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Abstract 

We present and evaluate an implementation of a 
prototype scalable web server consisting of a load-
balanced cluster of hosts that collectively accept and 
service TCP connections. The host IP addresses are 
advertised using Round Robin DNS (RR-DNS) 
technique, allowing any host to receive requests from 
any client. Once a client attempts to establish a TCP 
connection with one of the hosts, a decision is made as 
to whether or not the connection should be redirected to 
a different host---namely, the host with the lowest 
number of established connections. We use the low-
overhead Distributed Packet Rewriting (DPR) technique 
[1] to redirect TCP connections. In our prototype, each 
host keeps information about the remaining hosts in the 
system. Load information is maintained using periodic 
multicast amongst the cluster hosts. Performance 
measurements suggest that our prototype outperforms 
both pure RR-DNS and the stateless DPR solutions. 

 

1. Introduction 

To construct scalable Web servers, system builders are 
turning to distributed designs. An important challenge 
that arises in distributed Web servers is the need to direct 
incoming connections to individual hosts. Previous 
methods for connection routing have employed a 
centralized node (termed a TCP router) that acts as a 
switchboard, directing incoming requests to backend 
hosts. Under this architecture, a single machine whose 
IP address is published through DNS takes on the 
responsibility of balancing the load across the cluster 
[4,7]. This centralized approach is not inherently 
scalable because it does not take into account the fact 
that the TCP router becomes a bottleneck at high loads. 
A proposed alternative to this centralized approach is 
Distributed Packet Rewriting [1] (DPR). DPR follows the 
same idea of distributing requests across a number of 
web servers to handle high loads of web traffic. The 

major difference between DPR and TCP routing lies in the 
manner in which IP addresses are published. DPR uses 
Round-Robin DNS to publish individual addresses of all 
machines in the cluster of web servers, thereby distributing 
the responsibility of re-routing requests to each machine.  

In this paper, we demonstrate the feasibility of this 
decentralized approach through the presentation and 
performance evaluation of a prototype implementation of a 
DPR-based distributed server architecture.  

 
2. Related Work 

Early work on distribution and assignment of incoming 
connections across a cluster of servers [9,14] has relied on 
Round-Robin DNS (RR-DNS) to distribute incoming 
connections across a cluster of servers. This is done by 
providing a mapping from a single host name to multiple IP 
addresses.  Due to DNS protocol intricacies (e.g. DNS 
caching and invalidation), RR-DNS was found to be of 
limited value for the purposes of load balancing and fault 
tolerance of scalable Web server clusters. The research 
described in [4,14] quantifies these limitations.  

Centralized Connection Routing: 

Rather than delegating to DNS the responsibility of 
distributing requests to individual servers in a cluster, several 
research groups have suggested the use of a local ``router'' to 
perform this function.  For example, the NOW project at 
Berkeley has developed the MagicRouter [11], which is a 
packet-filter-based approach [13] to distributing network 
packets in a cluster. The MagicRouter acts as a switchboard 
that distributes requests for Web service to the individual 
nodes in the cluster. To do so requires that packets from a 
client be forwarded (or ``rewritten'') by the MagicRouter to 
the individual server chosen to service the client's TCP 
connection. Also, it requires that packets from the server be 
``rewritten'' by the MagicRouter on their way back to the 
client.  This packet rewriting mechanism gives the illusion of 
a ``high-performance'' Web Server, which in reality consists 



of a router and a cluster of servers. The emphasis of the 
MagicRouter work is on reducing packet processing time 
through ``Fast Packet Interposing''---but not on the issue 
of balancing load.  Other solutions based on similar 
architectures include Cisco’s Local Director [7] and 
IBM’s Interactive Network Dispatcher [16].   

An architecture slightly different from that of the 
MagicRouter is described in [4], in which a ``TCP 
Router'' acts as a front-end that forwards requests for 
Web service to the individual back-end servers of the 
cluster. Two features of the TCP Router differentiate it 
from the MagicRouter solution mentioned above. First, 
rewriting packets from servers to clients is eliminated. 
This is particularly important when serving large 
volumes of data. To allow for the elimination of packet 
rewriting from server hosts to clients requires modifying 
the server host kernels, which is not needed with 
MagicRouter solution.  Second, the TCP Router assigns 
connections to servers based on the state of these servers. 
This means that the TCP Router must keep track of 
connection assignments.   

The architecture presented in [3] uses a TCP-based 
switching mechanism to implement a distributed proxy 
server. The motivation for this work is to address the 
performance limitations of client-side caching proxies by 
allowing a number of servers to act as a single proxy for 
clients of an institutional network.  Their architecture 
uses a centralized dispatcher  (a Depot) to distribute 
client requests to one of the servers in the cluster 
representing the proxy.  The function of the Depot is 
similar to that of the MagicRouter. However, due to the 
caching functionality of the distributed proxy, additional 
issues are addressed---mostly related to the maintenance 
of cache consistency amongst all servers in the cluster. 

Distributed Connection Routing: 

All of the above connection routing (also known as 
Layer 4 Switching) techniques have employed a 
centralized node which handles all incoming requests.  
In contrast, the Distributed Packet Rewriting technique 
presented in [1,2] (DPR) distributes that functionality. 
As illustrated in Figure 2, using DPR, all hosts of the 
distributed system participate in connection routing. This 
distributed approach promises better scalability and 
fault-tolerance than the predominant use of centralized, 
special-purpose connection routers. 

DPR is an IP level mechanism that equips a server with 
the ability to redirect an incoming connection to a 
different server in the cluster based on the very first 
packet (SYN packet) received from the client. This 
implies that the redirection decision (i.e. which server 
ought to be chosen for redirection) can only rely on the 
information included in the SYN packet---namely, 

src/dst IP addresses and src/dst port numbers---as well as on 
cluster state information---e.g., relative load on the different 
servers in the cluster. Using this information, a DPR-enabled 
server either forwards a connection to a different server, or 
lets it percolate up its network stack to the application layer. 
There are two versions of DPR, stateless and stateful. 
Stateless DPR does not require any information different from 
what can be found in the headers of each packet in a 
connection. Thus, forwarding is done independently on a 
packet by packet basis according to a hash function. Stateful 
DPR keeps a table of translations, which is used to determine 
where to forward packets of a given connection (based on a 
choice made initially upon receipt of the connection's SYN 
packet). 

In [1,2], DPR was tested using a randomizing re-routing 
algorithm (to determine whether or not to forward packets or 
serve them locally). Based on a hash function that was 
applied to the source port number of the TCP packet, the 
decision was made. This approach is entirely stateless – it 
does not rely on feedback from other machines regarding 
current load in order to make the determination of whether to 
forward a packet. In this paper, we argue and show that using 
a stateful approach (using accurate load estimation on the 
machines in the cluster) to distribute packets will achieve 
better throughput and a faster mean response time to the 
client. 

 
3. DPR Prototype Implementation 

In our implementation of DPR, each host in the cluster 
provides web service, along with the ability to re-route 
requests to other machines through packet rewriting. The IP 
addresses of all hosts are advertised through RR-DNS, 
allowing any of the machines to receive requests. Such 
requests can be either served locally or re-routed to another 
machine. In the latter case, the responsibility of serving the 
request will be transferred to another machine, which will 
respond directly to the client.  

3.1. Overview 

In our implementation, it is necessary for the machines within 
the cluster to distinguish between packets that have been re-
routed and packets that come directly from the client. 
Furthermore, if a host re-routes a request to another host, 
then knowledge of the client’s IP address must also be 
transferred. To address both of these issues, we employ IP-IP 
encapsulation [See IETF RFC 2003]. 

Using IP-IP encapsulation, a host encapsulates the original 
packet received from a client inside another IP packet, which 
is then re-routed. The host to which the packet is rerouted is 
now able to deduce that the packet was re-routed and can 
respond directly to the client (whose IP address is preserved 
in the encapsulated packet).  



To enable a stateful routing of requests using DPR, each 
machine keeps an updated list of all other machines 
within the cluster, with information such as their IP 
addresses and current load. Hosts intermittently 
broadcast their load to the other machines (using 
multicast UDP packets). This information is used by a 
server to determine whether an incoming request should 
be re-routed or whether it should be served locally. Also, 
each machine keeps routing tables with information 
about redirected connections.   

The particular distributed load-balancing algorithm we 
use works as follows. When a new request (i.e. the SYN 
packet of a TCP connection) is received by a host from a 
client, the server first examines its own load. If the load 
is under a certain threshold value MaxLoad, then the 
server  will serve the request locally. If not, it will create 
a new entry in its routing tables and will forward the 
request (i.e. the SYN packet of the TCP connection) to 
one of the other servers in the cluster. Subsequent 
packets from this connection are routed according the 
information in the routing table. This threshold value 
MaxLoad can be adjusted according to certain factors 
such as CPU speed, memory, etc. 

We used two different approaches to select the server to 
which a request is re-routed. The first approach is 
deterministic, whereby the server with the lowest load is 
selected. The second approach is probabilistic, whereby 
the probability of selecting a server is inversely 
proportional to the load on that server. The advantage of 
this latter approach is that it avoids possible oscillations 
(whereby all requests in a short timeframe are re-routed 
to the server with the lowest advertised load, potentially 
overloading such a server).  

We used a number of different metrics to estimate the 
“load” on each of the hosts—namely,  

(1) total number of open TCP connections on the host,  
(2) CPU utilization of the hosts,  
(3) number of redirected TCP connections at host, and  
(4) number of active sockets at the host.  

In addition, we have experimented with various 
functions that combined the above four metrics using 
different weights and functions.  

Our implementation of stateful distributed connection 
routing was done under linux 2.0.28. It consisted of two 
main components: one in kernel space and one in user 
space. The first component required the design of a very 
fast mechanism to search, insert, delete and update real-
time data for routing purposes. This mechanism was 
implemented entirely in the kernel using multiple hash 
tables and linked list. The second component was to 
design a mechanism to store the information regarding 
other machines’ current loads and update such 

information periodically (e.g. every second). A sorted linked 
list, three user processes and new systems calls were needed 
for the implementation of this component.  

 

3.2. Routing Functionality in Kernel Space 

When a machine receives an IP packet, the kernel calls the 
function ip_receive(). Some modifications were made to 
this function to be able to redirect connections. In this 
function, the IP packet is examined. If it contains a TCP 
packet and the TCP destination port is 80 (or whatever other 
port the web server is running on), we know that such a TCP 
connection it is an HTTP connection and is coming directly 
from the client. If the TCP packet contains a SYN, then we 
know that a new connection is being  requested. A decision 
has to be made, to serve it locally or to forward it. As eluded 
to earlier, this decision is based on the load table and the 
current load of the machine. If the machine is under the 
threshold value or the current load of the machine is the 
lowest compared to the other machines then the request is 
served locally and no routing tables are updated. If the current 
load is above the threshold value and the lowest load 
correspond to another machine then the routing tables are 
updated and the packet is forwarded to some other server 
(using either the deterministic or probabilistic approaches we 
discussed earlier). If the TCP packet is not a SYN then, we 
look up in the routing tables and if the connection has been 
redirected, then the packet is forwarded. If the IP packet 
contains an IP-IP packet and the unused bit of the fragment 
offset is set to 1, we know that it is a packet that has been 
redirected and that we have to serve it. We unpack the IP-IP 
packet and send the TCP packet to the TCP layer to be 
processed. Instead of utilizing the unused bit of the fragment 
offset, we could check if the source IP address correspond to 
the servers participating in the DPR to detect redirected 
connections.  

3.3. State Sharing Functionality in User Space 

The mechanism to maintain an accurate view of the load on 
the various servers in the cluster was implemented with three 
user processes and seven new system calls. One process is in 
charge of broadcasting the local server’s own load 
periodically (in our experiments, we set the period to 1 
second).  To get local load information, this process makes a 
system call to obtain the appropriate value of the load 
(namely: CPU utilization, number of open TCP connections, 
number of active sockets, and number of rerouted 
connections). A second process is in charge of waiting for the 
load of the other servers that are participation in the DPR 
protocol to be multicast. Every time a new value is received, 
the process makes a system call to update the sorted linked 
list maintained in the kernel. The third process is in charge of 
cleaning up of the load and the routing tables. If no load 
packet is received from one machine for a certain number of 



second, then the entry of this machine in the load table is 
deleted to avoid redirecting connection to a machine that 
is not running (e.g. due to a failure or a periodic 
maintenance shutdown).  

Using IP-IP to redirect connections allows us to have 
servers in different networks. We only need to tell the 
process in charge of broadcasting the load the networks 
that participate in DPR. If more than one network have 
servers participating in DPR, this process will broadcast 
the load packet not only to the local network but also to 
all other networks participating in this protocol. The 
identity of all participating networks is captured from a 
configuration file upon the initialization of this process.  

 
4. Performance Evaluation 

In order to evaluate the performance and the load 
distribution of the implementation, we used a URL 
request generator tool called SURGE [8] (Scalable URL 
Reference Generator) to create a realistic web workload. 
Surge is a tool developed as part of the Commonwealth 
project [17] that attempts to accurately mimic a fixed 
population of users accessing a Web server. It adheres to 
six empirically measured statistical properties of typical 
client requests, including request size distribution and 
inter-arrival time distribution. Surge adopts a closed 
system model (workload is generated by a fixed 
population of users, which alternate between making 
requests and lying idle). 

SURGE was run in each client machine with the 
following parameters: five client sub-processes with 50 
threads each for 200 seconds. We ran SURGE from six 
machines that were generating requests to three 
Pentium-class web servers (266 Mhz, 128MB, 100Mbps 
Ethernet) running apache. These servers are named: 
Brookline, Baystate and Buick. Four SURGE clients 
were generating requests to Buick, one to Brookline and 
one to Baystate as shown in Figure 1.  

 

 

 
Figure 3: Experimental Setup 

 
This uneven assignment of SURGE clients to servers results 
in a heavy load being offered to one of the machines (namely 
Buick). As documented in previous studies [4,14], this is 
typically what happens when round-robin DNS is used to map 
a domain name to a set of IP addresses. 

We show in the next section the behavior of the cluster 
applying different algorithms to balance the load. First, we 
ran the test using not load balancing at all, second we used 
the random load balancing and third, we used the TCP load 
balancing algorithm explained in the implementation section. 

Test Scenarios and Metrics: 

Three scenarios were tested. In the first (termed “No Load 
Balancing”), we ran the system with the DPR functionality 
turned off. This scenario represents RR-DNS solutions for 
assigning client requests to cluster hosts as described in 
[Mogul 1995]. In the second (termed “Random Load 
Balancing”), we ran the system with DPR functionality 
enabled, but with a stateless (random) rerouting policy. This 
scenario is akin to that used in [1,2]. In the third (termed 
“TCP Load Balancing”), we ran the system with DPR 
functionality enabled and with a stateful re-routing policy that 
uses the total number of TCP connections to a server as a 
measure of load.1  

To evaluate these three approaches, we measured the mean 
and variance of the transfer delay of documents (as measured 
by SURGE clients) as well as the total number of requests 
served and the rate of service (or throughput). 

Test Results: 

Table 1 shows the metrics we obtained for each of the tested 
scenarios. Clearly, TCP load balancing outperforms the other 

                                                
1 We have also evaluated a host of other policies using other load metrics (as 
described earlier in this paper). Our findings suggest that using the number of 
concurrent TCP connections as a measure of load was consistently either the best 
policy or within 5% of the best policy. Thus, in the remainder of this section, we 
restrict our presentation of performance results to the performance of TCP Load 
Balancing. 



scenarios in both the mean transfer delay and the 
number of requests served per second.  

Transfer Delay Requests Served 
Policy 

Mean Variance Total Rate 
None 0.918775 15.240970 96,726.00 496.03 

Random 0.372362 0.813577 123,798.00 634.86 

TCP  0.263267 0.859490 129,278.00 662.96 

Table 1: Performance of Various Policies 

The three graphs shown in Figures 2, 3, and 4 capture 
the behavior of the cluster under the three scenarios 
tested. They show how many connections each machine 
serves per second. When we use no load balancing, we 
can see that Buick served the majority of requests. When 
we use Random load balancing or TCP load balancing 
we can see that the three servers are serving 
approximately the same number of connections per 
second leading to a better response time and throughput.  

The instantaneous measurements shown in Figures 2, 3, 
and 4 are aggregated in a histogram to show the load 
variability under each of the three policies (aggregated 
for all servers). Figures 5, 6, and 9 show these results. 
The X-axis represents a range of load (measured in 
terms of concurrent open TCP connections) and the Y-
axis represents the number of observations that 
corresponded to that load in our tests. A distribution 
with a “wider” spread is indicative of an inferior load 
balancing policy, whereas a steeper distribution is 
indicative of a more efficient policy. Clearly, TCP Load 
Balancing achieves the minimum spread and hence 
provides the best load balancing performance.  
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Figure 7 

 
Summary: 

Table 2 summarizes these results by showing the mean, 
10th percentile, 90th percentile, and the load imbalance 
index for each of these policies.  

 

# of concurrent TCP Connections Imbalance 
Index 

Policy 

µµ  10th % 90th % 1 + ( ∆/2) / 1 + ( ∆/2) / 
µµ  

None 462 372 557 1.20 

Random 643 573 722 1.16 

TCP 660 605 717 1.08 

 

Table 2: Relative performance of tested policies 
 

 

5. Conclusion 

In this paper we have presented and experimentally evaluated 
a prototype implementation of distributed connection routing 
using the DPR technique described in [1,2]. DPR allows 
routing connections in a distributed server without employing 
any centralized resource.  Instead of using a distinguished 
node to route connections to their destinations, as in previous 
systems, DPR involves all the hosts of the distributed system 
in connection routing.  

The benefits that DPR presents over centralized approaches 
are considerable: the amount of routing power in the system 
scales with the number of nodes, and the system is not 
completely disabled by the failure of any one node.  DPR also 
has special value for small-scale systems.  For example, 
consider the case in which a Web server needs to grow in 
capacity from one host to two.  Under a centralized approach, 
two additional hosts must be purchased: the new host plus a 
connection router, even though most of the capacity of the 
connection router will be unused.  DPR allows more cost-
effective scaling of distributed servers, and as a result more 
directly supports the goals of the Commonwealth project [17]. 
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