
Some Guidelines for Non-repudiation Protocols

Panagiotis Louridas
38 Domboli St.
116 36 Athens

Greece
Iouridas@acm.org

ABSTRACT
Non-repudiation protocols aim at preventing parties in a
communication from falsely denying having taken par t in
tha t communication; for example, a non-repudiation pro-
tocol for digital certified mail should ensure tha t neither
the sender can deny sending the message, nor the receiver
can deny receiving it. We identify some guidelines for non-
repudiation protocols. The guidelines are derived by exam-
ining a series of non-repudiation protocols tha t descend from
a single ancestor.

Categories and Subject Descriptors
C.2.0 [C o m p u t e r - C o m m u n i c a t i o n Ne tworks] : Gener-
al-security and protection (e.g.,]irewalls); K.4.4 [Compu-
ters and Society]: Electronic Commerce--security; K.5.m
[Legal A s p e c t s o f C o m p u t i n g] : Miscellaneous; K.6.5
[Management of Computing and I n f o r m a t i o n Sys-
tems]: Security and Protection

General Terms
Legal Aspects, Security, Verification

Keywords
Non-repudiation, Pair Exchange, Formal Verification

1. INTRODUCTION
When public key cryptography was first presented, it was
pointed out tha t its techniques "also protect against the
threat of dispute. Tha t is, a message may be sent but later
repudiated by either the t ransmi t te r or the receiver. Or,
it may be alleged by either party tha t a message was sent
when in fact none was" [21]. When the first practical imple-
mentat ion of public key cryptography was presented, it was
observed tha t the capability to produce unforgeable digital
signatures offers a step beyond privacy and authentication:
'%he recipient can convince a ' judge' t ha t the signer sent the
message" [28].

This is but an instance of a more general problem, tha t of
non-repudiation: a party tha t has taken par t in a communi-
cation should not be able to falsely deny the t ru th or validity
of the communication or its parts. Unforgeable digital sig-
natures are par t of the solution; however, the problem is
complicated when non-repudiation is, additionally, required
to be fair.

Intuitively, a protocol is fair if it does not allow a party
to gain an undue advantage. A simple exchange of signed
items is not fair: i t does not guard against threa t of dis-
putes, unless the signed items are exchanged simultaneously;
otherwise the first recipient may never send her own item.
Simultaneity, however, is hard to achieve when the parties
do not interact face to face.

If fairness is ensured completely within the system speci-
fied by the protocol it is strong; if fairness is ensured within
the system but with the proviso tha t additional assump-
tions about the participating parties are made it is eventu-
ally strong; and if fairness is ensured by external means it is
weak [24]. Strong fairness ensures t ha t it is never the case
tha t only one party gets what she expects from the other.
Weak fairness ensures tha t it is possible for a slighted party
to prove her case to a judge (e.g., there is all the neces-
sary evidence for the slighted par ty to convince the judge
to strike down on the miscreant). In eventual strong fair-
ness, recourse to external means is avoided at the cost of
extra assumptions, such as tha t the parties follow a certain
behaviour (e.g., eventually cooperate).

A number of non-repudiation protocols purport ing to be
fair, in general, have been proposed. In § 2 we introduce
the main ideas. Then, in § 3, we list some guidelines to
the practit ioner who wants to implement and deploy a fair
non-repudiation protocol. The guidelines are illustrated by
way of a family of such protocols, descendants of a single
ancestor. Some conclusions are offered in § 4.

The present paper follows previous work presenting informal
guidelines for the design of cryptographic protocols [35, 5,
1]. It differs from the existing corpus in two ways: it deals
specifically with non-repudiation (although its findings may
be of wider interest); and it dons two hats: t ha t of the pro-
tocol designer, and tha t of the implementer, as it is mindful
of the ramifications of put t ing a protocol to practice.

As an aside, the author had no par t in the development

ACM SIGCOMM 29 Computer Communication Review

of any of these protocols; and the author 's purpose is not
to highlight problems and propose solutions, but ra ther to
elicit guidelines tha t may be of a more general relevance.

2. BACKGROUND
One approach to achieving fair non-repudiation uses cryp-
tography for the gradual simultaneous exchange of secrets.
In a typical instance [22], the message is first encrypted and
sent; then, the two parties exchange a delivery receipt and
the message key in a lockstep way so tha t none can derive
the full receipt or the full key before the other.

Two weaknesses of this kind of protocols are that , first, the
two principals must have equal computing power--or one
of them can stop the protocol and use her computational
prowess to derive the rest of the exchange; and second, there
is no near-term deadline by which the process clearly ter-
minates, either with the exchange successfully completed
or with the exchange cancelled [14]. In addition, it has
been argued, fo~" example by proponents of an alternative
approach [37, 25], t ha t they are cumbersome and tend to be
impractical.

The alternative approach is to employ an auxiliary party (a
third party when the exchange involves two principals). The
auxiliary party can be on-line, when she participates actively
in the protocol run [19, 18, 20, 31]. Alternatively, she can
be off-line, in the so-cailed optimistic protocols, when her
services are required only for dispute resolution. Some such
protocols achieve only weak fairness [8, 9], bu t others are
not thus restrained [13, 12, 11, 10]. Depending on the degree
of fairness t ha t is desired, it has even been proposed tha t
protocols can be synthesised using appropriate modules [34].
The auxiliary party is usually assumed to be trustetl i.e.,
t ha t she does not behave maliciously; but she may be semi-
trusted, i.e., she may misbehave, but only by herself, without
colluding with any of the other parties [23].

The protocols examined here employ an on-line t rusted th i rd
party tha t acts as a notary. They provide non-repudiation
evidence through a number of tokens, specifically [40]:

• Non-repudiation of Origin (NRO) or Evidence of Ori-
gin (EO0) , supplied by the originator, which provides
the recipient with proof of origin and guards against
the originator of a message falsely denying having sent
the message.

• Non-repudiation of Receipt (NRR) or Evidence of Re-
ceipt (EOR), supplied by the recipient, which guards
against the recipient of a message falsely denying hav-
ing received the message.

• Non-repudiation of Delivery (NRD), supplied by the
delivery agent, which provides the originator of the
message with evidence tha t the message has been de-
livered to the recipient.

• Non-repudiation of submission (NRS), supplied by the
delivery agent, which provides the originator of the
message with evidence tha t the message has been sub-
mit ted for delivery to the recipient.

3. GUIDELINES
3.1 Match Protocols and Requirements
A protocol makes some assumptions on the domain of its
use. At the Same time, each application domain demands
tha t specific requirements be met. When put t ing a proto-
col to practiee, care should be taken to ensure t ha t proto-
cols and requirements match. This might require work bo th
from the application's point of view, to uncover the require-
ments, and from the protocol 's point of view, to flesh out
the assumptions it makes - -no t all of them may be obvious.

Let us take the protocol 's point of view, i.e., fleshing out its
assumptions, first. An example will help illustrate the is-
sue. Fairness is too broad a term and, as we have seen, it is
possible to be more precise by adopting more specific termi-
nology. The type of fairness tha t a given protocol achieves
(e.g., strong, eventually strong, and weak fairness) should
be indicated by the developers and taken into account by
the implementers depending on the requirements of the ap-
plication where the protocol is to be implemented.

We can see this by way of a specific protocol. In the following
protocol (which we shall call ZG-1), C is the ciphertext for
message M, i.e., M encrypted under K. L is a unique label
for the protocol run, and sSA(X) is message X signed by
principal A. A --* B : X means t h a t A sends X to B, while
A ~ T T P : X means t ha t A fetches X from B using "ftp
get" operations or some web browser operations. The T T P
is a t rus ted th i rd party. The various fNRO, f:~Ra, and so on,
are flags denoting the purpose of each step in the protocol.

The idea is t ha t C, which serves as a commitment, is sent
first, and then K, which unlocks the message proper, is re-
leased (the other approaches t ha t employ an auxiliary party
use similar ideas) [37]:

NRO = sSA (fNRo, B, L, C)
N R R = sSB(fNaa, A, L, C)
sub-K = 8SA (IsuB, B, L, K)
con_g ---- 8ST(f CON , A, B, L, K)

1. A --* B : fNRO, B, L, C, NRO
2. B -'* A : fNRa, A, L, N R R
3. A --* T T P : fsuB, B, L, K, sub_K
4. B ~-* T T P : f c o ~ , A , B , L , K , eon-K
5. A ~-~ T T P : f c o N , A , B , L , K , con_K

In step 1, A contacts B and sends the encrypted message. In
step 2, B confirms receipt, but cannot read the message. In
step 3, A submits the message key to a t rus ted th i rd party;
sub_K is the proof of submission of K. The t rusted third
party stores the tuple (A, B, L, K, con_K) in some read-only
directory accessible to the public; con_K is the confirmation
of K issued by the TTP. Then, in step 4, B gets the key
while, in step 5, principal A confirms tha t B can indeed get
the key. The last two steps can be performed in any order.

The protocol is called "fair". Actually, though, it offers
eventually strong fairness, wi th two assumptions (in what
follows we axe quoting verbat im from the original publi-
cation [37]). First, "even in the case of network failures,
bo th parties will eventually be able to retrieve the key from
TTP". Second, no untimely adjudication process should be
initiated. This follows from the process of dispute resolu-

ACM SIGCOMM 30 Computer Communication Review

tion for non-repudiation of receipt. "If A claims tha t B had
received M, the judge will require A to provide M, C, K, L,
and the non-rcpudiation evidence NRR and con_K'. The
judge will check con_K, and "assume tha t B is able to re-
trieve the key K from TTP". The judge will then check
NRR and "assume tha t B had received C and is committed
to retrieving K from TTP. The judge will finally check tha t
C decrypted with K produces M. If this is so, '%he judge
will uphold A's claim", i.e., " that B had received M". This,
however, may very well not be t rue - -ye t - - a l though it will
eventually be true. The protocol equates in this way acces-
sibility and commitment with possession. The implementer
should check tha t this does not contradict the application's
requirements.

Before we proceed we have to note that , to all fairness, it
is only recently tha t the analysis of the concept of fairness
began [24]. I t is obvious tha t protocols developed earlier
cannot be damned for not being able to foresee. But pro-
tocols developed in the future should take heed. Moreover,
implementers who wish to use a protocol which does not
specify the type of fairness it offers should be careful.

Leaving fairness aside, a question arises, concerning at what
stage of the protocol is A committed to M. "On its own,
the commitment [C] need not restrict the content of the mes-
sage in any way" [37]. On the one hand, "if we choose labels
which are independent of the messages, then the message M
may not be defined until Step 3 of the protocol". If, on the
other hand, "the label [L] is a function of the message, then
the message is already defined in Step 1". In other words,
depending on the implementation, A may be committed to
M at step 1 or at step 3; it is the requirements of the applica-
tion tha t should decide the features of the specific protocol
implementation.

Returning now to the application's point of view, under-
standing the application and uncovering its requirements is
no minor undertaking. It is a real challenge; it is the subject
of a whole field, tha t of Requirements Engineering, com-
plete with its own conferences, books, and a journal by tha t
name. Cryptosystems can be fiendishly difficult to specify
correctly: "There are . . . some particular domains in which
specification is well known to be hard. Security is one ex-
ample; the li terature has many examples of systems which
protected the wrong thing, or protected the right thing but
using the wrong mechanisms" [3]. This is not the place to
embark on a review of developments in Requirements En-
gineering; protocol implementers, however, should be aware
tha t establishing the right requirements and ensuring they
mesh with the application is an important and indispens-
able task. The si tuation is perhaps exacerbated by the fact
tha t the qualities t ha t make a good cryptographer (e.g., a
flair for certain kinds of mathematics) are not necessarily
those tha t make a good Requirements Engineer (e.g., good
communication skills), and vice versa.

Match protocols and requirements. This is a feat tha t
requires working bo th on the protocols and on the
application in order to establish the assumptions and
the requirements they make and to make sure they
mesh with each other.

3.2 When Does a Protocol Terminate?
The question would arise in any protocol in which the prin-
cipals ave allowed to fetch items at their convenience. A
protocol t ha t has no t ime limits can be awkward to use in a
practical setting. For example, if the exchange involves pur-
chase or sale of equity, it is impor tan t t ha t it be completed or
aborted by some moment in time. The same problem arises
in the approaches tha t use cryptography for the simultane-
ous exchange of secrets. In t h a t case it is argued tha t it
is a fundamental problem tha t cannot be mitigated: "We
believe tha t this deficiency is not a coincidence, as there
are no reasonable alternatives" [14]. Moreover, analogous
situations have been identified in the context of optimistic
fair exchange protocols [10]; the problem is similar to the
"half-sold house" problem of two-party contract signing pro-
tocols [27]. Caution is needed with a protocol tha t makes
no provisions for its termination, as the midst of "half-sent"
messages can be a blurry area.

The ZG-1 protocol has no deadline by which all transactions
must be complete. I t is not clear when the protocol can be
considered terminated, aborted, or simply in progress, so
tha t there is no indication when an adjudication process
should be initiated. The absence of any deadline cannot be
avoided in practice since fixing a t ime-out makes the proto-
col insecure. Suppose A s tar ts by performing steps 3 and 5
(there is nothing providing against this in the protocol). She
then waits long enough to know tha t step 4 cannot be per-
formed; upon which she carries out steps 1 and 2. Principal
A now holds bo th con_K and NRR, while B cannot have
the message. The T T P cannot revoke con_K because she
cannot distinguish between A's maliciousness and B 's indif-
ference in retrieving K.

Moreover, if a protocol run extending (for ever) into the fu-
ture is not acceptable, one must be careful how a t ime limit
is to be incorporated. It is probable tha t simply grafting
some note of expiry in an existing protocol will not auto-
matically solve all problems. See, for example, the following
protocol (which we shall call ZG-2) [37]:

NRO = SSA(fNRO, B, L, T, C)
N R R = sSs(fNR,~, A, L, T, C)
sub-If = SSA (fSVB, B, L, T, K)
con-g = 8 S T (l O O N , A, B, L, T, To, K)

1. A - * B :]NRo, B , L , T , C , NRO
2. B ~ A : fNRR, A, L, N R R
3. A'-'* T T P : f s u D , B , L , T , K , sub.-K
4. B *"* T T P : f c o ~ , A , B , L , To,K, con_K
5. A *--* T T P : F c o l v , A , B , L , To, K, con_K

T is the t ime limit on the TTP's clock and To is the t ime tha t
the confirmed key has been made available to the public; it
remains so until T. However, A might delay step 3 up to
the last moment before T, so t ha t she can perform step 5
while standing a good chance tha t B might subsequently
miss step 4.

Be careful with the terminat ion problem. If termi-
nation is needed and a protocol cannot offer that , be
careful with grafting time-outs on it.

ACM SIGCOMM 31 Computer Communication Review

3.3 Be Careful with Implementation Details
Most cryptosystems fail not because of flaws in cryptogra-
phy; their failure is due to other causes, such as organisa-
tional and implementation blunders [7, 30]. I t is prudent to
minimise such risks and to be explicit about the implemen-
tat ion assumptions built in a protocol; these might, again,
not be very obvious.

ZG-1 uses symmetric-key cryptography. B receives the key
K from A. When a session key is used for privacy, trust-
ing the principals to choose it may be problematic. This
is the case in the Wide-mouthed-ftog protocol: "This kind
of t rus t is often thought unacceptable because of the qual-
ity requirements placed on key generation such as secrecy,
nonrepetition, unpredictability, and doubtless more" [1].

Should this caution apply here? The protocol's develop-
ers note tha t eneryption is not used for confidentiality here:
"the cryptographic key is used only for defining [a communi-
cation channel], not for any other purpose, and in particular
not for confidentiality" [37]. This must be taken to mean
tha t the protocol is not designed to provide confidentiality
against an outside interceptor, i.e., t ha t it is not designed to
provide privacy; because confidentiality against B is essen-
tial. I t is clear t ha t if K is poor, B will jus t break C, drop
the protocol, get M and repudiate having done so, getting
around non-repudiation.

Of course, if A chooses a bad key, it is A tha t suffers the con-
sequences, not bo th parties, as in the Wide-mouthed-frog,
or indeed any other protocol tha t uses a session key for en-
suring privacy between the communicating parties. Hence,
choosing a good key is in A's best interest. Unfortunately,
this does not ensure tha t a good key will be chosen; for in-
stance, users have a poor record in choosing passwords [2].

Furthermore, in a more recent presentation of the same pro-
tocol, K is used with M to derive L [36]; in tha t case, care
should be taken to guarantee L's uniqueness. All in all, the
choice of K is important , and the question of whether A can
be t rusted to issue a good key is pertinent. In a practical
setting, this is a detail, not very obvious, t ha t should be
taken into account by the implementers.

Another protocol [38], which we shall call ZG-3, tries to
avoid the si tuation in ZG-1 where B follows dilatory tactics
and delays in replying to A's initial request. Specifically,
the protocol 's developers argue (but see § 3.6 below) tha t as
A can submit the message key to the T T P only following
B 's reply, B can impose a delay tha t can a t t r ibute to A
(who cannot prove t ha t it was owing to B). The protocol
proceeds thus:

NRO = sSA(fNRO, TTP, B, M)
N R S = 8STTP(fNR$, A, B, TS, L, NRO)
N R R = sSB(fNaa, TTP, A, L, NRO)
NRD = SSTTP(fJVaO, A, B, TD, L, NRR)

1. A-"* T T P : fNRo, TTP, B , M , NRO
2. A ~ T T P : fNRs, A , B , Ts, L, N R S
3. T T P " * B : A ,L , NRO
4. B "-* T T P : f~vRa, L, N R R
5. B ~ T T P : L , M
6. A ~"* T T P : fNaD,TD,L, NRR, NRD

Ts is the t ime the T T P received A's submission, while TD is
the t ime M is made available to the public, and hence to B.

The protocol may fail in step 3. At t ha t step B receives
NRO. The protocol defines s K (X) simply as "digital signa-
ture of message X with the private key K" . If the signature
allows message recovery then B can get M, which is the
plaintext, and then abor t the protocol without committ ing
to anything. The signature algori thm should not allow that .

I t is possible t h a t these points would not escape the imple-
menters ' notice and appropriate care would be taken. Unfor-
tunately, as the development of cryptosystems abounds with
organisational and implementat ion blunders this cannot be
taken for granted. It is best to lean on the cautious side and
identify such implementat ion details so as to minimise any
related risks.

Be careful with implementat ion details. This is noth-
ing new in fact. I t is known tha t in cryptosystems,
as elsewhere, the devil is often in the details. Non-
repudiation is no exception.

3.4 Formal Verifications Highlight Assump-
tions

On the one hand, "quite a few protocols which have been
'proved' secure have been successfully attacked" [5], and in-
formal design principles for protocol design have been enun-
ciated [35, 5, 1]. On the other hand, informal principles,
like the ones presented here, are no silver bullet [32]. The
si tuation need not be antagonistic. I t is possible t ha t formal
verifications can highlight assumptions t ha t merit our at ten-
tion. Indeed, "perhaps the benefit which [logic] brings is as
much from forcing us to th ink clearly about what is going
on than from any intrinsic mathemat ica l leverage" [4].

ZG-1 has been formally analysed using two different ap-
proaches. Both analyses have verified the protocol. Their
proofs are not oriented towards the principals' beliefs (as,
for example, in proofs of authent icat ion protocols), bu t of
a judge's beliefs regarding what the principals have or have
not done.

One analysis was performed using CSP, i.e., "an abstract
language designed specifically for the description of commu-
nication pa t te rns of concurrent systems components tha t
interact throngh message passing" [29]. The other analysis
employed the SVO logic [33], an offshoot of BAN logic [16,
17], itself a many-sorted modal logic. It was carried out by
the protocol's original developers [41].

In a given system, safety properties specify what the sys-
tem is allowed to do, or equivalently, what is not allowed to
do; liveness properties specify what the system must (even-
tually) do [26]. Wi th this in mind, "the CSP modelling
reveals an aspect of non-repudiat ion unusual for a security
property. Most security properties are safety (trace) prop-
erties, essentially t ha t nothing bad (a breach of security)
should happen at any stage. In the case of the protocol de-
scribed in this paper, some of the aspects of non-repudiation
involve liveness as well as safety. For example, the evidence
tha t A collects does not guarantee t ha t B has in fact re-

ACM SIGCOMM 32 Computer Communication Review

ceived the message, but it does guarantee t ha t the message
must be available to B" [29].

The notion of availability also emerges when using SVO.
It is asserted as a premise tha t TTP said (A, B, L, K) D
A said (A, B, L, K) A B received (A, B, L, K) which means
tha t if the TTP has made K available, it follows tha t this
K had come from A and tha t B has received it.

A similar s ta tement is made in the CSP model:

NRR(tr, X) =

evidenee.A.sB(ft~nn.A.L.C) in tr

A evidence.A.sT(fcoN.A.B.L.K) in tr

=~ B sent sB(fNan.A.L.C)

A ftp.B. TTP.(ST(fco~v.A.B.L.K)) f~ X

This means tha t the evidence of B 's receiving C and T's
making K pubfic implies t ha t B has sent the former and
tha t the ftp operation to get K does not fail, i.e., K is
available to B. The implication is defined to be the NRR.

Regarding the SVO premise, in the proof it is noted tha t
it, along with some other premises made there, "axe closely
related to the protocol features and not so intuitive in the
framework of the SVO logic. We should be prudent when
producing such kind of premises since the soundness of the
reasoning will be in doubt if their t ru th is based on improper
assumptions" [41]. It is clear tha t this premise does not al-
ways hold. Specifically, the second conjunct does not hold
automatically; it will hold eventually, when (if) the protocol
terminates. The fact tha t it is asserted as a premise means
tha t the soundness of reasoning is based on the assump-
tion tha t K ' s availability implies receipt. Along the same
path, the CSP proof, while it notes tha t "there is no guar-
antee tha t all of the messages have actually been received
by B by the t ime A presents the evidence" [29], defines non-
repudiation of receipt through availability.

In bo th approaches, therefore, the proof is carried through
by assuming tha t availability can be used to establish re-
ceipt. In practice, of course, there is a difference between
something being available, or something being possible, and
something having actually been acquired, or having actually
been performed. Still, if the assumption is acceptable, the
protocol can be accepted as well. If not, perhaps a protocol
with different assumptions would be more appropriate.

Formal verifications highlight assumptions. By cast-
ing a protocol in a formal framework they state ex-
plicitly premises tha t may be noteworthy.

3.5 Be Careful with Practical Improvements
Protocols may be modified in order to make them more
amenable to practical implementation. Such optimisation,
however, can be at tended by untoward consequences. We
give some examples below.

3.5.1 Practical Improvements: ZG-3
We have already noted, in § 3.3, tha t ZG-3 was proposed to
deal with some perceived practical deficiencies in ZG-1; and

tha t it may fall depending on the signature algorithm used.
There is yet another hitch in this protocol.

In ZG-3, the unique label L is generated by the TTP, not
by A, to identify the message M, and it is not contained in
NRO. There is no way then to distinguish between copies of
NRO for the same recipient, message and thi rd party. The
adjudication process only states t ha t "B can use NRO to
verify the message M obtained at Step 5. Wi th NRO, B
can also prove t ha t M originated from -4' [38}. This leaves
room for two interpretations.

First, tha t if B can present M, L1, NRO and M, L2, NRO,
where L1 ~ L2, it will be held t h a t A sent M twice. Unfor-
tunately, A might have sent it only once. B could present
as much evidence as wished and prove tha t A has sent it
as many times as wished. Even if the adjudication involved
a TTP which could show otherwise---provided it had kept
a record of all past t ransac t ions- - i f B can impersonate A
in the first two steps, she could carry out all the protocol
by herself by using a previously acquired NRO (principal A
signs nothing else). In short, ZG-3 confers an undue advan-
tage to B, allowing her to falsely ascribe a communication
to principal A.

Second, tha t if B can present M, L1, NRO and M, L2,
NRO, where L1 ¢ L2, it will be twice held t ha t A sent M.
Tha t is, two judgements on the same fact. Unfortunately,
A might have actually sent M twice. In short, ZG-3 confers
an undue advantage to B, allowing her to falsely repudiate
a communication from A. (Note t ha t in bo th cases, and in
fact always, L1 ~ L2: Ls axe unique in order to prevent
selective receipt by B.)

To be fair, the protocols developers do not assume tha t ZG-3
is immune to such abuse. But they do not mention anything
relevant in their assumptions. Moreover, ZG-1 and ZG-2 are
immune.

3.5.2 Practical Improvements: ZG-4
The involvement of the th i rd party in ZG-1 can lead to bot-
tlenecks. A variant of the protocol (which we shall call ZG-4)
involves the third party only in dispute resolution [39]:

EO0 = sSA(fsoo, B, L, C)
EOR = sSB(f EOR, A, L, C)
EOO-K = SSA (IEoo.K , B, L, K)
EOR-K = SSB(fEOR.K, A, L, K)

1. A - * B : fEoo,B,L,C, EO0
2. B - -*A: fsoR, A,L, EOR
3. A .--* B : fEoo .g ,B ,L ,K , EOO-K
4. B --* A : fEOR_K, A, L, EOR_K

If A does not get message 4 from B then steps 3-5 of ZG-1
are performed--ZG-4 reverts to ZG-1. In essence, A sends
K directly to B in step 3. If confirmation fails to arrive it
is acquired by way of the TTP.

The protocol's developers show tha t adopting a deadline on
the t ime tha t the TTP offers K to the public (as in ZG-2)
breaks fairness [39]. Suppose tha t B receives K in step 3,
but does not perform step 4. Then A must submit K to the
TTP before the deadline, but if there are communication

ACM SIGCOMM 33 Computer Communication Review

problems she cannot be sure t ha t it will be done on time; in
which case B gets the bet ter of her.

3.5.3 Practical Improvements: ZG-5
ZG-1 rests on the validity of digital signatures. It is impor-
tant to ensure tha t digital signatures are not compromised,
or the protocol will be breached. One way to guarantee
the validity of digital signatures at a given point in t ime is
by employing a t rusted t ime-stamping authori ty to validate
them; this, however, increases the number of messages tha t
have to be exchanged. ZG-1 has been modified to demon-
s trate another, more efficient way (we shall call the resulting
protocol ZG-5) [36]:

EO0 = sSA(fEoo, B, L, C)
EOR = sSB(f Eon, A, L, C, EO0)
sub_K = sSA (f SvB, B, L, K, EOR, CertB)
CO?%-K : SSTTP (fcoN, A, B, L, K, EOR, T)

1. A--~ B : fEoo,B,L,C, EO0
2. B --* A : rE.on, A, L, EOR
3. A--~ TTP : fsuB,B,L, eVTTP(K),EOR, CertB,

sub_K
4. B *-* TTP : fCON, A, B, L, K, T, con_~
5. A ~-* TTP : f coN ,A ,B ,L ,K ,T , COn-J(

Here all evidence is chained, and the two public key cer-
tificates for the signatures of A and B, Certa and CertB
respectively, are checked only by the TTP before issuing
con_K. T is a t ime s tamp for the t ime tha t the TTP checks
the message key and makes it available in the read-only di-
rectory, eVTTp(K) is K is encrypted with the TTP's public
encryption key to prevent eavesdropping: B could eavesdrop
in step 3 and then revoke her signature having obtained bo th
K, which would have been in plaintext, and C.

Suppose tha t A signs EO0 with the key of a revoked cer-
tificate Cert~ and then proceeds to sign sub_If with a valid
certificate CertA. Later in the protocol the TTP will check
CertA--but not EOR or EOO--before issuing con_K. Prin-
cipal A cannot deny sending the message, since she has
checked EOR, which contains EO0, before step 3: an adju-
dicator will rule t ha t A has sent it. But A can tu rn this to
her advantage.

In the adjudication process [36], A or B will present the ad-
judicator with M, C, K, L, T, Cert'A, Certm EO0, EOR,
and con_K. The adjudicator will use Cert'A to check EO0,
and will accept i t - - i f she cannot check, from the material
provided, the validity of Cert~ at t ime T; in fact no such
check is envisaged in the adjudication process, and CertA is
not present in any message in the protocol. Tha t Cert~ is
not valid at the t ime of the dispute is irrelevant, as the
dispute may arise after the certificates have expired. In
this way, though, the lifetime of Cert'A is surreptitiously ex-
tended, and t ha t can lead to problems. If Cert'A had been
granted to A for a limited period, e.g., A can sidestep the
expiry.

3.5.4 Practical Improvements: ZG-6
Another protocol has been proposed as an improved version
of ZG-1. The protocol, which we shall call ZG-6, adds ex-

plicit t ime limits and encrypts K for increased privacy [25]:

NRO= sSA(fNaO, B, L, T, C)
EOR = sSB (fNnn, A, L, T, T1, C)
sub-K = 8SA(fSuB, B, L, T, K,~b)
con-K = sSTTP (f CON , A, B, L, T, To, K~b)

1. A ~ B : fNao,B,L,T,C, NRO
2. B- -*A: fNna, A,L, T1,NRR
3. A--* TTP : f suB,B,L,T , Ks~b,sub_K
4. B ~-* TTP : f coN,A ,B ,L , To, Ks~b, con_K
5. A *-* TTP : f coN,A ,B ,L , To, K,,b, con_K

To ensure privacy, A, instead of sending K, sends K~b,
from which B, using her private key, can retrieve K - - t h a t
is, a Diffie-Hellman public key distr ibution scheme is intro-
duced [21]. To get around t iming problems, A, in step 1,
suggests a t ime limit T. Then B, in step 2, suggests an-
other t ime limit T1 < T. The idea is t ha t A must perform
step 3 before T1, and B can perform step 5 at any t ime be-
tween T1 and T. To is the t ime K_sub is made available by
the TTP; during the adjudication process the adjudicator
checks t ha t To < T1 < T.

Suppose B suggests a T1 < To. This can happen because
the TTP has no knowledge of T1. B is still able to perform
step 4, retrieve Ksub, and then argue t ha t the protocol run
was invalid. The adjudicator will concur, since To < T1 < T
is a requirement in the adjudication process. And it cannot
be otherwise: a protocol cannot be valid with T1 < To < T
and 7'1 meaning tha t B can get Ks~b at any time between
To and T.

The evolution from ZG-1 to ZG-6 is a series of improvements
on previous protocols, improvements such as adding t ime
information, adding privacy, and creating evidence more ef-
fectively through chaining. We saw, however, t ha t intro-
ducing new features or mit igat ing previous snags can create
new, unanticipated difficulties. There is a well-known dic-
tum in Software Engineering t ha t smoking out bugs often
introduces new, nast ier ones so t ha t it is one step forward
and one step back [15]. Tha t dictum could inform research
on cryptographic protocols as well.

Be careful wi th practical improvements. I t is tempt ing
to develop a theoretically sound protocol and then t ry
to make it more practical for use in specific settings.
It is possible tha t , in the process, problems will be
introduced.

3.6 Beware of Model Twisting
It is impor tan t to keep in mind during protocol develop-
ment t ha t model twisting is not equivalent to flaws fixing.
A protocol is acceptable or unacceptable on its own terms
(i.e., the assumptions and model i t proposes); if the terms
don ' t do for a specific situation, the protocol is incompatible
with tha t situation; but it is neither wrong, nor flawed. The
choice between different terms is evident in protocols ZG-4
and ZG-5.

In ZG-4, it is noted tha t ZG-1 "is suitable for situations
where two parties want to involve a t rusted th i rd party in ev-
ery protocol run", while ZG-4 "is suitable for environments

ACM SIGCOMM 34 Computer Communication Review

where the two parties normally will resolve any communi-
cation problems between themselves and rely on a t rusted
third party only as a last recourse" [39]. This is a mat ter
of choice between competing alternatives based on different
models, not something tha t can be decided on correctness.

In ZG-5 it is argued tha t the problem of establishing and
maintaining signature validity in ZG-1 hampers efficient im-
plementation [36]. This may well be so; but it is not a
problem with ZG-1 per se, which simply assumes valid sig-
natures, but with the means whereby signature validity can
be guaranteed.

No pitfalls as of yet. But come ZG-3, it is noted tha t in
ZG-1 "the originator can only submit the message key to
the T T P after obtaining the reply to its commitment from
the recipient. The originator would not like to take the
responsibility of late submission caused by the the recipient's
late reply"; hence ZG-3 is offered [38]. We have again a
choice between different models. The recipient's delay is not
a problem for ZG-1, as ZG-1 will work correctly no mat ter
how much time the recipient takes to respond. Whether
this will do for the originator, is a different mat ter- - indeed,
a mat te r for choosing another protocol.

Unfortunately, the reasoning in the previous paragraph is
wrong. ZG-1 has been surreptitiously twisted. There is
nothing in ZG-1 to inhibit A from performing step 3 without
waiting for step 2 (cf. § 3.2). I t is true tha t A would normally
wait for B ' s response; nevertheless it by no means follows
tha t A must wait for B ' s response.

Consider, finally, ZG-6. It is argued tha t ZG-1 is unfair,
and tha t keeping K unencrypted can cause privacy prob-
lems [25]. The argument goes against the assumptions made
in ZG-1. ZG-1 is made unfair by twisting its model in var-
ious ways: a t ime limit is introduced to guard against the
pernicious effects of a combined network failure and a prin-
cipal bungling her part; then the protocol is shown to be
unfair to B if A can disrupt communications between B and
the TTP. None of this can happen if the original assump-
tions made in ZG-1 hold and the two principals do not play
against themselves. Moreover, as we saw in § 3.3, cryptog-
raphy in ZG-1 is not used for privacy, but for establishing a
communication channel. The criticism on privacy problems
is therefore irrelevant.

The reasoning followed in ZG-3 and ZG-5 is scientifically
unsound. Protocols can be twisted to exhibit undesirable
features, and other protocols can be introduced to alleviate
them; yet this does not do justice to the original protocol
and i t provides a dubious service to the new one.

Beware of model twisting. Twisting a protocol in or-
der to build a case for a new one is not sound, scien-
tifically or logically--and is no fair play. A protocol
can be judged on its assumptions, compared to other
protocols for its assumptions, but it carmot be anal-
ysed on assumptions different than the ones it actually
pledges for.

3.7 Treat Adjudication as an Integral Part of
the Protocol

The interaction between cryptography and judicature may
be discordant, and we should not expect engineering to solve
legal problems [6]. If this is t rue for cryptography in gen-
eral, it is particularly per t inent to non-repudiation. Even
the terminology employed in non-repudiation points to the
relevance of legal mat ters to the issue: principals collect ev-
idence t ha t can be presented to a judge. It is implied tha t
engineering will be called to solve a legal problem, and the
case will be decided according to the adjudication process
described.

The adjudication process, therefore, should be conceived as
forming par t of the protocol. In view of the relation between
engineering and judicature, problems or vagueness in the ad-
judication process should not be taken any more lightly than
problems in the protocols themselves. For a given protocol,
the adjudication process proposed should be deterministic.

All this is reason for examining it in detail. Whenever we
made references to it, we referred to the exact procedure de-
scribed in the original publication, accepting tha t protocol
analysis should include adjudication analysis. If problems
during the adjudication process are identified, the problem
is not solely with the protocol; a change in the adjudication
may instead be warranted. For example, the adjudication
process of ZG-5 might be made to include a check of CertA
at t ime T (cf. § 3.5.3); in general, in a protocol tha t uses
certificates, those certificates are par t of the evidence and
certificate evaluation has to be covered explicitly by the ad-
judication rules. Also, the adjudicator of ZG-1 might require
from T T P to confirm tha t the network connection with the
t w o principals would not have hindered their performance of
steps 4 and 5 (cf. especially the possible problems of B in the
discussion on the untimely adjudication process in § 3.1).

Unfortunately, even a well-designed, deterministic adjudi-
cation may run into problems as what is technically sound
may not necessarily curry much favour in a legal process [6]:

Lawyers are well aware t ha t the use of tech-
nical evidence, and in particular computer ev-
idence, is fraught with difficulty. Most judges
have a background in the humanit ies ra ther than
the sciences, and may be more than normally
technophobic; even where these feelings are du-
tifully suppressed, experienced and otherwise in-
telligent men can find it impossible to under-
s tand simple evidence. The author has observed
this phenomenon at a number of computer trials
from 1986 down to the present, and has often felt
tha t no-one in court had any idea what was go-
ing on. Specialist computer lawyers confirm tha t
this feeling is not uncommon in their practice.

Worse, there may be specific points in a protocol tha t can
render themselves as conduits for deliberate obfuscation.
Let us loosen the discussion a bi t and speculate on possi-
ble candidates.

Is it possible for A to be commit ted to a message she does

ACM SIGCOMM 35 Computer Communication Review

not know? The issue can be followed through the protocol
trail. In ZG-1, A never signs the original message. She signs
the encrypted message; it is in step 3 tha t A commits to a
message she knows (this is in general; the situation may be
different, depending on how L is chosen--recall § 3.1). Then,
in ZG-5, A signs neither the original message, nor the actual
message key, which is now encrypted; it is only in step 5,
when she retrieves the confirmed key from the TTP, t ha t A
commits to M. Finally, in ZG-6, A can commit to a message
she has no means of retrieving, i.e., knowing. According to
the protocol, if SA and s s are the secret keys of A and B,
their public keys are pA ~- gsA mod p and pB ----- gss mod p,
where p and q are large primes with p = 2q + 1 and g a
primitive element over GF(p). For the key distribution, A
generates a random number r (0 < r < p - 1) and computes
K ---- p~ mod p and Ks~b -~ gr rood p; B can then retrieve
K = K : ~ = g~SB mod p. I t follows tha t if A does not know
the discrete logarithm of Ks~b, she commits to a message
she cannot know. This can easily happen: A might just
pick, or be passed, a value for Ka~b and send it.

If a principal can commit to a message she has no means
of knowing, the question becomes whether this can be ac-
ceptable in practice. This will depend on the particulars of
the specific appl ica t ion--and it will, ultimately, be a mat ter
of matching protocol features, which must be understood
thoroughly, with application requirements, which must be
established carefully.

As a last point, controversy can result from the combination
of the two protocols in ZG-4. It is mentioned tha t "if A does
not send message 3, the protocol ends without disputes. If A
cannot get message 4 from B after sending message 3 (either
because B did not receive message 3 or because B does not
want to acknowledge it), A may initiate . . . the recovery
phase". There is a contradiction here. If B does not receive
message 3 she can rightfully assume tha t the protocol has
ended without disputes; while A, not receiving message 4,
can rightfully assume tha t the protocol has not terminated,
but t ha t the recovery phase is to be initiated. I mag ine tha t
A does initiate it, B gets the key and then, following the
above, argues t ha t no protocol run has taken place.

Although this is admit tedly pure speculation, one might take
advantage of exactly this sort of niceties to cause a judicial
process to flounder. It might be prudent to guard against
such bones of contention. For example, if proof of dispatch is
equated with proof of origin, or if knowledge of the message
contents is taken for granted, this should be set out in the
protocol's assumptions. In this way, if two principals em-
bark on a protocol run accepting its assumptions, the above
~roblems cannot stand.

Treat adjudication as an integral par t of the protocol.
Adjudication should be well defined and deterministic,
and guarantee a single yes or no answer for each set
of input. Protocol analysis should include adjudica-
t ion analysis. Unfortunately, one should be prepared
for when even a correct adjudication process fails in
practice, as technology and judicature do not always
make a perfect couple--fleshing out possible bones of
contention might help.

4. CONCLUSIONS
Non-repudiation is special in t ha t the scope of the system
is particularly wide, as it encompasses agents (e.g., judges)
outside the communication exchange. Get t ing a protocol
right involves taking account of a great many potential loop-
holes, not solely technical.

If there is a common thread running through guidelines pro-
posed he re - - a recta-guideline, as it were---it is the value
placed on making assumptions explicit. Assumptions should
always be explicit, and in non-repudiat ion all the more so.
Non-repudiatlon can be seen as a contract, whereby the par-
ties engage verifiably in some exchange: in this metaphor,
when contract signing is complete, a principal has completed
her part for the other principal 's acknowledgement. As in all
contracts, everything rests on the terms; and these should
be clearly and openly set.

i

Assumptions should always be explicit. The terms of
a non-repudiation protocol should be set out clearly
in the open.

i

5. ACKNOWLEDGEMENTS
This paper was spurred by discussions with I. S. Iliadis and
T. Kosmopoulos, bo th with the University of the Aegean, to
whom thanks are owed. The anonymous reviewers provided
valuable feedback t ha t greatly benefited this work.

6. REFERENCES
[1] M. Abadi and R. Needham. Prudent engineering

practice for cryptographic protocols. IEEE
Transactions on Software Engineering, 22(1):6-15,
January 1996.

[2] A. Adams and M. A. Sasse. Users axe not the enemy.
Communications of the ACM, 42(12):41-46, December
1999.

[3] 1%. Anderson. How to cheat at the lottery (or,
massively parallel requirements engineering). In
Proceedings of the 15th Annual Security Applications
Conference (ACSAC '99), Phoenix, AZ, 6-10
December 1999. IEEE Computer Society Press, Los
Alamitos, CA.

[4] R. Anderson and R. Needham. Programming satan 's
computer. In J. van Leeuven, editor, Computer
Science Today: Recent Trends and Developments,
volume 1000 of Lecture Notes in Computer Science
Series. Springer-Verlag, Berlin, 1995.

[5] R. Anderson and 1%. Needham. Robustness principles
for public key protocols. In P. Coppersmith, editor,
Advances in Cryptology--CRYPTO '95: 15th Annual
International Cryptology Conference, volume 963 of
Lecture Notes in Computer Science Series, pages
236-247:, Santa Barbara, CA, 27-31 August 1995.
Springer-Verlag, Berlin.

[6] R. J. Anderson. Liability and computer security: Nine
principles. In D. Gollmann, editor, ESORICS 94:
Third E~ropean Symposium on Research in Computer
Security, volume 875 of Lecture Notes in Computer

ACM SIGCOMM 36 Computer Communication Review

Science Series, Brighton, UK, 7-9 November 1994.
Springer-Verlag, Berlin.

[7] R. J. Anderson. Why cryptosystems fail.
Communications of the A CM, 37(11):32-40, November
1994.

[8] N. Asokan, M. Schunter, and M. Waidner. Optimistic
protocols for fair exchange. In Proceedings of the 4th
ACM Conference on Computer and Communications
Security (CCS '97), pages 6, 8-17, Zurich, 1--4 April
1997. ACM Press, New York, NY.

[9] N. Asokan, V. Shoup, and M. Waidner. Asynchronous
protocols for optimistic fair exchange. In Proceedings
of the 1998 IEEE Symposium on Security and Privacy
(S ~ P '98), Oakland, CA, 3-6 May 1998. IEEE
Computer Society Press, Los Alamitos, CA.

[10] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair
exchange of digital signatures. IEEE Journal of
Selected Areas in Communications, 18(4):593-611,
April 2000.

[11] G. Ateniese. Efficient verifiable encryption (and fair
exchange) of digital signatures. In Proceedings of the
6th ACM Conference on Computer and
Communications Security (COS '99), pages 138-146,
Singapore, 1-4 November 1999. ACM Press, New
York, NY.

[12] F. Bao, R. Deng, K. Q. Ngnyen, and V. Varadharajan.
Multi-party fair exchange with an off-line trusted
neutral party. In Proceedings of the l Oth International
Workshop on Database FJ Expert Systems Applications
(DEXA '99), Florence, 1-3 September 1999. IEEE
Computer Society Press, Los Alamitos, CA.

[13] F. Bao, R. H. Deng, and W. Max). Efficient and
practical fair exchange protocols with off-line TTP. In
Proceedings of the 1998 IEEE Symposium on Security
and Privacy (S ~ P '98), Oakland, CA, 3-6 May 1998.
IEEE Computer Society Press, Los Alamitos, CA.

[14] M. Ben-Or, O. Goldreich, S. Micali, and R. L. Rivest.
A fair protocol for signing contracts. IEEE
Transactions on Information Theory, 36(1):40-46,
January 1989.

[15] F. P. Brooks, Jr. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley, Reading, MA,
anniversary edition, 1995.

[16] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. SRC Research Report 39, Digital
Equipment Corporation Systems Research Center,
Palo Alto, CA, 28 February 1989. Revised on
February 22, 1990.

[17] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. A CM Transactions on Computer
Systems, 8(1):18-36, February 1990.

[18] T. Coffey and P. Saidha. Non-repudiation with
mandatory proof of receipt. Computer
Communications Review, 26(1), January 1996.

[19] B. Cox, J. D. Tygar, and M. Sirbu. NetBill security
and transaction protocol. In Proceedings of the First
USENIX Workshop on Electronic Commerce, New
York, NY, 11-12 July 1995.

[20] R. H. Deng, L. Gong, A. A. Lazar, and W. Wang.
Practical protocols for certified electronic mail.
Journal of Network and Systems Management,
4(3):279-297, September 1996.

[21] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, IT-22(6):644-654, November 1976.

[22] S. Even, O. Goldreich, and A. Lempel. A randomized
protocol for signing contracts. Communications of the
ACM, 28(6):637-647, June 1985.

[23] M. K. I~anklin and M. K. Reiter. Fair exchange with
a semi-trusted third party. In Proceedings of the ~th
ACM Conference on Computer and Communications
Security (CCS '97), pages 1-5, 7, Zurich, 1-4 April
1997. ACM Press, New York, NY.

[24] F. C. G~rtner, H. Pagnia, and H. Vogt. Approaching a
formal definition of fairness in electronic commerce. In
Proceedings of the 18th IEEE Symposium of Reliable
Distributed Systems (SRDS '99), Lausanne, 18-21
October 1999. IEEE Computer Society Press, Los
Alamitos, CA.

[25] K. Kim, S. Park, and J. Back. Improving fairness and
privacy of Zhou-Gollmann's fair non-repudiation
protocol. In Proceedings of the 1999 29th International
Conference on Parallel Processing (ICPP '99):
Workshop on Security (IWSEC), pages 140-145,
Wakamatzu, Japan, 21-22 September 1999. IEEE
Computer Society Press, Los Alamitos, CA.

[26] L. Lamport. A simple approach to specifying
concurrent systems. Communications of the ACM,
32(1):32-45, January 1989.

[27] B. Pfitzmann, M. Schunter, and M. Waidner. Optimal
efficiency of optimistic contract signing. In Proceedings
of the 17th Annual ACM Symposium on Principles of
Distributed Computing (PODC '97), pages 113-122,
Puerto Vallarta, Mexico, 28 June-2 July 1998. ACM
Press, New York, NY.

[28] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM,
21(2):120-126, February 1978.

[29] S. Schneider. Formal analysis of a non-repudiation
protocol. In Proceedings of the 11th IEEE Computer
Security Foundations Workshop (CSFW '98), pages
54-65, Rockport, MA, 9-11 June 1998. IEEE
Computer Society Press, Los Alamitos, CA.

[30] B. Schneier. Cryptographic design vulnerabilities.
Computer, 31(9):29-33, September 1998.

[31] B. Schneier and J. Riordan. A certified e-mail
protocol. In Proceedings of the 14th Annual Security
Applications Conference (ACSAC '98), Scottsdate,
AZ, 7-11 December 1998. IEEE Computer Society
Press, Los Alamitos, CA.

ACM SIGCOMM 37 Computer Communication Review

[32] P. Syverson. Limitations on design principles for
public key protocols. In Proceedings of the 1996 IEEE
Symposium on Security and Privacy (S ~ P '96),
Oakland, CA, 6-8 May 1996. IEEE Computer Society
Press, Los Alamitos, CA.

[33] P. F. Syverson and P. C. van Oorschot. On unifying
some cryptographic protocol logics. In Proceedings of
the 1996 IEEE Symposium on Security and Privacy (S

P '96), pages 62-72, Oakland, CA, May 1996. IEEE
Computer Society Press, Los Alamitos, CA.

[34] H. Vogt, H. Pagnia, and F. C. G~rtner. Modular fair
exchange protocols for electronic commernce. In
Proceedings of the 15th Annual Security Applications
Conference (ACSAC '99), Phoenix, AZ, 6-10
December 1999. IEEE Computer Society Press, Los
Alamitos, CA.

[35] T. Y. C. Woo and S. S. Lava. A lesson on
authentication protocol design. Operating Systems
Review, 28(3), July 1994.

[36] C.-H. You, J. Zhou, and K.-Y. Lam. On the efficient
implementation of fair non-reputation. Computer
Communications Review, 28(5):50-60, October 1998.

[37] J. Zhou and D. Gollmann. A fair non-repudiation
protocol. In Proceedings of the 1996 IEEE Symposium
on Security and Privacy (S ~ P '96), pages 55-61,
Oakland, CA, May 1996. IEEE Computer Society
Press, Los Alamitos, CA.

[38] J. Zhou and D. Gollmann. Observations on
non-repudiation. In K. Kim and T. Matsumoto,
editors, Advances in Cryptology--ASIACRYPT '96:
International Conference on the Theory and
Applications of Cryptology and Information Security,
volume 1163 of Lecture Notes in Computer Science
Series, pages 133-144, Kyonkgju, Korea, 3-7
November 1996. Springer-Verlag, Berlin.

[39] J. Zhou and D. Gollmann. An efficient
non-repudiation protocol. In Proceedings of the lOth
Computer Security Foundations Workshop (CSFW
'97), Rockport, MA, 10-12 June 1997. IEEE
Computer Society Press, Los Alamitos, CA.

[40] J. Zhou and D. Gollmann. Evidence and
non-repudiation. Journal of Network and Computer
Applications, 20(3):267-281, July 1997.

[41] J. Zhou and D. Gollmann. Towards verification of
non-repudiation protocols. In J. Grundy,
M. Schwenke, and T. Vickers, editors, International
Refinement Workshop and Formal Methods Pacific
'98: Proceedings of IRW/FMP '98, Discrete
Mathematics and Theoretical Computer Science
Series, pages 370-380, Canberra, 29 September-2
October 1998. Springer-Verlag, Berlin.

ACM SIGCOMM 38 Computer Communication Review

