

Load Balancing a Cluster of Web Servers †

Using Distributed Packet Rewriting

Luis Aversa Azer Bestavros
Laversa@cs.bu.edu Bestavros@cs.bu.edu

Computer Science Department
Boston University

† This work has been partially funded by NSF research grant CCR-9706685.

Abstract

We present and evaluate an implementation of a
prototype scalable web server consisting of a load-
balanced cluster of hosts that collectively accept and
service TCP connections. The host IP addresses are
advertised using Round Robin DNS (RR-DNS)
technique, allowing any host to receive requests from
any client. Once a client attempts to establish a TCP
connection with one of the hosts, a decision is made as
to whether or not the connection should be redirected to
a different host---namely, the host with the lowest
number of established connections. We use the low-
overhead Distributed Packet Rewriting (DPR) technique
[1] to redirect TCP connections. In our prototype, each
host keeps information about the remaining hosts in the
system. Load information is maintained using periodic
multicast amongst the cluster hosts. Performance
measurements suggest that our prototype outperforms
both pure RR-DNS and the stateless DPR solutions.

1. Introduction

To construct scalable Web servers, system builders are
turning to distributed designs. An important challenge
that arises in distributed Web servers is the need to direct
incoming connections to individual hosts. Previous
methods for connection routing have employed a
centralized node (termed a TCP router) that acts as a
switchboard, directing incoming requests to backend
hosts. Under this architecture, a single machine whose
IP address is published through DNS takes on the
responsibility of balancing the load across the cluster
[4,7]. This centralized approach is not inherently
scalable because it does not take into account the fact
that the TCP router becomes a bottleneck at high loads.
A proposed alternative to this centralized approach is
Distributed Packet Rewriting [1] (DPR). DPR follows the
same idea of distributing requests across a number of
web servers to handle high loads of web traffic. The

major difference between DPR and TCP routing lies in the
manner in which IP addresses are published. DPR uses
Round-Robin DNS to publish individual addresses of all
machines in the cluster of web servers, thereby distributing
the responsibility of re-routing requests to each machine.

In this paper, we demonstrate the feasibility of this
decentralized approach through the presentation and
performance evaluation of a prototype implementation of a
DPR-based distributed server architecture.

2. Related Work

Early work on distribution and assignment of incoming
connections across a cluster of servers [9,14] has relied on
Round-Robin DNS (RR-DNS) to distribute incoming
connections across a cluster of servers. This is done by
providing a mapping from a single host name to multiple IP
addresses. Due to DNS protocol intricacies (e.g. DNS
caching and invalidation), RR-DNS was found to be of
limited value for the purposes of load balancing and fault
tolerance of scalable Web server clusters. The research
described in [4,14] quantifies these limitations.

Centralized Connection Routing:

Rather than delegating to DNS the responsibility of
distributing requests to individual servers in a cluster, several
research groups have suggested the use of a local ``router'' to
perform this function. For example, the NOW project at
Berkeley has developed the MagicRouter [11], which is a
packet-filter-based approach [13] to distributing network
packets in a cluster. The MagicRouter acts as a switchboard
that distributes requests for Web service to the individual
nodes in the cluster. To do so requires that packets from a
client be forwarded (or ``rewritten'') by the MagicRouter to
the individual server chosen to service the client's TCP
connection. Also, it requires that packets from the server be
``rewritten'' by the MagicRouter on their way back to the
client. This packet rewriting mechanism gives the illusion of
a ``high-performance'' Web Server, which in reality consists

of a router and a cluster of servers. The emphasis of the
MagicRouter work is on reducing packet processing time
through ``Fast Packet Interposing''---but not on the issue
of balancing load. Other solutions based on similar
architectures include Cisco’s Local Director [7] and
IBM’s Interactive Network Dispatcher [16].

An architecture slightly different from that of the
MagicRouter is described in [4], in which a ``TCP
Router'' acts as a front-end that forwards requests for
Web service to the individual back-end servers of the
cluster. Two features of the TCP Router differentiate it
from the MagicRouter solution mentioned above. First,
rewriting packets from servers to clients is eliminated.
This is particularly important when serving large
volumes of data. To allow for the elimination of packet
rewriting from server hosts to clients requires modifying
the server host kernels, which is not needed with
MagicRouter solution. Second, the TCP Router assigns
connections to servers based on the state of these servers.
This means that the TCP Router must keep track of
connection assignments.

The architecture presented in [3] uses a TCP-based
switching mechanism to implement a distributed proxy
server. The motivation for this work is to address the
performance limitations of client-side caching proxies by
allowing a number of servers to act as a single proxy for
clients of an institutional network. Their architecture
uses a centralized dispatcher (a Depot) to distribute
client requests to one of the servers in the cluster
representing the proxy. The function of the Depot is
similar to that of the MagicRouter. However, due to the
caching functionality of the distributed proxy, additional
issues are addressed---mostly related to the maintenance
of cache consistency amongst all servers in the cluster.

Distributed Connection Routing:

All of the above connection routing (also known as
Layer 4 Switching) techniques have employed a
centralized node which handles all incoming requests.
In contrast, the Distributed Packet Rewriting technique
presented in [1,2] (DPR) distributes that functionality.
As illustrated in Figure 2, using DPR, all hosts of the
distributed system participate in connection routing. This
distributed approach promises better scalability and
fault-tolerance than the predominant use of centralized,
special-purpose connection routers.

DPR is an IP level mechanism that equips a server with
the ability to redirect an incoming connection to a
different server in the cluster based on the very first
packet (SYN packet) received from the client. This
implies that the redirection decision (i.e. which server
ought to be chosen for redirection) can only rely on the
information included in the SYN packet---namely,

src/dst IP addresses and src/dst port numbers---as well as on
cluster state information---e.g., relative load on the different
servers in the cluster. Using this information, a DPR-enabled
server either forwards a connection to a different server, or
lets it percolate up its network stack to the application layer.
There are two versions of DPR, stateless and stateful.
Stateless DPR does not require any information different from
what can be found in the headers of each packet in a
connection. Thus, forwarding is done independently on a
packet by packet basis according to a hash function. Stateful
DPR keeps a table of translations, which is used to determine
where to forward packets of a given connection (based on a
choice made initially upon receipt of the connection's SYN
packet).

In [1,2], DPR was tested using a randomizing re-routing
algorithm (to determine whether or not to forward packets or
serve them locally). Based on a hash function that was
applied to the source port number of the TCP packet, the
decision was made. This approach is entirely stateless – it
does not rely on feedback from other machines regarding
current load in order to make the determination of whether to
forward a packet. In this paper, we argue and show that using
a stateful approach (using accurate load estimation on the
machines in the cluster) to distribute packets will achieve
better throughput and a faster mean response time to the
client.

3. DPR Prototype Implementation

In our implementation of DPR, each host in the cluster
provides web service, along with the ability to re-route
requests to other machines through packet rewriting. The IP
addresses of all hosts are advertised through RR-DNS,
allowing any of the machines to receive requests. Such
requests can be either served locally or re-routed to another
machine. In the latter case, the responsibility of serving the
request will be transferred to another machine, which will
respond directly to the client.

3.1. Overview

In our implementation, it is necessary for the machines within
the cluster to distinguish between packets that have been re-
routed and packets that come directly from the client.
Furthermore, if a host re-routes a request to another host,
then knowledge of the client’s IP address must also be
transferred. To address both of these issues, we employ IP-IP
encapsulation [See IETF RFC 2003].

Using IP-IP encapsulation, a host encapsulates the original
packet received from a client inside another IP packet, which
is then re-routed. The host to which the packet is rerouted is
now able to deduce that the packet was re-routed and can
respond directly to the client (whose IP address is preserved
in the encapsulated packet).

To enable a stateful routing of requests using DPR, each
machine keeps an updated list of all other machines
within the cluster, with information such as their IP
addresses and current load. Hosts intermittently
broadcast their load to the other machines (using
multicast UDP packets). This information is used by a
server to determine whether an incoming request should
be re-routed or whether it should be served locally. Also,
each machine keeps routing tables with information
about redirected connections.

The particular distributed load-balancing algorithm we
use works as follows. When a new request (i.e. the SYN
packet of a TCP connection) is received by a host from a
client, the server first examines its own load. If the load
is under a certain threshold value MaxLoad, then the
server will serve the request locally. If not, it will create
a new entry in its routing tables and will forward the
request (i.e. the SYN packet of the TCP connection) to
one of the other servers in the cluster. Subsequent
packets from this connection are routed according the
information in the routing table. This threshold value
MaxLoad can be adjusted according to certain factors
such as CPU speed, memory, etc.

We used two different approaches to select the server to
which a request is re-routed. The first approach is
deterministic, whereby the server with the lowest load is
selected. The second approach is probabilistic, whereby
the probability of selecting a server is inversely
proportional to the load on that server. The advantage of
this latter approach is that it avoids possible oscillations
(whereby all requests in a short timeframe are re-routed
to the server with the lowest advertised load, potentially
overloading such a server).

We used a number of different metrics to estimate the
“load” on each of the hosts—namely,

(1) total number of open TCP connections on the host,
(2) CPU utilization of the hosts,
(3) number of redirected TCP connections at host, and
(4) number of active sockets at the host.

In addition, we have experimented with various
functions that combined the above four metrics using
different weights and functions.

Our implementation of stateful distributed connection
routing was done under linux 2.0.28. It consisted of two
main components: one in kernel space and one in user
space. The first component required the design of a very
fast mechanism to search, insert, delete and update real-
time data for routing purposes. This mechanism was
implemented entirely in the kernel using multiple hash
tables and linked list. The second component was to
design a mechanism to store the information regarding
other machines’ current loads and update such

information periodically (e.g. every second). A sorted linked
list, three user processes and new systems calls were needed
for the implementation of this component.

3.2. Routing Functionality in Kernel Space

When a machine receives an IP packet, the kernel calls the
function ip_receive(). Some modifications were made to
this function to be able to redirect connections. In this
function, the IP packet is examined. If it contains a TCP
packet and the TCP destination port is 80 (or whatever other
port the web server is running on), we know that such a TCP
connection it is an HTTP connection and is coming directly
from the client. If the TCP packet contains a SYN, then we
know that a new connection is being requested. A decision
has to be made, to serve it locally or to forward it. As eluded
to earlier, this decision is based on the load table and the
current load of the machine. If the machine is under the
threshold value or the current load of the machine is the
lowest compared to the other machines then the request is
served locally and no routing tables are updated. If the current
load is above the threshold value and the lowest load
correspond to another machine then the routing tables are
updated and the packet is forwarded to some other server
(using either the deterministic or probabilistic approaches we
discussed earlier). If the TCP packet is not a SYN then, we
look up in the routing tables and if the connection has been
redirected, then the packet is forwarded. If the IP packet
contains an IP-IP packet and the unused bit of the fragment
offset is set to 1, we know that it is a packet that has been
redirected and that we have to serve it. We unpack the IP-IP
packet and send the TCP packet to the TCP layer to be
processed. Instead of utilizing the unused bit of the fragment
offset, we could check if the source IP address correspond to
the servers participating in the DPR to detect redirected
connections.

3.3. State Sharing Functionality in User Space

The mechanism to maintain an accurate view of the load on
the various servers in the cluster was implemented with three
user processes and seven new system calls. One process is in
charge of broadcasting the local server’s own load
periodically (in our experiments, we set the period to 1
second). To get local load information, this process makes a
system call to obtain the appropriate value of the load
(namely: CPU utilization, number of open TCP connections,
number of active sockets, and number of rerouted
connections). A second process is in charge of waiting for the
load of the other servers that are participation in the DPR
protocol to be multicast. Every time a new value is received,
the process makes a system call to update the sorted linked
list maintained in the kernel. The third process is in charge of
cleaning up of the load and the routing tables. If no load
packet is received from one machine for a certain number of

second, then the entry of this machine in the load table is
deleted to avoid redirecting connection to a machine that
is not running (e.g. due to a failure or a periodic
maintenance shutdown).

Using IP-IP to redirect connections allows us to have
servers in different networks. We only need to tell the
process in charge of broadcasting the load the networks
that participate in DPR. If more than one network have
servers participating in DPR, this process will broadcast
the load packet not only to the local network but also to
all other networks participating in this protocol. The
identity of all participating networks is captured from a
configuration file upon the initialization of this process.

4. Performance Evaluation

In order to evaluate the performance and the load
distribution of the implementation, we used a URL
request generator tool called SURGE [8] (Scalable URL
Reference Generator) to create a realistic web workload.
Surge is a tool developed as part of the Commonwealth
project [17] that attempts to accurately mimic a fixed
population of users accessing a Web server. It adheres to
six empirically measured statistical properties of typical
client requests, including request size distribution and
inter-arrival time distribution. Surge adopts a closed
system model (workload is generated by a fixed
population of users, which alternate between making
requests and lying idle).

SURGE was run in each client machine with the
following parameters: five client sub-processes with 50
threads each for 200 seconds. We ran SURGE from six
machines that were generating requests to three
Pentium-class web servers (266 Mhz, 128MB, 100Mbps
Ethernet) running apache. These servers are named:
Brookline, Baystate and Buick. Four SURGE clients
were generating requests to Buick, one to Brookline and
one to Baystate as shown in Figure 1.

Figure 3: Experimental Setup

This uneven assignment of SURGE clients to servers results
in a heavy load being offered to one of the machines (namely
Buick). As documented in previous studies [4,14], this is
typically what happens when round-robin DNS is used to map
a domain name to a set of IP addresses.

We show in the next section the behavior of the cluster
applying different algorithms to balance the load. First, we
ran the test using not load balancing at all, second we used
the random load balancing and third, we used the TCP load
balancing algorithm explained in the implementation section.

Test Scenarios and Metrics:

Three scenarios were tested. In the first (termed “No Load
Balancing”), we ran the system with the DPR functionality
turned off. This scenario represents RR-DNS solutions for
assigning client requests to cluster hosts as described in
[Mogul 1995]. In the second (termed “Random Load
Balancing”), we ran the system with DPR functionality
enabled, but with a stateless (random) rerouting policy. This
scenario is akin to that used in [1,2]. In the third (termed
“TCP Load Balancing”), we ran the system with DPR
functionality enabled and with a stateful re-routing policy that
uses the total number of TCP connections to a server as a
measure of load.1

To evaluate these three approaches, we measured the mean
and variance of the transfer delay of documents (as measured
by SURGE clients) as well as the total number of requests
served and the rate of service (or throughput).

Test Results:

Table 1 shows the metrics we obtained for each of the tested
scenarios. Clearly, TCP load balancing outperforms the other

1 We have also evaluated a host of other policies using other load metrics (as
described earlier in this paper). Our findings suggest that using the number of
concurrent TCP connections as a measure of load was consistently either the best
policy or within 5% of the best policy. Thus, in the remainder of this section, we
restrict our presentation of performance results to the performance of TCP Load
Balancing.

scenarios in both the mean transfer delay and the
number of requests served per second.

Transfer Delay Requests Served
Policy

Mean Variance Total Rate
None 0.918775 15.240970 96,726.00 496.03

Random 0.372362 0.813577 123,798.00 634.86

TCP 0.263267 0.859490 129,278.00 662.96

Table 1: Performance of Various Policies

The three graphs shown in Figures 2, 3, and 4 capture
the behavior of the cluster under the three scenarios
tested. They show how many connections each machine
serves per second. When we use no load balancing, we
can see that Buick served the majority of requests. When
we use Random load balancing or TCP load balancing
we can see that the three servers are serving
approximately the same number of connections per
second leading to a better response time and throughput.

The instantaneous measurements shown in Figures 2, 3,
and 4 are aggregated in a histogram to show the load
variability under each of the three policies (aggregated
for all servers). Figures 5, 6, and 9 show these results.
The X-axis represents a range of load (measured in
terms of concurrent open TCP connections) and the Y-
axis represents the number of observations that
corresponded to that load in our tests. A distribution
with a “wider” spread is indicative of an inferior load
balancing policy, whereas a steeper distribution is
indicative of a more efficient policy. Clearly, TCP Load
Balancing achieves the minimum spread and hence
provides the best load balancing performance.

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Summary:

Table 2 summarizes these results by showing the mean,
10th percentile, 90th percentile, and the load imbalance
index for each of these policies.

of concurrent TCP Connections Imbalance
Index

Policy

µµ 10th % 90th % 1 + (∆/2) / 1 + (∆/2) /
µµ

None 462 372 557 1.20

Random 643 573 722 1.16

TCP 660 605 717 1.08

Table 2: Relative performance of tested policies

5. Conclusion

In this paper we have presented and experimentally evaluated
a prototype implementation of distributed connection routing
using the DPR technique described in [1,2]. DPR allows
routing connections in a distributed server without employing
any centralized resource. Instead of using a distinguished
node to route connections to their destinations, as in previous
systems, DPR involves all the hosts of the distributed system
in connection routing.

The benefits that DPR presents over centralized approaches
are considerable: the amount of routing power in the system
scales with the number of nodes, and the system is not
completely disabled by the failure of any one node. DPR also
has special value for small-scale systems. For example,
consider the case in which a Web server needs to grow in
capacity from one host to two. Under a centralized approach,
two additional hosts must be purchased: the new host plus a
connection router, even though most of the capacity of the
connection router will be unused. DPR allows more cost-
effective scaling of distributed servers, and as a result more
directly supports the goals of the Commonwealth project [17].

Acknowledgments:

We would like to thank all members of the Commonwealth
Research Group for their support and for the many useful
discussions that helped solidify the results presented in this
report. In particular, we would like to acknowledge the help
of Mark Crovella, David Martin, Jun Liu, Jorge Londono,
and Paul Barford.

References
1. A. Bestavros, M. Crovella, J. Liu, and D. Martin "Distributed

Packet Rewriting and its Application to Scalable Web Server
Architectures," in Proceedings of ICNP'98: The 6th IEEE
International Conference on Network Protocols, (Austin, TX),
October 1998.

2. A. Bestavros, M. Crovella, J. Liu, and D. Martin, "Distributed
Packet Rewriting and its Application to Scalable Server
Architectures," Tech. Rep. BUCS-TR-98-003, Boston
University, Computer Science Department, February 1998.

3. K.L.E. Law, B. Nandy, and A. Chapman, “A Scalable and
Distributed WWW Proxy System”, Nortel Limited Research
Report, 1997.

4. Daniel M. Dias, William Kish, Rajat Mukherjee, and Renu
Tewari, “A Scalable and Highly Available Web Server”,
Proceedings of IEEE COMPCON'96.

5. Dahlin et al, “Eddie: A Robust and Scalable Internet
Server”. Ericsson Telecom AB. Sweden. 1998.

6. Damani et al. “ONE-IP: Techniques for Hosting a Service
on a Cluster of Machines”, Sixth International WWW
Conference, April 1997.

7. Cisco Systems. “Scaling the Internet Web Servers”. A
white paper available from
Http://www.cisco.com/warp/public/
751/lodir/scale_wp.htm. November 1997.

8. Paul Barford and Mark Crovella. Generating
Representative Web Workloads for Network and Server
Performance Evaluation. In Proceedings of ACM
SIGMETRICS, 1998.

9. E.D. Katz, M. Butler, and R. McGrath, “A scalable HTTP
server: The NCSA prototype. In Proceedings of the First
International World-Wide Web Conference, May 1994.

10. D. Anderson, T. Yang, V. Holmedahl, and O.H. Ibarra.
“SWEB: Towards a Scalable World Wide Server on
Multicomputers”. In Proceedings of IPPS'96, April 1996.

11. Eric Anderson, David Patterson, and Eric Brewer. “The
MagicRouter: An application of fast packet interposing.”
Available from http://HTTP.CS.Berkeley.EDU/~eanders/
projects/magicrouter/osdi96-mr-submission.ps, May 1996.

12. C. Perkins. “IETF RFC2003: IP Encapsulation within IP”.
Available from Http://ds.internic.net/rfc/rfc2003.txt

13. Jeffrey Mogul, Richard Rashid, and Michael Accetta.
“The Packet Filter: An Efficient Mechanism for User-
level Network Code”. In Proceedings of SOSP'87: The
11th ACM Symposium on Operating Systems Principles,
1987.

14. Jeffery Mogul. “Network behavior of a busy Web server
and its clients”. Research Report 95/5, DEC Western
Research Laboratory, October 1995.

15. I2O Special Interest Group. See Http://www.i2osig.com

16. IBM Corporation. “The IBM Interactive Network
Dispatcher” at
Http://www.ics.raleigh.ibm.com/netdispatch

17. The Commonwealth Scalable Server Project. See
Http://www.cs.bu.edu/groups/cwealth.

