
[KG951 S. Ketchpel and H. Garcia-Molina. Making trust ex-
plicit in distributed commerce transactions. Stanford
Digital Library Project Working Paper SIJX-WP-
1995-0018, October 12, 1995.

pMS93] 3. B. Lacy, D. P. Mitchell, and W. M. Schell. Gyp-
tolib: Cryptography in software. In Proceedings of
the 4th USENIX Security Workshop, pages 1-17,
October 1993.

PMm41 M. Luby, S. Micali, and C. Rackoff. How to si- _.
multaneously exchange a secret bit by flipping a
symmetrically-biasedcoin.In Proceedings of the 25th
IEEE Symposium on Foundations of Computer SC&
ence, pages ll-21,1984.

[NBS931

[MN931

Secure Harh Standard. National Bureau of Stan-
dards FE’S Publication 180, 1993.

G. Medvinsky and C. Neuman. NetCash: A design
for practical electronic currency on the Internet. In
Proceedings of the 1st ACM Conference on Com-
puter and Communications Sew&y, pages 102-106,
1993.

[Ped92] T. Pedersen. Non-interactive and information-
theoretic secure verifiable secret sharing. In Ad-
vances in Cryptology-CRYPT0 ‘91 Proceedinggs
(Lecture Notes in Computer Science 576), pages
129-140, Springer-Verlag, 1992.

[FE951 Ft. Rivcst and A. Shamir. PayWord and MicroMint-
Two simple micropayment schemes. Manuscript,
1995.

[VV83] U. Vazirani and V. Vazirani. Trapdoor pseudo-
random number generators, with applications to pro-
tocol design. In Proceedings of the 24th IEEE Sym-
posium on Foundations of Computer Science, pages
23-30, 1983.

(Yao86] A. Yao. How to generate and exchange secrets. In
Proceedings of the 27th IEEE Symposium on Foun-
dations of Computer Science, pages 162-167,1986.

[ZG96] J. Zhou and D. Gollman. A fair non-repudiation pro-
tocol. In Proceedings of the 1996 IEEE Symposium
on Security and Privacy, pages 55-61, May 1996.

A Fair on-line purchase

In this appendix, we describe a variation of our exchange
protocol for making electronic payment. To be consistent
with the literature on payment protocols, we will adjust our
terminology. A customer C wishes to purchase a secret key
Kv initially held by a vendor V, using an electronic payment
protocol with an on-line authority A. We assume that all
three parties know a one-way function f on the keyspace (of
the form described in Section 3), and that initially C knows
f(Kv). At the end of the fair purchase, in addition to the
security properties required for basic electronic payment, the
following will be true:

1. If all three parties are honest, then C learns Kv, and
V is credited for the purchase.

2. If C and A are honest, then V will not be credited for
the purchase unless C learns Kv.

3. If V and A are honest, then C learns nothing useful
about Kv unless V is credited for the purchase.

4. If C and V are honest, then A learns nothing useful
about Kv.

Again, we henceforth assume that at most one of C, V,
and A misbehaves, as the properties above require nothing
otherwise.

Our protocol requires that C be able to generate an au-
thenticator UC(~) for a message m such that on-line author-
ity A can authenticate m as having come from C without
receiving it directly from C. If C possesses a private key and
A knows the corresponding public key, then cc(m) could be
C’s digital signature on m. If A and C share a PIN that is
unique to the customer, and if C possesses a public key for
A, then uc(m) could be the encryption of PlNllmunder d’s
public key.

The protocol operates as follows:

1. C chooses a random y (in the domain of f) and sends

c+v : Y> f(y), WV), 4f(~)IIfWv))

2. When V receives

Yl %PlY

it computes o = Kvy-l and sends

V+d : ~,%P,r

3. A verifies that

l @ = F(z,a), and

l a and /3 came from C (using 7)

If so, A sends an acceptance message to V and will
subsequently give z to C upon direct request, e.g., after
C identXes itself to A using its private key or PIN.
Otherwise, A sends a rejection message to V.

4. V notifies C of A’s decision or if V timed out on A. If
A accepted, then V sends KV to C.

5. If C does not receive Kv (i.e., a value consistent with
f(Kv)) from V, it requests the missing share z from
A, from which it can reconstruct Kv.

This can be incorporated into many electronic payment pro-
tocols without increasing the number of flows among the
participants, e.g., zXP and NetCash. When incorporated,
A would verify the conditions for ordinary acceptance of a
purchase, in addition to the test in Step 3 above.

We now argue that this protocol meets our goals. If V
misbehaves, then this will lead to rejection by A unless z is
indeed the missing share of the key that the customer wants.
In this case, C can claim this missing share z from A. If
C misbehaves, and the purchase is rejected, then it learns
no relevant information about KV from either V (who only
responds with the standard rejection of the underlying pur-
chase protocol) or A (who will not reveal m after rejection).
If C misbehaves and the purchase is accepted, then C will
only learn information that it has paid for. Lastly, if A mis-
behaves, it will never learn anything useful about Kv, as it
never receives y.

7

‘i

l certified mail: fair exchange of a message and possibly a
non-repudiation of origin token against a non-repudiation of
receipt token,

l contract signing: fair exchange of signatures on a contract,
and

l payment with receipt: fair exchange of a payment for a
receipt.

For cerfijied mail, most practically relevant protocols are of the
same type as those in the IS0 documents: they involve a third
party even in the exception-less case [e.g., Ford 94, Grim 93.
Herd1 95, Herd2 95, ZhGo 981. In cryptologic protocols for
certified mail [Blum 82, Gold 82, BaTy 941, the goal is to achieve
fairness without a third party, which necessarily implies a
probabilistic definition of fairness [EvYa 801. It is achieved by
the gradual release of secrets over many rounds: during each
round, some knowledge about the message and/or the tokens are
revealed. If either party stops before the protocol run is
complete, both parties are left with comparable knowledge and,
if one assumes comparable computational capabilities, both are
able to computationally recover their respective expected items
of information (message and/or non-repudiation tokens) to the
same extent.

Contract signing without a third party can also be based on the
same gradual release of secrets approach [EvGL 851: the
signatures on the contract are released gradually. Assuming that
both parties have similar computational capabilities, both parties
are able to reconstruct the signed contract to roughly the same
extent at any time during a protocol run. Another approach is the
gradual increase of privileges [BGMF? 901 in which the
probability that the contract will be deemed valid is increased
gradually over several rounds until it is “1” in the last round.
This removes the requirement that both parties have similar
computational capabilities. A contract signing protocol which is
similar to our instantiation of the generic protocol has been
proposed by B. Pfitzmann in [Pfit 951.

Due to their gradual approach, cryptologic protocols for certified
mail or contract signing are expensive with respect to
communication and computation: the knowledge or privilege is
increased gradually and the probability of success and the
fairness is related to the number of messages exchanged
between originator and recipient.

practical protocols for payment with receipt are normally not
described as separate protocols which are independent of the
payment mechanism used but rather included as receipt
mechanisms into specific payment systems [BGHH 951. In [PWP
901, Pfitzmann et al. described a protocol for fair exchange of
payment and receipt where the “bank” generates a receipt in
case the payee refuses to do so. Biirk and Pfitzmann [BLIPf 90)
extended this to a protocol for payment for receipt where a third
party is only involved in case of an exception. Our protocol can
be considered as a generalisation of the protocol of [BOPf 901.

3. A Generic Protocol for Fair
Exchange

3.1 Service Description for Fair Exchange
A two-party exchange exchanges electronic goods between two
participants, 0 (for “originator) and R (for “recipient”). We
consider three types of electronic goods: confidential data,
money (payments), and signatures on public data. In order to
start an exchange, each party X (one of 0 and R) has to input the
following parameters:

1. item, the item X wants to send’.
2. descr, a description of item,, detailed enough to identify all

important properties of the item to the person receiving it.
For example, the description of contract can be the text of
the contract.

3. expect,(descr,, descr,) a predicate which formalises the
expectation of a participant. It evaluates to true if the user X
is satisfied when receiving an item described by dcscr, in
exchange for an item described by descr,.

4. fits(descr, item) a predicate which evaluates to true if the
description fits the item. This predicate cannot be evaluntcd
automatically for some types of items. For cxnmplc, n
computer can check if the value transferred in a payment is n
$20 whereas it is not practical to check if a picture depicts n
sunrise. For those types of items whose descriptions cnnnot
be checked automatically, the human user may be prompted
whether he likes the item received. Alternatively, if tho user
discovers a mismatch after the protocol run is completed, he
can be allowed to use the evidence generated during tho
protocol to raise a dispute at a human arbiter.

In Section 4.1, we list possible choices for descr nnd fits0 for
different types of items. The service outputs to each party X

1. item, the item X has received from the other participant Y,
and

2. descr, a description of its promised properties.

The service also results in some evidence, including non-
repudiation tokens. The user can retrieve the evidence from tho
system and use it to prove properties of the exchnngo to nn
arbiter. In case of a dispute, a dispute protocol is cxccutcd
between one participant of the exchange in the role of the prover
and any other (honest) player in the role of the arbiter:
depending on the exchange protocol and the property to bo
proven, additional participants in the exchange may nlso be
required to participate in the dispute in the role of witnesses.
Input to the dispute protocol are the statement to be proven nnd
the evidence output by the exchange protocol. Exnmple
statements that can be proved are:
l A given party sent a given item (Non-repudiation of origin)
l A given party received a given item (Non-repudintion of

receipt)
l The complete exchange took place (Non-repudintion of tho

exchange)
l The parties agreed on what to exchange

3.2 Protocol Description

We propose the generic fair exchange protocol shown in Figure
1 to Figure 3. It exchanges different types of data with non-
repudiation of origin and receipt. It is based on nsymmctric
cryptography, namely, an arbitrary digital signature schcmo with
the necessary certification infrastructure, a collision-frco one-
way function h(). and a commitment scheme consisting of n
procedure cam&() to commit to an item nnd apcn() to verify if
an opened commitment fits an item. We require from the
commitment that

. nobody can change its contents without invalidating it, nnd

. nobody can get any information about its contents unless
the committer explicitly opens it.

1 The item may also be input at a later stage: for cxnmplo, a
certain party may decide to spend the effort of putting its
item together only after the other party hns committed to
the exchange (or perhaps after actually receiving the item
’ m the other party).

We assume that recipients of signatures or outputs of the one-
way function check their validity even though we do not depict
it in our figures. The protocol is not symmetrical. It guarantees
only weak fairness for the originator if no item exchanged is
revocable or generatable. Otherwise, and for the recipient,
strong fairness is guaranteed.

initiation message. Each party, P, has a pair of public and secret
key of a digital signature scheme. For a message m, sign,(m)
denotes the digital signature of P computed on m. We assume
that m and a return address (potentially anonymous) of the
signer can be retrieved from sign,(m) in order to allow T to
contact the signer. This can be achieved in any signature scheme
by appending the anonymous address to the text to be signed.

Let 0 denote the originating party that initiates the protocol, T
the third party that ensures fairness, and R the recipient of the

T 0

In: itemo, descro, expectof)

R

In: itemR, dt?SCQ, f?xp?CtR()

m2 := s@R(o, h(ml), h(YR), h(rR), comR, deSCrR)

m3 := itemo, keyo

m := itemR, rR,keyR

Figure 1 Optimistic Protocol for Exchange with Non-repudiation of Origin and Receipt (NRO and NRR denote non-repudiation
of origin and receipt, respectively. Thick arrows denote sub-protocols)

9

-

We use a synchronous timing model by assuming that there
exist global rounds which include the time needed for
transmission and processing of messages. We define an overall
maximum time limit, active-time f, up to which a run of the
protocol can remain active. The state of the run at the end of the
active-time is final. We assume that only the connections
between each party and T is reliable. In practice this can be
implemented by a variety of ways:

. choosing a much higher time-out than for other
connections, or

. falling back on comparatively more reliable media for
communicating with T (e.g. from a connection over a
packet-switched network, one can imagine falling back to a
dial-up connection, and then to a dedicated line), or

. actually “visiting” a real arbiter such as a court.

This would result in three phases: fist, the parties try to
exchange the items without a third party, then they try a
recovery with a third party, and finally, each computer outputs
all evidence and any participant may visit a court.

Figure 1 depicts the generic exchange protocol. The basic idea
of the protocol is that the originator 0 and the recipient R start
by promising each other an exchange of items (two flows). If
they do not agree on the exchange (e.g., the price of the goods)
the protocol is aborted. Otherwise they proceed to exchange the
items along with non-repudiation tokens (three flows). Sending
certain items (e.g., a payment) may require a sub-protocol
containing several messages. Potential involvement of sub-
protocols is represented by the use of a thick grey arrow. If no
exception occurs, the protocol only consists of these five flows
and does not involve T. This is the case if 0 and R are willing to
perform the exchange, and the network is functional’. If this is
not the case, 0, R, and T start an error-recovery phase. Recovery
initiated by 0 is depicted in Figure 2. Recovery initiated by R is
depicted in Figure 3. The initiator of the recovery phase will
send T the messages of the initial agreement with the other
Party.

We now describe the protocol depicted in Figure 1 to Figure 3 in
detail. To start the protocol, each party inputs the service
parameters as described above. Message m, fixes O’s view of
the parameters. It contains the following items:

. which third party Tis to be used in case of an exception,

. an address of the recipient R,

. hvo commitments to the random values yO, and r0 in the
form of images of the one-way function h().

. the active-time limit I (see Section 3.3).

. the description descr, of the item, and

. a commitment corn, to the item computed using the
commit(j procedure of a cryptographic string commitment
scheme, where possible.

The commitments to the random values are used to save
signatures by committing to a value x with one signature and
later releasing it to authenticate an additional message.
Naturally, these authentications can also be replaced by signing
the messages with any given signature mechanism. This enables
the protocol to produce non-repudiation tokens in a given format
signed with a given signature system. In the protocol, y0 can
later be used to signal in a non-repudiable way that the third
party T is to become involved, rO for non-repudiation of receipt
(NRR) to signal that 0 received item,, respectively.

2 This includes the case that any lower-layer error-recovery
of the network was successful.

The commitment corn,, is used to provide non-repudiation of
origin (NRO) for the item. If the item is “intangible” (e.g. a
payment), it is not possible to construct a commitment to it.
However, the sub-protocol used for sending such nn intangible
item may itself provide an N’RO token, making it unnecessary to
provide a separate one. If an MO token is still necessary, ono
can leave the commitment empty, i.e., just fix the description
and authenticate the non-repudiation of an item matching it by
releasing key,. Whenever the transfer of an item in a round (og.
m,) involves a sub-protocol, the additional information
necessary for the NRO token is sent in an additional message

If R does not agree with the exchange parameters after having
received m, from 0, it aborts. If it agrees, it sends m, containing
a commitment to the item to be sent together with its description
and some commitments to random values. With nrz, R
acknowledges that it will send its item after having received 111,
containing the item it expects. Again, three pre-images are fixed
for the same purposes as in m,. If R sends m,, both partics have
agreed on the exchange and the protocol continues.

0 sends its item, and opens the commitment by sending its key,
R checks that the commitment contained this item and checks if
the description fits. R then sends its item and pre-image for the
NRR token together with its key to open the commitment. If 0
does not receive the message or if the item does not fit the
commitment or its description, it starts its recovery procedure
(Figure 2). Otherwise, it sends the pre-image for the NRR token.
If this pre-image is not received by R, R starts its recovery
procedure (Figure 3). If no fault occurred, both participants store
their items and non-repudiation tokens and the protocol ends.

Recovery for 0 includes the following steps: in cas_e 0 does not
receive what it expects in m,, it sends a message m containing
the initial agreement to T and authenticates the wish to involve T
by revealing yO. T checks the message and then provides a
reliable channel between 0 and R via T through which 0 can
replay m, to R as a first attempt (how to replay sub-protocols is
examined in more detail in Section 3.7). R is then expected to
reply with m,. If the item in the replay of m, fits the description
or the commitment and R nevertheless does not reply, T is
convinced that R does not follow the protocol since we assumed
that the network connection between T and R is reliable It can
therefore issue an affidavit m, in the form of a signed statement
certifying that all the messages and items fixed in iii were
actually sent to R within the specified time (note that all
messages in the protocol, including the affidavit, are implicitly
tied to the timestamp t which is included in m,). It is presumed
that the affidavit can thereafter be used as evidence or to initiate
revocation or replacement of an item. If R does reply with
message m, to T, T can forward it to 0. The protocol can then
continue or R can ask T for message m, constituting the NRR
token for R together with the messages of the initial agrccmcnt,

In case R does not receive m, after having sent m,, it can engage
in a similar recovery. Due to the asymmetry inherent in the
protocol, T can in fact provide R with a strong fairness
guarantee: R never sends the item it promised unless it has
already received the item promised to it; Also, T can generate a
replacement for a NRR token on behalf of 0 if 0 did not
respond during recovery for R.

It is useful to identify when a protocol run is considcrcd
“completed.” From the point of view of a party P, if a run of the
protocol outputs the expected items (and non-repudiation
tokens), then the protocol run is considered completed for P.
The items already output to an honest party at the completion of
a protocol run will not be invalidated. If the other party Q
initiates a recovery afterwards, then the messages P has to send

during this recovery is not part of the earlier protocol run
anymore (it is either just a replay of some message flows from

0 T

m :=m m2, YO
ä

the earlier run or proving properties of it). At the end of active-
time limit, the protocol is definitely completed for all parties.

R

,......::......:.:......:.......::......:......:.:......:...............:::,....... :‘..~.~~..... ~.~ :...,:::......ii;....
i. . . . /Y..+::...:... ,.:.:. :.:+z::

L&gj& &&&j ~j$@?@g$~$@g~~# &pq :
.::.. ::: ““‘..:~.,.. ‘Q’.:.:. .‘.:.‘+: :,:,: :., ..,.,:,:, ,~,: .,.,.,,:,. ((,_ :..;

: : ::... 1 I, . . . :.:: 2.. :::. :........-..::..:;:: ::::. : :.:2: x:::. ..: ..:..+. :...::+. .z.::::.

retransmit m3, observable by T

mT := sigr@(z)) or sign~‘c~c&‘, h(G))

Figure 2 Recovery for 0

0 T R

4
m 3721, i?Z2, YR

m
+

Figure 3 Recovery for R

3.3 Time-outs

The only critical time-out of the generic protocol in Section 3
we have mentioned so far is the active-time limit t specifying the
absolute time at T when the protocol ends. This time-limit
ensures a consistent view of all honest participants. The state at
time t is not changed afterwards: after this time everybody (and
R in particular) will be sure that the status of an exchange is
definitely final and will not be changed anymore. We express t
in terms of the local clock at T since T is the only entity that
makes decisions based on the active-time limit in a way that has

an impact on the correctness of the protocol from the point of
view of other entities: if T will not accept recovery requests
after a certain time t’, i.e., if T decides that a recovery request
came too late, no fairness may be provided to the party
requesting recovery. In practice however, both 0 and R have to
know the time on T’s clock in order to agree on the active-time
limit as well as to compute local time-outs within rounds.
Hence, we require a model in which clocks of all parties are
synchronised (i.e., all parties have real-time clocks, and the
differences between all local clocks of honest parties are limited
by a constant).

11

To allow the parties to determine a reasonable active time, each
party in the role of T will announce an estimated turn-around
time t, within which it will process exception requests from
other parties.. T will also have a policy pr, expressed as a
function of t (variable, chosen by the parties of an exchange)
and tr (constant, chosen by T) which indicates the time after
which Twill not accept exception-handling requests from 0 or
R. For example, pr may be t-24. All pending exceptions must be
processed by time t.

In addition to these, each party has to decide on local time-outs
after sending out critical messages. A critical message is one
such that if it is sent, an appropriate response must be obtained
or, if such a response does not arrive, some alternate action must
be taken instead of simply abandoning the protocol run. In the
case of 0, m, is a critical message. In the case of R. m, is
critical. In the case of T, the retransmission of the messages sent
by 0 or R to each other via Tare critical messages.

When 0 sends out m,, it will start a local timer to determine
when it should invoke T by sendingz. The value r0 of this
time-out should be computed based on several factors: the
overall active-time limit that was agreed upon earlier, the time
that has passed since the protocol run has begun, and possibly
expected network latency and processing delay at R’s end. The
exact computation can be at best based on some rules of thumb.
R has a similar time-out Z~ For example, if 0 sends out the
critical message m, at time instant t’, and it estimates that the
expected communication delay between it and T to be t,, then
the estimate for 20 will bep,.(t,t,)- rw If 0 prefers to use a safety
factors in its estimate, 5 becomes t’ + (1-s)(p,.(t,t,)- t, - t’).

Similarly, T has to decide on a time-out ‘tr value for the period
starting from the instant m, was replayed vra T to R to the instant
when T decides to issue an affidavit.

In general, every protocol step that is based on whether a
response was received or not (the [time-out] conditions in the
protocol pictures), a specific time-out value needs to be
computed.

3.4 Requirements
We now give the requirements for the originator 0. The
requirements for the recipient R can be obtained by exchanging
0 and R. For each requirement, we fist list the set of parties
which are assumed to be honest and are expected behave
correctly (a party is considered to misbehave if it does not
respond to a critical message that is valid):
I. Unforgeability of Non-repudiation Tokens

A. If 0 and Tare honest, nobody other than 0 can create a
valid non-repudiation token of 0.

II. The Role of the Third Party.
A. If T and 0 are honest, T does not create affidavits in the

name of 0.
B. If T and 0 are honest, T creates affidavits in the name

of R, if R does not behave correctly.
III. No Unconditional Trust in the Third Party

A. If 0 is honest, no non-repudiation token or affidavit can
be produced by Twithout O’s part of the initial
agreement.

IV. Meaning of Non-repudiation Tokens
A. If an arbiter A, T, and 0 are honest and a non-

repudiation of origin or receipt token for an item is
output to 0, then 0 can convince A that R sent or
received the item, respectively.

B. If an arbiter A is honest and no non-repudiation of
origin (or receipt) token for an item is output to R, then
R cannot convince A that 0 sent (or received) the item

12

V. Weak Fairness of Exchange
A. If T and 0 are honest and if 0 does not receive

everything necessary to satisfy its expectations, namely
l NR tokens,
l the committed item or an affidavit from T
then R does not get any of
l any additional knowledge about the item sent by 0

except its description,
l or a NR-token,
l or an affidavit.

VI. Strong Fairness of Exchange
A. Strong fairness is the same as weak fairness except that

an affidavit does not satisfy the expectations.

In Section 3.5, we will argue in an informal manner that our

protocol meets the requirements of weak fairness for 0 nnd
strong fairness for R. If the item promised by 0 is revocable or
that promised by R is generatable by T, strong fairness can be
achieved for both participants.

3.5 Security
Now, we describe informally why our protocol meets the
requirements listed in the previous section.

Unforgeability of non-repudiation tokens follows from the
assumptions that:
l The signature scheme is secure (this implies security of

certification, too), and
. the item cannot be changed without invalidating the

commitments.

The fist two requirements on the role of the third party (7) state
that T will not create affidavits and replacement items in tho
name of a correctly behaving party but can do so in the name of
an incorrectly behaving party. When T is invoked it first checks
to see if the party invoking T did in fact send out a critical, valid
message. For example, if 0 invokes T, T fist checks to see if
the commitment messages (m, and m,) are in order, linked by the
inclusion of h(m,) into m,, and that the complaint is about a
critical message of 0, namely m,. If m, is valid, then only R
could have created it given our assumptions about the security

of the digital signature scheme. Therefore, if T decides to replay
m, to R, then R must have committed to the protocol. Since the
channel between R and T is assumed to be reliablo, R is
guaranteed to receive T’s replaying of m,. Thus, once R reccivcs
the message containing the valid item, all of its expectations
must have been met. If R is behaving correctly, it can reply with
m,. and Twill not send an affidavit (or a replacement item) in

the name of R. T generates replacements only if it receives no
response from R; but since we assumed reliable communication
this happens only when R is misbehaving.

If R invokes T, T can check that m, and m, are in order and rolny
m, to 0. At this point, all of O’s expectations must have been
met. Therefore, if 0 does not release r, to complete the NRR
token, T can issue a replacement NRR token to R since it is clear
that 0 does not behave correctly.

No unconditional trast in the third party T is required since both
messages m, and m, containing the name of T must be included
in any valid non-repudiation token or affidavit issued by T, i.e.,
if the party never successfully participated in nn initinl
agreement, no valid token or affidavit can be produced by any
Party.

The intended meaning of the non-repudiation tokens follows
from the facts that:
. non-repudiation tokens are unforgeable,

item
descr
expect(J checks:

fds0

conf. data public data
data data
text data
text data
may ask user descktem?

payment
payment of amount to payee
amount, payee
amount, payee
query the payment system used.

Table 1 Different Types of Items

. a replacement token issued by T on behalf of 0 or R is
equivalent to a token issued by 0 or R respectively, and

. a judge will use the same “test” for the validity of non-
repudiation tokens that a recipient of the token applies
during the course of the protocol.

Weak fairness of exchange for 0 follows from the fact that if 0
does not receive everything it expects, then either 0 did not send
out m, (in which case only the description of the item has been
revealed to R) or if message m3 was sent without receiving the
expected item and the NR-tokens, then T issues an affidavit. In
both cases, O’s requirements are met.

On the other hand, assume that R received an affidavit instead, T
was required to replay all expected items to 0 through the
reliable channel provided by T before issuing the affidavit. This
is a contradiction to our assumption that T is honest and 0 did
not receive everything it expected.

Strong fairness of the exchange for R follows from the facts
that:
l R never releases the item it promised unless it has received

the item it wants along with the NRO token for it, and
. if 0 fails to release the pre-image necessary to complete its

NRR token (rJ, T will provide a replacement token to R
according to the requirements on the role of T.

3.6 Weak vs. Strong Fairness

During the analysis of the protocol, we stated that weak fairness
is provided to 0, whereas strong fairness is always provided to
R. However, strong fairness can be provided to both parties, if at
least one item can be revoked or if T can replace it without
cooperation of its sender, i.e., the affidavit issued by T can be
used to

l resoke or canceI the item already sent by 0 if it is revo-
cable.

l generate a replacement for the item promised by R if it is
generatable.

If only one of the items has one of these properties this
asymmetry can be taken into account in deciding which party in
the fair exchange plays the role of the originator 0: if the
participant sending a revocable item acts as the originator or if
the participant sending a generatable item acts as recipient,
strong farrness is guaranteed by our protocol. If both items are
neither generatable nor revocable, we can only guarantee weak
fairness and one may therefore rather use an exchange protocol
with an on-line third party.

Revocability can be achieved in cooperation with the bank for
most payment systems: for example, using a credit card payment
system with cancellation or using two-showable coins [BiiPf 90,

PWP 90. Jakol 951. It is not practical if the non-repudiation
tokens have a meaning outside the protocol (e.g., so called
“public data.” See Section 4). Both participants would be
required to participate in an arbitration, since an issued token
may have been revoked. Generatability or revocability can be
added to confidential data by depositing the data at a third party
which automatically releases it after the active time of the
protocol. By showing an affidavit, this release can be prevented.

13

Similarly, to add generatabiity, this party will only release the
data if a proper affidavit is shown to it.

3.7 Transfers Involving Sub-Protocols

Sending certain items such as payments may involve sub-
protocols. When T is invoked after an exchange T must be
convinced that the receiver really got the item before issuing
affidavits. In order to convince T there are several possibilities:

0 the item can be sent to T who checks it and sends a similar
item to the receiver,

l the protocol can be re-run while all messages are sent via T,
or

l the protocol may have the following properties:
. they are atomic: in case of interruptions they either

recover to complete the protocol run or roll back to the
state before starting it, and

. they have the ability to produce evidence that proves
that a protocol run did in fact complete.

We call such protocols well-defined. If a sub-protocol is
well-defined, then a party using it in an exchange will need
to invoke T only when it has proof of protocol run
completion that can be shown to T. To handle the exception,
T makes sure that the proof is valid, show it to the other
party. If the other party does not oblige, T issues an
affidavit. In other words, there is no need to replay the
protocol run.

Note, that any protocol where T can check if the item was
transferred given the transcript of all messages can be extended
to a well-defined protocol by sending critical protocol messages
with non-repudiation. However, this will not be possible for
arbitrary protocols without extending them. Counterexamples
include protocols where messages are encrypted with the
recipient’s public key and the corresponding private key is not
known to T.

The problem of enabling T to verify sub-protocol is not specific
to optimistic exchanges: during an on-line-exchange T also
needs to be able to check what has been transferred. However,
the requirements on the sub-protocol for the optimistic approach
are slightly stronger than for an on-line arbitration since it
requires two “tries” for transferring the item: after trying to send
an item directly, on-line arbitration must still be possible to
enable recovery by T.

-- -.-.~____-_ _ _ -- -. -

public data

conf. data
payment

public data
contract signing

Table 2 Examples of Exchanges

4. Exchangeable Items
We now describe the items which can be “plugged” into the
generic protocol and the resulting exchanges.

4.1 Types of Items

In the generic fair exchange protocol described in Section 3, we
used item and descr to represent the real data to be exchanged.
We now describe different data types to be exchanged; namely
public data, confidential data, and payments:
l confiden&zl data: some data which will be released during

the protocol described by an optional text, examples include
digital goods and messages,

l public data: data which may be released even if the protocol
execution has not been successful, for example information
which has already been known to both communication
partners, lie contracts, and

0 payments: a payment protocol is executed to transfer a value
from payer to payee.

Each type has specific descriptions. A summary is given in
Table 1. Note, that in all cases a participant receives non-
repudiation tokens.

Confidential data is some data which must not be released
without receiving the item to be exchanged for it. It may be
valuable data, such as computer software or just certified mail.
If the recipient of confidential data has certain expectations,
such as for images or programs, the protocol must check if these
expectations are met. Since the data itself cannot be checked,
one needs additional information to verify this agreement on the
exchange. Therefore the initial agreement fixes a description to
enable the recipient to check if it agrees on the description of the
item to be received. However, the sender may still send data
which does not fit its description. As countermeasures, thefits
predicate may be evaluated interactively. In any case the parties
may later dispute non-electronically if the data fits the
description at a human arbiter.

To illustrate the distinction between description and data, we
consider a fair purchase of computer software. The buyer would
lie to buy a text processor. The buyer inputs a description like
“Name, Version, Year, Word Processor for OS/2. Number of
kB, provides at least the following features: . ..” which he has
received in the offer from the seller. During the fair purchase the
protocol compares this text input by the buyer with the text
signed by the seller together with the commitment on the
program data. If the descriptive texts are not equal, the buyer
aborts. Later, the buyer checks the program and if the program
does not execute under OS/2, he may invoke an arbiter which
may decide on the dispute.

Public data is some data where the only purpose of the protocol
is the fair exchange of non-repudiation tokens for it. The data
itself is either known to both parties or may be released even in
the presence of faults. Examples are contracts. the text of
receipts or binding descriptions of confidential data. Note that
even if the exchanged public data is empty (e.g., in exchange for

conf. data
certified mail

exchange of goods

payment
payment with
receipt
fair purchase
currency exchange

confidential data during certified mail), a time-stamp and non-
repudiation tokens are generated nevertheless.

A payment is the transfer of value from one party to the other,
Depending on the type of payment system used, pnymcnts are
revocable, i.e., during a certain time, the third party is able to
cancel the payment, or generatable, i.e., the bank may enforce a
bank transfer given the amount and the accounts of payer and
payee.

4.2 Exchanges

The resulting exchanges are listed in Table 2. The officicncy
improvements are mainly based on the omission of obsolete
messages depending on the minimal service needed. The datn
types described above can be plugged into the generic oxchnnga
protocol. Some optimised protocols for the resulting possible
exchanges are identified in Section 5. The timestamp I is
directly or indirectly included in all messages of the protocol.
Therefore, using a timestamp in an exchange is cffcctivcly tho
same as using an empty item.

5. Optimised Protocols for Fair
Exchanges
We now give optimised protocols for specific instantintions of
the generic protocol.

5.1 Certified Mail
This is the problem of sending an electronic mail and being nblo
to prove the receipt of the mail to third parties afterwards. This
is one of the services provided by existing non-repudiation
standards [ISOI. lSO2,lSO3].

5.2 Fair Purchase
Fair purchase is the problem of a fair exchange of payment for
on-line delivery of goods such as the result of a database query
or a program. In the protocol, the fist hvo messages dcfino tho
goods and price. The third message is the payment from 0 to R.
The fourth message is the delivery of the goods. If the goods arc
not delivered in time, 0 would resend the payment vin T which
would ask R to resend the goods. If R does not do so within
some time, Twill issue an affidavit which can be used to unda
the payment.

6. Acknowledgements

We thank Birgit Baum-Waidner, Birgit Pfitzmann, and Michael
Steiner for valuable comments and discussions. This work was

partially supported by the European Commission and tho Swiss
Federal Department for Education and Science in the context of
the ACTS Project AC026, SEMPER; however, it represents tho
view of the authors only. SEMPER is part of tho Advanced

Communication Technologies and Services (ACTS) rescnrch
program established by the European Commission Directorate
General XIII. For more information on SEMPER, sco
http:llwww.semper.orgl.

14

- _-
.-I___-_

._ __
__- . _ __--. -- -- -

_-- :

,;

In: payment, amount, description In: goods, desc, price

;: _ . .,. .,. . . .,. :: .G’,‘. .:,:‘,‘,,’A... ..:.. . .
$iYlhoose ra- ax2yd;~~*y~~e~~r~~ .;
+T ; ._ z I..” ; ..,<..;.,:2pfij,$
. . __ _.._____ :::_ :.:.:..1.:: ____.., k :;: . . . f:.........:~........~

ml := signo(T, R, h(oo), h(ro), h(yo), t, amount)

m2 := signf@z(ml), h(n), ComR, desc)

m3 := payment, oo

m4 := goods, rR

:.:,‘:,;;:~,:,::~.~,~,~.:~1’:~~~.’.””’:.:.: -y-B

$&;:;@~@q@ @&;,fyg
Cf... _.. i . . . : ; ..i:.. : :+::.: ..A.

i -
i& ~&qqy~::, 1. :: ::j _

l

�._ _.__.._..... __i I m :=ml, m2, y0
l

retransmit m4 :;

mT := sigrh(%md’, h(ii%))

out:goods, (m2, key,?, comR ,ii?)

Figure 4 An Optimistic Protocol for Fair Purchase based on Payments on Hold.

Out: payment, (ml, od

15

Sender(O)
In: mail

Receiver(R)
In:-

m2 := sipR(h(ml), h(rR))
i. aclaw m rmdomiy”
i . . .

m3 := (mail, key0)

,.,_ : 1, ,. .,.,.. 11,1. I.

m := t-R

z :=ml, m2, m3, y0

;: ,.,...........

,
1 OUt: (ml, m2, T-R) or (ml , m2, md 1 1 Out: mail, (ml, kqo, cOm0) I
I I I I

Figure 5 An Optimistic Protocol Certified Mail with Non-repudiation of Origin and Receipt.

7. References
AsSW96b N. Asokan, M. Schunter, and M. Waidner,

Optimistic Protocols for Multi-Party Fair Exchange, IBM
Research Report RZ 2892, IBM Zurich Research Laboratory,
Ztirich, December 1996.

BaTy 94 Aliieza Bahreman, J. D. Tygar: Certified Elec-
tronic Mail; Proc. Symposium on Network and Distributed
Systems Security, Internet Society, February 1994.3-19.

BGHH 95 Mihir Bellare, Juan A. Garay, Ralf Hauser, Amir
Herzberg, Hugo Krawczyk, Michael Steiner, Gene Tsudii,
Michael Waidner. iKP - A Family of Secure Electronic
Payment Protocols; Proc. First USENIX Workshop on
Electronic Commerce, New York, July 1995.

BGMR 90 M. Ben-Or, 0. Goldreich, S. Micah, R. L. Rivest:
A Fair Protocol for Signing Contracts; IEEE Transactions on
Information Theory 36/l (1990) 40-46.

Blum 82 Manuel Blum: Coin Flipping by Telephone - A
Protocol for Solving Impossible Problems: digest of pnpcrs
compcon spring 1982, February 22-25.133-137.

BiiPf 90 Holger Btirk, Andreas Pfitzmann: Vnlue Exchnngo
Systems Enabling Security and Unobservability; Computers &

Security 9/8 (1990) 715-721

DeMe 83 Richard DeMillo, Michael Merritt: Protocols for
Data Security; Computer 16/2 (1983) 39-51.

EvGL 85 Shimon Even, Oded Goldreich, Abrnhnm Lempel:

A Randomized Protocol for Signing Contrncts;

Communications of the ACM 28/6 (1985) 637647.

EvYa 80 Shimon Even, Yacov Yncobi: Relations Among
Public Key Signature Systems; Technical Report no. 175,
March 1980, Computer Science Department, Tcchnion, Hnifn,

Israel.

FIPS 180 Secure Hash Standard; Federal Informntion
Processing Standards Publication 180 (FIPS PUB 180), May
11,1993.

1
16

. , ‘(~. -:---- _--_- - --___ -- ._, -- - ... - - yy ._ i ___--_- F - --- ._ .C,’ _ . I’ .-’ .’ -,, -.- _ ,, ”

Ford 94 Warwick Ford: Computer Communications

Security - Principles, Standard Protocols and Techniques;

PTR Prentice Hall. Englewood Cliffs, New Jersey 1994

Gold 82 Oded Goldreich: A Protocol for Sending Certified

Mail; Technion - Israel Institute of Technology, Computer

Science Department, Technical Report, 1982.

Grim 93 Rtidiger Grimm: Non-Repudiation in Gpen

Telecooperation; 16th National Computer Security

Conference, September 20-23, 1993, Baltimore Convention

Center, Baltimore, Maryland, 16-30.

Herd1 95 S. Herda: Nichtabstreitbarkeit (Non-repudiation):

Stand der Standardisierung; Trust Center, Grundlagen,

Rechtliche Aspekte, Standardisierung, Realisierung, DuD

Fachbeiwage, Vieweg, Wiesbaden 1995,271-282.

Herd2 95 Siegfried Herda: Non-repudiation: Constituting

evidence and proof in digital cooperation; Computer Standards

&Interfaces 17 (1995) 69-79,

IS01 ISO/IEC JTC l/SC 27 N 1105, 2nd ISO/IEC CD

13888-1, Information technology - Security techniques - Non-

repudiation - Part 1: General Model

IS02 ISO/IEC JTC l/SC 27 N 1106, 2nd ISO/IEC CD

13888-2, Information technology - Security techniques - Non-

repudiation - Part 2: Using symmetric encipherment

algorithm

IS03 ISO/IEC JTC l/SC 27 N 1107, ISO/IEC CD

13888-3, Information technology - Security techniques - Non-

repudiation - Part 3: Using asymmetric techniques

Jako195 Markus Jakobsson: Ripping Coins for a Fair

Exchange; Eurocrypt ‘95, LNCS 921, Springer-Verlag, Berlin

1995,220-230.

Rabi 83 Michael 0. Rabin: Transaction Protection by

Beacons; Journal of Computer and System Sciences 27/ (1983)

256-267.

Pfit-95 Birgit Pfitzmann: Contract Signing, Unpublished

Manuscript, Uni Hildesheim, 06/08/95.

PWP 90 Birgit Pfitzmann, Michael Waidner, Andreas

Pfitzmann: Rechtssicherheit trotz Anonymihit in offenen

digitalen Systemen; Datenschutz und Datensicherung DuD

14/5-6 (1990) 243-253,305-315.

Tedr 85 Tom Tedrick: Fair Exchange of Secrets (extended

abstract); Crypt0 ‘84, LNCS 196, Springer-Verlag, Berlin

1985,434-438.

ZhGo 96 Jianying Zhou, Dieter Gollmann: A Fair Non-

repudiation Protocol, 1996 IEEE Symposium on Research in

Security and Privacy, IEEE Computer Society Press, Oakland

1996,55-61.

