
Formal analysis of a non-repudiation protocol

Steve Schneider

Department of Computer Science

Royal Holloway, University of London

Egham, Surrey, TW20 0EX, UK

Abstract

This paper applies the theory of Communicating Se-
quential Processes (CSP) to the modelling and analysis
of a non-repudiation protocol. Non-repudiation proto-
cols di�er from authentication and key-exchange pro-
tocols in that the participants require protection from
each other, rather than from an external hostile agent.
This means that the kinds of properties that are re-
quired of such a protocol, and the way it needs to be
modelled to enable analysis, are di�erent to the stan-
dard approaches taken to the more widely studied class
of protocols and properties. A non-repudiation proto-
col proposed by Zhou and Gollmann is analysed within
this framework, and this highlights some novel consid-
erations that are required for this kind of protocol.

1. Introduction

Over the past few years, formal methods have been
successfully applied to the analysis of security pro-
tocols. The bulk of the e�ort has been concerned
with authentication and con�dentiality properties, and
there are now a range of maturing techniques and ap-
proaches for such analysis, as exempli�ed in [6], and
in [1, 3, 4, 5, 7, 11, 12]. Non-repudiation [2] has not
been addressed to the same degree by these techniques,
and it is the aim of this paper to consider how the CSP
approach presented in [9] extends or adapts to the anal-
ysis of this property.

Non-repudiation protocols are used to enable agents
to send and receive messages, and provide them each
with evidence so that neither of them can successfully
deny at a later time that the message was transmitted.
Each participant aims to collect evidence that could
later be shown to a judge to prove that the other party
did send or receive the message (as appropriate). A
protocol designed to achieve this is generally required
to provide the property of correctness of the evidence:

that the evidence really is strong enough to guarantee
what the holder requires of it.

In some cases, the protocol might also aim to pro-
vide fairness: that no party should be able to reach
a point where they have the evidence or the message
that they require, without the other party also having
their required evidence. Fairness is not required for
non-repudiation [2], but it may be desirable in some
cases. The protocol considered in this paper aims to
provide fairness.

Evidence is generally in the form of signed messages,
which provide guarantees concerning their originator.
In the design of such protocols, fairness is the more
di�cult property to achieve, and various schemes have
been proposed to try to achieve this. The problems
and proposed solutions are discussed in [13]. Firstly,
the sender and the recipient do not involve any other
parties, and gradually release information to each other
over many rounds of a protocol so that they e�ectively
obtain the evidence and the message together as a grad-
ual process. Secondly, a trusted third party can be in-
volved in a protocol to handle some of the evidence.
The problems and proposed solutions are discussed in
more detail in [13].

In contrast to authentication and key-exchange pro-
tocols, non-repudiation protocols are not concerned
with communication in the presence of a hostile agent
between two parties who trust each other. Instead
they are employed when a communication is required
between two agents who require protection from each
other and who do not entirely trust each other to be-
have honourably in the future. They are typically
proposed in the context of a passive communication
medium which cannot be manipulated by either party
or by other agents, but which may nevertheless have
some unreliable behaviour.

In analysis, the system must be modelled from the
point of view of a judge who would be used to arbi-
trate in the case of a dispute. Correctness is concerned
with whether a judge, who cannot know a priori which

agents are honest, must accept evidence as guarantee-
ing that the message was sent. This concerns the na-
ture of evidence: an agent might himself know that a
message was sent, and yet not be in a position to prove
this to the judge.

The CSP modelling reveals an aspect of non-
repudiation unusual for a security property. Most secu-
rity properties are safety (trace) properties, essentially
that nothing bad (a breach of security) should happen
at any stage. In the case of the protocol considered
in this paper, some of the aspects of non-repudiation
involve liveness as well as safety. For example, the evi-
dence that A collects does not guarantee that B has in
fact received the message, but it does guarantee that
the message must be available to B . Non-repudiation
can require that certain additional activities ought to
be possible.

This paper is organised as follows: the CSP notation
is briey introduced, and the Zhou-Gollmann protocol
is then introduced. This protocol and the system re-
quired for analysing it are modelled in CSP. The mod-
elling is similar to the approach taken in [10], though
the descriptions of the component processes are di�er-
ent to reect the di�erent property that is being anal-
ysed. The CSP speci�cation and veri�cation of the
system description are then introduced. The results
concerning the required properties of the system are
all presented. The proofs were carried out by hand;
they are not all included here for reasons of space and
readability; there are essentially two kinds of prop-
erty: safety (achieved via rank functions) and liveness
(achieved by considering liveness of the components).
A sketch is provided for each kind of proof.

2. CSP notation

CSP is an abstract language designed speci�cally for
the description of communication patterns of concur-
rent system components that interact through message
passing. It is underpinned by a theory which supports
analysis of systems described in CSP. It is therefore
well suited to the description and analysis of network
protocols. For a fuller introduction to the language and
the semantic models, the reader is referred to [8].

In CSP, systems are modelled in terms of the events
that they can perform. The set of all possible events
(�xed at the beginning of the analysis) is denoted �.
Events may be atomic in structure or may consist of a
number of distinct components or �elds. An example of
events used in this paper are those of the form c:i :j :m
consisting of a channel c, a source i , a destination j
and a message m.

Processes are the entities that are described by CSP

expressions, and they are described in terms of the
possible events that they may engage in. The output
c!v ! P is able initially to perform only c:v , the out-
put of v on channel c, after which it behaves as P . The
input c?x : T ! P(x) can accept any input x of type
T along channel c, following which it behaves as P(x).
Its �rst event will be any event of the form c:t where
t 2 T . The process P 2 Q (pronounced `P choice Q ')
can behave either as P or as Q : its possible commu-
nications are those of P and those of Q . An indexed
form of choice 2

i2I
Pi is able to behave as any of its

arguments Pi .

Processes may also be composed in parallel. If D is
a set of events then the process P j[D]jQ behaves as P
and Q acting concurrently, with the requirement that
they have to synchronise on any event in the synchro-
nisation set D ; events not in D may be performed by
either process independently of the other. Interleaving
is a special form of parallel operator in which the two
components do not interact on any events: it is written
P jjj Q , and is equivalent to P j[fg]jQ . There is also

an indexed form jjj
i2I

Pi .

Processes may also be recursively de�ned by means
of equational de�nitions.

The traces of a process P , traces(P), is de�ned to
be the set of �nite sequences of events from � that P
may possibly perform. Examples of traces include the
empty trace hi, and hin:3; out :3; in:5i which is a pos-
sible trace of the recursive process COPY = in?x !
out !x ! COPY . If a is an event and tr is a trace, then
a in tr means that a appears in the trace tr .

The failures of a process P , failures(P), is de�ned
to be the set of trace/refusal pairs (tr ;X) that P can
exhibit, where tr is a trace and X is a set of events that
P can refuse to participate in after some execution of
the sequence of events tr . Examples of failures include
the empty failure (hi;?) which is possible for any pro-
cess, and (hin:3; out :3; in:5i; fout :3; out :4g) which is a
possible failure of COPY .

Availability or liveness on events can be deduced
from the set of failures of a process: for example, if tr is
a trace of a process P , and a 62 X for any failure (tr ;X)
of P , then a cannot be refused after performance of tr ,
and so it must be available.

Safety speci�cations are given as predicates on
traces, and a process P satis�es a speci�cation S (tr) if
all of its traces satisfy S (tr):

P sat S (tr) , 8 tr 2 traces(P) � S (tr)

Liveness speci�cations are given as predicates on
failures, and a process P satis�es a speci�cation

S (tr ;X) if all of its failures meet that predicate:

P sat S (tr ;X) , 8(tr ;X) 2 failures(P) � S (tr ;X)

3. The Zhou-Gollmann protocol

The full Zhou-Gollmann non-repudiation protocol is
described in [13]. The aim is for A to send a message
M to B , and for the parties to obtain evidence that
the message was sent and received. The message M
is transferred in two stages: an encrypted form is �rst
sent directly to B under some key K , and after A has
received evidence of receipt from B , the key K itself
is sent via a trusted third party (TTP). The trusted
third party makes the key available via ftp, and both
A and B have the responsibility to retrieve the key and
the evidence that it was deposited by A.

Agent B should not be able to extract M until both
of these messages have been received.

A cut down version of the protocol, with the un-
signed parts of the message omitted, is described as
follows:

1: A! B : sA(fNRO ;B ;L;C)
2: B ! A : sB(fNRR;A;L;C)
3: A! TTP : sA(fSUB ;B ;L;K)
4: B $ TTP : sT (fCON ;A;B ;L;K)
5: A$ TTP : sT (fCON ;A;B ;L;K)

Zhou and Gollmann explain the elements of the proto-
col as follows:

� A: originator of the non-repudiation exchange.

� B : recipient of the non-repudiation exchange.

� TTP : on-line trusted third party providing net-
work services accessible to the public.

� M : message which is to be sent from A to B .

� C : commitment (ciphertext) for message M , e.g.
M encrypted under a key K . The point is that C
in itself is not enough to identify the message M ,
but that C together with K is.

� K : message key de�ned by A.

� L is a label used to identify a particular protocol
run. It should be unique to a single protocol run.

� fNRO , fNRR, fSUB and fCON are ags used to iden-
tify the step of the protocol in which a particular
message was generated.

� si is a private signature key known only to its
owner i ; and sT is TTP 's private signature key.

The steps of the protocol are explained as follows:

1. With the �rst message, A sends a signed combina-
tion of C = K (M), a label L, and the recipient's
name B . B will use this as evidence that K (M)
was sent in a run identi�ed with L;

2. B responds with a signed record that C has been
received in run L. This will provide evidence for
A that K (M) was received;

3. A then sends the key K to the trusted third party
together with the label L. If A tries to cheat by
sending the wrong key, then he will not obtain the
evidence he requires, since K (M) and K 0 will not
convince the judge that M was sent;

4 & 5. Each of A and B can retrieve by means of an ftp-
get a signed record from TTP that the key K as-
sociated with protocol run L has been deposited.
Responsibility for retrieving this information rests
with the agents themselves, to nullify a possible fu-
ture claim that `the message was never received'.
Thus both A and B can obtain evidence that the
key K was made available to B .

The TTP only needs to handle relatively small mes-
sages, and make them available by ftp, so this protocol
is appropriate even if the messages themselves are ex-
tremely large, since TTP never has to handle them
directly.

At the end of the protocol run, if A wishes
to prove that the message has been received, he
presents sB (fNRR;A;L;C) and sT (fCON ;A;B ;L;K) to
the judge: the �rst piece of evidence con�rms that B
received C , and the second piece con�rms that the key
was deposited with the TTP , which means that B has
access to it, and hence to the message. The label L in
both pieces of evidence connects the two items K and
C as being associated with the same protocol run.

If B wishes to prove that the message was sent, he
presents both pieces of evidence sA(fNRO ;B ;L;C) and
sT (fCON ;A;B ;L;K) to the judge: the �rst provides
evidence that C was sent, and the second provides ev-
idence that K was also sent, to the TTP .

In [13] there is a detailed informal analysis of the
protocol with regard to both its correctness properties
(that the evidence guarantees what it is supposed to)
and its fairness properties (that no party has an ad-
vantage at any stage). This paper is concerned with
providing a more formal analysis.

Throughout this paper the protocol will be referred
to as the ZG protocol.

3.1. CSP modelling

CSP will be used to model and analyse this protocol.
This forces the assumptions underlying the protocol,
and its expected properties, to be clari�ed.

Di�erent properties will be associated with di�er-
ent points of view, and these may require alternative
models of the system for their analysis. In particular,
correctness of the evidence is from the point of view
of the judge: it concerns the conclusions that a judge
can draw from the particular evidence presented before
him, even though he has not witnessed the purported
run of the protocol himself.

On the other hand, fairness with respect to obtain-
ing evidence will be the concern of the individual agents
involved in the run, and they are only entitled to expect
fairness if they follow the protocol faithfully.

Hence an analysis of correctness of the evidence
must be considered from the point of view of the judge
who may be presented with evidence from some party.
The judge is entitled to make some assumptions con-
cerning each of the parties (in particular, that they do
not divulge their secret keys), but cannot assume that
they have accurately followed the steps of the protocol.

On the other hand, an analysis of fairness for any
particular agent will need to model that agent as cor-
rectly following the protocol. The judge is not directly
concerned with fairness; that is more the concern of
the agents themselves, and agents can know that they
have followed the protocol even if they are unable to
convince the judge of this.

3.2. The architecture

Any CSP model of the system will have to include
the two participants in the protocol, who will be la-
belled A and B , and the trusted third party TTP . It
is also reasonable to allow the presence of other agents
who are potential protocol participants, since the pro-
tocol is expected to be correct even in the presence of
other users of the network.

Communication between the agents is generally
achieved by sending and receiving messages. The mes-
sages are not guaranteed to arrive, and they can arrive
in any order. This is best modelled by an explicit pro-
cess MEDIUM whose description contains all of the
behaviour expected of it. The transmission of mes-
sages from agents will be modelled by a CSP channel
trans : the event trans :i :j :m means that agent i trans-
mits a message m to agent j . Similarly, the receipt of
a message is modelled by use of the CSP channel rec:
the event rec:j :i :m indicates receipt by j of message m
from i .

A

trans.TTP

B

TTP

MEDIUM

ftp.A ftp.B

rec.TTP

evidence.A evidence.B

trans.A

rec.A rec.B

trans.B

Figure 1. Network for a non-repudiation pro-
tocol

Communication is also possible via ftp between the
agents and the trusted third party. This is a synchro-
nisation between the two participants, and is modelled
by the channel ftp: the event ftp:i :TTP :m indicates
that i receives m from TTP by means of an ftp-get.

Finally, the agents have an evidence channel which
they use to present evidence to a judge.

The entire network is the parallel combination of
these components:

NETWORK =

(jjj
i2USER

AGENTi (INITi) j[ftp]jTTP)

j[trans ; rec]j

MEDIUM (?)

This is illustrated in Figure 1.
Having established the architecture of the system, it

is now necessary to model the behaviour of the various
components.

3.3. The medium

The medium provides an unreliable message delivery
service: sending a message does not guarantee that it
is received, and messages might be lost.

The attempt to explicitly model the medium raises
a number of issues concerning the degree to which

the medium is unreliable: it must be decided whether
messages can be delivered to the wrong destination,
whether they can arrive apparently from someone other
than the genuine sender, and whether messages can be-
come altered in transit. It is also necessary to consider
whether messages can be delivered to more than one
destination, and whether they are removed from the
medium once they are delivered. Finally, the potential
loss of messages should be considered.

We will �rstly assume that messages cannot alter
in transit. This amounts to the assumption that any
corrupted messages will be detected and disposed of
by the medium|such messages will be treated as if
they had become lost. Deliberate altering of messages
in order to attack the protocol must be carried out by
other agents.

We will also have to assume that messages cannot be
delivered to the wrong address. This assumption will
be discussed later|it is needed for one of the fairness
properties (FAIR1).

If the protocol can be veri�ed with such a medium,
then it is equally correct over a better behaved com-
munications network. It means that agents can have
con�dence in the protocol even if they do not have con-
�dence in the medium to deliver messages accurately.

This medium is de�ned most naturally in two
clauses:

� If the medium is empty, then it can do nothing
but accept messages:

MEDIUM (?) =

trans?i?j ?m ! MEDIUM (f(i ; j ;m)g)

� If the medium is not empty (M 6= ?) then it can
either accept messages, deliver them, or nondeter-
ministically lose them.

MEDIUM (S) =

trans?i?j ?m ! MEDIUM (S [f(i ; j ;m)g)

2

2
(i;j ;m2S)

ec:j !i !m !
MEDIUM (S n f(i ; j ;m)g)

u

u
(i;j ;m)2S

MEDIUM (S n f(i ; j ;m)g)

The argument S is the set of messages in the
medium.

Messages

The medium itself is ready to accept and pass on any
kinds of messages. However, in order to model the

agents themselves and what they can do, it is necessary
to tie down more precisely what kinds of messages can
circulate in the system. This approach was used in [10],
and is explained more fully there.

The original informal description of the protocol in-
dicates that the message space contains at least ags,
labels, names of users, keys, text, and combinations of
these. The set of messagesMESSAGE can be given by
the following context-free grammar:

RAW ::= FLAG j LABEL j USER

j TEXT j KEY

MESSAGE = RAW j KEY (MESSAGE)

j MESSAGE :MESSAGE

� The set FLAG contains fNRO , fNRR, fSUB , and
fCON .

� The set USER contains A, B , and TTP , as well
as other users.

� The set KEY = SECRET j PUBLIC j SHARED
contains a secret key si 2 SECRET for each
i 2 USER, and sT 2 SECRET which is TTP 's
secret key; these are used for signing messages
in the protocol in this paper. For each secret
key si it also contains a corresponding public key
pi 2 PUBLIC . Furthermore, KEY contains other
keys SHARED used in the protocol to encrypt
text.

� Elements of MESSAGE are either raw, or else en-
crypted messages, or else concatenated messages.

A `generates' relation ` indicates when new messages
m may be generated from a set of already known mes-
sages S . It is de�ned by the following clauses:

� m 2 S) S ` m

� S ` m ^ S � S 0) S 0 ` m

� f 2 FLAG) ? ` f

� l 2 LABEL) ? ` l

� i 2 USER) ? ` i

� k 2 KEY ;m 2 MESSAGE) fk ;mg ` k(m)

� si 2 SECRET ; pi 2 PUBLIC ;m 2 MESSAGE)
fsi(m); pig ` m

� si 2 SECRET ; pi 2 PUBLIC ;m 2 MESSAGE)
fpi (m); sig ` m

� sh 2 SHARED ;m 2 MESSAGE) fsh; sh(m)g `
m

See [10] for a discussion of this relation.

3.4. The protocol participants

We are now in a position to model the agents po-
tentially involved in the protocol run.

The judge aims to verify that the evidence presented
is strong enough to establish non-repudiation, even un-
der the possibility that either or both of the partici-
pants have not behaved in line with the protocol, and
also that some other agents may have become involved.

In general, an agent is able to send anything over
the network that can be generated from the informa-
tion already in that user's possession. However, it is
important to assume that the agents do not divulge
their secret signing keys. The agent i can send out
all messages that can be generated through `, and can
also sign messages with si .

The `i-generates' relation `i is thus de�ned by the
following two clauses:

S ` m) S `i m

S `i m) S `i si (m)

From the point of view of the judge, who can directly
observe only the evidence that appears on the evidence
channels, all the possibilities of an agents behaviour
should be considered.

The behaviour of an arbitrary user of the network
is therefore described by the CSP process description
AGENTi :

AGENTi (S) =

2
j2USER;S`im

trans :i !j !m ! AGENTi (S)

2 rec:i?j ?m ! AGENTi (S [fmg)

2 ftp:i :TTP?m ! AGENTi (S [fmg)

22
S`im

evidence:i !m ! AGENTi (S)

An agent with information S is able to send any mes-
sage that can be generated from S , and can also present
any such information as evidence. It can also receive
any message m (which will augment S) either from the
medium, or else by an ftp-get. The ftp channel is dis-
tinct from the medium. It models direct, synchronous
communication between the TTP and an agent.

Observe that the way we have modelled AGENTi
means that it is always ready to accept messages along
ftp:i :TTP :

Lemma 3.1

AGENTi (S) sat ftp:i :TTP :m 62 X

2

This corresponds to the assumption that the judge
must make makes, that any agent is always able to
retrieve messages along the channel ftp.

For de�niteness, the originator of a protocol run will
be AGENTA, and a responder will be AGENTB . In
other words, a judge might be faced with some evidence
on evidence:A claiming that B received a message, or
with evidence on evidence:B claiming that A sent a
message. The descriptions of both of these agents are
instances of the generic AGENTi .

The de�nition of AGENTA allows for the possi-
bility of A executing the protocol correctly, provided
INITA `A L, INITA `A K , and INITA `A M . In other
words, the ZG protocol is contained in AGENTA's pos-
sible executions, and the protocol need not be given
explicitly.

Similarly, the process AGENTB (INITB) is able to
execute the responder's part of the protocol. From the
point of view of appropriateness of the evidence, no
assumptions are required concerning what AGENTB
is or is not able to generate.

Other agents may also be present in the network.

3.5. The trusted third party

The trusted third party described by process TTP
accepts signed messages of the form of step 3 of the
protocol, and makes them available via ftp. The judge
has to assume that the trusted third party acts in ac-
cordance with its role in the protocol. It is therefore
modelled as follows:

TTP(S) = rec:T?j ?sj (fSUB :b:l :k)

! TTP(S [fsT (fCON :j :b:l :k)g

2

2
j2USER;m2M

ftp:j :TTP :m
! TTP(S)

The trusted third party guarantees that any mes-
sages retrieved from it via ftp correspond to receipt
of an appropriately signed fSUB message in accordance
with the protocol. This is formalised in the following
lemma:

Lemma 3.2

TTP(?) sat ftp:i :TTP :(sT (fCON :j :b:l :k)) in tr

) rec:TTP :j :(sj (fSUB :b:l :k)) in tr

2

Secondly, TTP meets a liveness property: once a
message has been provided by ftp to some agent i then
it will always be available to any agent i 0.

Lemma 3.3 For any i and i 0,

TTP(S) sat ftp:i :TTP :(sT (fCON :j :b:l :k)) in tr

) ftp:i 0:TTP :(sT (fCON :j :b:l :k)) 62 X

2

4. Speci�cation and veri�cation

Speci�cation of Non-repudiation of Origin
(NRO)

The non-repudiation of origin property requires that
B 's evidence provides a guarantee that A sent some
particular message. In particular, it should provide
the guarantee that A sent a message to B containing
the label L and the ciphertext C = K (M), and another
message intended for B containing the same label L and
the key K ; these two messages are taken to establish
that A sent M to B .

Expressed in terms of CSP traces, we require that
if both sA(fNRO :B :L:C) and sT (fCON :A:B :L:K) ap-
pear in the trace on evidence:B , then both messages
sA(fNRO :B :L:C) and sA(fSUB :B :L:K) must have been
sent by A along trans :A.

The evidence cannot guarantee that A transmitted
those messages in accordance with the protocol|they
might have been sent as components of other messages.
Hence the formal trace speci�cation is given by:

NRO(tr) = evidence:B :sA(fNRO :B :L:C) in tr

^ evidence:B :sT (fCON :A:B :L:K) in tr

) A sent sA(fNRO :B :L:C) ^
A sent sA(fSUB ;B ;L;K)

and the requirement on the system is that

NETWORK sat NRO(tr)

In the de�nition of NRO , A sent m allows for the pos-
sibility that m is contained within some other message
that was transmitted by A:

Definition 4.1

i sent m = 9M : MESSAGE ; j : USER �

trans :i :j :M in tr

^ M contains m

2

where the contains relation is de�ned as follows:

Definition 4.2 For all messages m, m 0, and m 00, and
keys k :

� m contains m

� m 0
contains m) m 00

:m 0
contains m

� m 0
contains m) m 0

:m 00
contains m

� m 0
contains m) k(m 0) contains m

2

4.1. General properties of the network

In order to establish particular non-repudiation
properties, it is bene�cial �rst to establish some general
properties of NETWORK which will be useful.

Many properties are of the form `R precedes T ' for
sets of events R and T , in the sense that if some event
from T occurs in a trace, then some element from
R must appear earlier in the trace. Such speci�ca-
tions have been studied in the form of authentication
properties, and there is a well-developed theory using
`rank functions' for establishing such properties for sys-
tems such as NETWORK . Informally, for the network
given in this paper, we aim to �nd a rank function
� : MESSAGE ! Z such that

� every component of the network (the agents, the
trusted third party, and the medium), when pre-
vented from outputting R, maintains positive rank
(i.e. if only messages of positive rank are input,
then any output message must have positive rank).
In order to check this for the agents, each `gen-
erates' relation `i must be checked to establish
that if every member of S has positive rank, and
S `i m, then m has positive rank.

� Every message in T has rank 0 or less.

If such a rank function can be found, then nothing in
T can occur unless something in R occurs previously.
The rank function approach is discussed more fully in
[10], and is used in this paper without further discus-
sion. It will be illustrated in Lemma 4.3; the other re-
sults established using rank functions will be presented
without proof for reasons of space.

The key property is that signing provides the re-
quired assurances|that if a message is signed by si
then agent i must have sent it. This is of the form R
precedes T , where T is the set of messages in which a
message signed with si is received, and R is the set of
messages in which it is sent by i .

The property is used in two forms: one for when
evidence is presented, and one for when a message is
received by another agent.

�0(u) = 1

�0(t) = 1

�0(pi) = 1

�0(si) =

�
0 if i = i0
1 otherwise

�(r) = �0(r)

�(sj (m)) =

�
0 if j = i0 and m = m0

�(m) otherwise

�(pj (m)) =

�
�(m0) if j = i0 and m = m0

�(m) otherwise

�(m1:m2) = minf�(m1); �(m2)g

Figure 2. Rank function for Lemma 4.3

Lemma 4.3 For any messagem, if i 6= j and i 6= TTP ,
then

NETWORK sat

evidence:j :si (m) in tr) i sent si (m)

2

Proof Fix the message asm0 and the signing agent as
i0. If i0 is blocked on sending any message containing
m0 on trans (and evidence:i0), then the rank function
in Figure 2 has the required properties. 2

Definition 4.4

j received m = 9M : MESSAGE ; i : USER �

rec:j :i :M in tr

^ M contains m

2

Lemma 4.5 For any users i and j , and any message
m:

NETWORK sat j received si (m)) i sent si(m)

2

This is also proved using the rank function in Fig-
ure 4.3.

The trusted third party is used to provide evidence
to the various parties. The only signed evidence TTP
provides is via ftp:

Lemma 4.6 For any message m, if j 6= TTP , then

NETWORK sat

evidence:j :sT (m) in tr)

9 i � ftp:i :TTP :sT (fCON :i :j :l :k) in tr

2

This is also established with an appropriate rank func-
tion.

It need not be j himself that retrieved the message
directly from TTP, since some other agent might have
retrieved the message and passed it on to j . But some
party must have retrieved the message from TTP .

Corollary 4.7

NETWORK sat

ftp:i :TTP :sT (fCON :i :j :l :k)) in tr

) i sent si(m)

2

Proof This follows from Lemmas 3.2 and 4.5 (with
TTP as the receiving agent). 2

TTP provides a guarantee that i sent the appropriate
signed message.

Lemma 4.6 and Corollary 4.7 are needed for both
non-repudiation of origin and non-repudiation of re-
ceipt: both parties need evidence that the key was de-
posited, and hence that the other party had access to
it.

4.2. Correctness of evidence

Veri�cation of Non-repudiation of Origin
(NRO)

Each piece of evidence that B obtains corresponds to
a di�erent message that A can be proved to have sent.

Lemma 4.3 with a particular instantiation for m
yields for the �rst piece of evidence that

NETWORK sat

evidence:B :sA(fNRO :B :L:C) in tr

) A sent sA(fNRO :B :L:C)

Lemma 4.6 and Corollary 4.7 together establish for
the second piece of evidence that

NETWORK sat

evidence:B :sT (fCON :A:B :L:K) in tr

) A sent sA(fSUB :B :L:K)

These two results together mean that NETWORK
satis�es the conjunction of the speci�cations, which to-
gether imply NRO(tr). Hence as required:

NETWORK sat NRO(tr)

Veri�cation of Non-repudiation of receipt
(NRR)

Non-repudiation of receipt states that if the messages
ST (fCON :A:B :L:K) and SB (fNRR:A:L:C) appear on
evidence:A then B must have received some message
containing C , and also K is made available by the
TTP . Thus B has e�ectively received K and C , and
knows them to be linked because of the label L.

Unlike the case of NRO (which is concerned with
guaranteeing that messages have been sent), there is no
guarantee that all of the messages have actually been
received by B by the time A presents the evidence. We
therefore formulate NRR in part as a liveness speci�-
cation, requiring that the messages must at least be
guaranteed to be available to B . In fact, the evidence
does guarantee that B 's �rst message was sent, so the
liveness is concerned only with the availability via ftp
of the message deposited with the TTP .

NRR(tr ;X) =

evidence:A:sB (fNRR:A:L:C) in tr

^ evidence:A:sT (fCON :A:B :L:K) in tr

) B sent sB (fNRR:A:L:C)
^ ftp:B :TTP :(sT (fCON :A:B :L:K)) 62 X

In order for NETWORK to guarantee that some event
e 62 X , all the participants in the event e must
be willing to perform it. In the case of the event
ftp:B :TTP :(sT (fCON :A:B :L:K)), the participants are
B and TTP .

The assumptions built into the modelling of
AGENTB yielded the result that AGENTB sat
ftp:i :TTP :m 62 X , as given in Lemma 3.1.

Lemmas 3.3 and 4.6 together with the fact that
AGENTB is live on the channel ftp:i :TTP all estab-
lish that

NETWORK sat

evidence:A:sT (fCON :A:B :L:K) in tr

) ftp:B :TTP :(sT (fCON :A:B :L:K)) 62 X

Furthermore, similarly to its use in the veri�cation
of NRO , Lemma 4.3 with a particular m establishes
that

NETWORK sat evidence:A:sB (fNRR:A:L:C) in tr

) B sent sB (fNRR:A:L:C)

These two results together combine to yield

NETWORK sat NRR(tr ;X)

4.3. Fairness

Having established that the evidence does achieve
what is intended, we can now address fairness
considerations|each party's access to the evidence.

Fairness in non-repudiation protocols is concerned
with the relationship between the gathering of evidence
by the involved parties. A protocol is unfair if one
party can obtain the evidence he requires before the
other party is able to do so. Such an imbalance makes
it possible for the party in the advantage to stop par-
ticipating in the protocol at that stage. Furthermore,
the party receiving the message must not be able to
access it and know what it contains until the sender
has the evidence of receipt: if B has M , then A has
the NRR evidence.

An agent is only entitled to expect fairness if he
behaves in accordance with the protocol. For example,
agent A could send the key K to B along with the
�rst message. In this case, B will be able to access the
message before A has the NRR evidence, but A has
forfeited any right to complain by failing to behave in
accordance with the protocol.

Thus the fairness requirements for agent A require
a di�erent modelling of AGENTA, one in which he be-
haves in accordance with the protocol. Modelling of
other agents remains as before, since A has no guaran-
tees about their behaviour, and wishes to be assured
of fairness even if they misbehave. Similarly, the fair-
ness requirements for AGENTB require that agent to
be modelled in accordance with the protocol, with the
other agents as before.

The agent A running the protocol will then be de-
scribed as follows:

PROT AGENTA =

trans :A!B !(sA(fNRO :B :L:C))

! rec:A:B :(sB(fNRR:A:L:C))

! trans :A!TTP !(sA(fSUB :B :L:K))

! ftp:A:TTP :(sT (fCON :A:B :L:K))

! FINISHEDA(sB (fNRR:A:L));
sT (fCON :A:B :L:K))

The process FINISHEDi describes the result of running
the protocol: the two pieces of evidence are ready to
be presented.

FINISHEDi(e; f) =

evidence:i !e ! FINISHEDi(e; f)

2 evidence:i !f ! FINISHEDA(e; f)

Once A has run through the protocol and reached
FINISHEDA, then the two pieces of evidence are ready
to be presented.

Similarly, agent B running the protocol is described
as follows:

PROT AGENTB =

rec:B?i?(si (fNRO :B :L:C))

! trans :B !i !(sB (fNRR:i :L))

! ftp:B :TTP?(sT (fCON :i :B :L:K))

! FINISHEDB(si (fNRO :B :L:C));
sT (fCON :i :B :L:K))

It is clear that each party might not have all the ev-
idence when the other does, since they might not yet
have obtained the last piece of evidence from the TTP
via ftp. What we require is that they have unhampered
access to the evidence. Each AGENTi , once they have
performed their ftp-get, will be in a position to o�er this
�nal piece of evidence. This is an assumption rather
than a requirement of the network, and it may be con-
�rmed to hold of the individual agent descriptions as
follows:

AGENTi sat

ftp:i :TTP :m in tr) evidence:i :m 62 X

and hence

NETWORK sat

ftp:i :TTP :m in tr) evidence:i :m 62 X

In other words, the users in the network are able to use
whatever they obtain via ftp on their evidence channel.

Hence if a particular piece of information m is avail-
able via ftp to user i in the description NETWORK ,
then this provides that user with the access to m. Thus
for fairness it is su�cient to require only thatm is avail-
able via ftp:

ftp:i :TTP :m 62 X

The communication ftp:i :TTP :m should not appear in
the refusal set X .

A user is thus considered to have access to a piece
of evidence either if it is already in their possession, or
else if it available via ftp. The description of the proto-
col indicates that the NRR and NRO evidence should
already be in each participants' possession by the time
the other has �nished the run, and that the evidence
provided by the TTP should be made available to each
of them.

Fairness for A concerning message receipt

Firstly we consider the case where B should not know
what the message M is until proof of receipt has been
provided to A. If B is able to provide the message M
(along its evidence channel, say), then A must have
proof of receipt. This can be expressed as a liveness
requirement:

FAIR1(tr ;X) =

evidence:B :M in tr

)

ftp:A:TTP :(sT (fCON :A:B :L:K)) 62 X
_ (evidence:A:sB (fNRR:A:L:C) 62 X

^ evidence:A:sT (fCON :A:B :L:K) 62 X)

A may not actually have obtained the evidence via ftp,
but must at least be in a position to do so. The way
PROT AGENTA is de�ned, A is not ready to provide
any evidence until the ftp event has occurred.

The proof obligation is that

((PROT AGENTA jjj (jjj
i 6=A

AGENTi))

j[ftp]jTTP)

j[trans ; rec]jMEDIUM

sat FAIR1(tr ;X)

and this is established along the lines of earlier proofs.
The crux of the proof is that B cannot obtain the keyK
until it is provided by TTP . Thus for this property it is
necessary to assume that none of the agents apart from
A initially knows the key K . The key is sent out by
A exactly once, to TTP , so no other party will receive
that message until TTP gives it out. This relies on the
model of the medium as delivering messages accurately;
this is discussed further in Section 5.

Fairness for B obtaining evidence

Secondly, if A has proof of receipt then B must be in
a position to obtain proof of origin.

FAIR2(tr ;X) =

evidence:A:sT (fCON :A:B :L:K) in tr

^ evidence:A:sB (fNRR:A:L:C) in tr

)

ftp:B :TTP :(sT (fCON :A:B :L:K)) 62 X
_ (evidence:B :sA(fNRO :B :L:C) 62 X

^ evidence:B :sT (fCON :A:B :L:K) 62 X)

This speci�cation states that if A is able to present
the evidence concerning NRR, then B must either be

able to provide the evidence concerning NRO or be in
a position to obtain it.

The proof obligation here is that

((PROT AGENTB jjj (jjj
i 6=B

AGENTi))

j[ftp]jTTP)

j[trans ; rec]jMEDIUM

sat FAIR2(tr ;X)

and this is straightforward to establish.

Fairness for A obtaining evidence

Conversely, if B has proof of origin then A should have
proof of receipt.

FAIR3(tr ;X) =

evidence:B :sT (fCON :A:B :L:K) in tr

^ evidence:B :sA(fNRO :B :L:C) in tr

)

ftp:A:TTP :(sT (fCON :A:B :L:K)) 62 X
_ (evidence:A:sA(fNRO :B :L:C) 62 X

^ evidence:B :sT (fCON :A:B :L:K) 62 X)

The proof obligation here is that the network with
A executing the protocol should satisfy FAIR3(tr ;X).

5. Discussion

In this paper we have considered a particular non-
repudiation protocol and analysed it both with respect
to correctness of the evidence, and with respect to fair-
ness to the participants. The hope has been to extract
some general understanding of how to model and anal-
yse non-repudiation protocols from this particular ex-
ample. The speci�cations that were formulated were
necessarily inuenced by the protocol itself:

1. Correctness of evidence: A kind of `authentica-
tion' property that requires that if various pieces
of evidence e1 : : : em are in the possession of an
agent, then some other messages m1 : : :mn must
have been sent (in the case of NRO), or received
or been made available (in the case of NRR) to
some other agents.

2. Fairness: A property requiring that if the mes-
sage being sent, or the various pieces of evidence
e1 : : : em appearing in an `authentication' require-
ment of type 1, are in the possession of the ap-
propriate agent, then the other party should also
have access to the evidence that he requires.

The �rst of these properties is a concern of every non-
repudiation protocol; the second is a property that is
in desirable in some cases, though it is not an essential
aspect of non-repudiation protocols.

Unusually for security properties, some of these
properties are formulated in terms of liveness, and so
not only traces but also refusals of the system need to
be considered for such properties.

Curiously, the veri�cations of the correctness of ev-
idence properties are carried out without reference to
the protocol at all, but only with respect to the ca-
pabilities and assumptions concerning the participat-
ing agents. On reection this is appropriate, since the
judge cannot know that either party has carried out
the protocol. These properties are concerned with the
nature of evidence rather than with how the parties dis-
tribute it. The veri�cation also means that the parties
cannot collude to fool the judge (though in any case
it is not clear why they would wish to) since such be-
haviour has already been considered within the general
description of the processes.

The process of modelling and verifying the protocol
and the network in CSP revealed a number of issues
that were not immediately obvious. For example, I �rst
attempted to verify the FAIR properties with the orig-
inal general descriptions of the agents. This attempt
failed because there was no guarantee that the agents
would not send some message to undermine their own
fairness requirement. One possibility is that agent A
could send the �rst and the third message of the pro-
tocol without waiting for the response from B . In this
case, B will receive the message and the evidence, but
A will not. It thus became clear that the fairness prop-
erties should only be veri�ed for agents that faithfully
follow the protocol, which is obvious in hindsight but it
is comforting to know that the analysis process forces
this point to become explicit.

The other issue that became revealed by the mod-
elling process concerned the medium: my original de-
scription of the medium did allow for the possibility
of messages being delivered to parties other than the
intended recipient: a message trans :i :j :m put onto
the medium could result in a delivery rec:k :l :m to a
completely di�erent agent k , and apparently from an-
other agent l (though this last aspect does not cause a
problem). All the properties concerning the evidence:
NRO , NRR, FAIR2, and FAIR3, remain true even with
this less reliable medium, but the property FAIR1 does
not hold, because the third step of the protocol, which
reveals key K to TTP , can be misdelivered to B and
never reach TTP . This will allow B to read the mes-
sage M without A obtaining the evidence he requires.
If the protocol is required over this kind of medium,

then it would make sense for A to provide the third
message of the protocol to TTP by means of an ftp-
put. In fact, it does not matter if B can listen in on
such a communication, provided it can be guaranteed
that TTP also receives it.

The use of an ftp server in a non-repudiation proto-
col is a novel idea introduced by Zhou and Gollmann,
and it is not clear how easily the CSP analysis of this
protocol would generalise to other non-repudiation pro-
tocols. It seems likely that the CSP properties which
capture non-repudiation would also apply naturally to
other protocols which involve trusted third parties, but
it is less clear whether an analysis of a two party multi-
pass non-repudiation protocol would show up di�erent
issues and perhaps require a di�erent approach to spec-
i�cation. This is a topic for future research.

In summary, modelling and analysing this protocol
in CSP has helped to clarify issues concerning the pro-
tocol and its context, and has enabled a formal state-
ment of the speci�cation claimed for the protocol, and
corresponding veri�cation.

Acknowledgements

I am grateful to Peter Ryan for comments and dis-
cussion on an earlier draft of this paper, and to the
anonymous referees for their comments.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic
protocols: the spi calculus. Information and Compu-

tation, 1998. (to appear).
[2] I. JTC1. Information technology - open systems in-

terconnection - security frameworks in open system,
part 4: Non-repudiation, 1995. ISO/IEC DIS 10181-
4, 1995.

[3] R. Kemmerer, C. Meadows, and J. Millen. Three sys-
tems for cryptographic protocol analysis. Journal of

Cryptology, 7(2), 1994.
[4] G. Lowe. Towards a completeness result for model

checking of security protocols. University of Leicester,
1998. draft.

[5] J. Millen. The interrogator model. In IEEE Com-

puter Society Symposium on Research in Security and

Privacy, 1995.
[6] H. Orman and C. Meadows, editors. DIMACS Work-

shop on Design and Formal Veri�cation of Security

Protocols. Rutgers University, 1997.
[7] L. C. Paulson. Proving properties of security protocols

by induction. In CSFW10. IEEE Press, 1997.
[8] A. W. Roscoe. The Theory and Practice of Concur-

rency. Prentice-Hall, 1997.
[9] S. A. Schneider. Security properties and CSP. In IEEE

Computer Society Symposium on Research in Security

and Privacy, 1996.

[10] S. A. Schneider. Verifying authentication protocols
with CSP. In CSFW10. IEEE Press, 1997.

[11] P. Syverson and C. Meadows. A formal language for
cryptographic protocol requirements. Designs, Codes
and Cryptography, 7, 1996.

[12] T. Woo and S. Lam. A semantic model for authentica-
tion protocols. In IEEE Computer Society Symposium

on Research in Security and Privacy, 1993.
[13] J. Zhou and D. Gollmann. A fair non-repudiation pro-

tocol. In IEEE Computer Society Symposium on Re-

search in Security and Privacy, 1996.

