Sequence of steps that take place in an EAP-TLS conversation :

1. Wireless Client gets associated with the Access Point.

2. Access Point does not permit the client to send any data at this point and sends an authentication request.

3. Client's screen displays a logon screen. The supplicant will then respond with an EAP-Response Identity with user-Id back to the Authentication Server.

4. RADIUS server responds back to the client with an EAP-TLS Start Packet. The EAP-TLS conversation starts at this point.

5. The peer sends an EAP-Response back to the authentication server which contains a client_hello handshake message, a cipher that is set for NULL that will remain this value until change_cipher_spec are negotiated, and TLS version number

6. The server will present its certificate to the client as well as request a valid one from the client. The authentication server responds with an EAP-Request packet that contains the following: http://www.cs.uccs.edu/~chow/pub/wireless/ttls/src/radius/modules/rlm_eap/types/rlm_eap_tls/tls.c


TLS server_hello


handshake message


certificate


server_key_exchange


certificate request


server_hello_done.

7. Client responds with a EAP-Response message that contains the following:


Certificate ​ Server can validate to verify that it is trusted.


client_key_exchange


certificate_verify ​ Verifies the server is trusted


change_cipher_spec


TLS finished

8. After the client authenticates successfully, the EAP server will respond with an EAP-Request, which contains the change_cipher_spec and finished handshake message. The finished handshake message contains the authentication response from the server. Upon receiving the client will verify the hash in order to authenticate the EAP server. A new encryption key is dynamically derived from the master secret during the TLS handshake.

9. At this point the EAP-TLS enabled wireless client can access the wireless network.

10. Source Code at http://www.cs.uccs.edu/~chow/pub/wireless/ttls/src/
1. File: 1xdriver.c

 The driver function for a Linux application layer EAPOL implementation

 Function : Main()

1. Calls initialize_user_conf() function to set up user information structure.

2. Then check for the command line arguments and set the corresponding user information fields.

3. Parses through the user configuration file.

4. Once a successful reading and printing of the configuration file is done, the EAPOL conversation begins. It calls the init_eapol function.

5. Next it sets up the server socket via the serverSockInit() function defined in 1xdaemon.c file.

6. Once the server socket is initialized, the main event loop starts that tries to establish connection and authenticates the client. This is done by the eapol_authenticate() function in eapol.c

2. File: userconf.c

Function : initalize_user_conf()

Initializes User settings and sets the fields of the userconf structure:

struct userconf {

 char *username; //The username we are authenticating.

 char *password; //If there is one for the type of auth we are using.

 char *root_cert; //The filename of the root cert.

 char *client_cert; //The filename of the client cert.

 char *key_file; //The filename that holds the client cert. key.

 char *auth; //The same as the :auth type in the config file.

 char *preferred_auth; //The type of auth we want to do.

 char *client_type; // This this a wired or wireless connection?

 int chunk_size; // The size of the TLS chunks to send.

 char *random_file; // The file to get random data out of.

 char *first_auth; // command to run after first authentication

 char *after_auth; // command to run after all subsequent authentications

};

3.
File: configparse.c

Functions to manipulate the basic configuration file

Function : parse_all_configs(char* infile, char* netname)

Start Reading Configuration items from the specified infile

The config file (infile) is /etc/1x/1x.conf. This file contains a series of tag-value pairs. The user is expected to fill in the appropriate tag-values before starting the xsupplicant. In addition to a tag and a value, there is also a "network id" to group different tag-value pairs together. The file is parsed linearly, so redundant tags with the same network id will take the value of the last line. If no network name is provided on the command line (using the -n flag) then the network id "default" is parsed. Once the file is parsed successfully it calls the print_user_conf function to print the necessary values.

4.
File: eapol.c

EAPOL Function implementations for supplicant. Specified in Section 7 of IEEE Draft P802.1X/D11,

Function: init_eapol(char *device, char *netid, u_char *auth_addr,char *config)

It is an API function that drivers call. It prepares the EAPOL package for use. It initializes the frame functions. And ensures the set up on the specified device. It also initializes the wireless extensions, if user specifies wireless in the configure file. It further sets up the authenticator address[destination address] and determines the network name. It sets up the dot1x_globals structure. The fields in this struct are defined as are per the 802.1x documentation.

It then initializes the specified eap_type via the init_eap () in the eap.c file. Once we have set the authentication type we are done with the initialization process.

Function: eapol_decode_packet()

In this function it decodes an input packet and creates the necessary response if it exists. It decodes the packet and reads in the eap_type from the header. Based on the eap_type, the eap_decode_packet () function is called which further handles the packets and manages the state machine for eap.

Function : eapol_authenticate()

Function that actually implements Supplicant PAE State machine

It returns 0 if authentication is success and -1 if failed.

In this function we get the frame, decode the packet, get the next response back and then based on the received packet, we go to the next state of the machine.

It determines if it has received an eap request code and then based on the packet type field sets the authentication type. Next Calls the txRspAuth function if it gets an EAP request packet to build the response.

Function : txRspAuth()

This function sends an EAP Response Authentication frame.

It calls the eap_build_auth_response () function which, builds the actual frame carrying the response.

5.
File: eap.c

EAP function implementations for the supplicant. It defines the various authentication methods and stores the eap_types, their names and other attributes specific to the authentication in a structure. It also initializes the values and the respective function calls it needs to make in a structure format.

Function : eap_build_auth_response()

This function builds the response frame for the authentication based on the sent authentication type. It then needs to get a password, or some other authentication information and calls the eap_auth_challenge () function specific to the particular eap type. Thus in this case if it is eap_tls then the function eaptls_auth_challenge function in eaptls.c is called.

6.
File: eaptls.c

Contains function implementations specific to eap tls.

Function : eap_build_auth_response()

This function builds the response but first as per the draft needs to load the certificates. Therefore it first gets the filename and path where the root certificates are located and then loads the root certificate through the function eapcrypt_tls_load_root_cert. Once the root certificate is loaded it gets the password and the private key. If already not specified in the config file or as command line arguments then it prompts the user for the password. After this it gets the client certificate and the key.

Server Side Setup - Radius Server

Steps involved in setting up the Server: http://www.missl.cs.umd.edu/wireless/eaptls/#FREERADIUS
1. Untar the snap shot version of Free radius – www.freeradius.org
2. Edit the Makefile in the following directory: src/modules/rlm_eap/types/rlm_eap_tls

TARGET = rlm_eap_tls

SRCS = rlm_eap_tls.c eap_tls.c cb.c tls.c mppe_keys.c

RLM_CFLAGS = $(INCLTDL) -I../.. -I/usr/local/openssl/include

HEADERS = eap_tls.h

RLM_INSTALL =

RLM_LDFLAGS += -L/usr/local/openssl/lib

RLM_LIBS += -lssl -lcrypto

$(STATIC_OBJS): $(HEADERS)

$(DYNAMIC_OBJS): $(HEADERS)

RLM_DIR=../../

include ${RLM_DIR}../rules.mak
3. Then we do a make and make install.

4. Once a successful installation of the software is done. We need to configure 3 files - clients.conf, radiusd.conf, and users. The files would be at /usr/local/radius/etc/raddb – where the software was installed. Note this path could be specified when we run the configure command.[./configure –prefix=/usr/local/radius]
Clients.conf
This file gives access to your access points to connect to the RADIUS server and request authentication. You can specify a single IP address or an entire subnet that can access the server.
Radiusd.conf
This config file is important as it has information of how to enable EAP/TLS stuff, and how to setup paths to appropriate certificate files. Only a few sections of the file need to be modified.

a. For all EAP related authentications - includes eap and the authorized eap types - tls in this case.

b. Next you need to edit the Authorization section. Uncomment the reference to eap as follows:

c. Finally edit the Authentication section once again un-commenting out the reference to EAP
Users
In this file we add lines that are referenced in the client certificates

Example:

adam-ctl Auth-Type := EAP, User-Password == "whatever"

Server side source – code Handling :
The following is the functionality that the server performs:

1. receive a RADIUS request

2. process the request

· look up information in one or more databases

· store information in one or more databases

3. respond to the request

1.
The first step would be to receive UDP client requests, and fill in the radius packet structure. It is done by the rad_recv function implemented by the library radius.c

http://www.cs.uccs.edu/~chow/pub/wireless/ttls/src/radius/lib/radius.c
2.
Modules perform the other functions. They act depending on when the RADIUS packets are received.

http://www.cs.uccs.edu/~chow/pub/wireless/ttls/src/radius/main/modules.c

A module can have up to 4 components that act on RADIUS requests at different stages. The components are:

1. Authorization: check that a user exists, decide on an authentication

method or proxy realm, and possibly apply some attributes to be returned

 in the reply packet.

2. Authentication: verify that the password is correct.

3. Preaccounting: decide whether to proxy the request, and possibly add

 attributes that should be included in any logs

4. Accounting: record the request in the log

5. Checksimul: count the number of active sessions for the user

6. Postauth: process the response before it's sent to the NAS

7. Preproxy: process a request before it's proxied

8. Postproxy: filter attributes from a reply to a proxied request

All EAP types will be handled in their respective sub modules. RLMs process the particular authentication type say EAP. http://www.cs.uccs.edu/~chow/pub/wireless/ttls/src/radius/modules/rlm_eap/
From here based on the EAP type, it processes authentication via – rlm_eap_tls.

http://www.cs.uccs.edu/~chow/pub/wireless/ttls/src/radius/modules/rlm_eap/types/rlm_eap_tls/
In the actual authentication it first verifies the packet and then create the data structure.

Data required to process the TLS:

1. EAP-TLS should get the complete TLS data from the peer.

2. Store that data in a data structure with any other required info

3. Hand this data structure to the TLS module.

4. TLS module will perform its operations on the data and hands back to EAP-TLS

EAP-TLS if necessary will fragment the packet and send it to the destination.

During EAP-TLS initialization, TLS Context object will be initialized and stored.

For every new authentication requests, TLS will open a new session object and that

session object should be maintained even after the session is completed, for session resumption.
