
Adaptive Web Caching

Lixia Zhang� Sally Floyd� and Van Jacobson

April ��� ����

Introduction

The success of the World Wide Web has brought an
exponential growth of the user population� the to�
tal host count� and the amount of total tra�c vol�
ume on the Internet� As the Internet connectivity is
reaching the global community� the World Wide Web
is becoming a global�scale data dissemination sys�
tem� Inevitably� this over�night exponential growth
has also caused tra�c overload at various places in
the network� Until recently� advances in delivery
fabrics gave the impression that scaling the Inter�
net was simply an issue of adding more resources�
Bandwidth and processing power could be brought
to where they were needed� The Internet�s exponen�
tial growth� however� exposed this impression as a
myth� Information access has not been� nor will it
likely be� evenly distributed� As have been repeated
observed� popular Web pages create �hot spots� of
network load� with the same data transmitted over
the same network links again and again to thousands
of di�erent users� Hot�spots also move around� The
photographs of Venus congested Los Nettos for one
week	 the �Midnight Madness� release of Microsoft�s
Internet Explorer 
�� congested NorthWestNet for �
hours� threatening Internet connectivity to Univer�
sity of Washington These are but a couple of well
publicized examples� Recent studies by Margo Seltzer
of Harvard University also con�rms that �ash�crowds
are very common� and that the �cool site of the day�
moves around ���� Bottleneck hot spots develop and
break up more quickly than the network or the Web
servers can be re�provisioned� A brute force approach
to provisioning is not only infeasible� but also ine�ec�
tive�

The lessons of twenty��ve years of Internet experience
teach us that caching is the only way to handle the
exponential growth of user demands� Seltzer�s study
also shows that the more popular the pages� the less
likely they are to change� Similarly� the larger doc�
uments are less likely to change than smaller ones�
Instead of always fetching pages from the originating
source� data requests can often be more e�ectively

answered by �nding �local� copies near consumers�

We need to develop a new infrastructure for data dis�
semination on an ever�increasing scale� We believe
that a multicast�based adaptive caching infrastruc�
ture can meet this challenging need� In the rest of
this section� we �rst outline an ideal adaptive caching
system� We next describe a multicast�based design
to realize the desired functionalities� We discuss in
detail the two main issues in building the proposed
system� autocon�guration of cache groups and auto�
matic forwarding of Web requests through this maze
of cache groups�

A Dream Picture

Given that the basic problem is data dissemination
to thousands or millions of users� the basic solution
ought to be some form of multicast delivery� That is�
when multiple users are interested in the same data�
the data should be fetched only once from the origin
server� and then forwarded via a multicast tree to
all the interested parties� Ideally� each piece of data
would travel through each network link no more than
once�

Unlike multicast delivery for realtime multimedia ap�
plications� however� Web requests for the same data
come asynchronously because di�erent users surf the
Web at di�erent times� Therefore Web �multicas�
ting� must be done via caching� the network tem�
porarily bu�ers popular Web pages at places the
pages have traveled through �due to previous re�
quests�� so that future requests for those pages can be
served from the cache� Bene�ts of caching include re�
duced load at origin servers� shortened page fetching
delays to end clients� and best of all� reduced network
load which reduces potential congestion�

One big challenge in building such a caching system
is that� generally speaking� we do not know before�
hand which pages would be interesting to users� or
where the interested parties may be located� or when
they may fetch the pages� Following the basic prin�

�



ciples in the Internet architecture design� we propose
to build an adaptive caching system� Ideally� we envi�
sion a caching system in which a popular page would
automatically walk itself down its distribution tree
in response to the intensity of requests� The higher
the demand for the page� the closer the page would
get cached to end users and the more copies made	
furthermore� the fetch requests for that page would
automatically discover the nearest cache copy� On
the other hand� pages that are rarely fetched would
not leave their origin servers� or walk very far down
the distribution tree�

Another challenge in building this caching system is
that a popular Web site may pop up anywhere at
any time in the Internet� a number of popular sites
may all exist at the same time� and di�erent data
is hot at di�erent places�� If the distribution paths
for each page make a tree� and multiple trees exist
simultaneously� each rooted at the origin server of a
popular page� clearly the caching infrastructure to be
built cannot be a tree itself� Instead� the infrastruc�
ture ought to be a mesh on which cache trees can
automatically build themselves as popular pages are
pulled down towards their clients� As time goes� the
trees should also automatically vanish as the pages
become a past interest�

The Basic Approach

The previous section may have painted a seemingly
impossible system to build� In this section we de�
scribe how IP multicast can be used as the basic
building block that enables us to realize this dream
system� The example topology in Figure � is used to
illustrate our basic design in this section�

Use Multicast

IP multicast serves two distinguished functions� one
being the most e�cient way to deliver the same data
to multiple receivers� the other being an information
discovery vehicle�a host can multicast a query to a
relevant group when it does not know exactly whom
to ask� Our caching design makes use of both fea�
tures	 we multicast page requests in order to locate
the nearest cache copy� and multicast page responses
in order to e�ciently disseminate pages that have
common interest�

To �nd the nearest cache that holds a requested

�From Seltzer measurement�

page� the simplest approach could be to have all the
Web servers and cache servers join a single multi�
cast group� Then one could simply multicast a page
request to that group� The nearest cache or origin
server with the page will be the �rst one to hear the
request and respond� One fatal �aw of this simple ap�
proach� however� is that it does not scale�we simply
cannot a�ord multicasting all Web requests globally�

One scalable version of the above idea is to organize
all Web servers and cache servers into multiple lo�
cal multicast groups�� as shown in Figure �� When
user�� requests a new page� it sends the request to a
nearby proxy C�� which is also a cache server� If C�
does not �nd the requested page in its local cache�
it multicasts the request to a nearby local group of
which it is a member	 in the example the nearby
group is G�� It is possible that some cache in G��
say C�� has the requested page in its local cache� in
which case C� multicasts the requested page to G��
and C� will forward a copy back to user��� How�
ever in case of a cache miss within the local group�
the request must be further forwarded� as explained
next�

Request Forwarding

To handle the request forwarding problem� we pro�
pose that cache servers join more than one multicast
group� so that all the cache groups heavily overlap
each other� When there is a cache miss in one group
�as indicated by the lack of a response message�� each
cache of the current group checks to see if its other
group�s� lies in the direction towards the origin server
of the requested Web page� In our example of Fig�
ure �� C� would realize that its other group� G�� lies
in the direction to the origin server� When a cache
�nds itself in the right position to forward the re�
quest� it also informs the current group when doing
so� This forwarding decision may also take into ac�
count such factors as the past history of neighbor�
ing cache groups in answering previous requests� We
must also handle cases when no cache in the group
volunteers to forward the request�

In case the second cache group has a miss again� the
request will be forwarded further following the same
rules �in Figure �� for example� C
 will multicast the
request to G
�� Proceeding in this fashion� the re�
quest either reaches a cache group with the page� or
otherwise is forwarded through a chain of overlap�

�Although the groups are made of both Web servers and

cache servers� in the rest of this paper we call them cache

groups�

�



user−1

user−2

origin−server

G1

G2

G3

G4

G5

G6G7

C1

C2

C3

C4
C5

C6

C7

Figure �� An illustrative example of our adaptive caching design�

ping cache groups between the client and the origin
server� until it reaches the group that includes the
origin server of the requested page�

Page Retrieval

Once the request reaches a group in which one or
more servers have the requested page� the node hold�
ing the page multicasts the response to the group�
possibly after a short random wait using an algo�
rithm similar to the one developed in Scalable Re�
liable Multicast �SRM� �
�� This multicast response
loads neighboring caches in the same group with the
page� For example� when a short time later another
request for the same page comes from user�� to
group G�� the request will stop one �multicast hop�
short of the group with the origin server �G��� The
cache that is the member of both G� and G�� namely
C� in this case� can now multicast the page to G�
�see Figure ���

The original request gets ful�lled as follows� when
cache C� gets the response� it will relay it back
via unicast to the node from whom C� �rst heard
the request� which in this case is C
� In this way
the response page will be relayed back to the orig�
inal client by traversing those cache servers that
multicast�forwarded the request earlier� To further
speed up the page delivery� an alternative is to let C�
open a HTTP connection directly back to user���s
proxy server C��

A couple of issues deserve further discussion here�
First� although the response is multicast to the lo�
cal group whenever a hit occurs� we assume that each
cache in the group decides independently which pages
to save� Multicasting the response to the local cache
group can be done reliably using SRM� SRM supports

receiver�driven reliable delivery� thus it provides �ex�
ible support for selective reliability� Caches in the
local group that are interested in reliably caching the
data will request retransmission for any corrupted or
lost data	 uninterested parties simply ignore all this�

Another issue concerns data integrity� Hop�by�hop
page forwarding through a chain of unknown caches
increases the risk that the data may be intentionally
or unintentionally corrupted� Such potential danger�
however� is not new due to caching� In today�s Inter�
net� hop�by�hop packet forwarding through unknown
intermediate routers could also impact data integrity
inadvertently	 our proposed caching design simply
mimics the �store�and�forward� packet delivery at a
higher level� However� it is true that the addition
of caching introduces new opportunities for things to
go wrong� We believe that the fundamental solution
to the data integrity problem is end�to�end integrity
checking via mechanisms such as MD� checksum�

Seeing a Demand�Driven Data Di�usion Yet�

From the above we see that fetching a Web page the
�rst time from the origin server has a nice side�e�ect�
the requested page is multicast to the group wherever
there is a �hit� to achieve the e�ect of �popular Web
pages walking themselves down the cache tree�� In
this fashion the servers in the same group with the
origin server of the page are loaded with that page� If
subsequent requests for the same page come in within
a short time period �before the cached object expires
or gets deleted�� they will see a hit before reaching
the group with the origin server� Each of these hits
causes the page to propagate �one hop� away from
the source and get closer to end clients� Thus popular
pages quickly propagate themselves into more caches
in the distribution trees� Pages with infrequent re�






quests� on the other hand� will be seen only by a few
caches near the origin server�

We expect further engineering tuning of the design
parameters once we get the �rst implementation up
and running� For example� if the deployment starts
with a limited number of cache groups� then one may
want to multicast the page to the local group only
after seeing consecutive requests for the same page
within a short time interval� If the world eventually
ends up with a large number of cache groups� then
pages moving one multicast�hop away for each hit
may be exactly the right speed� The speed of data
di�usion through caching represents an engineering
tradeo� among various factors� but the goal remains
the same� an adaptive system that loads itself ac�
cording to the demand�

Hierarchy and Scalability

Generally speaking� a scalable system requires some
sort of a hierarchical structure� What we proposed
above� however� is a mesh of overlapping groups�
rather than a strict hierarchy� It is on the base of
this overlapping mesh that each popular page grows
its own cache tree� Cache servers themselves� on the
other hand� do not know or care about the contents of
the pages they cache� or how many distribution trees
they have been on� They cache pages strictly based
on the popularity of the demands� a property that
enables our design to scale well with large user popu�
lations� Our design is in sharp contrast to some other
proposed cache schemes where the performance relies
on analyzing individual users� page fetching patterns
and pre�loading pages accordingly�

The cache tree for each popular page may come and
go highly dynamically� but the cache groups remain
relatively stable� As described in the next section�
cache groups adjust themselves over time according
to observed changes in topology� workload� and user
population� When user population and page demand
grow� the number of caches and�or the caching power
will need to grow accordingly� Our design will let this
cache infrastructure automatically readjust itself to
meet the new load demand�

Autocon�guration of Cache Groups

In order for this infrastructure of Web caches to be
both scalable and robust� the organization of Web
caches and servers into overlapping multicast groups
must be self�con�guring� for several reasons�

� Manual con�guration does not scale� as evi�
denced in the SQUID system�

� Manual con�guration tend to be error�prune�

� Self�con�guring capability enables cache groups
to dynamically adjust themselves according to
changing conditions in network topology� tra�c
load� and user demands� thus achieving the goal
of both robustness and e�ciency�

We believe that self�con�guring systems are an es�
sential component for a range of large�scale systems
in the Internet� Examples include the need for self�
con�guring groups for session messages in RTP� the
need for self�con�guring groups for session messages
and for local recovery in scalable reliable multicast
�SRM�� and the need for self�con�guring search struc�
tures for information discovery protocols� We envi�
sion that the basic approaches to self�con�guration
developed in our Web caching design can be further
extended to other loosely�coupled� large�scale infor�
mation dissemination systems�

We envision a world in which clusters of caches are
placed at both network access points and internally
throughout the various autonomous networks in the
Internet� Through a cache group management proto�
col �CGMP� to be designed� all Web servers and cache
servers automatically organize themselves into geo�
graphically and administratively overlapping groups�
Because one basic function of a cache is to relay re�
quests and responses between groups� it is highly de�
sirable that cache servers run on multi�homed hosts�
They can then easily join di�erent multicast groups�
one on each of their network interfaces�

A critical task in building the proposed adaptive
caching system is to design this Cache Group Man�
agement Protocol �CGMP�� The autocon�guration
of cache groups must satisfy a number of contrast�
ing constraints� On average� a request for a new
page only needs to travel a small number of �hops�
along some �shortest path� to reach the origin server�
Thus� the cache groups must have both adequate size
and adequate overlap among the groups� On the
other hand� as a cache group becomes larger in size�
the group�s tra�c� overhead� and workload increase�
The con�guration protocol needs to balance these re�
quirements for a small number of cache resolution hop
counts and low overhead within each cache group�
The cache groups must also be able to dynamically
adjust to the addition or deletion of caches� routing
and load changes� application performance� and tol�
erance to overhead�

�



The basic functionality for cache group managements
concerns group creation and maintenance� This in�
cludes regrouping according to the observed group
load� the group cache hit ratio� the tolerance of group
overhead� and the change in topology and caches� For
example� a cache group could split when there is too
much tra�c in the group� or a cache group with a low
hit ratio could merge with another group�

Group Creation

We plan to start with the group management pro�
tocol developed by MASH project ���� as the base
and gradually evolve that protocol to our cache group
management protocol� The basic idea has the follow�
ing steps�

� A well�known multicast address �WKM� is as�
signed for cache group usage�

� When a new cache� C�� starts up� it per�
forms a expanding ring search for existing Web
groups around its neighborhood by multicasting
a Group Join request to WKM out each of its
network interfaces� The request may be repeated
with an increasing TTL value until some neigh�
boring groups are found� or until C� gives up
�see later��

� When an existing cache� C
� hears this request�
C
 sends a reply with its own group address as
an invocation to C� to join the group� This as�
sumes that C
�s group G� is not overly full �as
described later��

� C� joins the cache group from which it receives
an invitation� If C� receives more than one in�
vitation from the same interface� it may then
choose to join only one of the groups� The de�
cision can be based on other information carried
in the invitation� such as the current group size
and the distance to the invitor�

� In case C� fails to receives an invitation �on some
interface� when the TTL value reaches a pre�
set threshold� C� will create a cache group itself
and set a timer� C� can now respond to join re�
quests from others� However if it does not have
anyone else join when the timer expires� it will
try again to join other groups with an increased
TTL threshold� �In the initial deployment when
cache servers are rare and far apart� we may need
to manually con�gure the neighboring caches for
C�� or have C� send a message with global scope
to WKM to get a list of all caches��

Using TTL based group discovery favors the cre�
ation of groups among caches on the same broad�
cast LANs or around the same network interconnect
point� where the cost of multicasting data is not much
higher than that of unicast�

We propose an open membership policy for cache
groups� That is� any cache can join nearby cache
groups� without going through an authentication step
�rst� Cache consistency and data authentication
must be properties that reside in the data� and do
not rely on trust of the caches themselves�

Nevertheless� malicious or faulty caches could dis�
turb caching operations by providing false requests
or hit reports� or by volunteering to forward a re�
quest and not following through� We rely on after�
the�fact detection rather that on authentication and
pre�screening to identify such disruptive caches� Even
the best pre�screening may occasionally fail� making
after�the�fact detection a must for all systems�

Group Maintenance

We propose to use an RTCP�like protocol to maintain
the cache groups� Each cache in a group multicasts
Group Messages periodically� The information to be
obtained from this exchange includes the group size�
the addresses of each cache� and the distance between
group members�

The group size and distance information will be use�
ful when the workload for a group is too high �that
is� there are too many page requests over short time
intervals� and thus the current group must split into
two�

When both the workload and the cache hit ratio on
a group is too low� the group may consider merging
with a neighboring cache group �particularly when
some cache is a member of both groups�� Sugges�
tions for merging can be communicated via group
members� and further information about neighboring
groups can be collected to make the merging decision�
Merging is done by all members of the current group
joining the new group�

Request Forwarding

When a �page miss� in a cache group is detected�
some cache or caches in the group must further for�
ward the request towards �nal resolution� For an in�

�



C1

C3

previous groups

Join Request
Join Invitation

groups after C2 joined

C2

Figure �� An example of group management�

dividual cache� we need a self�con�guring mechanism
for that cache to decide if it has a promising neighbor�
ing cache� cache group� or outgoing link towards the
origin server for forwarding the request� For a cache
group as a whole� we need mechanisms to assure that
the request with a local miss gets forwarded� as well
as to suppress duplicate forwardings�

Where should the request be forwarded�

As we discussed earlier� requests should generally be
forwarded �towards� the origin server� However� be�
cause caches run on hosts rather than routers� they
have no information about the topology of the net�
work� The information a cache C can derive from a
request includes ��� the address of the cache N that
multicast the request� and ��� the address of the ori�
gin Web server S for the requested page� To make the
forwarding decision� C needs to know if it is closer to
S than N is� or� less strongly� if it or its neighbor�
ing router has an outgoing interface towards S that is
di�erent from its outgoing interface towards N� Ad�
dressing this question of dynamically determining the
request forwarding path will be a central component
of our research�

We propose a couple of approaches to this problem�
One approach is to make the best use of information
that caches already have� For example� if S is on the
same network as one of C�s interfaces �by comparing
the network ID�� then C clearly is in a position to for�
ward the request� If we are willing to go one step fur�
ther to build up such a �forwarding base� for caches�
then one can apply a similar approach as the Eth�
ernet bridge learning algorithm� and cache network
address information about the direction that answers
to requests come from� It might also be possible to
add more information to group messages� and have a

cache put in the message for group G� not only all
the addresses of its own� but also the addresses of
members of group G�� in which the cache is also a
member�

A similar approach at a higher level of granularity
would be to make use of the �geographical address�
ing� implicit in the �country� in the domain name�
Caches could build up their own forwarding bases of
which cache group to ask next for requests for an ori�
gin server in a particular country� These forwarding
bases could be based both on which caches are nearer
to that country� and which caches have had the best
past record of answering requests for origin servers in
that country�

A second� and complementary� approach is to develop
a standard interface to IP routing protocols� so that�
for unknown server addresses� a cache can query the
neighboring router about that router�s output inter�
faces to the cache N and the origin server S�

It also may not always be the case that the re�
quest should be forwarded to a cache group physi�
cally closer to the origin server� For example� a small
local cache in Australia near the congested trans�
continental link might be better o� forwarding the
request to a large regional or national cache that hap�
pens to be in the other direction� Thus� in answering
the question of �should I forward the request�� in ad�
dition to the distance factor a cache may also add in
a bias factor that is dynamically adjusted according
to the past hit rates for requests sent to neighboring
caches�

More research is clearly needed in determining the re�
quest forwarding path� Because this decision requires
information from routing protocols� it is likely to be
the most challenging issue in building our cache de�

�



sign� On the other hand� we should also point out
that the request forwarding decision only need to be
�roughly right�� and the resulting forwarding path is
not necessarily �the shortest� one� Take the exam�
ple in Figure � again� Instead of going through the
shortest chain of cache groups G�� G�� G
 to reach
the origin server group G�� the request from user��

may take a longer path through G�� G�� G�� G� to
reach G�� which has little impact on the overall per�
formance� The basic performance gain of the system
lies in the caching e�ectiveness	 how fast to get a
page the �rst time is a secondary factor here� Even
though a longer forwarding path leads to a longer
fetching delay the �rst time� the performance gain of
the system will come from the side�e�ect of loading
up caches� so that subsequent requests for the same
page can then be answered with much reduced delay�
One way to reduce the worst�case delay for the �rst
request would be to limit the number of �hops� that
a request could travel before being forwarded to the
origin server�

Which cache should forward the request�

The ideal case would be for exactly one cache in a
cache group to volunteer to forward a request� When
multiple caches in a cache group volunteer to forward
the request� the caches can use a randomized timer
algorithm similar to the one in SRM �
� to prevent
multiple caches from forwarding the request� How�
ever� it is not a problem if occasionally more than
one cache in a cache group forwards a request� Du�
plicate requests are likely to �collide� �run into the
same cache group� along the way� In the worst case�
duplicate copies of the page may be fetched�

On the other hand� for a request that results in a
local miss� it is mandatory that at least one cache
in the cache group forward the request� If no caches
in the group volunteer to forward the request after
a timeout� the cache that brought the request to the
group can either contact the origin server directly� or
randomly select a cache in the group to forward the
request�

Other Issues in Building the Proposed

Caching System

Several issues that are not particular to our proposal�
but that need to be addressed by any web�caching
infrastructure� are discussed in the longer version of
this proposal� available at �����

Incremental Deployment

We plan to collaborate with the Harvest�SQUID
Caching team to explore transition strategies to con�
vert the current manually con�gured caching infras�
tructure into an autocon�gured� adaptive caching
system� This �rst step would be the incremental
deployment into the current unicast caching infras�
tructure of dynamic mechanisms for forwarding re�
quests to neighboring caches� This is the key next
step needed for the current infrastructure to grace�
fully scale to a larger number of caches� In addition�
our proposal would address the incremental deploy�
ment of a multicast�based cache architecture into the
existing architecture of unicast communications be�
tween clients� web caches� and servers�

Summary

We believe that as the Internet becomes more global
we must have a self�con�guring data dissemination
system that can scale with it� We further envision
that the basic approaches taken in the web caching
infrastructure will be generally applicable to other
global�scale information dissemination applications�
While there are currently no Internet systems using
self�con�guration of this nature� we believe that self�
con�guration is an increasingly�important function�
ality that will be required by a wide range of Internet
systems facing issues of scale�

Comparison with Other Re�

search

Before the invention of the World Wide Web� FTP
was the main tool for data dissemination� Heavy
loading at popular FTP servers �e�g� the one hosting
Internet RFC�s� was observed� At that time� how�
ever� the network user population was small and the
problem was adequately handled by manually con�g�
uring one or two replication sites of the same FTP
server�

The success of the Web brought unprecedented high
demand on Web servers� Facing the overload prob�
lem caused by �hot pages�� a few measures have been
taken recently� One common practice today is proxy
caching� Most corporate sites have �rewall gateways
between their internal network and the public Inter�
net� Web proxy servers are used to relay requests and

�



replies across the �rewalls� while at the same time
they also serve as caches�

Generally speaking� however� proxy caches do not
seem to achieve high hit ratios because they are at
the leaves of data distribution trees� Consequently�
they do not e�ectively reduce the load around the
origin servers of popular pages� To handle the ever
increasing demand for popular pages� some of the
busiest Web servers use replication� Manually con�g�
ured replications may work well for specialized servers
with predictable demand� such as the Netscape home�
page server� but are not useful in coping with ��ash
crowds��

The Harvest�SQUID Object Cache is a Web caching
infrastructure currently being deployed in the Inter�
net ����� All cache servers in the SQUID system
are connected in a manually con�gured hierarchical
tree� As the �rst step towards reducing unneces�
sary network load through caching� SQUID has at�
tracted many users� especially overseas network ser�
vice providers who are concerned with making the
most e�cient use of the expensive� bandwidth�limited
transoceanic links� However� experience has also
shown intrinsic limitations of the manual con�gu�
ration of large systems� such as the burden on sys�
tem administrators to con�gure the cache hierarchy
and to coordinate with each other� the inevitable hu�
man errors� misunderstandings of issues concerning
the overall system performance� the desire for local
optimization� and the lack of adaptivity to network
changes� Australia makes a typical example here�
ideally one would like to see all Web caches in Aus�
tralia group themselves into a cluster which then has
one peer connection to the cache hierarchy in the U�S�
However� fourteen separate Australian sites con�g�
ured themselves directly onto the cache tree in U�S�
instead of peering with each other locally� leading to
the same Web page being fetched directly from the
U�S� by each of the fourteen sites� See ���� for more
details� The lesson to be learned is that manual con�
�guration of large scale systems is not only burden�
some but also vulnerable to errors and misuse� Self�
con�guring systems� such as the one proposed in this
research� can be designed to minimize the possibilities
of such abuses�

Furthermore� the single cache hierarchy of SQUID
does not provide e�cient data routing among all users
and servers	 it often happens that a new page on an
origin server located in California is �rst fetched by
a root node in east coast and then traverses down
the cache tree to be delivered to the requester� also
located in California� Because all cache misses are

fetched by the root nodes �rst and then disseminate
down the tree� the cache hierarchy creates arti�cial
hot spots of cache load near the roots of the tree�

To reduce such overload in a hierarchical cache� Povey
has suggested a modi�cation to the SQUID operation
��� Instead of fetching all new pages through the root
nodes� Povey suggested that the hierarchy structure
is used for data searching only� When a leaf node� L�
searches for a new page and cannot �nd it anywhere
in the tree� the node L itself will fetch the page di�
rectly from the origin server� cache it locally� and
then send the advertisement of the page up the tree�
so that when other nodes search for the same page
again they will be able to �nd it� This modi�cation
reduces the load near the top of the tree� but it fails
to address the issue of manual con�guration� and the
need for doing a tree�walk to search for each missing
page can also add signi�cant overhead to the system�

Another cache performance study by Gwertxman and
Seltzer ��� compares three cache consistency mech�
anisms currently in use in the Internet� time�to�
live �elds� client polling� and invalidation protocols�
They �nd that time�to�live �elds are a good solu�
tion when reducing network bandwidth is the driving
force� though client polling are generally a stronger
mechanism� There is also a growing literature on
caching and removal policies for web caches ���� which
we plan to explore during the implementation of our
cache protocols�

To facilitate Web caching implementation� the
HTTP���� protocol speci�cation provides a number
of supporting mechanisms ���� Server�speci�ed expi�
ration times are added to prevent obsolete data from
being served to clients� and a validation mechanism is
proposed to eliminate the unnecessary retransmission
of previous responses that have not changed� The
validation mechanism allows a cache with a long�
lived entry to check with the origin server to see
if the cached entry is still usable� HTTP���� in�
cludes both end�to�end headers that are cachable
and hop�by�hop headers that are meaningful only
for a single transport�level connection and cannot
be cached� Our design will assume the availability
of these server�speci�ed expiration times and valida�
tion mechanisms� We will also report to the HTTP
Working Group any new cache�supporting mecha�
nisms that we discover in our research� so that they
can be considered for inclusion in future versions of
the HTTP protocol�

To the best of our knowledge� we believe the adaptive
Web caching approach outlined herein is the very �rst





proposal to build a robust� self�con�guring caching in�
frastructure for global�scale data dissemination� We
believe our �ndings of how to build self�con�guring
systems will be generally applicable to other loose�
coupled� globally distributed systems� To go beyond
simulation and lab tests and put our design in global
scale real �eld trial� we have been involved with� and
will continue� discussions with the developers of the
SQUID cache infrastructure to jointly develop a tran�
sition plan to incrementally deploy our protocols� at
the proper time� in the SQUID infrastructure�

References

��� Van Jacobson� �How to Kill the Internet�� SIG�
COMM ��� Middleware Workshop� August �����
URL ftp���ftp�ee�lbl�gov�talks�vj�web�ame�ps�Z

��� R� Fielding� J�
Gettys� J� Mogul� M� Frystyk� T� Berners�Lee�
�Hypertext Transfer Protocol � HTTP������ In�
ternet Proposed Standard protocol� RFC����
URL ftp���ds�internic�net�rfc�rfc����txt�

�
� Sally Floyd� Van Jacobson� Ching�Gung Liu�
Steve McCanne and Lixia Zhang� �A Reliable
Multicast Framework for Lightweight Session
and Application Layer Framing�� Proceeding of

ACM SIGCOMM ���� Aug� �����

��� Sally Floyd and Van Jacobson� Random Early
Detection gateways for Congestion Avoidance�
IEEE�ACM Transactions on Networking� V��
N��� August ���
� p� 
�����
�

��� James Gwertxman and Margo Seltzer� �World�
Wide
Web Cache Consistency�� USENIX ����� URL
http���www�eecs�harvard�edu� vino�web�usenix������

��� Margo Seltzer� �The World Wide Web� Issues
and Chal�
lenges�� Presented at IBM Almaden� July �����
http���www�eecs�harvard�edu�margo�slides�www�html

��� Venkata Padmanabhan and Je�rey Mogul� �Im�
proving HTTP Latency�� URL
http���www�ncsa�uiuc�edu�SDG�IT���Proceedings�DDay�mogul�HTTPLatency�html�

�� Dean Povey and John Harrison� �A Distributed
Internet Cache�� ��th
Australian Computer Science Conference� Syd�
ney� Australia� February ���� ����� URL URL
http���www�isi�edu�lsam�ib�http�perf��

��� Stephen Williams� Marc Abrams� Charles Stan�
dridge� Ghaleb Abdulla� and Edward Fox� �Re�
moval Policies in Network Caches for World�
Wide Web Documents�� Sigcomm �����

���� �A Distributed
Testbed for National Information Provisioning��
URL http���www�nlanr�net�Cache��

���� Duane Wessels and Kim Cla�y� �Evolution of
the NLANR Cache Hierarchy� Global Con�
�guration Challenges�� November ����� URL
http���www�nlanr�net�Papers�Cache���

���� Jun Li� Si Yuan Tong� and Adam Rosenstein�
�MASH� The Multicasting Archie Server Hier�
archy�� Project report� December ����� UCLA
Computer Science Department�

��
� Je�rey Mogul and Paul Leach� �Simple Hit�
Metering for HTTP�� Internet Draft� January
�����

���� L� Zhang� S� Deering� D� Estrin� S� Shenker� D�
Zappala �RSVP� A New Resource ReSerVation
Protocol�� IEEE Network� September� ���


���� R� Bagrodia and W� Liao� �MAISIE� A Lan�
guage for the Design of E�cient Discrete�Event
Simulations�� IEEE Transactions on Software
Engineering� Vol� ������ April ����� pp� �����
�

���� �Virtual InterNetwork Testbed�� URL
http���netweb�usc�edu�vint�

���� Zhang� L�� Floyd� S�� and Jacobson� V��
Adaptive Web Caching� URL http���www�
nrg�ee�lbl�gov�web�html�

�


