
Measuring Proxy Performance with the Wisconsin Proxy

Benchmark

Jussara Almeida and Pei Cao

Department of Computer Sciences

University of Wisconsin�Madison

jussara�cao�cs�wisc�edu

April ��� ����

Abstract

As Web proxies become increasingly widespread� there is a critical need to establish a
benchmark that can compare the performance of di�erent proxy servers and predict their
performance in practice� In this paper� we describe the Wisconsin Proxy Benchmark �WPB�
and the performance comparison of four proxy software using the Benchmark� Using the
benchmark� we also study the e�ect of more disk arms on proxy performance� and the e�ect
of low�bandwidth modem client connections� We �nd that proxy implementations di�er in
their performance characteristics signi�cantly� In addition� though disk arms appear to be the
bottlenecks in proxy throughput� adding extra disks does not result in performance improve�
ment for all proxy implementations� Finally� we �nd that the latency advantage of caching
proxies vanishes in front of modem connections�

� Introduction

As the World Wide Web continues to grow� caching proxies become a critical component to handle
Web tra�c and reduce both network tra�c and client latency� However� despite its importance�
there has been little understanding of how di�erent proxy servers perform compared with each
other� and how they behave under di�erent workloads� The design and implementation of a
proxy benchmark is the �rst step to allow one easily to test and understand the performance
characteristics of a proxy server� A benchmark allows customers not only to test the performance of
a proxy running on di�erent software and hardware platforms� but also to compare di�erent proxy
implementations and choose one that best matches the customer�s requirements� The Wisconsin
Proxy Benchmark �WPB� has been developed in an attempt to provide a tool to analyze and
predict performance of di�erent proxy products in real	life situations�
The main feature of WPB is that it tries to replicate the workload characteristics found in real	

life Web proxy traces� WPB consists of Web client and Web server processes� First� it generate
server responses who sizes follow the heavy tailed Pareto distribution described in
��� In other
words� it includes very large �les with a non	negligible probability� This is important because
heavy	tail distribution of �le sizes does impact proxy behavior� as it must handle �and store in
the local cache� �les with a wide range of sizes� Second� the benchmark generate a request stream
that has the same temporal locality as those found in real proxy traces� Studies have shown that
the probability that a document is requested t requests after the last request to it is proportional
to �t
�� ��� The benchmark replicates the probability distribution and measures the hit ratio of
the proxy cache� Third� the benchmark emulates Web server latency by letting the server process
delay sending back responses to the proxy� This is because the benchmark is often run in a local
area network� and there is no natural way to incur long latencies when fetching documents from
the servers� However� Web server latencies a�ect the resource requirements at the proxy system�

particular network descriptors� and must be modelled� Thus� the benchmark supports con�gurable
server latencies in testing proxy systems�
The main performance data collected by the benchmark are latency� proxy hit ratio and byte

hit ratio� and number of client errors� There is no single performance number since di�erent
environments weight the four performance metrics di�erently� Proxy throughput is estimated by
dividing the request rate by the request latency�
Using the benchmark� we compare the performance of four popular proxy servers � Apache�

Cern� Squid and a Cern	derived commercial proxy � running on the same hardware and software
platforms� We �nd that caching incur signi�cant overhead in terms of client latency in all proxy
systems� We also �nd that the di�erent implementation styles of the proxy software result in
quite di�erent performance characteristics� including hit ratio� client latency and client connection
errors� In addition� the proxy softwares stress the CPU and disks di�erently�
We then use the benchmark to analyze the impact of adding one extra disk on the overall

performance of proxies� We can only experiment with Squid and the Cern	derived proxy as neither
Apache nor Cern allows one to spread the cache storage over multiple disks� These results show
that disk is the main bottleneck during the operating of busy proxies� However� although this
bottleneck is reduced when one extra disk is added to the system� the overall proxy performance
does not improve as much as we expected� In fact� Squid�s performance remains about the same�
Finally� using an client machine that can emulate multiple modem connections
��� we analyze

the behavior of the four proxies when they must handle requests sent by clients connected through
very low bandwidth connections� These results show that� in this case� transmission delays are
the main component of latency and the low bandwidth e�ect clearly dominates the overall perfor	
mance� As a consequence� client latency increases by more than a fact of two� and caching does
not reduce client latency signi�cantly�
This paper is organized as follows� Section � presents a detailed description of the design

and implementation of WPB� Section � shows a performance comparison of four popular proxy
servers� Section � and Section � give some insight on the e�ect of multiple disks and low bandwidth
connections on proxy performance� Section � discusses related work� Finally� section � shows the
conclusions and future work�

� Wisconsin Proxy Benchmark

As the World	Wide Web continues to grow� many institutions are considering the installation of
proxy servers for performance and security reasons� As the industry moves to meet customer
demands and produces many Web proxy server products� there is a critical need for a benchmark
that can compare the performance of various proxy products� This section describes our e�ort to
build a proxy benchmark called the Wisconsin Proxy Benchmark �WPB��
Figure shows an overview of the design of WPB and illustrates a typical benchmarking setup�

The general setup of the benchmark is that a collection of Web client machines are connected to
the proxy system under testing� which is in turn connected to a collection of Web server machines�
There can be more than one client or server processes running on a client or server machine� The
client and server processes run the client and server codes in the benchmark� instead of running
a browser or a Web server� There is also a master process to coordinate the actions of client
processes and generate an overall performance report� Some of the setup parameters are de�ned
in a con�guration �le� The following sections describe each of the main component of WPB as
well as the main performance metrics reported�

��� Master Process

A master process is needed to coordinate the actions of client processes� Once a client process
starts� it sends an �ALIVE� message to the master process� and then waits for a �GO� message
from the master� Once it receives �GO�� it starts sending HTTP requests to the proxy as described
below� The master process waits till all client processes send it the �ALIVE� message� then

�

....

....

....

....

....

Server Processes

Proxy System

Server Machines
Client Machines

....

Master Process

Client Processes

Figure � Design of WPB ��

sends �GO� to all clients� After sending all �GO� messages� the master waits for the end of the
experiment when it receives statistics from all clients and servers� Based on this data� it generates
an overall performance report� The number of client and server processes that the master has to
wait for is given in a con�guration �le� whose name is passed as the command line argument to
the master process� The master process may run on one of the client machines�

��� Client Processes

The client process runs on the client machine and issues HTTP requests one after another with no
thinking time in between� This means that clients send requests as fast as the proxy can handle
them� The client process takes the following parameters as command line arguments� URL address
of the proxy server �e�g� cowb���cs�wisc�edu������� number of HTTP requests to issue� seed for
the random number generator� and name of the con�guration �le specifying the Web servers to
which the client should send requests� Currently� the clients send HTTP requests in the format
of �GET http���server name�port number�dummy
�lenum��html HTTP����� for example� �GET
http���cowb���cs�wisc�edu������dummy����html�� The server name� port number and �lenum
vary from requests to requests� Clearly� our client code does not yet include other types of HTTP
requests or HTTP � persistent connection� We plan to �x it soon� once we learn more about
the typical mix of HTTP requests from the clients and the characteristics of most persistent
connections�
The client process varies the server name� port number and �lenum of each request so that

the request stream has a particular inherent hit ratio and follows the temporal locality pattern
observed in most proxy traces� The client process sends requests in two stages� During the �rst
stage� the client sends N requests� where N is the command line argument specifying the number
of requests need to be sent� For each request� the client picks a random server� picks a random
port at the server� and sends an HTTP request with the �lenum increasing from to N� Thus�
during the �rst stage there is no cache hit in the request stream� since the �le number increases
from to N� These requests serve to populate the cache� and also stress the cache replacement
mechanisms in the proxy� The requests are all recorded in an array that is used in the second
stage�
During the second stage� the client also sends N requests� but for each request� it picks a

random number and takes di�erent actions depending on the random number� If the number is
higher than a certain constant� a new request is issued� If the number is lower than the constant�

�

the client re	issues a request that it has issued before� Thus� the constant is the inherent hit ratio
in the request stream� If the client needs to re	issue an old request� it chooses the request it issue
t requests ago with probability proportional to �

t
� More speci�cally� the client program maintains

the sum of �
t
for t from to the number of requests issued �call it S�� Everytime� it has to issue

an old request� it picks a random number from � to �call it r�� calculates r � S� and chooses t

where
t��X

i��

i
� r � S �

tX

i��

i
� In essence� t is chosen with probability �

S�t
�

The above temporal locality pattern is chosen based on a number of studies on the locality
in Web access streams seen by the proxy� �We have inspected the locality curves of the requests
generated by our code and found it to be similar to those obtained from traces� � Note here that
we only capture temporal locality� and do not model spatial locality at all� We plan to include
spatial locality models when we have more information�
Finally� the inherent hit ratio in the second stage of requests can be speci�ed in the con�gura	

tion �le� The default value is ����

��� Server Processes

The server process listens on a particular port on the server machine� When the server receives
an HTTP request� it parses the URL and �nds the �lenum� It then chooses a random number
�according to a particular distribution function� as the size of the HTML document� and forks a
child process� The child process sleeps for a speci�ed number of seconds� then constructs an array
of the speci�ed size� �lls the array with string �aaa
�lenum��� replies to the HTTP request with the
array attached to a pre	�lled response header� and then exits� The response header speci�es that
the �document� is last modi�ed at a �xed date� and expires in three days� The server process also
makes sure that if it is servicing a request it has serviced before� the �le size and array contents
stay the same�
The sleeping time in the child process models the delay in the Internet and the server seen by

the proxy� We feel that it is important to model this delay because in practice� latency in serving
HTTP requests a�ects the resource requirement at the proxy� Originally� we set the sleeping
time to be a random variable from � to � seconds� to re�ect the varying latency seen by the
proxy� In our preliminary testing� in order to reduce the variability between experiments� we have
change the latency to be a constant number of seconds that can be set through a command line
argument� We are still investigating whether variable latencies would expose di�erent problems in
proxy performance from constant latency� For now� we recommend using a constant latency �see
below� benchmarking rules��
Currently� the server process does not support other types of GET requests� such as conditional

GET� which we will �x soon� The server process also gives the �xed last	modi�ed	date and time	
to	live for every response� which would be changed as we learn more about the distribution of
TTL in practice�
The server program uses two di�erent �le size distributions� The default distribution is very

primitive� It is basically a uniform distribution from � to ��K bytes for ��� of the requests� and
MB for � of the requests� It is also possible to use a more realistic �le size distribution� such
as the heavy tail Pareto distribution� In this case� the two parameters of the distribtuion� � and
k� must be speci�ed in the con�guration �le� The parameter k represents the minimum �le size
and � is such that the average �le size av is given by � � average

average�k
� Typical values of � and k

are � and ���KB� as shown in
���

��� Con�guration File

The con�guration �le speci�es the following� the machine where the master process runs� the port
number that the master process is listening at� the total number of client processes� the total
number of server machines� and the speci�cation of the server processes for each server machine�
The speci�cation of the server processes includes the name of the server machine� the base port

�

number� and the number of ports at which there are server processes listening� For example� if the
speci�cation is �cowb���cs�wisc�edu ���� ��� it means that there is a server process listening at
each of the ports ����� ���� ����� ���� ���� on cowb���cs�wisc�edu� This way one server machine
can host more than one server processes� The inherent hit ratio is an optional parameter as well
as � and k� the parameters that de�ne the heavy tail �le size distribution� It is also possible to
specify the average �le size instead of �� In this case� � can be calculated by the formula ���� The
default minimum �le size is ���KB�

��� Main Performance Metrics

At the end of the experiment� the master process receives from clients the number of requests
sent and the total number of bytes requested and from servers the total number of requests and
bytes that they serviced� Clients also send the average latency and the total number of errors
observed during the two phases of the experiment� An error is reported everytime a connection
between client and proxy could not be established� because the pending connection queue was full�
Then� the master process generates an overall performance report that contains the following data�
average latency in the �rst and second phase� total number of errors observed during both phases�
hit ratio and byte hit ratio� Proxy throughput� i�e�� the number of requests that are handled in
each time unit� can be estimated based on the average latencies and on the number of requests
handled�

��� Recommended Benchmarking Steps and Rules

The setup of the benchmarking experiments should follow the rule that the ratio between the
number of client machines and the number of server machines is always � to � and the ratio
between the total number of client processes to the total number of server processes is also kept
at � to � The server latency should be at least � seconds� Until we have a better understanding
of the spatial locality in user access streams� these ratios seem to be a reasonable choice�
Each run should last at least � minutes� Thus� the number of operations should be chosen so

that this minimum duration is achieved� The total size of HTTP documents fetched by the clients
should be at least four times the cache size of the proxy�
The current version of the benchmark does not model DNS lookups� HTTP � persistent

connections� conditional Get and other forms of HTTP requests� realistic path name for URL�s
and spatial locality in Web accesses �i�e�� once a user accesses a document from one Web server�
it tends to access other documents at the same Web server�� We are continueing the development
of the benchmark and hope to eliminate these limitations in future versions of the benchmark�

��	 Measuring the Behavior of Overloaded Proxy Servers

We have also incorporated new features to WPB to generate bursty tra�c� with peak loads that
exceed the capacity of the proxy� based on
�� We have changed the client process code to have a
pair of process � sender and handler � generating HTTP tra�c to the proxy using non	blocking
sockets� The sender process is responsible for establishing a connection with the proxy� After the
connection is established� it passes the socket descriptor to the handler and sends a new connection
request� The handler is responsible for keeping track of all pending connections and receiving the
requested �les from the proxy� If the connection could not be established in a reasonable amount
of time ���� ms in our implementation�� the sender issues a new connection request immediately�
Each pair sender	handler manages a pre	de�ned number of sockets descriptors so that the number
of sockets �simulated clients� that are trying to establish new connections is kept constant�
We have done some experiments with this new version of WPB �version �� using di�erent

proxies� The main results show that there are a lot of connection time	outs that are reported as
errors� The timeout period used in our implementation ���� ms� is much larger than the maximal
round	trip time between client and proxy in our testbed �described in section ��� Therefore� the
proxies were actually overloaded and could not handle many of the requests� For some proxies� we

�

observed a very big number of errors so that the e�ective proxy throughput was very low� As a
consequence� latency dropped very signi�cantly� We are still working on this new version of WPB
and trying to interpret the results� Therefore� all the results presented in this paper were collected
using version �� of WPB�

� Performance of Example Systems

We used WPB to measure the performance of four proxy systems�

� Apache version ���b� 	 it is a multiprocess proxy that forks� at startup� a prede�ned
number of processes to handle incoming requests� This number is dynamically adjusted as
a response of the current load in the proxy� Apache stores cached documents in a four	level
directory tree� However� the number of entries in each subdirectory as well as the size of
directories in the same level are not �xed� Apache also copies documents to a temporary
�le in the root cache directory before copying it to a �nal location� Currently� we have not
been able to �nd any information about how Apache �nds this �nal location�

� Cern version ���A 	 it is a multiprocess proxy that forks a new process to handle each
request� After handling a single request� the new process terminates� It uses the �le system
to cache data �web documents� as well as proxy meta	data� such as expiration times� content
type� etc� Web pages are stored in separate �les and the directory structure is derived from
the structure of the URL� each URL component is translated into a directory name� The
directory path for a speci�c URL is called URL directory� Metadata for each �le� used to
�nd out whether it is stored in the cache� is kept in the corresponding URL directory�

� A Cern�derived comercial proxy 	 This is a multiprocess proxy that at startup forks a
prede�ned number of processes that are responsible for handling all the incoming requests�
After a prede�ned number of requests serviced� a process terminates and gets respawned
by a master process� Therefore� the total number of processes remains constant� For our
experiments� we set the number of processes to ��� the default value� It uses the �le system
to cache data and proxy meta	data� The proxy cache is separated into one or more three	
level cache sections� Each cache section contains �� subdirectories and can hold �� to ���
MB of data� It uses an algorithm to determine the directory where a document should be
stored that tries to ensure equal dispersion of documents in the sections� The proxy uses
the RSA MD� algorithm to reduce a URL to � characters� which it uses for the �le name of
the document and to determine the storage directory� This proxy server will be identi�ed as
Proxy N�

� Squid version ������ 	 it uses non	blocking network I�O abstractions in order to avoid
forking new processes� Only one process handles all incoming requests� It manages its own
resources and keeps meta	data about the cache contents in main memory� Therefore� it is
not necessary to access disk to determine if a �le is stored in the cache� Squid uses main
memory to cache in	transit objects� to cache the most recently used objects and to cache
error responses� The cache storage in disk is structured as a three	level cache� there are �
sections� each one containing ��� subdirectories where �les are stored� Squid maps URLs
to cache object names using ��ngerprinting�� It implements its own DNS cache and uses a
prede�ne number of �DNS servers� to which it sends non	blocking DNS requests

We have run a set of experiments using WPB �version ��� to analyse how the above systems
perform under di�erent loads� We varied the number of client processes and collected statistics for
caching and no caching con�gurations� Before presenting the mains results obtained� we describe
the hardware platform where the experiments were run�
We ran our experiments in a COW � Cluster of Workstatsions� that consists of forty Sun

Sparcstations ��� each one with � �� Mhz CPUs� �� MB of main memory and two GB disk�
The COW nodes are interconnected through di�erent network interfaces� including a �� Base	T

�

Figure �� Client Latency for CERN ���A�

interface� which we used during the experiments� We ran experiments varying the number of
clients from � to ��� using four client machines and two server machines� We kept the ratio ��
between number of client processes and number of server processes� The cache size was set to ��
MB� The server latency is set to � seconds in all the experiments� The inherent hit ratio
in the client request stream is the default value ���� Thus� the maximum hit ratio that can be
observed in the experiments �which is an average of the two phases� is around ����
Figure � shows� for CERN ���A� how the average latency varies as a function of the number

of clients in both caching and no caching con�gurations� For caching con�guration� it also shows
how the latency in the �rst and second phases of the experiment varies� For no caching� latency
increases very slowly� for caching� however� it does increase with the number of clients� These
curves show that� for our experiments� the cost of a hit may o�set the cost of accessing the remote
server if a great number of clients are concurrently trying to connect to the proxy� In other
words� network transmission time is shorter than the time spent retrieving the �le from disk� It is
interesting to note that this is true despite the fact that we try to model transmission overhead by
imposing a delay of � seconds in the server� For Cern� this limit is �� clients� after this point� the
second phase latency is bigger than the no caching average latency� Figure � shows the hit and
byte hit ratios as a function of the number of clients� Both curves are very similar and� roughly�
they show a decrease in the hit ratio� As the number of clients increases� the total number of
unique �les retrieved from the proxy also increases �since each client uses a di�erent seed for the
random number generator�� As a consequence� hit ratio decreases� Figure � shows how CERN
is e�ective in handling the incoming requests� As can be seen� after �� concurrent clients� CERN
is unable to handle all the connection requests that it receives� The number of errors increases
as the number of clients increases� However� during the second phase of the caching experiment�
when hits occur� no errors are observed
Figure � shows how latency varies for Apache� Although the curves are quite unstable� it is

clear that latency for the caching experiments increases as a function of the number of clients�
However� latency remains roughly constant when caching is disabled� Latency for the second phase
of the caching experiments remains shorter than the no caching latency up to �� clients� After this
point� it increases signi�cantly� The degradation of Apache performance as the number of clients
increases is also noteworthy� The latency increases up to almost �� seconds for �� clients when no
hit is observed� This probably is a consequence of the two	phase write that may involve several
memory operations� Figure � shows the hit ratio curves for Apache� It seems like hit ratio in

�

Figure �� Hit Ratio for CERN ���A�

Figure �� Client Errors for CERN ���A�

�

Figure �� Hit Ratio for Apache ��b��

Figure �� Hit Ratio for Apache ��b��

�

Figure �� Hit Ratio for Proxy N�

Apache is not signi�cantly a�ected by the number of clients� We are currently unable to explain
Apache�s behavior� No errors were observed during the experiments�
Figure � shows the latency curves for Proxy N� The average latency for no caching experiments

increases linearly with the number of clients for this proxy� Also� the second phase latency for
the caching experiments is always lower than the no caching latency� This may be due either
to a better usage of disk resources or a more expensive implementation� Since latency increases
linearly with the number of clients even when caching is disabled� we conjecture that overhead
of proxy implementation is responsible for this behavior� One explanation is that because the
number of proxy processes is always the same� as the number of client increases� more requests
must be delayed waiting for available processes to handle them� This is true for both caching and
no caching experiments� Figure � shows hit ratio curves for Proxy N� Hit ratio degrades very
slowly� The only proxy that has a better hit ratio is squid� as will be shown next� This may be due
to di�erent algorithms for cleaning the cache� Figure � shows that the �xed number of process
implementation results in a high number of errors during the experiments� especially when there
is no hit in the cache� With �� processes� the proxy is unable to handle all the requests if there
are more than �� clients� If the number of proxy processes is inceased to ��� the overall behavior
is the same� but the saturation point is shifted to �� clients� So� this parameter must be carefully
tuned in order to minimize the number of errors� As a consequence� proxy N may have problems
in handling bursty tra�c since this parameter must be statically chosen�
Figure � shows the latency curves for Squid� These curves have a behavior similar to those

for Apache and Cern� However� Cern has a slightly better average latency for caching experiments�
These results are consistent to those presented in
��� When caching is disabled� Squid performs
better� Figure shows the hit ratio curves� Byte hit ratio is very unstable but it can be seen
that Squid can sustain a fairly constant hit ratio� independent of the number of clients� We are
currently trying to investigate this behavior with more details�

� E�ect of Adding Disk Arms

Several studies have claimed that disks are a main bottleneck in the performance of busy proxies�
We wanted to analyse the impact of spreading the cached �les over multiple disks on proxy
performance� We expected that by increasing the number of disks� queueing overheads would be

�

Figure �� Hit Ratio for Proxy N�

Figure �� Client Error for Proxy N�

Figure �� Hit Ratio for Squid ����

Figure � Hit Ratio for Squid ����

�

reduced� the time spent servicing each disk request would be shortened and� ultimately this would
re�ect on the overall performance of the proxy�

Metrics one disk two disks nocaching
First phase latency �s	 ���� ���� ���� ��� ���� ������
Second phase latency �s	 ���� ���� ���� ���� ���� ����
First phase errors � � �
Second phase errors � � �
Hit Ratio ����� ��� ����� ��� �
Byte Hit Ratio ���� ����� ��� ���� �

Table � The e�ect of multiple disks on Squid performance�

Metrics one disk two disks nocaching
First phase latency �s	 ���� ���� ���� ���� ��� ����
Second phase latency �s	 ���� ���� ��� ���� ���� ����
First phase errors ����� ���� ����� ���� ����� ����
Second phase errors ���� ����� ���� ����� ���� �����
Hit Ratio ��� ���� ����� ������ �
Byte Hit Ratio ��� ����� ���� ���� �

Table �� The e�ect of multiple disks on Proxy N performance�

Only two of the four proxy servers in our testbed allowed us to specify multiple directories
for cache storage� Squid and Proxy N� In this section� we present results for both Squid and
Proxy N when the cache storage is spread over one and two disks� We also compare these results
with those collected when caching was disabled� For these experiments� we used the same cache
size ��� MB�� since we are interested only in undertanding the impact of one extra disk in proxy
performance� Table shows these results for Squid� Surprisingly� there is no improvement in the
overall performance when we add an extra disk� Actually� there is a small slowdown in latency
of both phases� but hit ratio remains around the same� Table � shows results for Proxy N� For
Proxy N� the extra disk guaranteed an improvement of �� in client latency� Hit ratio remained
around the same� However� the number of errors occurred in the �rst phase decreased by ����
This is probably a side e�ect of the improvement in latency� because requests are handled faster�
new requests can be taken out from the pending connections queue faster and the probability of
�nding this queue full decreases�
Comparing Proxy N�s latency for two disk and no caching experiments� it can be seen that

adding the extra disk indeed alleviates the disk bottleneck for this proxy� In the no	caching
experiment� there is minimal load on the disk� In the caching experiment� when the proxy has only
one disk arm to use� the client latency in the �rst phase is increased by ���� mostly contributed
by the disk bottleneck� However� when the proxy has two disk arms to use� the latency increase
is limited to only ���� Furthermore� when the proxy has two disk arms to use� the processing of
cache hits is sped up and the second phase latency is signi�cantly improved�
However� despite the improvements� we were very surprised with these results� since we ex	

pected a more drastic improvement in latency� During those experiments� we also collected disk�
processor and paging activities using vmstat and iostat in order to have a better picture of how
the system resources are consumed by the proxies�
Table � show the main statistics collected by these tools for Proxy N� Disk is clearly a bottle	

neck� since it was busy over ��� of time� With the extra disk� read and write requests were spread

�

Metrics one disk two disks nocaching
Disk � � reads
s � ���� ���� �
Disk � � writes
s � ���� ���� �
Disk � � Kbytes read
s � ����� ���� �
Disk � � Kbytes written
s � ������ ���� �
Disk � � wait � ����� ���� �
Disk � � svc t � ����� ���� �
Disk � � busy ��	 � ��� ���� �
Disk � � reads
s ���� ���� ���� ���� ����� �����
Disk � � writes
s ����� ���� ����� ���� ��������
Disk � � Kbytes read
s ���� ��� ����� ���� ������ ��� ��
Disk � � Kbytes written
s ������ ��� ����� ���� ��������
Disk � � wait ��� ��� ������ ����� �
Disk � � svc t ����� ���� ����� ���� ���� ����
Disk � � busy ��	 ����� ���� ����� ���� �� ����
cpu idle ��	 ���� ������ ����� ���� ��� ������
cpu user ��	 ���� ���� ���� ���� ���� ���
cpu system ��	 ���� ���� ���� ��� ��� ����
page�in
s ���� ���� ����� ���� ����� �����
page�out
s ����� ���� ����� ���� ����������

Table �� Proxy N resource consumption for one disk� two disk and no caching experiments�

over two disks and� as a consequence� service time �svc t� which is the average time spenting ser	
vicing a request dropped signi�cantly� due mainly to reduction of queueing delay� The average
queue length �wait � drops to almost � for both disks� The total number of read and write opera	
tions is bigger for the two	disk experiment as a consquence of less contention to disk access� Disk
throughput increases as well as disk bandwidth� Processor and paging activity remains almost the
same� with slight increase in cpu utilization� both in terms of user and system modes� However�
the statistics show that the load is not evenly distributed between the disks� disk one received a
bigger number of requests� This may be one explanation for the less	than	expected improvements
from the two disk arms� and we are still investigating the issues�
Table � shows similar results for Squid� It is clear that the disk bottleneck was reduced when

one extra disk was added� The service time �svc t� was reduced by almost ��� for both disks�
The queue length �actv� and busy time were also reduced� As a consequence� disk throughtput
and bandwidth increased� However� this improvements were not re�ected in the client latency�
Processor utilization remained about the same but paging activity increases when the extra disk
is added� We are still in the process of �nding out why Squid behaves sub	optimally� and why
Squid and Proxy N behaves so di�erently�

� E�ect of Low Bandwidth Client�Connections

We were also interested in analysing the impact of low bandwidth connections on proxy perfor	
mance� We wanted to analyse how proxies behave when they must handle requests sent by several
clients� using slow connections� such as modems� We used a modem emulator
�� which introduces
delays to each IP packet transmitted in order to achieve a certain e�ective bandwidth that is
smaller than the one provided by the network connection� This modem emulator� implemented in
the Linux operating system� assigns to each process a prede�ned maximum bandwidth that it can
use� The default bandwidth used in our experiments is ����Kbps for each process� We used the
WPB to measure the performance of the four proxy servers included in our testbed when requests

�

Metrics one disk two disks nocaching
Disk � � reads
s � ���� ���� �
Disk � � writes
s � ���� ���� �
Disk � � Kbytes read
s � ���� ���� �
Disk � � Kbytes written
s � ����� ���� �
Disk � � wait � �������� ����� �
Disk � � svc t � ����� ���� �
Disk � � busy ��	 � ���� ���� �
Disk � � reads
s ��� ���� ���� ���� ������ ����
Disk � � writes
s ����� ���� ���� ���� ����� ����
Disk � � Kbytes read
s ����� ���� ���� ���� ����� �����
Disk � � Kbytes written
s ������ ���� ����� ���� ���� ����
Disk � � wait ���� ���� ����� ����� �
Disk � � svc t ����� ��� ����� ���� ����� ����
Disk � � busy ��	 ����� ���� ����� ���� ���� ����
cpu idle ��	 ����� ���� ���� ������ ����� ����
cpu user ��	 ���� ���� ���� ��� ���� ����
cpu system ��	 ���� ���� �� ���� ���� ����
page�in
s ����� ���� ����� ������ ������ �����
page�out
s ���� ����� ����� ���� ��� �����

Table �� Squid resource consumption for one disk� two disk and no caching experiments�

were sent by clients running on top of this modi�ed version of Linux� We spread �� clients over
three DEC Celebris XL��� �� MHz Pentium machines with �� MB of main memory each and
standard � Mbps Ethernet card� We spawn �� WPB server processes on two COW nodes� We
compare the results for these experiments with those collected when the same number of clients
were spread over the same machines running an unmodi�ed Linux� The network connecting clients
and proxies is non	dedicated and includes one router in the path�
Tables � and � show the results obtained for all four proxies� No errors were observed during

the experiments for any proxy server� It is clear that the low bandwidth e�ect dominates� The
latency increases by more than a factor of � for all proxies� It is also interesting to notice that
the di�erence between the latencies observed in the �rst and second phases is smaller for the low
bandwidth connection� This re�ects the fact that the time spent in the communication between
client and proxy is the dominant factor in the overall performance and it is much more important
than the delay introduced by misses in the cache� since the connections between servers and proxy
is much faster in our setup� The decrease in the hit ratio is also noteworthy� especially for Apache
and Proxy N� Observing the results collected by iostat and vmstat� it is clear that the bottleneck
is the transmission in the network� Despite the shorter service time� disk throughput is lower for
the experiments with low bandwidth� The utilization of both disk and cpu is much lower for the
��Kbps bandwidth experiment and� as consequence� the overall proxy throughput degrades�

� Related Work

Benchmarking Web servers is an active research area� Several benchmarks for Web servers have
been developed� including WebStone
� and SPECWeb� There are also studies on the overload
behavior of the benchmarks and improvement of the benchmarks
�� However none of the bench	
marks can be easily used to measure proxy performances� We borrowed several ideas from these
benchmarks when designing WPB� However� WPB incorporates unique characteristics that make
it appropriate to analyze the performance of proxy servers�

�

Squid
Metric ��Kbps bandwidth �� Mbps bandwidth
First phase latency �s	 ��� ���� ���� ���
Second phase latency �s	 ��� ����� ���� ����
Hit Ratio ���� ������ ��� ������
Byte Hit Ratio ���� ���� ���� ����
reads
s ���� ���� ���� ����
writes
s ��� ����� ����� ����
svc t �ms	 ��� ����� ����� ����
disk busy��	 ��� ����� ���� ����
cpu idle��	 ����� ��� ���� ����
cpu user ��	 ��� ����� ���� ����
cpu system ��	 ��� ����� ���� ����

Proxy N
Metric ��Kbps bandwidth �� Mbps bandwidth
First phase latency �s	 ���� ���� ���� ����
Second phase latency �s	 ���� ���� ���� �����
Hit Ratio ���� ���� ����� ����
Byte Hit Ratio ��� ���� ���� ����
reads
s ��� ����� ���� ����
writes
s ���� ��� ����� �����
svc t �ms	 ���� ���� ����� ����
disk busy��	 ����� ���� ���� �����
cpu idle��	 ����� ������ ����� ����
cpu user ��	 ��� ���� ���� �����
cpu system ��	 ���� ��� ���� �����

Table �� The e�ect of low bandwidth connections on Squid and Proxy N performance�

There has also been many studies measuring the performance of Squid proxies in real use
�� ���
Our results con�rm most of the �ndings in those studies� Di�erent from those studies� WPB can
be used as a tool to pin point the performance problems of a variety of proxy products�
Finally� there have been many studies on characteristics of proxy traces
�� �� �� �� ��� Our

research borrows results from those studies in designing WPB�

	 Conclusion

In this paper� we have described the design of the Wisconsin Proxy Benchmark and the result
of using the benchmark to compare four proxy implementations� We also use the benchmark to
study the e�ect of extra disk arms and modem client connections�
Our main �ndings are the following�

� Disk is the main bottleneck during the operation of busy proxies� disk is busy up to ��� of
time while CPU is idle for more ��� of time� Adding an extra disk reduces the bottleneck in
the disk� However� for Squid� this reduction did not re�ect in an improvement in the overall
performance of the proxy� For proxy N� an improvement of �� was achieved�

� When a proxy must handle requests sent throught very low bandwidth connections� the time
spent in the network dominates� Both disk and cpu remains idle for more than ��� of time�
As a consequence� proxy throughtput decreases and client latency increases by more than a
factor of two�

�

Cern
Metric ��Kbps bandwidth �� Mbps bandwidth
First phase latency �s	 ��� ���� ���� ����
Second phase latency �s	 �� ���� ���� ����
Hit Ratio ��� ����� ����� ����
Byte Hit Ratio ���� ����� ���� ����
reads
s ���� ���� �� �����
writes
s ���� ���� ����� �����
svc t �ms	 ����� ���� ����� �����
disk busy��	 ���� ���� ����� �����
cpu idle��	 ���� ���� ����� ����
cpu user ��	 ���� ����� ���� ����
cpu system ��	 ��� ���� ����� ����

Apache
Metric ��Kbps bandwidth �� Mbps bandwidth
First phase latency �s	 ���� ���� ��� �����
Second phase latency �s	 ���� ���� ���� �����
Hit Ratio ���� ���� ����� �����
Byte Hit Ratio ���� ����� ���� ����
reads
s ���� ���� ���� �����
writes
s �� ����� ����� �����
svc t �ms	 ����� ����� ���� ����
disk busy��	 ����� ����� ����� �����
cpu idle��	 ����� ��� ����� ����
cpu user ��	 ���� ����� ���� �����
cpu system ��	 ���� ���� ���� ����

Table �� The e�ect of low bandwidth connection on Cern and Apache performance�

� The performances of Cern and Squid are comparable� despite their vast di�erences in im	
plementations� Squid mainly su�ers from not being able to use the extra processor in the
multi	processor system� Cern� on the other hand� uses a process	based structure and utilize
two processors� In addition� CERN takes advantage of the �le bu�er cache� which seems to
perform reasonably well�

� Process	based proxy implementations must take care to avoid client connection errors� Both
Cern and proxy N �Cern derived proxy� can not handle all requests and many errors occur�
These errors re�ect the fact that many requests were dropped due to over�ow in the pending
connection queue� For proxy N� this can be explained by the fact that the number of proxy
processes handling all requests is �xed� For Cern� the overhead of forking a new process
for each request may be an explanation� The master process �responsible for spawning new
processes� can not handle all the requests� On the other hand� no error was observed for
Apache� The dynamical adjustment in Apache on the number of processes seems to be
successful� Squid does not su�er from this problem because of its event	driven architecture�

� In terms of latency� Apache has the worst performance� probably due to the two	phase store�
that introduces extra overhead� Proxy N has a slightly better performance overall� However�
this may be a consequence of the great number of errors� Since a smaller number of requests
are e�ectively handled� delays due to contention are reduced�

� In terms of hit ratios� Squid and Apache maintains roughly constant hit ratios across the
load� For both Cern and proxy N� hit ratio decreases signi�cantly as the number of client

�

increases�

Clearly� much more work remains to be done� First of all� the Wisconsin Proxy Benchmarks
should model spatial locality and HTTP � persisten connections� We are currently working on
this issue� Second� the performance of Squid is ba�ing and we are instrumenting the code to
gain a better understanding� Third� we need to perform more experiments to better understand
the impact of slow modem client connections and ways to improve proxy performance in those
contexts� Lastly� we plan to investigate the e�ect of application	level main	memory caching for
hot documents and its proper implementation �e�g�� avoid double bu�ering with the operating
system�s �le bu�er cache��

References

� Gaurav Banga and Peter Druschel� Measuring the capacity of a web server� In Proceedings

of ���� USENIX Symposium on Internet Technology and Systems� December ����

�� Kevin Beach and Pei Cao� Modem emulator� Faking multiple modem connections on a lan�
CS��� project report� ���� contact cao cs�wisc�edu for more detail�

�� Pei Cao and Sandy Irani� Cost	aware WWW proxy caching algorithms� In Proceedings of the
���� USENIX Symposium on Internet Technology and Systems� December ����

�� M� Crovella and A� Bestavros� Self	similiarity in world wide web tra�c� Evidence and possible
causes� In Proc of the ���� Sigmetrics Conference on Measurment and Modeling of Computer

systems Philadelphia� May ����

�� Bradley M� Duska� David Marwood� and Michael J� Feeley� The measured access characteris	
tics of world	wide	web client proxy caches� In Proceedings of USENIX Symposium on Internet

Technology and Systems� December ����

�� Steve Gribble and Eric Brewer� System design issues for internet middleware service� Deduc	
tion from a large client trace� In Proceedings of USENIX Symposium on Internet Technology

and Systems� December ����

�� Thomas M� Kroeger� Darrell D� E� Long� and Je�rey C� Mogul� Exploring the bounds of web
latency reduction from caching and prefetching� In Proceedings of USENIX Symposium on

Internet Technology and Systems� December ����

�� P� Lorenzetti� L� Rizzo� and L� Vicisano� Replacement policies for a proxy
cache� Technical report� Universita di Pisa� Italy� October ���� URL
http���www�iet�unipi�it� luigi�caching�ps�gz�

�� Carlos Maltzahn� Kathy Richardson� and Dirk Grunwald� Performance issues of enterprise
level web proxies� In Proceedings of the ���� ACM SIGMETRICS International Conference

on Measurement and Modelling of Computer Systems� pages ����� June ����

�� Valery Soloviev� Analyzing squid�s performance� Private Communication� ����

� Gene Trent and Mark Sake� WebSTONE� The �rst generation in HTTP server benchmarking�
Technical report� MTS� Silicon Graphics Inc�� February ���� available from http���www	
europe�sgi�com�TEXT� Products�WebFORCE�WebStone�paper�html�

�

