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ABSTRACT 
Non-repudiation protocols aim at preventing parties in a 
communication from falsely denying having taken par t  in 
tha t  communication; for example, a non-repudiation pro- 
tocol for digital certified mail should ensure tha t  neither 
the sender can deny sending the message, nor the receiver 
can deny receiving it. We identify some guidelines for non- 
repudiation protocols. The guidelines are derived by exam- 
ining a series of non-repudiation protocols tha t  descend from 
a single ancestor. 

Categories and Subject Descriptors 
C.2.0 [ C o m p u t e r - C o m m u n i c a t i o n  Ne tworks ] :  Gener- 
al-security and protection (e.g., ]irewalls); K.4.4 [Compu- 
ters and Society]: Electronic Commerce--security; K.5.m 
[Legal A s p e c t s  o f  C o m p u t i n g ] :  Miscellaneous; K.6.5 
[Management of Computing and I n f o r m a t i o n  Sys- 
tems]:  Security and Protection 
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Legal Aspects, Security, Verification 

Keywords 
Non-repudiation, Pair Exchange, Formal Verification 

1. INTRODUCTION 
When public key cryptography was first presented, it was 
pointed out tha t  its techniques "also protect against the 
threat of dispute. Tha t  is, a message may be sent but  later 
repudiated by either the t ransmi t te r  or the receiver. Or, 
it may be alleged by either party tha t  a message was sent 
when in fact none was" [21]. When the first practical imple- 
mentat ion of public key cryptography was presented, it was 
observed tha t  the capability to produce unforgeable digital 
signatures offers a step beyond privacy and authentication: 
'%he recipient can convince a ' judge' t ha t  the signer sent the 
message" [28]. 

This is but  an  instance of a more general problem, tha t  of 
non-repudiation: a party tha t  has taken par t  in a communi- 
cation should not be able to falsely deny the  t ru th  or validity 
of the  communication or its parts.  Unforgeable digital sig- 
natures are par t  of the solution; however, the  problem is 
complicated when non-repudiation is, additionally, required 
to be fair. 

Intuitively, a protocol is fair if it does not allow a party 
to gain an undue advantage. A simple exchange of signed 
items is not fair: i t  does not  guard against threa t  of dis- 
putes, unless the signed items are exchanged simultaneously; 
otherwise the first recipient may never send her own item. 
Simultaneity, however, is hard  to achieve when the  parties 
do not interact face to face. 

If fairness is ensured completely within the  system speci- 
fied by the protocol it is strong; if fairness is ensured within 
the system but  with the proviso tha t  additional assump- 
tions about  the participating parties are made it is eventu- 
ally strong; and if fairness is ensured by external means it is 
weak [24]. Strong fairness ensures t ha t  it is never the  case 
tha t  only one party gets what  she expects from the other. 
Weak fairness ensures tha t  it is possible for a slighted party 
to prove her case to a judge (e.g., there is all the neces- 
sary evidence for the slighted par ty  to convince the  judge 
to strike down on the  miscreant).  In eventual strong fair- 
ness, recourse to external means is avoided at the cost of 
extra assumptions, such as tha t  the parties follow a certain 
behaviour (e.g., eventually cooperate). 

A number  of non-repudiation protocols purport ing to be 
fair, in general, have been proposed. In § 2 we introduce 
the main ideas. Then,  in § 3, we list some guidelines to 
the practit ioner who wants to implement and deploy a fair 
non-repudiation protocol. The guidelines are illustrated by 
way of a family of such protocols, descendants of a single 
ancestor. Some conclusions are offered in § 4. 

The present paper follows previous work presenting informal 
guidelines for the design of cryptographic protocols [35, 5, 
1]. It differs from the  existing corpus in two ways: it deals 
specifically with non-repudiation (although its findings may 
be of wider interest); and it dons two hats: t ha t  of the pro- 
tocol designer, and tha t  of the implementer, as it is mindful 
of the ramifications of put t ing a protocol to practice. 

As an aside, the author  had no par t  in the development 
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of any of these protocols; and the author 's  purpose is not 
to highlight problems and propose solutions, but  ra ther  to 
elicit guidelines tha t  may be of a more general relevance. 

2. BACKGROUND 
One approach to achieving fair non-repudiation uses cryp- 
tography for the  gradual simultaneous exchange of secrets. 
In a typical instance [22], the message is first encrypted and 
sent; then, the  two parties exchange a delivery receipt and 
the message key in a lockstep way so tha t  none can derive 
the full receipt or the full key before the other. 

Two weaknesses of this kind of protocols are that ,  first, the 
two principals must  have equal computing power--or  one 
of them can stop the protocol and use her computational 
prowess to derive the rest of the exchange; and second, there 
is no near-term deadline by which the process clearly ter- 
minates, either with the  exchange successfully completed 
or with the exchange cancelled [14]. In addition, it has 
been argued, fo~" example by proponents of an alternative 
approach [37, 25], t ha t  they are cumbersome and tend to be 
impractical. 

The alternative approach is to employ an auxiliary party (a 
third party when the exchange involves two principals). The 
auxiliary party can be on-line, when she participates actively 
in the protocol run  [19, 18, 20, 31]. Alternatively, she can 
be off-line, in the  so-cailed optimistic protocols, when her 
services are required only for dispute resolution. Some such 
protocols achieve only weak fairness [8, 9], bu t  others are 
not thus restrained [13, 12, 11, 10]. Depending on the degree 
of fairness t ha t  is desired, it has even been proposed tha t  
protocols can be synthesised using appropriate modules [34]. 
The auxiliary party is usually assumed to be trustetl i.e., 
t ha t  she does not  behave maliciously; but  she may be semi- 
trusted, i.e., she may misbehave, but  only by herself, without  
colluding with any of the  other parties [23]. 

The protocols examined here employ an on-line t rusted th i rd  
party tha t  acts as a notary. They provide non-repudiation 
evidence through a number  of tokens, specifically [40]: 

• Non-repudiation of Origin (NRO) or Evidence of Ori- 
gin (EO0) ,  supplied by the originator, which provides 
the recipient with proof of origin and guards against 
the originator of a message falsely denying having sent 
the message. 

• Non-repudiation of Receipt (NRR) or Evidence of Re- 
ceipt (EOR), supplied by the recipient, which guards 
against the recipient of a message falsely denying hav- 
ing received the message. 

• Non-repudiation of Delivery (NRD), supplied by the  
delivery agent, which provides the originator of the 
message with evidence tha t  the  message has been de- 
livered to the recipient. 

• Non-repudiation of submission (NRS),  supplied by the 
delivery agent, which provides the originator of the 
message with evidence tha t  the  message has been sub- 
mit ted for delivery to the recipient. 

3. GUIDELINES 
3.1 Match Protocols and Requirements 
A protocol makes some assumptions on the domain of its 
use. At  the Same time, each application domain demands 
tha t  specific requirements be met. When  put t ing a proto- 
col to practiee, care should be taken to ensure t ha t  proto- 
cols and requirements match.  This might require work bo th  
from the application's point  of view, to uncover the require- 
ments, and from the protocol 's point of view, to flesh out 
the  assumptions it makes - -no t  all of them may be obvious. 

Let us take the  protocol 's point of view, i.e., fleshing out  its 
assumptions, first. An example will help illustrate the is- 
sue. Fairness is too broad a term and, as we have seen, it is 
possible to be more precise by adopting more specific termi- 
nology. The type of fairness tha t  a given protocol achieves 
(e.g., strong, eventually strong, and weak fairness) should 
be indicated by the developers and taken into account by 
the implementers depending on the  requirements of the ap- 
plication where the  protocol is to be implemented. 

We can see this  by way of a specific protocol. In the  following 
protocol (which we shall call ZG-1), C is the  ciphertext for 
message M,  i.e., M encrypted under  K.  L is a unique label 
for the  protocol run, and sSA(X)  is message X signed by 
principal A. A --* B : X means t h a t  A sends X to B,  while 
A ~ T T P  : X means t ha t  A fetches X from B using "ftp 
get" operations or some web browser operations. The T T P  
is a t rus ted th i rd  party. The various fNRO, f:~Ra, and so on, 
are flags denoting the  purpose of each step in the protocol. 

The idea is t ha t  C, which serves as a commitment,  is sent 
first, and then K,  which unlocks the  message proper, is re- 
leased (the other approaches t ha t  employ an auxiliary party 
use similar ideas) [37]: 

NRO = sSA (fNRo, B,  L, C) 
N R R  = sSB(fNaa, A, L, C) 
sub-K = 8SA (IsuB, B,  L, K )  
con_g ---- 8ST( f  CON , A, B,  L, K )  

1. A --* B : fNRO, B,  L, C, NRO 
2. B -'* A : fNRa, A, L, N R R  
3. A --* T T P  : fsuB, B,  L, K,  sub_K 
4. B ~-* T T P  : f c o ~ , A , B , L , K ,  eon-K 
5. A ~-~ T T P  : f c o N , A , B , L , K ,  con_K 

In step 1, A contacts B and sends the  encrypted message. In 
step 2, B confirms receipt, but  cannot  read the message. In 
step 3, A submits  the  message key to a t rus ted th i rd  party; 
sub_K is the proof of submission of K.  The t rusted third 
party stores the  tuple (A, B,  L, K,  con_K) in some read-only 
directory accessible to  the public; con_K is the  confirmation 
of K issued by the  TTP.  Then, in step 4, B gets the  key 
while, in step 5, principal A confirms tha t  B can indeed get 
the key. The last two steps can be performed in any order. 

The protocol is called "fair". Actually, though, it offers 
eventually strong fairness, wi th  two assumptions (in what  
follows we axe quoting verbat im from the  original publi- 
cation [37]). First, "even in the case of network failures, 
bo th  parties will eventually be able to retrieve the  key from 
TTP".  Second, no untimely adjudication process should be 
initiated. This follows from the  process of dispute resolu- 
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tion for non-repudiation of receipt. "If A claims tha t  B had 
received M, the judge will require A to provide M, C, K,  L, 
and the  non-rcpudiation evidence NRR and con_K'. The 
judge will check con_K, and "assume tha t  B is able to re- 
trieve the key K from TTP".  The judge will then check 
NRR and "assume tha t  B had received C and is committed 
to retrieving K from TTP.  The judge will finally check tha t  
C decrypted with K produces M. If this is so, '%he judge 
will uphold A's claim", i.e., " that  B had received M".  This, 
however, may very well not be t rue - -ye t - - a l though  it will 
eventually be true. The protocol equates in this way acces- 
sibility and commitment  with possession. The implementer 
should check tha t  this does not  contradict the application's 
requirements. 

Before we proceed we have to note that ,  to all fairness, it 
is only recently tha t  the analysis of the concept of fairness 
began [24]. I t  is obvious tha t  protocols developed earlier 
cannot  be damned for not being able to foresee. But  pro- 
tocols developed in the future should take heed. Moreover, 
implementers who wish to use a protocol which does not 
specify the type of fairness it offers should be careful. 

Leaving fairness aside, a question arises, concerning at what  
stage of the protocol is A committed to M. "On its own, 
the commitment  [C] need not restrict the content of the mes- 
sage in any way" [37]. On the one hand, "if we choose labels 
which are independent of the messages, then the message M 
may not be defined until Step 3 of the protocol". If, on the 
other hand, "the label [L] is a function of the message, then 
the message is already defined in Step 1". In other words, 
depending on the implementation, A may be committed to 
M at step 1 or at  step 3; it is the requirements of the applica- 
tion tha t  should decide the features of the specific protocol 
implementation. 

Returning now to the application's point of view, under- 
standing the application and uncovering its requirements is 
no minor undertaking. It  is a real challenge; it is the subject 
of a whole field, tha t  of Requirements Engineering, com- 
plete with its own conferences, books, and a journal by tha t  
name. Cryptosystems can be fiendishly difficult to specify 
correctly: "There are . . .  some particular domains in which 
specification is well known to be hard. Security is one ex- 
ample; the li terature has many examples of systems which 
protected the wrong thing, or protected the right thing but  
using the wrong mechanisms" [3]. This is not the place to 
embark on a review of developments in Requirements En- 
gineering; protocol implementers, however, should be aware 
tha t  establishing the right requirements and ensuring they 
mesh with the application is an important  and indispens- 
able task. The si tuation is perhaps exacerbated by the fact 
tha t  the qualities t ha t  make a good cryptographer (e.g., a 
flair for certain kinds of mathematics)  are not necessarily 
those tha t  make a good Requirements Engineer (e.g., good 
communication skills), and vice versa. 

Match protocols and requirements. This is a feat tha t  
requires working bo th  on the protocols and on the 
application in order to establish the assumptions and 
the requirements they make and to make sure they 
mesh with each other. 

3.2 When  Does a Protocol Terminate? 
The question would arise in any protocol in which the  prin- 
cipals ave allowed to fetch items at their  convenience. A 
protocol t ha t  has no t ime limits can be awkward to use in a 
practical setting. For example, if the  exchange involves pur- 
chase or sale of equity, it is impor tan t  t ha t  it be completed or 
aborted by some moment  in time. The same problem arises 
in the  approaches tha t  use cryptography for the simultane- 
ous exchange of secrets. In t h a t  case it is argued tha t  it 
is a fundamental  problem tha t  cannot  be mitigated: "We 
believe tha t  this deficiency is not a coincidence, as there 
are no reasonable alternatives" [14]. Moreover, analogous 
situations have been identified in the context of optimistic 
fair exchange protocols [10]; the  problem is similar to the 
"half-sold house" problem of two-party contract  signing pro- 
tocols [27]. Caution is needed with a protocol tha t  makes 
no provisions for its termination,  as the  midst  of "half-sent" 
messages can be a blurry area. 

The ZG-1 protocol has no deadline by which all transactions 
must be complete. I t  is not clear when the protocol can be 
considered terminated,  aborted, or simply in progress, so 
tha t  there is no indication when an adjudication process 
should be initiated. The absence of any deadline cannot be 
avoided in practice since fixing a t ime-out makes the proto- 
col insecure. Suppose A s tar ts  by performing steps 3 and 5 
(there is nothing providing against this  in the  protocol). She 
then waits long enough to know tha t  step 4 cannot be per- 
formed; upon which she carries out  steps 1 and 2. Principal 
A now holds bo th  con_K and NRR,  while B cannot have 
the message. The T T P  cannot  revoke con_K because she 
cannot  distinguish between A's maliciousness and B 's  indif- 
ference in retrieving K. 

Moreover, if a protocol run extending (for ever) into the fu- 
ture is not acceptable, one must  be careful how a t ime limit 
is to be incorporated. It  is probable tha t  simply grafting 
some note of expiry in an existing protocol will not auto- 
matically solve all problems. See, for example, the following 
protocol (which we shall call ZG-2) [37]: 

NRO = SSA(fNRO, B,  L, T, C) 
N R R  = sSs(fNR,~, A, L, T, C) 
sub-If = SSA (fSVB, B,  L, T, K )  
con-g  = 8 S T ( l O O N  , A, B,  L, T, To, K )  

1. A - * B :  ]NRo, B , L , T , C ,  NRO 
2. B ~ A : fNRR, A, L, N R R  
3. A'-'* T T P  : f s u D , B , L , T , K ,  sub.-K 
4. B *"* T T P  : f c o ~ , A , B , L ,  To,K,  con_K 
5. A *--* T T P  : F c o l v , A , B , L ,  To, K,  con_K 

T is the t ime limit on the TTP's  clock and To is the t ime tha t  
the  confirmed key has been made available to the public; it 
remains so until  T. However, A might delay step 3 up to 
the last moment  before T, so t ha t  she can perform step 5 
while standing a good chance tha t  B might subsequently 
miss step 4. 

Be careful with the terminat ion problem. If termi- 
nation is needed and a protocol cannot  offer that ,  be 
careful with grafting time-outs on it. 
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3.3 Be Careful with Implementation Details 
Most cryptosystems fail not because of flaws in cryptogra- 
phy; their  failure is due to other causes, such as organisa- 
tional and implementation blunders [7, 30]. I t  is prudent  to 
minimise such risks and to be explicit about  the implemen- 
tat ion assumptions built  in a protocol; these might, again, 
not be very obvious. 

ZG-1 uses symmetric-key cryptography. B receives the key 
K from A. When  a session key is used for privacy, trust-  
ing the principals to choose it may be problematic. This 
is the case in the Wide-mouthed-ftog protocol: "This kind 
of t rus t  is often thought  unacceptable because of the  qual- 
ity requirements placed on key generation such as secrecy, 
nonrepetition, unpredictability, and doubtless more" [1]. 

Should this  caution apply here? The protocol's develop- 
ers note tha t  eneryption is not used for confidentiality here: 
"the cryptographic key is used only for defining [a communi- 
cation channel], not for any other purpose, and in particular 
not for confidentiality" [37]. This must be taken to mean 
tha t  the protocol is not designed to provide confidentiality 
against an outside interceptor, i.e., t ha t  it is not designed to 
provide privacy; because confidentiality against B is essen- 
tial. I t  is clear t ha t  if K is poor, B will jus t  break C, drop 
the protocol, get M and repudiate having done so, getting 
around non-repudiation. 

Of course, if A chooses a bad key, it is A tha t  suffers the con- 
sequences, not  bo th  parties, as in the Wide-mouthed-frog, 
or indeed any other protocol tha t  uses a session key for en- 
suring privacy between the communicating parties. Hence, 
choosing a good key is in A's best  interest. Unfortunately, 
this does not ensure tha t  a good key will be chosen; for in- 
stance, users have a poor record in choosing passwords [2]. 

Furthermore, in a more recent presentation of the same pro- 
tocol, K is used with M to derive L [36]; in tha t  case, care 
should be taken to guarantee L's uniqueness. All in all, the 
choice of K is important ,  and the question of whether  A can 
be t rusted to issue a good key is pertinent.  In a practical 
setting, this is a detail, not very obvious, t ha t  should be 
taken into account by the implementers. 

Another  protocol [38], which we shall call ZG-3, tries to 
avoid the si tuation in ZG-1 where B follows dilatory tactics 
and delays in replying to A's initial request. Specifically, 
the protocol 's developers argue (but  see § 3.6 below) tha t  as 
A can submit  the message key to the T T P  only following 
B 's  reply, B can impose a delay tha t  can a t t r ibute  to A 
(who cannot  prove t ha t  it was owing to B). The protocol 
proceeds thus: 

NRO = sSA(fNRO, TTP,  B,  M)  
N R S  = 8STTP(fNR$, A, B,  TS, L, NRO) 
N R R  = sSB(fNaa,  TTP,  A, L, NRO) 
NRD = SSTTP(fJVaO, A, B,  TD, L, NRR) 

1. A-"* T T P :  fNRo, TTP,  B , M ,  NRO 
2. A ~ T T P  : fNRs, A , B ,  Ts,  L, N R S  
3. T T P " *  B : A ,L ,  NRO 
4. B "-* T T P  : f~vRa, L, N R R  
5. B ~ T T P  : L , M  
6. A ~"* T T P  : fNaD,TD,L,  NRR,  NRD 

Ts is the t ime the  T T P  received A's submission, while TD is 
the t ime M is made available to the  public, and hence to B. 

The protocol may fail in step 3. At  t ha t  step B receives 
NRO. The protocol defines s K ( X )  simply as "digital signa- 
ture of message X with the private key K" .  If the  signature 
allows message recovery then B can get M, which is the 
plaintext, and then  abor t  the protocol without  committ ing 
to anything. The  signature algori thm should not  allow that .  

I t  is possible t h a t  these points would not  escape the imple- 
menters '  notice and appropriate care would be taken. Unfor- 
tunately, as the development of cryptosystems abounds with 
organisational and implementat ion blunders this cannot  be 
taken for granted. It  is best to lean on the  cautious side and 
identify such implementat ion details so as to minimise any 
related risks. 

Be careful with implementat ion details. This is noth- 
ing new in fact. I t  is known tha t  in cryptosystems, 
as elsewhere, the devil is often in the details. Non- 
repudiation is no exception. 

3.4 Formal Verifications Highlight Assump- 
tions 

On the one hand,  "quite a few protocols which have been 
'proved' secure have been successfully attacked" [5], and in- 
formal design principles for protocol design have been enun- 
ciated [35, 5, 1]. On the  other hand,  informal principles, 
like the ones presented here, are no silver bullet [32]. The 
si tuation need not  be antagonistic. I t  is possible t ha t  formal 
verifications can highlight assumptions t ha t  merit our at ten-  
tion. Indeed, "perhaps the benefit which [logic] brings is as 
much from forcing us to th ink  clearly about  what  is going 
on than  from any intrinsic mathemat ica l  leverage" [4]. 

ZG-1 has been formally analysed using two different ap- 
proaches. Both analyses have verified the  protocol. Their  
proofs are not oriented towards the principals'  beliefs (as, 
for example, in proofs of authent icat ion protocols), bu t  of 
a judge's beliefs regarding what  the  principals have or have 
not  done. 

One analysis was performed using CSP, i.e., "an abstract  
language designed specifically for the  description of commu- 
nication pa t te rns  of concurrent systems components tha t  
interact throngh message passing" [29]. The other analysis 
employed the  SVO logic [33], an offshoot of BAN logic [16, 
17], itself a many-sorted modal  logic. It  was carried out  by 
the  protocol's original developers [41]. 

In a given system, safety properties specify what  the sys- 
tem is allowed to do, or equivalently, what  is not  allowed to 
do; liveness properties specify what  the  system must  (even- 
tually) do [26]. Wi th  this in mind, "the CSP modelling 
reveals an aspect of non-repudiat ion unusual for a security 
property. Most security properties are safety (trace) prop- 
erties, essentially t ha t  nothing bad (a breach of security) 
should happen at any stage. In the  case of the protocol de- 
scribed in this paper, some of the aspects of non-repudiation 
involve liveness as well as safety. For example, the evidence 
tha t  A collects does not  guarantee t ha t  B has in fact re- 
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ceived the message, but  it does guarantee t ha t  the message 
must  be available to B" [29]. 

The notion of availability also emerges when using SVO. 
It is asserted as a premise tha t  TTP said (A, B, L, K) D 
A said (A, B, L, K) A B received (A, B, L, K) which means 
tha t  if the TTP has made K available, it follows tha t  this 
K had come from A and tha t  B has received it. 

A similar s ta tement  is made in the  CSP model: 

NRR(tr, X) = 

evidenee.A.sB(ft~nn.A.L.C) in tr 

A evidence.A.sT(fcoN.A.B.L.K) in tr 

=~ B sent sB(fNan.A.L.C) 

A ftp.B. TTP.(ST(fco~v.A.B.L.K)) f~ X 

This means tha t  the evidence of B 's  receiving C and T's  
making K pubfic implies t ha t  B has sent the former and 
tha t  the ftp operation to get K does not fail, i.e., K is 
available to B. The implication is defined to be the NRR. 

Regarding the SVO premise, in the proof it is noted tha t  
it, along with some other premises made there, "axe closely 
related to the protocol features and not so intuitive in the 
framework of the SVO logic. We should be prudent  when 
producing such kind of premises since the soundness of the 
reasoning will be in doubt if their  t ru th  is based on improper 
assumptions" [41]. It is clear tha t  this premise does not al- 
ways hold. Specifically, the  second conjunct does not hold 
automatically; it will hold eventually, when (if) the protocol 
terminates. The fact tha t  it is asserted as a premise means 
tha t  the soundness of reasoning is based on the assump- 
tion tha t  K ' s  availability implies receipt. Along the same 
path, the CSP proof, while it notes tha t  "there is no guar- 
antee tha t  all of the messages have actually been received 
by B by the t ime A presents the evidence" [29], defines non- 
repudiation of receipt through availability. 

In bo th  approaches, therefore, the proof is carried through 
by assuming tha t  availability can be used to establish re- 
ceipt. In practice, of course, there is a difference between 
something being available, or something being possible, and 
something having actually been acquired, or having actually 
been performed. Still, if the assumption is acceptable, the 
protocol can be accepted as well. If not, perhaps a protocol 
with different assumptions would be more appropriate. 

Formal verifications highlight assumptions. By cast- 
ing a protocol in a formal framework they state ex- 
plicitly premises tha t  may be noteworthy. 

3.5 Be Careful with Practical Improvements 
Protocols may be modified in order to make them more 
amenable to practical implementation. Such optimisation, 
however, can be at tended by untoward consequences. We 
give some examples below. 

3.5.1 Practical Improvements: ZG-3 
We have already noted, in § 3.3, tha t  ZG-3 was proposed to 
deal with some perceived practical deficiencies in ZG-1; and 

tha t  it may fall depending on the  signature algorithm used. 
There is yet another  hitch in this protocol. 

In ZG-3, the unique label L is generated by the TTP, not 
by A, to identify the  message M,  and it is not contained in 
NRO. There is no way then to distinguish between copies of 
NRO for the same recipient, message and thi rd  party. The 
adjudication process only states t ha t  "B can use NRO to 
verify the message M obtained at  Step 5. Wi th  NRO, B 
can also prove t ha t  M originated from -4' [38}. This leaves 
room for two interpretations. 

First, tha t  if B can present M,  L1, NRO and M, L2, NRO, 
where L1 ~ L2, it will be held t h a t  A sent M twice. Unfor- 
tunately, A might have sent it only once. B could present 
as much evidence as wished and prove tha t  A has sent it 
as many times as wished. Even if the adjudication involved 
a TTP which could show otherwise---provided it had kept 
a record of all past t ransac t ions- - i f  B can impersonate A 
in the first two steps, she could carry out  all the protocol 
by herself by using a previously acquired NRO (principal A 
signs nothing else). In short, ZG-3 confers an undue advan- 
tage to B,  allowing her to falsely ascribe a communication 
to principal A. 

Second, tha t  if B can present M,  L1, NRO and M, L2, 
NRO, where L1 ¢ L2, it will be twice held t ha t  A sent M. 
Tha t  is, two judgements  on the same fact. Unfortunately, 
A might have actually sent M twice. In short, ZG-3 confers 
an undue advantage to B, allowing her to falsely repudiate 
a communication from A. (Note t ha t  in bo th  cases, and in 
fact always, L1 ~ L2: Ls axe unique in order to prevent 
selective receipt by B.) 

To be fair, the protocols developers do not assume tha t  ZG-3 
is immune to such abuse. But  they do not  mention anything 
relevant in their  assumptions. Moreover, ZG-1 and ZG-2 are 
immune. 

3.5.2 Practical Improvements: ZG-4 
The involvement of the  th i rd  party in ZG-1 can lead to bot- 
tlenecks. A variant  of the protocol (which we shall call ZG-4) 
involves the third party only in dispute resolution [39]: 

EO0 = sSA(fsoo, B, L, C) 
EOR = sSB(f  EOR, A, L, C) 
EOO-K = SSA (IEoo.K , B, L, K) 
EOR-K = SSB(fEOR.K, A, L, K) 

1. A - * B :  fEoo,B,L,C,  EO0 
2. B - -*A:  fsoR, A,L, EOR 
3. A .--* B : fEoo .g ,B ,L ,K ,  EOO-K 
4. B --* A : fEOR_K, A, L, EOR_K 

If A does not  get message 4 from B then steps 3-5 of ZG-1 
are performed--ZG-4 reverts to ZG-1. In essence, A sends 
K directly to B in step 3. If confirmation fails to arrive it 
is acquired by way of the TTP. 

The protocol's developers show tha t  adopting a deadline on 
the t ime tha t  the TTP offers K to the public (as in ZG-2) 
breaks fairness [39]. Suppose tha t  B receives K in step 3, 
but  does not perform step 4. Then  A must  submit  K to the 
TTP before the  deadline, but  if there are communication 
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problems she cannot  be sure t ha t  it will be done on time; in 
which case B gets the bet ter  of her. 

3.5.3 Practical Improvements: ZG-5 
ZG-1 rests on the validity of digital signatures. It  is impor- 
tant  to ensure tha t  digital signatures are not compromised, 
or the protocol will be breached. One way to guarantee 
the validity of digital signatures at  a given point in t ime is 
by employing a t rusted t ime-stamping authori ty to validate 
them; this, however, increases the number  of messages tha t  
have to be exchanged. ZG-1 has been modified to demon- 
s trate  another, more efficient way (we shall call the resulting 
protocol ZG-5) [36]: 

EO0 = sSA(fEoo, B, L, C) 
EOR = sSB(f  Eon, A, L, C, EO0 ) 
sub_K = sSA ( f  SvB, B, L, K, EOR, CertB ) 
CO?%-K : SSTTP (fcoN, A, B, L, K, EOR, T) 

1. A--~ B : fEoo,B,L,C,  EO0 
2. B --* A : rE.on, A, L, EOR 
3. A--~ TTP : fsuB,B,L,  eVTTP(K),EOR, CertB, 

sub_K 
4. B *-* TTP : fCON, A, B, L, K, T, con_~ 
5. A ~-* TTP : f coN ,A ,B ,L ,K ,T ,  COn-J( 

Here all evidence is chained, and the two public key cer- 
tificates for the signatures of A and B, Certa and CertB 
respectively, are checked only by the TTP before issuing 
con_K. T is a t ime s tamp for the t ime tha t  the TTP checks 
the message key and makes it available in the read-only di- 
rectory, eVTTp(K) is K is encrypted with the  TTP's public 
encryption key to prevent eavesdropping: B could eavesdrop 
in step 3 and then revoke her signature having obtained bo th  
K,  which would have been in plaintext, and C. 

Suppose tha t  A signs EO0 with the key of a revoked cer- 
tificate Cert~ and then proceeds to sign sub_If with a valid 
certificate CertA. Later in the protocol the TTP will check 
CertA--but not EOR or EOO--before issuing con_K. Prin- 
cipal A cannot  deny sending the  message, since she has 
checked EOR, which contains EO0, before step 3: an adju- 
dicator will rule t ha t  A has sent it. But  A can tu rn  this to 
her advantage. 

In the adjudication process [36], A or B will present the ad- 
judicator with M, C, K, L, T, Cert'A, Certm EO0, EOR, 
and con_K. The adjudicator will use Cert'A to check EO0, 
and will accept i t - - i f  she cannot  check, from the material  
provided, the  validity of Cert~ at t ime T; in fact no such 
check is envisaged in the  adjudication process, and CertA is 
not present in any message in the protocol. Tha t  Cert~ is 
not valid at  the  t ime of the dispute is irrelevant, as the 
dispute may arise after the  certificates have expired. In 
this way, though, the lifetime of Cert'A is surreptitiously ex- 
tended, and t ha t  can lead to problems. If Cert'A had been 
granted to A for a limited period, e.g., A can sidestep the 
expiry. 

3.5.4 Practical Improvements: ZG-6 
Another  protocol has been proposed as an improved version 
of ZG-1. The protocol, which we shall call ZG-6, adds ex- 

plicit t ime limits and encrypts K for increased privacy [25]: 

NRO= sSA(fNaO, B, L, T, C) 
EOR = sSB (fNnn, A, L, T, T1, C) 
sub-K = 8SA(fSuB, B, L, T, K,~b) 
con-K = sSTTP ( f CON , A, B, L, T, To, K~b ) 

1. A ~ B : fNao,B,L,T,C,  NRO 
2. B- -*A:  fNna, A,L, T1,NRR 
3. A--* TTP : f suB,B,L,T ,  Ks~b,sub_K 
4. B ~-* TTP : f coN,A ,B ,L ,  To, Ks~b, con_K 
5. A *-* TTP : f coN,A ,B ,L ,  To, K,,b, con_K 

To ensure privacy, A, instead of sending K,  sends K~b,  
from which B, using her private key, can retrieve K - - t h a t  
is, a Diffie-Hellman public key distr ibution scheme is intro- 
duced [21]. To get around t iming problems, A, in step 1, 
suggests a t ime limit T. Then  B, in step 2, suggests an- 
other t ime limit T1 < T. The idea is t ha t  A must  perform 
step 3 before T1, and B can perform step 5 at  any t ime be- 
tween T1 and T. To is the t ime K_sub is made available by 
the  TTP; during the  adjudication process the  adjudicator 
checks t ha t  To < T1 < T. 

Suppose B suggests a T1 < To. This can happen because 
the TTP has no knowledge of T1. B is still able to perform 
step 4, retrieve Ksub, and then  argue t ha t  the  protocol run  
was invalid. The adjudicator will concur, since To < T1 < T 
is a requirement in the  adjudication process. And it  cannot  
be otherwise: a protocol cannot  be valid with T1 < To < T 
and 7'1 meaning tha t  B can get Ks~b at  any time between 
To and T. 

The evolution from ZG-1 to ZG-6 is a series of improvements 
on previous protocols, improvements such as adding t ime 
information, adding privacy, and creating evidence more ef- 
fectively through chaining. We saw, however, t ha t  intro- 
ducing new features or mit igat ing previous snags can create 
new, unanticipated difficulties. There  is a well-known dic- 
tum in Software Engineering t ha t  smoking out  bugs often 
introduces new, nast ier  ones so t ha t  it is one step forward 
and one step back [15]. Tha t  dictum could inform research 
on cryptographic protocols as well. 

Be careful wi th  practical improvements. I t  is tempt ing 
to develop a theoretically sound protocol and then  t ry  
to make it more practical for use in specific settings. 
It  is possible tha t ,  in the  process, problems will be 
introduced. 

3.6 Beware of Model Twisting 
It  is impor tan t  to keep in mind during protocol develop- 
ment t ha t  model twisting is not equivalent to flaws fixing. 
A protocol is acceptable or unacceptable on its own terms 
(i.e., the assumptions and model i t  proposes); if the  terms 
don ' t  do for a specific situation, the  protocol is incompatible 
with tha t  situation; but  it is neither wrong, nor flawed. The 
choice between different terms is evident in protocols ZG-4 
and ZG-5. 

In ZG-4, it is noted tha t  ZG-1 "is suitable for situations 
where two parties want to involve a t rusted th i rd  party in ev- 
ery protocol run",  while ZG-4 "is suitable for environments 
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where the two parties normally will resolve any communi- 
cation problems between themselves and rely on a t rusted 
third party only as a last recourse" [39]. This is a mat ter  
of choice between competing alternatives based on different 
models, not something tha t  can be decided on correctness. 

In ZG-5 it is argued tha t  the  problem of establishing and 
maintaining signature validity in ZG-1 hampers efficient im- 
plementation [36]. This may well be so; but  it is not a 
problem with ZG-1 per se, which simply assumes valid sig- 
natures, but  with the means whereby signature validity can 
be guaranteed. 

No pitfalls as of yet. But  come ZG-3, it is noted tha t  in 
ZG-1 "the originator can only submit  the message key to 
the T T P  after obtaining the reply to its commitment  from 
the recipient. The originator would not like to take the 
responsibility of late submission caused by the the recipient's 
late reply"; hence ZG-3 is offered [38]. We have again a 
choice between different models. The recipient's delay is not 
a problem for ZG-1, as ZG-1 will work correctly no mat ter  
how much time the recipient takes to respond. Whether  
this will do for the originator, is a different mat ter- - indeed,  
a mat te r  for choosing another  protocol. 

Unfortunately, the  reasoning in the previous paragraph is 
wrong. ZG-1 has been surreptitiously twisted. There is 
nothing in ZG-1 to inhibit  A from performing step 3 without 
waiting for step 2 (cf. § 3.2). I t  is true tha t  A would normally 
wait for B ' s  response; nevertheless it by no means follows 
tha t  A must wait for B ' s  response. 

Consider, finally, ZG-6. It is argued tha t  ZG-1 is unfair, 
and tha t  keeping K unencrypted can cause privacy prob- 
lems [25]. The argument goes against the assumptions made 
in ZG-1. ZG-1 is made unfair by twisting its model in var- 
ious ways: a t ime limit is introduced to guard against the 
pernicious effects of a combined network failure and a prin- 
cipal bungling her part;  then the protocol is shown to be 
unfair to B if A can disrupt communications between B and 
the TTP.  None of this can happen if the original assump- 
tions made in ZG-1 hold and the two principals do not play 
against themselves. Moreover, as we saw in § 3.3, cryptog- 
raphy in ZG-1 is not used for privacy, but  for establishing a 
communication channel. The criticism on privacy problems 
is therefore irrelevant. 

The reasoning followed in ZG-3 and ZG-5 is scientifically 
unsound. Protocols can be twisted to exhibit undesirable 
features, and other protocols can be introduced to alleviate 
them; yet this does not do justice to the original protocol 
and i t  provides a dubious service to the new one. 

Beware of model twisting. Twisting a protocol in or- 
der to build a case for a new one is not sound, scien- 
tifically or logically--and is no fair play. A protocol 
can be judged on its assumptions, compared to other 
protocols for its assumptions, but  it carmot be anal- 
ysed on assumptions different than  the ones it actually 
pledges for. 

3.7 Treat Adjudication as an Integral Part of  
the Protocol 

The interaction between cryptography and judicature may 
be discordant, and we should not  expect engineering to solve 
legal problems [6]. If this is t rue for cryptography in gen- 
eral, it is particularly per t inent  to non-repudiation. Even 
the terminology employed in non-repudiation points to the 
relevance of legal mat ters  to the  issue: principals collect ev- 
idence t ha t  can be presented to a judge. It is implied tha t  
engineering will be called to solve a legal problem, and the 
case will be decided according to the  adjudication process 
described. 

The adjudication process, therefore, should be conceived as 
forming par t  of the  protocol. In view of the relation between 
engineering and judicature, problems or vagueness in the ad- 
judication process should not  be taken any more lightly than  
problems in the protocols themselves. For a given protocol, 
the adjudication process proposed should be deterministic. 

All this is reason for examining it in detail. Whenever we 
made references to it, we referred to the exact procedure de- 
scribed in the original publication, accepting tha t  protocol 
analysis should include adjudication analysis. If problems 
during the adjudication process are identified, the problem 
is not solely with the protocol; a change in the  adjudication 
may instead be warranted. For example, the adjudication 
process of ZG-5 might be made to include a check of CertA 
at t ime T (cf. § 3.5.3); in general, in a protocol tha t  uses 
certificates, those certificates are par t  of the  evidence and 
certificate evaluation has to be covered explicitly by the ad- 
judication rules. Also, the  adjudicator of ZG-1 might require 
from T T P  to confirm tha t  the  network connection with the 
t w o  principals would not have hindered their  performance of 
steps 4 and 5 (cf. especially the possible problems of B in the 
discussion on the untimely adjudication process in § 3.1). 

Unfortunately, even a well-designed, deterministic adjudi- 
cation may run into problems as what  is technically sound 
may not  necessarily curry much favour in a legal process [6]: 

Lawyers are well aware t ha t  the  use of tech- 
nical evidence, and in particular computer ev- 
idence, is fraught with  difficulty. Most judges 
have a background in the humanit ies ra ther  than  
the sciences, and may be more than  normally 
technophobic; even where these feelings are du- 
tifully suppressed, experienced and otherwise in- 
telligent men can find it impossible to under- 
s tand simple evidence. The author  has observed 
this phenomenon at  a number  of computer trials 
from 1986 down to the  present, and has often felt 
tha t  no-one in court had any idea what  was go- 
ing on. Specialist computer  lawyers confirm tha t  
this feeling is not uncommon in their  practice. 

Worse, there may be specific points in a protocol tha t  can 
render themselves as conduits for deliberate obfuscation. 
Let us loosen the discussion a bi t  and speculate on possi- 
ble candidates. 

Is it possible for A to be commit ted to a message she does 
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not know? The issue can be followed through the  protocol 
trail. In ZG-1, A never signs the original message. She signs 
the encrypted message; it is in step 3 tha t  A commits to a 
message she knows (this is in general; the situation may be 
different, depending on how L is chosen--recall  § 3.1). Then, 
in ZG-5, A signs neither the original message, nor the actual 
message key, which is now encrypted; it is only in step 5, 
when she retrieves the confirmed key from the TTP, t ha t  A 
commits to M. Finally, in ZG-6, A can commit to a message 
she has no means of retrieving, i.e., knowing. According to 
the protocol, if SA and s s  are the secret keys of A and B, 
their  public keys are pA ~- gsA mod p and pB ----- gss mod p, 
where p and q are large primes with p = 2q + 1 and g a 
primitive element over GF(p). For the key distribution, A 
generates a random number  r (0 < r < p - 1) and computes 
K ---- p~ mod p and Ks~b -~ gr rood p; B can then retrieve 
K = K : ~  = g~SB mod p. I t  follows tha t  if A does not  know 
the discrete logarithm of Ks~b, she commits to a message 
she cannot  know. This can easily happen: A might just  
pick, or be passed, a value for Ka~b and send it. 

If a principal can commit to a message she has no means 
of knowing, the question becomes whether this can be ac- 
ceptable in practice. This will depend on the particulars of 
the specific appl ica t ion--and it will, ultimately, be a mat ter  
of matching protocol features, which must  be understood 
thoroughly, with application requirements, which must  be 
established carefully. 

As a last point, controversy can result from the combination 
of the two protocols in ZG-4. It  is mentioned tha t  "if A does 
not send message 3, the protocol ends without  disputes. If A 
cannot  get message 4 from B after sending message 3 (either 
because B did not receive message 3 or because B does not 
want to acknowledge it), A may initiate . . .  the recovery 
phase". There is a contradiction here. If B does not receive 
message 3 she can rightfully assume tha t  the protocol has 
ended without  disputes; while A, not  receiving message 4, 
can rightfully assume tha t  the protocol has not terminated,  
but  t ha t  the recovery phase is to be initiated. I mag ine tha t  
A does initiate it, B gets the key and then, following the  
above, argues t ha t  no protocol run has taken place. 

Although this is admit tedly pure speculation, one might take 
advantage of exactly this  sort of niceties to cause a judicial 
process to flounder. It might be prudent  to guard against 
such bones of contention. For example, if proof of dispatch is 
equated with proof of origin, or if knowledge of the  message 
contents is taken for granted, this should be set out in the 
protocol's assumptions. In this way, if two principals em- 
bark on a protocol run  accepting its assumptions, the above 
~roblems cannot  stand. 

Treat adjudication as an integral par t  of the protocol. 
Adjudication should be well defined and deterministic, 
and guarantee a single yes or no answer for each set 
of input. Protocol analysis should include adjudica- 
t ion analysis. Unfortunately, one should be prepared 
for when even a correct adjudication process fails in 
practice, as technology and judicature do not always 
make a perfect couple--fleshing out possible bones of 
contention might help. 

4. CONCLUSIONS 
Non-repudiation is special in t ha t  the  scope of the system 
is particularly wide, as it encompasses agents (e.g., judges) 
outside the communication exchange. Get t ing a protocol 
right involves taking account of a great many potential  loop- 
holes, not  solely technical. 

If there is a common thread running through guidelines pro- 
posed he re - - a  recta-guideline, as it were---it is the  value 
placed on making assumptions explicit. Assumptions should 
always be explicit, and in non-repudiat ion all the more so. 
Non-repudiatlon can be seen as a contract,  whereby the par- 
ties engage verifiably in some exchange: in this metaphor,  
when contract signing is complete, a principal has completed 
her part  for the  other principal 's acknowledgement. As in all 
contracts, everything rests on the  terms; and these should 
be clearly and openly set. 

i 

Assumptions should always be explicit. The  terms of 
a non-repudiation protocol should be set out  clearly 
in the  open. 

i 
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