of infinite loop that can be in one of five states: ready, running, waiting, dormant or interrupted.
Kernel

The kernel is responsible for managing the tasks and the communication between tasks. It provides services such as semaphore management, mailboxes, queues, time delays, and many others. This is in contrast to the foreground/background systems that are controlled by one infinite loop.

Scheduler

The scheduler is key to the kernel and determines what task will run next. As mentioned earlier, most real-time kernels are priority based. Each tasked is assigned a priority at creation and the highest priority task is run by the CPU. When the CPU relinquishes to the next task is determined by the type of kernel; non-preemptive or preemptive.

Non-preemptive kernel

A non-preemptive kernel relies on the task to do something to give up control of the CPU. The code must handle the control back over to the system to process the next highest priority ready task.
May want to add a picture here (pg 43 µC/OS-II)

Preemptive kernel

The highest priority task ready to run is always given control of the CPU. When a higher priority task becomes ready to run, the current task is preempted and the higher priority task is given control. The ISR controls which tasks are running and how they are re-entered into the system.
May want to add a picture here (pg 44 µC/OS-II)

Task Priority

The more important the task, the higher the priority assigned to the task.
Static Priorities

Static priorities are priorities that do not change during the execution of an application. This can cause problems if a lower priority task ties up a resource.

Dynamic Priorities

Dynamic priorities are priorities that can be changed during the execution of an application. This helps reduce the chance of deadlock situation caused by static priorities.
Mutual Exclusion

When using shared data some method must be used to ensure each task has exclusive access to the data to avoid data corruption. Some popular methods used to ensure exclusive access are:

· Disabling and Enabling Interrupts

· Test-And-Set

· Disabling and Enabling the Scheduler

· Semaphores

Interrupts

An interrupt is a hardware mechanism used to inform the CPU that an asynchronous event has occurred [Labrosse]. When an interrupt is recognized, the CPU saves what it was working on and passes control to the ISR which processes the event. Interrupts can be nested, which means that when an interrupt in being processed another interrupt may occur. When that interrupt is complete the control is passed back to the previous interrupt and then back to the original task.

Interrupt Response

Interrupt response is the time between the reception of an interrupt and the start of the user’s code that handles the interrupt.

Interrupt Latency
The interrupt latency is the amount of time it takes to begin the first instruction of an ISR after an interrupt has been issued plus the maximum time the interrupts are disabled.

µC/OS-II

The real-time kernel µC/OS-II stands for Micro Controller Operating System Version 2. The first version was released in 1992 and µC/OS-II is widely used throughout the world in a variety of applications including cameras, medical instruments, and ATMs to mention a few. Most of µC/OS-II is written in ANSI C, making it a highly portable product. The remaining code is written in assembly to target specific microprocessors; 80x86 for example. µC/OS-II looks like any other DOS application and porting the available bandwidth measurement tool may be difficult, because of the inherent UNIX functions within the tool.
µC/OS-II uses interrupts to control the tasks to be run. µC/OS-II needs to disable interrupts in order to access critical sections of code and to re-enable interrupts when critical tasks are complete. The os_enter_critical() and os_exit_critical() functions are used to perform these functions. Since each processor type handles interrupts slightly different a different version of the functions must be used for different processors. One strong point is that the interrupt management function can handle up to 255 nested interrupts.
µC/OS-II was designed for embedded applications, which makes it a poor candidate for running the available bandwidth measurement tool. It is also a fully preemptive real-time kernel allowing the highest priority task to run, making the assurance that task will not be preempted difficult, especially if multiple tasks are in the schedule.
µC/OS-II does allow up to 64 tasks with 64 different priority levels making it a versatile kernel and capable of multitasking. Its deterministic nature allows the user to know exactly how long each task will take to execute providing consistent results.
RTLinux

RTLinux was designed with the premise that it is not feasible to identify and eliminate all unpredictability within a kernel operation [getting started]. Sources of unpredictability include; the Linux scheduling routine, device drivers, uninterruptible system calls, the use of interrupt disabling, and virtual memory operations [getting started]. The problem with Linux scheduling is that it tries to maintain maximum throughput, which is good in most applications but not ones that require real-time precision. RTLinux resolves these problems by creating a small, predictable kernel, which is separate from Linux kernel. An additional layer of abstraction is added between the standard Linux kernel and the computer hardware [getting started]. As far as the standard Linux kernel is concerned, the new layer appears to be actual hardware.

The new layer introduces its own fixed priority scheduler. As stated earlier, RTLinux is a small, simple real-time operating system that provides high precision while allowing normal Linux processes to continue. This is accomplished by running Linux as a task/thread and setting it as the lowest priority task. RTLinux real-time task have a higher priority then normal Linux task, providing a more precise and reliable system. Linux runs under the control of the real-time kernel. When there is a real-time task to accomplish, it has priority and is run with all needed resources.

[image: image1]
RTLinux design philosophy is to split programs into small parts to handle the real-time task and larger ones to handle the more sophisticated processing. The real-time component is written as a kernel module and inserted into the running system.

With RTLinux, Linux is never allowed to disable interrupts. Instead, they handle all interrupts within their own dedicated operating system. RTLinux notes the request and then ensures that Linux behaves as though it had disabled interrupts. The technique for handling the interrupts is patented by the creator of RTLinux, Victor Yodaiken.

RTLinux was originally developed at the New Mexico Institute of Technology and is an open-source product released under the GPL. Non-GPL versions of RTLinux are maintained by Finite State Machines Labs (FSM Labs). The main kernel developers are Victor Yodaiken, Michael Barabanov, and Cort Dougan.

The RTLinux kernel is non-preemptable, so the task should be made small and very fast to help reduce delays of other task.

According to Victor Yodaiken, worst case interrupt latency on a 486/33Mhz PC measures well under 30 microseconds, close to the hardware limit. That number has been improved with newer equipment and a newer version of RTLinux, several sources put worst-case times at 15 microseconds. Better hardware configurations produce better timings. This is much faster than some of the fast interrupt response solutions which have been timed in the one millisecond range.

Real-time tasks in RTLinux can communicate with Linux processes via shared memory or a file-like interface. This allows real-time applications to use all the powerful, non-real-time services of Linux.

“The main advantage of RTLinux over earlier RTOS designs is that it allows programmers to write applications that combine the advantage of a lean, hard real-time operating system at hardware speeds with all the features of a general purpose operating system” [Barabanov]. RTAI, which is a spin off of RTLinux, has added a large number of features while RTLinux puts emphasis on performance not features.

The very rough basics of creating a Linux modules is to an object file with the –c flag argument to gcc. The main function is replaced with init and cleanup functions:

int init_module();

void cleanup_module();

Linux requires that modules have a cleanup routine to ensure there are no dead tasks in the schedule.

The application programming interface (API) runs on x86, Power PC, and Alpha processors and supports SMP.

Time Facilities

RTLinux provides several clocks that can be used for timing functionality

 #include <rtl_time.h>
hrtime_t - The value is a 64-bit value that represents the number of nanoseconds

struct timespec {

time_t tv_sec;

long tv_nsec;

};

int clock_gettime(clockid_t clock_id, struct timespec *ts);

hrtime_t clock_gethrtime(clockid_t clock);l

Scheduling Threads

RTLinux use a pure priority driven scheduler, in which the highest priority thread is always chosen to run [getting started].

Waking and suspending RTLinux Threads ??????

Running RTLinux Programs

insmod

rmmod

Basic modules that need to be started before running any module

The RTLinux make file should be included with all make files to ensure the proper libraries are available. The rtl.mk file is created during installation of the RTLinux kernel.
Linux

a. Schedulers

i. SCHED_OTHER

ii. SCHED_RR

iii. SCHED_FIFO

Network protocols

iv. TCP/IP

v. UDP

Internet Control Message Protocol (ICMP)

ICMP is part of an IP implementation and is used to report errors in IP datagram routing. The following descriptions were taken from RFC 792.
“The Internet Protocol (IP) is not designed to be absolutely reliable. The purpose of these control messages (ICMP) is to provide feedback about problems in the communication environment, not to make IP reliable. There are still no guarantees that a datagram will be delivered or a control message will be returned. Some datagrams may still be undelivered without any report of their loss. The higher level protocols that use IP (TCP) must implement their own reliability procedures if reliable communication is required.”

ICMP messages use the basic IP header, with the following values for specific fields:

Protocol = 1

Specific ICMP messages:

	Type
	

	0
	Echo Reply

	3
	Destination Unreachable

	4
	Source Quench

	5
	Redirect

	8
	Echo

	11
	Time Exceeded

	12
	Parameter Problem

	13
	Timestamp

	14
	Timestamp Reply

	15
	Information Request

	16
	Information Reply

Echo or Echo Reply Message

	Type
	Code
	Checksum
	Identifier
	Sequence Number
	Data

ICMP Fields
Type

8 for echo message

0 for echo reply message

Code

0

Checksum

The checksum is the 16-bit ones’s complement of the one’s complement sum of the ICMP message starting with the ICMP type.
Identifier

If code = 0, an identifier to aid in matching echoes and replies, may be zero.
Sequence number

If code = 0, an identifier to aid in matching echoes and replies, may be zero.

Description

The data received in the echo message must be returned in the echo reply message.

The identifier and sequence number may be used by the echo sender to aid in matching the replies with the echo request. For example, the identifier might be used like a port in TCP or UDP to identify a session, and the sequence number might be incremented on each echo request sent. The echoer returns these same values in the echo reply.

Socket address Structures

struct in_addr {

in_addr_t

s_addr;
 /* 32-bit IPV4 address */

};

struct sockaddr_in {

unint8_t

sin_len;

sa_family_t

sin_family;

in_port_t

sin_port;

struct
in_addr
sinaddr;
/* 32-bit IPV4 address */

char

sin_zero[8];

};

Available Bandwidth Measurement
Basic Concepts
Vern Paxson
Fujitsu Labs
Available Bandwidth Management tool using RTLinux
Alternatives
· Run abwm under the RTLinux Kernel with no changes
· Modify abwm to use the RTLinux API time facilities
· Modify abwm to use the RTLinux API and run the abwm program as a RTLinux Module

· Run send and receive functionality as separate RTLinux modules and use a RTLinux FIFO to collect data
Loading RTLinux

Kernel configuration

Hardware modifications

This was one of the largest early stumbling blocks. After loading RTLinux, the system did not initialize the Ethernet device; eth0. A network tool is not very useful without a connection to other computers.
Initial Testing
Initial testing involved running the examples that were installed with the RTLinux initialization.

Major Changes in Code
rtl_time
hrtime

a2socket replaced with inet_aton

init

cleanup

threads

nanosleep

combining bwrange with abwm
removal of unused variables and functions
cleanup of header file

prototyping all functions

additional comments

Major Changes in Code
Results

Sending Time gaps –Normal ABWM tool

Sending Time gaps – RTLinux - using RTLinux time functions and inserted as RTLinux module

Conclusion

Future

4.0 References

[1] M. Barabanov, E. Hilton and V. Yodaiken, “ RTLinux FAQ”, http://www.rtlinux/documents/faq.html
[2] E. Chow, T. Chujo, Y. Lu and L He, “ Available Bandwidth Measurement, Implementation and Experiment”, Fujitsu Laboratories of America, Inc.

[3] FSM Labs, Inc., “ Getting Started with RTLinux”, http://www.RTLinux.com
[4] FSM Labs, Inc., “Open RTLinux Installation Instructions”, http://www.RTLinux.com
[5] B. Hall, “Beej’s Guide to Network Programming” 2001.

[6] J. Labrosse, MicroC/OS-II, CMP Books, Lawrence, Kansas 1999.

[7] V. Paxson, “End-to-End Internet Packet Dynamics”, IEEE/ACM Transactions on Networks, Vol 7, No 3 June 1999.

[8] W. Stevens, UNIX Network Programming, Prentice Hall, Upper Saddle River, NJ. 1998.

[9] V. Yodaiken, “An Introduction to RTLinux”, http://www.linuxdevices.com/articles/at3694406595.html, 1997.

[10] V. Yodaiken, “The RTLinux Manifesto”, Department of Computer Science, New Mexico Institute of Technology.

Last Modified: April 17, 2002
Linux Process 1

Linux Process 2

Linux Kernel

Real-Time Kernel

An RT-Process

