BLUEFIN SPECIFICATION
Revision 1.0.0

Abstract

This specification documents a secure and reliable interface that allows storage management
systems to identify, classify, monitor, and control physical and logical resources in a
Storage Area Network.

Partner Development Process (PDP)
1060 El Camino Real, Suite E
Redwood City, CA 94062-1645
Phone (650) 556-9380
Fax (650) 556-9385
www.PartnerDevelopment.org
pdpadmin@PartnerDevelopment.org

Copyright © 2001-2002, Partner Development Process

Bluefin Specification

PDP Membership

(As of May 2, 2002)

BMC Software, Inc. Hitachi, Ltd.

Brocade Communication Systems, Inc. IBM

Compaq Computer Corporation JNI Corporation

Computer Associates International, Inc. Prisa Networks

Dell Computer Corporation Q-Logic Corporation

EMC Corporation Storage Technology Corporation
Emulex Corporation Sun Microsystems, Inc.
Gadzoox Networks, Inc. VERITAS Software Corporation

Hewlett-Packard Company
Dedication

Dedicated to the memory of Ross Jeynes. His enthusiasm and dedication will be remembered by us all.

DOCUMENT HISTORY

Date Version Description
02 May 2002 Revision 1.0.0 Final PDP Specification (Bluefin)

Intended Audience

This document is intended for use by individuals and companies engaged in developing, deploying,
and promoting interoperable multi-vendor SANs through the PDP organization.

Document Status

This document represents confidential work in progress and should not be distributed or copied
without authorization by the Partner Development Process. It is intended to provide a baseline for
the construction of the first widely embraced industry standard for SAN management and for
eventual submission to the Storage Networking Industry Association or similar standards
organizations.

Disclaimer

The information contained in this publication is subject to change without notice. The Partner
Development Process makes no warranty of any kind with regard to this specification, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Partner Development Process shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this specification.

Copyright

Copyright © 2001-2002 Partner Development Process. All rights reserved. All other trademarks or
registered trademarks are the property of their respective owners.

Typographical Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [Network Working Group, 1997].

Bluefin Specification Version 1.0.0 Page ii of 303

Bluefin Specification

Table of Contents

TABLE OF CONTENTSooosiiomiiieeiieese s 1
TABLE OF TABLESoooooiiiiiie et XV
TABLE OF FIGURESccoooiiiiiiiee sttt XVII
CLAUSE 0: INTRODUCTION ...cuccoummrummncmmmsnensmssessssssesssssesssssesssssssssssesssssssssssssassesssssesssssssssssssssssessssssseses 21
0.1 PREAMBLEeutitiuietiietetettetett ettt etestetes et et e s et et e tes et et e et es e s en e et e st esen e eseseese s es et es et es et eneesene et ene et eb et esesenennens 21
0.2 BUSINESS RATIONALocuiiitiitetiitetieteeietetetestetetetestesesteseeseseeseseesessesessesessesessesessesessesesseseesessesessesessesessesans 21
0.3 INTERFACE DEFINITIONcteteuieteuietenteseseesesesessesessesessesseseneesessesensesessesessessssessssessesensesensesensesessesessesessenens 21
0.4 TECHNOLOGY TRENDS ...c.ocveutiteutetetetetesessesesesessesessessssessesessesessesassesessessssessssessssessesessesessesessessssessssesessesens 24
0.5 MANAGEMENT ENVIRONMENTcvetitetiiereseresseseeseseesessesensesessesessesessessssessesessesessesessessssesessessssessesesseseses 25
0.6 ARCHITECTURAL OBJIECTIVEScccttttttertttruteetteteenttenteesutteeeenseesteesueesuseesteenseesseesusesasesaseenseesseesseesseenseenses 26
0.7 DISCLAIMERcuiuietiuietitesteseseesessesestesessesessesessesassesessessssessssessssessesessesessesessesessesessessssessssessssessesessssessssesensens 27
CLAUSE 1: BLUEFIN OVERVIEW. ... cueeeueessmersmsnessssnesssssesssssessssnsssssssssssessssnesssssssssssesssssessssnesssanes 29
1.1 BASE CAPABILITIES ...ueutetiutetiteseetesteteseeseseesessesesesessesessesessessssessasessesensesessesensesessesessessesensssensesensesensesenseseses 29
1.1.1 OBJECT ORIENTED ...cettirtteriteriteeieenttenttesitesuteeteeteebeesbeesueesaeeeateeteesbeesbeesasesaneeaneenbeenbeenseesanesaseeseennes 29
1.1.2 MESSAGING BASED ...cviuiiiiiieiiietiietisieesietestest sttt eteseetessesesetassesessesasseseesesessessesessesassesessesesesessesesseseas 32

1.2 CAPABILITIES OF THIS VERSIONeeiittteittterttertteenteesntteesueeesasteesseesseeesnseessssesssseesnseesssesssssesssseesssseesnes 32
1.3 OPERATIONAL ENVIRONMENTc.0euitetiietiitetesseseeseseesessesessesasesessesessessesessesassesessessssessssessssessesessesessesessens 33
1.4 USING THIS SPECIFICATIONccueutrueueerentesessesesesessessesensesessesessesessesessessesessesensesessesessesessessssensesensesessesensens 34
1.5 LANGUAGE BINDINGS......coietiitetiiteiiitesietesietetetesetessesessesesseseesessesessesassesessesassesessessssessesessesessesessesessesesseseans 34
CLAUSE 2: TRANSPORT AND REFERENCE MODELccccovnnniiinniiiinnnniiisnnniimosnsisossssisssssssssssssssses 35
2.1 INTRODUCTIONviutetinieriseseeseseesessesestesessesessesessesessesassesessessssessesessesessesensesessesessessssessssessssessssessesesessesensans 35
2.1.1 LANGUAGE REQUIREMENTSc.ccueuiiteuirteuietenietentesetesesteseeseseasesesseseesensesessesessesessessasensesensesensesensesensens 35
2.1.2 COMMUNICATIONS REQUIREMENTSc0eviuteteriereeerisesesesessessssessesessesesesassessssessssessssessesessesessesensns 35
2.1.3 XML MESSAGE SYNTAX AND SEMANTICSceittertteruteruteeteenteenteeniteateenseesseesmeesssesnseesseesseessesssessseenses 35

2.2 TRANSPORT STACK . ..eeteertteruteriteeteenteenteesttesuteeteeseesseesseesmeesattenteenteesteesaeesasesatesseebeesseesssesantenseenseenseenseens 36
2.3 REFERENCE MODELoveuiitetiitetietesiesesiesetesestesesesessesessesessessssesassessesessesessesessesessesssessssessssessssessesessesessesens 37
2.3. 1 OVERVIEW ..cutiiitiiteiteeite ettt et estte sttt et et e sheesae e st e s bt e bt e bt e saeeeat e eat e e bt e bt e sbeesateeabeenbeenbeeseeeaneenneen 37
2.3.2 ROLES FOR INTERFACE CONSTITUENTScuviveutetestesissesesesessesessessesessesessesessesessessssessssessssessesessesessns 37
2.3.2.1 CLIENE. .1ttt ettt ettt e ettt e ettt e ettt e e e s bt e e e eetbeeeeeattaeeeeasseeeeaasseeeeasssseeeanssaeeeansssseessssesansseeeesssreeans 37
2.3.2.2 AN oo e e e e e e e et e ——— e e e e e e e e e ——araaaaeeeittaraaaaaaaaann 38

Page iii of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

2.3.2.3 ODBJECE MATLAGEY ...t eee et e e e e e e e et eeeeeeeeeeetaaaaeeeeeeeeeenassereeaeeeeerreeeens 38
2.3.2.4 | eTe] QLY F=0 6 P Ve USSR U U PUPUR 38
2.3.2.5 | DT oy oA 1<) 4 =) oS 38
2.3.3 PEER-TO-PEER ACCESS (CASCADED CLIENTS)....ccceiettteeeiurreeeasrreeeesrreeessssseeessssseeesasssseessssseesesssseesens 38
CLAUSE 3: OBJECT MODELcoiiiiiiniinniniinieiseisssisssessesssissississssssississstsssessssssssssssssssssssssssssssesss 39
3.1 MODEL OVERVIEW (KEY RESOURCES) ... euveveteteeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeseueeseeeeseaeeseeseseseseeseseeseseeseneeseennens 39
3.1.1 INTRODUCTION TO CIM UML NOTATION.......ccoiiiiuiiiiiiiiiiiiiiiiiiiieieiee et 39
3.2 TECHNTIQUES . vt eueeeeeeeeee e e e e e e et e e e e e et e e s et esee et eeeeee e e e eeeeeeeeeeeee e e e e e e e et eeeeeee e e e eeseeeeeeseeeeeeeeeeeeeeasaneeeseeaeanes 40
3.2.1 CIM FUNDAMENTALSociiiiiiiiiiiiiiiti ittt ea st sa e ee e 40
3.2.2 MODELING PROTFILESuttttttuuttustetesssssessssseresssssssssssssssssssssssssesssssersss...s..............—.—.—.———————————————————————— 43
3.2.3 DURABLE NNAMES ...oiiiiiiiiiiiiititeeeeeeeeittteeeeeeesettttaeeeeesessaetstasssaeeesiasssssssssaassssssssssssseaessassssssssssseesansnses 44
3.2.4 EVENTS — CIM INDICATIONSccoiiuiiiiitiiiiiiiiiieiei ettt ens e 46
3.2.4.1 BaCKGTOUN.......ouiiiiiiiiieee e e e e e e e e e e e et bbb raeaaeeearrraaeeas 46
3.2.4.2 LS R b Te S TeT: N o) s 1= T 46
3.2.4.3 Indication RIETArCIYccciiiiiii e e e e et e e e e e eraaee s 48
3.2.4.4 Agent/Provider ConSIAEIationSooeevureeiiieeeeieeitteeeeeeeeeeeeieeeeeeeeeeeeeeararreeeeeeeeesrrrereeeeeeens 49
3.2.4.5 Client ConSIAETALIONS ...eevueiruiiriiriieieerieertte ettt ettt sttt et e bt et e st st et e beesbeesaeesateenneenneeas 50
3.2.4.6 REQUITEIMEIIES et e nnnnnnnnssnnnnnnnn 51
3.2.4.7 Implementation ConsSideratiOnS.cccueeieeeeiiieiiiieeeeeeeeeeeeciereeeeeeeeeeeerrreeeeeeeeeeeirrreeeeeeeeeensannnes 51
3.2.5 DEVICE CREDENTIALS.....ccctttittettentteniterteetteteenieesaeeeeeteseenteesteesaeeesseeteesseesanesaseenreenseenseessseenseenseensees 51
3.3 PROFILES iiititiiiee e e ettt e e e e e ettt et e e eessaettaaeeeeeeaaasssesssasaaseaaasssssssaeaeesssssssssssseeeessassssssssseeesasssssssenseesenns 51
3.3.1 PROFILE CONTENTcoiiiiiiiiiiiiiitiitiitc ittt ea st ea e n s eaesa e eeea 51
3.3.2 FABRIC ...ttt e e e e e et et e e e e e e e e e tbtabeaaeaeeeasssbtabasaaaeesaasssaraaaeaeeeaasssreaaaaeeesnnssses 52
3.3.2.1 FaDTIC TOPOLOZY wevveeeieiieeeeeeeee et e e et e e e e e e ettt a e e e e e e earrraeens 52
3.3.2.2 SIWIECIES 1.ttt ettt ettt e e bt e s ab e e e bt e e e et e e bt e e sbbe e eteeeabeeebae s 56
3.3.2.3 /) 011 o =TT U 59
3.3.2.4 ROUBEYS ...ttt ettt e e et ee e et e s et e s e e e 62
3.3.2.5 EXEEIAET «..eeiiniieeeiee ettt ettt st e b s bt e et ebbeesabee s 66
B.3.8 HOSTS ..ttt ettt h e bt sat e et e bt e bt e bt et sttt e shaesaneeteen 69
3.3.3.1 HOSE BUS AAPLEIS cooiiiiiiiiiieeeee e e ettt e e e e e et e e e e e e e e eeaataeeeeaeeeeeeneraeeens 69
3.3.3.2 Host Discovered RESOUTCEScocuiiiiiiiiiiiiiieee ettt ettt 72
Bluefin Specification Version 1.0.0 Page iv of 303

Bluefin Specification

3.3.3.3 Management APPLIATICEveeeeeiiieiiiiiiieeee e eeecce e e e e eeecre e e e e eeeeeeareeeeeeeeeeeeetareeeeeaeeeeennanns 79
3.3.4 STORAGE SYSTEMSuuttttiiiieiiiiiitreeeeeeeaiiiittreeseeeesiasisssssseeesesissosssssesssssassosssssssssssssssssssssssssssssssssses 82
3.3.4.1 | DT AN 2 = TSRS 82
3.3.4.2 TAPE LIDEATY ..ottt e ettt e e e e e e et a b e e e e e e e eeeetbabaeeaaeeeeeaasssaeeeaeeaaneeees 106

3.4 CROSS PROFILE CONSIDERATIONSuuutttirteeeeeeiiittrrreeeeeeeaiassssssssessesssasesssssssssesesssssssssssssssssmssssssssssessenans 121
3.4. 1 OVERVIEW ..ottt a et a st ee e a e b a s sa e ea e ea e 121
3.4.1.1 HBA MOGEL.niiiiiiieiee ettt ettt et ettt e sab e bt e sat e s eesabesbeee e 122
3.4.1.2 SWILCR IMOAEL ...ttt sttt et b e sttt et 122
3.4.1.3 ATTAY IMOAEL...ooiiiiiieiiiiieeeee ettt e e et e e e e e e e et e e e e e e e e e eeeeabtaaeeeaeeeeeeaateaaaaeeaan 123
3.4.2 FABRIC TOPOLOGY (HBA, SWITCH, ARRAY) ..uvvveieieeeeeeeeiieeeeeeeeeeeeeeaeeeeeeeeeeeeeaeeeeeeseeseeensnseneeeseeeeenns 124
3.4.3 DURABLE IDENTIFTERSuutttiittteeeineutittteeeesessunnereeeessssssmssssseeessssssssssssseessssssmsssssesesssssssssssssesessssns 124
3.4.4 STORAGE CONNECTIONS (HBA, ARRAY)....veveeeueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseeeeseeeseeseneeseseeseeeeseeenenes 125
CLAUSE 4: SECURITY ..cootiitiitiinintinntineintiniiinisntistsssisseisessesssssistostostssssssssosstsstssstsssssssssssssssassses 127
4.1 INTRODUCTION ...ceiiiiieiittttieeeeeeeseettttteeeeseesseesraeeeeeeaassssssssaeeassessasssssasteesssasssssssesseeseesssssssseeeessasssssseseesenns 127
4.2 BACKGROUND.....cciiiiiiiieeeee et e aaaeaaeaaaaaens 127
4.3 MODELING DEVICE CREDENTIALSuvviiiiittieeeietteeeeeetteeeeaetreeeeessseeesssseseassssssssosssssesssssseesssssssssssssessnnns 128
4.4 REQUIREMENTS .. .outeuteeetet e ee e et et eeeeeeeee e e eeeee e et eeeeeeeseeeeeseeeeeseee et et eeeeseeeeeseeeeeeeesees et et eeeeeeaaeereeaeeseeeeeeenes 128
4.5 AGENT CONSIDERATIONSuuttttittteeeeeiiietttrreeeeeeeaiaesssssseeeesasasossssssssesassssssssssssssssssmsssssssssssssssssssssssssssasans 129
CLAUSE 5: SERVICE DISCOVERY.....coiiniiniiniinninnininesieississisnessssiosissssssssssssssssssssns 131
5.1 DEFINTITIONS ..otttiiiiiiiiscititteeeeeeessetttteeeeeeasseesraaaeaesaassssssaateasssssassssaseesessssssssssssseesesssssssssseeeeseasssssseseesenns 131
B.2 OVERVIEW ...ttt ettt ettt ettt sttt et e bt e st st e st e e bt e bt e e ae e e ae e et e et e eaeesaeesaeeseteemteenbeeneeemneenseennees 132
5.3 SLP IMESSAGES .. .ciiiitttitteeeeeeiicitttteeeeeeeeeitttaeeeaaaeeaasttasaasaeaassaasssssasaeaasessasssssssaasssesasssssssssesesssssssssseeasanans 132
5.3.1 MESSAGE HEADER ...ooitiiiiiiiiiiiete et eeeciiitteeeeeeesttttteeeeeesassssnstaeaaeessasssssssseeeesssssssssssaeseesesessssssseneesennns 132
5.3.2 PROTOCOL EXTENSION BLOCK.......cuuttiiiiiiiiiiiiiiiiiieeeeeeieiitirteeeeeeeseeittaseseeesessssssssssssessssssssssssssseesanans 133
5.3.3 REQUIRED MESSAGESveeeeeeeeeeee et et et eeeeeeeeeesees e e et eeeeeeeeeeeeeseeseeseeseeeeee et eeeeaeeeeeseeeeeeeeeeeeeeeeeeene 134
5.3.3.1 Service Request (STVRGSE) ..oooiiiiiiiiiiiiceeeecce et 134
5.3.3.2 T A Teol a¥eY o) A (S 2’0) 74 R 134
5.3.3.3 Service Registration (SIVREE) ...cccouvveiiiieiieeeeeeee e 135
5.3.3.4 Service Acknowledgment (STVACK)cooovciiiiiiiii e e 136
5.3.3.5 Directory Agent Advertisement (DAAAVEIt)cooiiiiiiiiiiiiiiiee e eeeeaanes 136
5.3.3.6 Service Agent Advertisement (SAAAVEIL) c.....eveeiiiiiiiiiiiiiiee e 137

Page v of 303

Version 1.0.0 Bluefin Specification

Bluefin Specification

5.3.4 OPTIONAL MESSAGESooouiiiiiiiiiiiiiiietiiti ettt et sttt st ettt et s e st s e s sbe s et sbe s 137
5.3.4.1 Service Deregistration (STVIDETEE)ccoiviiiiiiiiiiieiccciieee et e e e e e e 137
5.3.4.2 Service Type Request (STVTYPERASE) ...ccoiiiiireeieeeeeeeeeeeee e 138
5.3.4.3 Service Type Reply (SrVTYPERPLY)..cooeiiiiiiiiieieee et 138
5.3.4.4 Attribute Request (ATETRQST).couuureeiiiiieeeeeeeeee e e e e e e e 138
5.3.4.5 Attribute Reply (ALETRPLY) coooooeeieeieeeee e a e 138

TR I 10710 2 . ORI 139
5.4.1 ADMINISTRATIVE SCOPE DISCOVERYuuvviiiiiiiiieeieireeeeeiireeeestseeeestreeeessssseseassssesesssssesessssesesssssesesns 139
5.4.2 DYNAMIC SCOPE DISCOVERYoeooiiiiiiniieniiiniiettettenieesiee et et esteesteesaeesesesateeseenseesanesaneseneenneenneenane 139

5.5 SERVICES DEFINITION.......0utteiiiuttteeiitteeeeeiteeeeestseseessseseassssseasssssesassssesssassssessssesessssesssssssssesssssesessnsees 139

5.5.1 SERVICE: URL...oiiiiiiiiiiiiiie ettt e e e e e ettt e e e e e e e satasteaeeeeeeessnssseaeaesessssnsssssnenensnnnsnns 139
5.5.1.1 N 1S A Te o g oYL TSROSO U PRURU P 140
5.5.1.2 Service Access INformation........ccocceiiiiiiiiiiniiiii e 140
5.5.1.3 Generic URL SChEmMEScc.uiiiiiiiie ettt ettt e e e ette e e e eate e e e entaeeesennbaeeesnnes 141

5.5.2 SERVICE TYPE TEMPLATESccuuttteeiettteeiiitreeeesitreeeesitreeeesassseeessssesesasssesesssssssesasssssessssssssesssssesesssssens 141
5.5.2.1 Service Type Template SYNEAK.........cciiiiiiiiiiiiiiiee e e e eeeerr e e e e e e eeearvaraeeeas 142
5.5.2.2 Template Description ATETIDULESuuuueeeececceeceeeee e ee e e e e e e e e e e e e e e eeeeeeeeeeeeas 142
5.5.2.3 SETVICE ALETTDULES ..ouviiriiiiiieiieiterte ettt ettt sttt be e b st e ene e 143

5.6 USERAGENTS (UA) ..ottt et et et et ee e e eee et et et et et e e eaeeseeaeeseeseeseeeeeeeaeeneeeeeeeesesseeeeeeaea 145

5.6.1 CONFIGURATION ...c.etruieiirrirreterieenenteennentteeessesueessesteesnesesesessesaeennesteemsensesmeensesseensesseennensesneennenseenns 145

5.6.2 DISCOVERY OF DIRECTORY AGENTS AND SERVICE AGENTSceotiriiriierienieenieenreereeteenieenenesneenne 145

5.6.3 N 161023 TSRS 146

5.6.4 SERVICE REQUESTScoctiiiiiiiiiiiiiiiiiit ettt ettt ettt s s et st 146

5.6.5 MINIMAL IMPLEMENTATTIONcciiiiiiuttiteeeeeeeaiiitrrreeeeeeesiessssssesssessssssssssssesssssssssssssssessssssssssssssseesesnns 147

5.7 SERVICE AGENTS (SAS) ..ttttiiiie e eeeeeeeee et eeeeete e e e e e eeeeeeeeeeeeeseessaaaeeeeeeeseesssarereeeeeeeansrarreeeeeeeeannrrnnns 151

5.7.1 CONFIGURATIONeoitieriiiriteriterteeteeteesieesitesateeereesbe e seesueesateeaseesteenteesaeesaeesaseemseenbeeseesanesmneemseenneennes 151

5.7.2 DISCOVERY OF DIRECTORY AGENTSuuviiiiiiiieeeiiieeeeietteeeeeereeeesstteesesssssesessssesessosssssssssssseesssssseesnnns 151

B.7.8 SCOPE ..ottt 152

5.7.4 MINIMAL IMPLEMENTATTIONcciiiiiiiuttiteeeeeeeeiiisrrreeeeesesiesssssssessessasssosssssssesssssssssssssssesssssssssssssssessesnns 152

5.8 DIRECTORY AGENTS (DAS) «eoveeiiiiiieiiiiieeeeee oottt e e e e e et et e e e e e e e eeeeateeeeaeeeeeeeeaarrseaeeeeeennenes 153
5.8.1 DIRECTORY AGENT (DA) STATELESS BOOT TIMESTAMPuvvveeiieeieeiiiiieeeeeeeeeeiiiirreeeeeeeeeesnsrsseeeaeens 153

Bluefin Specification Version 1.0.0 Page vi of 303

Bluefin Specification

B.8.2 SCOPE ..ttt ettt ettt b e bt s at e et h e bt e bt sttt et e b e s bt e b e e et e eane 153
5.8.3 NETWORK PROTOCOL SPECIFICSccuiitirtesienierieneeseeseeseesessessessessensensesseseesessessessessessensensessessesessessenns 153
5.9 SERVICE AGENT SERVER (SA SERVER)c.cetttiiureeeieeeeeeeeiiteeeeeeeeeeeesiseeeeseeeseeesisseseseesessnnssnresesesessnnsnnes 154
5.9.1 SA SERVER (SAS) IMPLEMENTATIONcuuuuiiiieeeeeeiiiiiieeeeeeeeeeiiettrreeeeeseeeseisssssseseseessssssssssssessessnsnsnes 154
5.9.2 SA SERVER (SAS) CLIENTSuuuttereiiieeeeeieeiieeeeeeeeeeeeesiareeeeseeeeesssanneeseseeesasssreeeseseesssesssnreseeseessennssnes 155
5.9.2.1 SAS Client Requests — SA Server ResSpOnSes........ccoovvvvvviiieiiiieiiiieieeee e e 155
5.9.3 SA SERVER CONFIGURATIONceeutetirtertensensententeneeseaseesessessessessensensesseseessssessessessensensensensessesessessens 155
5.9.3.1 OVEIVIEW ...eivieeeeiieee e eitte e e eettee e e eeateeeeeettaeeeeetaeaeeaataeaeaaatseaeeasssseeaastaeseasssseseeansseeeesnsraseeasaeesannrens 155
5.9.3.2 SLP Configuration Flecoociiiiiiiiie ettt e et e e e are e s e snbve e e e nabeaeeenneas 155
5.9.3.3 Programmatic Configuration.........cccueeeiiiiiiiiiiiieieeee e e eeeecee e eeee e eeeeeeeeeeaarereeeeeeeennnnnes 155
5.9.3.4 DHCP CONTIGUIATION........uviiiiiiieieeeciiiieeeee e e eeeeeee e e eeeee e e e e e eeeeetaereeeeeeeeeeearrreeeeeeeeenanneens 156
5.9.3.5 SCOPIE ettt ——ttrorrrrno 156
5.9.4 SA SERVER DISCOVERY ...ueirtiiiiiiiitienitertt et et eteesiee st et et esseesbeesaeesateeteesbeesbeesanesaneenneenseenseenane 156
5.9.5 SAS CLIENT REGISTRATIONtttiititiiiteentteeniteeateeeniteestteesutee sttt esuteessbeeesateesbaeesubeesnseeesnseesaseeessseean 157
5.10 ‘BLUEFIN” SERVICE TYPE TEMPLATESccueettteteteriettetteteeseatessessesensesseneeseeseasessessessensensensensesessessessens 158
5.10.1 ‘BLUEFIN’ ABSTRACT SERVICE TEMPLATEuttitttteitttentteeniteenieeeniteesbteeniteesteeenmreesbeeennseesveeesaveens 158
5.10.2 BLUEFIN’ CONCRETE SERVICE TEMPLATE......cceotetettettstestentesteneeeeseeseeseesessessessesensesseseeseesessessensenes 158
CLAUSE 6: LOCK MANAGEMENTccocvvtiininnintinsisnsstsstssisssssessessssssssosses 161
6.1 INTRODUCTIONeeuteuieueeuietteteatestestententenseneeseeseeseesesseasesensensenseneeseaseesees e st easesessensenseneeneeseeseaseebestesesesseenes 161
6.2 TERMS «.uiiiiiiitiiee it oottt e e e e ettt ettt e e e e e e aabbb et e e eeeesaas bbbt eeeeeesasaabbtaeeeeeeea s abb et e eeeeeeaaabbbteteeeeanbbbtaaaeeeesaannnns 161
6.3 OBJIECTIVES...cettiittertteitteete et et esttesite st et e bt esb e e sbeesaee e bt e bt esbeesheesateeabe e bt eabeesbtesabeeabee bt enbeesbeesbeenbeenneeeane 161
6.3.1 PROTECTED OPERATIONS....c..ceiittittitteniteruteeteeteenteenseesmeeeateesteenseesteesaaesateeateeseesseesanesasesseenseenseennee 161
6.3.2 UNPROTECTED OPERATIONScetettetistertentensententesseseasessessessessesensensesseseesessessessessensensensensessesessessens 162
6.3.3 GRANULARITY OF LIOCKING.....ccuteuirtirtirtirtitentententestestestetestessessesensensesseneesessessessestensensenseneeneesessessenes 162
6.3.4 WHAT IS NOT COVERED ...c.veteuieuietietietietestensesetessesteseeseesessessessessensessessessessssessessessessessensensessessesessens 162
6.4 LLOCK TYPES ...oueiuieuienieuieiteteeteeteetesteste et e st esteseeseese et ees e st e s ensenseseeseeseesees e et e e s e s et ensensenteneeseeseeseeseseeneeneeneens 162
6.5 LOCK MANAGER REFERENCE MODELc.cciitiiteteiesiesiesieseeseesessessessesessessesseseessssessessessessessessessessesessenses 163
6.5.1 LOCK MANAGEMENT SERVER OPERATIONSceteirtietirtirienseteneeneeseeseeseesessessessensensesseseeseesessessessenes 163
6.5.2 LOCK MANAGEMENT AGENT OPERATIONScteutetiriirtentententententeneeneesesseesestessessensensenseneeseesessessessenes 165
6.6 DISCOVERY ..euvitiienienientesieteetteteetessessetestestesseseeseeseaseasessesansensessesseseeseaseeseasensessensensenseneeseeseasesseseeneeseeseass 166
6.7 DEADLOCK MANAGEMENTcueteuteutenieuteseattatestessensesseseesteseeseesessessessessensensenseseeseesessessessensensensensenseseeseeses 166

Page vii of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

6.8 LOCK LEASING AND LEASE EXTENSIONccctttiiittiiiteniieniteenreeeireesteeeneeesneeenneesaneeesnneessneesmneesneeennnes 166
6.9 LOCK IDENTIFICATION TOKEN CONSIDERATIONSutettetietieristetesenteseeseeseesessessessessensensensensessssessessessenses 168
6.10 LOCK MANAGEMENT IMPLEMENTATIONSeuviuteutertetteteeseesessessensensenseseeseesesseesessessensensensenseseesessessensens 169
6.10.1 LOCK UNAWARE CLIENTSccetttttittteriteertteenutteetteenuteesatteesiteesabteesaseesasseessseessseeesseesssseesseesssseesssees 169
6.10.2 LOCK UNAWARE AGENTS/OBJECT MANAGERSoocttiriteriteniteniteeteenteenieesieesiteeateenbeesbeesbtesmee et eseenes 169
6.11 LOCK MANAGEMENT CLIENT — RULES AND RECOMMENDATIONScc.tottrttntentereneeeeneeseeneeseseessensensens 169
6.12 LOCK MANAGEMENT SERVER — RULES AND RECOMMENDATIONSccutettitirteieieieeeseeseeseesessessessensens 170
6.12.1 STANDARD FEATURES......ecttteuteutetteueetestestensesesenteneestaseesesseasessessensensensesteseesesseasessessensensensenseseesesnens 170
6.12.2 LOCK MANAGER OPTIONAL PROPRIETARY ENHANCEMENTSccveiteieierienieriereereesensessensensessensennens 170
6.13 PROTOCOL EXTENSIONS — METHODSeittititeienieneetieteeeesseetestessesenseseeneeseeseesessessessensensensensesessessessens 171
CLAUSE 7: BLUEFIN ROLEScccocvniiininninnintntistnsississssssisssssssssssesssens 173
7.1 INTRODUCTIONeutiutitententettestetesteetestestesesteseeseeseese et easestessensessententeseeseasesbeabenbensensenteneeseeseebeaseabenteneaseseeas 173
52 O 11 1)\ USRI 174
7.2.1 SLP FUNCGTIONS ...ttt ettt sttt ettt ettt sbt e sttt et e bt e sbeesht e sate et e e bt enbeesbtesaneembeenseennee 174
7.2.2 CIM-XML PROTOCOL FUNCTIONSciiitiiiiiitiitieiiteeitee ettt ettt et e ettt e st ebte e st e esibeesabeesbaeesbeeenes 174
7.2.3 SECURITY CONSIDERATTIONSutiuttittentteniteeteeteeteenteesieeeateesteesteesteesuaesatesateenseesbeesusesasesaseenseenseennee 174
7.2.4 LOCK MANAGEMENT FUNCTIONSocutitirtiiiieiienieiieitettete st stesteseneeneese st bt ste st ssestesenseneeneeneesesseenenee 174
8 T N6 3 D)\ NSRRI 174
7.3.1 SLP FUNCTIONS ...ttt ettt ettt ettt sttt et et esae e saee st sab e e bt enbeesaeesmteemneemneenne 175
7.3.2 CIM-XML PROTOCOL FUNCTIONScoiitiiiiiiiiiitieiieeeitte st et siiee ettt e st eebaeesabeeesibeesabeesbaeesbeeanes 176
7.3.2.1 T N Un A 0703 s T=N Lo (=) 0 N oY o = F R 176
7.3.2.2 Required INtrinsic MEthOASiiii oo e e e e e e eeeanas 176
7.3.2.3 Required MOde]l SUDDOTT . .uueceeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeesaeeseeas 176
7.3.3 LOCK MANAGEMENT FUNCTIONSocutititiiiieienieiiettetestestestesteteneenteseeseebestessessessensenseneeneeneesessesnenee 177
7.4 OBJECT IMANAGER.ttt iitttetitte ettt eeitte ettt ettt e ettt e sttt e s abee e bteesabee e bt e e sabeesbeeesabeeeabaeesabeesabaeensbeesabaeensbeesbeanns 177
T4 1 SLP FUNCGTIONS ...ttt ettt ettt et ettt sttt et e bt e sbeesht e sate et e e bt e nbeesbtesaeeeaseenseennee 178
7.4.2 CIM-XML PROTOCOL FUNCTIONScoiitiiiiiiiiitieiite ettt ette ettt e ettt e st ebte e st e esibeesateesbeeesbeeenns 178
7.4.2.1 SeCUTILY CONSIAETATIONS . uviiiiieiiiiiiiiiieeeeeeeiccitire e e e e e e eeetbtareeeeeeesestbrareeaeesessssserssseseeeeessnssssrrens 178
7.4.2.2 Required INtrinsic MEthOASiiii oo e e e e re e e e e eeeeaaes 178
7.4.2.3 Required MOde]l SUDPOTT . .uueeeeceeeeeeeeeeee eeeeeeeeeeeeeeeeeeeesaeeseeas 179
7.4.3 LOCK MANAGEMENT FUNCTIONSccutititiieienienieieestateetestessessessesseneeseeseesessessessessensenseneeneeneesessessenes 179

Bluefin Specification Version 1.0.0 Page viii of 303

Bluefin Specification

744 PROVIDER....c.cetiieiietiittetteteete st e et et estest et ettt e et st e b et e st en e en e e st es e ebeseeebe s s e s ensententeneeseeseesesbenbeabeseeseeneeee 179
7.4.4.1 Required MOde]l SUDDOTT . ..uuneeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeseeesesas 179

7.5 LIOCK MANAGER ...c..ouvitenieuietietieteeteeteetestestentestesteseese et e et esteasensesseneenseseeseesesseasensensensenseseeseeneeseeseasensensesessens 179
7.5.1 SLP FUNCTIONS ...ttt ettt ettt ettt ettt e sttt ettt e st teesbteesateesbbeesabeeeabaeesabeesbteesabeesnbaeesabeenans 179
7.5.2 LOCK MANAGEMENT FUNCTIONSccutititiieieienieiteiteteetestessessesesseneeseeseesessessessessensensenseneeneesessessenes 180
7.6 DIRECTORY SERVER ...utiitiitiitiettenteentteniteete et esteesieesueesateeabeebeesseesmeesmeteastenseesbeesbeesateeaseenseenseesseesanesnnen 180
7.6.1 SLP FUNCTIONSectiitiitirteieneestesteteeseetessessessessesseseeseesessessessessensensensessaseasessessessensensensesseseesessessensenes 180
7.7 COMBINED ROLES ON A SINGLE SYSTEM ...c.uutetttertterteateeteenteenieesstesteesseesteesieesmsesnseenseesseesssessessseesseenses 180
7.7.1 OBJECT MANAGER AS AN AGENT AGGREGATOR.......ceeiitttentteriteeniieeniteenieestteeniteesaseeesaseessseeesseesnns 181
7.7.1.1 SLP FUNCEIONS ...vviiiiiiiiie ettt ie ettt e e ettt e ettt e e te e e e eaareeeeabaeeeesseseeesasaseseeenssseeeassseeesansseeennerens 181
7.7.1.2 CIM-XML Protocol FUNCEIONS.ccccciiiiiiiiiieciiee ettt et e e ree e e tae e e e eirree e e saraaeeeeneseas 181
7.7.1.3 SeCUTItY CONSIAETATIONS . uiiiiiieiiiiiiiiiieeeeeeeicciiire e e e e e e eeerttrareeeeeeesettrareeaeesessssserasreseaeeessssssrrenas 181
7.7.1.4 Lock Manager FUNCEIONSoooiiiiiiiriieee et eeeeeaeee e e eeeeeeaae e e e e e e eeetaaeeeeeeeeeeeaennes 181
CLAUSE 8: INSTALLATION AND UPGRADE......cccoiniiiinnniiiinnsniiecssnneiesssssessssssssssssssssssssssssssssssnssssssss 183
8.1 INTRODUCTIONveuteuieteerietteseeseesessessessensessesseseeseeseesessesessessessessessesseseesessessessessensessessessesessessessessessesessenses 183
8.2 ROLE OF THE ADMINISTRATORceuteuteuteuiatentetessesenseseeseeseaseasessessensessensenseneeseeseasessessessensensensenseneesessenses 183
8.3 GOALS ..ttt et et b e bt sa ettt b e e bt e h e e et ettt beeae e et e e bt e nbeesaneeane 183
8.3.1 NON-DISRUPTIVE INSTALLATION AND DE-INSTALLATIONccuerteierienieneeneereereeseesessessessessensensenseneens 183
8.3.2 PLUG-AND-PLAYootiitiitiitiititetetete ettt b ettt et e et e e st eae bt st st e b e s e e eneene 184
8.4 INSTALLING DEVICE SUPPORTceeteuierietierieressensessessestesseseeseesessessessessessessesseseessssessessessessessessessessessesesses 184
8.4.1 INSTALLATIONcettitiettetirtetetestestenteseeseeseeseeseasessesensessenteneeseeseeseeseasessensensensensenteseeseasessessensensenseneans 184
8.4.2 DISCOVERY AND INITIALIZATION OF DEVICE SUPPORT.......ccertirteieterienienieeetteneereseessessessenseseneeneene 185
8.4.3 REMOVAL/UPDATEccvititenieneeuiesteteeteetestensessesensesseseeseesssseasessessensansensensessesseseasessessessensensensesseseesens 185
8.4.4 RECONFIGURATIONiititeutenteneestettattatestensensensententesteseesesseasessessensensenseneesteseaseasestensensensensenseneeseenens 186
8.4.5 FATLURE ettt et e e ettt e e e e e e s bbbttt e e e e e s s bbbt eeeeeeessanbbbteeeesanannes 186
8.5 OBJIECT MANAGER. .. .ceitttiitteteeiteent et et et et et esbeesate e te e bt esbeesheesate st e e bt e bt e sbeesateeabe e bt enbeesbeesaeeenteentenane 186
8.5.1 INSTALLATIONcetitietietietertetessestesteseeseeseeseesessessessassessessesseseeseasessessessessensessessassessesessessessessensensensans 186
8.5.2 REMOVAL/UPGRADE........ccuiteuieuietiettetietestentestetentesteseeseesesseasessessensensensessessaseaseasessessensensensensesseseesens 187
8.5.3 RECONFIGURATIONeititeuteueemtestettatestestensensensententestestasesseasessessensentensentesteseaseasessesensensensenseseeseenens 187
8.5.4 FATLURE ..ottt ettt e ettt e e e st e e e e s bt e e s enbbeeeennsaeeesassbaeesanssaeessssaeessnnsees 187
8.6 CLIENT .ttt ettt ettt ettt et s bt sttt et et e s bt e s bt e s et e et e e bt e sb et sht e sat e e bt e bt e bt e sateeabeeab e e bt enbesabe e b e enbeesaneeane 187

Page ix of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

8.6.1 REMOVAL ...ttt ettt et et sn e ene e e saneenn e sane 187
8.6.2 RECONFIGURATIONuittieteeitiieeeeitteeeettteeeettteeseataeeesansaeeesassseeesansseeesanssseessnnsseesssnsseesssnsseesssnsseeesnnes 187
8.6.3 FATLURE (..t et e e sttt e s ettt e e s bt e e e e aabaeeesanbbaeesansbeeessbeeeesennreas 187
8.7 LOCK MANAGER «.ottteeiittttteee et ettt et e e e e ettt et e e e e e e abbe e teeeeeesaaaatbe et eeeesesaasbbbaeaeeesssansbbstaeaeesassnnnseaaeeaannn 187
8.7.1 INSTALLATION L. tttte e ettt ettee et ee e ettt e e ettt e e s sttt e e seabeeeeseabeeeesaaseteesanbbeeesanstteeesnntaeesssbeeessnnseeessnsens 187
8.7.2 REMOVAL ..ottt ettt st et et s sne e e s e e e sane 187
8.7.3 RECONFTIGURATIONuitiiitieiiiieeeeitteeeettteeeettteeesutaeeesansaeeesassseessassseeesanssseessnssseesssnsseesssnsssessnnsseessnnes 188
8.8 DIRECTORY SERVERecetiieititeiteeestreenteesteeessseessseeessseessseessseessssssssessssssssssessssesssssessssesesssessssesesssessnsessns 188
8.8.1 TN STALLATIONttttttttttttttesteseseessesssssssssssssesssenns 188
8.8.2 REMOVAL/FATLUREutttitiittete ettt e ettt e e ettt e e ettt ee e sttt e e ssabteeeseabteeeseabtteessantteeesnsaeeesanseeeesnnseneesnnns 188
8.9 MANAGEMENT DOMAINS c...cutttttiitttee ettt e ettt e e eittee e sttt eeesutteeesaubteeesaabtteesaabtaeessbeteeesanbaeeesanbaeeesanseaeesnnne 188
8.9.1 INITIAL CONFIGURATIONuutiiieiiuiieeeeniteeeeateteeeeuereeesassseessnssseesssnsseeesanssseesssssseesssnsseessssseessssseeessnnes 188
8.9.2 RECONFIGURATIONuittteiiiittee ettt e e ettt e e ettt e e sttt e e saabteeeseabteeeseabtteeseabtteessantteeesanbaeeesanbeeeesanbaeeesanse 188
APPENDIX A: GLOSSARY ...uuiiitiiiiiinetiintinnnensneissntiesesssstssssesssssessssesssssssssssssssssssssesssssessssssssssssssssssssss 189
INTRODUCTTION ...ttt eee e e e e e e nn s s nsnsnsnsnsnsnsssssssnsssssssssssesesssssssssssesssssssssssssnsnsnnnnnsnsnnnnnn 189
NEW ADDITIONS/IMODIFICATIONS:uvteetreesrreessteeasreessseesssseessseessssessssessssseesssessssseesssesassssessssessssessssesesssessssessns 189
A ettt ettt h e bt ea e et h e bt e bt a et e et et e b she e ea bt e bt e bt e eht e et e bt e beenbeeeaees 190
B ettt ettt ettt bt e bttt e bt e s a bt e e b et e ea bt e bt e eh b e e et et e eabe e e b bt e sabeeebteesabeeenateas 191
ettt ettt h e bttt et e b e bt bt e at et e bt e bt she e et e e bt e bt e s ae e et e e bt e ebeenbeeeaees 191
DD ettt ettt e e s bttt e e e bttt e e s bttt e e e ab et e e st e e e e bt et e e e bb et e e e aab et e e e aabeeeeeeabeee 193
ettt ettt et st b et et s et e bt e e bt e b et eR b et e b et e sab et e br e e ser et enneesareeenanees 195
T et ettt et e s e et st e et e e e et ea e e et et san e ena e e sare e e sane s 195
G ettt ettt e b bt s h bt e bt e s b et e bt e e e b bt e e bt e e e a bt e e be e e aa b et e bt e e abe e e b et e anbe e e b bt e sab et eabaeesabeeenbrees 196
ettt ettt et et e e et eh e et e e e et s ena e sre e sane s 196
et ettt e e ettt e e e bttt e e e bttt e e s b bt e e e e ab et e e sbe e e e e eabbeeeeembeeeeeaabeeeeeaabeeeeenareee 197
PO TP OO PP PPV P PP POTOTPPROTSTRPRO 197
ettt e ettt e e bttt e e e bttt e e e bttt e e s ab e e e e saut e e e eabb e e e e e mbaeeeeanbeeeeeaabeeeesnareee 198
ettt ettt et st e h e et e e bt e s bt e bt e e sabe e e b bt e ea bt e bt e e sabe e e bt e e e beeenbbeesabaeesabeeennee 198
L ettt et ettt et e st et e et et st e aae st e an e e ar e e be e snae e s et e saneeeas 199
N ettt ettt e ettt e bt e e a bt e bt e s bt e bt e e s a b et e b bt e ea b et e bt e e ea b et e b bt e ea bt e bt e e e e be e e bt e e e b et e abbeesabaeesabeeennee 200
L0 OO OO OO OO TS PSOUPUP PO PP STUPRUPRRPRR 201

Bluefin Specification Version 1.0.0 Page x of 303

Bluefin Specification

ettt ettt e e ettt e e ettt e e s a bttt e e ab e e e s et e e e e sabbteeeeab et e e eaabeeeeeaabbeeeeeanee 202
) ettt ettt e et te ettt ettt et et et eeeeene 203
R ettt e ettt e e et e e e s bt e e e e a bt e e e s hb et e e e bt e e e e bt ee e et eee e e hbeeeeeaabteeeeaabeeeeeabtaeeenaneee 203
S ettt e eeee—eeeeee et eeieiateeteeeeeaeitttttaaeeeeeaaittbbeaaaaeeeaaattaataaaeeeaaaaattbeeeeeaaettabaaaaaeeeeaaiartaaraaaeeeaaniaes 204
1 PSPPSR 207
U ettt ettt e ettt e ettt e e e bttt e e e bttt e e e bttt e e e h bt e e e e a bt e e e e et e e e b bt e e e e ahb et e e eaabaeeeeaabteeeenaneee 208
Vet et e ettt tr—eeeeeeeaeetbta——aaeeeeaaatbta—ataaaeeaaa bt taataaaeaaaattttatteee ettt aaaaaaaeeeaaartrtaraaaaaeeeaanrtrreees 209
ettt ettt e e ettt e e e bttt e e s bbb e e e s a bt e e e s sttt e e s a bt e e e s abt e e e s ea bt e e e eattee e e abtaeeseabeeeesebtaeeeentaaeenan 210
X e, 211
Y ettt ettt et e e treeeeeeeeeeaett——eeeeeeaaa__tatteeeeeaaa—_tataeaeeeaaaattttttteeeeaaaantatttteeeentraataaeeeeaaaarnrrraeaaeeeeeannrrrraees 211
s ettt ettt e e e —tttteeeeeaa e —btetteeeee e —_ataeaeeeeeaaatttteteeeeeeaahtrtateeeeeeaataaaeeeeeeaaaaateeaaeeeeeeaantrrreaaaeeens 211
APPENDIX B: BIBLIOGRAPHYcuutiiiiiiiiiinnniiionnniiiesisisiesssmessssssesssssssssssssssssosssssssssssssssssssssssssssnsssosss 213
APPENDIX C: DETAILED CLASS DERIVATIONScciitiiniiiinnniiicssniiiosss 214
C.1 ACTIVECONNECTION ...ccoittteritterutteentteentteentteestteenuteesuteesbteesabeeaabteesateesbaeesaseesbaeessbeesabaeessbeessaeessseesaseeans 214
C.2 ADMINDOMAIN ...ttt ettt ettt ettt ettt et esbe e s atesat e et e e bt e bt e s bt e e bt e eat e e bt ebeesbeesheesateeabeenbeenbeesmtenbeenbees 214
C.3 ALERTINDICATION.....utttiitttertteatteenitteetteeatteesbeeesuteesateeabteesabee ettt esateesbteesabeeeabaeesabeesabeeensbeesbaeesnbeesabeann 215
C.4 ALLOCATEDFROMSTORAGEPOOLccuiiiiieieiieiieiietieteeteatestestestesestesaeseeseesesseasessessessensensensenseseeseeseesessas 215
C.5 ASSOCIATEDSTORAGECONFIGURATIONIJOB ...c.uutiiuiiriiiiiiiiteieenitenite et et esieesieesaee et ebeesbeeseaesmeesmreeneennee 215
C.6 BASEDON ...ocuiiuiiiiiitetetetett et eteettetestesteste e et este st ese et eeseeteasessessentenseseeseeseeseese e s et ensense st eneeneese et enteneeneeneereas 216
C.7 CHANGERDEVICE ...ttt ettt ettt st ettt b e s bt e s at e et e e bt e sbeesbeesateeabe e bt esbeesueesatenseen 216
.8 CHASSIS ittt ittt ettt ettt ettt ettt et e ettt e bt e e e bt e e s ub e e e abee e bt e e s a bt e e bt e e eub e e e bt e e sa bt e e bt e e eabe e e bt e e ehbeebaeeeabeeenabeenas 217
C.9 COMPONENTcotititetentestestesteseeteaseasessessenseseeseesseseaseasesseasansensensessasseseeseesessessensensensesseseeseeseesenseseeseaseasens 217
C.10 COMPONENTCS ...ttt ettt at ettt e sb e bt sat e et e bt e s bt e s ae e et e et e e bt e e baeseeeemneenbeeneenane 217
C.11 COMPUTERSYSTEM ...utiuieuieuieteestettetestensesessessesseseesesseasessessessensessessessessessesessessessessensensensensessssessessessensen 218
C.12 COMPUTERSYSTEMPACKAGE.ccuttittitieitenie ettt ettt sttt ettt sttt sttt e bt e sbtesatesatesbe e bt enbeenaee 218
C.13 CONCRETEIDENTITY ..couttteiutteitie ettt ettt ettt et et ettt ettt e ettt e sbt e e sabeeebaeesabee e bt e e sabeesabbeesabeeeabeeesabeeennees 219
C.14 CONTFIGURATION ...cettiiutiiutieuteeteentee sttt suteeate e bt esbeesatesutesabeeab e e bt e beeebeeeateeabeenbeenbeesbeesateeabeenbeenbeesueesanenteen 219
C.15 CONFIGURATIONCAPACITY ...eeuteeuteenteettentee et et eteebeesseessetsmeeeseenbeesbeesaeesateemteenbeesbeesasesareeaneenseenseennne 220
C.16 CONTROLLEDBYotiuiiiiiieiietietietestestest et ettt ettt ste st ste et et e st eseese et e et eesessessensenseseeseeneeseesensessensensesens 220
C.17 CONTROLLERceeuttettenttenite et et et estt e st eat et e sbe e sttt s et e et e bt esbeesaeesate e bt e bt e bt eeaeeeattemseenbeesbeesaaeemtenseenane 221
C.18 DEPENDENCY ..etttteiittet e ettt e ettt e ettt e e ettt e e sttt e e s sabteeeesabtteeesamteeeesamtaeeesmbeeeesambeeeesambeeeesanbaeeesaneeesanne 221

Page xi of 303 Version 1.0.0 Bluefin Specification

C.19
C.20
C.21
C.22
C.23
C.24
C.25
C.26
C.27
C.28
C.29
C.30
C.31
C.32
C.33
C.34
C.35
C.36
C.37
C.38
C.39
C.40
C.41
C.42
C.43
C.44
C.45
C.46
C.47
C.48
C.49

Bluefin Specification

DEPENDENCYCONTEXT ...veuveuteutententesteseestaseasessessensensessesteseestesessessensensensensensestesessessessensessensensesseeesessens 222
DEVICESAPIMPLEMENTATIONcuteutettettatestesseseseseeseeseesesseesessessensensensessesseseesessessessessessensensessessesessens 222
DEVICESERVICESTLIOCATIONccutiuieuietietietestestestetesteseesteseeseesessessesensensenseseeseeseasessessensensensenseseeseesessens 223
DEVICESOFTWAREttiitttiitteeniteeette ettt e ete e e sttt e sateeebteesabeeeabteesateeabteesabeeeabteesabeeeabteesabeeenbaeesabeesnbeeenses 223
DISKDRIVE ...uviuteuteuiesieneeteettetestestestesesteseeseeseestesessessessessensesseneaneeseeseaseasessensensensenseseeseeseesessesseneeseesessens 224
ELEMENTCAPABILITIEScevtettittetestetetesessenseseestestesesstasessessensessensenseseestesessessessessensensensensenseseeneesensens 224
ELEMENTCAPACITYeuveuveuietteueeeeeteetessestessentesseseeseesessessessessassensessessessessssessessessensensensensessessesessessessensens 225
ELEMENTCONFIGURATIONcutittitttetetententeneeseeseeseesesseasessessensessensenseseeseeseesessessessensensensensenseseessesessens 225
ELEMENTSETTING «...tteeutteentteeetteentteesitteestteesuteeestteesuteesabteesabeesbaeassteesabeeessseesateesnsseesseesnsseessseesnsseesseen 225
ELEMENTSTATISTICS ...cutevtettettetteteetessessessessesseseeseeseeseeseasessessessessensensesseseeseesessessessessensensensensesseeesessens 225
EXECUTINGSTORAGECONFIGURATIONIJOB......eiiiuiiiiiiieeiieeetieeniieesieeeieeesteeestteesnteeennseesnseesnseeesaseeennnes 226
EXTENTREDUNDANCYCOMPONENTcueteietieteesiereeseesensessessessesseseeseeseeseesessessessessensensessensessesessessessens 226
EXTRACAPACITYGROUP......corutiiiiiiiieteenttenite et ettt et e sttt sttt et e bt e sbeesateeate e bt enbeesbeesanesareebeenbeenaeenane 226
FOPORT ...ttt ettt e a e st e e bt e s e bt e e sbb e e s abeeebtesabeeenbeesaree 227
FOPORTSTATISTICS ... euttetteeite ettt ettt ettt ettt et e sbe e sat e ettt et e bt e sbe e s bt e eab e et e enbeesbeesateeateenbeenbeenbeenas 228
R ettt et e e ettt e e e e e e s ab bttt e e e e e e sa bbb bt eeeeeesaabbbaeaeaeeeenaanbraeeeas 229
FORWARDINGSERVICEvivitetesteuieseeseeteeseeteesessessessestesseseeseesessessessensensensessessesessessessessessensensessessesessens 230
FORWARDSAMONGcettetiiitiett ettt sttt ettt et sttt et e b et e s bt et e bt e bt enbeesbeesaneeateenreenne 231
HOSTEDACCESSPOINTccttitiieieiieiietteteeteeteetestestetes e steseeseeseesessessessesensesseseeseeseeseasessessensenseseesseseasens 231
HOSTEDCOLLECTIONc.tttttetentestenteseesteseatessessessessesseseeseeseesessessensensensensenseseeseesessessessensensensenseeesessens 231
HOSTEDSERVICE....ccoutttiiitteittteiitee ettt e ettt ettt e satteesbteesabtesabteesabeeebteesabeeeabaeesabeeeabbeesabeeeabaeesabeesnbeeenses 232
HOSTEDSTORAGEPOOL.......citiieiieiieiieiietieteete ettt tese et esessessessessesenaeseeseeseeseeseasassessensenseseeseesensens 232
INDICATIONFTILTERtittitiititetententeitete sttt sttt ettt ettt b sttt e e st e st ese st e ebesbe b e s enteneeneeneeseesessensens 232
INDICATIONHANDLERcottteiteteuientetteteeteeteesestessestestesteseeseeseesessessessensensesseseeseesesseasessessensensessessesessens 233
INDICATIONHANDLERCIM-XIMLLL....coittiiiiiiitiiieeieeniee sttt ettt sttt ettt et e sbeesiae s ea 233
INDICATIONSUBSCRIPTIONcuveuteuteueeseeseeseesessessessessessessesseseessssessessessessessessessesessessessessessensensessessesessens 234
INSTALLEDSOFTWAREELEMENT.........cettttitistititetesiesiesteseeseesestessessensenseneeseeseesessessessensensensensesesseesessens 234
INSTOREATTION. ...cuttiutteitentteete et et et et e sttt sateeate et e e bt e sbeesheesatesabe e bt e bt e s st e emeeeateemte e bt enbeesbeesaneenteeneenane 235
INSTDELETION....c.ceuteuteutettettetestestensessesteseeseeseeseeseesessessessensessessasseseeseasessessessessensensesseseesessessessessensesessens 235
INSTIMODIFICATIONcuvititententententeneeseseeetestessesenseseeseestesesseasessessensenseneentesesseasessensensenseneeneesenseasessensens 235
INTERLIBRARYPORTevitiiiienieiietietteteeteetestestetesteseesseseesassessessessessessessessesessessessensassessessesessessessensens 236

Bluefin Specification Version 1.0.0 Page xii of 303

Bluefin Specification

C.50 LIBRARYEXCHANGE ...c.ttiitiittettenttenite ettt et stt ettt et et st s et et e bt e saeesbeesatesateeate e bt esbeesaeesmneemneennee 236
C.51 LIBRARYPACKAGE.....c.eetetieuietietietietistestetestesteseeteeseesestessessessensesseseeseeseesessessessensensesseseesseseesessensensensenens 237
C.52 LIMITEDACCESSPORTciiuieiitiitietietestestesteie et ettt ettt st ste st e se et e s eseeseeseeseebesseasessensensenseneeneeneeneenes 237
C.53 LIOGICALDEVICEeeiiiiiiiiiiiitiee ettt ettt ettt ettt e sttt e e sttt e s ettt e s eabbe e e s aabbeeeeeabbeeeesanbaeeesnraeens 237
C.54 LOGICALMODULEtiitiiitiiteeteenteentte sttt et et esbeesaeesutesateeabe e bt e s bt e sbeeeaeeeateenbeesbeesbeesabeembeebeenbeesneesnnesaten 239
C.55 LOGICALNETWORKecttettettenteerieeriteeteenteenteesteesatesmseeaseeseesseesmetemeeenseenseesheesasesmseenteenbeenseesmsesmseeneenses 239
C.56 LOGICALPORTGROUPccveuieuietietietisiestestestestentesteseeseeseasessessessessessensessesseseeseaseasessessessensensensensessesessesses 239
C.57 MEMBEROTFCOLLECTIONttittttrtttriteattenteenteesitesateeteeseesstesatesmseeseenseesseesaseemseenteesseesueesateeseenseesseennne 240
C.B58 MODULEPORTcoitttittteitte ettt ettt ettt ettt ettt ettt ettt bt e e sttt e sbt e e sabe e e bteesabeesabteesabeesabteesbbeesabaeesnbeanbaeenns 240
C.59 OBJIECTMANAGER.....ceittittettettentee ettt ettt et e bt esbeesatesutesabe e bt e bt e s bt e e bt e eat e e bt enbeesbeesbeesabeeabeebeenbeesmeesmneeaten 241
C.60 PACKGEDCOMPONENTeeittemttertteriterttenteenieesieesareeseeseesseesmteemstenseenseesseesaseenteenteesbeesusesaneenseenseesmeenane 241
C.61 PHYSICALCONNECTORcuteutettettattettatestessetestesseseeseeseeseasessessessessensensessessasseseasessessessessensensensessesseseesesses 242
C.62 PHYSICALMEDIAc.utiitiitiitteieentteniee ettt et e st e st e satesate et e bt e s bt e s bt e sat e et e ebeesbeesbeesetesateebeenbeesmeesanesaeen 242
C.63 PHYSICALMEDIAINLOCATIONottttiiittteeiittteenitteeesitteeesauteeeesaaneeeessanteeeesanraeeesansseeesanseeeesansreeesasreeeens 243
C.64 PHYSICALPACKAGE. ...c.ttittittetteitte ettt ettt ettt ettt ettt b e s ettt et e e s bt e s bt e satesate e bt e bt e sbaesmeesabeeneensae 244
C.65 PHYSICALTAPE ...eoiiiiiiiiiiiiitee ettt ettt ettt ettt e e ettt e e sttt e e s bttt e e sabte e e e smteeeesambaeeesambeeeesambeeeesaaseeesnee 244
C.66 ~ PORTIMPLEMENTSENDPOINTc.cctiitirtetetenieneesteseeseeseasessessessessensesseseeseesesseasessessensessensensensessessesessesses 245
C.BT PRODUCT ..ttt ettt ettt sttt ettt e she e s et sat e st e e bt e bt e be e e ae e eat e e bt e bt e sbeesbeesateeateebeesbesaneenbeenbees 245
C.68 PRODUCTPHYSICALELEMENTSccutittetesteterteteseeseeseeseasessessessessessesseseeseasessessessessessenssensensensesseseesessesses 246
C.69 PROTOCOLENDPOINT......cuetettettattattstestentetestenteneeseesteseaseseessessessensensesseseaneeseaseasessessessensensensenseneeseesesses 246
C.70 PROVIDESSERVICETOELEMENTuttiitiiiiittiiite ettt ettt ettt et e ettt e st e ebteesabeeesbbeesabeesnmaeesabaeenns 247
C.T1 REALIZES ..eeoutitietetetetetettetteteeteetestesteste s estesteseeseeseeseeseasessensensesseseeseeseeseeseasesensenseseeseeneeseesenseseeseaseasens 247
C.72 REDUNDANCYCOMPONENTccceirttrttrttenteenttenttesteeteeteenteesatesasteseenseesseesaseeateenteesbeesueesanesnseeseenseennne 247
C.73 REDUNDANCYGROUP......cttuietiitietiettetestestetestentestesteseeseesessessessessensensessesseseeseaseasessessessesensensensenseseeseases 248
C.74 REMOTESERVICEACESSPOINT....c.eiiitiitiiiiiieitie ettt ettt ettt ettt sttt et e bt e sbt e st st e e b e saeenae 248
C.75 SCSICONTROLLER.cceutttettteitteesiteestteesttee sttt esteeesuteesbteesubeesbaeeaateesabteesabeesabeeeasteesabeeabaeesabeeensseesasen 249
C.76 SCSIINTERFACE ...ceiutiiutiitieteeitertte sttt st et et e sbeesatesat e st e e bt e bt e e bt e eae e eateeabeebeesbeesbeesateeabeebeenbeesneesanesteen 250
C.TT SCSILUN ..ottt ettt b et b e bttt e e st es e eb e e bt e bt skt eb et et et en e e s e eseene st ensenteneeneeneereas 251
C.T8 SERVICE .euieuiititetetetestestesteteeteetestessessesseseesteseeseaseasesseasessensensenseseesees e et easeasesensensenseseeseeseesenseneeneaseasens 252
C.79 SERVICEACCESSBYSAP ...ttt ettt ettt ettt st e 252
C.80 SETTING ...teeeutteetteeeitee ettt estteeeateeesuteeeabeeebteesabteesbbeesabeeeabteesabeeeabaeesabeeeabaeesabeesabeeesabeesabeeebaeenbeeennbeesnbaeas 253

Page xiii of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

C.81 SETTINGC ONTEXTtertteruteeteeteenteesttesute et eteesteesteesaeeesteesteesbeesaeesatteabe e bt enbeeameeeaetemseenbeesseesaaesateenreenee 255
C.82 SHAREDSECRETSERVICEcccvetiitietististestetestestesteseeseeseasessessessessensensessesseseeseasessessessessensensensessessesessesses 256
C.83 SHAREDSECRETeetteitteitte et et enteesttesute et eateesbeesbeesaeeesteenbeesbeesheesatesabe e bt enbeeabeeeabeeabeebeesbeesaeesnteenbenaee 256
C.84 SOFTWAREELEMENTttiittiiittiite ettt ettt ettt ettt ettt e et e esbb e e sabe e ebeeesabeeebbeesabeesbbeesabeeeabaeesabeeennees 257
C.85 SPAREGROUPeouttitiitte ettt et et et e ettt sttt et e sbt e s bt s at e e bt e bt esbeeshtesabe e bt e bt e bt e eaeeeabeembeebeesbeesaeesatenseenane 257
C.86 STORAGEACCESSSERVICEeoittiriiiriieritenieenieeniteeteeteesteesieesmtesstenseesseesueesasesmteeteesseesunesasesaseenseenmeennes 258
C.87 STORAGECAPABILITIES......cutettettettetesuessessensessenseseaseeseaseasessessessessensensessessasseseesessessessessensensensessessesesseases 264
C.88 STORAGECONFIGURATIONJOB. ...c..eerutiriiiiiieniieniienite et eteenitesitesate et esbeesbeesheesateeteesbeesbeesatesabeenbeenbeenaee 266
C.89 STORAGECONFIGURATIONSERVICEetiiuiieittteniteeeiieenitee ettt esiteesateeesiteesabeeentbeesabeeesabeesnseeennseesbeeenases 267
C.90 STORAGEEXTENT ...ttt ettt ettt ettt et e bt e s bt e sht e st e bt e bt e bt e sbe e eat e e bt e beesbeesaeesateebeenee 273
C.91 STORAGEMEDIALOCATIONcoutiiitiiteeitentteeite et et ettesiee st eatteteesbeesbeesatesateemteenbeesbeesanesareebeenseenseenane 275
C.92 STORAGELIBRARYeuteuietieuieteeteetestestentesseseesteseeseaseasessessassessensesseseeseasessessessensensensesseseessssessessessensensenens 276
C.93 STORAGEPOOL ...ttt sttt et ettt sttt be e s s st ereenaee 277
C.94 STORAGEPOOLCOMPONENTttiitteetteentteestteesiteeetteestteesbteesiteesbeeesabeesbteessteesbeeesabeesnseeessbeesnseeesases 279
C.95 STORAGEREDUNDANCYGROUPceiittitietieniteeiteetteieesbte st st et e bt e steesieesateeate e bt e sbeesatesatesabeenbeenseenaee 279
C.96 STORAGESETTING ...ttt iutteeiteeeutteentteesutteestteesubeeeatteesateesbteesabee sttt esateesabteesabeesabeesasteesabeesbaeesabeeensseesasean 280
C.97 STORAGESETTINGWITHHINTSccuiiiirterieieieieietieteetestestestesteseseesaeseeseesesseesessessensensesensesseseeseesessesss 283
C.98 STORAGEVOLUME......cccttitiitiettenteenite et et et este e st e satesateeabe e bt e s be e s st e eaeeeaeeenbeesbeesbeesateeateenbeenbeesaeesanesanen 287
C.99 SYSTEMDEVICE......isteteietietieteetiatestestestetestestesteseeseasessessessessensesseseeseasessessessessensensesseseessesessessessensensesens 288
C.100 TAPEDRIVE ...couttiittiitieiiteete ettt sttt sttt sttt et e sbe e s ht e sat e st e e bt e bt e s bt e e bt e eat e e bt ebeesbeesbeesabeeabeenbeesbeesaeenbeenbees 289
C.L101 UNTTACCESS . cutteeutteetteenitteetteeaitteebteeattee sttt esuteesabeeabteesabeeaabteeaabeesabteesabeeeabaeesabeesabaeensbeesabaeesabesbaeanns 289
O N0 /0)N U ST PO UPPRUP 289
C.1083 ZONEALIAS ...oottitteitteite ettt et estee sttt sat e et e bt e sbeesae e sat e st e e bt e bt e beeeae e e ae e et e e bt e sbeesbaesateemteebeenbeeseeenneennees 290
C.104 ZONECAPABILITIESeteuteuteutesteteesessessesensessessestaseeseasessessensessensessessesseseesessessessessensensensensessssessessessenses 290
C.105 ZONEMEMBERteittiiutiitietteteenteentte st eteeteesteesutesatesabe e bt e bt e s bt e eaeeeate et e enbeesbeesbeesatesabeebeenbeesueesaeenbeen 291
C.106 ZONESERVICEttiiutttiitteeniteeatteenitee ettt enttee sttt esuteesateeabteesabeeaabteesateesbaeesabeesbaeesabeesabaeessbeesabaeessbeensaeann 291
C.L10T ZIONESET ..uttittetteette ettt ettt r bt sttt et et e bt e s bt e satesate s bt e bt e bt e s bt e eae e eat e e bt e bt e sbeesheeeateeabeenbeenaeeateenbeenbees 292
APPENDIX D: FUTURES.......cionviiitiinnininntinnntissntiossstsississsstsssstsssstssssssssssssesssssssssssssssssasssssssssssssssassssass 293
D.1 HBA LUN MASKING AND PERSISTENT BINDINGc.ceueutruereateneereneesesesessesessesesseneasensesessesensesessesessesessenens 293
D.2 MANAGED HUB SECTION.....c.ceiieteuieuiettetietestestesteseseestesteseeseesessessessessensessesseseeseesessessessessensensensensessesessens 293
LD N 1 o) SR 293

Bluefin Specification Version 1.0.0 Page xiv of 303

Bluefin Specification

D.4 MULTI-PATH MODELINGuuuueiieiittiiiieeeeeeeeeettteeeeeeesesetaieeeesssessataaeesessssastaaeessssssssmnaeesssssssrsmiaeeesssessrses 293

D.5 PROVIDER MODELINGcoottuuuitiiiitttiitteeeeeeetttttaaeeeeeetetaaaaaesssestaataessseststaessertsareessesssrraaaeseeeenes 293

D.6 REQUIREMENTS HIGHLIGHTING.......cuuuueteeieitttttuieeeeeereetuinneeessserssmneeesesssrssneesssssssssmeesssssesssmnnesessereenes 293

D.7 NON-FIBRE FABRICS . .ootuiiiiiiiieiiee ettt et e et e ettt e e et e e e et e e e et estaa e e s aaa e sesaasesasanseesrnneesannaens 293

D.8 COMPLIANCE NOTIFICATION ...euuuutuetuntetenennnnnenensnnesssnsssssssssssssssssssssssssssssssesssssssssssssssssssssssssesesesessssssseseeeees 294

D.9 CASCADED AGENTS ...otiiuititiiteenieentte sttt eiteeteestt e sttt sateeate e bt ebeesbeeeseeeateenbeesbeesaeesateeaneebeenbeesmeeemseenseenseensanas 294

D.10 DURABLE ID FORMATS ..ottt e ettt e e e e et et e e e e e e e et aaa e e e e eessbasaeeeeeessarsannnns 303

Table of Tables

Table 1: Profile COMPOIEIITSuuvveiuirrirererirrieriretererererererrre....—.———————————————————....——.—.—.nnnnnnnnnnnnsnnnnssssssssssssssssssssssssnnnns 52
Table 2: SWItCh ReqUITEA ClASSESuuvvviviviiiiiiiiiiiitiieieriiertrtrerereterererer.————————————————————————.tr...————————————ttrrrrrrrrrrrnrrn..... 59
Table 3: Zoning ReqUITEA CLASSES ...cccuuviiiiiiiiieieiiiie ettt e eeiieeeesitteeeettteeeesetaeeeesssaeeeesssseeesasssseesssseesssssseesassseesans 62
Table 4: Router ReqUITEA ClASSESuviiiiiiiieiiiiiiieeeiieeeeeitee e ettt e e seeteeesetaaeeeeetaeeeesssseeesasssseessseeesanssseeesnssseesans 65
Table 5: Required Classes for HBA...........ooo oo ee e e e e e e ettt ee e e e eeeeaareeeeeeeeeenennnnes 72
Table 6: SCSI Device TYPE MAPPING.......cccouiiiirrrreeeeeeeeeeciirreeeeeeeeeeetiaeeeeeeeeeeeeetrrreeeaeeeeeeetsrsreeeeeeeesissrereseeeeenserrnes 77
Table 7: Required Classes for Management APPLIANICEcooieeeiiirreeeeeeeeeeiiiieeeee e e eeeeecareeeeeeeeeeeeeareeeeeeeeenans 82
Table 8: LogicalDevice DUrable INAINESuuvviiiiiiiiriieiiiiiiieiererererereerrr errrr.......—————————————————.———.—n.nnnrrrrrrrr....—.. 88
Table 9: Required Classes fOr DIiSK ATTAYS....cccovuveeiiieeiieeeieeeeeee e e eeeeeteeee e e e e e eeeeteeeeeeeeeeeesaaareeeeeseesasreneeeeeeeeeans 106
Table 10: Required Classes FOr TaP@..........ciii ittt e e e e et eeeeeeeeetaseeeeeseeeanraneeeeeeeeaans 121
Table 11: Cross Profile Durable Identiflers.........cccciii ittt e e e e s eeeabraaeeeeaeaeeans 125
Table 12: MESSAZE TYPES .uuuriiiiiiieeieiiiiiite e e e e e eccitt e e e e e e e etbreeeeeeeeesabtbaaseeaaaesassssabasasaaseesassssesaeessssssssssaseasaseenans 132
Table 13: SLP V2 Status COES ...ccccuuiiiiiiiie ettt e e e e e e erttr e e e e e e e e e eaabtabeeeeaeeesssessssaesessassssrsnssaaasasnans 133
Table 14: ActiveConnection Association DerivatiOncccuuiiiiiiiiiiiiiiiiiieeee ettt eeeeeeiere e e e e e eeeeraaeeeaeeeeean 214
Table 15: AdmINDomain DerIVALIONcciiiiiiiiiiiiiiiee e e ettt e e e eeeecitre e e e e e eeeettaaeeeeeeeeeseerareseeessesasraaeseaaeeeaans 215
Table 16: AllocatedFromStoragePool Derivation..........cccouiiiiiiiiiiiiiiiiiieeee ettt e e e e eeare e e e e e e eean 215
Table 17: AssociatedStorageConfigurationdob Association Derivation..........cccceevevveeeeiiiieeeenciveeeesiieeeeseneennn 216
Table 18: BASedOnN DETIVALIONcccicciiiiiiiiiiiieeeciiee e et e eeie e e e eveeeeesibaeeesstbeeeeasbaeeeassseeeasssssaessssesesassseesenssees 216
Table 19: ChangerDevice DeriVAtIONooevcurieiieee e et e e eeeeee e e e e e e ee et e eeeeeeeessaaaeeeeeeseesasreneeeeeeeenans 217
Table 20: Chassis DETIVATION.c..iiiiiciiiieeciieeeeiieeeesite e e e sttt e e e staeeeeetbeeeeessraeeeaassseeeeasseeesaseeesassesesansseeesennsres 217
=Y o) L2 R 003 43N oY) 4 =) o AR 217
Table 22: ComponentCS Aggregation DeriVAtiOncccciiiiiiiiieiiiiiiiiiieee e e eeeciiiree e e e e e eeeiirrrreeeeeeeseesraaaeeaeeesnnns 218
Table 23: ComputerSystem DeriVationccccciiiiiiiie it e et e e e e e e errrrereeeeeeesaetararaeeseesssrsseeaeasessans 218
Table 24: ComputerSystemPackage Derivation........ccccoceuviiiiiiiiiiiiciiiiieee et e e e e e et e e e e e e e esiraaeeeeeeeeeans 219
Table 25: Concreteldentity DeriVATIONcc.ueiiiciiieeiiiiieeeeiiieeeeitee et e este e e e sibre e e e baeeeessbaeeeessseeesssssseesensseens 219
Table 26: Configuration Class DeriVATIONcccuviiiiiiiieeeiiiieeeiiiieeeeiteeeesteeeestteeeesbeeeeesbaeesesssseeessssseesensseens 219
Table 27: ConfigurationCapacity DerivatiOnccccuiiiiiiiiieeiiiiiie et e esieeeeesiieeeesiteeeesebeeeeeebeeeessrseeesensseens 220
Table 28: ControlledBy DeriVAtIONcooiiiiiiriieieeeeeeeciteeeee e eeeece e e e e e e eeeeaee e e e e e e eeeetaraeeeeeeeeeeesearaneeeeaeeeeans 221
Table 29: Controller DErTVATIONccccuiiieiiiieie ettt e eciteeeeriteeeeriteeeestbeeeesereeeeassaeeeessseeesssssaessssseeessssseeesesssses 221
Table 30: Dependency DEriVATIONciiiieiiiiiieeee e e e eeeccteeeeee e e eeeeeeree e e e e e eeeeeetreereeeeeeesesaaseeeeeeeeseasraneeeeeeeeaans 222
Table 31: DependencyContext DeriVAtiOonccc.vvviiiiiiiiieiieeeee et eeeeee e e e e e e ee e e e e e e e eareneeeeeeeeeans 222
Table 32: DeviceServicesLocation DeriVATIONccccuiiiiiiiiieiiiiieeeeieeeeecieeeeesireeeesireeeestreeeesebeeeeebaeeeesenneas 223
Table 33: DeviceSoftware DeriVATIONccccciiiiiiiiii et e e e ettt e e e e e e e e ettareeeeeeeeeettrtaseeeesssassssrasseeeaseeaans 223
Table 34: DiSKDTYIVE DEIIVATIONuuviiiiiiiiiiiiiiiiiieeee e cccciiee e e e e e eeeitt e e e e e e e eeesttbaraeeeaeeeassssssssesesessasssssassraeasaanans 224
Table 35: ElementCapabilities DeriVAtIOnuuuuuuuuueririreiiirieiiiereieiiiieeeiieereeeeeaeer...—..————————————————.—.—srrrrrrr.—.———— 224

Page xv of 303 Version 1.0.0 Bluefin Specification

Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:
Table 71:
Table 72:
Table 73:
Table 74:
Table 75:
Table 76:
Table 77:
Table 78:
Table 79:
Table 80:
Table 81:
Table 82:
Table 83:
Table 84:
Table 85:
Table 86:
Table 87:
Table 88:
Table 89:

Bluefin Specification

ElementCapacity Derivation..........ccooiiiiiviiiieieeieeiiiieeee e e eeeecieee e e e e eeeeeareeeeeeeeeeeaeseeessesaarereeeeeeeeaans 225
ElementConfiguration Association DerivVatiOoncccovviviieieeeiiiiiiiiieeeeeeeeeeeiiireeeeeeeeeeeeaareeeeeeeeenns 225
ElementSetting Association DerivVatiOncooovivviiiiiiiiiiiieeeeee e e e e e eeeree e e e e e e eeerreeeeeeeeens 225
DeviceStatistics DerIVATION.uuveiiii i i ee e e e e e e e et e e e e e e e eeareeeeeeeeeenanrnereeeas 226
ExecutingStorageConfigurationdob Derivation...........ccooevvvveeiieiiiieiieeeeee e eeaeee e e 226
ExtentRedundancyComponent Derivationccceeiiiiiiiiiiiiiiieee e ecciiiieee e e e esiirre e e e e e e e eievarreeeeeeeaes 226
ExtraCapacityGroup DeriVation.........cccviiiiiiiiiiiiiiiieee e cecciitee e e e e estvrrr e e e e e e eeitrarreeeeeeessbrareeeaaeesans 227
FCPOIrt Derivationccooooiiiiiiiiiiiii e 228
FCPortStatistics Derivation.......cccccciiiiiiiiiiii e 229
FRU Derivation......cccoiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt eeaeaees 230
ForwardingService DeriVAtION............coouiiiiviiiiee e ettt eeeeeeeeree e e eee et e e e e e eeeeearreeeeeeeeeetareeeeeeas 231
ForwardAmong Association DerIVATIONoooeiiiviriiieeeeieeeiieeeee e eeeecreee e e e eeeerr e e e e e eeeetareeeee e 231
HostedAccesSPoINt Derivation......cc.uuiiiiciiiieiciiieecccieeeeeteeeeeciiee e e eeiree e e esetreeeestaeeeeetsaeeessaeeessssseeaeanens 231
HostedCollection INNETIEATICEcoooiiiiiiiieeeee et ee e e e e e e e e tarre e e e e eenarneeeeeas 231
| 3 [0S =Y ATy AT o B Ty A g N (o) o WO 232
| 3 [oTS1=Yo IN] vy = Feqey ado o) B B e A2 N Te) s WO 232
IndicationFilter Derivationc.cccccciiiiiiiiiii ettt e e e 233
IndicationHandler Derivation...........cccccciiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 233
IndicationHandlerCIM-XIML Derivationccccccciiiiiiiiiiiiiiiiee e 234
IndicationSubscription Association DeriVationcc.eeeiiiiiiiiiiiiiieee ettt 234
InstalledSoftwareElement Derivationcccccccoiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 235
INStCreation DErIVATIONccicciiiiieciieeeeciiee ettt ettt e e e ettt e e e etteeeeesateeeeesraeeeesssseeeesssseeesnsaeeeeasseeeeannns 235
INStDEletion DeriVAtION.......ciiiciiiieeciiie ettt ettt ettt e e et e e e eeestbeeeeetbeeeeessaseeeessseeeessseeeessseeenns 235
InstModification DErIVATIONcccciiiiiiiiiie e ettt e eeiiee e eetteeeeetteeeeseteeeeetteeeessssaeeeesssseeesssaeeesssseeeeanes 236
InterLibraryPort Derivationccccccciiiiiiiiiiii ettt 236
LibraryExchange DerivVationccccccoiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e ee e aeaeeeeeeeeeeeeeeees 236
LibraryPackage Derivationccccccoiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt 237
LimitedAccesSSPOrt DeriVAtIONcvvviiiiiiiiiiiiiiiiiiieiiiieeirer et araraaaaaaaraa—aaaaaaa—a——————arararararrrnannns 237
LogicalDevice DErIVATIONccccuviiiiiiiie ettt e e ettt e e e e e eettb e e e e e e e esatbbaaeaeeeeeessebeeaaeseesassssseaeeeas 238
LogicalModule DeriVatlonccccuuviiiiiiiii ittt e e e e eceirr e e e e e e sttareeeeeeeessaeabrasaeaeeeessssssasaeaseessnssssnes 239
LogicalNetWork DerivVAtiOnccccuviiiiiiiiii ettt e e e e e e e e e eaataaeeaeeeeeeetabeeeaeeeeeennsenes 239
LogicalPortGroup Derivation.....ccccuueiiiiiiiiiiiiiiiiie e e ettt e e e eeecite e e e e e e e eeeaaaaeeeeaeeeeeeesaeeeeeeeeeannsnnes 240
MemberOfCollection INRETTEaANCEoovviiiiiiiiiiiiiiiiieeee s aaaaseasaseaaaanes 240
MoOAUIEPOTE DETIVALION ...eiiiiiiiiiciiiieecciiee ettt ettt e e et e e e e ebbe e e e baeeeesabbaeeesssaeeessrseeaeasssseeeesseeas 240
ObjectManager DErIVATIONc..uvvveieeiiieeciiiieiee e e eeeecee e e e e e eee e eeeeeeeeeetaaareeeeeeeeeeetreeeeeeeentareereeeas 241
PhysicalConnector DETIVATIONcoiiiiiiieeeee e et eeeeee e e e e e e et eeeeeeeeeearereeeeeeeennannereeeas 242
PhysicalMedia Derivation.........ccccccoiiiiiiiiiiicceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt e e e e e e e 243
PhysicalPackage Derivationccccccooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e v aaeeaeeeeeeeeeaeeeaees 244
PortImplementsEndpoint Association DeriVationccccccuvrurreuririririiiiiiereeieieeeeenn———- 245
Product DerivVAtIONcooiiiiiiiiiiiiiiieeeeeeeeeeeeeee ettt — b ——— b —————————————————tta—————————————————— 245
ProductPhysicalElements Derivationcccccooiiciiiiiieeee et e e e e eeeiittree e e e e e e seiivvrreeeeesesaenasaeeeeeas 246
Protocol EnNdpoint DeriVATIONceiiiiiiiiiiiiiiiie ettt eeeetire e e e e eeeeitb e e e e e e e eeaataaeeeeeeeeesaraaeeeeas 246
ProvidesServiceToElements Derivation..........ccccccccoiiiiiiiiiii e 247
Real1ZE8 DOTIVATIONciiiiiiiiiiiiiiiiiitteette et e aaaaaaaaaaaaaaassasssassssnsssnsnssssssssssssssssnsnsnnnnnnns 247
RedundancyComponent DeriVation..........ccovveieieeiiieiiiiiireeee e eeeeciieee e e e eeeeeaereeeeeeeeeeetaneeeeeeeeeeennnnes 247
RedundancyGroup DerivVatiOncoieeiiiiireieeeeeeeeeciiiiee e e e eeeeecree e e e e eeeeetaaeeeeeeeeeeeetasreeeeeeeeennrnnes 248
RemoteServiCeACCESSPOINT.cccvvveeieeee et ee e e e e e e e e e e e eeetaneaeeeeeeeennaaes 249
SCSIController Derivation, General CaSeot ee e 250
SCSIController Derivation, AILErNate CaSe. ...t 250
SCSIInterface Derivation, GEneral Caseccoooiioiiiiiiiiiiiiiiieiieee et eeeeaas 251
SCSTLUN Derivation....cccoeeeiiiiiiieiiieeeieeeeeeee ettt 251
SErVICE DEIIVALION .ccceeiiiiiiiiiiiii s 252
Service AccesSBYSAP DerivatiOnccocciiiiiiiiiiiieciiiiiiieee et e e e eeeeitt e e e e e eeeeatareeeeeeeeetaraaaeeaas 252
SEEEING DETIVATION ..uuviviiiiiiiieeiiiiiieeee e e e ettt e e e eeeeittt e e e e e eeeeetaaeeeeeeeeeesiastsaseeaeeeeetrasseaaaeeeeaassrreseeens 255

Bluefin Specification Version 1.0.0 Page xvi of 303

Bluefin Specification

Table 90: SettingContext Aggregation DerivVAtiOoN.........cccivveiiiieiiiiiiiiiiieeee e eeecccree e e eeeeare e e e e eeeeeiareeeaeeeeens 256
Table 91: SharedSecretService DeriVationccuiiiciiiiieiiiiieeeciieeeeeireeeesiteeeesiaeeeesbeeeeesbaeeeesasseeesssseeessnsseeas 256
Table 92: SharedSecret DeriVAtIONccciciiiiiiiiiiie ettt e st e e e e e e e e etbbeeeesataeeeesabaeeeesssseeesansseeesennseeas 257
Table 93: SoftwareElement Derivationcccciiiiiiiiiii e cee et e e et e e e stb e e e e stbee e e earaeeeeatseeeeenneeas 257
Table 94: SPareGrouP DETIVATIONuvvviiiiiiieciiieeeeee et e e e e e ee e e e e e e e eeesarereeeeeeeeeeraareeeeeeeeseasasranneeeeeeeaans 258
Table 95: StorageAccessService DEriVALIONuviiiiiiiiiiiiiiiiieee e e e ecciieee e e e e eesrirrreeeeeeeeestrtareeeeesesssssrasaeseasesanns 264
Table 96: StorageAccessService Alternate DeriVAtionccciiiiiiiiiiiiiiieee e e e e eeeeitrree e e e e e e eeraareeeeeeeeans 264
Table 97: StorageCapabilities DEeriVATIONccccuiiiiiiiiiieiiiiieeeiiiieeeeriieeeesieeeestbreeesbreesessbaeesesssseessssseeesssssees 266
Table 98: StorageConfigurationdob Class Derivationccccccviieeiiiiereiiiiieeesiieeeesieeeeeieee e esrreeeesereesseseeas 267
Table 99: StorageConfigurationService DeriVationccciieiciiieiiiiiieeeiiieeeesieeeeeieeeeereeeeererreesesaeeesenseeas 273
Table 100: StorageExtent DETIVATIONcoooiiiiriiiie ettt eeeccre e e e e eeeeectaee e e e e e eeeeeetareeeeeseeeaaraaeeeeeeeeeans 275
Table 101: StorageMedialocation DeriVatiOn...........ccooviiiiurieiieeeeeeiiiiiieeeee e e eeeeecieree e e e e eeeeeetareeeeeeeeeeeireaeeeeeeeeens 276
Table 102: Storagelibrary DeriVATIONccccvuvrrieieeeeieeecieeeeee e e e eeeecteee e e e e eeeeeitareeeeeeeeeeeeaareeeeseeesaareaeeeeeeeeeans 2717
Table 103: StoragePool Class DEriVATIONccccuvvviiiiiiiieeiieeeeee e e eeeeeeee e e e e e e eeeere e e e e e e eeeeaaareeeeeeeeeaaraneeeeeeeenans 279
Table 104: StoragePoolComponent DETIVATIONccoeivuieeeiieeeeeeeieeeeee e e eeeeeee e e e e e eeerareeeeeeeeeennareeeeeeeenns 279
Table 105: StorageRedundancyGroup Derivationccccueeeiiiiiiiiiiiieeiiee et eeeeereee e e e e e eeeaareeeeeeeeans 280
Table 106: StorageSetting Class DerivatiOnciiiiiiiiiiiiiiiee et eeerree e e e e e e eeierrareeeeeeesestsrasaeeaaseenns 283
Table 107: StorageSettingWithHints Derivation..........ccccuiiiiiiiii oottt e e e e e e e esiianeeeeeeeeeans 287
Table 108: StorageVolume Derivationccccuiiiiiiiiieiiiiiiiiieee e et e e e e e eeritarreeeeeeeeeterrareeeeesesessrasaeaaasaanans 288
Table 109: SystemDevIce DErIVALIONcciiiiiiiiiiiee ettt e e e eeeccieee e e e e eeeetarreeeeeeeeesearareeeeeseesssraseseaaeeeaans 289
Table 110: TapeDrive DeriVALIONuuuiiiiiiiiieiiiiiiieee e ettt e e e eeeete e e e e e eeeeetarereeeeeeeeeeasreraeeeeesassrasereaaeeeanns 289
Table 111: UnitAccess Ass0Ciation DeriVALIONccccuiiieeiiiiiieeiiiieeeeiiieeeesireeeesiteeeeerreeeesbaeeeesarreeasssseeesennseens 289
Table 112: Z0one DEriVATION.....cccciiuiiiieiiiieeeeiieeeeeeiteeeestteeeestbeeeestbeeeeasreeeeasssseeeasssseeessssaeesasseseesssseeesasssseesesssees 290
Table 113: ZoneAlias DeriVAtIONcccuiiieiiiiieeeciieeeeeeieeeeeciteeeesteeeeetbeeeesstbaeeeessbseeeessseeesasssssesssseeesassseesensssees 290
Table 114: ZoneCapabilities DEeriVALIONccccvviiiiieie ittt e e e ee e e e e e e e e eesaaareeeeeseesaareneeeeeeeeaans 291
Table 115: ZoneMember Derivation........iiiiiccciiiiieieeeeeerciiteeee e e eeesirrteeeeeeeessaerrreeeeeesassssssreeeessssssssssnseeeeseennns 291
Table 116: ZoneService DEIrIVATIONc.cciciiiiiiiiieeeciiieeeeciieeeeeireeeestreeeeseveeeessatseeeesssseeessssesessseeesassseeesasssses 292
Table 117: ZoneSet DerIVATIONccc.uviiiiiii i e ettt e e e eeecitrr e e e e e e e erttbreeeeeeeesssetabaseeeeseesassssseesesssssssssasseeeeeanans 292

Figure 1: Interface FUNCEION........cc.uviiiiiii e e e e e ettt e e e e e e e eettaeeeeeeeeeeansaseeaaeeeeeennsnees 22
Figure 2: Large SAN TOPOLOGYuuvreeiieeeeiieiiieeeeee e eeeeecte e e e eeeeteaa e e e e e e eeeeetaaeeeeeeeeeeseettaseeeeseeeeasssreeeseeeeeenarnnes 25
Figure 3: Example Client Server Distribution in & SAN.......ccccciiiiiiiiiiiiiiie ettt e e e e e sraeeeeenes 26
Figure 4: Bluefin Modeling CoOnVENtIONSccuviiiiiiiieeieiieee ettt e eeiteeeeeiteeeeeetteeeseereeeeesssaeasssseesasssseesessssesessnns 29
Figure 5: Object Model/Server RelationShipccccviiiiiiiiiiiiiiic ettt etre e e e setre e e e eaae e e eseraeeeeeanes 30
Figure 6: Canonical INNETTEANICEcccociiiiiiiiiiiie ettt ett e e e e ette e e e sttaeeeeeetaeeeestaeeeesssaeeeesasseeaesnnes 31
Figure 7: Sample CIM-XIML MESSAZE......ccccuuririieeeeeiiiiiiiieeeeeeeeieitiirreeeeeeeeessttttaseeseseesssssssssssssesesssssssssssssssasssssssens 32
Figure 8: Operational ENvIronmMeEnt.........cccciiiiiiiiiii et eeee ettt e e e e e e e e e eattaabaeeeeeeesesbaasaeseseesassnnsenns 33
Figure 9:Transport STACKccoociiiiiiiiic et e e eett e e e e e e e e stttaraeaeeeeeesstttaaeaeeeeessssssssaaasesesessnssrnns 36
Figure 10: Reference IMOAEl.............vviiiiiiiiiee ettt e ettt e e e e e e e ettt b e e e e e e eeeeastaaeeaaeeeeeenansenes 37
Figure 11: CIUSEEr IMOAELcciiiiiiiiiiiie ettt ettt e ettt e e ettt e e e ettt e e e estaeeesstaeeesansseaesnsseessassseaesasssaeesnnne 42
Figure 12: Common EIEMENTSccccuiiiiiiiiiii ittt ettt e et e e e ettt eeesetaeeesestaeeesestseeesassseeessssseeesansseeesannes 43
Figure 13: WBEMSErvice HIOTarChyccoociiiiiiiiiiii ettt eeetvee e e etve e e e stvaeaesevaaeensraaeesssssaeaennnns 44
Figure 14 - Indications Filters SCRemacciiciiiiiiiiiiiiciee ettt et e et e e e e tae e e e e bbeeessaaeeeesnsseeaennnes 47
Figure 15 - INdiCations SCREIMIA.......cccuiiiiiiiiiie ittt ettt ere e e et e e e eita e e e esataeeeesetbeeesassseeesssseeessssseeeeassseeeeanes 48
Figure 16: Fabric SCREIMA.......cccviiiiiiiiii ettt e e et e e e e e tbe e e e ettae e e e etaeesssaeeessssaeeeesnssaeaennnes 54
Figure 17: Fabric INStance DIagrami.........cccccuiiiiiiiiiiiiiciiiieeee ettt e e e e e e ettareeeeeeeeesnttssaeeeeeesssssssaseeesssesassnsnnnns 55
Figure 18: Fabric ReqUITE ClaSSESccccuviiiiiiiiii ettt e ettt e e e et e e e e e tteeeeeetaeeeesetaeeeesateeessssaeeeesnsseeaennnes 56
Figure 19: Switch Schema DIagramcooccuuiiiiiiiiii e e e e e et e e e e e e e e s rtaabaeeeeeesesrassaesaseesssssnnens 57
Figure 20: Switch INstance DIagramccccuiiiiiiiiiiiiiiiiiiiieee et e e e e sttt e e e e e e e esetabareeaeeeestbsasaeeeseesensssnenns 57
Figure 21: Zoning SCREIMIaAcooiiiiiiiiiiic e et e e e e e ettt e e e e e e e eeeetbaeaeeeeeeeantaaaaaaaeeeeannraaes 60

Page xvii of 303 Version 1.0.0 Bluefin Specification

Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:

Bluefin Specification

Z0nINg INSEANCE DIAZTAINuuuiiiiiiiieieeceeeeeee et ee et eeeeeeeeeeeeeeeeeaeaaeaaeaaaaeaeens 60
Router Schema DIagramccc..veiiiiiiiiiiiiiiee et e ee e e e e e e e eeearrreeaens 63
Router Instance Diagramccoooeeeeeiiiiiiiiiiiiiieee s 64
Extender Schema DIAGTAIIoooeviiviiiiii e e e ee e e e e e e eesataeeeeeeeseesaareneeeeeeeeeans 66
Extender INstance DIAGIami............uuuuuiuuiiiiiiiiiiiiiiiiiiiteiiteieennneaennnnnannannnnnnnnnnnnnnnnnnnsssssssssssnssssnnnes 67
Required Classes for EXtender..........cccccooiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee s 69
HBA Schema DIagram........ccc.uuiiiiiiiiiiiiiiiiiieee ettt e e e ettt e e e e e e e eeetabbraeeeaeeeseattbreaeaeeeesssssssseeaens 70

Figure 29: HBA INStance DIAGIAINcoooiiuiiiiiiii ettt eeeecitee e e e e e ettt e e e e e e eeeetabaeeeeaeeeesasasseeaaeeeeeennreens 71
Figure 30: HBA Binding Instance DIagrammccoouiiiiiiiiiiiii ittt e e ettt e e e e eeitaeeeeeeeeeeeenaaeeaeeeeeeansnnes 71
Figure 31 Host Discovered Resources Schema Diagram.........cccccoveiiiiiiiiiiiiiiiiiic et 74
Figure 32 Host Discovered Objects Instance Diagrami...........coooviiiiiriiiiieiieiiiiiieeeee et eeeeecreee e e e e 75
Figure 33 Host Discovered Objects Instance Diagrami...........ccooviiiiviiiiiieiiiiiiiieeeeee et eeeeereee e e e ennnnes 75

Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:

Management Appliance Schema DIagram...........ccooovivviiiiiiiiiiiiiiieeeee e e e 79
Management Appliance Instance Diagrami........cccoooovveiiiiiiiiiiiiiiiiie e 80
Disk Array Core Schema DIa@Tam . ..ccccuuveeiiiiiiiieiieeieee e et e e e e e e e et ee e e e e eetareeeeeens 83
Disk Array Service Schema DIa@Iamoviiiiiiiiiiiieeiiee et e e e e et ee e e e e e eeaareeeeeens 83
Disk Array Instance DIAgramcccccooeiiiiiiiiii it e ettt e e e e e e ettt e e e e e e e e esaattaaaeeeeesnessasreeeens 84
JBOD AT Tay MOGELviiiiiiiiieeiieee ettt e e e e e ettt b e e e e e e e e s ttrbbraeaeaeeeabaaaaeaeaeeaantraaraeaens 85
Single/Dual Processor MOAELSciiiiiiiiiiiiiiiee ettt e e e e e e e eetarrae e e e e e eaetraaaaeeeas 86
SIMPLE DISK IMOEL....coiiiiiiiiiiiiiiee et e et e e e e e e et b e e e e e e e e e eettaaeeeeaeeeeeeassaaeeeeans 87
Raid Group IMOGELuvviiiiiiieeeieeee et ettt e e e e e et e e e e e e e eeeataaaaaeaaeeeeeasraareeeens 89
Virtualization Across Multiple SYStEmMIS......cccvveiiiiiiiiiiiiieeeeee et eeeeeere e e e ee e ee e e e eeeeannnes 90
Batch LUN MasKing ODJECES......ceiiiiiiiiiiiiieiiee e eeeecciieeeee e eeeeeteeee e e e eeeeaareeeeaeeeeeeearaaeeeeeeeenenneeeeaens 92
Storage CONTIGUIATION.ccccviiieiee ettt e e e eee et e e e e e e e eeeeaaereeeeeeeeeeetraeeeeeeeeeenetrrereeeens 94
Storage Pool EXAMPLE......ooooiiiieiiic e e e e e e e e raaa s 96
StOrage CONTIGUIATION.ccoueerieieee et eeeee et e e e e e e et e e e e e e e e e eeeaaaeeeeeeseesaentareeeeeeeeesnasrreeeeeess 97
Physical DISK IMOAEL.......uuuuneeeeececeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeeeeaeaeeeeens 98
Array Internal ConMECTIONS.cccuiiiiieie e ettt e e e e e eeetr et e e e e e e eetbaareeeeeeesesastraaaeeeaeessrssaesessesssssssnnns 929
SPATE DISK 1uvuviviriiiiiiiiiiiiiiiiiiiiei e e aaa———————————————————————————._a.____—__—___.ntannniseststttttetttatat—t——————————————— 99
Storage Redundancy MoOdel..........ccc.uuiiiiiiiiiiiiiiiiiiece ettt e e e e e e e e iaar e e e e e e e eaetraaraeeeaeeeanns 100
JBOD MOAEL ...veiiiiiiieeiiieeeee e e e e ettt e e e e e ettt a e e e e e eeeetbbaaaae e e e attaaraaaaaeeeeannranes 101
Asymmetric Virtualization APPIIATICEeeieiiiiieeeiiiieeeiiiteeeeiteeeerireeeesireeeeeeaaeesssnbreeeesssaeeesnnseeas 102
Symmetric Virtualization APPIANICEccciiiiiiiiieiiiiie ettt ettt e e esre e e e eereeeeerbeeeeenneeeas 102
Symmetric Virtualization APPLIANCEcoooiiiiiiiiie e e e eeeerree e e e e e e 108
Storage Media Library DevICE VIEWcoooiiiiiieiiiieeeeeieiiieieee et eeeeeearee e e e e eeeanaeeaaeeeeens 110
Storage Media Library Schema: Physical VIEWcooooviviiiiiiiiiieieieeee e 113
Storage Media Library Schema: Software/Service VIEWoooovvvveeiieeiiieeiiieeeeee e eeeeeveeeeee e 114
Tape Library Instance DIagramccccooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e ee e e eeaees 115
SYSEEIM DIAGTAIM .. .uiiiiiiiiiiiiiiiiiie e e ettt e e e e e ettt e e e e e e e esettbrreeeeeeeaseetbaasaeaaaeessrsstbeseeesssssssssrreeaaesanans 122
Host Bus Adapter IMMOAE]ueneeeeeeeeeeeeeeeeeeee eeeeeeeeeeeaeeeeeeeens 122
A Lol s WY FoTs 1) OSSR U U RSP PPPUPN 123

Figure 63: Array INSTANCE.coiiiiiiiiieee ettt e e e e e ettt bt e e e e e e eeeeabtaaaeeeeeeaatbareaaaeeeeeanasrees 124
Figure 64 - Device CredentialS........cciiiiiiiiiiiiiiie et esiiee e eeiteeeete e e e eeteeeeesstaeeeesseseeesanssseesssseeesassseessnnsseeenns 128
Figure 65: Directory Agent (DA) Discovery — Active and Passiveccccovvviiiiiiiiiiiiiiiieeccccecieeee e, 146
Figure 66: Service Agent Discovery using a Directory AGENtoeeiveeiiiiiieeieeeeeeeeiieeeeee e e 148
Figure 67: Service Agent Discovery without a Directory AZentcooevvvvveeeiiiiieiiiiiieeee e 149
Figure 68: Service Agent Discovery Using a Directory Agent and Object Managerccoeeevvvveeeeeeeeeeeeenn. 150
Figure 69: Service Agent Registration with a Directory SEeIVETccoovviuveeiiiiiiiieeieeeeeeee e 152
Figure 70: SA Server CONfIGUIATIONccooiiuvriiiieeee et eeeeeeee e e e e eee e e eeeeeeeeeeasaneeeeeseeeessataneeeeeeeeeannarens 156
Figure 71: Lock Management Reference Model..............oooiiiiiiiiiiiiiiiiii ettt e e e 163
Figure 72: Lock Request Success Sequence Diagrami.........cccocccviiiiiiiiieiiiiiiiiiieee e eeesiiiveee e e e e e e sitrvreseeeeessennnnnns 164
Figure 73: Unsuccessful Lock Request Sequence Diagram...........cccceeeeeeiiiiiiiiiei i i eeivnees 165
Figure 74: Lock Liease RENEWal SUCCESScocvuviiiiiiiiiei et eetee e eette e e et eeeetae e e eeaaee e eeeaaeeeeeeaveeeearreeeens 167
Figure 75: Lock Lease Renewal FAIlUreooooiiiiiiiiiiiiiiii ettt e e e eeree e e e e e e e eannnns 168

Bluefin Specification Version 1.0.0 Page xviii of 303

Bluefin Specification

Figure 76: Complete Reference IMOdeloooiiiiiieiiiiiiiiiiie ettt ettt e e tve e e e seve e e estaeeeeentbaeeesnsseeaans 173
Figure 77: Interop Schema ODbjJect Model..........ooiiiiiiiiiiiiiiiieeee et e re e e e e e e e e etraeeeearsaeeeas 177
Figure 78: Configuration AdmMINIStIatiOn........cccuiiiiiiiiiieiiiiieeeieieeeeeiieeeeeetreeeeseraeeeesaaeeessaaseeeesssseeesssseeesassseeanns 185

Page xix of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Introduction

Clause 0: Introduction

0.1 Preamble

Storage Area Networks (SANs) are emerging as a prominent layer of IT infrastructure in enterprise
class computing environments. Applications and functions driving the emergence of SAN technology
include:

e LAN free backup.
¢ Remote, disaster tolerant, on-line mirroring of mission critical data.
e C(Clustering of fault tolerant applications and related systems around a single copy of data.

e Sharing of vast storage resources between multiple systems.

To accelerate the emergence of SANs in the market, the industry requires a standard management
interface that will allow different classes of hardware and software products supplied by multiple
vendors to reliably and seamlessly interoperate for the purpose of monitoring and controlling
resources. It is the goal of this interface to provide for the functionally rich, reliable, and secure
monitoring/control of mission critical global resources in complex and potentially broadly distributed
multi-vendor SAN topologies. As such, this interface overcomes the deficiencies associated with legacy
management interfaces principally developed for the networking industry or the "pre-SAN" storage
industry.

0.2 Business Rational

The business goal is to provide an "open” and extensible interface that will allow subsystems and
devices within the global context of a SAN to be reliably and securely managed by overlying
presentation frameworks and management systems in the context of the rapidly evolving multi-vendor
market. In specific, SAN integrators (like end-users, VARs, and SSPs) shall, via a standard SAN
management interface, be able to more flexibly select between multiple vendors when building the
hierarchy of software systems required to manage a large SAN independent of the underlying
hardware systems. Additionally, SAN integrators shall be able to more flexibly select between
alternate hardware vendors when constructing SAN configurations. As such, this interface is targeted
at creating: broad multi-vendor management interoperability and thus, increasing customer
satisfaction. Increased customer satisfaction will:

e More rapidly expand the acceptance of SANs.
o Accelerate customer acquisition of SAN technology.

e Expand the total market.

Additionally, a single common management interface will allow SAN vendors and integrators to
decrease the time required to bring new more functional technology, products, and solutions to market.

0.3 Interface Definition

This management interface allows storage management systems (either user written or formal products)
to reliably identify, classify, monitor, and control physical and logical resources in a SAN. The
fundamental relationship of this interface to storage management software, presentation frameworks,
user applications, SAN physical entities (i.e., devices), SAN discovery systems, and SAN logical entities
is illustrated in Figure 1.

Page 21 of 303 Version 1.0.0 Bluefin Specification

Introduction

Storage
Resource
Management

Performance

Graphical Interfaces

Planning
Allocation

Presentation Frameworks

Information
Management

Container
Management

Media File
Management System

Volume
Management

Database
System

Bluefin Specification

Data
Movers

Backup
System

HSM

User Applications

SAN Management Interface

SAN Physical Entities

I_IBA SWltc h Enc 10 SUre Array Router

LUN LUN
SnapShot

SAN Logical Entities

Removable
Media Set

osts, Ports, LUNs b

Figure 1: Interface Function

The diagram illustrates that functions of the interface may be distributed across multiple SAN devices

(i.e., Switches or Array Controllers) and/or software systems (i.e., Discovery Systems).

While the

functionality of the interface is distributed within a SAN, to insure that monitoring and control
operations by clients are consistent and reliable, the state of a given resource should not be
simultaneously available to clients from multiple unsynchronized sources.

Example:

arequest by an SRM application and a backup engine for the bandwidth available

on a given Fibre Channel path should be satisfied by a single monitoring entity to
insure information consistency. Should the SRM application and Backup engine
obtain different available bandwidth information for a given Fibre Channel path
from multiple unsynchronized sources they may function in conflict and degrade
the efficiency of the environment.

Satisfying this requirement is the responsibility of parties configuring SAN management clients in

conjunction with the primitives defined in the specification.

It should also be noted that within this architecture (as depicted by the illustration above) entities like
an appliance based volume manager are potentially both a client and a server to the interface.

Page 22 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification Introduction

Example: a host based volume manager may desire to construct a large storage pool from

multiple SAN appliance based volumes as well as volumes/LUNs originating from
array controllers. In this case, the host based volume manager must inspect the
characteristics of the volumes on both the SAN appliance and array controller
prior to allocation. Additionally, the SAN appliance (which runs a volume
manager) must inspect the properties of storage devices when building its
volumes. As such the SAN appliance in this case is both a client and server in the
management environment depending on the action being performed.

Relative to Figure 1, examples of long-term functional goals for clients using this interface include:

1.

10.

The need for a graphical management console to visualize the resources in a SAN as well as
the topology of those resources.

The need for a management console to identify a resource that has experienced an error/fault
condition that has degraded/disabled its operation.

The need for a management console to construct a zone of allocation around a select group of
host and storage resources.

The desire for a volume manager to inspect the nonvolatile storage resources available to it
such that it may construct a storage pool of a consistent level of performance and availability.

The desire that a server-free backup engine be able to identify the 3td party copy engines (and
associated media libraries/robots) available, and allocate an engine/library/robot to a given
backup task.

The need for a file system to extend its capacity through dynamically utilizing additional non-
volatile storage volumes. Note: each volume to be utilized must meet strict availability and
performance requirements and thus, the file system must inspect the properties of each
volume prior to allocation.

The desire for a Storage Resource Management (SRM) application like a SAN performance
monitor to identify topology and line utilization such that performance bottlenecks may be
exposed.

The requirement that a capacity planning system identify each storage pool in the SAN and
then interact with the manager of each pool to assess utilization statistics.

The need for a privileged user-written application to restrict the use of a volume to a specific
host, set of hosts, or set of controller communications ports.

The requirement that fault isolation and analysis systems asynchronously receive events
relative to the health and performance of the devices and subsystems in the SAN.

Example non-goals for this interface include:

Page 23 of 303

Select a logical communications port over which to send/receive data.
Read/Write data to a volume.

Identify and recover from data communications errors and failures.
Synchronization message between two cluster nodes.

Log a new communications device into a network.

Version 1.0.0 Bluefin Specification

Introduction

Bluefin Specification

0.4 Technology Trends

To be broadly embraced and long lived this management interface should respect and leverage key
technology trends evolving within the industry. These include:

1.

2.

3.

4.

Page 24 of 303

Improved Connectivity: Whether available In-band (i.e., over Fibre Channel) or available out-
of-band (i.e., over a LAN/MAN/WAN), or available over a mix of both, virtually all devices in a
SAN have (or soon will have), access to a common communications transport suitable for carrying
management information content (namely TCP/IP).

Increased Device Capability: All SAN devices (even simple ones like a switch) have sufficient
capability to communicate via a common, general-purpose network transport (again, TCP/IP) or,
using proxy services through another resource (e.g. general purpose computer system), to gain
access to a common communications transport.

Example 1: A legacy array controller is incapable of running the software necessary to
implement a management server for this interface and uses a proxy server on a
SAN appliance to communicate within the management environment.

Example 2: An HBA is incapable of running the software necessary to implement a
management server for this interface and uses a proxy server on its host system to
communicate within the management environment.

XML Standardization: XML is providing management protocols with an extensible, platform
independent, human readable, content describable communication language for the first time.
These protocols provide appropriate abstraction — separating the definition of the object model
from the semantics/syntax of the protocol. Additionally, the transport-independent, content-
description (i.e., markup) nature of XML allows it to be utilized by both web-enabled application
and appliances.

Increased SAN Complexity: SANs being configured with diverse classes of components and
widely distributed topologies. Management clients and servers in the environment being widely
distributed on systems, appliances, and devices throughout large SAN topologies while
maintaining real-time distributed state for logical entities. Figure 2 below provides an example
of a single SAN of multiple classes of components spanning three physical locations (i.e., Sites A,
B and C). In this figure a communications switch is denoted by label “SW”, a host denoted by “H”,
and a storage array denoted by “A”.

Version 1.0.0 Bluefin Specification

Bluefin Specification Introduction

Site - A

Library,

[P or Sonet Bridge; INIIINVA
Network H

Bridge, SWZ

Snaps/Clones
Figure 2: Large SAN Topology

0.5 Management Environment

Clients and Servers of this interface will be widely distributed on systems, appliances, and devices
throughout large SAN topologies. The configuration in Figure 3 provides an example client/server
distribution using in-band TCP/IP communications, out of band TCP/IP communication, or employing
proxy services to bridge legacy and/or proprietary communication interfaces.

In Figure 3, the device “Old Array Controller” is incapable of either in-band or out-of-band
communications with clients and servers in the management environment. Access to the
communications transport that clients and servers share for communication is achieved via a proxy
service on the host computer in the upper right hand corner of the illustration. All other clients and
servers communicate via direct access to a common communications transport.

Page 25 of 303 Version 1.0.0 Bluefin Specification

Introduction Bluefin Specification

Host Host Host I Mgmt Framework:
(Out-band Mgmt) (Out-band Mgmt) (Out-band Mgmt) ! Client

File System:

File System: :
Client

Client

1 Client

Mgmt Appliance
(Out and In-band Mgmt)

Fibre Channel Fabric Discovery System + |
Dlrectory Service: Server -
(In-band Mg mt) i

Legend:

General Purpose Network

Switch: Server Mgmt Appliance

(Out and In-band Mgmt)

Fibre Channel Network

SCSIBus Host/O.S.: Server . B
HBA: Server - HSM: Chent '
'SRM Apps: C! 1'1515{5' |
old Router Array Controller Bridge to ATM
Array Controller (In-band Mgmt) (In-band Mgmt) (Out-band Mgmt)
No TCP/IP e . PO, e
Connectivity ! ! 1 1 ' i
(Proxy Managed) :__S_e_ryf:f_: L_§_ef_/€_:1:_} .-??TYG_:I_A_:
—
Media Library
(Out-band Mgmt)
! Server |

Figure 3: Example Client Server Distribution in a SAN

0.6 Architectural Objectives

The following reflect architectural objectives of the interface. Some of these capabilities may not be
present in early releases of the interface but are inherent in its architecture to insure extensibility and
thus, eventually broad adoption.

1. Consistency: State within an object and between objects shall be consistent independent of the
number clients simultaneously exerting control, the distribution of objects in the environment,
or the management action being performed.

2. Isolation: A client that must execute an atomic set of management actions against one or more
objects shall do so in isolation of other clients who may desire to simultaneously execute
management actions against those same objects.

3. Durability: Atomicity, consistency, and isolation shall be preserved independent of the failure
of any entity or communications path in the management environment.

4. Consistent Name Space: Managed objects in the SAN must adhere to a consistent naming
convention independent of state or reliability of any object, device, or subsystem in the SAN.

5. Distributed Security: Monitoring and control operations shall be secure. In specific, the
architecture shall support:

Page 26 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Introduction

10.

11.

12.

13.

14.

15.

16.

17.

e (Client authentication.
e Privacy (encryption) of the content of the messages in this protocol.
e C(Client authorization (by object class).

Physical Interconnect Independence: The interface shall function independent of any particular
SAN physical interconnect, supplier, or topology.

Multi-vendor Interoperability: Clients and servers should use a common communication
transport and message/transfer syntax to promote seamless plug compatibility between
heterogeneous multi-vendor components that implement the interface.

Scalability: The size, physical distribution, or heterogeneity of the SAN shall not degrade the
quality or function of the management this interface.

Vendor Unique Extension: The interface shall allow vendors to implement proprietary
functionality to distinguish their products and services in the market independent of the
release of a new version of the interface.

Volatility of State: This interface shall not assume that objects are preserved in non-volatile
repositories. Clients and servers may or may not preserve object state across failures.

Replication: This interface provides no support for the automatic replication of object state
within the management environment.

Functional Layering Independence: The design of this interface is independent of any
functional layering a vendor may choose to employ in constructing the storage management
systems (hardware and software) necessary to manage a SAN.

Asynchronous or Synchronous execution. Management actions may execute either
asynchronously or synchronously. In synchronous management actions, a client shall not
perform other work until a response is received indicating success of failure of the management
action. In asynchronous management actions a client may perform other work in the presence
of a service executing the management action. Asynchronous management actions will be
signal as complete or failed with the delivery of an event to the client.

Events: Provide for the reliable asynchronous delivery of events to one or more registered
clients.

Cancelable Management Actions. Long running synchronous or asynchronous directives shall
be capable of being cancelled by the client. Cancellation results in the termination of work by
the server and resource consumed being returned.

Durable Reference: Object classes that persist across power cycles and must be monitored and
controlled independent of SAN reconfiguration (i.e., logical volumes) shall be identified via
“Durable Names” to insure consistent reference by clients.

Dynamic installation and reconfiguration: New clients and servers shall be capable of being
added to or removed from a Bluefin management environment without disrupting the
operation of other clients or servers. In most cases, clients should be capable of dynamically
managing new servers that have been added to a Bluefin environment.

0.7 Disclaimer

The Partner Development Process makes no assurance or warranty about the interoperability, data
integrity, reliability, or performance of products that implement this specification.

Page 27 of 303

Version 1.0.0 Bluefin Specification

Bluefin Specification Bluefin Overview

Clause 1: Bluefin Overview

1.1 Base Capabilities

To achieve the architectural objectives and support the key technological trends in Clause 0, Bluefin is an
object-oriented, XML messaging based interface designed to support the specific requirements of Storage
Area Networks. To quickly become ubiquitous, Bluefin seeks to the greatest extent possible to leverage
existing enterprise management standards like:

e The Distributed Management Task Force (DMTF) authored Common Information Model (CIM)
and Web Based Enterprise Management (WBEM) standards.

e The standards written by ANSI on Fibre Channel and SCSI.

e The standards emerging from the Storage Networking Industry Association (SNIA) on volume
and array management.

1.1.1 Object Oriented

A hierarchy of object classes with properties (a.k.a. attributes) and methods (a.k.a. directives) linked
via the Universal Modeling Language (UML) modeling constructs of inheritance and associations
define most of the capabilities of the Bluefin. The illustration below provides a simple example of
UML using CIM classes for reference. Implementers of this specification are encouraged to consult one
of the many publicly available texts on UML or the DMTF web site (www.DTMF.org) to develop an
understanding of UML. A brief tutorial on UML is provided in the introduction material on the Clause
on Object Model in this specification.

Each Bluefin server in a SAN provides one or more object classes (and related instances) to clients for
monitoring and control per Figure 5.

ASSOCIATIONS

\ .
Dependency | ManagedElement

} <—— INHERTTANCE

ey

*
Product % | ProductParentChild ManagedSystemElement | , Component Collection
?—"h’AductH]ysicalElen'ents
* MembéFOf Collection
AGGREGATION
(A kind of association)
x|
PhysicalElement _* | LogicalElement
Logical
ldentii
/"
METHODS

Figure 4: Bluefin Modeling Conventions

Bluefin Specification Version 1.0.0 Page 29 of 303

Bluefin Overview Bluefin Specification

e ASSOCIATION |
HBA Port Switch SCSI Cntrler
. Instance = A Instance = A Instance = A Instance = A
Client _< Instance = B Instance = B Instance = B Instance = B
Instance = C Instance = C
e o o

_ Object Model (Schema)
/" Physical SAN

Fibre Channel Fabric
Host (In-band Mg mt) Mgmt Appliance
| (Out-band Mgm?) Switch-A: Server ______(?_u_t m _d _Ifl :lia_‘:d Vigmt
pTTTTTTTIT e i HBA-B: Server
1 HBA-A: Server . T
I i witch-B: Server ;
Servers< """"""""" Discovery System: Server !

Array Controller Array Controller %CSJ li‘;‘;ter
(In-band Mgmt) (In-band Mgmt) (Out-band Mgmt)

Figure 5: Object Model/Server Relationship

In Figure 5, a Bluefin client obtains the classes of objects as well as the instances that populate those
objects from distributed servers in the SAN. In this example, the Switch server identifies its object
classes (Switch and Port) and also provides instances of those object classes. The HBA servers populate
classes and related instances, and the Array Controllers and Router populates SCSIController
classes/instances. After a Bluefin client has populated its schema with object classes and instances it
may proceed with monitoring and controlling the resources of a SAN.

Having an object oriented interface Bluefin clients are capable of discovering, monitoring, and
controlling a SAN, independent of the precise definition of the object model that defines that SAN. In
specific, the code written to discover object classes, enumerate instances of those classes, traverse
associations between classes, as well as read/ set properties does not require modification as the object
model for that SAN evolves. Additionally, the underlying message/transfer syntax used to
communicate between Bluefin clients and servers is also object model independent.

The object model in this specification is expressed in UML diagrams, easy-to-use tables and machine-
readable CIM compliant Managed Object Format (MOF) format (through the CIM model maintained at
the DMTF). This is intended to ease the task of client implementation and to ease the task of using
existing Object Managers (Called CIM Object Managers or CIMOMSs) available through various open-
source communities. It should be noted that the MOF Interface Description Language is a precise
representation of the object model in this specification and developers are encouraged to learn this
means of expression when implementing this interface. Thus, programmers implementing this
interface should reference MOF representations of the object model when faced with implementation
decisions.

Page 30 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Bluefin Overview

The constituents (clients and servers) of a Bluefin management environment do not require identical
copies of the Bluefin object model to operate reliably or interoperate. Each client and server may
uniquely leverage vendor unique extensions as well as experience different levels of functionality
associated with the rolling upgrade of capabilities. However, for clients and servers to interoperate,
each server must provide the complete tree of object classes that it sub-classes from. All Bluefin object
classes must ultimately root from a single canonical object.

Figure 6 illustrates this requirement.

—- \
e I S
e /| Class A N
e N
s /) N
i / / SO
’ J J N
/" Switch ! -7 AN
// w 1 -7 Array \
-
! P Controller N
\ s \
! Class B [\\ Class C Class D \I
| I \
] 1A I
1 [I
[. !
| SN !
[I AN]
1 A ~ !
Class E ‘| Class F ‘\ Class G |~ Class H /’ Class I
\ \ \ /
\ \ I I
\ A)]
\ N ;
AN AN / 7
~ N / /
SN \ / /
\ \ J
Class L Class M \ Class J \ I/ Class K //
\ \
\) I
\ ;7 \
\ I N
\ 1,/ ~

~

\

~————

/ Class N Class O Class P

Figure 6: Canonical Inheritance

Figure 6 illustrates that even though a Fibre Channel Switch may only report instances and allow
associated method execution for Object Classes F and J, it shall, when asked by a client to enumerate its
Object Classes report the entire hierarchy of classes in its tree. Similarly a server that instantiates an
array controller must report the complete set of object classes that links it to the base canonical object
(object A) of the Bluefin model. It is this single canonical root that allows any Bluefin client to discover,
map, and operate upon the complete set of objects in a given SAN.

The object model presented in this specification is intended to facilitate interoperability but not limit the
expression of unique features that may differentiate manufacturers in the market. For this reason, the
object model herein only serves as a "core” to compel multi-vendor interoperability. In the interest of
gaining a competitive advantage, a given vendor’s implementation of the interface may include additional
object classes, properties, methods, events, and associations around this “core”. These vendor unique
extensions to the object model in select cases (extrinsic methods) may require the modification of client
code above and beyond that required to support the core.

Bluefin Specification Version 1.0.0 Page 31 of 303

Bluefin Overview

Bluefin Specification

1.1.2 Messaging Based
A messaging based versus traditional procedure call interface “style” was selected so that platform and
language independence could be achieved across the breadth of devices, clients, and manufacturers that
will implement the interface. This messaging based environment also eases the task of transporting
management actions over different communications transports and protocols as the computer industry
evolves. While a messaging based interface provides these advantages, the implementation of Bluefin
clients and servers will require the marshalling and un-marshalling of messages into procedure call
semantics such that programmatic environments may operate against the object model exported through
this messaging interface.
An example Bluefin CIM-XML message is provided below for familiarity.
<?XM. Version="1.0"?>
<! DOCTYPE CI M SYSTEM http://ww. dntf.org/ci mv2.dtd/>
<CI M VERSI ON="2. 0" >
<CLASS NAME=" ManagedSyst enEl ement " >
<QUALI FI ER NAVE=" abst r act ” ></ QUALI FI ER>
<PROPERTY NAME="Caption” TYPE="string">
<QUALI FI ER NAME=" MaxLen” TYPE="si nt 32" >
<VALUE>64</ VALUE>
</ QUALI FI ER>
</ PROPERTY>
<PROPERTY NAME="Descri pti on” TYPE="stri ng” ></ PROPERTY>
<PROPERTY NAME="I nstal | Date” TYPE="dateti ne”>
<QUALI FI ER NAVE=" Mappi ngStri ngs” TYPE=
<VALUE>M F. DMI'F| Conponent | D| 001.
</ QUALI FI ER>
</ PROPERTY>
<PROPERTY NAME=" St atus” TYPE="string”>
<QUALI FI ER NAME=" Val ues” TYPE="string” ARRAY="TRUE">
<VALUE>CK</ VALUE>
<VALUE>Er r or </ VALUE>
<VALUE>Degr aded</ VALUE>
<VALUE>Unknown</ VALUE>
</ QUALI FI ER>
</ PROPERTY>
</ CLASS>
</ M
<?XM. Version="1.0"?>
<! DOCTYPE CI M SYSTEM http://ww. dntf.org/cin-v2.dtd/>
Figure 7: Sample CIM-XML Message
1.2 Capabilities Of This Version
Functional capabilities of the interface as described in this version of the specification include:
1. Allow a client to identify key resources in a SAN (e.g. HBA, Array Controller, Switch)
2. Allow a client to identify interconnects between key resources in a SAN.
3. Allow a client to receive asynchronous notification that the configuration of a SAN has changed.
4. Allow a client to identify the health of key resources in a SAN.
5. Allow a client to identify the available performance of interconnects in a SAN.
6. Allow a client to receive asynchronous notification that the health of a SAN resource has degraded.
7. Allow a client to receive asynchronous notification that the performance of a SAN interconnect has
degraded.
Page 32 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

8. Allow a client to identify the zones being enforced in a SAN.

9. Allow a client to create/delete and enable/disable zones in a SAN.

10. Allow a client to identify the LUN masks/maps in a SAN.

11. Allow a client to create/delete and enable/disable LUN masks/maps in a SAN.

Object Model Lock lient
Discovery and Manager ¢ Lent
Manpi Interf Application
pping nterface :
Policy
Constituent| TIntrinsic Methods | EXxtrinsic Methods .
Discovery | (Get/Set, Enumerate | (Create ZoneSet, Security
Service | Opjects,/Instances) | Modify LUNmask) Services
Interface
(SLP)
Message Marshalling/UnMarshalling
Communications Transport
Client
Wire Protocol +
Server
Communications Transport
Constituent Message Marshalling/UnMarshalling Secu_rity
Discovery Services
Service Message Dispatching
(SLP) Lock Manager CIM Agent
Functions Functions
Dedicated CIMOM
Agent

Figure 8: Operational Environment

1.3 Operational Environment

Device

Bluefin Overview

Figure 8 illustrates activities that either clients or servers may be required to provide facilities to

support:

e The discovery of constituents in the managed environment.

e The discovery of object classes as well as related associations, properties, methods, indications,
and return status codes that are provided by servers in the managed environment.

o The security or resources and communications in the environment.

o The locking of resources in the presence of non-cooperating clients.

¢ The marshalling/un-marshalling of communication messages.

e The execution of basic methods that are “intrinsic” to the construction, traversal, and
management of the object model provided by the distributed servers in a SAN.

e The execution of object specific “extrinsic” methods that provide clients the ability to change
the state of entities in the SAN.

Bluefin Specification

Version 1.0.0

Page 33 of 303

Bluefin Overview Bluefin Specification

In addition, to facilitate ease of installation, startup, expansion, and upgrade requirements for
implementations are specified for the developers of clients and servers.

1.4 Using This Specification

This specification is insufficient as a single resource for the developers of Bluefin clients and servers.
Developers are encourage to first read the DMTF specifications on CIM, CIM operations over Http, and
CIM/XML as well as obtaining familiarity with UML and the IETF specification on Service Location
Protocols (SLP).

A developer implementing Bluefin clients/servers should read this specification in sequence noting that
the section (Object Model) is intended principally as a reference relative to the particular device type
that is being provided or managed in a Bluefin environment.

Developers engaging in the construction of a Bluefin environment that does not need to provide
isolation among clients need not read the Clause on Locking.

Developers engaging in the construction of a Bluefin environment that does not require the automatic
discovery of servers does not need to read the Clauses on Discovery, or Roles

1.5 Language Bindings

As a messaging interface this specification places no explicit requirements for syntax or grammar on
the procedure call mechanisms employed to convert Bluefin messages into semantics consumable by
modern programming languages. The syntax and grammar used to express these semantics is left at
the discretion of each Bluefin developer.

Several open-source sources are available for programmers who wish to streamline the task of parsing
Bluefin messages into traditional procedure call semantics and using these semantics to store object
instances. Consult the OpenGroup (http:/www.opengroup.org) for current language bindings available
to implement the Bluefin interface.

Page 34 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Transport and Reference Model

Clause 2: Transport and Reference Model

2.1 Introduction

2.1.1

2.1.2

2.1.3

The interoperable management of storage devices and network elements in a distributed storage
network requires a common transport for communicating management information between
constituents of the management system. This section of the specification details the design of this
transport as well as the roles and responsibilities of constituents that will use the common transport
(i.e., a reference model).

Language Requirements

To express management information across the interface a language is needed which:
e (Can contain platform independent data structures.
o Is self describing and easy to debug.
e Can be extended easily for future needs.

The World Wide Web Consortium’s (W3C) Extensible Markup Language (XML) was chosen for the
language to express management information and related operations, as it meets the requirements
above.

Communications Requirements

Communications protocols to carry the XML based management information are needed which:
o C(Can take advantage of the existing ubiquitous IP protocol infrastructures.
e Can be made to traverse inter- and intra-organizational firewalls.
o (Can easily be embedded in low cost devices.

The Hyper Text Transport Protocol (http) was chosen for the messaging protocol and TCP was chosen
for the base transfer protocol to carry the XML management information for this interface as it meets
the requirements above.

XML Message Syntax and Semantics

In order to be successful, the expression of XML management information (messages) across this
interface must follow consistent rules for Semantics and Syntax. These rules should be of sufficient
quality, extensibility, and completeness that they become widely adopted by storage vendors and
management software vendors in the industry. In addition, to facilitate rapid adoption, existing
software that can parse, marshal, un-marshal, and interpret these XML messages should be widely
available in the market such that vendor implementations of the interface are accelerated. The
Message Syntax and Semantics selected should:

¢ Be available on multiple platforms.
e Have software implementations that are Open source (i.e., collaborative code base).
e Have software implementations available in Java, C, and C++.

o Leverage industry standards where applicable.

Bluefin Specification Version 1.0.0 Page 35 of 303

Transport and Reference Model Bluefin Specification

e Conform with W3C standards for XML use.
e Be object model independent (i.e., be able to express any object model)

Virtually the only existing industry standard in this area is the WBEM standards CIM operations over
http and XML-CIM Encoding as developed and maintained by the DMTF. The WBEM source initiative
is a collaboration of open source implementations, which can be leveraged by storage vendors to
prototype, validate, and implement this interface in products. Specifically designed for transporting
object model independent management information, the XML-CIM message syntax was chosen because
it meets the requirements of the storage industry as enumerated above. This specification extends the
capabilities of XML-CIM in the areas of discovery and locking to facilitate ease of management and add
reliability in the presence of non-cooperating clients competing for shared resources. Those extensions
are explained later in this document.

2.2 Transport Stack

The complete transport stack for this interface is illustrated below in Figure 9. It is the primary
objective of this interface to drive seamless interoperability across vendors as communications
technology and the object model underlying this interface evolves in time. Thus, it should be noted
that the transport stack has been layered such that (if required) other protocols may be substituted or
added as technology evolves. For example, should SOAP or IIOP become prominent the content in the
stack below can be adjusted causing minimal changes to existing product implementations in the
market.

Message Syntax: XML-CIM Encoding

Object Model Independence |

Message Semantics: CIM operations over http

Message Protocol Independenoel

Messaging Protocol: http —

Transfer Protocol Independence I

Transfer Protocol: TCP/IP ~r

Figure 9:Transport Stack

Again, this interface uses two specifications from the DMTF to fully implement the message syntax
and semantics for this interface.

1. The first specification, CIM operations over HT'TP details a basic set of directives (Semantics)
needed to manage any schema over http. The requirement for this basic set of directives is
common to nearly to all management frameworks (e.g., create object, delete object, create
instance, and delete instance). This class of directive is referred to in this document as
“intrinsic methods”. CIM operations over HTTP also provides a client the ability to execute
directives that are unique to the specification of a particular object class within a schema
(example: chop<method>, apple <object-class>). This class of directive is referred to in this
specification as “extrinsic methods”.

2. The second specification, XML-CIM Encoding details the precise W3C compliant syntax and
grammar for encoding CIM operations over HT'TP into XML.

While some vendors may choose alternate transfer and message protocols for unique
implementations, conformance with this standard requires implementation of the transport stack
elements listed above.

Page 36 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Transport and Reference Model

It should be noted that this specification places no restriction on the physical network selected to
carry this transport stack. For example, a vendor may choose to use in-band communication over
Fibre-channel as the backbone for this interface. Another vendor may exclusively (and wisely) choose
out-of-band communication over Ethernet to implement this management interface. Additionally,
select vendors may choose a mix of in-band and out-of-band physical network to carry this transport
stack.

2.3 Reference Model

2.3.1 Overview

As shown below in Figure 10: Reference Model, the Reference Model shows all possible constituents of
the management environment in the presence of the transport stack for this interface.

Lock

Manager Client

Directory
Server

XML- CIM + CIM operations over http
TCP,’IP

0...n

Proprietary or

Legacy

Device or

Agent

Device or
Subsystem 0..n

Obje;:t Manager

Provider o.n
0...n

Embedded Model

Proprietary or

1

Legacy n

Subsystem

Device or
Subsystem

Proxy Model

Proxy Model

Figure 10: Reference Model

Figure 9:Transport Stack illustrates that the transport for this interface uses CIM operations over HTTP with
XML-CIM Encoding and http/TCP/IP to execute intrinsic and extrinsic methods against the schema for this
interface.

2.3.2 Roles for Interface Constituents

2.3.2.1 Client

A Client is the consumer of the management information in the environment. It provides an API
(language binding in Java or C++ for example) for overlying management applications (like backup
engines, graphical presentation frameworks, and volume managers) to use.

Bluefin Specification Version 1.0.0 Page 37 of 303

Transport and Reference Model Bluefin Specification

2.3.2.2 Agent

An agent implements a subset of the object manager and as such controls only one device or subsystem
and 1s typically incapable of providing support for complex intrinsic methods like schema traversal. An
agent may be embedded in a device (like a Fibre Channel Switch) or provide a proxy to a device over a
legacy or proprietary interconnect (like a SCSI based array controller).

Embedding an agent directly in a device or subsystem reduces the management overhead of a customer
and eliminates the requirement for a stand-alone host (running the proxy agent) to support the device.

2.3.2.3 Object Manager

An object manager serves management information from multiple devices or underlying subsystems
through providers. As such an Object Manager is an aggregator that enables proxy access to
devices/subsystems and can perform more complex operations like schema traversals. An object
manager typically includes a standard provider interface to which device vendors adapt legacy or
proprietary product implementations.

Provider

A provider expresses management information for a given resource such as a storage device or
subsystem exclusively to an Object Manager. The resource can be local to the host that runs the Object
Manager on or can be remotely accessed through a distributed systems interconnect.

2.3.2.4 Lock Manager

A lock manager provides a common service for use by agents and object managers to coordinate
resources between multiple non-cooperating clients such that Isolation and Consistency for the
information in the schema is maintained.

2.3.2.5 Directory Server

A directory server provides a common service for use by clients and agents for locating services in the
management environment.

2.3.3 Peer-to-Peer Access (Cascaded Clients)

This specification discuses constituents in the Bluefin environment in the context of Clients and
Servers (Agents and Object Managers). However, these distinctions are only used to facilitate the easy
introduction of the Bluefin reference model. In future versions, this architecture allows constituents
(like virtualizers) in a Bluefin management environment to function as both client and server. This
capability is referred to in this specification as cascaded clients. Special provisions will be made in this
architecture to support cascaded clients in future Versions. Until those provisions are added to the
specification, the Bluefin Clients and Servers will exist in a “flat” reference model. See Appendix
D:Futures for a discussion of extensions to be applied to this specification.

Page 38 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

Clause 3: Object Model

3.1 Model Overview (Key Resources)

The Bluefin object model is based on the Common Information Model (CIM), developed by the DRM
working group of the SNIA. The Version 1 Bluefin Object Model is based on the 2.7 revision of CIM.
For a more complete discussion of the full functionality of CIM and its modeling approach, see
http://www.dmtf.org/standards/standard_cim.php.

Readers seeking a more complete understanding of the assumptions, standards and tools that assisted
in the creation of the Bluefin object model are encouraged to review the following:

e CIM Tutorial
(http://www.dmtf.org/education/cimtutorial/index.php)

e CIM UML Diagrams and MOFs
(http://dmtf.org/standards/standard cim.php)

e CIM System / Device Working Group Modeling Storage
(http://www.dmtf.org/var/release/Whitepapers/CIM_ Device23 storage wp.PDF)

Managed Object File (MOF) is an ASCII file that expresses a formal definition a CIM schema. A MOF
can be used as input into an MOF editor, parser or compiler for use in an application.

The Bluefin model is divided into several profiles, each of which describes a particular class of SAN
entity (such as disk arrays or FibreChannel Switches). These profiles allow for differences in
implementations but provide a consistent approach for clients to discover and manage SAN resources.
IN DMTF parlance, a provider is the discovery and instrumentation logic for a profile. In many
implementations, providers operate in context of a CIMOM that is the datastore and infrastructure for
a collection of providers. A CIM client interacts with providers running under one or more CIMOMs

3.1.1 Introduction to CIM UML Notation

CIM diagrams use a subset of Unified Modeling Language (UML) notation.

PhysicalPackage

Classes are depicted in rectangles. The class name is in the upper part and properties
(also known as attributes or fields) are listed in the lower part. A third subdivision may be added for
methods.
A Inheritence
Association
Aggregation

Three types of lines connect classes.

The CIM documents generally follow the convention of using blue lines for inheritance, red lines for
associations and green lines for aggregation. The color-coding makes large diagrams much easier to
read but is not a part of the UML standard.

Bluefin Specification Version 1.0.0 Page 39 of 303

Object Model Bluefin Specification

The ends associations may have numbers (cardinality) indicating the valid count of object instances.
Cardinality may be expressed as a single value (such as 1) or a range of values (0..1 or 1..4) ;**” is
shorthand for 0..n.

Some associations and aggregations are marked with a “W” at one end indicating that the identity of
this class depends on the class at the other end of the association. For example, fans may not have
worldwide unique identifiers; they are typically identified relative to a chassis.

This document uses two other UML conventions.

Disk1

e The UML Package symbol is used as a shortcut representing a group of classes that
work together as an entity. For example, several classes model different aspects of a disk
drive. After the initial explanation of these objects , a single disk package symbol is used to
represent the entire group of objects.

e Schema diagrams include all of a profile’s classes and associations; the class hierarchy is
included and each class is depicted one time in the schema diagram. Instance diagrams also
contain classes and associations but represent a particular configuration; multiple instances of
an object may be depicted in an instance diagram. An instance may be named with an
instance name followed by a colon and a class name (underlined). For example,

Array: ComputerSystem Switch: ComputerSystem

represent an array and a switch — two instances of ComputerSystem objects.

3.2 Techniques

3.2.1 CIM Fundamentals

This section provides a rudimentary introduction to some of the modeling techniques used in CIM, and
is intended to speed understanding of the Bluefin object model.

Associations as Classes

CIM models associations and aggregations as classes that contain properties. The two endpoints are
the Antecedent and Dependent properties. The association may also contain domain-related properties.
For example, ControlledBy (see Clause C.16) associates a controller and a device. There is a many-to-
many cardinality between controllers and devices (and controller may control multiple devices and
multi-path devices connect to multiple controllers); each controller/device connection has a separate
activity state. This state corresponds to the AcccessState property of ControlledBy (see Clause C.16).

Logical and Physical Views

CIM separates physical and logical views of a system component, and represents them as different
objects — the "realizes" association ties these logical and physical objects together.

Page 40 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

Identity

Different agents may each have information about the same organic object and may need to instantiate
different model objects representing the same thing. Access control is one example: a switch zone
defines which host device ports may access a device port. The switch agent will create partially
populated port objects that are also created by the HBA and storage system agents. The
Concreteldentity association is used to indicate the associated object instances are the same thing.
Concreteldentity is also used as a language-independent alternative to multiple inheritance. For
example, a FibreChannel port inherits from a generic port and also has properties of a SCSI controller.
CIM models this as FCPort (see Clause C.31) and SCSIController (see Clause C.75) objects associated by
Concreteldentity (see Clause C.13).

Redundancy Groups

CIM models redundancy with an object representing the group of redundant objects. The
RedundancyGroup subclass objects serve as a handle for operations on the entire group. The group can
then be used in associations to the collection as an abstract entity. For example, a spare disk is
associated with a RedundancyGroup.

Extensibility

CIM makes allowances for additional values in enumerations that were not specified in the class
Derivation by adding a property to hold arbitrary additional values for an enumeration. This property
is usually named OtherXXXX (where XXXX is the name of the enumeration property) and specifying
“other” as the value in the enumeration property indicates its use. For an example see the
ConnectorType and OtherTypeDescription properties of CIM_Slot in the CIM_Physical MOF.

Value/ValueMap Arrays

CIM uses a pair of arrays to represent enumerated types. ValueMap is an array of integers; Values is
an array of strings that map to the equivalent entry in ValueMap. For example, PrinterStatus (in the
CIM_Device MOF) is defined as follows:

ValueMap {"1", "2", "3", "4", "5", "e", "7"},
Val ues {"Qther", "Unknown", "lIdle", "Printing", "Wrmp",

"Stopped Printing", "Ofline"},

A status value of 6 means “Stopped Printing”. A client application can automatically convert the
integer status value to a human-readable message using this information from the MOF.

Return Codes

When a class definition includes a method, the MOF includes Value/ValueMap arrays representing the
possible return codes. These values are partitioned into ranges of values; values from 0 to 0x1000 are
used for return codes that may be common to various methods. Interoperable values that are specific to
a method start at 0x1001; and vendor-specific values may be defined starting at 0x8000. Here’s an
example of return codes for starting a storage volume.

val uveMgp {"O0", "1", "2", "4", "5", "..", "0x1000",
“0x1001", *“.., "0x8000.."},

Val ues {"Success", "Not Supported", "Unknown", "Tinmeout",
"Failed", "Invalid Parameter", "DMTF Reserved",

"Method parameters checked - job started",
"Size not supported",

Bluefin Specification Version 1.0.0 Page 41 of 303

Object Model Bluefin Specification

"Method Reserved", "Vendor Specific"}]

Model Conventions

This is a summary of objects and associations that are common to multiple profiles.

ComputerSystem (see Clause C.11): Most SAN products are modeled as ComputerSystem. The term
“cluster” is used for systems with multiple loosely coupled processors; the individual
processors known as “component” ComputerSystems. A cluster is modeled with a
ComputerSystem; Concreteldentity associates the cluster ComputerSystem and a
RedundancyGroup that aggregates the component ComputerSystems. ComputerSystem's
"dedicated" property describes the functions provided by a system (e.g., host, storage
system, switch).

Concreteldentit
[a
MyCluster: Redundancy
ComputerSystem Group
Redundancy
Component
rComponentCS ComponentCS ————
ComputerSystem ComputerSystem

Figure 11: Cluster Model

PhysicalPackage represents the physical storage product. PhysicalPackage can be sub-classed to
ChangerDevice (see Clause C.7), but PhysicalPackage accommodates products deployed
in multiple chassis.

Product models asset information including vendor and product names. Product is associated with
PhysicalPackage.

SoftwareElement (see Clause C.84) models firmware and optional software packages.
InstalledSoftwareElement associates SoftwareElement and ComputerSystem.
DeviceSoftware associates SoftwareElement and LogicalDevices (a superclass of devices
and ports).

Service models a configuration interface (for example, a switch zoning service or an array access
control service). Services typically have methods and properties describing the
capabilities of the service. A storage system may have multiple services; for example, an
array may have separate services for LUN Masking and LUN creation. A client can test
for the existence of a named service to see if the agent is providing this capability.

Page 42 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

LogicalDevice (for example, FCPort) is a superclass with device subclasses (like and DiskDrive and
TapeDrive) and also intermediate nodes like Controller and FCPort. Each LogicalDevice
subclass must be associated to a ComputerSystem with a SystemDevice aggregation.
Dues to the large number of LogicalDevice subclasses, SystemDevice aggregations are
often omitted in instance diagrams in this specification.

The following diagram combines these common elements; this combination is used in several of the
profiles.

ProductPhysicalElement

| : |

PhysicalPackage Product SoftwareElement

\
ComputerSystemPackage
‘ ComputerSystem — Installed
P y SoftwareElement
\
SystemDevice Hosted‘Serwce
*

FCPort Service

Figure 12: Common Elements

This specification covers many common storage models and management interfaces, but some
implementations may include other objects and associations. In some cases, these may be modeled by
CIM schema not covered by this document. When vendor-specific capabilities are needed, they should
be modeled in subclasses of CIM objects. These subclasses may contain vendor-specific properties and
methods and vendor-specific associations to other classes.

3.2.2 Modeling Profiles

In addition to modeling SAN components, Bluefin agents/providers must model the profiles they
provide. This information is used two ways:

e Clients can quickly determine which profiles are available

e An SLP component can query the CIMOM/agent and automatically determine the appropriate
SLP Service Template information (see Clause 5:Service Discovery)

ProviderCapabilitiesMajorCategory defines the standards group defining the profile. Setting this to
“Storage” indicates that one of the Bluefin/SNIA profiles applies. MinorCategory is an array of strings
that define the specific Bluefin/SNIA profile (e.g., Switch, Tape Library, ...). A client can enumerate the
Providers in each CIMOM to see which providers (and objects) claim Bluefin compliance.

Bluefin Specification Version 1.0.0 Page 43 of 303

Object Model

ManagedElement

Bluefin Specification

SysteminNamespace Description: string
ScopeOfContainedData: uint16 [] (enum) Caption: string * *
DescriptionOfContainedData: string [] Desondency | | ManagedSystemEtement | | Component
IdentificationOfManagedSystem Name: string
w* 0.1 Description: string
Caption: string
Systemldentification Status: string
1 InstallDate: datetime
[Propagated Keys]
Namespace CreationClassName: string [Key] *
Name: string [key]
w % |[Propagated Keys] IdentificationFormats: uint16 [] (enum) ElementC: i L
CreationCl string [Key] FormatDescriptions: string []
Name: string [Key] * IdentificationData: string [] SystemComponent
Classlnfo: uint16 (enum)
DescriptionOfClassInfo: string +
0.1 [
Service System ServiceAccessPoint
CreationClassName: string [key) CreationClassName: string [key] CreationClassName:siring
Name: string [key] Name: string [keyv] Name:string
> ode: string NameFormat: string - SystemCreationClassName:string
Started: boolean PrimaryOwnerName: string SystemName:string
PrimaryOwnerContact: string
Namespace StartService(): uint32 Roles: string]]
InManager StopService(): uint32 w
Wk 1 ‘ ‘ 1
Ho: Ho: oir
1
WBEMService ClassesInNamespace *
Capabilities
<
Instanceld : string [key]
Scopingld: string [key]
* (o]
ObjectManager Provider CommunicationMechanism: uint16{] (enum)
OtherCommunicationMechanism: string
ProviderCapabilities ProfilesSupported: uint16[] (enum)
OtherProfileDescription: string
ClassName: string Required MultipleOperationsSupported: boolean
ProviderType : uint16[] (enum)Required QueryLanguagesSupported: uint16]] (enum)
1 1 OtherProviderType : string OtherQueryLanguage: string
ObjectManagerlsProvider- SupportedProperties: string[] AuthenticationMechanismsSupported: uint16[] (enum)
* SupportedMethods: string[] OtherAuthenticationDescription: string
FiltersSupported MajorCategory: string

MinorCategories: string[]

CIMXMLCommunicationMechanism

IndicationFilter

[Default CommunicationMechanism = "XML over HTTP"]
WBEMProtocolVersion: uint16 (enum)
CIMValidated: boolean

Figure 13: WBEMService Hierarchy

We are requesting two new properties in ProviderCapabilities. MajorCategory defines the standards
group defining the profile. Setting this to “Storage” indicates that one of the Bluefin/SNIA profiles
applies. MinorCategory is an array of strings that define the specific SNIA profile (e.g., Switch, Tape

Library). A client can enumerate the Providers in each CIMOM to see which providers (and objects) claim
Bluefin compliance.

Bluefin needs to reevaluate this model when it is incorporated in CIM and complete the Bluefin profile
for its use.

3.2.3 Durable Names

Management applications need to read and write information about managed objects in multiple CIM
namespaces. When an object in one namespace is associated with an object in another namespace, each
namespace may represent some amount of information about the same managed resource using
different objects. A management application needs a way to understand when objects in different
namespaces represent the same managed resource. A unique common identifier, referred to as a
durable name, is designated as a required property for any objects representing managed resources
that might be “seen” from multiple points of view. These durable names can be used by a management
application for object coordination.

Durable names thus provide a means of reliably “stitching together” information from multiple sources
about the same managed resource in a SAN. They also provide a means of stitching together
information obtained at different points in time, such as when a managed resource is returned to a
SAN after having been removed for some period of time.

Page 44 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

A necessary technique associated with durable names involves the use of the NameFormat property.
CIM key value combinations are unique across all instances of a class within a single namespace, but
CIM does not fully address cases where different types of identifiers are possible on different instances
of an object. It is therefore necessary to ensure that multiple sources of information about managed
resources use the same approach for forming durable names whenever different types of identifiers are
possible.

When different types of identifiers are possible, objects requiring durable names must support a
NameFormat property that selects one of a set of prescribed strings that define valid identifier types for
the class. Appropriate format values are defined for each class where different identifier types can be
an issue. Each valid identifier type for a class is included as a separate property of an object. If an
implementation instantiating such an object does not support certain identifier types, then those
properties are left blank. For each class, a preferred order is established for setting the NameFormat
property to one of the non-blank valid identifier types, resulting in a consistent approach for forming a
durable name for the object.

Durable names are required for the following objects in the model:
e StorageVolume
e FCPort
e Fabric (see AdminDomain)
o ComputerSystem objects with the following roles
o Host
o Management Appliance

o CIM Server

o Switch
o Router
o Bridge

o Extender

o Block Server

o StorageLibrary Server
o Enclosure Server

Note that CIM keys and durable names are not tightly coupled. For some classes, they may be the
same thing, but this is not required as long as all durable names are unique and management
applications can determine when objects in different namespaces are providing information about the
same managed resource in a SAN. In the cases where CIM keys and durable names are not the same
thing, multiple CIM operations may be required to satisfy asset management use cases.

The main types of information used for durable names include SCSI mode page information, Fibre
Channel World Wide Names, Fully Qualified Domain Names, and IP Address information. The details
for each class requiring durable names are provided in the Profiles section of this document. An
overview of the information used to form durable names for objects is as follows:

e StorageVolume: Multiple valid identifier types exist, and NameFormat is used to indicate which
is used. Durable names are based upon SCSI mode page information.

Bluefin Specification Version 1.0.0 Page 45 of 303

Object Model Bluefin Specification

3.2.4

3.2.4.1

3.2.4.2

e FCPort: Durable names are based upon Fibre Channel Port World Wide Name information.

e Fabric: Durable names are based upon Fibre Channel World Wide Name information. Note
that this durable name can change under some circumstances, such as when the Fibre Channel
fabric is partitioned or when the principle switch in a fabric fails.

e PhysicalPackage or subclass can be used to satisfy asset management use cases, by making
Vendor/Model/Serial Number information available.

o ComputerSystem roles “Switch”, “Router”, “Bridge”, “Extender”, and “Enclosure”: Durable
names are based upon Fibre Channel World Wide Name information.

e ComputerSystem roles “Block Server” and “StorageLibrary”: Multiple valid identifier types
exist, and NameFormat is used to indicate which is used. Durable names are based upon Fibre
Channel World Wide Names or IP Address information. Note that when Fibre Channel World
Wide Names are used, the durable name may be a list of Fibre Channel World Wide Names.

Durable names are not supported for SCSIController objects. This is because in Fibre Channel there
exists a one-to-one relationship between SCSIController objects and corresponding FCPort objects. Since
FCPort objects have durable names, SCSIController object instances can be unambiguously identified
using the association to the corresponding FCPort object instance.

Events — CIM Indications
Background

Indications are the mechanism used to accomplish the following functional capabilities in Bluefin (from
the list of Bluefin capabilities, clause 1.2):

1. Allow a client to receive asynchronous notification that the configuration of a SAN has
changed.

2. Allow a client to receive asynchronous notification that the health of a SAN resource has
degraded.

3. Allow a client to receive asynchronous notification that the performance of a SAN interconnect
has degraded.

CIM Indications are described in a DMTF white paper, which can be obtained from the DMTF web
site, http://www.dmtf.org/education/whitepapers.php (follow the link labeled “CIM V2.5 Event
Model”). This paper, “Common Information Model Indications”, is at
http://www.dmtf.org/var/release/Whitepapers/DSP0107.pdf.

Indications are also used in place of non-blocking methods for long-running operations. In most cases,
the operation requested in a method completes quickly, the return status from the method indicates
the status of the operation. When a long-running operation (such as RAID volume creation) is
requested, the method return code indicates whether the operation started successfully; an indication
is sent when the operation is complete. Information on the indication is included in the profile
whenever long-running operations are implemented.

Using indications

Clients request indications to be sent to them by subscribing to the indications. Subscriptions are
stored in CIMOM as CIM object instances. A Subscription is expressed by the creation of a
IndicationSubscription association instance that references a IndicationFilter (a filter) instance, and a
IndicationHandler (a handler) instance. A Filter contains the query that selects an indication class or
classes.

Page 46 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

*
ManagedElement

Dependency *

Description: string

Caption: string

*

IndicationFilter

IndicationHandler

SystemCreationClassName: string [Key]
SystemName: string [Key]
CreationClassName: string [Key]

SystemCreationClassName: string [Key]
SystemName: string [Key]
CreationClassName: string [Key]

Name: string [Key] Name: string [Key]

SourceNamespace: string Owner: string

Query: string [Required] * A

QuerylLanguage: string [Required]
*

IndicationSubscription

IndicationHandlerXMLHTTP

Destination: string [Required]

Figure 14 - Indications Filters Schema

Filters can be created by indication consumers (e.g. Bluefin Clients) or indication providers (e.g.
Bluefin Agents). The client would create these using Createlnstance intrinsic method.

The query property of the IndicationFilter is a string that specifies which indications are to be delivered
to the client. There is also a query language property that defines the language of the query string.
Example query strings are:

“SELECT * FROM CI M Al ertl ndi cati on”
“SELECT * FROM CI M I nst Modi ficati on WHERE Sour cel nstance | SA Cl M _Conput er Syst enf

AlertIndication and InstModification are types of indications (see the following section). The first query
says to deliver all alert type indications to the client, and the second query says to deliver all instance
modification indications to the client, where the instance being modified is a ComputerSystem (or any
subclass thereof).

IndicationHandler specifies the means of delivering indications to the client. The subclass
IndicationHandlerXMLHTTP provides for XML encoded indications to be sent to a specific URL, which is
specified as a property of that class.

When a client receives an indication, it will receive some information with the indication, and then it
may need to do additional queries to determine all of the consequences of the event. However, to the
extent possible, it is desirable to put all relevant information in the indication.

Bluefin Specification Version 1.0.0 Page 47 of 303

Object Model Bluefin Specification

3.2.4.3 Indication hierarchy

Indications are grouped in three broad categories, ClassIndication, Instindication, and ProcessIndication
(see Figure 15 - Indications Schema).

Indication
ClasslIndication InstIndication ProcessIndication
A A
InstCreation SNMPTraplndication
InstDeletion AlertIndication
A
InstModification ThresholdIndication
InstMethodCall AlertInstindication
InstRead

Figure 15 - Indications Schema

A Classindication is delivered in response to the creation, deletion, or modification of a class, i.e. when
there are changes to the schema. Bluefin clients generally will not need to subscribe to ClassIndications.
Instindication is delivered in response to the creation, deletion, modification, etc. of an instance. For
example, when a new volume is created or a zone is deleted. ProcessIndication allows for indications
that are not associated with changes to specific instances. An event can be modeled with one of three
indication subclasses.

e An Instindication contains an embedded copy of the object that generated the indication. In the
case of an InstModification, there will be two copies, one with the old value and the other with
the new value. These embedded copies may be full copies of the object, or they may contain
only the properties that have changed.

e An Alertindication is a simpler indication that contains just strings and enumerated types. One
of its properties is the path to the object generating the alert. Other properties include alert
type, severity, and description. An Alertindication can be used to indicate changes in the health
condition or other state of a SAN.

Page 48 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

A SNMPTraplndication is designed to encapsulate the information from an SNMP trap in an indication.
Without a standardization process, SNMPTraplndications will not be interoperable and are discouraged
in Bluefin agents.

In general, it is best to use Instindication for all events that result in the creation, deletion, or
modification of instances in the Bluefin Agent.

3.2.4.4 Agent/Provider Considerations

As mentioned above, a Bluefin profile can be deployed as a proxy provider running in a general-purpose
CIMOM or as a Bluefin agent — a combination lightweight CIMOM and provider — used when CIM is
embedded on a device.

Considerations that apply to either deployment:

e A general purpose CIMOM (and perhaps an embedded agent) allows a client to create
indications filters. The provider may send a return code indicating a request to create an
instance of a filter is unsupported. This allows the provider to inform clients which types of
indications the provider supports. For example, a provider that does not support
SNMPTrapAlertindications should return unsupported for an indications filter create request.

e Agents must persist subscription information across reboots; for CIM, the subscription
information is IndicationFilter and IndicationHandler classes.

¢ An Instindication subclass can only embed a single instance. A hardware configuration change
may involve many instances of objects and associations. We recommend that agents detect and
merge groups of related hardware events and then send a single indication for an object
identifying the system using the SystemCreationClassName property. The client is expected to
rediscover the indicating system to determine the impact of the change.

3.2.4.4.1 Bluefin Embedded Agent Considerations

A Bluefin Agent can minimize footprint by initializing “canned” IndicationFilter objects and returning
“unsupported” for all requests to create filter instances. A Bluefin client can determine what
indications the agent supports by enumerating these objects. A minimal embedded agent can simply
support a subset of these IndicationFilter query strings:

1. “SELECT * FROM Cl M. I nstlndication”
2. “SELECT * FROM CI M Al ertlndication”

The presence of an IndicationFilter object with query string 1 indicates that the agent supports
Instindication, and similarly for the others.

The embedded agent should supply more detailed queries as described in the profile sections that
follow.

A standard implementation of indications requires the agent to accept client requests to create
indication handlers. Other aspects of Bluefin profiles do not require the agent to handle instance
creation requests (the CIM operations “Basic Read” functional group). The embedded agent
implementer has two options:

e Use the Instance Manipulation functional group rather than Basic Read. The agent may treat
non-indications instance creation requests as unsupported. At a minimum, the agent must
allow instance creation of IndicationHandlerXMLHTTP and IndicationSubscription instances.

o If the agent wishes to provide NO instance creation, then the agent needs to provide a
backdoor for indications subscribers. For example, the agent can require customers to edit a
text file describing indications subscriptions.

Bluefin Specification Version 1.0.0 Page 49 of 303

Object Model Bluefin Specification

3.2.4.5

If the agent opts for no indications support, it must assure that no IndicationFilter instances exist in the
Bluefin Agent and to return “unsupported” to requests to create instance of IndicationHandler instances.

Client Considerations

The client needs to determine whether each target CIMOM is an embedded Bluefin agent or a general-
purpose CIMOM with a Bluefin provider. The client should try to create an instance of an
IndicationHandlerXMLHTTP. If the embedded agent does not allow the client to subscribe via CIM, it
returns unsupported. The client can then enumerate IndicationHandlerXMLHTTP instances to
determine whether they are subscribed via some non-CIM facility.

If the client can create an IndicationHandlerXMLHTTP instance, it should then try to create an
IndicationFilter instance; a return of unsupported indicates the CIMOM is an embedded agent and
supplies its own filters. In this case, the client enumerates the existing filters and creates
IndicationSubscription associations to their IndicationHandler.

The client can minimize the number of filters by using the indications schema hierarchy. For example,
subscribing to Instindication is the same as subscribing to InstCreation, InstDeletion, and InstModification.

Client needs to consider subscriptions that generate excessive events. Subscriptions to a general-
purpose CIMOM (as determined by the tests described above) should be specific to the provider — for
example “sel ect * from HDS_| nst | ndi cati on” rather than “sel ect * from Cl M_I nst | ndi cation”.

When a client receives an InstCreation subclass, it needs to rediscover the indicating system to
determine the associations and other classes impacted by the configuration change. Providers may opt
to consolidate complex configuration changes into a single indication.

The general algorithm for client subscription is:
Look for an existing IndicationHandl er XM_.HTTPs
If one exists targeting your indication |istener,
Then you are already subscribed from agent persistence, exit
El se Create an |IndicationHandl er XMLHTTP i nst ance

If the response is “unsupported”,
Then quit (this provider does not support indications)

Enunerate IndicationFilters

If the desired filter instances do not exist,
Then try to create them

If filter instance creation requests fail,
Then backoff to an existing filter.

Create instances of IndicationSubscription associating the desired filters and your
handl er .

The client should look for status changes represented as either Alertindication or as InstModification with
a status change. With InstModification, the current and previous statuses can be compared; for
example:

“select * from Conpaqg_Il nst Mbdi fication
wher e Previouslnstance. St atus <> Sour cel nst ance. St at us”

The DMTF events white paper has other examples of filter queries.

The client can use indications to get information about the general health of the SAN. For example, the
class FCPortStatistics includes among its properties various error counts. A query like this:

Select * FROM CI M FCPort Statistics
VWHERE Pr evi ousl nst ance. Error Frames < Sour cel nst ance. Error Fr anes

Page 50 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

3.2.4.6

3.2.4.7

3.2.5

will generate an indication whenever the ErrorFrames count increases.

If the client is unable to create this query (i.e. if the agent doesn’t support this filter), then the client
can periodically read the FCPortStatistics of all the FCPorts in the model. This method, however, is
much more expensive in terms of communications bandwidth and load on both the client and the
server.

Requirements
Bluefin Clients must use the subclass IndicationHandlerXMLHTTP when creating subscriptions.

If indications are supported, then the DMTF query language MUST be supported (this is a DMTF
requirement).

Implementation Considerations

The encoding of indications is specified in "WBEM Query Language Draft". The specification is still in
draft and requires DMTF membership to access. See “WBEM Query Language Draft”, Version 2.4,
DMTF, June 14, 2000,

http://www.dmtf.org/members/review/wip/DMTF-query/DSP0104.htm

The specification for embedding objects is also still in draft and requires DMTF membership. See
“EmbeddedObject Qualifier’, CR526, DMTF, October 26, 2000

http://www.dmtf.org/members/tdc/wg-events/.admin/sitemgr.cgi/members/tde/wg-
events/archive/cr526.html

Device Credentials

The device credentials are modeled using the CIM classes SharedSecretService and SharedSecret. The
ComputerSystem class represents the device, and the SharedSecret object contains the credentials in its
properties.

A Bluefin client or application can pass the device credentials to the agent or object manager by
instantiating the SharedSecret object, using the CIM intrinsic method Newl nst ance(). The Bluefin
agent or provider uses the information from this object to talk to the device.

More information is in the Clause 4.3, “Modeling Device Credentials”.

3.3 Profiles

3.3.1 Profile Content
The Bluefin Object model is described in a sequence of profiles, each of which addresses a general class
of SAN entities (e.g., Host, Fabric, Array). Each profile is defined in subsections which are described
below.

Profile Element Goal

Description A textual introduction to the SAN entity being profiled. It provides a high-level

foundation for the more detailed descriptions to follow.
Schema Diagram A diagram of the subset of the Bluefin Object Model that is most concerned with

the SAN entity being described. Schema diagrams include all of a profile’s classes

Bluefin Specification Version 1.0.0 Page 51 of 303

Object Model Bluefin Specification

Profile Element Goal

and associations; the class hierarchy is included and each class is depicted one time
in the schema diagram.

Instance Diagrams One or more instance diagrams to highlight common implementations that employ
this section of the Object Model. Instance diagrams also contain classes and
associations but represent a particular configuration; multiple instances of an
object may be depicted in an instance diagram.

Client Considerations This section summarizes the implementation concerns that will be encountered by
products and services that rely on the SAN entity being described.

Agent Considerations This section summarized the implementation concerns that must be accounted for
by agent implementations (either embedded or proxy) that provide information
from one or more of the SAN entities to Bluefin clients.

Indications This section details any indications that have been defined in conjunction with this
SAN entity.
Required Classes This section provides a table listing the classes upon which this profile relies,

information on whether the class is required for the particular profile, and profile-
specific notes. Each class reference includes a cross-reference to the detailed
definition of the class.

The classes are listed in a table with a column defining whether the class is
required for this particular profile. This column can have three values

Y “Yes”, the class is required for this profile
N “No”, this class is optional.

I “Implementation”, if an implementation of this profile includes a
particular behavior, than this class is required. For example, a disk array
may or may not have a StorageConfigurationService interface for creating
volumes; if it does, than this service and some related classes are
required.

Table 1: Profile Components

3.3.2 Fabric

3.3.2.1 Fabric Topology
3.3.2.1.1 Description

3.3.2.1.1.1 SANS and Fabrics as AdminDomains

A SAN and Fabric are represented in CIM by AdminDomain. A SAN contains one or more Fabrics,
which are modeled as AdminDomains. The "containment" of Fabrics to SANs is through the association
Component. AdminDomain is sub-classed from System. This is significant because a SAN and a Fabric
can be considered a group of components that operate together as a single system and should/are
managed as such. The relationship of the Fabrics in a SAN could be as redundant fabrics,
interconnected (using the same or different transports/protocols), or not connected in any way. Even in
the latter case where the Fabrics are disjoint, from an administrative perspective they may still be
managed together applying common practices including naming across the Fabrics.

Page 52 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

An AdminDomain in CIM is keyed by the property Name with an associated optional property
NameFormat. Typically SANs are identified ("named") administratively and thus left up to the
implementation (though it must be unique within the discovery of known SANs that populate the same
CIM Namespace).

For Fabrics, the identifier is the Fabric WWN which is based on the primary switch.

3.3.2.1.1.2 Fabrics and Topology

A Fabric in CIM today minimally contains a LogicalNetwork or the Systems it contains, or more likely
both. For the purposes of this discussion, it is assumed one will model both.

LogicalNetwork represents the foundation necessary for routing (and the reason it is defined in the
Network model). A LogicalNetwork groups a set of Protocol Endpoints together, which are able to
communicate with each other directly. The ProtocolEndpoint is associated to the LogicalNetwork by
MemberOfCollection. A link is represented by the association ActiveConnection, which associates two
ProtocolEndpoints, which is defined as a connection that is currently carrying traffic or is configured to
carry traffic.

It is important at this point to clarify the relationship (or use) of the ProtocolEndpoint versus the use of
FCPort (discussed later). A Port is the device that is used to represent the logical aspects of the link and
data layers. The ProtocolEndpoint is used to represent the higher network layers for routing. This is
best understood when thinking about Ethernet and IP, but apply to FibreChannel also.

One can ultimately represent multiple LogicalNetwork (e.g. FC, IP (over FC), and IP (FC encapsulated
in IP)) for the same Fibre Channel fabric.

Note that in modeling SANSs, Fabrics, and LogicalNetworks, a LogicalNetwork does not require a Fabric,
and a Fabric does not require a SAN. But a SAN requires a Fabric, and a Fabric (for the purposes of
this paper) requires a LogicalNetwork.

3.3.2.1.1.3 Systems and Ports

As discussed in the previous section, a Port is associated to a device to represent the link layer. A Port
1s associated to the ProtocolEndpoint by DeviceSAPImplementation and "joins" the System and Device
model to the Network model. Systems, or in this case ComputerSystem, represent the fabric elements
that contain Ports. These are typically Hosts, Switches and Storage Systems. In Fibre Channel, these
are called Platforms and Interconnect Elements. The property Dedicated in ComputerSystem allows
these fabric elements to be identified. For a host, Dedicated is set to " ", for a switch, Dedicated is set
to "Switch", and for a storage system, Dedicated is set to "Storage". The Ports on a System are
associated by SystemDevice.

3.3.2.1.2 Schema Diagram

Bluefin Specification Version 1.0.0 Page 53 of 303

Object Model Bluefin Specification

*
* *
Dependency ManagedElement | % | Component
(abstract)
InstanceName: string
MemberOfCollection A
CollectedMSE +
Collection ManagedSystemElement
(abstract)
CollectionOfMSEs SystemSpecificCollection LogicalElement
(abstract)
CollectionID: string[key] SystemCreationClassName: string [key]
SystemName: string [key]
Y InstancelD: string (key) M
A ?
ServiceAccessPoint LogicalDevice
LogicalNetwork LogicalPortGroup N * (abstract)
HostedCollection w* | DevicelD: string [key]
3 HostedAccessPoint
SystemDevice
1 NetworkAdapter
System (abstract)
S PermanentAddress: string
Name: string [key] NetworkAddresses(]: string
i Speed:uint64
Switches and MaxSpeed: uint64
StorageSystems i FullDuplex: boolean
identified wi AutoSense: boolean
are ;‘ds"“f'ed with OctetsTransmitted: uint64(deprecated)
the property OctetsReceived: uint64(deprecated)
D SupportedMaximumTransmissionUnit: uint64
T Jnit: uint64
A
ComputerSystem
Otherldentifyinglnfo: string|]
Dedicated: uint16]] AdminDomain Contained
OtherDedicatedDescription: string Domian
string
Port
ActiveConnection
PortType: uint16
OtherPortType: string
PortNumber: uint16
LinkTechnology: uint16
OtherLinkTechnology: string
Name Accessinfo
ProtocolType InfoFormat J
FCPort

PortType: uint16
OtherPortType: string
SupportedCOS: uint16
ActiveCOS: uint16
SupportedFCATypes: uint16
ActiveFC4Types: uint16

Figure 16: Fabric Schema

3.3.2.1.3 Instance Diagram

Page 54 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

SAN AdminDomain
Component
Fabric AdminDomain
Component Component
Host
LogicalPortGruop | HostedCollection 5| ComputerSystem
LogicalNetwork
L " MemberOfCollecti tenDevit
MemberOfCollection lemberOfCollection Systen|Device Compondnt
ProtocolEndpoint FCPort PortController
DeviceSAPImplementation
ActiveConnection
Switch Component
ProtocolEndpoint FCPort = o C
= DeviceSAPImplementation miln Dedicated="Switch"
|—|7 SystemDevice
[LogicalModule

ActiveConnection

Storage LogicalPortGroup

MemberOfCollection HostedCollection

ProtocolEndpoint | | FCPort ComputerSystem

DeviceSAPImplementation SystemDevice

Dedicated="Storage"

Figure 17: Fabric Instance Diagram

3.3.2.1.4 Client Considerations

The client needs to consider that the fabric identifier is not durable. Please see Clause 3.2.3.In
addition, the client needs to consider that agents may not maintain persistent fabric objects (e.g. ports,
connections, etc.).

3.3.2.1.5 Agent Considerations

Life cycle indications supported by the CIMOM should not be done in the first release. Basically the
provider/agent should return “Not supported” when the CIMOM polls for events at frequent intervals.

The namespace for each vendor provider/agent should be different. The agent/provider should create
instances under a namespace that is unique in the CIM Server. This is to allow multiple
providers/agents from different vendors to co-exist in a CIM server.

The agent will need to respond to physical fabric changes by adding or removing Logical elements to
the AdminDomain. Adding an element to the fabric is straightforward, however it is not always clear
when an element has been removed. The device may have been reset, or temporarily shut down, in
which case it would be an element in the fabric with an "unknown" status. The lifetime of objects that
can not longer be discovered are implementation specific. If a single vendor agent/provider provides
information about multiple switches from the same vendor, then the instances created to represent
those switches should be created under the same namespace.

If the agent is unable to determine the type of platform discovered (defined in FC-GS), then the agent
must set the ComputerSystem.Dedicated property to "Unknown".

Bluefin Specification Version 1.0.0 Page 55 of 303

Object Model

3.3.2.1.6 Indications

Bluefin Specification

See Clause 3.3.2.3.6 for information on fabric indications.

3.3.2.1.7 Required Classes

Class Req Notes
ActiveConnection (p. 214) Y
AdminDomain (p. 214) Y for Fabric
AdminDomain (p. 214) N for SAN
Component (p. 217) N for zoning orphaned devices
Component (p. 217) Y LogicalNetworks and ComputerSystems into

Fabrics

Component (p. 217)

Fabrics into SANs

ComputerSystem(p. 217)

Dependency (p. 221)

ElementStatistics (p. 223)

FCPort (p. 224)

FCPortStatistics (p. 228)

HostedAccessPoint (p. 231)

HostedCollection (p. 231)

LogicalPortGroup to ComputerSystem

HostedCollection (p. 231)

of LogicalNetwork

LogicalNetwork (p. 239)

LogicalPortGroup (p. 239)

MemberOfCollection (p. 240)

Into LogicalPortGroup

MemberOfCollection (p. 240)

LogicalNetwork to AdminDomain

ProtocolEndpoint (p. 246)

RemoteServiceAcessPoint (p. 248)

SystemDevice (p. 288)

<|z|<|<|<|<|<|<|<|z|<|<|<|<|<|z

3.3.2.2 Switches

3.3.2.2.1 Description

Figure 18: Fabric Required Classes

The switch profile models the physical and logical aspects of a Fibre Channel fabric interconnect
element. The ComputerSystem class constitutes the core of the switch model. It is identified as a switch

using the property Dedicated set to "switch".

If a switch is modular, for instance if the switch is comprised of multiple blades on a backplane,
LogicalModule can optionally be used to model each sub-module, and as an aggregation point for the

switch ports.

FCPort describes the logical aspects of the port link and the data layers. PhysicalConnector models the
physical aspects of a port. An instance of the FCPortStatistics class is expected for each instance of the
FCPort class. FCPortStatistics expose real time port health and traffic information.

3.3.2.2.2 Schema Diagram

Page 56 of 303

Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

*
Dopendency | ¥ ManagedElement

InstanceName

ManagedSystemElement

OperationalStalus: uint16 (enum)
OtherStatusDescription: string

Product

Name: string (key]
IdentifyingNumber: string key)
Vendor: sting [key]
Version: string [key]

]

LogicalElement

A

‘SoftwareElement

Name: string (key]
Version: string [key]
SoftwareElementState: uint16 [key]
SoftwareElementiD: string [key]
TargelOperalingSystem: uint16 [key]
OtherTargetOperatingSystem: string
Manufacturer: string

PhysicalElement (Abstract)

Manufacturer: string
Model: string

Subclass of Dependency
rpose: uipt16 (enum)

Realizes

1
*

LogicalDevice

Version: string
PariNumber string
Otheridenifyinginfos string

‘Subciass of Depenency

PhysicalPackage

PhysicaConnector

Removable: boolean
HotSwappable: boolean
Height: real32

Depth: real32 -
Width: real32

ConnectorType: uint16 (] (enum).
OtherTypeDescription: string

‘Stalisticallnformation

DeviceStatisticallnformation

‘SystemCreationClassName: string [key]

Def
taty

sysmﬂume

NetworkAdapter

PermanentAddress: string

NetworkAddresses(]: string LogicalModule PacketsTransmited: uint64
‘Speed:uint64. PacketsReceived: uint64
MisSpeed: a4 ModuleNumber: uint16

FulDuplex boolean
AutoSense: boolean

Octels Transmitted: uint64(deprecated)
OctelsReceived: uintB4(deprecated)
SupportedhaxmumTransmissionUnit; uin64
ActiveMaximumTransmissionUnit: uint64

o Syvtom (abatach)

ModuleType: uint16 (enum)
OtherModuleType: string

Port

InstanceName: string
PortType: uint16
OtherPortType: string
PortNumber: uint16.
LinkTechnology: uint16.
OtherLinkTechnology: string

)

FCPort

PortType: unt16,
OtherPortType: string
SupportedCOS: uint16
ActiveCOS: uint16.

Name: string [key]

[

HostedAccessPoint

SystemName: string [key]

w #| DeviceCreationClassNeme: string (key]
DevicelD: string [key]

Name: string [key]

NetworkAdapterStatistics

Bytes Transmitted: Uint64
BytesReceived: uint64

RemoteServiceAccessPoint

Accessinfo:string
AccessinfoFormat. string
OtherlnfoF ormatDescription: sring

FCPortStatistcs

ComputerSystem

ModulePort

OtherldentifyingInfo: stringl |
Dedicated: uint16]
OtherDedicatedDescription: string

()

LIPCount uint64

LossOfSignalCounter: uint64
LossOfSyncCounter: uin64.
PrimitiveSeqProtocolErCount; uint64
CRCErors: uint4
InvalldTransmissionsWords: uint6d
FramesTooShort: int64
FramesToolLong: uint64
AddressErrors: uint4
BufferCreditNotProvided: uint64
DelimiterErrors: uint64
EndcodingDispariy: uint64
LinkResetsReceived: uint64
LinkReselsTransmilted: uint64
MullcastFramesReceived: uint64
MullcastFrames Transmitted: uint64

SupporledFCATypes: int16
ActiveFCATypes: uint16

Figure 19: Switch Schema Diagram

3.3.2.2.3 Instance Diagram

FCPort) FCPortStatistics
Device
Statistics
PhysicalPackage
ComputerSystemPackag —— ProductPhysicalElements
SystemDevice
Product
Realizes
ComputerSystem LogicalModule ModulePort
Dedicated="switch" Mol lePet
This is optional. It
InstalledSoftwareElement . represlents a blade in
SystemDevice a director class
switch.
SoftwareElement FCPort FCPortStatistics
(Firmware) [— S?a?i\gggs J—

Figure 20: Switch Instance Diagram

Bluefin Specification Version 1.0.0

Page 57 of 303

Object Model Bluefin Specification

3.3.2.2.4 Client Considerations

An agent may represent more than one switch within a fabric. Enumerating ComputerSystem where
Dedicated="switch" will return the list of switches that the agent is able to discover and possibly
manage.

3.3.2.2.5 Agent Considerations

The information about the device that is supposed to be managed by the provider running on host
(proxy agent) is implementation specific.

The vendor switch profile should contain the information about the provider (proxy agent) that is
responsible for retrieving the switch information. There is no standard registration mechanism defined
for the provider to register with a CIMOM.

There could be one provider developed to provide information about the fabric as well as the switch.

3.3.2.2.6 Indications
e Mandatory

o Instance Indications

= (Create/Delete
SELECT * FROM Cl M_ I nst Creati on WHERE Sour cel nstance | SA Cl M_FCPort
SELECT * FROM Cl M_I nst Del eti on WHERE Sour cel nstance | SA CI M_FCPor t

SELECT * FROM Cl M_ I nst Creati on WHERE Sour cel nstance | SA
Cl M_Conput er Syst em

SELECT * FROM Cl M_I nst Del eti on WHERE Sour cel nst ance | SA
Cl M_Conput er Syst em

= Modification
SELECT * FROM I nst Modi fi cati on WHERE Sour cel nstance | SA CI M_FCPort AND
Sour cel nst ance. Qper ati onal Status[0] <>
Pr evi ousl nst ance. Oper ati onal St at us[0]
SELECT * FROM | nst Modi fi cati on WHERE Sour cel nst ance | SA

Cl M_Conput er Syst em AND Sour cel nst ance. Operati onal St atus[0] <>
Previ ousl nst ance. Oper ati onal St at us[0]

e Optional
o Instance Indications

= None

Page 58 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

3.3.2.2.7

Required Classes

Class Reqg Notes

ComputerSystemPackage (p. 218)

Dependency (p. 221)

DeviceSoftware (p. 223)

ElementStatistics (p. 223)

FCPort (p. 224)

FCPortStatistics (p. 228)

LogicalModule (p. 239)

ModulePort (p. 240)

PhysicalConnector(p. 241)

PhysicalPackage (p. 243)

Product (p. 245)

ProductPhysicalElements (p. 246)

Realizes(p. 247)

RemoteServiceAcessPoint (p. 248)

SoftwareElement (p. 253)

SystemDevice (p. 288)

<|z[=|<|x<x|<|z|z|z|<|<|<]|zZ|~|<

3.3.2.3

3.3.2.3.1

Table 2: Switch Required Classes

Zoning

Description

The Zoning model is based on ANSII FC-GS-4. This model represents the management model of
defining and "activating" a zone versus the simple operational model found in other transports which
shows connectivity.

The model defines the containment of the zone objects as the AdminDomain representing the Fibre
Channel Fabric. The AdminDomain hosts the service ZoneService which has the operational functions
to control the zone (e.g. Activate ZoneSet, etc.).

Within the AdminDomain representing the fabric are ZoneSet associated via HostedCollection. The
ZoneSet contains Zones associated by MemberOfCollection. Devices in the Zone are associated into the
Zone via the association ZoneMember. Note that the association ZoneMember has additional properties
which indicate how the device was "zoned" (e.g. WWN, FCID, etc.).

Zones and ZoneSets contain the property Active which indicates whether the Zone and ZoneSet are
part of the "active" definition defining the Fibre Channel fabric zoning. Zone and ZoneSet that are
active cannot be modified.

3.3.2.3.2 Schema Diagram

Bluefin Specification Version 1.0.0 Page 59 of 303

Object Model Bluefin Specification

ManagedElement

InstancelD: string
InstanceName: string

ElementCapabilities
MemberOfCollection

ZoneMember ‘
P—
Collection ManagedSystemElement
L | InstancelD: string [key]
OperationalStatus: uint16 (enum) InstanceName: string
OtherStatusDescription: string T
SystemSpecificCollection LogicalElement ZoneCapabilities
ZoneNameMaxLen
SystemCreationClassName: siring [key] SoneNameFermet
SystemName: string [key] MaxNUmZoneSets
InstancelD: string [key] L MaxNUmZones
MaxZoneMembers
MaxNumZonesPerZoneSet
HostedCollection
ZoneAlias is a collection of ZoneSet
Ports and Nodes and
ZoneAlias' associated by Active: boolean
ZoneMember.
AddZone([IN] Zone: ref) i]
RemoveZone([IN] Zone: ref)
(N i System wa| LogicalDevice
Name: string [key] (abstract)
F— DevicelD: string [key]
LogicalPortGroup ZoneAlias [oneSet s a collection of
{Zones administered by HostedService
‘AddZoneAliasMember(he ZoneService by the Service NetworkAdapter
[IN] ZoneMemberType: uint16 (enum), lassociation) "
[IN] ZoneMemberID: string) [MemberOfCollection. ‘AdminDomain Name: string [key] PermanentAddress
RemoveZoneAliasMember(NetworkAddress
[IN] ZoneMember: ref) NameFormat: string StartService(): uint32
StopService(): uint32 *
This is a FC Node + ort
Zone
ZoneService
ZoneType: uint16
ProlocoiType: int16 CreateZone([IN] Name: string,
Rendomy beotemn AdminDomain represents a [IN] ZoneType: uint16 (enum),
At bostoon fabric. HostedCollection is [IN] Protocol Type: uint16 (enum), FoPort
g used to associate Zone, [IN] ReadOnly: boolean)
ZoneSet, and ZoneAlias to DeleteZone((IN] Name: ref)
A?ﬁg‘:mm:f&ﬁ : Lint16 (enum), define the containment of the CreateZoneSet([IN] Name: string)
[IN] ZoneMemberiDr ehing) i various zoning components. DeleteZoneSet([IN] Name: ref)
RemoveZoneMember([IN] ZoneMember: ref) CreateZoneAlias([IN] Name: string)
DeleteZoneAlias([IN] Name: ref)
ActivateZoneSet ([IN] ZoneSet: ref)
DeactivateZoneSet ()
Zone is a collection of

Ports, Nodes, and
{ZoneAlias associated by|

The containment of the
ZoneService is by
HostedService to an
AdminDomain which in turn
specifies the containment
of the Zones, ZoneSets,
ZonAlias', and
ZoneMembers.

Figure 21: Zoning Schema

3.3.2.3.3 Instance Diagram

LogicalPortGroup

ZoneSet

ZoneAlias
ZoneMember

ZoneCapabilities

MemberOfCollection
ZoneMember HostedCollection

SystemCapabilities

FCPort Zone AdminDomain ZoneService

Figure 22: Zoning Instance Diagram

3.3.2.3.4 Client Considerations

The default zoning behavior of a fabric without an active ZoneSet is undefined.

Page 60 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

3.3.2.3.5 Agent Considerations

The zoning component should allow the creation of FCPorts that are non-existent. This allows the client
to create ZoneMembers that can be zoned in the future. Also there is the case where a FCPort goes
offline and is not discoverable but will later appear when it goes online. The agent will provide a
minimal set of properties necessary to identify this "undiscovered" FCPort but generally cannot
populate the majority of the properties. The FCPort is owned by the fabric represented by
AdminDomain and when "discovered" is then associated to the ComputerSystem that really contains it.
This is often called the case of Parentally- Challenged devices.

3.3.2.3.6 Indications

Mandatory
o Instance Indications
= (Create/Delete
e None

= Modification

SELECT * FROM | nst Modi fi cati on WHERE Sour cel nstance | SA Cl M ZoneSet AND
Sour cel nst ance. Active <> Previousl nstance. Active

= Alert

Select * From Al ertlndication
Optional
o Instance Indications

= Create/Delete

SELECT * FROM Cl M_I nst Creati on WHERE Sour cel nstance | SA Cl M _Zone
SELECT * FROM Cl M_I nst Del eti on WHERE Sour cel nstance | SA Cl M _Zone
SELECT * FROM Cl M_I nst Creati on WHERE Sour cel nstance | SA Cl M _ZoneSet
SELECT * FROM Cl M_I nst Del eti on WHERE Sour cel nstance | SA Cl M _ZoneSet
SELECT * FROM Cl M_I nst Creati on WHERE Sour cel nstance | SA Cl M ZoneAl i as
SELECT * FROM Cl M_I nst Del eti on WHERE Sour cel nstance | SA Cl M ZoneAl i as
SELECT * FROM Cl M_I nst Creati on WHERE Sour cel nstance | SA Cl M_ZoneMenber
SELECT * FROM Cl M_I nst Del eti on WHERE Sour cel nstance | SA Cl M_ZoneMenber

SELECT * FROM Cl M I nst Creati on WHERE Sour cel nstance | SA
CI M Menber O Col | ecti on AND Sour cel nst ance. Menber == Cl M Zone

SELECT * FROM CI M I nst Del eti on WHERE Sour cel nst ance | SA
Cl M_Menber O Col | ecti on AND Sour cel nstance. Menber == Cl M_Zone

Bluefin Specification Version 1.0.0 Page 61 of 303

Object Model

3.3.2.3.7 Required Classes

Bluefin Specification

Class

Req

Notes

AdminDomain (p. 214)

ElementCapabilities (p. 224)

FCPort (p. 224)

HostedCollection (p. 231)

HostedService (p. 232)

LogicalPortGroup (p. 239)

MemberOfCollection (p. 240)

SystemDevice (p. 288)

for parentally challenged FCPorts

Zone (p. 289)

ZoneAlias (p. 290)

ZoneCapabilities (p. 290)

ZoneMember (p. 291)

ZoneService (p. 291)

ZoneSet (p. 292)

<KX K¥|<|Z|<¥|Z|<X|Z2

3.3.2.4 Routers

3.3.2.4.1 Description

Table 3: Zoning Required Classes

A Router is a device that translates between different types of SCSI buses. The instance diagram
shows a system with a parallel SCSI buss and Fibre Channel buss. Devices on the parallel bus are
served to the Fibre Channel bus without changing the characteristics of the device.

3.3.2.4.2 Schema Diagram

Page 62 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

3.3.2.4.3

DiskDrive

TapeDrive

FCPort

Instance Diagram

Bluefin Specification

Roles[x] = 'Target' |

"Initiator’

SCSiController

Figure 23: Router Schema Diagram

Version 1.0.0

Object Model
ManagedElement
| | .
Product ManagedSystemElement
Component
| 4)
ProductPhysicalElement ‘ | | |
PhysicalElement SystemSpecificColection LogicalElement
0..1
Container # *
PhysicalPackage LogicalPortGroup
* SystemComponent
SoftwareElement
ComputerSystemPackage
Realizes InstalledSoftwareElement
nstalledsoftwaretlemen ServiceAccessPoint Service
ComputerSystem T w
HostedAccessPoint
Dedicated[x] = 'Router’ 1 | * . * | *
ServiceAccessBySAP
HostedService
EnvironmentalService
SystemDevice
* T
- . % _| DeviceConnection ;
LogicalDevice SESService
Concreteldentity
*
A
*
MediaAccessDevice LogicalPort Controller

Page 63 of 303

Object Model Bluefin Specification

StorageAccessService (MemberOfCollection

FCPort LogicalPortGroup

HostedOn ‘

Concreteldentity

Installed
SoftwareElement
* SCSiIController L UnitAccess—

SystemDevice LogicalDevice
SoftwareElement ComputerSystem 3 SCSiLun
1 Roles[x] = 'Target' ‘
Dedicated[x]=" 'Router’ Concret‘eldentity
SystemDevice g5 Controller o
LogicalDevice
| SCSlinterface
ComputerSystemPackage Roles[x] = 'Initiator ‘
ProductPhysicalElements .
’7 W ProductPhysicalElements rea‘l izes
Product PhysicalPackage
Product PhysicalPackage

Figure 24: Router Instance Diagram
3.3.2.4.4 Client Considerations

3.3.2.4.4.1 Basic Design

The router model consists of 6 major groups of classes (Core, Physical, Software, SCSI buses, source /
exported devices).

The ComputerSystem class is the core of the model. It is identified as a router by the dedicated
attribute being set to “Router”. The PhysicalPackage class and Product class represent the physical
aspects of the router and served devices. These classes contain attributes that can be used to identify
the hardware. This information includes serial number, model number, and vendor name.

The SoftwareElement class represents the product’s firmware or vendor specific utilities that are
running on the router. This class should be sub-classed for each utility.

The SCSIController class and optionally the FCPort class represent the SCSI buses that are part of the
router. The SCSIController class near the bottom of the instance diagram is the parallel SCSI side of
the router. Note that it doesn’t have an association to a FCPort class. It has SCSlinterface associations
to the devices on the bus. The SCSI addresses of the devices are stored in the association.

The SCSIController class near to top of the instance diagram has a Concreteldentity association to a
FCPort class. This indicates the FCPort is a Fibre channel SCSI port. This FC bus connects to the SAN.
This bus uses SCSILUN and UnitAccess associations to hold the address mapping and masking. The
SCSIController manages these associations.

A LogicalDevice class represents the device on the back end bus. This class has a Realizes association to
a PhysicalPackage class to identify the hardware. The class uses a Concreteldentity association to a
second instance of LogicalDevice. This class represents the device as seen by the front end port.

3.3.2.4.5 Agent Consideration

No agent considerations are defined at this time.

Page 64 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

3.3.2.4.6 Indications
e Mandatory

o Instance Indications

= (Create/Delete
SELECT * FROM Cl M_I nst Creati on WHERE Sour cel nstance | SA Cl M_FCPor t
SELECT * FROM Cl M_I nst Del eti on WHERE Sour cel nstance | SA Cl M_FCPor t

SELECT * FROM Cl M_ I nst Creati on WHERE Sour cel nstance | SA
Cl M_Conput er Syst em

SELECT * FROM Cl M_I nst Del eti on WHERE Sour cel nst ance | SA
Cl M_Conput er Syst em

= Modification
SELECT * FROM I nst Modi fi cati on WHERE Sour cel nstance | SA CI M_FCPort AND
Sour cel nst ance. Qper ati onal Status[0] <>
Pr evi ousl nst ance. Oper ati onal St at us[0]
SELECT * FROM I nst Modi fi cati on WHERE Sour cel nst ance | SA

Cl M_Conput er Syst em AND Sour cel nstance. Operati onal St atus[0] <>
Pr evi ousl nst ance. Oper ati onal St at us[0]

e Optional
o Instance Indications

= None

3.3.2.4.7 Required Classes

Class Req Notes

ComputerSystem (p. 217)

=<

ComputerSystemPackage (p. 218)

FCPort (p. 224)

HostedCollection (P. 231) LogicalPortGroup to ComputerSystem

HostedService (p. 232)

InstalledSoftwareElement (p. 232)

LogicalDevice (p. 237)

LogicalPortGroup (p. 239)

MemberOfCollection (p. 240) into LogicalPortGroup

StorageAccessService (p. 258)

PhysicalPackage (p. 243)

Product (p. 245)

UnitAccess (p. 289)

SCSIController (p. 249)

SCSllInterface (p. 250)

SCSILUN (p. 251)

SoftwareElement (p. 253)

<|z|<|<|<|z|z|z|<]|<]|<|=<|<|<|<|<

SystemDevice (p. 288)

Table 4: Router Required Classes

Bluefin Specification Version 1.0.0 Page 65 of 303

Object Model Bluefin Specification

3.3.2.5 Extender

3.3.2.5.1 Description

A FC Extender is a device that translates Fibre channel communication to be transferred over
difference media. Fibre channel extenders are used in pairs. This model shows an extender that uses
ATM to extend a Fibre channel bus.

3.3.2.5.2 Schema Diagram

ManagedElement

A
ManagedSystemElement Product
*
A
SystemSpecificColection
LogicalElement f
SystemComponent LogicalPortGroup
HostedAccessPoin‘t DeviceConnection LogicalDevice
1 ‘ ServiceAccessPoint Service A
ComputerSystem
A
ServiceAccessBySAP
? |— HostedService
SystemDevice
ComputerSystem ForwardingService LogicalPort
PhysicalElement ProtocolEndpoint
ComputerSystemPackage FCPort Port
Container
PortimplementsEndpoint
PhysicalPackage

- PortImplementsEndpoint—————————~

Figure 25: Extender Schema Diagram

Page 66 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

3.3.2.5.3 Instance Diagram

PortimplementsEndpoint

FCPort ProtocolEndpoint
ComputerSystem ‘
ForwardsAmong
SystemDevice ‘
Dedicated[x]= Extender SystemDevice . :
ForwardingService
ComputerSystemPackage I
ForwardsAmong
|
PhysicalPackage Port ProtocolEndpoint
Type=ATM
ProductPhys‘lcaIEIements PortlmplementsEndpointJ
Product ActiveConnection
PortimplementsEndpoint
Port ProtocolEndpoint
Type=ATM
I
ComputerSystem ForwardsAmong
SystemDevice :
Dedicated[x]= Extender | SystemDevice ForwardingService

ComputerSystemPackage

ForwardsAmong
|
FCPort ProtocolEndpoint
PhysicalPackage
‘ PortImpIementsEndpoinJ

ProductPhysicalElements

Product

Figure 26: Extender Instance Diagram
3.3.2.5.4 Client Considerations

3.3.2.5.4.1 Basic Design
The Extender model consists of 3 major groups of classes (Core, Port, and Physical).

Bluefin Specification Version 1.0.0 Page 67 of 303

Object Model Bluefin Specification

The ComputerSystem class is the core of the model. It is identified as an Extender by the dedicated
attribute being set to Extender. The system has one service, the ForwardingService that represents the
function of the extender and links the ports together.

The model contains two port classes FCPort and Port (type=ATM). The FCPort class represents the
connection of the extender to the SAN. This class connects to other FCPort classes to represent Fibre
channel connections. This class could be replaced with other port types to represent SANs based on
other interconnect technology. The Port class (type=ATM) represents the ATM link between extenders.
This port may also have different types for different extension bus types.

The PhysicalPackage class and Product class represent the physical aspects of the extender. These
classes contain attributes that can be used to identify the hardware system. This information includes
serial number, model number, and vendor name.

3.3.2.5.5 Agent Considerations
None.

3.3.2.5.6 Indications
¢ Mandatory

o Instance Indications

= (Create/Delete

SELECT * FROM Cl M_ I nst Creati on
WHERE Sour cel nstance | SA Cl M _FCPor t

SELECT * FROM Cl M_ I nst Del eti on
VHERE Sour cel nst ance

SA Cl M_FCPor t

SELECT * FROM Cl M I nst Creati on
WHERE Sour cel nstance | SA Cl M _Conput er Syst em

SELECT * FROM Cl M_I nst Del eti on
VHERE Sour cel nst ance

SA Cl M_Conmput er Syst em

SELECT * FROM Cl M I nst Creati on
WHERE Sour cel nstance | SA Cl M Acti veConnection

SELECT * FROM Cl M I nst Creation
VHERE Sour cel nst ance

SA Cl M Acti veConnecti on

SELECT * FROM Cl M I nst Creati on
VWHERE Sour cel nstance | SA Cl M Port
AND Sour cel nst ance. Li nkTechnol ogy == "ATM

SELECT * FROM Cl M I nst Creati on
VWHERE Sour cel nstance | SA Cl M Port
AND Sour cel nst ance. Li nkTechnol ogy == "ATM

= Modification

SELECT * FROM | nst Modi fi cati on
WHERE Sour cel nstance | SA Cl M_FCPor t
AND Sour cel nstance. Oper ati onal St at us[0] <>
Pr evi ousl nst ance. Oper ati onal St at us[0]

SELECT * FROM | nst Modi fi cation
WHERE Sour cel nstance | SA Cl M_Conput er Syst em
AND Sour cel nstance. Operati onal Status[0] <>
Pr evi ousl nst ance. Oper ati onal St at us[0]

Page 68 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

SELECT * FROM | nst Modi fi cation
VHERE Sour cel nstance | SA Cl M Port

e Optional

= None

3.3.2.5.7 Required Classes

AND Sour cel nst ance. Oper ati onal Status[0] <>

Previ ousl nst ance. Oper ati onal St at us[0]
AND Sour cel nst ance. Li nkTechnol ogy == "ATM'

Class

Req

Notes

ComputerSystem (p. 217)

ComputerSystemPackage (p. 218)

FCPort (p. 224)

ForwardingService (p. 230)

ForwardsAmong (p. 231)

HostedCollection (P. 231)

LogicalPortGroup to ComputerSystem

HostedService (p. 232)

InstalledSoftwareElement (p. 232)

LogicalPortGroup (p. 239)

MemberOfCollection (p. 240)

into LogicalPortGroup

PhysicalPackage (p. 243)

PortimplementsEndpoint (p. 245)

Product (p. 245)

ProtocolEndpoint (p. 246)

SoftwareElement (p. 253)

SystemDevice (p. 288)

<1 Z|<Z2I<¥|1Z2|X¥|<¥|1Z2|X¥|<¥|<L|<L <2<

3.3.3 Hosts

3.3.3.1 Host Bus Adapters

3.3.3.1.1 Description

A Fibre Channel adapter used in a host system is called a Host Bus Adapter (HBA). An HBA is a
physical device which contains one or more Fibre Channel ports. A single system contains one or more

HBAs.

3.3.3.1.1.1

An HBA is represented in CIM by FCPorts associated to a ComputerSystem through the SystemDevice
association. To understand the containment to the HBAs physical implementation the FCPorts are
associated to PhysicalPackage (typically Card) through the Realizes association.
logical operations that apply to the HBA and not to an individual port, then the PortController can be
instantiated. The PortController is associated to the ComputerSystem through the SystemDevice

Figure 27: Required Classes for Extender

association and associated to the ports through the ControlledBy association.

3.3.3.1.2 Schema Diagram

Bluefin Specification

Version 1.0.0

Object Model

If the HBA has

Page 69 of 303

Object Model

ManagedElement

Bluefin Specification

InstanceName: string

Concrete’
Identity

ManagedSystemElement

[}

Product

LogicalElement

Statisticallnformation

Name: string [key]
IdentifyingNumber: string [key]
Vendor: string [key)

Version: string [key]

ProductPhysicalElements

SoftwareElement

System

Tag: string [key]

Manufacturer: string
Model: st
SerialNumber: string

Name: string [key]

HostedCollection
Subclass of MemberOfCollection

ComputerSystem ‘

Collection

MemberOfCollection

SystemSpecificCollection

temCreationClassN:

SystemName: string [key]
InstancelD: string (key)

string [key]

DeviceStatisticallnformation

SystemCreationClassName: string [key]

3.3.3.1.3

Page 70 of 303

Instance Diagram

Name i i
Version Purpose: uhtt6 temmy———| Logicalbevice SysieﬂDewce
DevicelD: string [key]
SoftwareElementiD
TargetOperatingSystem
OtherTargetOperatingSystem
Manufacturer
NetworkAdapter
Realizes Deyice
Subclass of Pependendy PermanentAddress: string Statistics
NetworkAddresses[: string
C
MaxSpeed: uint64
FullDuplex: boolean
AutoSense: boolean
PhysicalElement (Abstract) Unit: uint64
ActiveMaximumTransmissionUnit: int64
CreationClassName: string [key]
i Controller T
tring
tring Port
Otherldentifyinglnfo: string InstanceName: string
PortType: uint16
OtherPortType: string
PortNumber: uint16
LinkTechnology: uint16
OtherLinkTechnology: string
ConnectorType: uint16 [] (enum)
OtherTypeDescription: string FCPort
PortType: uint16
OtherPortType: string
SupportedCOS: uint 16
ActiveCOS: uint16
‘SupportedFCA4Types: uintt6
ActiveFCATypes: uint16
sCsiController PortController

Version 1.0.0

' ing [key]
PDeviceCreationClassName: string [key]
DevielD: string [key]

Name: sting [key]

NetworkAdapterStat

BytesTransmitted: uint64
BytesReceived: uint64
PacketsTransmitted: uint64
PacketsReceived: uint64

FCPortStatistics

LIPCount: uint64
NOSCount: uint64

ErorFrames: uint64.
DumpedFrames: uint64
LinkFailures: uint64
LossOfSignalCounter: uint64
LossOfSyncCounter: uint64
PrimitiveSeqProtocolErCount: uint64
CRCETors: uint
InvalidTransmissionsWords: uint64
FramesTooShort: uint64
FramesToolong: uint64
AddressErrors: uint64
BufferCreditNotProvided: uint64
DelimiterErrors: uint64
EndcodingDisparity: uint64
LinkResetsReceived: uint64
LinkResetsTransmitted: uint64
MulticastFramesReceived: uint64
MulticastFramesTransmitted: uint64

Figure 28: HBA Schema Diagram

A

LogicalPortGroup

Bluefin Specification

Bluefin Specification

Object Model
This represents the "normal” case of
one node per HBA comprising all the
ports of the HBA. Extreme variations
Product include one node per port regardless of
the number of ports on an HBA, and one
node for all ports on the host regardless
of the number of HBAs present.
ProductPhysical FCPortStatistics
iy SCSIController FCPort »
Concreteldentity [Statistics
PhysicalPackage
Realizes
SystemDevice
Systembevice
C°m§:‘fk’asgy:tem HostedCollection
ComputerSystem SystemDevice PortController ControlledBy
ControlledBy
‘ MemberOfCollection | LogicalPortGroup
Devi Device
evice Software Device :
Installed ’7 Software ‘ Software *‘ MemberOfCollection
SystemDevice SoftwareElement [g o\ 2 reElement SoftwareElement SoftwareElement
SystemDevice (Driver) (Firmware) (ROM BIOS)
SCSiController
t—— Concreteldentity —| FCPort FCPortStatistios
— Statistics ——
Figure 29: HBA Instance Diagram
The
ConcreteldentityAssociation
is an association generated
by the client and is generally
unknown by the HBA or
Storage Array agent.
Concreteldentity
SCSiIController LogicalDevice SCSIController LogicalDevice
——SCSlInterface— SCSILun
‘ Concreteldentity ‘
SyStem‘Dev'Ce SystemDevice Concreteldentity“
ComputerSystem FCPort ComputerSystem FCPort

—— SystemDevice —|

— SystemDevice—|

Figure 30: HBA Binding Instance Diagram

3.3.3.1.4 Client Considerations

The client does need to consider that there could be multiple Bluefin agents providing instances

unrelated to what maybe provided on the Host system, and may be unrelated to other Bluefin agents
on the host.

3.3.3.1.5 Agent Considerations
None.

Bluefin Specification Version 1.0.0 Page 71 of 303

Object Model Bluefin Specification

3.3.3.1.6 Indications
e Mandatory

o Instance Indications

= (Create/Delete
SELECT * FROM Cl M_I nst Creati on WHERE Sour cel nstance | SA Cl M_FCPor t
= Modification

SELECT * FROM | nst Modi fi cati on
WHERE Sour cel nstance | SA Cl M _FCPor t
AND Sour cel nst ance. Oper ati onal St atus[0] <>
Pr evi ousl nst ance. Oper ati onal St at us[0]

e Optional

= None

3.3.3.1.7 Required Classes

Class Req Notes
ComputerSystem (p. 217) Y A Host with FCPorts
Concreteldentity (p. 219) I FCPort to SCSIController if any
DeviceSoftware (p. 223) I Software or firmware or BootROM if any to the HBA or
port it supports
FCPort (p. 224) Y
FCPortStatistics (p. 228) N FC-specific port statistics
HostedCollection (p. 231) Y LogicalPortGroup (Node) to ComputerSystem
InstalledSoftwareElement (p. 232) I HBA software or firmware or BootROM if any to the
host system on which it is installed if any
LogicalPortGroup (p. 239) I An FC Node
MemberOfCollection (p. 240) I FCPort to LogicalPortGroup (Node)
PhysicalConnector(see p. 241) N An FC Connector on an HBA card
PhysicalPackage (see p. 243) Y An HBA card
PortController I Aggregates HBA FCPorts if multiport HBA
Product (see p. 245) Y The physical objects that compose the HBA
ProductPhysicalElements (see p. 246) Y Packages and Connectors to Products
Realizes(p. 247) Y FCPort or PortController to its PhysicalPackage
FCPort to its PhysicalConnector
SCSIController (p. 249) I An HBA FCPort if it is FCP-capable
SoftwareElement (see p. 253) I HBA-relevant software or firmware or BootROM
SystemDevice (p. 288) Y FCPort to ComputerSystem
SCSIController if any to ComputerSystem
PortController if any to ComputerSystem

Table 5: Required Classes for HBA
3.3.3.2 Host Discovered Resources

3.3.3.2.1 Description

Among the primary functions of a Fibre Channel Host Bus Adapter (HBA) and its supporting software
is discovery of SAN resources and presentation of those resources to the Host Operating System. A
description of the results of these functions is useful for some aspects of SAN management:

o Determination of discrepancies between resources discovered by HBAs and the resources
provided by other SAN elements is valuable for diagnostics

Page 72 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

e The information discovered by HBAs can provide information about SAN resources not
themselves supported by Bluefin agents

e In SANsthatlack an agent for the Fabric profile, e.g., Private Arbitrated Loops and FC Direct
Attach, a client can construct a view of the fabric by integrating the discovered resources from
any available hosts

e Discovered resource information includes the identification of SAN resources as they are
presented to the Host OS

The Host Discovered Resource agent uses the SNIA HBA API to create a generic model of the logical
SAN and attached storage. HBA API is included as an appendix to the FC-MI specification — see
www.t11l.org. This agent models elements also exposed by HBA, storage, and switch agents. A client
can use durable names to equate objects from different agents.

This profile is restricted to FCP (SCSI over FibreChannel) discovery. A similar approach can be used
for other protocols (such as IP over FC), but this is not described in this profile. Note that no physical
objects are represented by this profile. Since the objects are here are discovered remotely through an
HBA, only logical aspects are available. In general, the objects exposed by this agent duplicate those
exposed by canonical HBA, storage, or switch agents which provide the physical model.

The Host SAN Resources are independently instantiated for each HBA FCPort on a host. They include
its FC Node, discovered (remote) FCP ports, and SCSI Targets.

A LogicalPortGroup represents an FC Node; MemberOfCollection associates each FCPort to the
LogicalPortGroup.

The discovering FCPort and each discovered FCPort are associated by DeviceSAPImplementation to a
ProtocolEndpoint representing its FCP support (ProtocolType=other,
OtherProtocolType="SCSIOverFC”). An instance of LogicalNetwork is created to aggregate the FCP
ProtocolEndpoint for the discovering FCPort and all its discovered FCPorts.

SCSI Targets are modeled by FCPorts with a Concreteldentity to a SCSIController which in turn has at
least one SCSILUN association to a LogicalDevice. The SCSIController / FCPort combination represents
a SCSI Port with Target capability. The LogicalDevice in such associations represent SCSI Target
Logical Units.

SCSI Initiators (HBA ports) are also modeled with a SCSIController / FCPort combination. Initiator
SCSIController have SCSlinterface associations to logical units (LogicalDevice subclasses) that are
mapped to the HBA host.

Target Mappings are a pairing of an OS SCSI ID and an FCPID for a Logical Unit that represents a
Logical Unit as presented to a Host Operating System. They are modeled by a LogicalDevice with both
a SCSILUN and a SCSlinterface association. The OS SCSI ID is represented as attributes of the
SCSlinterface association. The paired FCPID is derived from the attributes of the SCSILUN association
and the FCPort to which it (indirectly) associates.

CIM requires that all LogicalDevices (including SCSIController and FCPort) be weak to a System via a
SystemDevice aggregation. It does not in general have means to discover the containing systems for
discovered FCPorts, so for each LogicalNetwork, this profile provides an AdminDomain to aggregate
discovered objects that must be weak to a System.

3.3.3.2.2 Schema Diagram

Bluefin Specification Version 1.0.0 Page 73 of 303

Object Model

ManagedElement

MemberOfCollection

CollectionOfMSEs

LogicalNetwork

Non-fabric port

Bluefin Specification

InstancelD: string Concreteldentity
InstanceName: string
Collection ManagedSystemElement —
OperationalStatus: uint16 (enum) Component
OtherStatusDescription: string
LogicalElement
T
SystemDevice
HostedCollection L
| rHostedAccessPoint—‘ ‘ DeviceSAPImplementation |
| |
System ServiceAccessPoint LogicalDevice
(abstract) SCSlinterface
; -~ stri |
DevicelD: string [key] SCSILUN
A
NetworkAdapter Controller
. N . PermanentAddress
AdminDomain ProtocolEndpoint NetworkAddress
Name A A
Protocol Type
* *
Port SCSlController

collection has no
additional proerties, the
generic LogicalNetwork
is used.

3.3.3.2.3

Figure 31 Host Discovered Resources Schema Diagram

Instance Diagram

PortType: unit16

FCPort

The first instance diagram depicts two logical networks — each contains an HBA and one of two
FCPorts in a multi-port array. Three volumes are depicted; note that volume 2 has no SCSlinterface
associations — indicating that it is not mapped to the OS hosting this agent. Due to the complexity of
this example, some associations are missing and some are unlabelled.

Note that all the depicted objects are instantiated by the Discovered Resources agent. The dashed
rectangles represent groups of objects that duplicate objects from other agents. For example, an HBA
agent also exposes all the objects in the “HBA1 Objects” rectangle. A client can use durable names to

“stitch together” these duplicates.

Page 74 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

__________________ SCSlinterface-
: Array
| Volume1
1
: SCSiLun
|
Volume2 SCSILun
SCSILun
Volume 3 ‘

’—Concreteldentit]
y

SCSiIController

FCPort

SCSlinterfar

SystemDevice———
’7C
’7

FDevicéSAPImpIementation—‘
1

ProtocolEndpoint

AdminDomain

Object Model

-

LogicalNetwork

[scsicontroller
ice

e —

oncreteldemityﬁ ’—|—1>
|

FCPort

’700

ncreteldentityﬁ

LDeviceSAPImpIementat

SCSIController

1BA 2 Objects

FCPort

rDeviceSAPImpIementation—‘

(

ProtocolEndpoint

ionJ

ProtocolEndpoint

B

AdminDomain

SCSlinterfac

LogicalNetwork

|
+ pevies.]
DeviceSAPImplementation

=

ProtocolEndpoint

Figure 32 Host Discovered Objects Instance Diagram

The second diagram consists of just a single HBA port, single array port and single volume. All
associations are included and labeled.

I
HBA1 Objects

SCSlinterface

Volume1

3.3.3.2.4 Client Considerations

In typical configurations, the ports and logical units provided by this model will duplicate those found
in storage (array or tale library) and switch agents. Although this profile has information about storage
systems and the storage network, the information is not complete. For example, this agent may model
several small arrays that are actually separate targets (ports) on a single array (or virtual targets
resulting from LUN masking/mapping). Where available, the client should use information from an
array agent to get a complete model for the array. Similarly, the logical networks modeled by this agent
may actually be zones in fabrics; the client should use information from switch agents to get a complete
fabric model.

Bluefin Specification

’—Concreteldentityﬁ

SCSiController

FCPort

FDevicéSAPImpIementation—‘
1

ProtocolEndpoint

MemberOfCollection
/

AdminDomain

Component

LogicalNetwork

SystemDevice™ —

SCSILun

— Concreteldenti]
ty

e

SCSlController

FCPort

MemberOfCollection

ProtocolEndpoint

L—DeviceSAPImplementation I
__ 4

Figure 33 Host Discovered Objects Instance Diagram

Version 1.0.0

Page 75 of 303

Object Model Bluefin Specification

In a non-fabric storage network (Loop or Direct Attached Storage) there is likely to be no agent for the
Fabric profile. A client may derive similar information by integrating the models presented by Host
Discovered Resource agents running on multiple hosts.

Since the storage system topology cannot be accurately inferred, storage system objects are associated
to an AdminDomain, a “virtual” ComputerSystem that represents the collection of objects in the
LogicalNetwork. In particular, SystemDevice associates all logical units to the AdminDomain and the
AdminDomain Name property is used as the SystemName property for all LogicalDevice subclasses.

A client associates objects between profiles using durable identifiers (as described in other profiles). If
no storage system agent is available, the model from this agent may suffice, but some details may not
be available.

Discovered storage system resources can be partitioned into two groups, objects related to a port
(FCPort, SCSIController, and ProtocolEndpoint) and logical units (StorageVolume, TapeDrive and the
SCSILUN association). Discovery of logical units can be resource intensive and disruptive to the host
system (consider arrays with thousands of logical units). The agent should not allocate resources on
logical unit discovery unless requested by a client; this request is communicated by following the
SCSILUN associations from a SCSIController to its logical units. The client algorithm for Discovered
Resources would be

Enuner at e AdminDomains
Consi der just those with “HBA Di scovered Resources” in Roles[]
Fol | ow t he Component associ ation to the LogicalNetwork
For each MemberOfCollection association, follow it to a ProtocolEndpoint
Fol | ow t he DeviceSAPImplementation association to a FCPort
/1 This gives the client a list of Port WWs on the network.
/1 If these all map to PortWAs from array/storage agents, the
/1 client may opt to stop probing.
If the client wishes to also discover LUNs
Fol | ow t he ConcreteAssociation to a SCSIController
Fol | ow each SCSILUN association to logical units

If no SCSILUN associations are found,
This is an initiator (another HBA port)

El se
Get Instance of LogicalDevices fromthe SCSILUN associ ation

This algorithm allows the agent to dedicate resources to LUN discovery only when requested by a
client. Note that if LUNs are not discovered, the model will not include SCSILUN or SCSlinterface
associations; the client determines target/initiator roles and host/storage system topology by matching
durable names with FCPorts in HBA and storage profiles.

A client may discover more complex multipathing by integrating the HBA profiles and Host Discovered
Resources profiles from their respective agents. Here are some examples: If the client found two
FCPorts which were SystemDevices of the same ComputerSystem, and found among the Discovered
Resources of both, the same FCPort that was associated by Concreteldentity to a SCSIController in turn
associated by SCSILun to a LogicalDevice, the

Page 76 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

client would have demonstrated that the host represented by the ComputerSystem had multipathing
via two HBA ports to a single Target port. If it found two FCPorts which were SystemDevices of the
same ComputerSystem, and found among the Discovered Resources of each a different FCPort which
was associated by Concreteldentity to a SCSIController in turn associated by SCSILun with the same
LogicalDevice, the client would have demonstrated that the host represented by the ComputerSystem
had multipathing via two HBA ports and two Target ports to a single Target Logical Unit.

3.3.3.2.5 Agent Considerations

The Host SAN Resources profile is based on information available through the HBA API Phase 1
discovery interfaces. Its implementation therefore may be HBA vendor independent.

The AdminDomain for the LogicalNetwork has no underlying identification. The agent should set the
AdminDomain Name property to the Port WWN of the discovering HBA port and the NameFormat
property to “FC”. This allows a client to determine which port was used to discover the particular
LogicalNetwork. The AdminDomain Roles[] array must contain a “HBA Discovered Resources” entry.
This allows the client to determine which AdminDomains are related to this profile.

The agent must set ProtocolEndpoint properties ProtocolType=other and OtherProtocolType="FC-4=20".
The ProtocolEndpoints for the local HBA port and its attached remote ports are all aggregated into a
LogicalNetwork. The agent must set LogicalNetwork properties NetworkType=other,
OtherTypeDescription="FC-4=20", Name=discovering FCPort WWN with ":FC-4=20" appended, and
NameFormat="Discovering FCPort WWN with :FC-4=20 appended".

The agent must separate LUN discovery so that a client can limit resources as described in the
algorithm under Client Considerations above. In particular, the agent should not issue SCSI “Report
LUNSs”, “Inquiry”, or “Read Capacity” unless a client follows SCSILun associations.

If the client does ask for SCSILun associations, LogicalDevice subclasses are instantiated for all the
SCSI Logical Units reported by the “Report LUNs” command, then SCSI Inquiry. The agent chooses
the LogicalDevice subclass based in the SCSI Inquiry device type:

LogicalDevice Subclass
DirectAccess SCSI type | StorageVolume

SequentialAccess TapeDrive

All others LogicalDevice

Table 6: SCSI Device Type Mapping

Note that this agent cannot determine whether a Direct Access device is a physical disk or a virtualized
volume; for consistency the agent will always instantiate a StorageVolume. Other than disks and tapes,
there are many vendor-specific implementations, so s generic LogicalDevice is instantiated.

SCSI Inquiry VPD commands are issued to get LogicalDevice durable names as described in the array
and tape library profiles. These names can be used to identify multi-path configurations; this is
modeled with multiple SCSILun associations from FCPort/SCSIController pairs to a common
LogicalDevice.

If the same logical unit is discovered on multiple LogicalNetworks, the agent should create a single
instance and use SCSILun associations to SCSIControllers. Logical unit objects may have SCSILun
associations to SCSIControllers that are associated to different AdminDomains (because they are in
different LogicalNetworks). But a logical unit object must be associated to a single AdminDomain. The
agent should pick one of the AdminDomains and use it for SystemDevice associations and determination
of the SystemName property of the logical unit objects.

Bluefin Specification Version 1.0.0 Page 77 of 303

Object Model

3.3.3.2.6 Indications

Bluefin Specification

This agent cannot accurately report health events; so all Alertindications are optional. But configuration
changes should be reported with Instindications.

Mandatory

e InstIndication

o Creation of StorageVolumes (similar for other logical units)
SELECT * FROM CI M_I nst Creati on
WHERE Sour cel nst ance | SA Cl M_St or ageVol une
SELECT * from Cl M_I nst Modi fication
WHERE Sour cel nst ance | SA Cl M_St or ageVol une

o Deletion of StorageVolumes (similar for other logical units)
SELECT * FROM Cl M_I nst Del eti on
WHERE Sour cel nst ance | SA Cl M_St or ageVol une

o Creation, Deletion of ports

SELECT * FROM Cl M | nst Creati on WHERE Sour cel nstance | SA

FCPor t

5 am
SELECT * FROM Cl M_I nst Del eti on WHERE Sour cel nstance | SA Cl M_FCPort

e Alert — none mandatory

3.3.3.2.7 Required Classes

Class

Req

Notes

AdminDomain (p. 214)

Y

The “virtual ComputerSystem” for
LogicalDevice SystemName and
SystemDevice associations

Component (p. 217) Y LogicalNetwork to AdminDomain

Concreteldentity (p. 219) I FCPort to SCSIController if any

DeviceSAPImplementation (p. 222) |Y Associates PortocolEndpoint and FCPort

FCPort (p. 226) Y

HostedCollection (p. 231) Y LogicalPortGroup (Node) to ComputerSystem

LogicalDevice (p. 237) I In non-direct/sequential unit types are
discovered

LogicalNetwork (p. 239) Y

LogicalPortGroup (p. 239) N An FC Node

MemberOfCollection (p. 240) Y FCPort to LogicalPortGroup (Node)

MemberOfCollection (p. 240) Y ProtocolEndpoint to LogicalNetwork

ProtocolEndpoint (p. 246) Y Network aspects of an FC Port

SCSIController (p. 249) Y SCSI aspects of an FC Port

SCSilinterface (p. 250) I Initiator SCSIController to LogicalDevice or
subclass if any

SCSILUN (p. 251) C Target SCSIController to LogicalDevice or
subclass if any

StorageVolume (p. 277) I If SCSI “Direct-access” unit types are
discovered

SystemDevice (p. 288) Y Any LogicalDevice subclass to
ComputerSystem

TapeDrive (p. 289) I If SCSI “Sequential-access” unit types are
discovered

Page 78 of 303

Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

3.3.3.3 Management Appliance

3.3.3.3.1 Description

A Management Appliance is a computer system dedicated to running management software. In most
cases the management software is accessed remotely through Web interfaces. This model is designed to
allow for the discovery of the appliance and the applications running on it.

3.3.3.3.2 Schema Diagram

ManagedElement r iceToElemer
*

Monem

'z

PhysicalElement

SystemSpecificColec

LogicalElement

SystemComponent 4 LogicalPortGroup
L 1
*
‘ SoftwareElement ‘ ‘ ServiceAccessPoint ‘ ‘ Service ‘
DeviceConnection CIM_SystemDevice ‘ i I I |
! t *lw A % * %W
System CIM_HostedAccessPoint
Dedicated = "Management i ServiceAccessBySAP
Appliance” HostedServi
. T
LogicalPort [
ComputerSystem -
I ‘ Prot ‘ RemoteService ObjectManager
I] Point

FCPort ComputerSystemPackage

Por itsEndpoint

Figure 34: Management Appliance Schema Diagram

3.3.3.3.3 Instance Diagram

Bluefin Specification Version 1.0.0 Page 79 of 303

Object Model Bluefin Specification

SoftwareElement

ice—<> ComputerSystem | Installed
Systembevice SoftwareElement

Dedicated[X] = "Managemenet
ECPort Appliance”

‘ HostedAccessPoint

HostedService

T ServiceAccessBySAPT

MemberOfCollection

<§ ComputerSystemPackage RemoteService ObjectManager
AccessPoint
LogicalPortGroup
PhysicalPackage Product
CIM_ProductPhysicalElements

Figure 35: Management Appliance Instance Diagram
3.3.3.3.4 Client Considerations

3.3.3.3.4.1 Basic Design

The Management Appliance model consists of 4 major groups of classes (Core, Port, Physical, and
Software).

The ComputerSystem class is the core of the model. It is identified as a Management Appliance by the
Dedicated attribute being set to “Management Appliance”.

The FCPort class and LogicalPortGroup classes represents the connection of the Management Appliance
to the SAN. The FCPort class connects to other FCPort classes to represent Fibre channel connections.
This class could be replaced with other port types to represent SANs based on other interconnect
technology.

The PhysicalPackage class and Product class represent the physical aspects of the Management
Appliance. These classes contain attributes that can be used to identify the hardware system. This
information includes serial number, model number, and vendor name.

The SoftwareElement class represents the management utilities that are running on the appliance. The
instance diagram shows the SoftwareElement class sub-classed to represent a CIMOM. The
ObjectManager class is a subclass of SoftwareElement and represents the CIMOM. The WebAccessPoint
class contains the URL to access the CIMOM.

3.3.3.3.4.2 Applications

The Client will be able to get a list of available applications by locating the ComputerSystem class and
enumerating the group of SoftwareElement classes by traversing the InstalledSoftwareElement
associations.

Page 80 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

3.3.3.3.5 Agent Considerations

3.3.3.3.5.1 Applications

The purpose of the Management Appliance is to be a platform to run management applications on.
Each of the applications running on the appliance should be modeled with both a SoftwareElement class
and a RemoteServiceAcessPoint. The SoftwareElement describes the application including name,
version, and other. This class is often sub-classed for each type of application. The
RemoteServiceAcessPoint or WebAccessPoint class contains a network address or URL to access the
application.

3.3.3.3.6 Indications
e Mandatory

o Instance Indications

= Create/Delete

SELECT * FROM Cl M I nst Creati on
WHERE Sour cel nstance | SA Cl M_FCPor t

SELECT * FROM Cl M I nst Del eti on
WHERE Sour cel nstance | SA Cl M _FCPor t

SELECT * FROM Cl M I nst Creati on
WHERE Sour cel nstance | SA Cl M_Conput er Syst em

SELECT * FROM Cl M I nst Del eti on
WHERE Sour cel nstance | SA Cl M _Conput er Syst em

= Modification

SELECT * FROM | nst Modi fi cation
VWHERE Sour cel nstance | SA Cl M _FCPort
AND Sour cel nstance. Operati onal Status[0] <>
Pr evi ousl nst ance. Oper ati onal St at us[0]

SELECT * FROM | nst Modi fi cation
VWHERE Sour cel nstance | SA Cl M_Conput er Syst em

AND Sour cel nstance. Oper ati onal St at us[0] <>
Pr evi ousl nst ance. Oper ati onal St at us[0]

e Optional
o Instance Indications

SELECT * FROM Cl M_I nst Creati on WHERE Sour cel nstance | SA Cl M _Sof t war eEl enent
SELECT * FROM Cl M_I nst Del eti on WHERE Sour cel nstance | SA Cl M _Sof t war eEl enent

o Modification

SELECT * FROM | nst Modi fi cati on
WHERE Sour cel nstance | SA Cl M Service
AND Sour cel nstance. Oper ati onal St at us[0] <>
Pr evi ousl nst ance. Oper ati onal St at us[0]

SELECT * FROM | nst Modi fi cation
WHERE Sour cel nstance | SA Cl M Sof t war eEl enent
AND Sour cel nst ance. Sof t war eEl enent St at e <> Previ ousl nst ance.
Sof t war eEl enent St at e

Bluefin Specification Version 1.0.0 Page 81 of 303

Object Model

3.3.3.3.7 Required Classes

Bluefin Specification

Class

Req Notes

Between Switch and Port

ComputerSystem (p. 217)

ComputerSystemPackage (p. 218)

FCPort (p. 224)

HostedAccessPoint (p. 231)

HostedCollection (P. 231)

LogicalPortGroup to ComputerSystem

InstalledSoftwareElement (p. 232)

LogicalPortGroup (p. 239)

MemberOfCollection (p. 240)

into LogicalPortGroup

ObjectManager (p. 241)

PhysicalPackage (p. 243)

Product (p. 245)

RemoteServiceAcessPoint (p. 248)

ServiceAccessBySAP (p. 252)

SoftwareElement (p. 253)

<|=<|=[= =< < << <] <= <] =<

one for each application

SystemDevice (p. 288)

3.3.4 Storage Systems

3.3.4.1 Disk Arrays

3.3.4.1.1 Description

Table 7: Required Classes for Management Appliance

The Disk Array model accommodates a variety of disk storage implementations including RAID arrays,
virtualization appliances, and JBOD arrays. The key classes are storage volumes (visible to consumers)
and extents (internal to the array), FC ports and controllers.

3.3.4.1.2 Schema Diagram

Page 82 of 303

Version 1.0.0 Bluefin Specification

Bluefin Specification

ManagedElement

ProductPhysicalElements

A

——
Concreteldentity

Product

ManagedSystemElement

*

]
LogicalElement
— ActsAsSpare—
RedundancyComponent *
7Installed8<;ftwareEIement | | SystemDevice
] >] Y
SoftwareElement RedundancyGroup System ServiceAccessP LogicalDevice |——
oint] —
A * A
ComputerSystem | — ProtocolEndPoint
ComponentCS ———|
‘ UnitAccess
I SCSILU
Realizes N
hExtentRe undancyCompanent ‘ ControlledBy
PhysicalElement SpareGroup StorageRedundancyGroup NetworkAdapter —— StorageExtent L1 controller | |
BasedOn
4‘ DeviceSAPImpl tai W
—l oot evice: mplementaion MediaPresent
ComputerSystemPackage o
PhysicalComponent PhysicalPackage i 4 < StorageVolume SCSIController
A f
FCPort
PackagedComponent °
DiskDrive
PhysicalMedia
Figure 36: Disk Array Core Schema Diagram
ManagedElement
4,—4|:Element8etting% I 1
ManagedSystemElement Configuration) Setting Capabilities
ElementConfiguration— SettingContext
o J - -
DependencyContext
StorageSetting StorageCapabilities
LogicalElement
AllocatedFromStoragePool X . .
‘ ; AssociatedStorageConfigurationJob
I — i I | StorageSettingWithHints
System StoragePool Service Job LogicalDevice
* ! StoragePoolComponent
HostedStoragePool ExecutingStorage
ConfigurationJob StorageConfigurationJob StorageExtent
[]
StorageConfigurationService EnclosureService StorageAccessService

Bluefin Specification

Figure 37: Disk Array Service Schema Diagram

Version 1.0.0

Object Model

Page 83 of 303

Object Model

3.3.4.1.3 Instance Diagrams

3.3.4.1.3.1 RAID Array Instance Diagram

Bluefin Specification

The RAID array instance diagram applies to arrays with RAID virtualization and virtualization
appliances. This instance diagram includes core array objects. Instance diagrams with
StorageConfigurationService and StorageAccessService objects and details on certain array aspects are
included in the client and agent considerations sections.

StorageSystem: SystemDevice FCPort PortController
ComputerSystem .
SystemDevice
ComputerSystemPackage SCSILU
] N
Concreteldentity PhysicalPackage Concreteldentityj
UnitlAccess SCSiIController
SCSILU
ExtraCapacityGroup ProductPhysicalElements N
P t StorageVolume
roduc N StorageRedundancyGroup
RedundancyComponent
StorageProcessor: maps: LasedOn
ComputerSystem ‘ ExtentRedundancyComponent
Installed BasedOn StorageExtent
SoftwareElement FCPort
‘ *
SoftwareElement SpareGroup | —
Concreteldentity
|
ActsAsSpare BasedOn SCSiIController
RedundancyComponent
R g
I Physical Disk
| y [DeviceSoftwareﬁ N
SoftwareElement DiskDrive — StorageVolume

SCSlinterface

[* T
| Realizes \—MediaPresenti RealizesExtOen1t

| ProductPhysicalElements | |

Product PhysicalPackage PhysicalMedia

PackagedComponent

Figure 38: Disk Array Instance Diagram

3.3.4.1.3.2 JBOD Instance Diagram

Page 84 of 303

A JBOD (Just a Bunch Of Disks) is a disk array without a RAID processor. This model represents
JBODs that also include a limited management interface. This interface may use SCSI Enclosure
Services (SES) as an interface or a proprietary interface. These interfaces may be in-band or out-of-
band (TCP/IP based). In practice, the management capabilities vary with the implementations; this
model provides clients with an interface to enumerate the attached disks and provides an optional
EnclosureService for proprietary interfaces. Note that EnclosureService is optional; enumeration of
devices should be done in the model itself. The service should be used for proprietary methods for
diagnostics, on-line/off-line, etc.

Version 1.0.0 Bluefin Specification

Bluefin Specification

Installed
SoftwareElement

EnclosureServer:
ComputerSystem EnclosureService
Dedicated[x] = 'Block Server' | HostedService
SystemDevice
‘ FCPort

SystemDevice
ComputerSystemPackage

SoftwareElement

Object Model

PhysicalPackage StorageVolume SCSIController
\ SCSILU \
. N
’—ProductPhysmaIEIements Basedon
Product
DiskDrive * StorageExtent
MediaPresent
Product Realizes Realizes
* 0.1

PhysicalPackage PhysicalMedia

ProductPhysicalElements ——— PackagedComponent

Figure 39: JBOD Array Model

3.3.4.1.4 Client Considerations
Discovering a Disk Array

Concreteldentity

A disk array is modeled as a ComputerSystem. The term “cluster” is used for systems with multiple
loosely-coupled processors; the individual processors known as “component” ComputerSystems. If the
array i1s a cluster, the model includes a ComputerSystem representing the cluster with a
Concreteldentity association to a RedundancyGroup object. The cluster ComputerSystem has
ComponentCS associations of ComputerSystem objects representing individual processors and the
RedundancyGroup has an aggregation (RedundancyComponent) to the individual ComputerSystem. This
allows management interfaces to operate on the entire array where appropriate and to also see which
physical elements (such as ports) are associated with individual processors. A Service (such as an
access control service) is associated with the entire array; so it is associated with the cluster
ComputerSystem rather than its component ComputerSystems.

Bluefin Specification

Version 1.0.0

Page 85 of 303

Object Model Bluefin Specification

Dual ’—HostedServicej ﬁCOncreteldentity*‘

SingIeProcessor Processor Service Cluster: Redundancy
ComputerSystem Group
Array Array
Redundancy
’— HostedSen/ice—‘ Component
ComputerSystem Service ComputerSystem ComputerSystem
SystemDevice
jf SystemDevice
SystemDevice: SystemDevice SystemDevice
’7 N hSCiILU“ N s (Concreteldentity—‘ , 1 ‘Concreteldenti!)‘l SCi‘ILU“ hSCﬁILU [Concreteldentity‘)
StorageVolume Controller FCPort FCPort Controller StorégeVoﬁJme Controller FCPort

Figure 40: Single/Dual Processor Models

To discover arrays, a client starts by looking up ComputerSystems with Dedicated property set to
“BlockServer”. Follow ParticipatingCS aggregations to understand multi-processor configurations. The
Concreteldentity association to RedundancyGroup is only present for “virtual” cluster Systems.

The System NameFormat attribute identifies how the Name field is generated. Disk array
ComputerSystem names are network host names (NameFormat = “IP”), node names (NameFormat =
“NodeWWN?”), platform IDs (NameFormat = “T11PlatformID”), or Vendor+Model+SerialNumber
(NameFormat = "VendorModelSerial")

Find Asset Information

Information about the entire array is modeled in PhysicalPackage. PhysicalPackage may be subclassed
to Chassis; the more general PhysicalPackage is used here to accommodate array implementations that
are deployed in multiple chassis. PhysicalPackage has an associated Product with physical asset
information such as Vendor and Version.

List Volumes, Disks, and Pools

StorageExtent represents a manageable unit of storage; it may represent all the storage in a physical
disk, a portion of a disk, or some type of virtual disk (which may be a collection of other
StorageExtents). Some disk products have externalized extents with certain properties (the values you'd
see in SCSI Inquiry responses) and internal extents that are apparent only through management
interfaces. For example, some cylinders may be hidden from the external view. Similarly, a RAID
system may allow an internal RAID group to be divided into smaller, exported extents. StorageVolume
is a subclass of StorageExtent that represents an externalized extent. StorageExtent also represents a
region of contiguous storage on a StorageVolume. A storage system exports an entire StorageVolume;
the consumer of that volume may opt to treat it as several extents.

Simple Disk Model

A simple disk is modeled as several objects in CIM. As with all CIM modeling, the physical and logical
aspects are in separate classes (connected with a Realizes association). Media is separated from
physical transport to allow consistent modeling of fixed and removable media devices.

Page 86 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

StorageVolume
* |
BasedOn
[
StorageExtent . DiskDrive SoftwareElement
MediaPresent— DeviceSoftware
* T T *
Realizes Realizes
101 1 *
PhysicalMedia PhysicalPackage Product
PackageComponent ProductPhysicalElements

Figure 41: Simple Disk Model

SoftwareElement is optional and represents disk firmware. Product represents the assets for the entire
disk package and includes vendor, model, and revision identifiers.

StorageVolumes are aggregated from a System class with SystemDevice.
Find the Durable Name for Volumes

Different implementation use different approaches to uniquely identify SCSI units (LogicalDevices).
The agent should try these standard interfaces in this order to find a durable volume name. The best
name is put in the StorageVolume Name field. The NameFormat attribute of LogicalDevice (and
subclasses) identifies how the name field is generated. The client should use the same name format to
assure a consistent model.

Inquiry VPD page 83 is documented in the SCSI Primary Commands specification. It allows a device to
report a list of identifiers in a variety of formats. Identifier type 3 is an IEEE standard that is most
commonly used for device identification. The ANSI Name Address Authority (NAA) specifies the
format. Association set to 0 indicates this ID represents the logical device rather than a single port.
NAA specifies that high order 4 bits define the format used in the rest of the identifier. Other NAA
values and identifiers types may be used in older implementations. If the volume does not report page
83, page 80 is a serial number; this value can be merged with vendor and model strings from standard
inquiry to generate a unique ID. Some vendors store a serial number in the vendor-specific data in the
standard inquiry data. The last option is a FibreChannel WWN that may map 1-1 to a device in JBOD
configurations.

Bluefin Specification Version 1.0.0 Page 87 of 303

Object Model Bluefin Specification

Description NameFormat Notes
VPD page 83 LU identifier type 3h, | VPD83NAAG6 recommended format (16 bytes
Association=0, NAA 0110b long) when IDs are generated
dynamically
VPD page 83 LU identifier type 3h, | VPD83NAA5 recommended format (8 bytes) for
Association=0, NAA 0101b IDs determined in the factory

VPD page 83 LU identifier type 3h, | VPD83NAA2
Association=0, NAA 0010b

VPD page 83 LU identifier type 3h, | VPD83NAA1
Association=0, NAA 0001b

VPD page 83 LU identifier type 2h, | VPD83Type2
Association=0

VPD page 83 LU identifier type 1h, | VPD83Typel
Association=0

VPD page 83 LU identifier type Oh, | VPD83Type0
Association=0

VPD page 80 LU serial number + VPDS8O0 only if serial number refers to
Vendor + Model devices rather than the enclosure
Standard Inquiry serial number + INQVS Vendor-specific - first 8 bytes of
Vendor + Model Vendor-Specific field

FC Node WWN NodeWWN only if associated SCSIController

has a single LUN

Table 8: LogicalDevice Durable Names
Discovering RAID groups and Extent Subsets

BasedOn is an association between two StorageExtents; it provides the ability to model virtualization
by describing how underlying extents can be divided and how extents (or sub-extents) merged into a
new, virtualized extent. This is accomplished by specifying properties on the BasedOn association. The
StartingAddress and EndingAddress properties define a portion of the underlying extent and Orderindex
defines the order which underlying extents are assembled. The function of these properties is easy to
understand with examples.

In the diagrams for these examples, the storage consumer is above and the source is below the depicted
extents. A simple RAID5 group is a collection of disks. The resulting RAID group is a StorageExtent
that is based on several underlying disks — which are also StorageExtents. RedundancyGroup is an
aggregation of the underlying extents.

Page 88 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

RaidGroup:StorageExtent

BasedOnJ i

\— BasedOn

BasedOn

BasedOn

disk1:
StorageExtent

disk2:
StorageExtent

disk3:
StorageExtent

disk4:
StorageExtent

RedundancyGroup:

StorageRedundancyGroup

¢

ExtentRedundancyComponent

Figure 42: Raid Group Model

BasedOn can also describe a subdivision of an extent using the StartingAddress and EndingAddress
properties.

Some RAID implementations include multiple transformations similar to each of the examples above.
For example, a large RAID group may be subdivided into separate volumes.

All of these virtualization implementations are defined in terms of multiple instances of StorageExtent.
The properties of StorageExtent and the BasedOn association allow a client to understand the
differences between the various implementations. StorageVolume is a subclass of StorageExtent
indicating which extents are externalized from a storage system.

BasedOn associations may extend between storage systems. Consider an appliance that takes volumes
from underlying RAID or JBOD systems and concatenates these into larger volumes. The same model
elements still apply. The following diagram depicts how a virtualization system can be layered over
another virtualization system or a simple disk model.

Bluefin Specification Version 1.0.0 Page 89 of 303

Object Model Bluefin Specification

Virtualization
Appliance

ExternalVolume:
StorageVolume

*

BasedO
BasedO InternalExtent:
n StorageExtent

| |
[|
| |
| |
| |
| |
| |
| |
| |
| |
| |
[n [
| |
| |
| |
| |
| |
| |
| |
| |
| |
[|

|
I RAID

I -~ 1

ExternalVolume: | | StorageVolume | nd VI d Ual I

| StorageVolume . |

| Volume Lo ‘ Disk |

| *

| | | BasedOn I

| I E |

BasedOn l | StorageExtent MediaPrese DiskDrive l

I | 9 |
| nt

: I | =T P :

InternalExtent: I Realizgs Realizes

| BasedOn StorageExtent | : L4 ‘ |

| | PhysicalMedia PackagedCompon PhysicalPackage |

| | ent I

b
S |

Figure 43: Virtualization Across Multiple Systems

Find Port Information

FCPorts are aggregated from ComputerSystems using SystemDevice. In an array with multiple storage
processors, ports are aggregated from the component ComputerSystem,; this aggregation allows a client
to see which ports are associated with a particular processor and to understand possible single points
of failure.

FCPort has a one-to-one Concreteldentity association to a SCSIController that represents the SCSI
aspects. SCSIController has SCSILun associations to LogicalDevices (such as StorageVolumes or
DiskDrives).

SCSIControllers can serve as initiators (for example, a port in an HBA) or as targets (ports in devices).
A RAID array model may include both; they can be differentiated by the association between the
SCSIController and LogicalDevices. Target SCSIControllers have SCSILun associations to
LogicalDevices. Initiator SCSIControllers may have SCSlinterface associations to LogicalDevices.

Ports may share properties; for example, ports on an HBA card may share the same firmware. This is
modeled with an optional PortController associated to each port with ControlledBy.

Find System Status

All of the logical and physical element objects include a status property called OperationalStatus. The
defined values are explained in the CIM_Core MOF:
Page 90 of 303

Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

Indicates the current status of the element. Various functional and non-functional
statuses are defined.

Functional statuses are “OK” (value=2), “Degraded” (3), “Stressed” (4) and
“PredictiveFailure” (5). Stressed indicates that the element is functioning, but needs
attention. Examples of Stressed states are overload, overheated, etc. Predictive Failure
indicates that an element is functioning nominally but predicting a failure in the near
future.

Non-functional statuses are “Error “ (value=6), “Non-Recoverable Error” (7), “Starting”
(8), “Stopping” (9), “Stopped” (10), “In Service” (11), “No Contact” (12) and “Lost
Communication” (13). “Error “and “Non-Recoverable Error” are self-explanatory. “In
Service” describes an element being configured, maintained, cleaned, or otherwise
administered. This status could apply during reload of a user permissions list, or other
administrative task. “No Contact” indicates that the current instance of the monitoring
system has knowledge of this element but has never been able to establish
communications with it. “Lost Communication” indicates that the ManagedSystemElement
is known to exist and has been contacted successfully in the past, but is currently
unreachable. “Stopped” indicates that the element is known to exist, is not operational
(e.g., it is unable to provide service to users), but it has not failed. It has purposely been
made non-operational. The element may have never been OK, the element may have
initiated its own stop, or a management system may have initiated the stop.),

Asynchronous status changes are signaled through Alert Indications. More details on indications
are in section 3.3.4.1.6 below.

Device Credentials

The device credentials are modeled using the CIM classes SharedSecretService and SharedSecret. The
ComputerSystem class represents the device, and the SharedSecret object contains the credentials in its
properties.

For more information, see Clause 4.3, “Modeling Device Credentials”, below.
Map/Mask (Storage Access) Configuration

Many disk arrays provide an interface for the administrator to specify which initiators (Hosts or HBA
WWNs) can access a specific volume. The effect is that the given volume will only be visible to SCSI
commands that originate from the specified initiators. There may also be a capability to select which
local device ports can be used, an access mode (read-write or read-only), and the SCSI Logical Unit
Number seen by the initiators. The UnitAccess association models this information;

In a disk array system, UnitAccess associates a target SCSIController and a StorageVolume.It provides
initiator name and name-type properties. The name-type property defines whether the initiator name
represents a node or port WWN or a host name.

A client can enumerate UnitAccess associations by target SCSIController, StorageVolume, Initiator, or a
combination. For example, enumerating all UnitAccess associations for a particular target controller
and volume lists each initiator that has access. Alternatively, enumerating by initiator and target
SCSIController provides a list of volumes accessible to that initiator (similar to a SCSI ReportLUNs
command).

StorageAccessService provides interfaces for creating and deleting UnitAccess associations. A client
can locate (and test for the existence of) this service by following the HostedService association from the
array cluster or system. Depending on the capabilities of the array, different methods are available on
this service.

Bluefin Specification Version 1.0.0 Page 91 of 303

Object Model Bluefin Specification

The first method is for implementations where Logical Unit Numbers cannot be changed, the LUN for
each UnitAccess is determined by the RAID system.

Expose(Device, Target, InitiatorlD, InitiatorlDFormat, AccesshMode)

Logi cal Device: a reference to a LogicalDevice (e.g. StorageVolume)
Target: a reference to a Controller on the storage systemthat is in
turn associated to a port

Initiatorl D a Node or Port WW or host nanme

Initiatorl DFormat: the type of Initiator (PortWW, NodeWMW, Host)
AccessMbde: either read-wite, read-only, no-access, or default (the
val ue of the Defaul t AccessMbde property)

The result of the Expose() method is calling the underlying hardware interface and the creation of a
UnitAccess association. Most UnitAccess properties are defined by the parameters in the Expose()
method.

Systems that allow the administrator to specify the exported Logical Unit Number provide this
method:

MapExpose(Devi ce, Nunber, Target, I nitiator, | nitiatorl DFornmat, AccessMde)
Nunber: the Logical Unit Nunber assigned to the UnitAccess

And the other parameters are as defined for Expose().

The result of MapExpose is creation of a UnitAccess. The LUN parameter defines the LUN property of
UnitAccess. There cannot be any overlap in the Logical Unit Numbers exposed by a target
SCSiIController to an initiator; overloading an existing LUN is an error.

Systems that allow the administrator to set the LUN for all initiators provide a Map method.

Map(Logi cal Devi ce, Nunber, Target)
The paraneters are as defined for Expose().

Deny(Device, Target, InitiatorID, InitiatorlDFormat);
Deny is an optional method for systems with an interface to deny access from a particular initiator.

The result of Map is creation of a UnitAccess association with Initiator set to NULL (implying that any
Initiator can access the unit).

Unexpose(UnitAccess) removes a UnitAccess Association.

AvailableMethods is a string list of methods defined by the agent (typically either Expose and Map are
provided or MapExpose is provided, but not all three). It allows a client to see which methods
StorageAccessService provides on this array.

If an array can accept different InitiatorIDFormat values (for example, node and port WWNs), clients
must use InitiatorID and InitiatorIDFormat consistently. If the InitiatorIDFormat is specified incorrectly, the
results will not be as expected.

LUN Masking Batch Commit Considerations

Some RAID systems provide an Expose interface, but treat the changes as pending until an explicit
Commit method is called. The existing Configuration and Setting classes can model this behavior. The
pending UnitAccess associations are aggregated from Configuration.

Figure 44: Batch LUN Masking Objects

Page 92 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

——— DependencyContext
UnitAccess
Configuration
— ElementConfiguration
StorageAccessService ‘
(HostedService SettingContext
ComputerSystem
Setting
ApplyToMSE(

[IN] ManagedSystemElement: ref MSE,
[IN] TimeToApply: datetime,
[IN] MustBeCompletedBy: datetime): uint32

ElementSetting

The Configuration and Setting objects are associated with the service (rather than ComputerSystem) so
they can be unambiguously identified. The Configuration and Setting (and related associations) are not
instantiated by providers that do not use the commit behavior.

Working with Storage Pools

The figure below shows the model for volume creation; this is a generic approach that may used in
addition to (or in place of) an implementation model. This generic model allows a client application to
provide a simple interface to less experienced administrators or for use in automation.
StorageConfigurationService contains methods to allow manipulation of StoragePool and
StorageCapabilities classes. StoragePool is a generic element that represents some assignable storage.

Bluefin Specification Version 1.0.0 Page 93 of 303

Object Model Bluefin Specification

rageVolume
StorageVolume StorageSetting
Elemen
LUN t, Current state of volume
Setting

StorageSettingWithHints

AllocatedFromStoragePool
Optional extention to publish

'hints' from the client for

StorageCapabilities StoragePool

N Element
Describes range of Capabilities ™| Pool owned by one controller,

capabilities of the Pool redundant SystemDevice
access through the other

StorageCapabilities

Describes range of HostedStoragePool
capabilities of the Service

ElementCapabilities
|

StorageConfigurationService ComputerSystem

HostedService Single controller

Figure 45: Storage Configuration

The StorageConfigurationService class contains methods to allow creation, modification and deletion of
StoragePool and StorageVolume. The capabilities of a StorageConfigurationService or StoragePool to
provide storage are indicated using the StorageCapabilities class. This class allows the Service or Pool
to advertise its capabilities (using implementation independent attributes) and a client to set the
attributes it desires. The concept of ‘hints’ is also included that allows a client to provide clues to the
system as to how it expects to use the storage for optimization purposes. For example, if the array
supports the creation of Pools which can tolerate the loss of two disks then the ‘spindle redundancy’
attribute will include 2 in its range of supported values. The client would create an instance of
StorageCapabilities, set ‘spindle redundancy’ to 2 and pass a reference to the class to the
StorageConfigurationService.CreateStoragePool method.

When creating a StorageVolume, an instance of StorageSetting is passed as a parameter to the
StorageConfigurationService.CreateStorageVolume method. This forms an objective for that element to
attempt to meet. The current ‘service level’ being achieved is reported via the Storagelnformation class.

Storage Pools and Volume Creation

A Storage Pool is an abstract representation of storage suitable for configuration and allocation or
“provisioning”. A Storage Pool is simply a 'blob' of unallocated storage. However, it may have
preformatted into a form (such as a RAID group) that makes volume creation easier. It is associated
with a set of capabilities held in the StorageCapabilities class that reflect the configuration parameters
that are possible for volumes created from this pool. Either StorageVolumes or StoragePools can be
allocated from a StoragePool (the result of which is indicated with the AllocatedFromStoragePool
association). Usually, there is also a base StoragePool that is optionally created from underlying
StorageExtents and these are indicated using the StoragePoolComponent association.

StorageVolumes are created from StoragePools via a StorageConfigurationService’s Cr eat eVol une()
method. A volume create operation may take some period of time, however, and a Client needs to be
aware that the operation is not complete until the StorageVoume.OperationalStatus is OK. A Client may
also follow the progress of the operation using the StorageConfigurationJob class and its properties.

Page 94 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

This approach intentionally avoids vendor specific details of volume configuration such as RAID types.
Although RAID types imply performance and availability levels, these levels can’t be easily compared
between vendor implementations - particular in comparisons with reliability of non-RAID storage (i.e.
certain virtualization appliances). Furthermore, there are capabilities of reliability and availability
other than data redundancy. The StorageCapabilities class describes the actual capabilities of the
available storage in the StoragePool. The StorageSettings class is provided by clients to describe the
desired configuration of the allocated storage. The parameters exposed and controlled via the
StorageCapabilities/Setting classes are:

¢ NSPOF (No Single Point of Failure). Indicates whether the pool can support storage
configured with No Single Points of Failure within the storage system. This does not include
the path from the system to the host.

e Data Redundancy. This describes the number of complete copies of data maintained.
Examples would be RAID 5 where 1 copy is maintained and mirroring where 2 or more copies
are maintained.

e Spindle Redundancy. This describes how many disk spindles can fail without data loss
(including a spare, but not more than a single global spare). Examples would be RAID5 with a
Spindle Redundancy of 1, RAID6 with 2, RAID 6 with 2 global (to the system) spares would be
3.

e Delta Reservation. This is a number between 1 (1%) and a 100 (100%) that specifies how
much space should reserved in a replica for caching changes. For a complete copy this would be
100%, but it can be lower in some implementations.

In add addition to these settings, a subclass of StorageSetting is available that includes some 'hints'.
These allow a client to provide extra information to 'tune' a StorageVolume. If a client chooses to supply
these hints when creating a StorageVolume, the StorageSystem can either use them in determining a
matching configuration or it can choose to ignore the hints.

The example below shows the classes and associations needed to model a single Pool with two
StorageVolumes.

Bluefin Specification Version 1.0.0 Page 95 of 303

Object Model

StorageCapabilities

Describes range of
capabilities of the Pool

| Element

AllocatedFromStoragePool

Bluefin Specification

rageVolume
StorageVolume StorageSetting

Element
LUN Setting Current state of volume

StorageSettingW ithHints

Optional extention to publish
‘hints' from the client for
optimization

StoragePool

Capabilities ™|
redundant

Pool owned by one controller,

access through the other

SystemDevice

StorageCapabilities

Describes range of
capabilities of the Service

ElementCapabilities

StorageConfigurationService

HostedService

HostedStoragePool

ComputerSystem

Single controller

Figure 46: Storage Pool Example

The storage configuration service provides a means to create pools and volumes. The following methods
are available in the service.

o CreateStoragePool: Create a pool of storage with some set of Capabilities described by the input
StorageCapabilities. The source of the storage can be other pool(s) or storage extents.

e CreateStorageVolume: Create a StorageVolume with a specific StorageSetting from an source
StoragePool.

e ModifyStorageVolume: Change the StorageSetting and/or size for a volume

e ModifyStoragePool: Change the size and/or capabilities of a storage pool.

o DeleteStoragePool: Delete a storage pool and return the freed up storage to the underlying entities.

o DeleteStorageVolume: Delete a storage

¢ KillJob: Stop an executing storage configuration job.

InstanceType in the attached StorageCapabilities objects can be queried to determine what types of
objects can be created. There will be one instance of StorageCapabilities for each type of object. The
default values can be determined from this as well (you can use 'null' when passing a Capability or
Setting into one of the methods to select default values).

If the operation will take a while (longer than an HTTP timeout), a handle to a newly minted
StorageConfigurationJob will be returned. This allows the job to continue in the background. Note a few

things:

Page 96 of 303

The job may be queued. You may have multiple outstanding jobs against a pool for instance.

The job status shows this.

The job is weak to the Service (shown via ExecutingStorageConfigurationJob) and is also linked
to the object being modified/created via AssociatedStorageConfigurationJob. For example, a job
to create a StorageVolume may start off pointing to a Pool until the Volume is instantiated at
which point the association would change to the StorageVolume.

Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

e These jobs do not have to get instantiated! If things happen quickly, a null can be returned as a

handle.
Figure 47: Storage Configuration
StorageSystem
Cluster
StorageConfigurationService
HostedService
Element
S :
Capabilities } StoragePool !
ExecutingStorageConfigurationJob | ‘
_— — — I
| | |
.) . I |
StorageCapabilities AssomatedStorangonflgurahonJob o |
StorageConfigurationdob |
Describes range of
capabilities of Pools/Volumes
that can be created
with the Service
AssociatedStorageConfigurationJob StorageVolume

In the example, jobs are not used since configuration changes are quick. Also only Volumes can be
created, the pools are fixed, so there is on one StorageCapabilities object.

3.3.4.1.5 Agent Considerations

This section describes how optional behavior should be modeled. This allows a client to quickly
determine whether an agent provides a capability, then how to discover or change those aspects of the
model.

An agent developer must decide which optional aspects of the model will and will not be modeled.
There are several reasons you may opt to not model certain aspects of a disk array. Information about
part of the model may not be available; for example, there may be information about which of multiple
Ethernet ports is actually active. The agent designed may opt to hide proprietary portions of the model
or simply opt for a simpler model that can be deployed more quickly.

Simple Volume Model

One option is to simply model the exported volumes without modeling the underlying physical disks.
This prevents a client from understanding physical disk problems and the virtual-physical mapping
that could assist in troubleshooting media problems. But this may be a valid option if other tools
already provide this capability or for virtualization appliances where the mapping can change
frequently.

The minimum information needed is an identifier and capacity for the virtual models; this can be
modeled with a StorageVolume objects. In particular, the Name property should be determined as
described in the Durable Name section of Client Considerations (see Clause 3.2.3).

Bluefin Specification Version 1.0.0 Page 97 of 303

Object Model Bluefin Specification

To model the vendor, model, and firmware IDs, connect the virtual StorageVolume to a Product with a
Concreteldentity association. If the volume is mapped (see LUN Masking below), the SCSI Logical
Unit Number (LUN) may vary with initiators and is modeled as the UnitNumber property of the
UnitAccess association. If the volume is not mapped, its LUN is set in the DeviceNumber property of
the SCSILun association. If the unit number is specified in both the SCSILun and UnitAccess
association, the value in UnitAccess takes precedence. This allows a Logical Unit to have a default
value that may be overridden for specific initiators.

The StorageVolume DevicelD property holds the array internal ID — usually an integer between zero
and the maximum supported number of volumes.

Physical Disk Model

Physical disks are modeled as several classes, some classes being optional.

StorageVolume
w1
BasedOn
[+
StorageExtent . DiskDrive SoftwareElement
MediaPresent— DeviceSoftware
* T T *
Realizes Realizes
I 01 1 *
PhysicalMedia PhysicalPackage Product
PackageComponent ProductPhysicalElements

Figure 48: Physical Disk Model

SoftwareElement models firmware and is optional. As with a volume, Product models asset information
for the disk.

Modeling Array Internal Connections

Disks have capabilities hidden from general use. For example, a disk may have hidden capacity or
non-standard interfaces used for maintenance. In this case you can model a separate StorageExtent
representing the internal view with a StorageVolume based on the extent providing the external view.

Some RAID systems provide interfaces to discover and manage the internal connections between the
RAID processors and physical disks. For example, an array may have an interface to acquire and
optimize the utilization of separate buses, loops, or fabrics to back-end storage. In this case, the ports
to individual disks can be modeled similarly to a JBOD configuration as well as the ports on the RAID
processors.

When an array’s backend connectivity is included, the model has similarities to a Router (See Clause
3.3.2.4). The RAID controller itself has front-end ports (connected to customer hosts or switches) and
back-end ports (connected to the internal disks). Here’s an instance diagram for three disks in an
array, connected by a FC loop. The group of physical disk classes is represented by a UML package.
There is a “back-end” FC loop internal to the array and a “front-end” fabric where hosts would connect.

Page 98 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

I
I .
BackEndPort: ProtocolEndpoint | | ErontEndFabric:
: SCSIController FCPort : LogicalNetwork
' !
| T
| LConcreteldentity |
| RAID ComputerSystem SystemDevice DeviceSAPImplementation Memb%rOfCoIIection
I SystemDevice
| Controller |
: I BackEndLoop:
| Initiator: BackEndPort: ProtocolEndpoint | LogicalNetwork
| SCSIController ECPort I
I
I ‘ \ w |
L LConcreteldentity DeviceSAPImplementation MemberOfCollection
- T T T T T 7 scsligteface - -~~~ T T T T T T T T T T -
i‘———————————— ———————————————————————————l MemberOfCollection
| Individual . ; |
. Target: FCPort ProtocolEndpoint |
Disk - - | | ScSiController
| Disk1 | MemberofCollecti
| Controller | emberOrLollection
| Module i J t ‘ | |
!_ __________ SCSILUN—_ _ —Concreteldentity’ _DeviceSAPImplementation. _!
-r—— - - - - - - - - - - - T == —————- MemberOfCollecti
I _| | emberOfCollection
l In_d|V|dua| Target: FCPort ProtocolEndpoint :
| Disk - Disk2 | | | SCSIController |
| Controller |
| Module r J t ‘ | [
| ____: SCSILUN-| __Congreteldentty _DeviceSAPImplementation _ _ _ _ |
| . . |
: In_d'V'duaI Target: FCPort ProtocolEndpoint :
I Disk - Disk3 | | SCSiController |
| Controller [
| Module I
I

| LSCSILUNJ tConcreteldentitl‘ DeviceSAPImplementation

—_—— e ——— e T e e (e T

Figure 49: Array Internal Connections

Spare Disks

CIM_DiskDrive CIM_DiskDrive CIM_DiskDrive CIM_DiskDrive CIM_DiskDrive CIM_DiskDrive

L
ActsAsSpare

‘ *

CIM_SpareGroup

RedundancyComponent

A spare disk is modeled with the ActsAsSpare association to a SpareGroup — which has aggregation
associations to other disks.

Figure 50: Spare Disk

Bluefin Specification Version 1.0.0 Page 99 of 303

Object Model Bluefin Specification

This SpareGroup object associates one or more spares with a group of active disks. The members of
this group are implementation and configuration dependent. In some cases, this group might be the
disks in a enclosure, disks in a RAID group, or disks of a particular make and model. The cardinality
on ActsAsSpare allows multiple spares per group and also allows a spare to participate in multiple
groups.

RAID Group

A RAID group is modeled with a StorageExtent representing the RAID group and a
StorageRedundancyGroup with ExtentRedundancyComponent aggregations to each component extent.

RaidGroup:StorageExtent

IsBasedOnUnderlyingRedundancy = true

BasedOnJ L L BasedOn
(BasedOn BasedOn W
(T StorageRedundancyGroup
disk1

: disk2: disk3: disk4:
StorageExtent | | StorageExtent | | StorageExtent | | StorageExtent StorageRedundancy

CIM_ExtentRedundancyComponent
Figure 51: Storage Redundancy Model

The extent representing the RAID group has the IsBasedOnUnderlyingRedundancy property set. If this
extent is exported as a volume, it is subclassed as a StorageVolume. It can also be left as a
StorageExtent that is then divided and exported as multiple volumes.

The state of the redundancy group is held in the StorageRedundancy property of the
StorageRedundancyGroup. Possible values are "No Additional Status", "Reconfig In Progress", "Data
Lost", "Not Currently Configured", "Protected Rebuild", "Redundancy Disabled", "Unprotected
Rebuild", "Recalculating”, and "Verifying".

Firmware

Firmware is modeled as SoftwareElement. InstalledSoftwareElement is used for firmware associated with
a System; DeviceSoftware associates SoftwareElement to a DiskDrive, Port, or PortController.

JBOD (non-RAID) Arrays

The simplest JBOD array model is a collection of physical disk models (see Physical Disk Model above).
Many JBOD arrays include a minimal processor with a management interface. This processor may use
the SCSI Enclosure Service (SES) interface, or a proprietary in-band or Ethernet interface. In practice,
these arrays have a variety of diagnostic capabilities and no particular profile is common other than
the ability for an agent to discover the components in the array. This is reflected with a common model
to describe JBOD arrays, plus a Service for proprietary interfaces.

The JBOD management interface is modeled as a System. SystemDevice associations aggregate Disks
and Ports to the System.

Page 100 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

EnclosureServer:
ComputerSystem EnclosureService
Dedicated[x] = 'Block Server' HostedService
Installed ‘
SoftwareElement
SystemDevice
‘ FCPort
SystemDevice ‘
ComputerSystemPackage

L Concreteldentity

SoftwareElement

SCSiIController

PhysicalPackage StorageVolume
\ SCSILU \
. N
’—ProductPhysmaIEIements Basedon
Product
DiskDrive * StorageExtent
MediaPresent
Product Realizes Realizes
* 0.1
PhysicalPackage PhysicalMedia
ProductPhysicalElements PackagedComponent

Figure 52: JBOD Model

Virtualization Appliance Considerations

Virtualization Appliances take StorageExtents and expose StorageVolumes to consumers — typically file-
systems or databases. Virtualization Appliances add flexibility in allocating volumes; often allowing
allocation of arbitrary size volumes and may provide redundancy, remote mirroring, or snapshots.
There are many variations in actual implementations, so there is not a common profile. Figure 43:
Virtualization Across Multiple Systems shows how BasedOn associations model striping and
concatenation. This section describes how other common Virtualization Appliance behavior should be
modeled.

Symmetric (or in-band) Virtualization Appliances have the appliance connected between the
underlying storage and consumer. Asymmetric (or out-of-band) Virtualization Appliances have the
consumer directly connected to the storage; the appliance is also connected to the consumer hosts.

The following diagram models an asymmetric virtualization appliance. The appliance has FCPorts
with a proprietary connection to Host HBA ports that are also connected to underlying storage.
Volumes exported by the Virtualization Appliance are defined in maps shared by the appliance and
HBA. The map tells the HBA which SCSlinterface associations and device addresses are actually used
to enact the consumers I/0 requests.

Bluefin Specification Version 1.0.0 Page 101 of 303

Object Model Bluefin Specification

r—-— T T
. . |
Appliance Identit ’—Elementcapabiliﬁesj Co‘ncretelden'myi Storagevoume | CONsumer Host !
[dentity—— | . |
- | Concreteldentity - |
FCPort ProtocolEndpoint StorageCapabilities StorageVolume | ‘ [Concreteldentltyw |
|
: | | ProtocolEndpoint SCSiController FCPort
|
L ProprietaryManagementinterface [: I]
SystemDevice: ‘ | | ‘ |
75 BasedOn“ AllocatedFromStoragePool | | SCSlinterface |
Il Il
StorageSystem: StorageVolumeGroup [StorageVolume |
— ComputerSystem : : |
_______________ |

HostedService | J
‘ <% % X ! Concreteldentity
StorageConfiguration SystemDevice S |
Senvice ComponentCS StoragePoolComponent : : Underlying Storage |
(Concreteldentity SCsILU Concreteldentity :
1o W N (
StorageProcessor —‘
ComputerSystem StorageVolume StorageVolume SCSIController FCPort

|
|
HostedService: |
dedicated|[x] '= '‘Block Server' |

Symmetric Virtualization Appliances typically have front-end ports for connection to consumer
hosts and back-end ports connected to underlying storage. The model consists of classes representing
the appliance system, SCSIController/FCPort classes for front-end and back-end ports, StorageVolume
imported from underlying storage and virtualized StorageVolumes exported to consumers. Note that
the model is similar

SCSILun Identity
Product T T

Exported Disk: SCSiIController FCPort
StorageVolume
‘ SystemDevice
ComputerSystemPackage ‘
BasedO BasedOn
asedOn
StorageProcessor ‘
ComputerSystem StorageExtent RedundancyGroup
dedicated|[x] '= '‘Block
Server'
[RedundancyComponeté
ProvidesServiceTo Basedo
; asedOn
HostedService , SCSlinterface Identity
SystemDevice ‘ ‘
Imported Disk: SCSIController FCPort
N - - StorageVolume
L StorageConfigurationService

Figure 54: Symmetric Virtualization Appliance

StorageAccessService

This service provides the interfaces for LUN Mapping and Masking, discussed above in Map/Mask
(Storage Access) Configuration under Client Considerations. The Expose/Unexpose methods cause
the agent to call the underlying hardware masking interfaces and to update the model. An array agent
will probably only provide one of the Expose methods; Expose() and Map() are used on arrays where the
LUN value is the same to all initiators and paths. MapExpose() is used on arrays where the LUN is
assigned as part of LUN Masking. The service includes a string property AvailableMethods with a list of
the methods that are valid for this agent.

Page 102 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

Map and MapExpose allow a client to specify the Unit Number exposed for a volume. SCSI requires
that unit numbers be unique for a particular initiator/target combination. If the agent specifies a Unit
Number that is already in use, the agent should return invalid parameter.

The Expose methods include Initiatorld and InitiatorldFormat parameters. InitiatorldFormat defines the types of
InitiatorID, Port WWN, NodeWWN, or Hostname. If the client specifies an unsupported format, the agent should
return invalid parameter.
3.3.4.1.6 Indications

Mandatory

e InstIndication

o Creation of StorageVolumes

SELECT * FROM CI M_I nst Creati on
WHERE Sour cel nst ance | SA Cl M_St or ageVol une

SELECT * from Cl M I nst Modi fi cation

WHERE Sour cel nstance | SA Cl M_St or ageVol une AND
Sour cel nst ance. Oper ati onal Status[0] ==

(OperationalStatus test in case volume object is created before it is (re) constructed)

o Deletion of StorageVolumes

SELECT * FROM CI M_I nst Del eti on
WHERE Sour cel nst ance | SA Cl M_St or ageVol une

o Creation, Deletion of arrays

SELECT * FROM CI M I nstCreation
WHERE Sour cel nstance | SA Cl M_Conput er System

SELECT * FROM CIM InstDeletion
WHERE SourcelInstance ISA CIM ComputerSystem

o Creation, Deletion of ports
SELECT * FROM Cl M_I nst Creati on WHERE Sour cel nstance | SA Cl M_FCPort
SELECT * FROM Cl M_I nst Del eti on WHERE Sour cel nst ance | SA Cl M_FCPor t

o Changes to Volume/Target-controller configuration
SELECT * FROM Cl M I nst Creati on WHERE Sour cel nstance | SA CI M _SCSI LUN
SELECT * FROM ClI M I nst Del eti on WHERE Sour cel nstance | SA CI M _SCSI LUN

o Status changes in Required elements

SELECT * FROM | nst Mbdi fi cation
WHERE Sour cel nst ance. Oper ati onal Status[0] <>
Previ ousl nst ance. Oper ati onal St at us[0] AND Sour cel nst ance
I SA Cl M_St or ageVol une

The client can then look at SourceStatus.CreationClassName and
Sourcelnstance.OperationalStatus to determine how to handle the indication. Specific
elements/statuses that must be indicated:

= StorageVolume Degraded

= StorageVolume other bad status

Bluefin Specification Version 1.0.0 Page 103 of 303

Object Model Bluefin Specification

= Array, FCPort not okay (replace | SA CI M St or ageVol une with appropriate
class name)

Context Mandatory — Mandatory if the element type is modeled

e InstIndication

o DiskDriveCreation/Deletion

SELECT * FROM ClI M_I nst Creati on WHERE Sourcel nstance | SA Cl M Di skDrive
(simlar for InstDeletion)

o StoragePool Creation/Deletion

SELECT * FROM CI M_I nst Creati on WHERE Sour cel nstance | SA Cl M_St or agePool
(simlar for InstDeletion)

o A StorageConfigurationJob completes normally
SELECT * FROM Cl M I nst | ndi cation

WHERE Sour cel nstance | SA Cl M _St orageConfi gurati onJob AND
Sour cel nst ance. Oper ati onal St atus == “ St oppi ng”

o A StorageConfigurationJob completes with a failure
SELECT * FROM ClI M_I nst | ndi cati on

WHERE Sour cel nst ance | SA CI M St or ageConf i gur ati onJob AND
Sour cel nst ance. Qperati onal Status == “Error”

o StorageExtentCreation/Deletion
SELECT * FROM CI M I nst Creation

VHERE Sour cel nst ance | SA Cl M_St or ageExt ent
(simlar for InstDeletion)

o UnitAccess Creation/Deletion

SELECT * FROM CI M I nst Creation
WHERE Sour cel nstance | SA Cl M _Unit Access
(simlar for InstDeletion)

o Status changes in optional elements (same filter as above, includes optional class
types)

SELECT * FROM InstModification
WHERE SourcelInstance.OperationalStatus <> OK

The client can then look at SourceStatus.CreationClassName and
Sourcelnstance.OperationalStatus to determine how to handle the indication. Specific
elements/statuses that must be indicated:

» StorageExtent not okay

= StoragePool not okay

= StorageVolumeSettings not okay
= DiskDrive not okay

Optional

e InstIndication

Page 104 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

o Creation/Deletion of PhysicalPackage, PortController, etc — subscription to creation,
deletion, and modification of ANY physical element

SELECT * FROM Cl M_ I nstl ndication

WHERE Sour cel nst ance | SA Cl M _Physi cal El enent
(use subcl asses to narrow scope)

e Alertindication

o Proxy Agent/provider reports failure of un-modeled underlying element

select * fromAlertlndication

WHERE Pr opbal eCause == “Under|yi ng Resource Unavail abl e”
3.3.4.1.7 Required Classes
Class < Description
— C
=8| £
O |0 oY)
g-_
3
BasedOn (p. 215) Y Y|Y
ComputerSystem (p. 217) Y Y|Y *a JBOD with no System should be
* modeled as individual physical disks
Configuration (p. 219) I N|I Same as Setting
DiskDrive (p. 223) N Y|N
ExtraRedundancyGroup I I|I Required if implementation has multiple
(for multi-processor arrays) processors/systems
FCPort (p. 224) Y Y|Y
FCPort (p. 224) I N|I For implementations that model
(for an initiator) backend storage
StorageAccessService (p. 258) I N|I Required in implementations with
access control
PhysicalMedia (p. 242) N Y|N
PhysicalPackage (p. 243) Y Y|Y
(for systems)
PhysicalPackage (p. 243)
(for DiskDrive)
PortController N N|N
Product (p. 245) Y Y|Y
(for ComputerSystem)
Product (p. 245) Y Y|Y
(for DiskDrive)
SCSIController (p. 249) Y Y|Y
(representing target)
Setting (p. 253) I NI Same as above
SCSIController (p. 249) N N|N
(representing initiator)
Setting (p. 253) I N|I Required in implementations with
access control batch commit
SoftwareElement (p. 253) N N|N
(for disks)
SoftwareElement (p. 253) N N|N
(for systems)
SpareGroup (p. 257) N N|N

Bluefin Specification Version 1.0.0 Page 105 of 303

Object Model Bluefin Specification

Class < Description
— C
=8| £
O |0 [}
5
3
StorageCapabilities I N |I Same as StorageConfigurationService
StorageConfigurationJob (p. 266) I N|I Same as StorageConfigurationService
StorageConfigurationService I NI For implementations that provide
dynamic volume creation service
StorageExtent (p. 258) N Y| N
StoragePool I N|I Same as StorageConfigurationService
StorageRedundancyGroup (p. 279) I NI For implementations that expose
underlying extents of virtualized volume
StorageSetting (p. 280) I N|I Same as StorageConfigurationService
StorageVolume (p. 275) Y Y| N
UnitAccess (p. 289) I N|I Same as StorageAccessService

Table 9: Required Classes for Disk Arrays

3.3.4.2 Tape Library

3.3.4.2.1 Description

The schema for a StorageLibrary provides the classes and associations necessary to represent various
forms of removable media libraries. This profile is based upon the CIM 2.6 model and defines the
subset of classes that supply the necessary information for robotic tape libraries.

This profile further describes how the classes are to be used to satisfy various use cases and offers
suggestions to agent implementers and client application developers. Detailed descriptions of classes
may be found in the appendix and are from the CIM 2.6 MOF. Only the classes unique to tape
libraries are described by this Profile. Other classes that are common to multiple Profiles may be found
elsewhere in this specification.

The relevant objects for a tape library should be instantiated in the name space of the provider (or
agent) for a tape library resource. Whenever an instance of a class for a resource may exist in multiple
name spaces a Durable Name is defined to aid clients in correlating the objects across name spaces.
For Tape Libraries durable names are defined for the following resources:

e FCPort
e ChangerDevice
e TapeDrive

The durable names are defined in a following subsection of this profile. All other objects do not require durable
names and will have instances within a single name space.

3.3.4.2.2 Schema Diagrams

The following sub-sections provide a collection of coherent views for a Storage Media Library, each
presenting a different perspective into the underlying schema. The views mimic the partitioning of the
overall CIM model as distributed by the DMTF, e.g. Device view, Physical view, etc. The overlapping
views each contain this profile’s primordial StorageLibrary class.

Page 106 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

3.3.4.2.2.1 Storage Library System View

This diagram presents a global view of a Storage Media Library and how it connects into the overall
schema via the StoragelLibrary class. Other diagrams in this section provide related views offering more
details pertinent to the perspective being described.

One or more Chassis objects through instances of the LibraryPackage association realize a Storage
Media Library. These physical elements provide aggregation points for the other physical components
comprising the library. The section on Storage Media Library Physical View expands upon this facet of
the model.

The logical devices comprising the Storage Media Library are readily determined from the
SystemDevice association off of the StorageLibrary instance. The section on Storage Media Library
Device View expands upon this aspect of the model.

Product information for Storage Media Library instances of StorageLibrary are accessed through the
ProductPhysicalElement association off of the Chassis object that serves as the physical realization for
the library. Corresponding Product instances may be associated with the realization of TapeDrive
logical devices.

Services that are pertinent to Storage Media Library instances are located via the HostedService
association. See the following section on the Storage Media Library Software/Service View for more
details regarding services and device firmware.

Bluefin Specification Version 1.0.0 Page 107 of 303

Object Model

Storage Media Library Schema Object

Model:
i ManagedElement
+ Inheritance SyStem View
—————— Association
Aggregation t
ManagedSystemElement

Product

f

ProductPhysicalElements

PhysicalElement

LogicalElement '

Bluefin Specification

A
Realizes
Container Service
LogicalDevice System
9! v SystemDevice ¥
See Software/
Service View
PhysicalPackage
HostedService
t | |
MediaTransferDevice MediaAccessDeviceDevice NetworkAdapter StorageLibrary
See Device View See Device View
Port
* LibraryPackage
FCPort
; - See Device View
PhysicalFrame Chassis
See Physical View ¢ See Physical View

Figure 55: Symmetric Virtualization Appliance

3.3.4.2.2.2 Storage Media Library Device View

The Logical Devices that a Storage Media Library may contain are shown in this diagram along with
the necessary associations that facilitate navigation and access to the device instances. Some devices
from the CIM model for Storage Media Libraries have been omitted from this profile in order to
simplify the development of agents and client applications. Future versions of this profile can consider
re-introducing some of these devices as needs dictate. The following devices have been omitted from

this profile:
= Picker
= LabelReader
= Door
= StorageExtent

Page 108 of 303 Version 1.0.0

Bluefin Specification

Bluefin Specification Object Model

= TapePartition

Not all Storage Media Library logical devices may exist within a particular Storage Media Library
instance of StorageLibrary. However, the logical devices depicted in the following diagram should be
represented if there is a physical instance of the device. Very few tape libraries do not have tape
drives; therefore any tape drives accessed by the library’s changer devices must be instantiated by the
agent.

A good example of this is the InterLibraryPort device. Many libraries do not contain this device.
However, when an InterLibraryPort is present it should be presented by the library Agent conforming to
this profile. Likewise for the ChangerDevice, LimitedAccessPort and the TapeDrive.

Bluefin Specification Version 1.0.0 Page 109 of 303

Object Model Bluefin Specification

Storage Media Library Schema Object

Model:
Device View ManagedElement
+ Inheritance
Association
Aggregation T
ManagedSystemElement
PhysicalElement LogicalElement
Realizes
Container
PhysicalPackage
LogicalDevi System
T ogicalievice SystemDevice 4
StorageMedial.ocation
A
\— DeviceServicesLocation
NetworkAdapter MediaAccessDeviceDevice Controller MediaTransferDevice

StorageLibrary
see System View

4 A

Port ’J ControlledBy ——————— ControlledBy
TapeDrive SCSiController ChangerDevice LimitedAccessPort
\—SCSILUNJ \—SCSILUNJ
InterLibraryPort
FCPort LibraryExchange

—— Concreteldentity

Figure 56: Storage Media Library Device View

3.3.4.2.2.2.1 Controllers for Media Changers

The mechanism for controlling storage media library robotics is captured in the ChangerDevice class.
A storage media library’s ChangerDevice will frequently support SCSI Media Changer Commands and
will be represented by the library’s agent with a SCSILun association to a SCSIController. The
SCSILun association is a subclass of ControlledBy.

The agents for HBAs(initiator) having visibility to the SCSIController will create a SCSlInterface
association to the ChangerDevice instance. These instances will link objects in different name spaces
and be correlated by the Durable Name mechanism for library changer devices.

Page 110 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

However, some tape libraries will not support SCSI Media Changer commands and will not have the
corresponding SCSI Interface. For these changer devices, the agent can use a ControlledBy association
to a Controller instance. A consequence of this is that another mechanism for discovering the library’s
control path is used. See the section on client considerations for control path discovery.

For ChangerDevice instances supporting SCSI Media Changer Commands there should be a
corresponding Logical Unit for the changer device that has visibility to the Storage Area Network. See
the discussion on Durable Names for identification of these Logical Units within the SAN.

3.3.4.2.2.2.2 Controllers for Tape Drives

The target portion of the data path for a Tape Drive is represented by the association from a TapeDrive
instance to its Controller via a ControlledBy association. For SCSI tape drives there will be a SCSILun
association to the TapeDrive subclass of Controller. A Concreteldentity association is used to connect the
Controller with its corresponding FCPort in Fibre channel SCSI drive configurations. For non-SCSI
TapeDrive’s, e.g. ESCON, the association will utilize ControlledBy to the appropriate subclass of
Controller.

The agents for HBAs(initiator) having visibility to the tape drive’s SCSIController will create a
SCSlinterface association to the TapeDrive instance. These instances will link objects in different
name spaces and be correlated by the Durable Name mechanism for TapeDrive devices. See the
following section regarding correlation of control path and data path for Tape Drives.

3.3.4.2.2.3 Physical View

This perspective into a Storage Media Library shows the classes and associations that allow navigation
and determination of the physical objects comprising the library and its devices.

A library’s logical devices should each be associated with a physical element. The Realizes association
serves this purpose and is the mechanism for tying logical and physical elements together. There are a
variety of PhysicalPackage subclasses and the particular class used by an agent to represent each
logical device is not specified by this profile.

3.3.4.2.2.3.1 Physical Media

The Physical Media within a tape library are determined through the use of the PackagedComponent
association between a library’s Chassis instances and the set of PhysicalTape instances. By navigating
this association all physical tapes within a library may be determined, regardless of their location
within the library. The PhysicalMedialnLocation association is optional in this profile but may be used
to associate a piece of physical media with its current physical location.

A tape mounted in a Tape Drive is considered to be present within the library. Tapes located within
LimitedAccessPort devices and InterLibraryPort devices should not be considered as present within the
library as they are in a state of movement to/from the library. Consequently for PhysicalTape objects in
these devices the PackagedComponent association should not exist.

3.3.4.2.2.3.2 StorageMedialLocation

Locations within a storage media library where physical media may be placed are modeled by the
StorageMedialocation class. Examples of storage media locations are slots(a.k.a. cells), media access
devices and transfer devices. Each instance of a storage media location is tagged with one a type
attribute containing one of these values. Two different kinds of associations may be used to navigate
from a LogicalDevice to the corresponding storage media locations it serves.

Bluefin Specification Version 1.0.0 Page 111 of 303

Object Model

Bluefin Specification

For media access devices the Container association may be used to capture the relationship
between a logical tape drive device and the storage media location of the drive itself. This
association is important for being able to determine the physical media types compatible with
the drive.

For media transfer devices the DeviceServicesLocation association is used to determine the
various locations serviceable by the device.

This profile does not require that the location of physical media be represented. With an active library
this information will be very dynamic. A partial implementation that may be useful would be to only
provide instances for physical media mounted in Tape Drives as an indicator of physical tape
availability and drive availability.

3.3.4.2.2.3.3 Capacity Constraints

Whenever appropriate the physical elements of a Library should be associated with instances of
ConfigurationCapacity through the ElementCapacity association. Recommended instances would be for:

Drive Capacity of the Library, i.e. the minimum and maximum number of physical tape drives
that may be housed within the library. This should be represented through an instance of
ConfigurationCapacity associated with each of the library’s Chassis objects.

Slot Capacity for a Library. This should be represented through an instance of
ConfigurationCapacity associated with each of the library’s Chassis objects. Summation of the
relevant capacity attributes for each instance would provide the appropriate library totals.

Slot Capacity for each LimitedAccessPort instance.

Slot Capacity for each InterLibraryPort instance.

3.3.4.2.2.3.4 Media Location

3.3.4.2.2.3.5 Asset Information

Asset information for the library can be found from the physical elements associated with a library’s
Chassis objects and the physical elements that realize each of the logical devices. The Product class
also maintains asset information that may be of interest and can be accessed through the
ProductPhysicalElement association. Software asset information can be found through the
SoftwareElement instances.

Page 112 of 303

Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

Storage Media Library Schema Object

Model:
Physical View ManagedElement
4 Inheritance
Association
Aggregation
ManagedSystemElement
PhysicalElement PhysicalCapacity ConfigurationCapacity LogicalElement
<« < g
\; EIementCapaCityJ
Container
Realizes
LogicalDevice System
PhysicalPackage PhysicalComponent A
SystemDevice
? PackagedComponent
PhysicalFrame StorageMedial.ocation PhysicalMedia
StorageLibrary
T L PhysicalMediaInLocationJ
Chassis Magazine PhysicalTape

LibraryPackage
Figure 57: Storage Media Library Schema: Physical View

3.3.4.2.2.4 Software/Service View

Storage Media Libraries often contain manageable software elements. This perspective into the
schema shows how various software elements and services are represented in the schema and their
corresponding associations.

3.3.4.2.2.4.1 Device Firmware

The firmware for components of a Storage Media Library are pertinent to the logical devices found
within the library. The devices that should have associated firmware information are the library’s
ChangerDevice instances and TapeDrive instances. The firmware information is captured in the
SoftwareElement class that is associated with the corresponding logical device via an instance of
DeviceSoftware.

Bluefin Specification Version 1.0.0 Page 113 of 303

Object Model Bluefin Specification

3.3.4.2.2.4.2 Hosted Services
Software services that are provided by the Storage Media Library are represented by instances of
Service. Examples of hosted software services within a Storage Media Library might be an NDMP
server, SNMP agent, Web Server, Library Control Software as defined by the IEEE Standard for
Media Management System, or proprietary services for library control. The specific services provided
by a Storage Media Library are located through instances of the HostedService association originating
from an instance of StorageLibrary.

Storage Media Library Schema Object

Model:
. Software/Service View ManagedElement
4 Inheritance
Association
Aggregation
ManagedSyétemE/ement
SoftwareElement LogicalElement
> g <
DeviceSoftware T
LogicalDevice S Service
SystemDevice ystem HostedService
StorageLibrary

Figure 58: Storage Media Library Schema: Software/Service View

3.3.4.2.3 Instance Diagram

The following instance diagram represents a basic Storage Media Library with Fibre channel
connections for the media changer and tape drive devices. The library contains a single physical tape
which is mounted in the tape drive as depicted by the MedialnLocation association from the tape drive
to a physical tape instance.

Storage media locations within the library are optional in the profile and consequently no “slot” type
locations are depicted in the example.

Page 114 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

Tape Library Instance Diagram

Service

Association
Aggregation
HostedService
StorageLibrary
SystemDevice
SystemDevice
SCSIController
Concreteldentity- Roles[x]=target
LibraryPackage
FCPort
SCSILUN
Product
TapeDrive
Chassis
DeviceSoftware
v W ProductPhysicalElements

— Realizesw

PhysicalPackage

SoftwareElement

PackagedComponent

\
ProductPhysicalElements

PhysicalTape

Product

Container

PhysicalMedialnLocation

StorageMedialLocation

See Software/
Service View

FCPort

Concreteldentity

Object Model

SCSIController

Roles[x]=target

SCSILUN

ChangerDevice

Realizes

PhysicalPackage

ProductPhysicalElements

Product

—— DeviceSoftware

SoftwareElement

Figure 59: Tape Library Instance Diagram

3.3.4.2.4 Client Considerations

This section provides some helpful information for writing management applications and suggests

techniques for addressing common use cases.

Bluefin Specification Version 1.0.0

Page 115 of 303

Object Model Bluefin Specification

3.3.4.2.4.1 Discover a Storage Media Library

Discovery of Storage Media Libraries is achieved by looking up instances of Storagelibrary.
Storagelibrary is subclassed from System and will have a corresponding Name and NameFormat
attribute. StorageLibrary names are network host names (NameFormat ="IP”), node names
(NameFormat="NodeWWN”) or Vendor+Model+SerialNumber(NameFormat ="VendorModelSerial”).

3.3.4.2.4.2 Determine Library Physical Tape Capacity
The physical tape capacity of a library is the number of physical tapes that may be stored in the
currently installed configuration of a Storage Media Library. This capacity may be determined by
enumerating the number of StorageMedialLocation instances that are associated with each of the
library’s Chassis objects. Minimum and maximum slot capacities for a Storage Library are modeled in
the ConfigurationCapacity described earlier in the section on Capacity Constraints.

Support for this use case is an optional part of the profile that may not be supported by each agent
implementation.

3.3.4.2.4.3 Determine Physical Tape Inventory
For each Chassis instance associated with an instance of StoragelLibrary via LibraryPackage:

e Enumerate the PhysicalTape instances via the Chassis instance’s PackgedComponent
associations.

3.3.4.2.4.4 Discover Tape Library Control Type

The control mechanism to a library is either:
e SCSI Media Changer Commands directed to the library’s changer device
e Library control commands directed to a Library Control service.

If a library does not have a SCSIController instance associated via SCSILun to the ChangerDevice then
the client should conclude that an alternate mechanism for controlling the library is required. This
mechanism will vary but should be represented by an instance of Service as described in the section on
Software/Service View for a library’s hosted services

3.3.4.2.4.5 Determine Library Drive Capacity

The current drive capacity of a library may be determined by enumerating the TapeDrive instances
through the SystemDevice association of the library. The number of drives discovered should be
within the range indicated by the minimum and maximum capacity attribute found on the library
Chassis’ instances of ConfigurationCapacity for tape drives.

3.3.4.2.4.6 Determine Tape Drive Data Path Protocol

Most automated tape libraries will have a common data path protocol to all drives within the library.
However, there are libraries that support mixed data path configurations, e.g. SCSI (parallel or Fibre
Channel) and ESCON. Clients should be aware of this as there may not always be a SCSILun
association on each TapeDrive instance within a library.

3.3.4.2.4.7 Durable Names for a Storage Media Library

Different implementations use different approaches to uniquely identify the SCSI units pertinent to
Storage Media Libraries, i.e. Changer Devices and Media Access Devices. The agent should utilize the
same Durable Name techniques described for Volumes in the Disk Array section. The chosen name is
stored in the Name attribute of the logical device with the corresponding setting for the NameFormat
attribute.

Page 116 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

3.3.4.2.4.8 Find asset Information

Information about the entire tape library is modeled in the Chassis instances associated with the
Storagel.ibrary. Chassis properties include Manufacturer, Model, Version, and Tag. Tagis an arbitrary
identifying string.

To identify asset information for the logical devices a client should access the corresponding logical
device through the StorageLibrary object’s SystemDevice association. For each logical device instance
the client may then check for asset information from the PhysicalElement associated through a Realizes
association. Product information may also be available through the corresponding
ProductPhysicalElement association.

3.3.4.2.5 Agent Considerations

3.3.4.2.5.1 Tape Inventory

To be useful to client management applications, the agent for a Tape Library resource must accurately
represent the required elements of a Storage Media Library and their proper state. In order to provide
consistent Tape Inventory it is important that PackgedComponent association instances between a
Storage Media Library’s Chassis and PhysicalTape instances be maintained.

Entry and exit of PhysicalTape instances from the Storage Media Library will require updating this set
of associations. Details on this procedure will vary from library to library but at a minimum will
require an update each time a library is powered up. Other considerations involve updates whenever a
LimitedAccessPort, InterLibraryPort or Door changes state.

3.3.4.2.5.2 Hosted Services

It is not uncommon for libraries to include the following services:
e Web Server — typically supports administration and configuration of the library.

e SNMP Agent — for resource monitoring and management within legacy System Management
Frameworks, or even to support the Bluefin proxy agent.

e NDMP Services — NDMP may be present within the library to support the NDMP Backup
Process

As an additional out-of-band management service, client management applications would be well
served if they can locate these services via the agent’s implementation of a corresponding instance of
Service.

3.3.4.2.5.2.1 Media Changer Control Software

There are a variety of protocols for controlling tape libraries, the most predominant method being the
SCSI Media Changer Commands defined by the NCITS T10 Technical Committee. The ability to
determine the type of control software required by a library is an important use case for clients. For
this reason, it is imperative that the agent for a library resource instantiate the appropriate subclass of
Controller for the ChangerDevice instances. Library vendors may subclass Controller for specifying
proprietary library controllers for media changer devices. An example of a proprietary controller would
be a StorageTek Library Management Unit for a PowderHorn 9310 tape library.

3.3.4.2.5.3 Mixed Media Libraries

This profile fully supports mixed media style libraries. A mixed media library is a library that
supports PhysicalMedia with varying properties, e.g. DLT media as well as LTO media. The
StorageMedialLocation class’ MediaTypesSupported property specifies the type of media accepted. Agent
developers should implement the Container association from a TapeDrive to a StorageMedialLocation so
that there is a mechanism in place for determining media and drive compatibility.

Bluefin Specification Version 1.0.0 Page 117 of 303

Object Model Bluefin Specification

3.3.4.2.5.4 Inter Library Ports

Support of InterLibraryPort devices, a.k.a. pass-thru ports or cartridge exchange mechanisms, is
designated as optional in this profile. However, when such a device exists the agent representing the
library should instantiate this class for each port. When one or more libraries are connected via an
Inter-Library Port and the corresponding agents are working with separate name spaces a mechanism
is required for correlating the LibraryExchange association that represents the port connection.

A Durable Name is not defined by this profile for InterLibraryPort instances and remains unspecified.
This is not an issue when associated InterLibraryPort instances are within the same name space.

3.3.4.2.6 Indications

See the earlier section on “Events - CIM Indications” for details regarding the indications class
hierarchy.

3.3.4.2.6.1 Instance Indications

It is highly recommended that Agents be designed to support CIM indications. The following guidelines
present a starting set of mandatory indications and optional indications to be supported by library
agents. Additional indications that offer more detailed alert type indications specific to libraries need to
be defined in subsequent versions of this specification.

Tape Alerts are an example of a specification source for the formal definition of additional indications
that should be mapped into CIM Indications specific to the Library profile.

3.3.4.2.6.1.1 Mandatory Instance Indications

The Library profile classes that should generate instance indications(InstCreationand InstDeletion) are
listed below.

Mandatory InstCreation/InstDeletion Instance Indications
= Storagelibrary
= PhysicalTape
= TapeDrive
= InterLibraryPort
= ChangerDevice
» LimitedAccessPort
= FCPort

The following filter Query attribute values on IndicationFilter instances should be supplied by the agent
for the above classes:

“SELECT * FROM CI M I nst Create WHERE Sour cel nst ance | SA C assNane”
“SELECT * FROM Cl M I nst Del et et e WHERE Sour cel nst ance | SA Cl assNane”

Mandatory InstModification Indications

The library agent should create InstModification events whenever there is a change to the
OperationalStatus attribute for the classes listed above. Refer to the appendix for the relevant status
values that should be used by the agent for each of the classes. Additionally, the agent should also
supply the following filter Query attribute value on IndicationFilter instances:

Page 118 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

“SELECT * FROM ClI M_I nst Modi fi cation
WHERE Sour cel nstance | SA O assNane AND
Previ ousl nstance. Oper ati onal St at us <> Sour cel nstance. Oper ati onal St at us”

Mandatory Alert Indications

Specific subclasses of Alertindication are not defined by this profile. Consequently, agents do not need to
create IndicationFilter instances for alert indications. However, agents are free to generate instances of
this class of indications for vendor specific alerts, thresholds or SNMP Traps but clients should be
aware that these are vendor specific events. Future versions of this specification will address this class
of events for libraries.

3.3.4.2.6.1.2 Optional Instance Indications
Optional InstCreation/InstDeletion Instance Indications

The following classes are optional with respect to agent generation of events for instance creation and
deletion:

e Chassis — only instances with LibraryPackage associations to the parent StorageLibrary.
e SoftwareElement
e Service instances that are in association with StorageLibrary

The following Query attribute on IndicationFilter instances should be supplied by the agent for the above
classes:

“SELECT * FROM Cl M I nst Creat e WHERE Sour cel nst ance | SA C assNane”
“SELECT * FROM Cl M I nst Del et et e WHERE Sour cel nstance | SA Cl assNane”

Optional InstModification Indications

The library agent should create InstModification events whenever there is a change to the
OperationalStatus attribute for the classes listed above. Refer to the appendix for the relevant status
values that should be used by the agent for each of the classes. Additionally, the agent should also
supply a Query attribute on IndicationFilter instances that correspond to these modification events as
follows:

“SELECT * FROM CI M_I nst Modi fi cation
WHERE Sour cel nstance | SA O assNane AND
Previ ousl nstance. Oper ati onal St at us <> Sour cel nstance. Oper ati onal St at us”

Optional Alert Indications
Alert indications are optional, but a starter set of interesting events are listed below:

e StorageLibrary instances indicating a need for an audit may have an alert generated. The
following Query attribute on an IndicationFilter instance should be provided by the agent for this
alert:

“SELECT * FROM CI M Al ert
WHERE cl ass=Cl M TapeDri ve AND
Sour cel nst ance. Audi t Needed == true”

e StoragelLibrary instances indicating a “full” condition may have an alert generated. The
following Query attribute on an IndicationFilter instance should be provided by the agent for this
alert:

“SELECT * FROM CI M Al ert

VWHERE cl ass=Cl M _TapeDri ve AND
Sour cel nstance. Overfilled == true”

Bluefin Specification Version 1.0.0 Page 119 of 303

Object Model Bluefin Specification

e TapeDrive instances that require cleaning may have an alert indication generated whenever
their cleaning attribute indicates a need to clean the drive. The following Query attribute on an
IndicationFilter instance should be provided by the agent for this alert:

“SELECT * FROM CI M Al ert
VWHERE cl ass=Cl M _TapeDri ve AND
Sour cel nst ance. Needsd eani ng == true”

e PhysicalTape instances for cleaning media may trigger an alert indication when the number of
cleanings used exceeds the maximum cleanings supported by the media. The following Query
attribute on an IndicationFilter instance should be provided by the agent for this alert:

“SELECT * FROM CI M Al ert
WHERE cl ass=Cl M _Physi cal Tape AND
Sour cel nst ance. C eaner Medi a == true AND
Sour cel nst ance. MaxMount s > Sour cel nst ance. Mount Count ”

3.3.4.2.7 Required Classes

The following table alphabetically lists the classes and associations from that are pertinent to Storage
Media Libraries. Many of these classes have been indicated as optional for this Profile in order to
simplify development of agents and client applications. Only CIM classes addressed by this profile are
listed. Consequently, the list does not represent a complete set of Storage Media Library classes from
the CIM 2.6 schema.

Some of the classes below are super-classes of others. If a subclass is indicated as “Required” then it
follows that the super-class is also required. Many of the obvious super-classes and associations are
not repeated in this table (e.g., ManagedElement).

Page 120 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

Object Model

Class

Notes

A
K]

ChangerDevice (p. 216)

Chassis (p. 217)

ComputerSystem (p. 218)

ConfigurationCapacity (p. 220)

ControlledBy (p. 220)

Controller (p. 221)

DeviceServicesLocation (p. 223)

DeviceSoftware (p. 223)

ElementCapacity (p. 225)

FCPort (p. 227)

HostedService (p. 232)

InterLibraryPort (p. 236)

LibraryExchange (p. 236)

LibraryPackage (p. 237)

LimitedAccessPort (p. 237)

PackgedComponent (p. 241)

PhysicalMedia (p. 242)

PhysicalMedialnLocation (p. 243)

PhysicalPackage (p. 244) (super)

PhysicalTape (p. 244)

Product (p. 245)

ProductPhysicalElements (p. 246)

Realizes (p. 247)

<|=<|=<|=<|=<|z|<|<|z2|<|z2|2|2|<|~|<|zZ|z2| 2|~ <]|<]|<|®

subclass of dependency association from
LogicalDevice to PhysicalElement

SCSIController (p. 249)

SCSllnterface (p. 250)

SCSILUN (p. 251)

Service (p. 252)

SoftwareElement (p. 257)

Storagelibrary (p. 276)

StorageMedialocation (p. 275)

StorageVolume (p. 287)

SystemDevice (p. 288)

<|=<|z|~|<|<|z|<|z2|=<

TapeDrive (p. 289)

3.4 Cross Profile Considerations

3.4.1 Overview

Table 10: Required Classes for Tape

Many client applications are required to access data from multiple profiles to perform operations. This
section describes algorithms that can be used to associate objects from different profiles to understand
connections between the profiles. The algorithms use Durable Names to match objects from different
profiles. Below are simplified instance diagrams that are used to illustrate the algorithms.

Bluefin Specification

Version 1.0.0 Page 121 of 303

Object Model

3.4.1.1 HBA model

Bluefin Specification

Client Application

Array Agent

Switch Agent Host/HBA Agent

Figure 60: System Diagram

This model represents a simple “Host Bus Adapter”. The model includes objects that represent a single
port Fibre channel HBA. The model also includes a storage volume being accessed through the HBA.

Product

3.4.1.2 Switch Model

Page 122 of 303

(Com puterSystemPackagew F SystemDeviceT

ComputerSystem

dedicated=""

SCSiIController SCSIInterfaceT

(MemberOfGroupW Concreteldentity

StorageVolume

LogicalPortGroup

Deviceld: Durable Name
FcPort

Figure 61: Host Bus Adapter Model

Version 1.0.0 Bluefin Specification

Bluefin Specification

CIM_DeviceSAPImplementation M ActiveConnection

Product

FCPort

CIM_SystemDevice ComputerSystem

CIM_DeviceSAPImplementation CIM_ActiveConnection

ComputerSystemPackage_ |

ProtocolEndpoint

dedicated[x] '= 'Unknown'

FCPort

CIM_SystemDevice ComputerSystem

ProtocolEndpoint

dedicated[x] '= 'Unknown'

ComputerSystem
dedicated[x] '= 'Switch' <>
CIM_DeviceSAPImplementation CIM_Syst

ProtocolEndpoint

FCPort

Protocolendpoint

CIM_DeviceSAPImplementation

FCPort

Figure 62: Switch Model

Object Model

emDevice

This model represents a two port Fibre channel switch. The model also includes objects representing
links to remote ports the switch agent knows about, and ComputerSystems with the dedicated property
set to “Unknown” which the FCPorts requires.

3.4.1.3 Array Model

This is a simple model of a disk array. The array has a single controller with a single Fibre channel
port on the front end and a single parallel SCSI port for the disks. The model shows two disks that are
members of a single redundancy group. Part of the redundancy group is made available over the Fibre
channel as a single volume.

Bluefin Specification

Version 1.0.0

Page 123 of 303

Object Model Bluefin Specification

UnitAccess

Concreteldentity
F W FSCSILunT

FCPort SCSIController

StorageVolume

Deviceld: Durable Name

\
BasedOn

StorageExent

CIM_ComputerSystem <>~ SystemDevice ‘ ‘

] BasedOn BasedOn
dedicated[x] '= 'Block k> SystemDevice | |
Server StorageExent StorageExent RedundancyGroup
RedundancyComponetJ
BasedOn BasedOn
FSCSIInterfacc

SCSilController

StorageVolume

StorageVolume

Deviceld: Durable Name Deviceld: Durable Name

Figure 63: Array Instance

3.4.2 Fabric Topology (HBA, Switch, Array)

A map of a SAN that shows all the elements and the connections between them is very useful. To
create the map all the elements in the SAN with their Fibre channel ports are first located. Next the
ports are linked together.

To locate all the elements in a SAN, you start by locating the agents. Bluefin agents are located using
SLP. Once the agents are located, intrinsic methods are used to enumerate ComputerSystem objects.
Each ComputerSystem object represents an element in the SAN. The ComputerSystem object’s
“Dedicated” attribute can be used to identify the type of the element.

After the elements are located, Fibre channel ports for each element are discovered. For each
ComputerSystem object follow SystemDevice associations to FCPort objects and SCSIController objects.
For each SCSIController object follow the Concreteldentity associations to FCPort objects. Use the
information in the FCPort objects found to determine the Durable Name for the FCPort object. The
Durable Name will be used to match the ports to objects in other profiles.

Now to link the elements’ ports together find the Switch elements. Switches know about ports on
elements logged into their ports. To find this information start by locating the ComputerSystem objects
that represents switches. Switches can be identified by the “Dedicated” attribute of the
ComputerSystem object being set to “Switch”. For each switch follow the SystemDevice associations to
the FCPort objects that represent the ports of the switch. Next look for ActiveConnection associations.
These associations represent links between the switch and other elements. Follow the ActiveConnection
associations to FCPort objects. These FCPort objects represent the ports on the other side of a link. Use
attributes from the FCPort object to determine the Durable Name. These identifiers are then matched
to identifiers found in other profiles to complete the connections.

3.4.3 Durable Identifiers

Mapping objects across profiles and namespaces depends on “durable identifiers”. Below is a table of
identifiers used in the examples below.

Page 124 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Object Model

3.4.4

Class Reference Example
FCPort Clause 3.2.3 WWN
StorageVolume Clause 3.3.4.1.4 VPD page 83 LU id

Table 11: Cross Profile Durable Identifiers

Storage Connections (HBA, Array)

The Array profile includes objects and associations that represent the serving of SCSI volumes to the
SAN. The HBA model represents the access of these volumes. To link them together locate the
StorageVolume objects and use Durable Names to link them together.

To locate the volumes being accessed through the HBA use SLP to find agents that support the HBA
profile. Use intrinsic methods to enumerate ComputerSystem objects on these agents. Use the
“Dedicated” attribute to identify “host” systems. Use other attributes to identify the correct host. Next
follow SystemDevice associations to SCSIController objects. The SCSIController objects represent the
HBAs on the host. From the SCSIController objects follow SCSlinterface associations to StorageVolume
objects. The StorageVolume object attributes are used to determine the Durable Name for the volume.
The SCSlinterface association contains information to determine the SCSI address and server of the
volume.

To find the array that is serving the volume use SLP to locate agents that support the array profile.
Use intrinsic methods to enumerate ComputerSystem objects from the agents. Then use the “Dedicated”
attribute to identify "Block Server" systems.". Use SystemDevice associations to find SCSIController
objects. Then follow Concreteldentity associations to find FCPort objects. Match attributes in the FCPort
object with information from the SCSlInterface attributes associated with the HBA. When a match is
found use SCSILun and UnitAccess associations from the SCSIController object to locate StorageVolume
objects. The StorageVolume objects can be matched to the StorageVolume objects from the Host/HBA
profile using durable identifiers.

Bluefin Specification Version 1.0.0 Page 125 of 303

Bluefin Specification Security

Clause 4: Security

4.1 Introduction

Security requirements can be divided into the five categories of authentication, authorization,
confidentiality, and integrity (including non-repudiation). Authentication is verifying the identity of
an entity (client or agent). Authorization is deciding if an entity is allowed to perform an operation.
Confidentiality is restricting information to the intended recipients. Integrity is guaranteeing that
information has not been modified.

This version of the specification is primarily concerned with authentication and confidentiality.
Authorization is not covered and is implementation dependent. Valid implementations may omit the
authorization check altogether (in which case any authenticated client can perform any operation), or
they may perform an authorization check. When an authorization check is performed, the information
concerning which client is allowed to perform which operations may be obtained from a local
proprietary database, or from an authorization server using a standard protocol such as LDAP, or by
some other means. Specification of an interoperable method for this is left for future work.

Other issues not covered by this specification are threat models and protection against specific types of
attacks, such as denial of service attacks, replay attacks, buffer overflow attacks, etc. Integrity is not
covered. The development of threat models and the specification of appropriate measures to counter the
threats and to satisfy other security requirements such as integrity is left for future work.

Security concerns occur in two areas of a Bluefin implementation. First, a device such as a switch may
require a login before discovery can be performed, or before operations such as zoning can be
performed. The information needed to perform this login is generically referred to as “device
credentials”. A Bluefin Agent or provider needs to obtain these credentials in order to talk to the
device, and they should be provided confidentially.

Second, a Bluefin Client may need to authenticate itself to a Bluefin Agent or Object Manager. Not all
Clients may be allowed to query the object model, and not all Clients may be allowed to perform
operations on objects in the model. Authenticating the client is the first step in determining what that
Client is allowed to do.

4.2 Background

Section 4.4 of “Specification for CIM Operations over HTTP, Version 1.1” from DMTF describes the
requirements for CIM clients and servers. The authentication methods referred to in the above
specification are described in the IETF RFCs 1945 and 2068, “Hypertext Transfer Protocol --
HTTP/1.0(1.1)” and IETF RFC 2069 “An Extension to HT'TP: Digest Access Authentication”. The SSL
protocol 1s described in the IETF Internet Draft, “The SSL Protocol Version 3.0”.

The Transport Layer Security Protocol Version 1.0 (TLS) is defined by IETF RFC2246. Any references
to SSL in this document also allow TLS implementations, as long as the TLS implementation
incorporates a mechanism by which it can back down to SSL 3.0, for the sake of interoperability.

There are two levels of authentication described in section 4.4 of “Specification for CIM Operations
over HTTP, Version 1.17, basic and digest authentication. Basic authentication involves sending the
user name and password in the clear, and should only be used on a secure network, or in conjunction
with a mechanism that ensures confidentiality, such as SSL. Digest authentication sends a secure
digest of the user name and password (and other information, including a nonce value), so that the
password is not revealed. The specification states that CIM clients and CIM servers must not use basic
authentication on an insecure network, and should support digest authentication.

Bluefin Specification Version 1.0.0 Page 127 of 303

Security

Bluefin Specification

SSL provides for confidentiality and integrity in communication. An initial handshake defines a
private key, which is used to encrypt the data with a symmetric algorithm, such as DES or RC4. A
keyed secure hash, such as SHA or MD5 is used to check message integrity. For interoperability, the
initial handshake defines the algorithms to be used for message encryption and hashing.

4.3 Modeling Device Credentials

The device credentials are modeled using the CIM classes SharedSecretService and SharedSecret or
PublicKkeyManagementService and UnsignedPublicKey (see Figure 64 - Device Credentials). The
ComputerSystem class represents the device, and the SharedSecret or UnsignedPublicKey object
contains the credentials in its properties.

ComputerSystem
SharedSecretService
Otherldentifyinginfo: string[] 1 Hosted w*
IdenltifyingDelscriptions: string[] Hosted Service Algorithm: st_ring
Dedicated: uint16]] — Service Protocol: string 1
e
PublicKey
ManagementService SharedSecret
IsShared
1
LocallyManaged
PublicKey SharedSecret
| UnsignedPublicKey *
*w RemotelD: string [key] w

Peerldentity Type: uint16
Peerldentity: string [Key]
PublicKey: uint8]]

Secret: string
Algorithm: string
Protocol: string

Figure 64 - Device Credentials

A Bluefin Client can pass the device credentials to the Agent or Object Manager by instantiating the
SharedSecret object, using the CIM intrinsic method Cr eat el nst ance(). The Bluefin Agent or Provider
uses the information from this object to talk to the device.

4.4 Requirements

Page 128 of 303

Bluefin Agents, Object Managers and Clients MUST conform to section 4.4 of “Specification for CIM
Operations over HTTP, Version 1.1”. In addition, Bluefin Agents, Object Managers and Clients MUST
support Digest Authentication and SHOULD support SSL. This specification determines the protocol
for authentication between a Client and the Object Manager or Agent, but not the mechanism of
authentication used by the Object Manager or Agent.

Client authentication to the Object Manager or Agent is based on an authentication provider. A
provider plug-in allows for differing authentication schemes. Possible mechanisms include host-based
authentication, Kerberos, PKI, or other.

A Bluefin Agent MAY be configured with the device credentials necessary to talk to the device. If an
Agent supports SSL, the Client MUST use SSL to pass device credentials to the Agent. When new
device credentials are passed to an Agent, the device credential information in the device MUST be
updated immediately.

Version 1.0.0 Bluefin Specification

Bluefin Specification Security

Only the Bluefin Agent responsible for communicating with the device has access to the properties of
the SharedSecret object. No other Bluefin Client may read the Secret property of this object as it
MUST be implemented Write-Only.

4.5 Agent Considerations

The Agent SHOULD securely store the device credentials local to the Agent. A proxy agent may need
to store the credentials on disk so that they are available upon reboot. In this case the credentials
SHOULD NOT be stored in the clear, but SHOULD be encrypted for confidentiality.

The device credentials SHOULD be transmitted securely from the Agent to the device. The mechanism
of communicating the credentials to the device is outside the scope of this specification, but it SHOULD
be over a secure channel if possible.

Bluefin Specification Version 1.0.0 Page 129 of 303

Bluefin Specification Service Discovery

Clause 5: Service Discovery

5.1 Definitions

Attributes: A collection of tags and values describing the characteristics of a service.
Attribute Reply (AttrRply): A reply to an Attribute Request. (optional)

Attribute Request (AttrRqst): A request for attributes of a given type of service or attributes of a
given service. (optional)

DA Advertisements (DAAdvert): A solicited (unicast) or unsolicited (multicast) advertisement of
Directory Agent availability.

Directory Agent (DA): A process that caches SLP service advertisements registered by Service
Agents and forwards the service advertisements to User Agents on demand.

SA Advertisement (SAAdvert): Information describing a service that consists of the Service Type,
Service Access Point, lifetime, and Attributes.

Scope: A set of services, typically making up a logical administrative group.

Service Access Point: The network address and port number of a process offering a service.
Service Acknowledgement (SrvAck): A reply to a SrvReg request.

Service Agent (SA): A process working on behalf of one or more services to advertise the services.

Service Agent Server (SAServer): A process working on behalf of one or more Service Agents to
listen on a particular port number for SLP service requests.

Service Deregister (SrvDereg): A request to deregister a service or some attributes of a service.
(optional)

Service Register (SrvReg): A request to register a service or some attributes of a service.
Service Reply (SrvRply): A reply to a Service Request.
Service Request (SrvRqgst): A request for a service on the network.

Service Type: The class of a network service represented by a unique string (for example a
namespace assigned by IANA).

Service Type Reply (SrvTypeRply): A reply to a Service Type Request. (optional)
Service Type Request (SrvTypeRqst): A request for all types of service on the network. (optional)
Service Type Template: A formalized, computer-readable description of a Service Type.

Service URL: A Uniform Resource Locator for a service containing the service type name, network
family, Service Access Point, and any other information needed to contact the service.

User Agent (UA): A process that attempts to establish contact with one or more services. A User
Agent retrieves service information from Service Agents or Directory Agents.

Bluefin Specification Version 1.0.0 Page 131 of 303

Service Discovery

Bluefin Specification

5.2 Overview

The Service Location Protocol Version 2 (SLPv2), defined by IETF RFC2608, provides a framework for
client applications, represented by User Agents, to find and utilize services, represented by Service
Agents. The Directory Agent represents an optional part that enhances the performance and scalability
of the protocol by acting as a cache for all services that have been advertised. Directory Agents also
reduce the load on Service Agents, making simpler implementations of Service Agents possible. User
Agents can then query the Directory Agent for services. Service Agents register with Directory Agents
and must re-register as the registrations expire. If no Directory Agent is present, User Agents can
request service information directly from the Service Agents.

5.3 SLP Messages

5.3.1

Page 132 of 303

SLP v2 divides the base set of SLP messages into required and optional subsets. It also includes a new
feature, an extension format. Extension messages are attached to base messages.

Service Agents (SAs) and User Agents (UAs) are required to support Service Request, Service Reply,
and DA Advertisement message types. Service Agents must additionally support Service Registration,
SA Advertisement, and Service Acknowledgement message types. The remaining message types are
optional for Service Agents and User Agents. Directory Agents (DAs) must support all message types
with the exception of SA Advertisement. Table 12 lists each base message type, its abbreviation,
function code, and required/optional status.

Table 12: Message Types

Function | Required (R)/Optional (O)
Message Type Abbreviation Code
DAs SAs UAs
Service Request SrvRgst 1 R R R
Service Reply SrvRply 2 R R R
Service Registration SrvReg 3 R R 0]
Service Deregistration SrvDereg 4 R 0] 0]
Service Acknowledgement | SrvAck 5 R R (0]
Attribute Request AttrRgst 6 R (0] (0]
Attribute Reply AttrRply 7 R 0] 0]
DA Advertisement DAAdvert 8 R R R
Service Type Request SrvTypeRgst 9 R (0] O
Service Type Reply SrvTypeRply 10 R 0] 0]
SA Advertisement SAAdvert 11 R (0]

Message Header

Each SLP v2 message is prefixed with a required, common header. A key field in the message header is a
three-byte field that specifies the number of bytes from the beginning of the message header to the first
extension message. Extension messages will appear after the message body. If there are no extension
messages, the extension length field is zero.

Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

5.3.2

Protocol Extension Block

The protocol extension block allows expansion of the protocol without modifying the base message set.
The message header (3.5.1) contains an offset from the beginning of the message to the first protocol
extension block, which always appears after the body of the message. The protocol extension block is
optional. Service URL Entries

URLs are packaged in a service URL entry. The service URL is a required part of the protocol because
the service URL entry appears in required as well as optional messages. If a service URL entry appears
in a reply, it may not be truncated if the reply overflows the packet MTU. This ensures that any return
is usable even if the entire reply will not fit in the packet. Error Conditions and Status Codes

Non-zero status codes are returned only for unicast messages. Multicast messages that result in errors
are silently discarded. This means that a Service Agent never returns a non-zero status code to a User
Agent unless the User Agent contacts it directly using a unicast.

Table 13 lists all of the status codes with a description of the condition each code represents.

Table 13: SLP v2 Status Codes

STATUS
ERROR TYPE CoDE DESCRIPTION

No error 0 The request was processed without an error.

LANGUAGE_NOT_SUPPORTED 1 There was no matching registration in the locale of the
request, although there was at least one in a different
locale.

PARSE_ERROR 2 The message contained a syntax error.

INVALID_REGISTRATION 3 The Service Agent’s registration was invalid. Example
include a zero lifetime or an omitted language tag.

SCOPE_NOT_SUPPORTED 4 A request containing a specific scope name was sent to
a Directory Agent or Service Agent that does not
support the scope.

AUTHENTICATION_UNKNOWN 5 The Directory Agent or Service Agent received a
request for an SPI it does not support.

AUTHENTICATION_ABSENT 6 The Directory Agent did not receive expected URL and
attribute list authentication blocks.

AUTHENTICATION_FAILED 7 The Directory Agent detected a verification failure in an
authentication block.

VER_NOT_SUPPORTED 9 The version number in the message header is
unsupported

INTERNAL_ERROR 10 This indicates a problem with the receiving agent rather
than the received message. The Directory Agent or
Service Agent returns this status when a serious
internal error prevented it from fully processing the
request. The error could be a bug in the agent or some
system resource limitation.

DA_BUSY_NOW 11 The Directory Agent is too busy to respond. The
Service Agent or User Agent should retry the message
using exponential backoff.

Bluefin Specification Version 1.0.0 Page 133 of 303

Service Discovery Bluefin Specification

OPTION_NOT_UNDERSTOOD 12 The Directory Agent or Service Agent received an
unknown option from the mandatory range.

INVALID_UPDATE 13 The Directory Agent received an update for an
advertisement that is unregistered or with an
inconsistent service type.

MSG_NOT_SUPPORTED 14 This indicates a problem with the receiving agent rather
than the received message. The Service Agent
received an optional message type such as AttrRgst or
SrvTypeRagst, and it only implements the required
messages.

REFRESH_REJECTED 15 The Service Agent tried to refresh a service with a
refresh interval less than the minimum bound contained
in the Directory Agent’s advertisement.

5.3.3

5.3.3.1

5.3.3.2

Required Messages

Service Agents and User Agents are required to support Service Request (SrvRgst), Service Reply
(SrvRply), and Directory Agent Advertisement (DAAdvert). Service Agents are additionally required to
support Service Registration (SrvReg), Service Acknowledgement (SrvAck), and Service Agent
Advertisement (SAAdvert).

Service Request (SrvRgst)

A Service Request (SrvRqgst) message is issued by a User Agent to find services. It may also be issued
by a User Agent or Service Agent during active Directory Agent discovery.

In addition to a service location header field and two fields for the previous responder’s list, the
SrvRgst contains four string fields: service type, scope list, query, and SPI if security is on. The
presence of the SPI string indicates the client is interested in only authenticated advertisements with
the same SPI.

An advertisement must match the service type, one of the scopes contained in the scope list, the query,
and the locale of the request to be included in the return. The service type can be any one of the
following three: a concrete service type, an abstract service type, or a generic URL. If the service type is
a concrete type or a generic URL scheme, a service advertisement matches only if the full service type
or scheme name matches. If the service type is an abstract service type, then an advertisement
matches if it has the same abstract service type regardless of its concrete type. See Clause 5.5.1.1.1
Abstract Service Type for an example of both concrete and abstract service type comparison and
matching.

In addition to matching the service type, an advertisement must be registered in at least one of the
same scopes as the SrvRgst. The query has the LDAP v3 syntax and is evaluated over the attributes of
the advertisements registered in either the Directory Agent or Service Agent. The locale of the
advertisement must match the locale of the request. The only exception to this requirement is if the
service type in the query has no attributes and the query is empty (nanoSA implementation). In that
case, the locale is disregarded and only the service type and scope are used to determine a match.

Service Reply (SrvRply)

The Directory Agent or Service Agent responds with a Service Reply (SrvRply) message to all Service
Request (SrvRqst) messages except those with service types “service:directory-agent” and
“service:services-agent”.

Page 134 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

5.3.3.3

When an SrvRply is sent by UDP, a URL entry is included only if it does not overflow the packet
length. A User Agent may use the URL entry blocks in the reply if the reply overflows the packet, or it
may contact the replying agent by TCP in order to obtain the full reply. If the request contained an
SPI, the URL entries include authentication blocks for the URLs having that SPI.

The following error codes, specific to a Service Reply message type, may be returned:

LANGUAGE_NOT _SUPPORTED: The Directory Agent or Service Agent returns this error code if
the agent contains an advertisement with a matching service type and at least one matching scope
but the advertisement is registered in a different locale, excluding the dialect part, and no other
advertisement in the locale of the request matches.

PARSE_ERROR: This error code is returned if a syntax error occurs in the service type name, query,
scope list, or in the base message format.

SCOPE_NOT_SUPPORTED: This error code is returned if the scope list is omitted or contains scopes
not supported by the Directory Agent or Service Agent (receiving agents).

AUTHENTICATION_UNKNOWN: This error code is returned if the request contains a SPI that the
receiving agent cannot verify.

Service Registration (SrvReg)

The Service Registration (SrvReg) message type allows Service Agents to register new advertisements,
update existing advertisements with new or changed attributes, and to refresh URL lifetimes. The
reply message type to a SrvReg is a Service Acknowledgement (SrvAck).

Setting the F or “fresh” flag in the message header causes the registration to replace any existing
registrations. Leaving the “fresh” flag off causes the registration to update existing registrations.

The service type field in the SrvReg message is required to match the service type of the service URL if
the service URL is defined by the service: scheme. If the URL is defined by another scheme, the service
type can be different, allowing registrations of generic URLs under service type names different from
their scheme name.

Every SrvReg must contain a list of scope names in which the advertisement should be registered.
Service Agents are required to register in all scopes with which they are configured. If no other scope is
available, the Service Agent must use the default scope name “DEFAULT”.

If the Service Agent supports any SPIs, an authentication block is included for each SPI supported. The
language tag in the header of the SrvReg establishes the locale of the service advertisement and must
be recorded for matching purposes.

The SrvReg message may also cause incremental updates if the “fresh” flag in the header is not set.
The rules for incremental update are:

e A new service URL lifetime replaces the old.
e New attributes are added to the advertisement.

o Old attributes with new values specified in the message have their old values completely
replaced by the new values.

e Old attributes that are not mentioned in the message are unchanged.

Incremental updates of an authenticated advertisement are not allowed because authentication blocks
cannot be recalculated by the Directory Agent for updated advertisements. All SrvReg messages for
exiting authenticated advertisements must have the “fresh” flag set.

Bluefin Specification Version 1.0.0 Page 135 of 303

Service Discovery Bluefin Specification

5.3.3.4

5.3.3.5

The following error codes, specific to a Service Registration message type, may be returned:

PARSE_ERROR: This error code is returned if a syntax error occurs in the URL, attribute list, or
message format.

INVALID_REGISTRATION: A problem occurred with a registration that has the “fresh” bit set.
Examples of such problems include: a zero lifetime for the URL, no language tag in the header, a
mismatch between the service type field and service: URL’s service type, or the Service Agent’s
attempt to register the same URL under two different service type names.

AUTHENTICATION_UNKNOWN: The Directory Agent received a registration contain an SPI that it
does not support.

AUTHENTICATION_FAILED: The Directory Agent tried to authenticate the registration, but the
verification failed. This error is also returned when a Directory Agent receives an incremental
update for an authenticated advertisement.

INVALID_UPDATE: The same problems listed in INVALID_REGISTRATION occurred except that
the “fresh” bit was not set in the header. In addition, the following will generate this error: no
existing advertisement to update, the service type string in the update does not match the string in
the original registration, or the scopes do not match the original scopes. To change the service type
or scopes, the Service Agent must first deregister, then re-register the advertisement.

Service Acknowledgment (SrvAck)

A Directory Agent returns a Service Acknowledgement (SrvAck) message to a Service Agent in
response to a Service Registration (SrvReg) or Service Deregistration (SrvDereg) message. The only
field other than the required header is a two-byte status code.

Directory Agent Advertisement (DAAdvert)

A Directory Agent responds to multicast Service Requests (SrvRqsts) for service type “service:directory-
agent” with a Directory Agent Advertisement (DAAdvert) message. It is one of two cases where the
response to an SrvRqst is not a Service Reply (SrvRply) with the other case being a Service Agent
solicitation. In addition to the solicited DAAdverts previously described, unsolicited DAAdverts are also
periodically multicast and received by Service Agents and User Agents performing passive Directory
Agent discovery.

The status code field is set to SLP_OK in unsolicited DAAdverts that are multicast, but it can be set to
an error code in response to a unicast SrvRqst for “service:directory-agent”. A multicast SrvRgst for
“service:directory-agent” that results in an error is simply dropped. Possible error codes are the same
as for SrvRqst.

The “DA stateless boot timestamp” field lists the time of the last stateless boot for the Directory Agent.
A receiving Service Agent will use this value to determine if it needs to register with the Directory
Agent.

The “DA URL String” field contains the Directory Agent’s URL information consisting of a service:
URL with the Directory Agent service type, “service:directory-agent”, and the host address of the
Directory Agent in IP v4 dotted decimal notation. If the DAAdvert was multicast the Directory Agent
URL may be from a different service scheme, in which case the receiving agents will drop it.

The DAAdvert will always contain a list of scopes supported by the Directory Agent. The scope list is
never empty. An optional short list of attributes may be included.

If security is on, a list of SPIs that the Directory Agent can verify are included. Authentication blocks
containing the SPIs for verifying the DAAdvert are also included.

Page 136 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

5.3.3.6

5.3.4

5.3.4.1

Service Agent Advertisement (SAAdvert)

User Agents employ the Service Agent Advertisement (SAAdvert) message to discover Service Agents
and their scopes in networks where there are no Directory Agents. A User Agent will multicast a
Service Request (SrvRgst) for service type “service:service-agent” if the User Agent is not configured
with scope or it cannot find a Directory Agent. In reply, the User Agent will receive a list of SAAdverts.
A User Agent may also contact a Service Agent through unicast using the Service Agent’s address from
the Service Agent URL.

The fields of the SAAdvert are identical to the DAAdvert. The URL field contains the SAAdvert service:
URL with service type “service:service-agent” and the Service Agent’s host address in IPv4 dotted
decimal notation. The Service Agent should support at least the attribute “service-type” so User Agents
can query for SAAdverts by service type.

Optional Messages

The Service Deregistration, Service Type Request, Service Type Reply, Attribute Request, and Attribute
Reply message types were made optional in SLP v2 to encourage lightweight, embedded
implementations. The messages are optional only for Service Agents and User Agents. They are required
for Directory Agents.

Service Deregistration (SrvDereg)

The Service Deregistration is optional because an advertisement times out when its lifetime expires if
the Service Agent does not deregister it. In that case the advertisement is available via the Directory
Agent longer than it would be if explicitly deregistered. If a Service Agent implements SrvDereg, it
should deregister its advertisements when the service represented is no longer available so that service
location information is accurate.

The attribute query list contains an attribute query for selecting attributes to remove. If the list is
empty, the entire advertisement is removed. An advertisement that is deregistered completely is
deregistered in all scopes and for all locales under which the URL appears. If attributes are removed,
the advertisements having attributes that match the attribute query are affected regardless of locale,
but the attributes are deleted in all scopes. If the advertisement contains an attribute authentication
block, deletion of individual attributes is prohibited because attribute deletion would invalidate the
authentication block associated with the advertisement.

If the Service Agent uses UDP, the Service Agent must retry the SrvDereg if the Directory Agent does
not respond. A Directory Agent acknowledges an SrvDereg with a Service Acknowledgement (SrvAck)
message.

The following error codes, specific to the Service Deregistration message type, may be returned:
PARSE_ERROR: A syntax error occurred in the URL, attribute query, or message format.

INVALID_REGISTRATION: A non-syntax error occurred in the message. For example, an omitted
language tag or if the URL is not registered.

SCOPE_NOT _SUPPORTED: The Service Agent attempted to deregister with a scope list that is
different from the list used to register the advertisement.

AUTHENTICATION_UNKNOWN: The URL contained SPIs not recognized by the Directory Agent.

AUTHENTICATION_ABSENT: The advertisement contained an authentication block of the URL,
but none was included for the SrvDereg, or the reverse occurred.

Bluefin Specification Version 1.0.0 Page 137 of 303

Service Discovery Bluefin Specification

AUTHENTICATION_FAILED: The authentication block failed to validate. Also, if a SrvDereg
received for an authenticated advertisement includes an attribute query, the Directory Agent
returns this error.

5.3.4.2 Service Type Request (SrvTypeRqgst)

The Service Type Request (SrvTypeRqgst) message type allows inquiries about registered service types
that have a specific naming authority and are in a specific set of scopes.

5.3.4.3 Service Type Reply (SrvTypeRply)

The Service Type Reply (SrvTypeRply) message is returned in response to a Service Type Request
(SrvTypeRqgst) message. The service type names returned are full service type names, including the
“service:”, unless the service type is a generic URL scheme name.

A diagram of the format for the SrvTypeRply message type may be found in [].
The following error codes, specific to the SrvTypeRply message type, may be returned:

PARSE_ERROR: A syntax error occurred in the naming authority name, scope list, or message
format.

SCOPE_NOT _SUPPORTED: None of the scopes in the scope list was recognized by the Directory
Agent or Service Agent.

5.3.4.4 Attribute Request (AttrRgst)

Attribute requests may be made either by URL or service type. If the requested service type has service
URLs from the service: scheme, the string “service:’ must be included. Abstract type names are also
allowed, as are generic URL scheme names. If the service type name is an abstract type name, the
result will contain all concrete types.

5.3.4.5 Attribute Reply (AttrRply)

The Attribute Reply (AttrRply) message returns the results of an Attribute Request (AttrRgst)
message. Results returned in the AttrRply depend upon the contents of the attribute query field and
service type or service URL field in the AttrRgst responded to. Service advertisements are candidates
for return processing if one of the advertisement scopes matches a scope in the AttrRgst. If an attribute
query is present, the AttrRply returns values for only those attributes with tags matching the tag
patterns in the query. If the attribute query is empty, values for all attributes are returned.

If the AttrRqst is by service URL, attribute values for attributes with tags matching the query are
returned just for that URL. If the AttrRqst is by service type, all attribute values for attributes with
tags matching the query across all advertisements registered under that service type are returned. If
the service type is an abstract type without any concrete type, then the attribute values are returned
for all matched advertisements having that abstract type regardless of concrete type.

An AttrRgst by URL matches only if there are advertisements in the locale of the request. An AttrRqst
by type ignores the locale of the request and all attributes for all locales are returned.

The following error codes, specific to the AttrRqst message type, may be returned:

LANGUAGE_NOT _SUPPORTED: The Directory Agent or Service Agent returns this error code if
the agent contains an advertisement with a matching service type and at least one matching scope
but the advertisement is registered in a different locale, excluding the dialect part, and no other
advertisement in the locale of the request matches. This error is only returned for AttrRqst by URL.

PARSE_ERROR: A syntax error occurred in the URL, service type, or in the base message format.

Page 138 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

SCOPE_NOT_SUPPORTED: This error code is returned if the scope list is omitted or contains scopes
not supported by the Directory Agent or Service Agent (receiving agents).

AUTHENTICATION_UNKNOWN: This error is returned if the request contains an SPI that the
receiving agent cannot verify.

AUTHENTICATION_ABSENT: This error code is returned if security is on and the request does not
contain an SPI (or the reverse).

AUTHENTICATION_FAILED: The receiving agent returns this code if the request contains an SPI
and is by type or contains an attribute query string.

5.4 Scopes

5.4.1

5.4.2

Scopes are sets of service instances. The primary use of Scopes is to provide the ability to create
administrative groupings of services. A set of services may be assigned a scope by network
administrators. A User Agent (UA) seeking services is configured to use one or more scopes. The UA
will only discover those services which have been configured for it to use. By configuring UAs and
Service Agents with scopes, administrators may make services available. Scopes strings are case
insensitive. The default SCOPE string is "DEFAULT".

There are two models of scope discovery: the administrative scope discovery model and the dynamic
scope discovery model. An SLP agent will employ only one of the models.

Administrative Scope Discovery

Configuration of an SLP agent through DHCP or a static configuration file is using the administrative
scope discovery model. In this model, a network administrator sets the scopes an agent see and no other
scopes are accessible.

Directory Agents and Service Agents employ the administrative scope discovery model because they
required to be configured with a scope. This requirement enables those agents to reply definitively to a
request from a Directory Agent or User Agent with a list of scopes that they support.

Dynamic Scope Discovery

User Agents can support either the dynamic model or the administrative model, depending on the
application. If a User Agent is not configured with any scopes, available scopes are discovered through
Directory Agent or Service Agent discovery, which is the dynamic scope discovery model. If no scopes are
discovered, the scope “DEFAULT” is used.

5.5 Services Definition

5.56.1

Services are defined by two components: the Service URL and the Service Type Template. The Service
URL defines an access point for the service and identifies an unique resource in the network. Service
URLs may be either existing generic URLs or URLs from the service: URL scheme.

The second component in a Service definition is a Service Type Template. Service Type Templates
define the attributes associated with a service. These attributes, through inclusion in registrations and
queries, allow clients to differentiate between similar services.

service: URL

The service: Scheme defines a mechanism for creating new service type definitions without creating a
new URL scheme. The service: URLs must conform to the generic URL grammar defined in RFC 2396.

Bluefin Specification Version 1.0.0 Page 139 of 303

Service Discovery Bluefin Specification

A URL of the service: Scheme definition must provide a service type name and an address for locating
the specific instance of the service. Optionally, the service: URL may include a URL path containing
additional information useful in accessing the service being advertised. The URL path may be suffixed
with a list of SLP attributes.

5.5.1.1

5.5.1.1.1

5.5.1.1.2

5.5.1.2

Service Types

Service types group network resources by function or service provided. The service type name will
uniquely identify each type of service. Service types may either be abstract or concrete. Abstract types
will aggregate different concrete service types that perform the same function.

Abstract Service Type

Abstract service types provide for the grouping of several concrete service types into one service type.
An abstract service type will allow a User Agent that supports many concrete types to perform a
single service request and receive replies that utilize more than one concrete service type. As such,
the service type name of a concrete type URL consists of three components:

@,

“service:” abstract-type-name “:” concrete-type-name

All abstract types must be followed by a service access information component which will specify how
a client is to connect to a service.

A service called “wbem” is an example of an abstract type. In this case, the User Agent would make
service requests for the “wbem” service. Any of the following URLs would be valid responses:

service:wbem:XMLserver://device1.domain.com
service:wbem:Export://device1.domain.com
service:wbem:LM://device2.domain.com

service:wbem:LM://device3.domain.com

To name a specific concrete protocol as part of a service request, the request must be made using the
full service type name as well as the abstract type name. For example, a User Agent wishes to
discover what resources are managed by the Lock Manager (LM), would issues a service request for
the service type “service:wbem:LM” specifying both an abstract service type and a concrete
implementation. Based on the earlier example, the URLs returned are:

service:wbem:LM://device2.domain.com

service:wbem:LM://device3.domain.com

The responses received are limited to those managed by the Lock Manager (LM).

Naming Authority

The service type name may include a naming authority, which is the group, or organization that
formulated the service URL and service type template. The naming authority for a service type is
designated by appending a string to the concrete or abstract service type. The naming authority is
separated from the base type by a period. The naming authority is IANA. The specification assumes
that the DMTF has received the abstract type “wbem” from IANA and that the DMTF interop
working group has assigned the concrete service types. This specification does not include the naming
authority in the service type name.

Service Access Information
The service access information port of the URL consists of the following:

“l’” address-family “/” address-spec [“/” [url-path] [¢ attribute-list]]

Page 140 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

The address-family and address-spec are required fields. The url-path and attribute-list fields are
optional.

5.5.1.2.1 Address Family

The address-family indicates the network layer protocol to be used and dictates how the address-spec
should be interpreted. An empty address-family field is denoted by a double slash, “//’, and indicates
the address that follows is an IP address. This specification uses IP addresses exclusively, so the
address family field is left empty.

5.5.1.2.2 Address Specification

The address specification will provide the network layer address for the device on which the service
resides. The address-spec must conform to the addressing mechanism defined in the address family.
For IP hosts, the address specification is either a host-name or the dotted decimal representation of
an address. An IP address may contain an optional port number.

5.5.1.2.3 URL Path

The URL path is protocol-specific. The protocol that is being used with the URL will determine how
the URL path is interpreted. For example, in the case of file access protocols, the url-path represents
the filename and path on the server.

5.5.1.2.4 Attribute List

5.5.1.3

5.5.2

The attribute list is an required list of attribute tags and their corresponding values for an instance of
a service.
The attribute-list is a semi-colon delimited set of attributes/value pairs, set off from the url-path by
an initial semi-colon. Each attribute/value pair has the following form:

attribute-id “=" value
Generic URL Schemes

Service: scheme URLSs begin with the string “service:” and associate the service type with a service
template. Generic URLs can be registered as well, though they cannot be standardized with a
template. An example is the URL:

http://www.domain.org/management.html

The attributes registered with this URL depend on what service it is advertising, but are not
necessarily standardized. If the URL advertises a web page, the attributes will be different than if it
advertises a printer. A storage device can use this to advertise its proprietary web management
scheme, but the Generic URL Scheme is not utilized by this specification.

Service Type Templates

A service type template will define the attributes and service: URL syntax for a specific service type.
The service template will be both readable by humans and able to be parsed by software.

Each attribute defined will include information about its data type and characteristics. The
characteristics will indicate if an attribute is required or optional and the allowable values for the
attribute. A description of the attribute is also included.

Bluefin Specification Version 1.0.0 Page 141 of 303

Service Discovery Bluefin Specification

5.5.2.1

5.5.2.2

5.5.2.2.1

5.5.2.2.2

Service Type Template Syntax

Service templates may be created in any language, but the language used for standardization must be
English. Although any legal UTF-8 character may be used in a template, a service template must
encoded using the 0x00-0x7F range of UTF-8 character encoding. This range corresponds to the US-
ASCII character set.

In order to accommodate UTF-8 characters outside the range used by the US-ASCII encoding an escape
sequence may be used to represent those out-of-range UTF-8 characters. A character outside the US-
ASCII range is escaped using a “\ HEXDIGIT HEXDIGIT” format. For example the accent aigue would
be represented as “\e3\a9”.

Template Description Attributes

The template begins with the “template-type” items, containing the service type scheme. This is the
service type name without the “service:” prefix. In addition, a service template contains the following
items:

1. Version

2. Description

3. URL syntax

4. Service-specific attributes

The first three items will describe the text of the template itself and must appear in this order. These
items serve to introduce the rest of the template. The remaining items are service attributes, which
describe the service advertisement.

Version

The version item provides version control within document definitions. When templates are initially
formulated, they begin with a version number of 0.0. During the development of a template, the
number to the right of the decimal (minor number) is incremented. Once the template is complete and
standardized, it is assigned a version number 1.0.
As the template evolves, the version number changes to reflect additions and deletions. Addition of
new optional attributes cause the minor number to be incremented. The addition of required
attributes, the change in definition of an attribute, or the removal of an attribute all result in the
major number being incremented.

Description

The description item is a section of human-readable text. It should provide a brief but informative
description of what the service defined by the template does. If the service type is a protocol, the
protocol specification may be referenced here. Protocols listed here do not need to be Internet
standards; they may be proprietary protocols as well. URL Syntax

The URL syntax item describes the structure of the url-path for the service URL. The syntax is
included in the template document using ABNF and follows the rules URL syntax described in RFC
2396.

Abstract service types defer this field to the template documents describing the concrete instances. In
most cases, the url-path is dependent on the underlying protocol. As such, the concrete types should
define url-paths for their specific instances.

Page 142 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

5.5.2.3

Service Attributes

The remainder of the template will contain an attribute definition list that defines a service
advertisement for the service. Attribute names and values will be chosen to represent those
characteristics of the service that are most useful in selecting a service either programmatically or
interactively. The attributes should allow a distinction to be made between two distinct network
entities that provide similar, yet distinct services.

An attribute definition begins with the specification of the attribute’s identifier and ends with a single
empty line. Service-specific attribute definitions includes the following five parts, appearing in order
after the attribute identifier:

1. The data type associated with the attribute
2. Attribute flags

3. A list of default values

4. A block of text

5. A list of allowed values

5.5.2.3.1 Attribute Identifier

The attribute identifier functions as the name of the attribute and must be unique within a template.
It is acceptable for an attribute name to be reused with different definitions across multiple templates,
but within a template an attribute name must appear only once.
Legal characters for an attribute identifier are limited to those characters that are valid LDAP v3
attribute tag characters. The character selection for attribute identifiers is further restricted if the
attribute is included in the service: URL. All attribute names are case-folded, with uppercase and
lowercase equivalent when differentiating attribute names.

5.5.2.3.2 Data Type

The attribute name is followed by a space, and equal sign, another space, and the name of a data type.
Attributes must be one of five types: Boolean, integer, string, opaque, or keyword. The data type of a
value restricts the attribute flags that may be applied as well as the legal values assigned.

5.5.2.3.2.1 Boolean

Boolean attributes can only be assigned the values TRUE or FALSE. Boolean values are case-
folded. The allowed values field is unnecessary since Boolean attributes may have only one of two
possible values. Boolean attributes have a default value of FALSE unless otherwise specified in the
template.

5.5.2.3.2.2 Integer

Integer attributes have values that are either zero or positive or negative whole numbers that can
be represented in 32 bits. There is no support for numerical attributes whose value is a floating-
point number. Floating-point values must be stored as an opaque or string type. Integer attributes
have a default value of zero unless otherwise specified by the template. Embedded white space is
not permitted for integer attributes.

5.5.2.3.2.3 String

String attributes have values that are represented by a series of characters. String values are
considered a sequence of nonwhite space tokens separated by white space. Strings are not delimited
by double quote or null characters.

Bluefin Specification Version 1.0.0 Page 143 of 303

Service Discovery Bluefin Specification

5.5.2.3.2.4

5.5.2.3.2.5

5.5.2.3.3

5.5.2.3.4

5.5.2.3.5

For query handling, SPL reduces runs of interior white space characters to a single US-ASCII
space. Preceding or trailing white space is also removed. The SLP specification recommends that no
processing be done to string values when returning to applications.

Opaque
Opaque attributes are values stored as an array of bytes. The value stored in an opaque attribute is

not assumed to be consumed directly by a user, other than through client software that interprets
the byte array returned in an Attribute Reply message.

An opaque attribute, by default, is an array of zero size unless otherwise specified by the template.
An opaque attribute value begins with the non-UTF-8 escape sequence “\ff” and each byte of the
opaque is translated into the escape sequence HEX HEX, where HEX HEX are hexadecimal
digits for the byte.

Keyword

Keywords are attributes that have no value. Keywords consist of only a name and, optionally, some
descriptive text that defines them. Keywords have no default value and are never present unless
specified at registration time.

Attribute Flags

Four flags are used to indicate the characteristics of an attribute. The flags are represented by a
single letter that may be either uppercase or lowercase. The convention in service templates is to use
uppercase for all flags.

‘O’: The O flag indicates the attribute is optional. If this flag is not present, the attribute is required
in every service registration.

‘M’: The M flag is used to indicate that an attribute may have multiple values. When multi-valued, all
of an attribute’s values must be of the same date type as specified in the data type field.

‘L’: The L flag indicates that an attribute and its value are literal. It is not intended for translation
into other languages. This may apply to either translation of the template to another language
or the application of the template.

‘X’: The X flag indicates that clients should include the specified attribute in all requests for services.
Omission of this attribute may not sufficiently differentiate one instance of a service from
another. If services are obtained without utilizing this attribute as part of the query, the selected
service may not be appropriate.

Default Values

The default value or list of values indicates the values associated with an attribute in the absence of
the attribute in a service registration. For required attributes, the default value list dictates the value
or values assigned to the attribute when no values are assigned to the attribute during a service
registration.

Descriptive Test

This optional text, in human-readable format, includes a brief, informative description of the
attribute. It may describe the relation of the attribute to the service, include a definition of the
attribute, or provide suggested uses for the attribute. It is primarily designed for display by
interactive tools.

Page 144 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

The descriptive test is set off from the surrounding definition by a pound sign or cross-hatch character
(“#”) at the beginning of each line. Line breaks at the end of each line are preserved. Within the block
of descriptive test, all indentation and formatting are also preserved. The text should never be treated
as a comment when being parsed because it is an integral part of the attribute definition.

5.5.2.3.6 Allowed Values

If the allowed values list is present, assignment to attributes is restricted to members of the list.
Attributes with an allowed values list are required to have default values or a default values list.

The syntax of the allowed values list is identical to the default values list. The handling of string and
list of strings, along with the mechanism of escaping newlines, is consistent with the specification of
the default values list.

5.6 User Agents (UA)

A User Agent is a Client process working on the user’s behalf to establish contact with some service. A
User Agent retrieves service information from Service Agents (Clause 5.7) or Directory Agents (Clause
5.8). Further description of a Client and its role may be found in Clause 7.2 Client.

The only required feature of a User Agent is that it can issue SrvRgsts and interpret DAAdverts,
SAAdverts and SrvRply messages. If Directory Agents exist, User Agents MUST issue requests as
Directory Agents are discovered.

5.6.1 Configuration

UAs can be configured with DA information either statically or by DHCP. If a UA is not configured by
either of these methods, it MUST actively discover Directory Agents (DAs). Otherwise, the UA may get
the wrong set of services. If active Discovery of DAs fails, then a UA MUST actively discover Service
Agents (SAs).

5.6.2 Discovery of Directory Agents and Service Agents

User Agents (UAs) that have been configured with Directory Agent (DA) information must unicast to
communicate with those DAs. If a UA has not been configured with DA information, the UA should do
active discovery of DAs using the Multicast Convergence Algorithm (MCA). The Multicast Convergence
Algorithm specifies when to stop multicasting requests (see RFC2608, Section 6.3).

UAs can do passive discovery by listening for unsolicited multicast DA Advertisements. This allows
UAs to immediately discover DAs that have come online since the last active discovery. UAs can also do
periodic active DA discovery as a means of discovering new DAs. See Figure 65 for an example of both
active and passive DA discovery.

All UAs that receive the unsolicited DAAdvert SHOULD examine its DA stateless Boot Timestamp. If
it is set to zero (0), the DA is going down and no further messages should be sent to it.

A UA that cannot discover any DAs with the proper scope must multicast requests to SAs using
multicast convergence. The technique will be the same as active DA discovery except only SAs will
respond with SAAdverts.

Bluefin Specification Version 1.0.0 Page 145 of 303

Service Discovery Bluefin Specification

5.6.3

5.6.4

i @ Multicast Service Request for Directory Server service
Client [T >

(User Agent) _Unicast DA Advertisement (DAAdvert) @ i
< Directory Server

foo.mof <_Unsolicited multicast DA Advertisement (DAAdvert) @ (Directory Agent)

Server Multicast Sefvice Request & | | 7}

for Directory Server service | i !

——————————————————————————————— H 1

Object Manager «— . ! i

. Unicast DA Advertisement (DAAdvert) | !

(Service Agent) é) : !

! i
. |- - - —————m 4 1 !
User Agents and Se_rwce) foo.mof Unsolicited multicast | i
Agents may be configured with DA Advertisement (DAAdvert) : '

Directory Server information @ i

via DHCP or statically, i
otherwise they should actively i i
discover an available Directory i !

Server using a multicast i

service request. A Directory A Multicast Service Request !

Server may also be discovered s gent _for Directory Server service|

via an multicast unsolicited DA (Service Agent) <
Advertisement (DAAdvert). foo.mof J Unicast DA Advertisement i
(DAAdvert) @ |
-G |
Unsolicited multicast
foo DA Advertisement (DAAdvert)

Figure 65: Directory Agent (DA) Discovery — Active and Passive

1: A User Agent (Client) or Service Agent (Object Manager or Agent) multicasts a Service
Request for Directory Server service.

2: The Directory Agent responds with a unicast DA Advertisement of its service.

3: The Directory Agent MUST send an unsolicited multicast DAAdvertisement once per
CONFIG_DA_BEAT.

Scope

A User Agent (UA) is normally assigned a scope string which may consist of multiple scopes and the
UAs can only discover services within that specific scope. If the UA is configured with no scope, it can
discover all available scopes and allow the Client to issue requests for any service available on the
network.

Service Requests

After a User Agent (UA) has discovered at least one Directory Agent (DA), it MUST unicast a Service
Request (SrvRqgst) to that DA specifying the characteristics of the service that the Client requires. The
UA will receive a Service Reply (SrvRply) specifying the location of all services that this DA has
received advertisements from which satisfy the request (Figure 66).

If the UA cannot find a DA, it MUST multicast the SrvRqgst. The UA could receive one or more unicast
SrvRply messages from Service Agents (SAs), which advertise for the requested service (Figure 66).

UAs MUST be prepared for the possibility that the service information they obtain from DAs is stale.
Some of the returned service information may represent services that are no longer running.

Page 146 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

If a DA or SA fails to respond to a unicast UDP message in CONFIG_RETRY seconds, the message
should be retried using exponential backoff. If a DA or SA fails to respond after
CONFIG_RETRY_MAX seconds, the sender should consider the receiver to have gone down.

5.6.5 Minimal Implementation

The SLP specifies rules for implementing an absolutely minimal, or "nano" User Agent (UA). A
nanoUA supports only basic service discovery in a particular scope. A nanoUA need only support the
service type and scope fields. It must be able to do DA discovery and unicast to DAs if they are
discovered.

Bluefin Specification Version 1.0.0 Page 147 of 303

Service Discovery Bluefin Specification

Client @ Unicast Service Request (locate TLO=foo)
(User Agent)
Unicast Service Reply (SrvRply) @
foo.mof Service URL (cached entries) v
A A

Directory Server
(Directory Agent)

® ®

Enumerate instances (foo) Enumerate instances (foo)
1 instance of foo in XML 1 instance of foo in XML
v @ ® v
Agent Agent
(Service Agent) (Service Agent)
foo.mof foo.mof
foo foo

Figure 66: Service Agent Discovery using a Directory Agent

1: The User Agent (Client) sends a unicast Service Request to the Directory Agent specifying the
characteristics of the service required (TLO=foo).

2: The Directory Agent replies with a unicast Service Reply Service URL containing the location
of each Service Agent that has registered the requested service.

3, 5: The Client sends an ‘Enumerate Instances (foo)’ to each Service Agent identified in #2.

4, 6: Each Service Agent responds with one instance of foo’ in XML.

Page 148 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

Client @ Multicast Service Request (SvrReq)
(UserAgent) '""’""""""""‘“"“"“““'E
| Unicast Service Reply (SvrRply) @ |
foo.mof h |
)
A |
v
Server

Object Manager
(Service Agent)

foo.mof

Agent
@] Multicast Service Request (SvrReq) > (Service Agent)
foo.mof
Unicast Service Reply (SvrRply)
foo

Figure 67: Service Agent Discovery without a Directory Agent

1: The User Agent (Client) sends a multicast Service Request specifying the characteristics of
the service required.

2: The Object Manager that offers the service requested will respond with a unicast Service
Reply Service URL containing its location information.

3: The Agent that offers the service requested will respond with a unicast Service Reply Service
URL containing its location information.

Bluefin Specification Version 1.0.0 Page 149 of 303

Service Discovery

Client
(User Agent)

foo.mof

P 2 instances of foo in XML

enumerate instances (foo)

A 4

Server

1 instance of
foo in XML

Object Manager
(Service Agent)

foo.mof

1 instance of

P foo in XML

enumerate
instances
(foo)

)

Agent
(Service Agent)

foo.mof

foo

(o0y)

seoue)sul
sjesoWwNUd

®

A

Bluefin Specification

Directory Server
(Directory Agent)

Agent
(Service Agent)

foo.mof

foo

Figure 68: Service Agent Discovery Using a Directory Agent and Object Manager

1: The User Agent (Client) sends an ‘Enumerate Instances (foo)’ to a previously identified
Service Agent (Object Manager).

2: The Service Agent (Object Manager) sends a unicast Service Request to the Directory Agent
specifying the characteristics of the service required (TLO=foo).

3: The Directory Agent replies with a unicast Service Reply Service URL containing the location

of each Service Agent (Agent) that has registered the requested service.

4, 6: The Service Agent (Object Manager) sends an ‘Enumerate Instances (foo) to each Service

Agent (Agent) identified in #3.

5, 7: Each Service Agent (Agent) responds with one instance of foo’ in XML.

8: The Service Agent (Object Manager) responds to the User Agent (Client) with two instances of

‘foo’ in XML.

Page 150 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification Service Discovery

5.7 Service Agents (SAs)

A Service Agent is an Agent, Lock Manager, or Object Manager process working on behalf of one or
more services to advertise the services. See Clause 2.3.2 Roles for Interface Constituents and Clause
7:Bluefin Roles for further description of Agent, Lock Manager, and Object Manager.

Service Agents MUST accept multicast service requests and unicast service requests. SAs MAY accept
other requests (Attribute and Service Type Requests). An SA MUST reply to appropriate SrvRgsts with
SrvRply or SAAdvert messages. The SA MUST also register with all DAs as they are discovered
(Figure 69).

5.7.1 Configuration

Service Agents (SAs) may be configured to use Directory Agents (DAs) via DHCP or statically. If a SA
is not configured with either of these methods, it should actively discover DAs (see Figure 65).

5.7.2 Discovery of Directory Agents

Service Agents (SAs) that have been configured with Directory Agent (DA) information must unicast to
communicate with those DAs. If a SA has not been configured with DA information, the SA should do
active discovery of DAs using the Multicast Convergence Algorithm. SAs must passively detect DAs by
listening for multicast DA Advertisements (DAAdverts). See Figure 65 for both active and passive DA
discovery.

After a SA has discovered a DA, it must unicast to communicate with the DA. If the SA needs to
register with a DA, a SA MUST wait a random time between 0 and CONFIG_REG_ACTIVE seconds
before registering their services.

If a SA detects a DA it has never encountered, with a nonzero timestamp, the SA must register with
the DA if they both are in the same scope (see Figure 69). SAs MUST examine the DAAdvert's
timestamp to determine if the DA has had a stateless reboot since the SA last registered with it. If so,
it registers with the DA. If the timestamp is set to 0, the DA is going down and no further messages
should be sent to it. SAs MUST wait a random interval between 0 and CONFIG_REG_PASSIVE before
beginning DA registration.

Bluefin Specification Version 1.0.0 Page 151 of 303

Service Discovery Bluefin Specification

®

Service Registration (SrvReg) |

Directory Server
(Directory Agent)

Service Acknowledgment (SrvAck)

»
L

Server

Object Manager
(Service Agent) @

foo.mof

A Service Agent must register
when it initially discovers a

Service Registration (SrvReg)

Directory Server.
v Agent
(Service Agent)
foo.mof @
foo Service Acknowledgment (SrvAck)

Figure 69: Service Agent Registration with a Directory Server

1: A Service Agent (Agent and/or Object Manager) registers its services with a Directory Agent
by sending Service Registration (SrvReg) messages. A Service Agent must register in all the
scopes it is configured to use.

2: The Directory Agent will respond with a Service Acknowledgment (SrvAck) messages to
indicate success.

5.7.3 Scope

Services are grouped together using 'scopes'. These are strings that identify services, which are
administratively identified. A scope could indicate a location, administrative grouping, proximity in a
network topology or some other category. Service Agents are always assigned a scope string which may
be a specific value or “DEFAULT”.

5.7.4 Minimal Implementation

The SLP specifies rules for implementing an absolutely minimal, or "nano" Service Agent (SA). A
nanoSA advertises a service type but no attributes allowing UAs to discover the service-by-service type
and scope only. A nanoSA need not implement query handling since service requests for the service
match if the query is empty. A nanoSA also need not implement TCP since no possibility for overflow

exists.

Page 152 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

5.8 Directory Agents (DAs)

Directory Agents MUST support the following SLP message types: Service Type Request (SrvRqst),
Service Type Reply (SrvRply), Attribute Request (AttrRqst), Attribute Reply (AttrRply), Service
Register (SrvReg), Service Deregister (SrvDereg), Service Acknowledge (SrvAck), DA Advertisement
(DAAdvert), and SA Advertisement (SAAdvert). DAs MUST respond to AttributeRequest and Service
Type Request messages.

DAs MUST accept unicast requests and multicast directory agent discovery service requests (for the
service type "service:directory-agent"). DAs which receive a multicast SrvRgst for the directory agent
discovery service MUST silently discard it if the <scope-list>is (a) not omitted and (b) does not include
a scope they are configured to use. Otherwise the DA MUST respond with a DAAdvert.

When SLP SrvRgst, SrvTypeRgst, and AttrRgst messages are multicast, they contain a <PRList> of
previous responders. Initially the <PRList> is empty. Any DA which sees its address in the <PRList>
MUST NOT respond to the request. When these requests are unicast, the <PRList> is always empty.

DAs MUST flush service advertisements once their lifetime expires.

DAs MUST send unsolicited DAAdverts once per CONFIG_DA_BEAT. An unsolicited DAAdvert has an
XID of 0.

5.8.1 Directory Agent (DA) Stateless Boot Timestamp

Directory Agent Advertisements (DAAdverts) MUST include DA Stateless Boot Timestamp. The
Timestamp in the Authentication Block indicates the time at which all previous registrations were lost
(i.e., the last stateless reboot). The Timestamp is set to 0 in a DAAdvert to notify User Agents (UAs)
and Service Agents (SAs) that the DA is going down. DAs MUST NOT use equal or lesser Boot
Timestamps to previous ones, if they go down and restart without service registration state. This would
mislead SAs to not reregister with the DA.

5.8.2 Scope

By default, Directory Agents (DAs) are configured with the "DEFAULT" scope. Administrators may
add other configured scopes, in order to support User Agents (UAs) and Service Agents (SAs) in non-
default scopes. The default configuration MUST NOT be removed from the DA unless:

e There are other DAs which support the "DEFAULT" scope, or

e All UAs and SAs have been configured with non-default scopes.

5.8.3 Network Protocol Specifics

There can be only one Directory Agent per host. The Directory Agent will listen on port 427 (the port
reserved for SLP). SLP Requests messages are multicast to the SLP Multicast address, which is
239.255.255.253. The default TTL to use for multicast is 255.

In 1solated networks, broadcasts will work in place of multicast. To that end, SAs SHOULD and DAs
MUST listen for broadcast Service Location messages at port 427. This allows UAs which do not
support multicast the use of SLP on isolated networks.

If a SLP message does not fit into a UDP datagram it MUST be truncated to fit, and the OVERFLOW
flagis set in the reply message. A UA which receives a truncated message MAY open a TCP connection
with the DA or SA and retransmit the request, using the same XID. It MAY also attempt to make use
of the truncated reply or reformulate a more restrictive request which will result in a smaller reply.

Bluefin Specification Version 1.0.0 Page 153 of 303

Service Discovery Bluefin Specification

5.9 Service Agent Server (SA Server)

The reserved listening port for SLP is 427, the destination port for all SLP messages. Service Agents
(SAs) are required to listen for both unicast and multicast requests. A Directory Agent (DA) is required
to listen for unicast request and specific multicast DA discovery service requests. And SAs and User
Agents (UAs) that perform passive DA discovery must also listen for multicast DA Advertisements
(DAAdverts).

TCP/IP requires that a single server process per network interface control all incoming messages to a
port. That requirement necessitates a mechanism to share the SLP port (427).

Sharing the SLP port (427) is accomplished with a Service Agent Server (SA Server) process that ‘owns’
the port on behalf of all SAs, UAs and optional DA that must listen for SLP messages. The SA Server
will listen for incoming messages that request advertisement information and either answer each
request or forward it to the appropriate SA. The SA Server will also perform passive DA discovery and
distribute the DA addresses and scopes to the SAs and UAs that it serves.

A SA Server may also function as a DA if the SA Server is implemented so that it answers requests for
advertisement information rather than forwarding each request to the appropriate SA. The combined
DA/SA Server is acting as an intermediary between a SA that registered an advertisement and a UA
requesting information about the advertisement.

5.9.1 SA Server (SAS) Implementation

The RFC 2614 document describes APIs for both the C and Java languages. Both APIs are designed for
standardized access to the Service Location Protocol (SLP).

The goals of the C API are:

e Directly reflect the structure of SLP messages in API calls and return types as character buffers
and other simple data structures.

¢ Simplify memory management to reduce API client requirements.
e Provide API coverage of just the SLP protocol operations to reduce complexity.

e Allow incremental and asynchronous access to return values, so small memory implementations
are possible.

e Support multithreaded library calls on platforms where thread packages are available.
The Java API goals are:

e Provide complete coverage of all protocol features, including service type templates, through a
programmatic interface.

e Encourage modularity so that implementations can omit parts of the protocol that are not
needed.

e In conformance with Java’s object-oriented nature, reflect the important SLP entities as
objections and make the API itself object-oriented.

e Use flexible collection data types consistently in the API to simplify construction of parameters
and analysis of results.

e Designed for small code size to help reduce download time in networked computers.

Page 154 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

5.9.2

5.9.2.1

5.9.3

5.9.3.1

5.9.3.2

5.9.3.3

SA Server (SAS) Clients

An SAS Client is a Service Agent (SA), User Agent (UA), or Directory Agent (DA) that is associated with
a SA Server. The SA Server will listen on the SLP port (427) and appropriately handle all incoming
messages for each SAS Client. A DA acting as a SAS Client is separately configured on the same host as
the SA Server.

SAS Client Requests — SA Server Responses

A SA Server will respond, when appropriate, to incoming unicast and multicast messages from SAS
Clients. The SA Server may answer with the appropriate advertisement, if available, or forward the
request on to the appropriate SAS Client. If the SA Server is also functioning as a DA, it will discard a
multicast SrvRgst of “service:directory-agent” that has either a missing scope list or the scope list does
not contain a scope the Service Agent Server/DA is configured with.

SA Server Configuration
Overview

SA Servers may be configured via an individual SLP configuration file, programmatically, or a
combination of the two. DHCP may also be used obtain the scope list for a SA Server. Figure 70
illustrates the various means of configuring a SA Server.

SLP Configuration File

If a SA Server will also function as a DA, the following DA configuration properties must be set:

Keyword Data Type Value

net.slp.isDA Boolean true

net.slp.DAAttributes | String (SA-
Server=true)

The DA attribute/value pair of “SA-Server=true” will allow a query to be used when a SA Server/DA
needs to be identified. In addition, when the SA Server/DA responds to a SrvRqst message with a
DAAdvert message, the DA attribute/value pair will be included.

The remaining DA configuration property, net.slp.DAHeartBeat, with a default of 10,800 seconds, can
be set as appropriate.

If a SA Server will not function as a DA, the following SA configuration property must be set:

Keyword Data Type Value
net.slp.SAAttributes | String (SA-
Server=true)

Programmatic Configuration

Both the C and Java language API's provide access to SLP properties contained in the SLP
configuration file. The actual SLP configuration file is not accessed or modified via the interfaces. Once
the file is loaded into memory at the start of execution, the configuration property accessors work on
the in-memory representation.

The C language API provides the SLPGetProperty() and SLPSetProperty() functions. The
SLPGet Property() function allows read access to the SLP configuration properties while the
SLPSet Propert y() function allows modification of the configuration properties.

The SLPSetProperty() function has the following prototype:

voi d SLPSet Property(const char *pcNane, const char *pcVal ue);

Bluefin Specification Version 1.0.0 Page 155 of 303

Service Discovery Bluefin Specification

5.9.3.4

5.9.3.5

5.9.4

The SLPSetProperty() function takes two string parameters: pcName and pcValue. The pcName
parameter will contain the property name and pcValue will contain the property value. The following
example uses the SLPSetProperty() function to configure a SA Server that is not functioning as a DA:

void set SAAttributes() {
char value[80]; /* A buffer for storing the attribute string. */
val ue = “SA Server=true”;
SLPSet Property(“net.sl p. SAAttri butes”, value);

DHCP Configuration

If the Service Agent Server will also function as a DA, its scope list may be obtained via DHCP. Scopes
discovered via DHCP take precedence over the net.slp.useScopes property in the SLP configuration file.

Scope

A Service Agent Server is configured with a minimum scope of DEFAULT. If a Service Agent Server is
not functioning as a DA, DEFAULT will be the only scope configured. If a Service Agent Server is
functioning as a DA, it may have additional scopes configured. Use of the DEFAULT scope will enable
the associated SAS Clients (UAs, SAs and DA) to actively discover the Service Agent Server using a
well-known value for scope.

Figure 70: SA Server Configuration

1. The SA Server may obtain specific configuration values via an individual SLP
Configuration file.

2. The C or Java API provides programmatic access to the configuration file properties.

3. The SA Server may obtain its scope values from a DHCP Server.

SA Server Discovery

“Discovery” of a SA Server by its SAS Clients is accomplished by successfully establishing the required
communication link between the two entities. There is no need for active or passive discovery as
described by SLP since both the SA Server and SAS Clients reside on the same host system.

SA Server <

C or Java API @

4

@ DHCP
Server

SLP

Configuration
File

Page 156 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

5.9.5 SAS Client Registration

Service Agents (SAs) that are SAS Clients must register and deregister with the local SA Server using
the SrvReg/SrvDereg messages. The SA Server will respond with a Service Acknowledgement (SrvAck)
message. The SA Server will store a service advertisement until either its lifetime expires or a SrvDereg
message 1s received.

If the SA Server is also functioning as a DA, the DA registration requirement is also met. The SA server
will also forward any SA registration to other DAs that have the same scope as the SA.

Bluefin Specification Version 1.0.0 Page 157 of 303

Service Discovery Bluefin Specification

5.10 ‘Bluefin’ Service Type Templates

5.10.1 ‘Bluefin’ Abstract Service Template

Name of submitter: "Barry Nisly" <barry@prisa.com>
Language of service template: en
Security Considerations:

See the security considerations of the concrete service types.
Template Text:

template begins here
template-type=bluefin
template-version=0.1
template-description=

This is an abstract service type. The purpose of the bluefin service
type is to organize into a single category all Bluefin services.

template-url-syntax=
url-path=; Depends on the concrete service type.

service-hi-name=string

This is a human readable name of the service for purpose of displaying
in a human interface.

service-hi-description=string O

This is a human readable description of the service for the purpose of
displaying in a human interface.

service-id=string

This is a text rendering of unique identifier. It contains the same value

that appears in the "serviceid:" URI registered with the service.
service-location-tcp=string M

The location of all services offered by the CIM Server over TCP transport.

Example: (service-location-tcp=http://fexample.com:8858,
https://fexample.com:8859,rmi://example.com:29340)

role = string M L X

The Bluefin role.

agent, object manager, lock manager
profile = string M L X

The Bluefin profile associated with the service. (waiting on input from OMWG)
block server, file server, host, ...
template ends here

5.10.2 Bluefin’ Concrete Service Template

Name of submitter: "Barry Nisly" <barry@prisa.com>

Page 158 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Service Discovery

Language of service template: en
Security Considerations:
Template Text:

template begins here
template-type=bluefin:http
template-version=0.1
template-description=

This is a concrete service type based on the bluefin abstract service
type. This service type describes the Bluefin interface that uses
HTTP as the transport protocol.

template-url-syntax=
url-path = ; Not used in this service template

security = sting O M L

none

The security protocol supported by the SLP agent.

none, ssl, password

template ends here

Bluefin Specification Version 1.0.0 Page 159 of 303

Bluefin Specification Lock Management

Clause 6: Lock Management

6.1 Introduction

The primary objective of lock management in Bluefin is to provide orderly access to shared resources by
lock-aware Bluefin clients in a way that ensures expected behavior and achieves desired results during
concurrent operations. Bluefin lock management will implement a degree of Isolation as described in
terms of the ACID properties: Atomicity, Consistency, Isolation, and Durability. Bluefin lock
management does NOT address nor provide the properties of Atomicity, Consistency, and Durability.

In the context of lock management, Bluefin defines an operation as a sequence of related agent actions
initiated on behalf of a single Bluefin client. Even though Bluefin operations execute concurrently, it
appears to each operation, O, that the other operations executed either before O or after O, but not
both. This simply means that a Bluefin operation executing concurrently with other Bluefin operations
under Bluefin Lock Management must behave exactly as if it were the only operation executing.

Most people are familiar with the locking semantics surrounding database operations, but the
management of distributed resources differs substantially from that of updating records in a database,
and these unique requirements need to be taken into account.

6.2 Terms

Lock Management Client: A XML-CIM Client that desires to lock one or more XML-CIM Servers in
order to perform a protected operation.

Lock Management Server: A coordinating function for locking operations on multiple Lock
Management Agents.

Lock Management Agent: A XML-CIM Server that can grant lock protection for some part of its
Model.

6.3 Objectives

6.3.1

e Protect operations across multiple agents from multiple simultaneous non-cooperating clients.

e Protect invariants within an object model in a single agent.

e Provide for a simple, stateless locking paradigm with recovery for deadlock and error situations.
e Allow for a more sophisticated locking mechanism.

¢ Implementations of locking will be recommended, but not required.

e Provide for finer grain locking than just single agents.

e Need to address other management mechanisms and how they interact with out locking scheme.

e Do some minimal specification for the first release, but allow further extensions via SNIA and
DMTF.

e Allow for standardizing this through the SNIA and DMTF.
Protected Operations
The operations that an agent needs to block when a lock is held on the resource are:

e Getlnstance of the Instance that is locked

Bluefin Specification Version 1.0.0 Page 161 of 303

Lock Management Bluefin Specification

e Deletelnstance of the Instance that is locked

¢ ModifyInstance of the Instance that is locked

e Associator operations that involve locked Association Instance (implies a GetInstance)
¢ Enumerate Instances that includes the Instance that is locked

e Set Property on the Instance that is locked

o Extrinsic Method Call on the Instance that is locked

e Qualifier Operations that access the Instance that is locked

e (Class Operations that would affect the Instance that is locked

6.3.2 Unprotected Operations
The operations that an agent can safely allow when a change lock is held on the resource are:
e GetProperty on the Instance that is locked
e Instance operations on non-locked Instances
e C(Class operations that don’t affect locked Instance
e Qualifier operations on other Instances, Classes
e Query operations

e Associator operations that don’t involve a locked Association Instance

6.3.3 Granularity of Locking

It is clear from the above that we would like to allow the granularity of locking to include the locking of
individual properties and methods. This provides the maximum ability to have concurrent operations
that do not interfere with each other to take place.

6.3.4 What is not covered

Locking does not address fully the needs of transactions, but does attempt to lay an architectural
foundation for future work in this area. The locking model we are proposing is optimistic and requires
participants to enforce well-known rules and cooperate to achieve the desired results. This locking
model does not enforce locking semantics on unaware participants.

6.4 Lock Types

A single type of lock will satisfy management operations against resources. Management operations
that only read properties do not interfere with each other and therefore no isolation is needed between
multiple readers or a writer from a reader. Invariants can exist in a single instance or set of properties
and methods, however, that need protection from multiple writers or a reader from a writer as seen in
the above use cases. A change lock can handle the isolation for both of these cases. If a writer desires
isolation from another writer, he first obtains the change lock that prevents any other writers from
making changes to the instance or set of properties and methods during the update of the invariants. If
a reader desires isolation from changes to invariants during the read of multiple, invariant properties,
he first obtains the change lock that prevents any writers from modifying those properties. In the
future, this change lock can be expanded to read and write locks if needed to provide better
concurrency.

Page 162 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Lock Management

If there are dependencies between parts of a model (for example: StorageExtents in a StoragePool), the
implementation MAY choose to consider the dependent parts to be locked when a request is granted for
the antecedent parts, and reject non-locked client operations to those dependent parts. In most cases,
locking a service may be sufficient to protect changes to the service’s dependent parts. In the case
where a particular object is represented in multiple Agents’ namespaces, the lock must be obtained
from the Agent that owns that object.

6.5 Lock Manager Reference Model

Lock Management involves three different roles as shown below in Figure 71: Lock Management

Reference Model.
Lock Client requests locking for one or more
Management Acent
Client gent resources
IIC/[OCk Server coordinates locking requests
anagement
Server and grants from one or more Agents
Lock Lock Lock
Management Management Management
Agent Agent Agent

Agents grant locking requests for their
managed resources, enforce isolation

Figure 71: Lock Management Reference Model

The Lock Management (LM) Client is a reader or a writer of the resource that needs isolation from
other Clients. The LM Client obtains the change lock, performs operations on one or more Agents,
optionally extending its lock lease if it needs more time, and then releases the lock. The LM Agent
grants requests for locks, extends lease times if necessary and protects operations from Clients that do
not hold the lock. The LM Server allows locks to be held across multiple agents for atomic operations
such as those needed for transactions. It enforces the rules for obtaining multiple locks and avoiding
deadlock, coordinating the request, release, and renewal of locks. The minimal functions required for
the LM Server can be extended by implementations to offer more efficiency and reliability. The intent
is to provide a simple, easy to implement functionality that can be extended. Vendors are encouraged to
add value in this area. A minimal lock management server is a stateless function, merely passing lock
requests to Agents, receiving the results and passing them back to the Client; it keeps no memory of
the locks that were granted and has no ability to queue lock requests. As a corollary to this, the
minimum lock management server does not recognize a lock conflict, because it does not remember
locks that it has previously granted.

6.5.1 Lock Management Server Operations

The operation messages that take place between the LM Client and the LM Server are described below:

Bluefin Specification Version 1.0.0 Page 163 of 303

Lock Management Bluefin Specification

Time

Lock Request (AgentRequest [], LeaseDuration) — message from a LM Client requesting locks on
multiple agents for desired lease duration. Each AgentRequest describes both the Agent, the Instances
within that agent, and the properties/methods within each instance that need isolation.

Lock Grant (AgentResults [], LeaseTimeToLive) — message from the LM Server describing the
actual instances that were locked and the remaining time on the lease. Each AgentResult describes the
LM Agent that granted the request and the actual instances and properties/methods, which are locked
(which may have a courser granularity than requested). The LM Client will need to perform its
operations before the LeaseTimeToLive elapses, or else renew the lease.

Lock Release (AgentResults []) — message from the LM Client that holds a lock informing the LM
Server that its operations have completed and the resources are available for other LM Clients to lock.

Lock Refused (AgentResult) — message from the LM Server that indicates a failure to obtain a lock
from one or more LM Agents. The AgentResult contains information from the first Agent that already
had a requested instance or property/method that was locked.

A sequence diagram showing successful requesting and granting of locks is shown below in Figure 72:

LM Client LM Server LM Agent 1 LM Agent 2

Lock Request(AgentRequest[],duration)

LMAgentRequest(AgentRequest,duration|)

D\ LMAgentRequest(AgentRequest,duration
)

LMAgentGrant((AgentResult, TTL) J

LMAgentGrant((AgentResult, TTL)

LockGrant(AgentResults[], TTL)

LockRelease(AgentResults[])

LMAgentRelease(AgentResult)

LMAgentReleased((Agen

EJ\ LMAgentRelease(AgentResult)

«——— | LMAgentReleased((AgentResult)
LockReleased(AgentResults|

Figure 72: Lock Request Success Sequence Diagram

A sequence diagram showing unsuccessful requesting of locks is shown below in Figure 73:

Page 164 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Lock Management

Time

6.5.2

LM Client LM Server LM Agent 1 LM Agent 2

LockRequest(AgentRequests[],duration)

LMAgentRequest(AgentRequest,duration|)

LMAgentGrant(AgentResult, TTL) }

[]\LM/—\gentRequest(AgentRequest,duration)

LMAgentRefused(AgentResult) J

-
LMAgentRelease(AgentResult)

LMAgentReleased(AgentResult)
LockRefused(AgentResult)]

Figure 73: Unsuccessful Lock Request Sequence Diagram

Lock Management Agent Operations

The operation messages that take place between the LM Server and the LM Agent are similar to those
between the LM Client and the LM Server, except that they contain pertaining to a single LM Agent
instead of multiple:

LM Agent Request (AgentRequest, LeaseDuration) — message sent from LM Server to an LM
Agent requesting locks on the instances specified by CIMObjectPath[] and associated properties and/or
methods. The LM Agent is required to grant locks on all of the specified instances and properties
and/or methods, or else refuse the entire request, returning the first CIMObjectPath and associated
properties and/or methods that already had a lock.. The LeaseDuration time should be used for the
lease time granted unless the Agent is configured with a smaller maximum lease time.

LM Agent Release (AgentResult) — message sent from the LM Server to an LM Agent indicating
that the lock can be released and blocked operations can proceed.

LM Agent Renew (AgentResult, LeaseDuration) — message sent from LM Server to and LM Agent
requesting that the lease time for the held lock (specified by CIMObjectPath [] and associated
properties and/or methods) be extended for another LeaseDuration milliseconds.

LM Agent Grant (AgentResult) — message sent from LM Agent to LM Server indicating that the
lock request or lease renewal request was successful. The granted TTL may be less than the requested
LeaseDuration. The Key is provided so that the LM Agent can allow certain operations from the Client
that holds the lock, while blocking operations from other IP Clients that don’t have the key

LM Agent Refuse (AgentResult) — message sent from LM Agent to LM Server indicating that the
lock request or lease renewal request was unsuccessful. The CIMObjectPath and associated properties
and/or methods indicate the first instance that already had a lock in the case of a lock request, or
NULL if the lease renewal was unsuccessful.

Bluefin Specification Version 1.0.0 Page 165 of 303

Lock Management Bluefin Specification

6.6 Discovery

The Lock Management group that a Lock Management Server manages and one or more Lock
Management Agents participate in will be identified with a SA attribute of LMGroup. That attribute will
be a string value with a default value of “DefaultUnconfigured”. An administrator may create various
Lock Managements groups by configuring the value of LMGroup as desired.

Lock Management Client determines Lock Management group(s) required in the course of SA
discovery of services, via LMGroup value for each LM Agent SA discovered.

Lock Management Client then must discover the Lock Management Server with the
appropriate value for the LMGroup of the LM Agents that are involved in the operation.

Configuring multiple lock management servers with the same LMGroup will cause unpredictable (and
undesirable) results.

6.7 Deadlock Management

Deadlock Avoidance: All locks must be acquired at once (should be acquired by the client
before performing operations). If a lock request fails, all previously acquired locks are released
after some retries.

Deadlock Detection and Recovery: When a lock lease expires (detected), the lock is released
(recovery)

The number of lease renewals (configurable) should be limited with the default a small number

3).

The maximum lease length is configurable with a reasonable default value (1,000 ms).

The deadlock rules above are implemented by a Lock Management Server on behalf of Clients, or by the Clients
themselves in the absence of a Lock Management Server, and in the event of multiple LMGroups. If these rules
are not followed, unpredictable results are possible.

6.8 Lock Leasing and Lease Extension

The Lock Management Agent will control lease length by granting a Time To Live (TTL).
The Lock Management Server will coordinate leasing.
o Returns the smallest TTL from Lock Management Agents.

o Lease renewals go through the Lock Management Server, then propagates to the Lock
Management Agents.

A Lock Management Agent may grant a lease renewal shorter than the duration requested.
o Lock Management Agent may grant a shorter duration.

o A different Lock Management Agent may reduce the total requested lease renewal as
returned by the LM Server.

When TTL expires, the Lock Management Agent will release the lock

A subsequent release will not be considered an error (releasing a non-existent lock?)

The following diagram in Figure 74 shows the sequence of a successful lock lease renewal:

Page 166 of 303

Version 1.0.0 Bluefin Specification

Bluefin Specification

Time
LM Client

LockRenewal(AgentResults,duration)

LockGrant(AgentResults[], TTLiowest)

LockRelease(AgentResults[])

LockReleased(AgentResults|

LM Server LM Agent 1 LM Agent 2

LMAgentRenewal(AgentResult,duration)

J

[]\ LMAgentRenewal(AgentResult,duration)

LMAgentGrant(AgentResult, TTL) J

LMAgentGrant(AgentResult, TTL)

LMAgentRelease(AgentResult)

LMAgentReleased(Agent
EJ\ LMAgentRelease(AgentResult)

LMAgentReleased(AgentResult)

Figure 74: Lock Lease Renewal Success

The following diagram in Figure 75 illustrates the failure of a lock lease request:

Bluefin Specification

Version 1.0.0

Lock Management

Page 167 of 303

Lock Management Bluefin Specification

Time
LM Client LM Server LM Agent 1 LM Agent 2

LockRenewal(AgentResults[],duration)

LMAgentRenewal(AgentResult,duration)

J

[]\ LMAgentRenewal(AgentResult,duration)

LMAgentRefused(AgentResult) J

LMAgentGrant(AgentResult, TTL)

LockRefused(AgentResult)]

Figure 75: Lock Lease Renewal Failure

6.9 Lock Identification Token Considerations

Upon successfully granting a lock to a client, the Lock Management Agent will generate a unique
Identification Token value that will be used by the granted client to perform operations. The value
of this Identification Token is opaque to clients and lock managers, but must be faithfully produced
in order to perform locked operations. Desirable properties of the Identification Token include:

e Reduce the potential for stale values being considered valid
e Each Agent controls its own value space (include example)

The Identification Token must be an integer in the range 0 to 232—1. Since each agent generates it
own Identification Token and does the corresponding validation of them, there is no problem that
results from having two agents generate the same Identification Token value. The value of the
Identification Token MUST NOT change on renewals,

The Lock Identification Token is passed as part of the context of the transport mechanism rather
than as an explicit method parameter to intrinsic and extrinsic WBEM method calls. The CIM-XML
transport definition is modified to accommodate this context using the HTTP protocol. Other
transports will also need to define a means of transferring context values such as the lock
Identification Token. Since all operations from this client for a given agent are locked by the same
Identification Token, only one such token will be passed in this context.

Page 168 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Lock Management

6.10 Lock Management Implementations

Lock Management SHOULD be implemented by all appropriate Bluefin roles conforming to the first
major version of this specification and MUST be implemented by all Bluefin roles conforming to the
second major version of this specification. Care has been taken to allow roles that do not implement
lock management to be able to interoperate with roles that do implement lock management. Obviously,
existing CIM-XML Clients and CIM-XML Servers do not implement Lock Management as described
herein and it is desirable to interoperate with these legacy systems during the (and in order to
facilitate) adoption of Bluefin conforming implementations.

6.10.1 Lock Unaware Clients

A Lock Unaware Client is either a Bluefin V1.0 Client that does not implement Bluefin V1.0 lock
management or a legacy (non Bluefin) Client.

Lock Unaware Clients will have no way of ensuring protection of invariants from other clients (of any
type), but that is the current situation today without a lock management standard in place. Thus Lock
Unaware Clients MUST take care to perform whatever steps are necessary to ensure that consistency
is maintained, including multiple reads after doing a write (ensuring that the state was not partially
updated). When a lock aware agent receives a request from a lock unaware client, it should treat the
operation as being locked for the duration of the operation to protect lock aware clients of the agent, In
other words, lock requests for an operation that is already being used by another client should not be
granted until that operation completes. The set of relevant instances and properties/methods
considered locked for this purpose is Agent model dependent. The lock unaware client’s subsequent
operation may be rejected if it is attempting to perform an operation on an object that is locked by a
locking aware client.

6.10.2 Lock Unaware Agents/Object Managers

A Lock Unaware Agent or Object Manager is either a Bluefin V1.0 Agent or Object Manager that does
not implement Bluefin V1.0 lock management or a legacy (non Bluefin) Agent or Object Manager.

Lock Unaware CIM-XML Servers (Object Managers and Agents) will not support the additional
intrinsic methods for granting and releasing locks. These Object Managers and Agents MUST NOT
include an LMGroup attribute in their service advertisement so that they will not be part of a Lock
Manager’s group. Clients that discover these Legacy roles will need to be coded to handle invariant
operations as if they were Lock Unaware Clients (see Clause 6.10.1 Lock Unaware Clients).

6.11 Lock Management Client — Rules and Recommendations
A LM Client must follow the deadlock avoidance rules:

. If an LM Client attempts to obtain a lock while holding locks, and the attempt fails, the
LM Client must not renew any leases on the locks that it holds and may retry the subsequent
lock attempt up until the shortest lease on his current locks expire.

° Alternatively, he may release all locks at the first failed attempt.

o A Client discovers LM Agents and determines their LMGroup values. For agents within an
LMGroup (all have same LMGroup value), if a Client finds an LMServer, he must use it for all
locking operations. If an LM Server is not found for a group, an LM Client MAY issue requests
to LM Agents directly as long as the above deadlock avoidance rules are followed.

o Ifan LM Client requests a lease time and receives a shorter time than it requested, it may try
to extend the lease, it may release the lock, or it may attempt the operation in the time
granted.

Bluefin Specification Version 1.0.0 Page 169 of 303

Lock Management Bluefin Specification

e A single Lock Management request may only include Agents that are in the same LMGroup.

e The LM Client should be counting down the TTL during its operations such that it knows when
the lock has expired.

If a Bluefin client needs to do protected concurrent operations across multiple agents or object
managers, it MUST be coded to support multiple LMGroups and perform locking across multiple Lock
Managers. Just as the Lock Manager must do in a single LMGroup, the Client MUST obtain locks from
all involved Lock Management Groups before proceeding with the cross agent operation. The same
rules for obtaining locks on individual agents apply across multiple Lock Managers.

6.12 Lock Management Server — Rules and Recommendations

Only one LM Server can be active for a given Lock Management Group (set of Agents with the same
LMGroup value). Conversely, an Agent belongs to only one Lock Management Group, determined by its
LMGroup value. LMGroup values are administered to set up groups of LM Agents and their LM
Server.

If an LM Server, during its discovery of LM Agents, finds another active LM Server with the same
LMGroup value, it must not advertise itself. An administrator must only give one LM Server the same
LMGroup value.

When an LM Server receives a request (renewals), it is responsible for sending the individual agent
requests to each of the LM Agents involved in the LM Server request. It will have to examine the
CIMObjectPath in the AgentRequest in order to determine the agent’s host name or IP address.

e The LM Server needs to count down the TTLs it is receiving from the LM Agents as it is
processing the request. This is done both in the request and renewal processing. All TTLs from
the Agent Requests need to have valid time remaining when the LM Server sends the Lock
Grant to the LM Client. The LM Server MAY retry lock requests to LM Agents that have timed
out during the LM Server request or renewal processing.

6.12.1 Standard features
The minimal Lock Management Server would have the following characteristics and features:
e Accepts Lock Management Server requests and provides the proscribed responses
e Drives Lock Management Agent requests and processes their responses
o Is Stateless
e Can be subject to single points of failure

e Performs its functions only within its own LMGroup scope

6.12.2 Lock Manager Optional Proprietary Enhancements
e Distributed Lock Management Server
e Highly Available Lock Management Server
e Transactional Lock Management Server

e These enhancements are possible future enhancements to this specification, but may also be
done by proprietary implementations as well.

Page 170 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Lock Management

6.13 Protocol Extensions — Methods

The following methods are proposed extensions to the Intrinsic Methods supported by Agents for the
purposes of lock management.

AgentRequest — Contains one or more of:

e CIMODbjectPath — a CIMObjectPath for each instance that is to be locked

e ArrayOfNames - an array of Property and/or Method Names for the instance specified by the
CIMODbjectPath (Usage is optional, based on the level of granularity needed)

AgentResults — Contains one or more of:
e CIMODbjectPath —a CIMObjectPath for each instance that is locked
e ArrayOfNames — an array of Property and/or Method Names (optional)

e IdentificationToken — the Identification Token that is generated for the client to use in
locked operations.

e TTL — the TTL that the Agent granted for this request

Lock Request (AgentRequest [], LeaseDuration) — message from a LM Client requesting locks on
multiple agents for a desired lease duration. Each AgentRequest describes both the Agent and the
Instances within that agent that need isolation.

Lock Grant (AgentResults [], LeaseTimeToLive) — message from the LM Server describing the
actual instances that were locked and the remaining time on the lease. Each AgentResult describes the
LM Agent that granted the request and the actual instances, which are locked (which may have a
courser granularity than requested). The LM Client will need to perform its operations before the
LeaseTimeToLive elapses, or else renew the lease.

Lock Release (AgentResults []) — message from the LM Client that holds a lock informing the LM
Server that its operations have completed and the resources are available for other LM Clients to lock.

Lock Refused (AgentResult) — message from the LM Server that indicates a failure to obtain a lock
from one or more LM Agents. The AgentResult contains information from the first Agent that already
had a requested instance locked.

LM Agent Request (AgentRequest, LeaseDuration) — message sent from LM Server to an LM
Agent requesting locks on the instances specified by CIMObjectPath[]. The LM Agent is required to
grant locks on all of the instances, or else refuse the entire request, returning the first CIMObjectPath
that already had a lock. The LeaseDuration time should be used for the lease time granted unless the
Agent is configured with a smaller maximum lease time.

LM Agent Release (AgentResult) — message sent from the LM Server to an LM Agent indicating
that the lock can be released and blocked operations can proceed.

LM Agent Renew (AgentResult, LeaseDuration) — message sent from LM Server to and LM Agent
requesting that the lease time for the held lock (specified by CIMObjectPath []) be extended for another
LeaseDuration milliseconds.

LM Agent Grant (AgentResult) — message sent from LM Agent to LM Server indicating that the
lock request or lease renewal request was successful. The granted TTL may be less than the requested
LeaseDuration. The IdentificationToken is provided so that the LM Agent can allow certain operations
from the Client that holds the lock, while blocking operations from other IP Clients that don’t have the
key

Bluefin Specification Version 1.0.0 Page 171 of 303

Lock Management Bluefin Specification

LM Agent Refuse (AgentResult) — message sent from LM Agent to LM Server indicating that the
lock request or lease renewal request was unsuccessful. The CIMObjectPath indicates the first instance
that already had a lock in the case of a lock request, or NULL if the lease renewal was unsuccessful.

Page 172 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Bluefin Roles

Clause 7: Bluefin Roles

Lock Directory
Manager
g Server Client
Directory User
SA[UA]p...n Agent” |0...n Agent | 0...n
D 0 ' D
10 0 0 1
Agent |Service Agent (SA)| [SA Object Nianager
Agent .
0...n Deviceor (. I_l Provider |
Subsystem | f 0
1] 1 e (|
Proprietary or Standard Local APl or l
ly Remote Protocol Embedded Remote Protocol |
Device or Model Host Software,
Subsystem Device or Subsystem
Proxy Model Proxy
Model

Figure 76: Complete Reference Model

7.1 Introduction

As shown in Figure 76 above, the complete reference model shows the roles for the various entities of
the management system. Any given host, network device or storage device may implement one or more
of these roles as described later in this clause.

Here we present a concise definition of each of these roles and the requirements on implementations of
these roles in a management system. For each of these roles, specific functions are required to be
implemented in one or more functional areas:

e SLP Discovery Functions — the required discovery capabilities that the role must perform in
the overall management system.

¢ Basic CIM-XML Operations — the management model operations that the role will perform.

e Lock Management Operations — the locking operations that the role is expected to perform.

Bluefin Specification Version 1.0.0 Page 173 of 303

Bluefin Roles Bluefin Specification

The detail of these responsibilities for each of the roles is described in the following sections.

7.2 Client

7.2.1

7.2.2

7.2.3

7.2.4

The Client role in the overall management system is performed by software that is capable of
performing management operations on the resources under management. This includes monitoring,
configuration, and control of the operations on the resources. Typical clients will include user interface
consoles, complete management frameworks, and higher-level management applications and services
such as policy based management systems.

There can be zero or more clients in the overall management system. These clients can all coexist
simultaneously and can perform independent or overlapping operations in the management system. It
is outside the scope of this specification to specify client cooperation with other clients in any way. The
semantics of the described management system is that the last successful client operation is valid and
persists in the absence of any other client operations (last write wins).

It is expected that development kits for the management system will provide code for the required
functions implemented in clients. Consoles, frameworks and management applications can then use
this common code in order to comply with this specification. The specification of an API for this client
code, and specific language bindings for applications is also outside the scope of this specification, but
is a candidate for follow-on work.

SLP Functions

The Client role is required to implement SLP User Agent (UA) functionality as specified in Clause 5.6
User Agents (UA). The Client discovers all Agents within its configured scope that are required for its
operations by querying for service specific attributes that match the criteria for those operations.

CIM-XML Protocol Functions

The Client role MUST implement CIM-Client functionality as specified by [CIM-XML] and SHOULD
implement CIM-Listener functionality as specified by [CIM-XML].

Security Considerations

The Client role must implement security as specified in Clause 3:0bject Model.

Lock Management Functions

The Client role MUST implement Lock Management Client functionality as specified in Clause 6.11 Lock
Management Client — Rules and Recommendations. All Client operations that require isolation from
other Clients MUST use Lock Management to protect those operations.

7.3 Agent

The intention of the Agent role in a management system is to provide device management support in
the absence of any other role. A simple management system could consist of just a Client and an Agent
and all management functions can be performed on the underlying resource. This means that a vendor
can offer complete management for the resource by shipping a standalone client for the resource and
not depend on any other management infrastructure. Although, at the same time, the agent can
participate in a more complex management environment through the use of the standard mechanisms
described here.

There are two basic implementation choices for the agent role as shown in Figure 76:

Page 174 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Bluefin Roles

e Embedded Agent —the Agent functions are incorporated into the resource directly and do not
involve separate installation steps to become operational.

¢ Proxy Agent — the Agent is hosted on a system separate from the resource and communicates
with the resource via either a standard or proprietary remote protocol. This typically will
involve an installation operation for the Agent and configuration for, or independent discovery
of, the desired resource.

In order to minimize the footprint on the resource or proxy hosts, the required functions of the Agent
role have purposely been scaled back from those of a typical Object Manager running on host with more
significant resources. These required functions are described in the sections below.

7.3.1 SLP Functions

The Agent role is required to implement SLP Service Agent (SA) functionality as specified in Clause 3.7.
Optionally, it SHOULD implement Service Agent Server functionality or use an existing SA Server if
one exists. The Agent MUST advertise service specific attributes that allow the Client to locate it based
on its profile, vendor and model as shown in the template below:

template-type=bluefin
template-version=0.1
template-description=

This is an abstract service type. The purpose of the bluefin service
type is to organize into a single category all Bluefin services.

template-url-syntax=
url-path=; Depends on the concrete service type.

service-hi-name=string

This is a human readable name of the service for purpose of displaying
in a human interface.

service-hi-description=string O

This is a human readable description of the service for the purpose of
displaying in a human interface.

service-id=string

This is a text rendering of unique identifier. It contains the same value

that appears in the "serviceid:" URI registered with the service.
service-location-tcp=string M

The location of all services offered by the CIM Server over TCP transport.

Example: (service-location-tcp=http://fexample.com:8858,
hitps.//example.com:8859,rmi://example.com:29340)

role = string M L X

The Bluefin role.

agent, object manager, lock manager
profile = string M L X

Bluefin Specification Version 1.0.0 Page 175 of 303

Bluefin Roles Bluefin Specification

The Bluefin profile associated with the service. (waiting on input from OMWG)
block server, file server, host, ...

7.3.2 CIM-XML Protocol Functions

The Agent role MUST implement CIM-Server functionality as specified by [CIM-XML].
7.3.2.1 Security Considerations

The Agent role must implement security as specified in Clause 3:.
7.3.2.2 Required Intrinsic Methods
An Agent is required to implement the following intrinsic methods as specified in [CIM-XMLJ]:
e Get a CIM Class
e Get a CIM Instance
e Delete a CIM Instance
e Create a CIM Instance
e Modify a CIM Instance
e Enumerate subclasses of a CIM Class
¢ Enumerate subclass names of a CIM Class
e Enumerate instances of a CIM Class
e Enumerate instance names of a CIM Class
e Enumerate CIM Qualifier definitions
¢ Enumerate associators of a CIM Object
e Enumerate names of associators of a CIM Object
e Enumerate references to a CIM Object
e Enumerate names of references to a CIM Object
e Get a CIM Property value from a CIM Instance
e Set a CIM Property value from a CIM Instance
¢ Enumerate Qualifier declarations

Agents MAY implement other intrinsic methods as needed. Agents MUST also implement the intrinsic
methods for locking specified here.

7.3.2.3 Required Model Support

The Agent MUST implement the Interop Schema as specified in [CIM-XML] and as detailed in the
object model shown in Figure 77.

Page 176 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

Bluefin Roles

ManagedElement

*
SysteminNamespace Description: string
ScopeOfContainedData: uint16 [] (enum) Caption: string * *
DescriptionOfContainedData: st
scripti ntainedData: string [] o . 4 | Component
IdentificationOfManagedBystem Name: string
wk 0.1 Description: string
Caption: string
Systemldentification Status: string
1 InstallDate: datetime
[Propagated Keys]
Namespace CreationClassName: string [Key]
Name: string [key]
w % |[Propagated Keys] IdentificationFormats: uint16 [] (enum) ElementCapabili
CreationClassName: string [Key] FormatDescriptions: string []
Name: string [Key] * IdentificationData: string [] SystemComponent
Classlnfo: uint16 (enum)
DescriptionOfClasslnfo: string
0.1
Service System ServiceAccessPoint
CreationClassName: string [key] CreationClassName: string [key] CreationClassName:sting
Name: string [key] Name: string [key] Name:string :
P Starthode: string NameFormat: string SystemCreationClassName:siring
Started: boolean PrimaryOwnerName: string SystomName:siring
PrimaryOwnerContact: string
Namespace StartService(): uint32 Roles: string[]
InManager StopService(): uint32 e
- T T
1 ClassesInNamespace *
WBEMService
Capabilities
<
Instanceld : string [key]
Scopingld: string [key]
* ObjectManagerCommunicationCapabilities
ObjectManager Provider CommunicationMechanism: uint16[] (enum)
OtherCommunicationMechanism: string
ProviderCapabilies ProfilesSupported: uint16[] (enum)
OtherProfileDescription: string
ClassName: string Required MultipleOperationsSupported: boolean
ProviderType : uint16]] (enum)Required QueryLanguagesSupported: uint16[] (enum)
1 1 OtherProviderType : string OtherQueryLanguage: string
ObjectManagerlsProvider SupportedProperties: string] AuthenticationMechanismsSupported: uint16[] (enum)
SupportedMethods: string[] OtherAuthenticationDescription: string
MajorCategory: string
‘ MinorCategories: string[]
CIMXMLCommunicationMechanism
IndicationFilter

[Default CommunicationMechanism = "XML over HTTP"]
WBEMProtocolVersion: uint16 (enum)
ClMValidated: boolean

Figure 77: Interop Schema Object Model

7.3.3 Lock Management Functions

The Agent role SHOULD implement Lock Management Agent functionality as specified in Clause 6.9
Lock Identification Token Considerations.

7.4 Object Manager

The Object Manager role in an overall management system is intended to reduce the number of
network connections needed by a Client to manage large numbers of resources. It is also envisioned as
a convenient place to perform operations across multiple resources, further offloading these from the
Client as well.

In addition, the Object Manager role can provide a hosting environment for the plug-in
instrumentation of host-based resources and management proxies for resources with remote
management protocols. These plug-ins are called providers and considered sub roles of the Object
Manager (see Clause 7.4).

An Object Manager is not required in a management system, but is expected to be deployed at least as
a common infrastructure for host-based resources. In any large storage network, there may be several
Object Managers (as many as one per host). Communication between Object Managers may be
standardized in the future, but this capability is outside the scope of this specification. Object
Managers may act as a point of aggregation for multiple Agents as described in 5.7.1 using existing
standard mechanisms as specified here.

As Object Managers are expected to be deployed on hosts with more resources and less footprint
concerns than other managed resources, the required functions, specified below, are more extensive
that that of an Agent.

Bluefin Specification Version 1.0.0

Page 177 of 303

Bluefin Roles Bluefin Specification

7.4.1 SLP Functions

The Object Manager role is required to implement SLP Service Agent (SA) functionality as specified in
Clause 5.7 Service Agents (SAs). The Object Manager MUST advertise service specific attributes that
allow the Client to locate it based on its profile, vendor and model as shown in the template below:

template-type=bluefin

template-version=0.1

template-description=

This is an abstract service type. The purpose of the bluefin service
type is to organize into a single category all Bluefin services.

template-url-syntax=
url-path=; Depends on the concrete service type.

service-hi-name=string

This is a human readable name of the service for purpose of displaying
in a human interface.

service-hi-description=string O

This is a human readable description of the service for the purpose of
displaying in a human interface.

service-id=string

This is a text rendering of unique identifier. It contains the same value
that appears in the "serviceid:" URI registered with the service.
service-location-tcp=string M

The location of all services offered by the CIM Server over TCP transport.
Example: (service-location-tcp=http://fexample.com:8858,
https.//example.com:8859,rmi.//fexample.com:29340)

role = string M L X

The Bluefin role.

agent, object manager, lock manager

profile = string M L X

The Bluefin profile associated with the service. (waiting on input from OMWG)
block server, file server, host, ...

7.4.2 CIM-XML Protocol Functions
The Object Manager role MUST implement CIM-Server functionality as specified by [CIM-XML,].
7.4.2.1 Security Considerations
The Object Manager role must implement security as specified in Clause 4.
7.4.2.2 Required Intrinsic Methods

The Object Manager is required to implement the minimum profile as specified in [CIM-XMLJ]. In
addition, it MUST implement the intrinsic methods specified by 7.3.2.2.

Page 178 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Bluefin Roles

7.4.2.3 Required Model Support

The Object Manager MUST implement the Interop Schema as specified in [CIM-XML] and as detailed
in the object model shown in Figure 77.

7.4.3 Lock Management Functions

The Object Manager role SHOULD implement Lock Management Agent functionality as specified in
Clause 6.9 Lock Identification Token Considerations.

7.4.4 Provider

A sub-role within an Object Manager that can be used to provide management support for the resource,
especially useful when the resource is host-based (i.e. HBA or Host Software) and the platform provides
an Object Manager as part of its operating system.

7.4.4.1 Required Model Support

The Provider MUST implement the Interop Schema as specified in [CIM-XML] and as detailed in the
object model shown in Figure 77.

7.5 Lock Manager

The Lock Manager role is used to achieve locking across multiple instances of Agents and/or Object
Managers such that a Client can perform concurrent operations with isolation from other Clients. The
Lock Manager coordinates the acquisition of these locks, providing for the all or none semantics to
avoid deadlock situations. A lock manager coordinates these operations across a group of Lock
Management Agents (LM Agents) that can be Agents or Object Managers. The group is determined by
the Lock Manager’s participation in Discovery. Management Systems that do not have a Lock
Manager MAY be restricted to performing unprotected operations unless the Client has implemented
LMClient-LMAgent functionality.

7.5.1 SLP Functions

The Lock Manager role is required to implement SLP User Agent (UA) functionality as specified in
Clause 5.6 User Agents (UA). The Lock Manager discovers all Agents within its configured scope that
are part of its LMGroup.

The Lock Manager role is required to implement SLP Service Agent (SA) functionality as specified in
Clause 5.7 Service Agents (SAs). The Object Manager MUST advertise service specific attributes that
allow the Client to locate it based on its LM Group:

template-type=bluefin
template-version=0.1
template-description=

This is an abstract service type. The purpose of the bluefin service
type is to organize into a single category all Bluefin services.

template-url-syntax=
url-path=; Depends on the concrete service type.

service-hi-name=string

This is a human readable name of the service for purpose of displaying
in a human interface.

Bluefin Specification Version 1.0.0 Page 179 of 303

Bluefin Roles Bluefin Specification

service-hi-description=string O

This is a human readable description of the service for the purpose of
displaying in a human interface.

service-id=string

This is a text rendering of unique identifier. It contains the same value

that appears in the "serviceid:" URI registered with the service.
service-location-tcp=string M

The location of all services offered by the CIM Server over TCP transport.

Example: (service-location-tcp=http://fexample.com:8858,
https://fexample.com:8859,rmi://example.com:29340)

role = string M L X

The Bluefin role.

agent, object manager, lock manager

profile = string M L X

The Bluefin profile associated with the service. (waiting on input from OMWG)
block server, file server, host, ...

7.5.2 Lock Management Functions

The Lock Manager role is required to implement the Lock Management Server functionality as specified
in Clause 6.12 Lock Management Server — Rules and Recommendations.

7.6 Directory Server

The Directory Server role is used to facilitate Discovery of instances of the various roles in a
management system, but may also be used by management systems to store common configurations,
user credentials and management policies. Functions outside of Discovery are outside the scope of this
specification. The Directory Server role is optional for a compliant management system.

7.6.1 SLP Functions

The Directory Server role is required to implement SLP Directory Agent (DA) functionality as specified
in Clause 5.8 Directory Agents (DAs). The Directory registers all Agents, Object Managers and Lock
Managers within its configured scope and allows queries for their respective service specific attributes.

7.7 Combined Roles on a Single System

As mentioned previously, the various roles of the management system can be deployed in different
combinations to different systems throughout the managed environment. In general, there are no
restrictions on what roles can be deployed on any given system, but some examples are given below to
illustrate typical situations.

Page 180 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Bluefin Roles

7.7.1 Object Manager as an Agent Aggregator
7.7.1.1 SLP Functions

The Object Manager role MAY implement SLP User Agent (UA) functionality as specified in Clause 5.6
User Agents (UA). The Object Manager discovers all Agents within its configured scope that are
aggregated by querying for service specific attributes that match the criteria for those aggregations.

7.7.1.2 CIM-XML Protocol Functions

The Object Manager role MAY implement CIM-Client functionality as specified by [CIM-XML] and MAY
implement CIM-Listener functionality as specified by [CIM-XML]. An Object Manager MAY reflect
instances and classes from the aggregated Agents (perhaps by delegating operations to the Agents), but
is not required to do so. The Agent’s Object Manager Model instances SHOULD be reflected in the
advertised default namespace of the Object Manager. The hierarchy of Object Managers and Agents in a
multi-level system needs to be reflected in the model such that it can be administrated.

7.7.1.3 Security Considerations

7.7.1.4 Lock Manager Functions

The Object Manager role MAY implement Lock Management Client functionality as specified in Clause
6.11 Lock Management Client — Rules and Recommendations. All Object Manager operations that
require isolation from other Clients or Object Managers MUST use Lock Management to protect those
operations.

Bluefin Specification Version 1.0.0 Page 181 of 303

Bluefin Specification Installation and Upgrade

Clause 8: Installation and Upgrade

8.1 Introduction

The interoperability of the management communications in a storage network gives customers a
choice in vendors of their management solutions, but it also can introduce ease-of-use problems when
these different vendors deploy Clients, Agents and Object Managers. In order to supply a complete
management solution, many management vendors will provide not only management client and object
managers, but also other pieces of the management infrastructure (e.g., Lock Managers, Directory
Servers, Object Managers, Databases, Messaging Servers, Application Servers and even Providers and
Agents). Problems are possible when multiple vendors install/remove these infrastructure components
in the same environment and conflicts arise. One of the goals of creating management interoperability
is to reduce the time and expense end-users apply to the management of their SANs. Thus, the
management of constituents in a Bluefin environment should be easy to install, easy to upgrade, and
easy to reconfigure. Mature products using Bluefin technology should experience seamless and nearly
management free installation, upgrade, and reconfiguration.

This clause deals with the issues of Bluefin configuration management and recommends some
steps that vendors should take to minimize the problem, leading to better customer satisfaction with
the overall management solution.

8.2 Role of the Administrator

Ultimately, a vendor’s installation software cannot make perfect decisions when conflicts arise, and
since there may be valid reasons why a customer has deployed software of similar function from
multiple vendors. In the situation where two software components are both installed that perform the
same shared function, and only one can reasonably operate without conflicts, it is up to the
administrator to resolve these conflicts and remove or disable the redundant infrastructure
component(s).

Installation software can, however, make a best effort to detect any conflicts and notify the
administrator of possible conflicts during its installation and initialization. A vendor’s installation
software SHOULD allow the administrator to install and uninstall the various infrastructure
components on an individual basis should a conflict arise. The implications of this are that vendors will
be motivated to support interoperation with other vendor’s components. The advantage to the vendor is
that a customer is more likely to install a component that can demonstrate the most interoperability
with other components.

8.3 Goals

8.3.1 Non-Disruptive Installation and De-installation

Clients, Agents, Proxy Agents, Lock Managers and Directory Servers MUST be capable of being
installed and de-installed without disrupting the operation of other constituents in a Bluefin
management environment. An Object Manager independent of its providers MUST be capable of being
installed or de-installed from a Bluefin management environment without disrupting operations. As
SANs are often deployed in mission critical environments the up-time of the solution is critical and
thus, the uptime of the management backbone as a key component of the solution is equally critical.
Additionally, the installation and de-installation of Bluefin interface constituents SHOULD NOT
compromise the availability of mission critical applications.

Bluefin Specification Version 1.0.0 Page 183 of 303

Installation and Upgrade Bluefin Specification

8.3.2 Plug-and-Play

The ultimate goal of management interoperability is zero administration of the management system
itself. A customer should be able to install new storage hardware and software and have the new
component become part of the management system automatically. The use of discovery and default
configuration parameters throughout this specification is intended to assist in achieving this goal.

During the reconfiguration of the management system, the schema that Clients see should remain
consistent (Schema forward compatibility is ensured via CIM standard).

8.4 Installing Device Support

Manufacturers of storage hardware and software will typically install their product and the
accompanying management support as an system. Bluefin software installed will typically fall into
one of the following categories:

e Embedded Agent — the hardware device has an embedded Bluefin agent as an integrated
component. No other installation of software is needed to enable management of the device.

e Proxy Agent — the hardware or software comes with an Agent that is installed on a host. The
Proxy Agent will need to connect to the device and obtain a other unique identifying
information.

e Provider - the hardware or software comes with a Provider that is installed into an Object
Manager. The provider provides the management for one or more product instances and will
need to either discover those instances or be explicitly configured to communicate with the
device.

Conflicts are possible for Proxy Agents and Providers if multiple vendors attempt to install support
for the same device. Also, when a device vendor needs to upgrade the Provider or Proxy Agent for the
device, the installation software needs to determine all of the locations of the previous installations to
insure there is not duplicate management paths to the device and thus, insure reliable on-going
operation of the device.

8.4.1 Installation

Installation software for devices needs to be able to find existing object managers that may control the
device in order to offer an administrator a choice in management constituents for the device. In
addition, the installation software may desire to find existing agents/providers that provide device
support in order to reliably upgrade that support. For these reasons, an installation software program
may want to act as a Bluefin Client during installation. This allows it to make the automated decisions
that eliminate the need for an administrator to manually configure or adjust certain aspects of the
management system.

The provider registration schema shows what device support is already installed and installation
software SHOULD consult this schema before installing new software. If the installation software is
upgrading device support from one scheme to another (for example from a proxy agent to a provider, or
a provider to an embedded agent) the installation software needs to uninstall or disable the previous
software support elements.

During installation, the installation software, acting as a Lock Aware Client may detect that some
agents are Lock Unaware and needs to deal with (warn administrator) that both Lock Aware and Lock
Unaware Agents/Object Managers could be the cause of inconsistent state in their network.

Page 184 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Installation and Upgrade

8.4.2

8.4.3

Discovery and Initialization of Device Support

Per the Bluefin Reference Model, vendors of Host Software, Devices, and Subsystems that are managed
via a Proxy Agent or are managed through an Object Manager (with providers) are expected to provide
a means for establishing a reliable connection between the Host Software, Device, or Subsystem and
the ProxyAgent or Object Manager. As such, a special Client with administration/installation
capability (as supplied by the vendor) is required to supply the IP address of a device/subsystem with
related authentication credentials to a Proxy Agent or Object Manager designated to manage the
device. This administrative Client may obtain the IP address of the device/subsystem via automated
means (for example by probing through an in-band HBA, or looking at the object model that the HBA
agent already provides) or via manual means (for example by requiring a system manager to manually
input the IP address of the device/subsystem from documentation supplied by the vendor). Figure 78
below illustrates this requirement.

Administrative Administrative
Client Client
(Vendor A) (Vendor B)
1 Supplies IP
A 4 Address

IP Network
(in-band or out-band)

\ 4

Object Manager Proxy Agent
— | Provider
A
A 4
Y | Device or
| Subsystem
Device or - IP Address -
Subsystem (Vendor B)
- IP Address -
(Vendor A)

Figure 78: Configuration Administration

Removal/Update

During the removal of a device support software (agent, provider, object manager), the
installation/removal software (if available) should automatically detect existing device support
software in order to shutdown and remove these in a consistent manner. This detection process will
need to be cognizant that Clients may be actively using this support. device and that thus, the
device may need to be disabled for new management operations and administrated through an orderly
shut-down procedure prior to de-installation . The implementation of shutdown procedures for
components and any shutdown order dependency is outside the scope of this specification, but may
need to be considered by implementers.

During the update of device support software, installation software should automatically detect any
existing device support software in order to successfully complete the upgrade . This device support
may exist on multiple hosts. If the update includes installing a new provider, the installation software
will need to use the provider installation/upgrade method that is supported by the existing Object
Manager and will need to be coded for that (see 8.4.4 Reconfiguration).

Bluefin Specification Version 1.0.0 Page 185 of 303

Installation and Upgrade Bluefin Specification

When a software update will involve a major schema version upgrade (e.g., 2.x to 3.x), the installation
software needs to be cognizant of the effect of the schema upgrade on existing clients. For example, it
may choose to simultaneously support both versions for some period of time.

8.4.4 Reconfiguration

When device support update requires an update of a provider, the device support installation software
should configure the new provider with the same subscriptions that exist in the old provider before
removing the old provider. This can be done via the instances of the subscriptions in the agent or object
manager that currently exist.

8.4.5 Failure

Agents can become unavailable for several reasons. This includes powering off the device and
transient network failures. If a device’s model becomes unavailable, it is recommended that Clients do
not immediately remove that device from its visualization. If the device model shows up somewhere
else, the old visualization should be updated to remove the previous occurrence. Also, the client can
keep track of how long the device was down for purposes of availability management, etc. Clients may
have to restore indication subscriptions when the device or its proxy becomes available again. In the
case of a Proxy or Embedded agent, the agent (or its host) may go down, or the network to it could fail,
but the device may still be available and that needs to be factored in to any availability management.
In the case of a provider, the provider to device communication channel may also fail, but the device
may still be available for access.

8.5 Object Manager

8.5.1 Installation

Customers are increasingly sensitive to the size of the memory footprint for management software.
The goal is to minimize the impact on hosts that are not dedicated to running management software by
making appropriate choices during installation and giving the administrator control over these issues.
It is recommended that vendors take advantage of existing object managers if one exists, by installing
a provider for device support. If an object manager does not exist, or the device support does not work
with the existing object manager (due to interface requirements, for example) it is recommended that
the vendor supply a Proxy Agent that is lightweight for device support. Another option is to offer to
install an object manager that the vendor does have provider support for, allowing other vendors to
further leverage that installation.

In band providers have a connection issue where zoning may alter the management path to the device
from a provider or proxy agent. In this case, the device support may need to be installed on multiple
hosts in the network and the vendor will need to provide some way to coordinate which provider or
proxy agent is responsible for a particular device.

Vendors will typically install their providers in a unique namespace for isolation and qualification
reasons. The installer must then discover (possibly via an SLP UA) the existing namespaces and insure
that the one created for the new device is truly unique.

Installation of a management appliance still needs to be able to turn off built-in providers

Lock Aware Client need to deal with (warn administrator) both Lock Aware and Lock Unaware
Agents/Object Managers could be the cause of inconsistent state in their network

Page 186 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Installation and Upgrade

8.5.2

8.5.3

8.5.4

Removal/Upgrade

In addition to the issues in 8.4.3, an Object Manager may be upgraded while keeping the same
Providers as before. Depending on the Object Manager, the Providers may have to be reinstalled and
reconfigured following such an upgrade. In this case, an administrator may need to re-run the device
support installation software and it should be able to restore the previous configuration if possible.

Reconfiguration

See Clause 8.4.4 for issues that may also be applicable to Object Managers.

Failure

Temporary failure of an object manager (for example, host powered off) can result in bad installation
decisions for installation software. In this case, it is advisable that the installation software provide for
manual input of additional components of the management system that the installation software needs
to be aware of.

8.6 Client

8.6.1

8.6.2

8.6.3

8.7

8.7.1

8.7.2

Removal

When Client software is removed, the removal software should go in and remove any subscriptions for
that client that exist in any agent or object manager. In addition, it should release any locks that are
held in order to clean up the lock state as well.

Reconfiguration

Client software can include a Listener that is configured to listen on a specific port. When this port is
reconfigured, the client should redirect any Indication Handlers in existing agent and object managers
as a result.

Failure

If possible, Clients should release locks before shutting down or upon unexpected failure.

Lock Manager

Installation

When installing a lock manager, the installation software SHOULD check for an existing lock manager
for the configured LMGroup, if a Lock Manager is already present, don’t install, If the installation
software can’t see a Lock Manager, the software may prompt the administrator to see if an existing
(preferred) Lock Manager might be down (or even better — prompt only if a run time duplication is
discovered).

Removal

During removal of a Lock Manager, the removal software SHOULD shutdown the Lock Manager to
ensure there are no outstanding lock requests. A well designed Lock Manager SHOULD include a
shutdown sequence that starts denying requests for new locks and advertises that it is going away
upon the shutdown request and before the actual shutdown.

Without this clean up process, a lock client will not be able to use a lock manager to release locks and
the locks will be unavailable until the agent times out their leases.

Bluefin Specification Version 1.0.0 Page 187 of 303

Installation and Upgrade Bluefin Specification

8.7.3 Reconfiguration

As a storage network grows, it may be desirable (for scalability reasons) to split the domain into two or
more separate LMGroups. Vendors should advise their administrators on appropriate rules for this
division (for example, not being able to do concurrent protected operations across groups).

It recommended that vendors provide a means of determining when a Lock Manager is overloaded,
causing unacceptable delays in processing lock requests. This information can be pivotal in ensuring
timely processing of management operations within the storage network. Because of the complications
involved in splitting a storage network into multiple LMGroup domains, a system administrator will
desire to scale a single Lock Manager as far as possible.

8.8 Directory Server

8.8.1 Installation

The installation of more than one directory server in a management system does not impose a
significant burden for management clients and adds to the overall availability. Vendors should
recommend to administrators of their products that one or more directory servers should be deployed in
the management system. Customers may have already done this for network or system management
reasons already.

8.8.2 Removal/Failure

SLP Clients already handle failure and removal of DAs as per the specification (See Clause 5:).

8.9 Management Domains

The set of agents, object managers and a lock manager that are configured with the same LMGroup
value may be considered a management domain for purposes of administration. The use of SLP scope
is independent of the use of LMGroups for these purposes. Clients should not depend on any
relationship between LMGroups and SLP Scopes.

8.9.1 Initial Configuration

Vendors should recommend that administrators of their products use the same LMGroup value for all
agents and object managers in the same storage network (might include multiple fabrics). Vendors
should also recommend to administrators of their products that all agents and object managers be on
the same IP subnet or on connected subnets where the intervening router is configured to allow
multicast packets between the subnets (this is to allow SLP discovery messages to flow to the entire
management system).

8.9.2 Reconfiguration

Vendors of lock managers SHOULD consider producing software that will easily reconfigure (merge or
split) a lock management domain to ease the burden of this task. Splitting or merging an LMGroup
should involve bringing the old LockManager(s) down, reconfiguring the agents and object managers
with their new LMGroup value (meanwhile the clients are going directly to the agents for lock
requests) and then starting both of the new Lock Manager(s).

Page 188 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Glossary

Appendix A: Glossary

Introduction
This Glossary provides a common set of definitions and terminology for usage within Bluefin
documents, in particular the Bluefin Specification.

Where appropriate the source of a glossary entry is identified. Where a Bluefin definition conflicts with
or is substantially different from an accepted definition from another source, both entries will be
included.

All links are internal to this document. At this time internal hyperlinks are to the alphabetic section
rather than to specific entries. No external links are included.

New Additions/Modifications:

This dictionary represents an attempt to arrive at a common body of terminology for the technologies it
represents. The reader should recognize that in this rapidly evolving field, new terminology is
constantly being introduced, and common usage is shifting. It is a living document, updated as
necessary to reflect a consensus on common usage.

Bluefin Specification Version 1.0.0 Page 189 of 303

Glossary Bluefin Specification

A

Access Control

SOURCE [SNIA]

The granting or withholding of a service or access to a resource to a requestor based on the identity of
the principal for which the requestor is acting.

Address masking
CONTEXT [Storage System]

Address masking is a function of a host I/O controller (device driver) that filters access to certain storage
resources on the SAN. It puts the responsibility of segregating I/O paths on the individual server system
in the SAN and requires coordination of all servers to avoid access collisions. Also called Host-based
LUN Masking.

Addressable Unit
CONTEXT [Storage System]

storage addressable unit (e.g. LUN, Virtual Disk, Logical Disk, Logical Volume, Volume Set).

Agent
SOURCE (Bluefin)
An Object Manager that includes the provider service for a limited set of resources.
An Agent may be embedded or hosted and can be an aggregator for multiple devices.
Aggregation
SOURCE(CIM V2.2 Specification, Appendix E Glossary)

A strong form of an association. For example, the containment relationship between a system and the
components that make up the system can be called an aggregation. An aggregation is expressed as a
Qualifier on the association class. Aggregation often implies, but does not require, that the aggregated
objects have mutual dependencies.

ANSI:
CONTEXT [Standards] SOURCE[SNIA]
Acronym for American National Standards Institute.
API:
CONTEXT [Management] SOURCE[SNIA]

Acronym for Application Programming Interface. An interface used by an application program to request
services. Abbreviated API. The term API is usually used to denote interfaces between applications and
the software components that comprise the operating environment (e.g., operating system, file system,
volume manager, device drivers, etc.)

Page 190 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Glossary

Array
CONTEXT [Storage System]

A storage array, i.e., a disk array or tape array.

Array Configuration
CONTEXT [Storage System]

1. Assignment of the disks and operating parameters for a disk array. Disk array configuration includes
designating the array’s member disks or extents and the order in which they are to be used, as well as
setting parameters such as stripe depth, RAID model, cache allowance, spare disk assignments, etc. cf.

LUN Mapping
2. The arrangement of disks and operating parameters that results from such an assignment.

Asymmetric Virtualization Appliance:
CONTEXT [Storage System] SOURCE[SNIA]

Synonym for an appliance that provides out-of-band virtualization. Out-of-band virtualization is the
preferred term.

ATM:
CONTEXT [Network] SOURCE[SNIA]

Acronym for Asynchronous Transfer Mode.

B

Block Virtualization:
CONTEXT [Storage System] SOURCE[SNIA]

The act of applying virtualization (q.v.), to one or more block based (storage) services for the purpose of
providing a new aggregated, higher level, richer, simpler, secure etc. block service to clients. cf. file
virtualization. Block virtualization functions can be nested. A disk drive, RAID system or volume manager
all perform some form of block address to (different) block address mapping or aggregation.

C

Cardinality
SOURCE (DMTF)
The number of values that may apply to an attribute for a given entity. Refer UML Standards.
CIM:
CONTEXT [Management] SOURCE[SNIA]

Acronym for Common Information Model. An object oriented description of the entities and relationships
in a business' management environment maintained by the Distributed Management Task Force.

Bluefin Specification Version 1.0.0 Page 191 of 303

Glossary Bluefin Specification

Abbreviated CIM. CIM is divided into a Core Model and Common Models. The Core Model addresses
high-level concepts (such as systems and devices), as well as fundamental relationships (such as
dependencies). The Common Models describe specific problem domains such as computer system,
network, user or device management. The Common Models are subclasses of the Core Model and may
also be subclasses of each other.

Client
SOURCE (LBP-WG)

A process that issues requests for service. Formulating and issuing requests may involve multiple client
processes distributed over one or more computer systems. The collection of client processes involved in
formulating and issuing requests is known as a consumer.

Completion Semantics
SOURCE (LBPWG)

Specifies how a method notifies its caller that its operations have completed. To this end, notification of
completion is accomplished in either of two ways:

1. Asynchronous notification: Upon return of the method, its operations may not have yet
completed. The caller is then required to employ some other mechanism to determine when the

operations complete. Events, callbacks, polling are examples of mechanisms available to the
caller in this regard.

2. Synchronous notification: The thread calling the method blocks until the method’s operations
succeed or fail.

Completion semantics refer to the operations executed by the method, and not the method completion
itself. For example, suppose we write a method to resync a split-mirror. We recognize that this could
take an indeterminate amount of time, so we design a method, resync(), to spawn a task to manage the
set of operations required for the resynchronization and then return to the caller. When the method,
resync(), completes and returns to the caller, the resynchronization of the mirrors will [most likely] not
have completed. So, the method has completed but its operations have not.

Consumer
CONTEXT [Storage System]

A host, identified by HBA WWN or other identifier, that is allowed access to a storage addressable unit

Control Software
CONTEXT [Storage System]

A body of software that provides common control and management for one or more disk arrays or tape
arrays. Control software presents the arrays of disks or tapes it controls to its operating environment as
one or more virtual disks or tapes. Control software may execute in a disk controller or intelligent host bus
adapter, or in a host computer. When it executes in a disk controller or adapter, control software is often
referred to as firmware.

Concurrency Control Protocol
SOURCE (LBP-WG)

A set of rules for identifying and resolving resource conflicts between multiple, non-cooperating clients.
The three most common concurrency protocols are:

Page 192 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Glossary

1. Lock ordering: Transactions are ordered according to the order of arrival of their operations at
the resource(s).

2. Optimistic ordering: Transactions proceed until they are ready to commit, whereupon a check is
made to see whether they have performed conflicting operations.

3. Timestamp ordering: Transactions are ordered according to the time they were initiated.
Cooperating Clients
SOURCE (LBP-WG)

A set of consumer processes that are aware of each other and are able to coordinate access to (and
control of) resources among themselves

D

Data Invariant
SOURCE (LBP-WG)

A data invariant is the name given to the consistency-state of shared data. A data invariant must always
be TRUE. When the data invariant is violated, the invariant must be protected via mutual exclusion. For
example, suppose | have a list of records and a record pointer, i , that is always set to point to the last
record in the list. In this example, the invariant is the record pointer always points to the last record.

But observe what happens when | append a record to the list as follows:
(a) Add record to record[i].
(b) i += 1

After (a) completes, but before (b) is invoked, i no longer points to the last record in the list. Now,
suppose another thread comes along and attempts to read the last record in the list. In this case, the
thread will get the penultimate record, not the last one — Because i has not yet been updated. The
solution to this problem is to serialize access to both operations using a lock or a semaphore.

BEG N LOCK
(a) Add record to record[i].
(b) i += 1;
END LOCK
DES:
CONTEXT [Security] SOURCE[SNIA]
Acronym for Data Encryption Standard.
Device
CONTEXT [TBD]

a storage system that is addressable from the SAN.

Bluefin Specification Version 1.0.0 Page 193 of 303

Glossary Bluefin Specification

DHCP:
CONTEXT [Network] SOURCE[SNIA]

Acronym for dynamic host control protocol. An Internet protocol that allows nodes to dynamically acquire
("lease") network addresses for periods of time rather than having to pre-configure them. Abbreviated
DHCP. DHCP greatly simplifies the administration of large networks, and networks in which nodes
frequently join and depart.

Directory
SOURCE (FC-GS-3)

A repository of information about objects that may be accessed via a Directory Service.

Directory Agent (DA):
CONTEXT [SLP] SOURCE[BIuefin]

In the context of SLP, a process that caches SLP service advertisements registered by Service Agents
and forwards the service advertisements to User Agents on demand.

Discovery
CONTEXT [Management]

Discovery provides information about what physical and logical SAN entities have been found within the
management domain. Enough information is provided to support the creation of correct Topology maps.
This information changes dynamically, as SAN entities are added, moved, or removed.

Disk Array
CONTEXT [Storage System]

A set of disks from one or more commonly accessible disk subsystems, combined with a body of control
software. The control software presents the disks' storage capacity to hosts as one or more virtual disks.
Control software is often called firmware or microcode when it runs in a disk controller. Control software
that runs in a host computer is usually called a volume manager.

DLT:
CONTEXT [Tape] SOURCE[SNIA]

Acronym for Digital Linear Tape. A family of tape device and media technologies developed by Quantum
Corporation.

DRM:
CONTEXT [Management] SOURCE[SNIA]

Disk Resource Management. A work group in SNIA that is defining CIM models for storage devices,
including switches, HBAs, Disk subsystems, Tape and storage appliances.

Page 194 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Glossary

DMTF:
CONTEXT [Management] SOURCE[SNIA]

Distributed Management Task Force. An industry organization that develops management standards for
computer system and enterprise environments. DMTF standards include WBEM, CIM, DMI, DEN and
ARM. Abbreviated DMTF. The DMTF has a web site at www.dmtf.org.

E

Enclosure
CONTEXT [Storage System]
A box or cabinet.
Enumerate
CONTEXT [CIM] SOURCE[CIM]

This operation is used to enumerate subclasses, subclass names, instances and instance names in the
target Namespace. If successful, the method returns zero or more requested elements that meet the
required criteria.

Extent
CONTEXT [Storage Device] [Storage System] SOURCE[CIM]

1. Asetof consecutively addressed FBA disk blocks that is allocated to consecutive addresses of a single
file.

2. A set of consecutively located tracks on a CKD disk that is allocated to a single file.

3. A set of consecutively addressed disk blocks that is part of a single virtual disk-to-member disk array
mapping. A single disk may be organized into multiple extents of different sizes, and may have multiple
(possibly) non-adjacent extents that are part of the same virtual disk-to-member disk array mapping. This
type of extent is sometimes called a logical disk.

Extrinsic Method
CONTEXT [CIM]

A method defined as part of CIM Schema. Extrinsic methods are invoked on a CIM Class (if static) or
Instance (otherwise). An extrinsic method call is represented in XML by the <METHODCALL> element,
and the response to that call represented by the <METHODRESPONSE> element. cf. Intrinsic Method

F

Fabric
CONTEXT [SAN] SOURCE (FC-GS-3)

Any interconnect between two or more Fibre Channel N_Ports, including point-to-point, loop, and
Switched Fabric.

Switched Fabric: A fabric comprised of one or more Switches

Bluefin Specification Version 1.0.0 Page 195 of 303

Glossary Bluefin Specification

FC-GS-3
SOURCE (www.T11.0rg)
Fibre Channel - Generic Services 3 .. Abbreviation FC-GS-3 or GS-3
NCITS Project Number 1356-D T11.3 Group
FIPS:
CONTEXT [Security] SOURCE[SNIA]

Acronym for Federal Information Processing Standard. Standards (and guidelines) produced by NIST for
government-wide use in the specification and procurement of Federal computer systems.

G

Grammar
SOURCE (LBP-WG)

A formal definition of the syntactic structure of a language (see syntax), normally given in terms of
production rules which specify the order of constituents and their sub-constituents in a sentence (a well-
formed string in the language). Each rule has a left-hand side symbol naming a syntactic category (e.g.
"noun-phrase” for a natural language grammar) and a right-hand side which is a sequence of zero or
more symbols. Each symbol may be either a terminal symbol or a non-terminal symbol. A terminal symbol
corresponds to one "lexeme" - a part of the sentence with no internal syntactic structure (e.g. an identifier
or an operator in a computer language). A non-terminal symbol is the left-hand side of some rule.

GS-3
SOURCE (www.T11.0rg)
Refer FC-GS-3

H

Hard Zone
SOURCE(BIuefin)

A Zone consisting of Zone Members, which are permitted to communicate with one another via the
Fabric. Hard Zones are enforced by the Fabric, which prohibits communication among members not in
the same Zone. Note that well-known addresses are implicitly included in every Zone.

HBA
CONTEXT [TBD]
host bus adapter, card that contains ports for host systems.
Host
CONTEXT [TBD]

A computer running an O/S.

Page 196 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Glossary

HTTP
SOURCE (LBP-WG)
A request-reply protocol called the HyperText Transfer Protocol, HTTP.
Hub
CONTEXT [Bluefin]

interconnect element that supports a ring topology.

|

Inheritance Relationship
SOURCE (DMTF)
Refer UML Standards.
Interconnect Element
CONTEXT [Bluefin]
Non terminal network elements (Switches, hubs, routers, directors).
Interface Definition Language (IDL)
SOURCE (LBP-WG)

A high-level declarative language that provides the syntax for interface declarations. Some examples of
IDLs in common usage today are:

e DCE’'s RPC IDL
e Microsoft's DCOM IDL (based on the DCE IDL)
e OMG IDL (used to define the DOM XML interface)
e DMTF MOF (an IDL-derived specification).
Intrinsic Method
CONTEXT [CIM]
Operations made against a CIM server and a CIM Namespace independent of the implementation of the
schema defined in the server. Examples of intrinsic methods in XML include the <IMETHODCALL>

element, and the response to that call represented by the <IMETHODRESPONSE> element. cf. Extrinsic
Method

J

JBOD:
CONTEXT [Storage System] SOURCE[SNIA]

Acronym for “Just a Bunch Of Disks.” Originally used to mean a collection of disks without the coordinated
control provided by control software; today the term JBOD most often refers to a cabinet of disks whether
or not RAID functionality is present. cf. disk array.

Bluefin Specification Version 1.0.0 Page 197 of 303

Glossary Bluefin Specification

==

LAN:
CONTEXT [Network]
Acronym for Local Area Network.
Language-Binding
SOURCE (LBP-WG)

The association of a programming language (e.g., C++, Java, C) with an interface definition language.
For example, OMG IDL supports many language bindings because it can be compiled into a variety of
programming languages (C, C++, Java, ADA, COBOL, etc.). By contrast, Microsoft's DCOM IDL only
supports one language binding, C++. Similarly, Java IDL also supports only one language binding (Java).

Some IDLs do not support any [formal] language bindings. DMTF’s MOF, for example, is derived from
OMG’s IDL but is used as a data modeling language more in the spirit of SQL than programmatic
interfaces.

Lock Manager:
CONTEXT [Locking] SOURCE [Bluefin]
Short name for Lock Management Server.
Logical Disk
CONTEXT [Storage System]

A set of consecutively addressed FBA disk blocks that is part of a single virtual disk to physical disk
mapping. Logical disks are used in some array implementations as constituents of logical volumes or
partitions. Logical disks are normally not visible to the host environment, except during array configuration
operations. cf. extent, virtual disk

Logical Unit (LU)
CONTEXT [SCSI]

The entity within a SCSI target that executes 1/0 commands. SCSI I/O commands are sent to a target and
executed by a logical unit within that target. A SCSI physical disk typically has a single logical unit. Tape
drives and array controllers may incorporate multiple logical units to which 1/0O commands can be
addressed. Each logical unit exported by an array controller corresponds to a virtual disk. cf. LUN, target,

target ID
Logical Unit Number (LUN)
CONTEXT [SCSI]
The SCSI identifier of a logical unit within a target.
Logical Volume
CONTEXT [Storage System]

A virtual disk made up of logical disks. Also called a virtual disk, or volume set.

Page 198 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Glossary

LTO:
CONTEXT [Tape]
Acronym for Linear Tape Open.
LUN Mapping
CONTEXT [Storage System]

The process of creating a disk resource and defining its external access paths, by configuring LUs
(Logical Units) from the disk array logical disk volumes - either by grouping them as a single larger LU or
by creating partitions. The logical unit (LU) is then be mapped to an external ID descriptor (for example: a
SCSI Port, Target ID and LU Number). An LU may be mapped for access from multiple ports and/or
multiple target IDs, providing alternate paths for nonstop data availability.

LUN Mapping is a necessary task to be able to export the LUN to the Fabric/Server/etc. It can be done
independent of any knowledge of the intended use of the LUN. Only LUNs that are exposed via a port
are available for access.

LUN Masking
CONTEXT [Storage System]

Process of configuring software in SAN nodes to determine which hosts have access to exported drives.
LUN masking can be either server-based address masking or storage based port mapping. cf. Port

Mapping

M
MAN:

CONTEXT [Network] SOURCE [SNIA]

Acronym for Metropolitan Area Network. A network that connects nodes distributed over a metropolitan
(city-wide) area as opposed to a local area (campus) or wide area (national or global). Abbreviated MAN.
From a storage perspective, MANs are of interest because there are MANs over which block storage
protocols (e.g., ESCON, Fibre Channel) can be carried natively, whereas most WANs that extend beyond
a single metropolitan area do not currently support such protocols.

Managed Object Format
CONTEXT [Management]

The syntax and formal description of the objects and associations in the CIM schemas. Abbreviated as
MOF. MOF can also be translated to XML using a Document Type Definition published by the DMTF.

Mapping
CONTEXT [Storage System]

Conversion between two data addressing spaces. For example, mapping refers to the conversion
between physical disk block addresses and the block addresses of the virtual disks presented to
operating environments by control software.

Bluefin Specification Version 1.0.0 Page 199 of 303

Glossary Bluefin Specification

Marshalling
SOURCE (LBP-WG)

The set of operations by which a message is converted into a transfer syntax. In HTTP, requests and
replies are marshaled into formatted ASCI-text strings.

MD5:
CONTEXT [Security] SOURCE [SNIA]

A specific message-digest algorithm producing a 128-bit digest which is used as authentication data by
an authentication service.

Method
SOURCE (LBP-WG)

The name of [one or more] operations|[s] performed by an instance of an object class. Methods are
distinguished from operations as follows: A method is a name for one or more operations that may
execute when the method is invoked. For example, when the method, pri nt Sel f (), is called, the
operation of printing the state of the reference object is executed.

Synonyms are: Function, procedure, or subroutine. Usage of these terms should be deprecated.

In most models, a method is characterized by its name, return-type, parameters, completion semantics
(asynchronous or synchronous), and side-effects (e.g., event generation, message propagation, etc.).

1. Methods are specified in an IDL.

2. Methods are declared in source header files of a programming language (.h files, Java Interface
files, etc.,).

3. Methods are defined (or implemented) in source implementation files (.cpp. java class files, etc.,).

Method specifications are language independent. Method declarations and implementations are, by
construction, language dependent.

MOF
CONTEXT [Management]

Acronym for Managed Object Format.

Monitoring
CONTEXT [Bluefin]

Monitoring provides management information about the current state of individual logical and physical
SAN entities. This information changes dynamically, as SAN entities perform their functions, are serviced,
experience errors, etc. Monitoring can only be done on SAN entities that are known via Discovery.

N
NAA:

CONTEXT [Standards] SOURCE [SNIA]

Acronym for Network Address Authority. A four bit identifier defined in FC-PH to denote a network
address authority (i.e., an organization such as CCITT or IEEE that administers network addresses).

Page 200 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Glossary

NDMP:
CONTEXT [Backup] SOURCE [SNIA]

Acronym for Network Data Management Protocol. A communications protocol that allows intelligent
devices on which data is stored, robotic library devices, and backup applications to intercommunicate for
the purpose of performing backups. Abbreviated NDMP.

An open standard protocol for network-based backup of NAS devices. Abbreviated NDMP. NDMP allows
a network backup application to control the retrieval of data from, and backup of, a server without third-
party software. The control and data transfer components of backup and restore are separated. NDMP is
intended to support tape drives, but can be extended to address other devices and media in the future.
The Network Data Management Task Force has a web site at http://www.ndmp.org.

N_Port
CONTEXT [SAN]
Refer to Port. Node
CONTEXT [SAN] SOURCE (FC-GS-3)
A collection of Ports. A Fiber channel device with a group of ports.
SOURCE (SNIA)

An addressable entity connected to an I/O bus or network. Used primarily to refer to computers, storage
devices, and storage subsystems. The component of a node that connects to the bus or network is a port.

Non-cooperating clients
SOURCE (LBP-WG)

A set of consumer processes that are independent of each other, compete for resources and execute
independently of the other. User processes on a multi-user machine are non-cooperating clients with
respect to the operating system.

o

Operation
SOURCE (LBP-WG)

An action executed within the body of a method (AKA procedure, function, or subroutine). Operations are
distinct from methods (see Method).

Out-of-Band
CONTEXT [Fibre Channel] SOURCE [SNIA]

Transmission of management information for Fibre Channel components outside of the Fibre Channel
network, typically over Ethernet.

Bluefin Specification Version 1.0.0 Page 201 of 303

Glossary Bluefin Specification

P

Partition

PKI:

CONTEXT [Storage System]

A subdivision of the capacity of a physical or virtual disk. Partitions are consecutively numbered ranges of
blocks that are recognized by MS-DOS, Windows, and most UNIX operating systems.

Synonym for the type of extent used to configure arrays.

A contiguously addressed range of logical blocks on a physical media that is identifiable by an operating
system via the partition's type and subtype fields. A partition's type and subtype fields are recorded on the
physical media and hence make the partition self-identifying.

CONTEXT [Security] SOURCE [SNIA]

Acronym for public key infrastructure. A framework established to issue, maintain, and revoke public key
certificates accommodating a variety of security technologies.

Platform

Port
CONTEXT [SAN]

SOURCE (GS3)

Collection of Nodes.

Connection point for links.

SOURCE [FC-GS-3]

N_Port: A hardware entity that includes a Link_Control_Facility. It may act as an Originator, a Responder,
or both.

N_Port identifier: A Fabric unique address identifier by which an N_Port is uniquely known. The identifier
may be assigned by the Fabric during the initialization procedure. The identifier may also be assigned by
other procedures not defined in FC-FS.

Port_Name: As defined in FC-FS.

Port Mapping

CONTEXT [Storage System]

Function of a storage subsystem to define which hosts have access to exported drives. This configuration
authorizes specified server HBA WWNSs to access the secured LU while preventing other unauthorized
servers/hosts from either seeing the secured LU or accessing the data contained on the secured LU. cf.

LUN Masking

Page 202 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Glossary

Profile:
CONTEXT [Standards] SOURCE [SNIA]

A proper subset of a standard that supports interoperability across a set of products or in a specific
application. Profiles exist for FCP (FCSI and PLDA), IP, and other areas. A profile is a vertical slice
through a standard containing physical, logical and behavioral elements required for interoperability.

Protocol
SOURCE (LBP-WG)

A set of rules that define and constrain data, operations, or both. For example, xmICIM uses XML as its
transfer syntax, and HTTP as the request-reply protocol HTTP is layered over the TCP/IP network
protocol.

Provider
SOURCE (DMTF)

A COM server that communicates with managed objects to access data and event notifications from a
variety of sources, such as the system registry or an SNMP device. Providers forward this information to
the CIM Object Manager for integration and interpretation.

class provider : A COM server that supplies class definitions. Class providers can support data retrieval,
modification, deletion, enumeration, and query processing.

property provider : A type of provider that supports the retrieval and modification of the CIM properties.

Q
R

RAID:

CONTEXT [Storage System] SOURCE [SNIA]

An Acronym for Redundant Array of Independent Disks, a family of techniques for managing multiple
disks to deliver desirable cost, data availability, and performance characteristics to host environments.

Relationship
SOURCE (DMTF)
Refer UML Standards.
Required Reference
SOURCE (DMTF)
Refer UML Standards.

Bluefin Specification Version 1.0.0 Page 203 of 303

Glossary Bluefin Specification

S

SAN
CONTEXT [Fibre Channel] [Network] [Storage System]

Acronym for storage area network. (This is the normal usage in SNIA documents.)
Acronym for Server Area Network which connects one or more servers.

Acronym for System Area Network for an interconnected set of system elements.
A group of fabrics that have common leaf elements.

Pob=

Scope:
CONTEXT [SLP] SOURCE [Bluefin]
A set of services, typically making up a logical administrative group.
SCSl:
CONTEXT [Standards] SOURCE [SNIA]
Acronym for Small Computer System Interface.
Semantics
SOURCE (LBP-WG)

The meaning or behavior associated with an entity. For example, we might say the semantics of the
method, resync_nirror (), is encoded in the method name. By contrast, the semantics of the UNIX
i octl () method is encoded in the command parameter.

Server
SOURCE (LBP-WG)

A process that fields and/or dispatches requests. Honoring a request may involve more than one server
process distributed over one or more computer systems. The collection of server processes that are
involved in honoring a request are known as service providers.

Service Agent (SA):
CONTEXT [TBD] SOURCE [Bluefin]

In the context of SLP, this refers to a process working on behalf of one or more services to advertise the
services in the network.

Service Agent Server (SAServer):
CONTEXT [TBD] SOURCE [Bluefin]

In the context of SLP, this refers to a process working on behalf of one or more Service Agents to listen
on a particular port number for SLP service requests.

SES:
CONTEXT [SCSI] SOURCE [SNIA]

Acronym for SCSI Enclosure Services. An ANSI X3T10 standard for management of environmental
factors such as temperature, power, voltage, etc. Abbreviated SES.

Page 204 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Glossary

SLP:
CONTEXT [SLP, Discovery]
Acronym for Service Location Protocol.
Small Computer Storage Interface (SCSI)
CONTEXT [SCSI]

A collection of ANSI standards and proposed standards which define 1/O buses primarily intended for
connecting storage subsystems or devices to hosts through host bus adapters. Originally intended
primarily for use with small (desktop and desk-side workstation) computers, SCSI has been extended to
serve most computing needs, and is arguably the most widely implemented I/O bus in use today.

SNIA:
CONTEXT [Standards] SOURCE [SNIA]

Acronym for Storage Networking Industry Association. An association of producers and consumers of
storage networking products whose goal is to further storage networking technology and applications.

SNMP:
CONTEXT [Networking, Management] SOURCE [SNIA]

Acronym for Simple Network Management Protocol. An IETF protocol for monitoring and managing
systems and devices in a network. The data being monitored and managed is defined by a MIB. The
functions supported by the protocol are the request and retrieval of data, the setting or writing of data, and
traps that signal the occurrence of events.

SNMP Trap:
CONTEXT [Management] SOURCE [SNIA]
A type of SNMP message used to signal that an event has occurred.
Soft Zone
SOURCE (FC-GS-3)

A Zone consisting of Zone Members which are made visible to each other through Client Service
requests. Typically, Soft Zones contain Zone Members that are visible to devices via Name Server
exposure of Zone Members. The Fabric does not enforce a Soft Zone. Note that well known addresses
are implicitly included in every Zone.

Spare:
CONTEXT [Storage System] SOURCE [SNIA]
An object reserved for the purpose of substitution for a like object in case of that object's failure.
SPI:
CONTEXT [SCSI] SOURCE [SNIA]

Acronym for SCSI Parallel Interface. The family of SCSI standards that define the characteristics of the
parallel version of the SCSI interface. Abbreviated SPI. Several versions of SPI, known as SPI, SPI2,
SPI3, etc., have been developed. Each version provides for greater performance and functionality than
preceding ones.

Bluefin Specification Version 1.0.0 Page 205 of 303

Glossary Bluefin Specification

SRM:
CONTEXT [Management] SOURCE [SNIA]

Acronym for storage resource management. Management of physical and logical storage resources,
including storage elements, storage devices, appliances, virtual devices, disk volume and file resources.

SSL:
CONTEXT [Security] SOURCE [SNIA]

Acronym for Secure Sockets Layer. A suite of cryptographic algorithms, protocols and procedures used to
provide security for communications used to access the world wide web. The characters "https:" at the
front of a URL cause SSL to be used to enhance communications security. More recent versions of SSL
are known as TLS (Transport Level Security) and are standardized by the Internet Engineering Task
Force (IETF)

SSP:
CONTEXT [Business]
Acronym for Storage Service Provider.
Switch:
CONTEXT [TBD]
Fibre channel interconnect element that supports a mesh topology.
Symmetric Virtualization Appliance:
CONTEXT [Storage System] SOURCE [SNIA]

Synonym for an appliance that provides in-band virtualization. In-band virtualization appliance is the
preferred term.

Synchronous
SOURCE (LBP-WG)
A method that blocks the calling thread until all operations have completed or failed.
Syntax
SOURCE (LBP-WG)

(The structure of strings in some language. A language's syntax is described by a grammar. For example,
the syntax of a binary number could be expressed as

bi nary_number = bit [binary_nunber]
bit ="0" | "1"

Meaning that a binary number is a bit optionally followed by a binary number and a bit is a literal zero or
one digit. The meaning of the language is given by its semantics.

Page 206 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Glossary

T
Tape:
Tape Drive:

CONTEXT [Storage System] SOURCE [SNIA]

A storage device that writes data sequentially in the order in which it is delivered, and reads data in the
order in which it is stored on the media. Unlike disks, tapes use implicit data addressing. cf. disk

Tape Array
CONTEXT [Storage System]

A collection of tapes from one or more commonly accessible storage subsystems, combined with a body
of control software.

Target
CONTEXT [SCSI]
The system component that receives a SCSI I/O command. cf., LUN, target ID
Target Id
CONTEXT [SCSI]
The SCSI bus address of a target device or controller.
TCP/IP:
CONTEXT [Network] SOURCE [SNIA]

Shorthand for the suite of protocols that includes TCP, IP, UDP, and ICMP. This is the basic set of
communication protocols used on the Internet.

TLS:
CONTEXT [Security]
Acronym for Transport Layer Security.
Transfer Syntax
SOURCE (LBP-WG)

The formal rules (i.e., the protocol) governing the format (or representation) of messages as they are
transferred between clients and servers

T10:
CONTEXT [SCSI] SOURCE [SNIA]

The American National Standards Institute T10 technical committee, the standards organization
responsible for SCSI standards for communication between computers and storage subsystems and
devices.

Bluefin Specification Version 1.0.0 Page 207 of 303

Glossary Bluefin Specification

T11:
CONTEXT [Fibre Channel] SOURCE [SNIA]

The American National Standards Institute T11 technical committee, the standards organization
responsible for Fibre Channel and certain other standards for moving electronic data into and out of
computers and intelligent storage subsystems and devices.

u

UDP:
CONTEXT [Network] SOURCE [SNIA]
Acronym for User Datagram Protocol. An Internet protocol that provides connectionless datagram delivery
service to applications. Abbreviated UDP. UDP over IP adds the ability to address multiple endpoints
within a single network node to IP.
UML Standards
SOURCE (DMTF)
Appendix D of the Common Information Model (CIM) Specification, V2.0 (March 3, 1998).

Class - represented by a rectangle.

The class name either stands alone in the rectangle or is in the uppermost segment. If present,
the segment below the segment containing the name contains the properties of the class. If
present, a third region indicates the presence of methods.

Lines indicate:
¢ Inheritance relationships (blue lines with arrows) — Otherwise known as “is-a” relationships

e Aggregation/component relationships (green lines with a diamond shape at the
“aggregating” end) - Otherwise known as “has-a” relationships

o Dependency and other relationships (red lines) — Some of which are “uses-a” relationships

Relationship Labels - Inheritance relationships are not specifically labeled or named, while all other
associations are named.

Cardinality - the cardinalities of the references on both sides of an association are indicated by numeric
values or an asterisk (*) at the endpoints of the association

The following cardinalities are typically used in the CIM Schema:
e 0..1 - Indicates an optional single-valued reference
e 1 -Indicates a required, single-valued reference

e 1.nor 1.* - Indicates either a single or multi-valued reference, that is required*, 0..n or
0..* - Indicates an optional, single or multi-valued reference

Required Reference - the object and the association MUST exist (or be instantiated) when the other
referenced class is defined.

Weak Reference — indicated by the symbol, “w”, indicates that the referenced endpoint or class is “weak”
with respect to the other class participating in the association. This means that the referenced

Page 208 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Glossary

class is scoped or named relative to the other class, and the identifying keys of the other class
are placed as properties in the “weak” class.

Note that this is not standard UML convention, but an added symbol in CIM diagrams.

Universal Markup Language (UML)
CONTEXT [DMTF]
Refer to UML Standards
URL:
CONTEXT [Networking]
Uniform Resource Locator.
User Agent (UA):
CONTEXT [SLP] SOURCE [Bluefin]

In the context of SLP, a process that attempts to establish contact with one or more services. A User
Agent retrieves service information from Service Agents or Directory Agents.

\Y

VAR:
CONTEXT [Business]

Value Added Remarketeer.

Virtualization System:
CONTEXT [Storage System] SOURCE [SNIA]

The act of integrating one or more (back end) services or functions with additional (front end) functionality
for the purpose of providing useful abstractions. Typically virtualization hides some of the back end
complexity, or adds or integrates new functionality with existing back end services. Examples of
virtualization are the aggregation of multiple instances of a service into one virtualized service, or to add
security to an otherwise insecure service. Virtualization can be nested or applied to multiple layers of a
system.

Virtual Disk:
CONTEXT [Storage System]

A set of disk blocks presented to an operating environment as a range of consecutively numbered logical
blocks with disk-like storage and I/0 semantics. The virtual disk is the disk array object that most closely
resembles a physical disk from the operating environment's viewpoint. cf. logical disk

Volume Set:
CONTEXT [Storage System]

Synonym for virtual disk.

Bluefin Specification Version 1.0.0 Page 209 of 303

Glossary Bluefin Specification

w

WAN:
CONTEXT [Network] SOURCE [SNIA]

Acronym for Wide Area Network. A communications network that is geographically dispersed and that
includes telecommunications links..

Weak Reference
SOURCE (DMTF)
Refer UML Standards.
WBEM:
CONTEXT [Management] SOURCE [SNIA]

Acronym for Web Based Enterprise Management. Web-Based Enterprise Management is an initiative in
the DMTF. Abbreviated WBEM. It is a set of technologies that enables interoperable management of an
enterprise. WBEM consists of CIM, an XML DTD defining the tags (XML encodings) to describe the CIM
Schema and its data, and a set of HTTP operations for exchanging the XML-based information. CIM joins
the XML data description language and HTTP transport protocol with an underlying information model,
CIM to create a conceptual view of the enterprise.

Well-known Address
SOURCE (FC-GS-3)

An address identifier defined in FC-PH to access a Service. A well-known address shall not be subject to
Zone restrictions; i.e., a well-known address is always accessible, irrespective of the current Active Zone
Set.

World Wide Name
CONTEXT [Fibre Channel] SOURCE (SNIA)

1. A 64-bit unsigned Name_ Identifier which is worldwide unique. cf. Fibre Channel Name

2. Aunique 48 or 64 bit number assigned by a recognized naming authority (often via block assignment to
a manufacturer) that identifies a connection or a set of connections to the network. Abbreviated WWN. A
WWN is assigned for the life of a connection (device). Most networking technologies (e.g., Ethernet,
FDDI, etc.) use a world wide name convention.

WWN
CONTEXT [Fibre Channel] SOURCE [SNIA]

Acronym for World Wide Name. A 64-bit unsigned Name_Identifier which is worldwide unique. cf. Fibre
Channel Name A unique 48 or 64 bit number assigned by a recognized naming authority (often via block
assignment to a manufacturer) that identifies a connection or a set of connections to the network.
Abbreviated WWN. A WWN is assigned for the life of a connection (device). Most networking
technologies (e.g., Ethernet, FDDI, etc.) use a world wide name convention.

W3C:
CONTEXT [Networking]
World Wide Web Consortium.

Page 210 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Glossary

X

XML:
CONTEXT [Standards] SOURCE [SNIA]

Acronym for eXtensible Markup Language. A universal format for structured documents and data on the
World Wide Web. Abbreviated XML. The World Wide Web Consortium is responsible for the XML
specification. cf. http://www.w3.org/XML/.

XML-CIM Listener:
SOURCE [CIM Operations over HTTP Specification, Version 1.1c]

A server application that receives and processes XML-CIM Export Message requests and issues CIM
Export Message responses.

XML-CIM Server
SOURCE(DMTF)

A Server that receives and processes XML-CIM Operation Requests and issues XML-CIM Operation
Responses.

N |

Zone
CONTEXT [SAN]

A group of ports and switches that allow access. Defined by a zone definition. cf. Hard Zone, Soft Zone

SOURCE [FC-GS-3]

A collection of Zone Members. Zone Members in a Zone are made aware of each other, but not made
aware of devices outside the Zone. A Zone can be defined to exist in one or more Zone Sets.

Zone Definition
SOURCE [FC-GS-3]

The parameters that define a Zone: the Zone Name, number of Zone Members, and Zone Member
definition.

Zone Member
SOURCE [FC-GS-3]

An N_Port (or NL_Port) to be included in a Zone, as specified by its Zone Member Definition. N_Ports at
well known addresses shall not be specified as Zone Members.

Zone Member Definition
SOURCE [FC-GS-3]

The parameter by which a Zone Member is specified. A Zone Member may be specified by:

Bluefin Specification Version 1.0.0 Page 211 of 303

Glossary Bluefin Specification

1) a port on a Switch, (specifically by Domain_ID and port number); or,
2) the device’s N_Port_Name; or,
3) the device’s address identifier; or,
4) the device’s Node_Name.
Zone Set
SOURCE (FC-GS-3)

One or more Zones which may be activated or deactivated as a group.

Zone Set Name: The name assigned to a Zone Set.

Zone Set State: The state of a Zone Set, which may be either activated or deactivated.

Active Zone Set: The Zone Set that is currently activated. Only one Zone Set may be activated at any
time.

Page 212 of 303 Version 1.0.0 Bluefin Specification

Bluefin™ Bibliography
Error! Unknown document property name. Specification

Appendix B: Bibliography

Readers seeking a more complete understanding of the assumptions, standards and tools that assisted
in the creation of the Bluefin object model are encouraged to review the following:

e CIM Tutorial
(http://www.dmtf.org/education/cimtutorial/index.php)

e CIM UML Diagrams and MOFs
(http://dmtf.org/standards/standard cim.php)

e CIM System / Device Working Group Modeling Storage
(http://www.dmtf.org/var/release/Whitepapers/CIM Device23 storage wp.PDF)

Bluefin Specification Version 1.0.0 Page 213 of 303

Detailed Class Derivations Bluefin Specification

C.1

Appendix C: Detailed Class Derivations

The following section provides a derivation for all classes found in the “Required Classes” sections of
the object model defined in Clause 3:. Each derivation includes the properties within each class which
are important to the Bluefin object model, listing them under the super class within which they are
defined. Concrete class names within the derivation are listed in bold.

ActiveConnection

The ActiveConnection association class 1s used to indicate that two ProtocolEndpoints are
communicating or have the ability to communicate. Note that ActiveConnection was subclassing from
SAPSAPDependency which is deprecated for CIM 2.6.

Property/ Type Qualifier/ Description/Notes
Method Parameter

Dependency

ActiveConnection

Antecedent |REF Key ProtocolEndpoint reference

Dependent REF Key ProtocolEndpoint reference

C.2

Table 14: ActiveConnection Association Derivation

AdminDomain
(As defined by CIM)

This is a special grouping of ManagedSystemElements. The grouping is viewed as a single entity,
reflecting that all of its components are administered similarly - either by the same user, group of users
or policy. It serves as an aggregation point to associate one or more of the following elements: network
devices, such as routers and switches, servers, and other resources that can be accessed by end
systems. This grouping of devices plays an essential role in ensuring that the same administrative
policy and actions are applied to all of the devices in the grouping. The specific behavior and/or
semantics of the AdminDomain can be identified through its aggregated and associated entities.

The System class and its subclasses provide the scope for numerous types of managed objects. As such,
these classes must have the ability to create unique keys. This attribute is used by the System class
and its subclasses to define a unique Name, independent of the specific discovery protocol used. Use of
the heuristic is optional, but recommended.

AdminDomain is a part of the Core model, which has frequently been used in the Networks Model to
group together various network resources that must be administered the same way, perhaps using the
same policies. Viewed in this light, its principal subclass is AutonomousSystem.

Property/ Type Qualifier/ Description/Notes
Method Parameter

ManagedElement

ManagedSystemElement

LogicalElement

System

Name

string |[FC-GS Fabric Name

AdminDomain

Page 214 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter
NameFormat |string

Table 15: AdminDomain Derivation

C.3 Alertindication
(As defined by CIM)

A concrete superclass for CIM Alert notifications. An AlertIndication is a specialized type of Indication that contains
information about the severity, cause, recommended actions and other data of a real world event. This event and its
data may or may not be modeled in the CIM class hierarchy.

Property/ Type |Qualifier/ Description/Notes
Method Parameter
Indication
IndicationTime |datetime] |Date and Time of Indication creation
ProcessIndication
AlertIndication
Description string A short description of the Indication
AlertingManagedElement|string This property contains the full path 'object name' of
the instance encoded as a string parameter
AlertType uintl6 |Required |Primary classification of the Indication.
OtherAlertType string
PerceivedSeverity uintlé |Required [The severity of the AlertIndication from the notifier's
point of view
OtherSeverity string
ProbableCause uintl6 |Required |The probable cause of the situation which resulted
in the AlertIndication
C.4 AllocatedFromStoragePool

AllocatedFromStoragePool is an association describing how LogicalElements are allocated from
underlying StoragePools. These elements would be subclasses of StorageExtents or StoragePools.

Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependency
AllocatedFromStoragePool

Antecedent |REF Key StoragePool reference
Dependent REF Key LogicalElement reference
SpaceConsu |Unit64 Space Consumed from this Pool.
med Units("Bytes”).

Table 16: AllocatedFromStoragePool Derivation

C5 AssociatedStorageConfigurationJob

AssociatedStorageConfigurationdob links the job to the object being modified. It should 'point' to the
SourcePool until the new object is instantiated at which point it should point to the pool or volume
being created. Note that one of these associations must exist for each job.

Bluefin Specification Version 1.0.0 Page 215 of 303

Detailed Class Derivations

Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependency
UnitAccess

Antecedent REF

Key, override

StorageConfigurationJob reference

Dependent |REF

Key, override

LogicalElement reference

Table 17: AssociatedStorageConfigurationJob Association Derivation

C.6 BasedOn
(As defined by CIM)

BasedOn is an association describing how StorageExtents can be assembled from lower level Extents.
For example, ProtectedSpaceExtents are parts of PhysicalExtents, while VolumeSets are assembled
from one or more Physical or ProtectedSpaceExtents. As another example, CacheMemory can be
defined independently and realized in a PhysicalElement or can be 'based on' Volatile or
NonVolatileStorageExtents.

(As refined by Bluefin)

BasedOn is the association that defines storage extent virtualization — carving one large extent into
multiple smaller extents, or combining extents to form a larger one.

Property/ Type Qualifier/ Description/Notes
Method Parameter
[Association] Dependency
[Association] BasedOn

Antecedent REF Override StorageExtent Reference

Dependent REF Override StorageExtent Reference

StartingAddress |unit64 where in lower level storage, the higher
level Extent begins

EndingAddress unit64 where in lower level storage, the higher
level Extent ends.

OrderIndex unitl6 indicates the order to the BasedOn
associations that describes how a higher
level StorageExtent is assembled

Table 18: BasedOn Derivation

C.7 ChangerDevice

(As defined by CIM)

ChangerDevices represent hardware that moves PhysicalMedia within a System, such as a StorageL.ibrary.

Property/
Method

Type

Qualifier/

Parameter

Notes

ManagedElement

ManagedSystemElement

LogicalElement

LogicalDevice

MediaTransferDevice

Page 216 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification Detailed Class Derivations

Property/ Type Qualifier/ Notes
Method Parameter
ChangerDevice
MaxTransitTime uint32

MediaFlipSupported |boolean

AuditInProgress boolean

AuditsPerformed boolean

Table 19: ChangerDevice Derivation

C.8 Chassis
(As defined by CIM)

The Chassis class represents the PhysicalElements that enclose other Elements and provide definable
functionality, such as a desktop, processing node, UPS, disk or tape storage, or a combination of these.

Property/ Type Qualifier/ Notes
Method Parameter
NumberOfPowerCords |uintl6
CurrentRequiredOrProd ([sint16

uced
HeatGeneration uintl6
ChassisTypes uint16[]
TypeDescriptions string[]
Table 20: Chassis Derivation
C.9 Component
Property/ Type Qualifier/ Description/Notes
Method Parameter
Component
GroupComponent|System Key System
PartComponent |LogicalDevice Key Port
Table 21: Component
C.10 ComponentCS
A ComputerSystem can aggregate another ComputerSystem. This association can be used to model MPP
Systems with workstation frontends, an 120 subsystem embedded in a UnitaryComputerSystem, or a
System that splits functionality between two processors, potentially running different Operating
Systems.
Property/ Type Qualifier/ Description/Notes
Method Parameter

[Aggregation] Component

Bluefin Specification Version 1.0.0 Page 217 of 303

Detailed Class Derivations Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
[Aggregation] SystemComponent

[Aggregation] ComponentCS

GroupComponent REF |Override ComputerSystem Reference

PartComponent REF [Override ComputerSystem Reference

Table 22: ComponentCS Aggregation Derivation

C.11 ComputerSystem
(As defined by CIM)

A class derived from System that is a special collection of ManagedSystemElements. This collection
provides compute capabilities and serves as aggregation point to associate one or more of the following
elements: FileSystem, OperatingSystem, Processor and Memory (Volatile and/or NonVolatile Storage).

(As refined by Bluefin)

This class represents a host, storage array, or fabric interconnect element (e.g. switch). The property
OtherldentifyingInfo is only required in the profile of the fabric and switch which contains the Domain

ID.
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
InstanceName [string | |
ManagedSystemElement
OperationalStatus luint16 | |
LogicalElement
System
CreationClassName string |MaxLen(256), Key Name of Class
Name string |MaxLen(256), Key
ComputerSystem
NameFormat string |(Override "NameFormat”) |Note — Need CR to add “T11Platform”
and "NodeWWN"
OtherldentifyingInfo string[] For the switch/fabric profile this
property is required and should
contain the DomainID with
IndentifyingDescription containing
"DomainID"
IdentifyingDescription |string[]
Dedicated int16[] ["Blockserver” Defines System Type, REQUIRED
OtherDedicatedDescripti |string
on
Table 23: ComputerSystem Derivation
C.12 ComputerSystemPackage

(As defined by CIM)

Page 218 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Detailed Class Derivations

Similar to the way that LogicalDevices are 'Realized' by PhysicalElements, ComputerSystems are
realized in one or more PhysicalPackages. The ComputerSystemPackage association explicitly defines
this relationship.

Property/ Type Qualifier/ Notes/Description
Method Parameter
[Association] Dependency
‘Association] ComputerSystemPackage
Antecedent |REF Override PhysicalPackage Reference
Dependent REF Override UnitaryComputerSystem

Table 24: ComputerSystemPackage Derivation

C.13 Concreteldentity
(As defined by CIM)

Concreteldentity associates two elements representing different aspects of the same underlying entity.
It is defined as a Terminal, concrete subclass of Logicalldentity, to be used in place of many specific
subclasses of Logicalldentity that add no semantics - "i.e., that do not clarify the type of identity,
update cardinalities, or add/remove qualifiers. Note that a Terminal class cannot be subclassed. This is
done to limit the use of Concreteldentity - as a concrete form of a general identity relationship. Specific
semantics continue to be defined as subclasses of the abstract Logicalldentity class.

(As refined by Bluefin)
Property/ Type Qualifier/ Description/Notes
Method Parameter
[Association] Logicalldentity
[Association] Concreteldentity
SystemElement |[REF Override LogicalDevice Reference
SameElement REF Override LogicalDevice Reference
Table 25: Concreteldentity Derivation
C.14 Configuration

The Configuration object allows the grouping of sets of parameters (defined in Setting objects) and
dependencies for one or more ManagedSystemElements. The Configuration object represents a certain
behavior, or a desired functional state for the ManagedSystemElements. The desired functional state is
typically driven by external requirements such as time or location. For example, to connect to a Mail
System from ‘home', a dependency on a modem exists, but a dependency on a network adapter exists at
'work'. Settings for the pertinent LogicalDevices (in this example, POTSModem and NetworkAdapter)
can be defined and aggregated by the Configuration. Therefore, two 'Connect to Mail' Configurations
may be defined grouping the relevant dependencies and Setting objects.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Configuration
Name Maxlen(256) |Key The label by which the Configuration
object is known.

Table 26: Configuration Class Derivation

Bluefin Specification Version 1.0.0 Page 219 of 303

Detailed Class Derivations Bluefin Specification

C.15

ConfigurationCapacity
(As defined by CIM)

ConfigurationCapacity provides information on the minimum and maximum numbers of power supplies,
fans, disk drives, etc. that can be connected to or placed on/into a PhysicalElement and the number that
must be connected/added/removed at a time). The PhysicalElement whose configuration is described is
identified using the ElementCapacity association, inherited from PhysicalCapacity. The object whose
capacities are indicated (i.e., the power supply or fan) is identified in the ObjectType property of this
class. Since the same min/max configurations can apply to multiple instances, this class is not defined
as 'weak'.

Examples of the use of the ConfigurationCapacity class are to describe that a 'control unit' Chassis may
be connected to (at most) 4 other I/O Chassis, or to describe what a StorageLibrary's cabinet may
contain. Continuing the latter example, a particular StorageLibrary's cabinet might hold a minimum of
3 and a maximum of 9 TapeDrives, and a minimum of 88 and a maximum of 264 StorageMedialLocations
("Slots"). This information would be described in two instances of ConfigurationCapacity, both associated
to the StoragelLibrary's PhysicalPackage . This class does NOT represent the tradeoffs that are likely to
be required of one resource for another. It simply represents capacities. In the case of the
Storagel.ibrary, there may be only 2 valid configurations - 9 TapeDrives with 88 Slots, or 3 TapeDrives
with 264 Slots. This class only conveys that 'up to' 9 Drives and 'up to' 264 slots may be available and
are supported.

Property/ Type Qualifier/ Description/Notes
Method Parameter

ManagedElement

PhysicalCapacity

ConfigurationCapacity

Name

string Key

ObjectType [Uintl6 Key "Other", "Processors", "Power Supplies",

... see MOF

OtherTypeDe |string MaxLen (64)
scription

acity

MinimumCap |Uint64

acity

MaximumCap |Uint64

Increment Uint32

C.16

Table 27: ConfigurationCapacity Derivation

ControlledBy
(As defined by CIM)

The ControlledBy relationship indicates which Devices are commanded by or accessed through the
Controller LogicalDevice.

(As refined by Bluefin)

Page 220 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/ type Qualifier/ Description/Notes
Method Parameter
[Association] Dependency
[Association]DeviceConnection
NegotiatedSpeed unit64
NegotiatedDataWidth unit32
[Association]ControlledBy
Antecedent REF Override Controller Reference
Dependent REF Override LogicalDevice Reference
AccessState unitl6é
TimeOfDeviceReset datetime
NumberOfHardResets unit32
NumberOfSoftResets unit32
Table 28: ControlledBy Derivation
C.17 Controller
(As defined by CIM)

Controller is a superclass for grouping the miscellaneous control-related Devices that exist. Examples
of Controllers are SCSIControllers, USBControllers, SerialControllers, etc. The Controller class is an
abstraction for Devices with a single protocol stack, which exist primarily for communication to, and
control or reset of downstream (ControlledBy) Devices.

Property/ Type |Qualifier/Parameter Notes
Method
ManagedElement
ManagedSystemElement
LogicalElement
LogicalDevice
Controller
TimeOfLastReset datetime
ProtocolSupported uintl6 Valuemap See MOF
MaxNumberControlled [Uint32
ProtocolDescription string

C.18

Dependency

(As defined by CIM)

Table 29: Controller Derivation

Dependency is a generic association used to establish dependency relationships between
ManagedElements.

Bluefin Specification

Version 1.0.0

Page 221 of 303

Detailed Class Derivations

Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependency
Antecedent |REF Key ComputerSystem
Dependent REF Key LogicalPortGroup
Table 30: Dependency Derivation
C.19 DependencyContext

(As defined by CIM)

This relationship associates a Dependency with one or more Configuration objects. For example, a
ComputerSystem's dependencies could change based on the site/network to which the System is

attached.
Property/ Type Qualifier/ Description/Notes
Method Parameter
[Aggregate] DependencyContext
Context REF Aggregate, Key Configuration Reference
Dependency |REF Key Dependency Reference
Table 31: DependencyContext Derivation

C.20 DeviceSAPImplementation

(As defined by CIM)

An association between a Service and how it is implemented. The cardinality of this association is
many-to-many. A Service may be provided by more than one LogicalDevice, operating in conjunction.
And, any Device may provide more than one Service. When multiple Devices are associated with a
single Service, it is assumed that these elements operate in conjunction to provide the Service. If
different implementations of a Service exist, each of these implementations would result in individual
instantiations of the Service object. These individual instantiations would then have associations to
the unique implementations.

(As refined by Bluefin)

A FCPort is associated to the ProtocolEndpoint by DeviceSAPImplementation and "joins" the System and Device
model to the Network model.

Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependency
DeviceSAPImplementation
Antecedent |REF Key FCPort reference
Dependent REF Key ProtocolEndpoint reference

Page 222 of 303

Version 1.0.0 Bluefin Specification

Bluefin Specification

Detailed Class Derivations

C.21 DeviceServicesLocation
(As defined by CIM)
Within an automated StorageLibrary, Media should be accessible to the various robotics and
MediaTransferDevices (Pickers, Changers, InterLibraryPort s, etc.). The Library may be serviced by
different TransferDevices, each responsible for a subset of the Library's StorageMedialocations. The
DeviceServicesLocation association indicates that the Transfer Device handles Media stored in the
referenced Location. For example, LibraryPort 'A' may only service Media from Slots 1-10, while
LibraryPort 'B' covers Slots 11-33. This detail is conveyed by this association.
Property/ Type Qualifier or Description/Notes
Method Parameter
[Association] Dependency
Antecedent REF Key ManagedElement Reference
Dependent REF Key ManagedElement Reference
[Association] DeviceServicesLocation
Antecedent REF Key, Override MediaTransferDevice Reference
Dependent REF Key, Override | StorageMedialLocation Reference
Inaccessible boolean
Table 32: DeviceServicesLocation Derivation
C.22 DeviceSoftware
(As defined by CIM)
(As refined by Bluefin)
The Purpose property of the DeviceSoftware association class indicates whether the software
component identifies firmware, option ROM, or one or more device drivers. Logic which resides in boot
ROM may load drivers from option ROM.
Property/ Type Qualifier/ Description/Notes
Method Parameter
[Association] Dependency
[Association] DeviceSoftware
Antecedent REF Key, Override [SoftwareElement Reference
Dependent REF Key, Override |LogicalDevice Reference
Purpose uintl6 |["Unknown",
(enum) ["Other",
"Driver",
"Configuration
Software",
"Application
Software",
"Instrumentatio
n", "Firmware",
BIOS", "Boot
ROM"
PurposeDescription string Freeform text to describe Purpose
LoadedOnDevice boolean True if "burned into" or located on device
UpgradeableOnDevice |boolean True if software can be updated

Bluefin Specification

Table 33: DeviceSoftware Derivation

Version 1.0.0

Page 223 of 303

Detailed Class Derivations

C.23 DiskDrive
(As defined by CIM)

Capabilities and management of a DiskDrive, a subtype of MediaAccessDevice.

Bluefin Specification

(As refined by Bluefin)
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
ManagedSystemElement

Name string MaxLen (256)
Status string MaxLen (10)

LogicalElement

LogicalDevice
SystemCreationClassName string MaxLen(256) |The scoping System's

CreationClassName.
SystemName string MaxLen(256) |The scoping System's Name.
CreationClassName string MaxLen(256) [The name of the concrete subclass
DevicelD string MaxLen(64)
OtherldentifyingInfo String[]
IdentifyingDescriptions String[]
MediaAccessDevice
DiskDrive

Table 34: DiskDrive Derivation

C.24 ElementCapabilities

(As defined by CIM)

ElementCapabilities represents the association between ManagedElements and their Capabilities.
Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality
mandates the instantiation of the ElementCapabilities association for the referenced instance of
Capabilities. ElementCapabilities describes the existence requirements and context for the referenced
instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context
for the Capabilities.

(As refined by Bluefin)
Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementCapabilities
HostedCapabilities
ManagedElement [ManagedElement AdminDomain
Capabilities Capabilities ZoneCapabilities

Page 224 of 303

Table 35: ElementCapabilities Derivation

Version 1.0.0

Bluefin Specification

Bluefin Specification Detailed Class Derivations

C.25 ElementCapacity
(As defined by CIM)

ElementCapacity associates a PhysicalCapacity object with one or more PhysicalElements. It serves to
associate a description of min/max hardware requirements or capabilities (stored as a kind of
PhysicalCapacity), with the PhysicalElements being described.

Property/ Type Qualifier or Description/Notes
Method Parameter
[Association] Dependency
Antecedent REF Key ManagedElement Reference
Dependent REF Key ManagedElement Reference
[Association] ElementCapacity
Antecedent REF Key, Override |PhysicalCapacity Reference
Dependent REF Key, Override |PhysicalElement Reference

Table 36: ElementCapacity Derivation

C.26 ElementConfiguration

This association relates a Configuration object to one or more ManagedSystemElements. The
Configuration object represents a certain behavior, or a desired functional state for the associated
ManagedSystemElements.

Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependency
ElementConfiguration
Element REF Key ManagedSystemElement reference
Configuration [REF Key Configuration reference

Table 37: ElementConfiguration Association Derivation

c.27 ElementSetting

ElementSetting represents the association between ManagedSystemElements and the Setting classes
defined for them.

Property/ Type Qualifier or Parameter Notes
Method

[Association] Dependency

[Association] ElementSetting

Element REF Key ManagedElement Reference

Setting REF Setting Reference

Table 38: ElementSetting Association Derivation

C.28 ElementStatistics
(As defined by CIM)
Property/ Type Qualifier/ Description/Notes
Method Parameter
Statistics

Bluefin Specification Version 1.0.0 Page 225 of 303

Detailed Class Derivations Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
ElementStatistics
Stats REF Key, Weak DeviceStatisticallnformation
Element REF Key, Min(1), Max(1) FCPort

Table 39: DeviceStatistics Derivation

C.29 ExecutingStorageConfigurationJob

ExecutingStorageConfigurationdob is an association between the StorageConfigurationService and an
executing StorageConfigurationdob. The cardinality of this association is 1-to-many and is weak with
respect to the service. Each service may have many executing Configuration Jobs.

Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependency
ExecutingStorageConfigurationJob
Antecedent |REF Key, override Service reference
Dependent REF Key, override StorageConfigurationJob reference

Table 40: ExecutingStorageConfigurationJob Derivation

C.30 ExtentRedundancyComponent
(As defined by CIM)

Describes the StorageExtents participating in a StorageRedundancyGroup.

Property/ Type Qualifier/ Description/Notes
Method Parameter

[Aggregation] Component

[Aggregation] RedundancyComponent

[Aggregation] ExtentRedundancyComponent

GroupComponent [REF Override StorageRedundancyGroup Reference

PartComponent REF Override StorageExtent Reference

Table 41: ExtentRedundancyComponent Derivation

C.31 ExtraCapacityGroup
(As defined by CIM)

A class derived from RedundancyGroup indicating that the aggregated elements have more capacity or
capability than is needed. An example of this type of redundancy is the installation of N+1 power
supplies or fans in a system.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Caption string MaxLen (64) Short (one line) description
Description string Longer description
ManagedSYstemElement

Page 226 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter
InstallDate datetime
Status string MaxLen (10)
LogicalElement
RedundancyGroup
CreationClassName [string MaxLen(256), Key The name of the concrete subclass
Name string MaxLen(256),override
, Key
RedundancyStatus |Uintl6
ExtraCapacityGroup
MinNumberNeeded |Uint32 the smallest number of elements that must
be operational in order to have redundancy.
LoadBalancedGroup |Bool indicating whether load balancing is
supported
Table 42: ExtraCapacityGroup Derivation
C.32 FCPort
(As defined by CIM)
Capabilities and management of a Fibre Channel Port Device.
(As refined by Bluefin)
The FCPort class represents information about a single FC port. The System Device association is used
to associate a FibreChannelAdapter with its owning System.
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
ManagedSystemElement
LogicalElement
LogicalDevice
DevicelD |String |Key, MaxLen (64) |
NetworkAdapter
PermanentAddress String MaxLen (64) Port WWN (InfiniBand: Port GUID)
NetworkAddresses[] |String MaxLen (64), FCID (InfiniBand: LIDs)
ArrayType ("Indexed") |FC-FS Address Identifier
Speed uinté4 |Units ("Bits per Current bandwidth estimate
Second") FCFS Port Operating Speed
MaxSpeed uint64 FC-FS Port Speed Capabilities
SupportedMaximumTr |uint64
ansmissionUnit
ActiveMaximumTrans |uint64
missionUnit

Port

Bluefin Specification

Version 1.0.0

Page 227 of 303

Detailed Class Derivations

Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
InstanceName String
OtherPortType uintl6
PortNumber uintl6
OtherLinkTechnology [uintl6
FCPort
PortType uintl6 FC-GS Port.Type
LinkTechnology uintl6 FC
SupportedFC4Types uintl6é FC-GS FC4-TYPEs
ActiveFC4Types uintl6 FC-GS FC4-TYPEs
SupportedCOS uintl6 FC-GS Class Of Service
ActiveCOS uintl6 FC-GS Class Of Service
Table 43: FCPort Derivation
C.33 FCPortStatistics
(As defined by CIM)

FCPortStatistics is the statistics for the FCPort.

(As refined by Bluefin)
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement | |

StatisticallInformation

DeviceStatisticalInformation

CreationClassName string key

SystemName string key

DeviceCreationClassName string key

DevicelD string key

Name string key

NetworkAdapterStatistics

BytesTransmitted uint64 FA MIB 3.0
ConnUnitPortStatCountTxElements

BytesReceived uint64 FA MIB 3.0
connUnitPortStatCountRxElements

PacketsTransmitted uinté4 FA MIB 3.0
connUnitPortStatCountTxObjects

PacketsReceived uint64 FA MIB 3.0

connUnitPortStatCountRxObjects

FCPortStatistics

Page 228 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter

LIPCount uint64 FA MIB 3.0
connUnitPortStatCountNumberLinkResets

NOSCount uint64 FA MIB 3.0
ConnUnitPortStatCountNumberOfflineSeq
uences

ErrorFrames uint64

DumpedFrames uint64

LinkFailures uinte4 FA MIB 3.0
connUnitPortStatCountLinkFailures

LossOfSyncCounter uint64 FAMIB30
connUnitPortStatCountLossofSynchronizat
ion

LossOfSignalCounter uint64 FA MIB 3.0
connUnitPortStatCountLossofSignal

PrimitiveSeqgProtocolErCount |uint64 FA MIB 3.0
connUnitPortStatCountPrimitiveSequence
ProtocolErrors

CRCError uinte4 FA MIB 3.0
connUnitPortStatCountInvalidCRC

InvalidTransmissionWords uinte4 FA MIB 3.0
connUnitPortStatCountInvalidTxWords

FramesTooShort uinté4 FA MIB 3.0
connUnitPortStatCountFramesTruncated

FramesToolLong uint64 FA MIB 3.0
connUnitPortStatCountFramesToolLong

AddressErrors uint64 FA MIB 3.0
connUnitPortStatCountAddressErrors

BufferCreditNotProvided uinté4 FA MIB 3.0
connUnitPortStatCountInputBuffersFull

DelimiterErrors uinte4 FA MIB 3.0
connUnitPortStatCountDelimiterErrors

EncodingDisparity uint64 FA MIB 3.0
connUnitPortStatCountEncodingDisparityE
rrors

LinkResetsReceived uint64 FA MIB 3.0
connUnitPortStatCountRxLinkResets

LinkResetsTransmitted uint64 FA MIB 3.0
connUnitPortStatCountTxLinkResets

MulticastFramesReceived uint64 FA MIB 3.0
connUnitPortStatCountRxMulticastObjects

MulticastFramesTransmitted |uint64 FA MIB 3.0
connUnitPortStatCountTxMulticastObjects

Table 44: FCPortStatistics Derivation
C.34 FRU
Property/ Type Qualifier/ Description/Notes
Method Parameter

ManagedElement

Bluefin Specification

Version 1.0.0

Page 229 of 303

Detailed Class Derivations Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
Caption string |MaxLen (64)
Description string
FRU
FRUNumber string |Key, MaxLen (64)
IdentifyingNumber [string |[Key, MaxLen (64) |e.g., SW serial number or HW die number
Name string |MaxLen (256)
Vendor string |Key, MaxLen (256)
RevisionLevel string |MaxLen (64)

Table 45: FRU Derivation

C.35 ForwardingService

The ForwardingService represents the functions used in forwarding network traffic. Its instances act
on packets received from one or more ProtocolEndpoints or Services, and drop (discard), or send those
packets to one or more other ProtocolEndpoints or Services. The explicit Endpoints being forwarded
between, are described using the ForwardsAmong association (or one of its subclasses).

Property/ Type Qualifier or Req Notes
Method Parameter
ManagedElement
ManagedSystemElement
LogicalElement
Service
SystemCreationClassName |string [MaxLen
(256),Key,Propagate
d
SystemName; string |MaxLen
(256),Key,Propagate
d
CreationClassName string [MaxLen (256),Key
Name string [MaxLen
(256),Key,override
StartMode String [MaxLen (10) See MOF
Started boole
an
StartService() uint32
StopService() uint32
NetworkingService
Keywords[] string
ServiceURL string
StartupConditions [] string
StartupParameters [] string
ForwardingService

Page 230 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Detailed Class Derivations

Property/ Type Qualifier or Req Notes
Method Parameter
ProtocolType unitlé type of protocol (other=1)
OtherProtocolType String Valid only if ProtocolType = 1

Table 46: ForwardingService Derivation

C.36 ForwardsAmong

The ForwardsAmong association class represents the dependency that exists between the
ProtocolEndpoints that are used to forward data and the ForwardingService that is performing the
forwarding of data.

Property/ Type Qualifier/ Req Description/Notes
Method Parameter
Dependency
ServiceSAPDependency
ForwardAmon
Antecedent |REF Key ProtocolEndpoint reference
Dependent REF Key ForwardingService reference

Table 47: ForwardAmong Association Derivation

C.37 HostedAccessPoint
Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependency

HostedAccessPoint

Antecedent |REF Override System Reference

Dependent REF Override RemoteServiceAccessPoint Reference
Table 48: HostedAccessPoint Derivation

C.38 HostedCollection

(As defined by CIM)

HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by
the definition of the System.

(As refined by Bluefin)
Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependency
HostedCOllection
Antecedent |[REF Key, Min(1), Max(1) ComputerSystem
Dependent REF Key, weak LogicalPortGroup

Table 49: HostedCollection Inheritance

Bluefin Specification Version 1.0.0 Page 231 of 303

Detailed Class Derivations Bluefin Specification

C.39 HostedService
(As defined by CIM)

HostedService is an association between a Service and the System on which the functionality resides.
The cardinality of this association is 1-to-many. A System may host many Services. Services are weak
with respect to their hosting System. Heuristic: A Service is hosted on the System where the
LogicalDevices or SoftwareFeatures that implement the Service are located. The model does not
represent Services hosted across multiple systems. This is modeled as an ApplicationSystem that acts
as an aggregation point for Services, that are each located on a single host.

(As refined by Bluefin)
Property/ Type Qualifier/ Description/Notes
Method Parameter
[Association] Dependency
[Association] HostedService
Antecedent |REF Override System Reference
Dependent REF Service Reference
Table 50: HostedService Derivation
C.40 HostedStoragePool

SystemStoragePool is a specialization of SystemComponent association that establishes that the
StoragePool is defined in the context of the System.

Property/ Type Qualifier/ Description/Notes
Method Parameter
[Aggregation] Component
[Aggregation]SystemComponent
[Aggregation] HostedStoragePool
GroupComponent REF |Override System Reference
Partcomponent REF |Override StoragePool Reference

Table 51: HostedStoragePool Derivation

C.41 IndicationFilter
IndicationFilter defines the criteria for generating an Indication and what data should be returned in the
Indication. It is derived from ManagedElement to allow modeling the dependency of the filter on a
specific service.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
IndicationFilter

Page 232 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter

SystemCreati|string KEY The Filter is defined in the context of a

onClassName System, where it is hosted or to which it
applies.

SystemName |string KEY

CreationClass|string KEY Indicates the name of the class or the

Name subclass used in the creation of an
instance.

Name string KEY The name of the filter.

SourceName |String The path to a local namespace where the

Space Indications originate. If NULL, the
namespace of the Filter registration
is assumed.

Query String A guery expression that defines the
condition(s) under which Indications will
be generated.

QuerylLangua |string

ge

Table 52: IndicationFilter Derivation
C.412 IndicationHandler
IndicationHandler is an abstract superclass describing how an Indication 1s to be
processed/delivered/'handled'. This may define a destination and protocol for delivering Indications, or
it may define a process to invoke. This class is derived from ManagedElement to allow modeling the
dependency of the Handler on a specific service.
Property/ Type Qualifier/ Description/Notes
Method Parameter

ManagedElement

IndicationHandler

SystemCreati |string KEY The Filter is defined in the context of a

onClassName System, where it is hosted or to which it
applies

SystemName |string KEY

CreationClass|string KEY Indicates the name of the class used in

Name the creation of an instance.

Name string KEY The name of the filter.

Owner String The name of the entity that created
and/or maintains this Handler.

Table 53: IndicationHandler Derivation
C.43 IndicationHandlerCIM-XML
IndicationHandlerCIM-XML describes the destination for Indications to be delivered via HTTP, using a
CIM-XML representation.

Bluefin Specification Version 1.0.0 Page 233 of 303

Detailed Class Derivations

Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
IndicationHandler

SystemCreati|string KEY The Filter is defined in the context of a

onClassName System, where it is hosted or to which it
applies

SystemName |string KEY

CreationClass|string KEY Indicates the name of the class or the

Name subclass used in the creation of an
instance.

Name string KEY The name of the filter.

Owner String The name of the entity that created
and/or maintains this Handler.

IndicationHandlerCIM-XML

Destination |string Required The destination URL to which HTTP/CIM-
XML Indication messages are to be
delivered. The scheme prefix is implied
and is not required, but must be 'http:' if
specified.

Table 54: IndicationHandlerCIM-XML Derivation
C.44 IndicationSubscription
(As defined by CIM)

IndicationSubscription describes a flow of Indications. The flow is specified by the referenced Filter, and
directed to the referenced destination or process in the Handler.

Property/ Type Qualifier/ Description/Notes
Method Parameter
[Association] IndicationSubscription
Filter REF Key IndicationFilter Reference
Handler REF Key IndicationHandler Reference
Table 55: IndicationSubscription Association Derivation
C.45 InstalledSoftwareElement

(As defined by CIM)

The InstalledSoftwareElement association allows one to identify the Computer System a particular

Software element is installed on.

Property/ Type Qualifier/ Description/Notes
Method Parameter
[Association] Dependency
Antecedent |REF Key ManagedElement Reference
Dependent REF Key ManagedElement Reference

[Association] InstalledSoftwareElement

Page 234 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter
Antecedent |REF Override SoftwareElement Reference
Dependent REF Override ComputerSystem Reference
Table 56: InstalledSoftwareElement Derivation
C.46 InstCreation
(As defined by CIM)

CIM_InstCreation notifies when an instance is created.

Property/ Type Qualifier/ Description/Notes
Method Parameter
Indication
IndicationTime |datetime| |Date and Time of Indication creation
Instindication
Sourcelnstance|string EmbeddedObject, Copy if Instance that changed to gerenerate the
Required Indication.
InstCreation
Table 57: InstCreation Derivation
C.47 InstDeletion
(As defined by CIM)

CIM_InstDeletion notifies when an instance is deleted.

Property/ Type Qualifier/ Description/Notes
Method Parameter
Indication
IndicationTime |datetime| [Date and Time of Indication creation
InstIndication
Sourcelnstance|string EmbeddedObject, Copy if Instance that changed to gerenerate the
Required Indication.
InstDeletion
Table 58: InstDeletion Derivation
C.48 InstModification
(As defined by CIM)

CIM_InstModification notifies when an instance is modified.

Property/ Type Qualifier/ Description/Notes
Method Parameter
Indication
IndicationTime |datetime] |Date and Time of Indication creation
InstIndication
Sourcelnstance |string EmbeddedObject, Copy if Instance that changed to gerenerate the
Required Indication.
InstModification

Bluefin Specification

Version 1.0.0

Page 235 of 303

Detailed Class Derivations

Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
PreviousInstance|string EmbeddedObject, A copy of the 'previous' instance whose change
Required generated the Indication
Table 59: InstModification Derivation
C.49 InterLibraryPort
(As defined by CIM)

InterLibraryPort s represent hardware that transports Physical Media between connected
StorageLibraries. The LibraryExchange association identifies the connected Libraries, by identifying the
connected InterLibraryPort s.

Property/ Type Qualifier or Notes
Method Parameter
ManagedElement
ManagedSystemElement
LogicalElement
LogicalDevice
MediaTransferDevice
InterLibraryPort
LastAccessed datetime
ImportCount Uint64 counter
ExportCount Uint64 counter
Direction Uintl6 "Unknown",
enum "Import", "Export",
"Both Import and
Export"
Table 60: InterLibraryPort Derivation
C.50 LibraryExchange
(As defined by CIM)

LibraryExchange indicates that two StorageLibraries are connected through their InterLibraryPort s.

Property/ Type Qualifier or Parameter Description/Notes
Method
[Association] Dependency
Antecedent |REF Key ManagedElement Reference
Dependent |REF Key ManagedElement Reference
[Association] LibraryExchange
Antecedent |REF Override InterLibraryPort Reference
Dependent REF Override InterLibraryPort Reference

Page 236 of 303

Table 61: LibraryExchange Derivation

Version 1.0.0

Bluefin Specification

Bluefin Specification Detailed Class Derivations

C.51 LibraryPackage
(As defined by CIM)

Similar to the way that LogicalDevices are 'Realized' by PhysicalElements, a StorageLibrary can be
realized in one or more PhysicalPackage s. The LibraryPackage association explicitly defines this

relationship.
Property/ Type Qualifier or Parameter Notes
Method
[Association] Dependency
Antecedent |REF Key ManagedElement Reference
Dependent REF Key ManagedElement Reference
[Association] LibraryPackage
Antecedent |REF Override PhysicalPackage Reference
Dependent REF Override StoragelLibrary Reference
Table 62: LibraryPackage Derivation

C.52 LimitedAccessPort

(As defined by CIM)

LimitedAccessPort s represent hardware that transports Physical Media into or out of a System, such as
a StoragelLibrary. They are identified as 'limited' since these Ports do not provide access to ALL the
PhysicalMedia or StorageMedialLocations in a Library, but only to a subset.

Property/ Type Qualifier or Notes
Method Parameter
ManagedElement
ManagedSystemElement
LogicalElement
LogicalDevice
MediaTransferDevice
LimitedAccessPort
Locked boolean
Extended boolean
ExtendTimeout Uint32 Units ("Seconds")
LastExtended datetime
ImportCount Uint64 counter
ExportCount Uint64 counter
Direction Uintl6 "Unknown",
enum "Import", "Export",
"Both Import and
Export"

Table 63: LimitedAccessPort Derivation

C.53 LogicalDevice
(As defined by CIM)

Bluefin Specification Version 1.0.0 Page 237 of 303

Detailed Class Derivations Bluefin Specification

An abstraction or emulation of a hardware entity, that may or may not be Realized in physical
hardware. Any characteristics of a LogicalDevice that are used to manage its operation or configuration
are contained in, or associated with, the LogicalDevice object. Examples of the operational properties of
a Printer would be paper sizes supported, or detected errors. Examples of the configuration properties
of a Sensor Device would be threshold settings. Various configurations could exist for a LogicalDevice.
These configurations could be contained in Setting objects and associated with the LogicalDevice.

(As used in Bluefin Profiles)

LogicalDevice is often used to represent an example of any concrete subclass of LogicalDevice (such as
StorageVolume, TapeDrive, ...).

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Caption string MaxLen (64) [Short (one line) description
Description string Longer description
ManagedSYstemElement
InstallDate datetime
Name string MaxLen
(256)
Status string MaxLen (10)
LogicalElement
LogicalDevice
SystemCreationClassName string MaxLen(256) |The scoping System's
, Key CreationClassName.
SystemName string MaxLen(256) |The scoping System's Name.
, Key
CreationClassName string MaxLen(256) |The name of the concrete subclass
/4 Key
DevicelID string MaxLen(64), |unique identifying information
Key

PowerManagementSupported boolean

PowerManagementCapabilities |Int16][]

Availability Intl6
StatuslInfo Intl6
LastErrorCode Uint32
ErrorDescription string
ErrorCleared boolean
OtherldentifyingInfo String[]
PowerOnHours Uint64
TotalPowerOnHours Uint64
IdentifyingDescriptions String[]
AdditionalAvailability Uint16[]
MaxQuiesceTime Uint64

Table 64: LogicalDevice Derivation

Page 238 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Detailed Class Derivations

C.54 LogicalModule
(As defined by CIM)
LogicalModule is the logical device corresponding to a line card/blade in a device. For example, a line
card in a switch is an instance of LogicalModule, associated with the switch itself. A logical module is
not necessarily independently managed.")
(As refined by Bluefin)
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
ManagedSYstemElement
LogicalElement
LogicalDevice
DevicelD Istring |Key, MaxLen (64) |
LogicalModule
ModuleNumber lUint16 | |
Table 65: LogicalModule Derivation
C.55 LogicalNetwork
(As defined by CIM)
A LogicalNetwork groups together a set of ProtocolEndpoints of a given type which are able
to communicate with each other directly. It is used for describing the characteristics of the grouping
and/or its associated medium. A LogicalNetwork represents the ability to send and/or receive data over
a network.
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
InstanceName |String | INode Symbolic Name
Collection
CollectionMSEs
CollectionID String key Node WWN
FC-GS InterconnectElement.Name, REQUIRED
LogicalNetwork
SystemCreationC|string propagated, key REQUIRED
lassName
SystemName string propagated, key REQUIRED
Table 66: LogicalNetwork Derivation
C.56 LogicalPortGroup
(As defined by CIM)

A collection of one or more ports logically grouped for administrative purposes. This class is created for
specific ease of query when a Port is associated to more than one SystemSpecificCollection. In
FibreChannel, this is the case (e.g. Node, Zone, ZoneSet).

Bluefin Specification Version 1.0.0 Page 239 of 303

Detailed Class Derivations Bluefin Specification

(As refined by Bluefin)
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
InstanceName |String | INode Symbolic Name
Collection
SpecificCollection
SystemCreationC |string propagated, key REQUIRED
lassName
SystemName string propagated, key REQUIRED
InstancelD String Key Node WWN
FC-GS InterconnectElement.Name, REQUIRED
LogicalPortGroup
Table 67: LogicalPortGroup Derivation
C.57 MemberOfCollection
(As defined by CIM)
MemberOfCollection is an aggregation used to establish membership of ManagedElements in a
Collection.
(As refined by Bluefin)
Property/ Type Qualifier/ Description/Notes
Method Parameter
MemberOfCollection
Collection Collection Key LogicalPortGroup
Member ManagedElement Key FCPort
Table 68: MemberOfCollection Inheritance
C.58 ModulePort
(As defined by CIM)

ModulePort associates ports with their hosting modules.

(As refined by Bluefin)
Property/ Type Qualifier/ Description/Notes
Method Parameter
CIM_SystemComponent
CIM_ModulePort
GroupComponent|REF Key LogicalModule
PartComponent |REF Key FCPort

Table 69: ModulePort Derivation

Page 240 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Detailed Class Derivations

C.59 ObjectManager
(As defined by CIM)

"A type of WBEMService that defines the capabilities of the CIM Server in which this ObjectManager
class resides. Details related to communicating with the ObjectManager, and the Manager's basic
capabilities, are accessed through the associated ObjectManagerCommunicationCapabilities class
available through the CommMechanismForManager association.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Caption string MaxLen (64)
Description [string
ManagedSYstemElement
InstallDate datetime
Name string MaxLen (256)
Status string MaxLen (10)
LogicalElement
SoftwareElement
Name string Key, MaxLen (256),
Override
Version string Key, Maxlen (64) <Major>.<Minor>.<Revision> or
<Major><Minor> <letter><revision>
SoftwareElem [uint16 Key, Values {} "Deployable", "Installable", "Executable”,
entState "Running"
SoftwareElem |string Key, MaxLen (256)
entID
TargetOperati|uintl6 Key, Values {} "WINNT", "Windows 2000", "Solaris", ...
ngSystem
OtherTargetO |[string If TargetOperatingSystem = "Other"
S
Manufacturer |[string Maxlen (256)
BuildNumber |string Maxlen (64)
SerialNumber |string Maxlen (64)
CodeSet string Maxlen (64)
Identification |string Maxlen (64) Manufacturer's SKU or part number
Code
LanguageEdit |string Maxlen (32) Use language codes defined in ISO 639
ion
| | ObjectManagelr
Table 70: ObjectManager Derivation

C.60 PackgedComponent

(As defined by CIM)

Bluefin Specification Version 1.0.0 Page 241 of 303

Detailed Class Derivations Bluefin Specification

A Component is typically contained by a PhysicalPackage , such as a Chassis or Card. The
PackagedComponent association makes this relationship explicit. In the first sentence, the word,
typically, is used. This is because a Component may be removed from, or not yet inserted into, its
containing Package (i.e., the Removable Boolean is TRUE). Therefore, a Component may not always be
associated with a Container.

Property/ Type Qualifier or Parameter Notes
Method

[Association] Dependency

[Association] PackagedComponent

Antecedent |REF Override PhysicalPackage Reference

Dependent REF Override PhysicalComponent Reference

Table 9: PackagedComponent Derivation

C.61 PhysicalConnector
(As defined by CIM)
The PhysicalConnector class represents any PhysicalElement that is used to connect to other
Elements. Any object that can be used to connect and transmit signals or power between two or more
PhysicalElements is a descendant (or member) of this class. For example, Slots and D-shell connectors
are types of PhysicalConnectors.
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
ManagedSystemElement
PhysicalElement
Manufacturer
Model
SerialNumber
Version
PhysicalConnector
ConnectorType FC-GS Port.Module Type

OtherTypeDescription

C.62

Table 71: PhysicalConnector Derivation

PhysicalMedia
(As defined by CIM)

The PhysicalMedia class represents any type of documentation or storage medium, such as tapes,
CDROMs, etc. This class is typically used to locate and manage Removable Media (versus Media sealed
with the MediaAccessDevice, as a single Package, as is the case with hard disks). However, 'sealed'
Media can also be modeled using this class, where the Media would then be associated with the
PhysicalPackage using the PackagedComponent relationship.

(As refined by Bluefin)

Provides properties of media. For disks, few properties are used, but it does provide associations for
the 1 or more extents that reside on the media.

Page 242 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Caption String MaxLen(64) Short (one line) description
Description String Longer description
ManagedSystemElement
Name String MaxLen(256)
Status String MaxLen(10)
PhysicalElements
Tag String MaxLen(256), |An arbitrary string that uniquely identifies
Key the Physical Element
CreationClassName String MaxLen(256). [The name of the concrete subclass
Key
Manufacturer String MaxLen(256)
Model String MaxLen(64)
SKU String MaxLen(64)
SerialNumber String MaxLen(64)
Version String MaxLen(64)
Partnumber String MaxLen(256)
OtherldentifyingInfo String
PoweredOn Boolean
ManufactureDate datetime
PhysicalComponet
Removable Boolean
Replaceable Boolean
HotSwappable Boolean
PhysicalMedia
Capacity Uint64
MediaType Uintl6
MediaDescription string
WriteProtectOn boolean
CleanerMedia boolean
MediaSize Real32
MaxMounts Uint64
MountCount Uint64
DualSided boolean
PhysicalLabels String[]
LabelStates Uint16][]
LabelFormats Uint16[]
TimeOfLastMount datetime
TotalMountTime Unit64
Table 72: PhysicalMedia Derivation
C.63 PhysicalMedialnLocation

(As defined by CIM)

Bluefin Specification Version 1.0.0 Page 243 of 303

Detailed Class Derivations Bluefin Specification

Within a StoragelLibrary, all Media should be accounted for, and be present in some Storage Location.
This relationship is made explicit by the PhysicalMedialnLocation association. In addition, one can
determine if a Location is empty or full based on whether this association exists for the
StorageMedialLocation.

Property/ Type Qualifier or Parameter Notes
Method

[Association] Dependency
[Association] PhysicalMedialnLocation

Antecedent |REF Override StorageMedialocation Reference
Dependent REF Override PhysicalMedia Reference
Orientation Uintl6 "Unknown", "Side 0", "Side

1", "Side A", "Side B", "Not

Applicable"

Table 9: PhysicalMedialnLocation Derivation

C.64 PhysicalPackage
(As defined by CIM)

The PhysicalPackage class represents PhysicalElements that contain or host other components.
Examples are a Rack enclosure or an adapter Card.

(As refined by Bluefin)
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
ManagedSystemElement
PhysicalElement
Manufacturer FC-GS

InterconnectElement.Information
List.Vendor Name

Model FC-GS
InterconnectElement.Information
List.Model Name/Number

SerialNumber
Version FC-GS
InterconnectElement.Information
List.Release Code

PartNumber

PhysicalPackage

Table 73: PhysicalPackage Derivation

C.65 PhysicalTape
(As defined by CIM)

The PhysicalTape class represents additional data for a Tape Media. Information on the tape length
and whether it must be unloaded from BOT are properties of this class.

Page 244 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Detailed Class Derivations

Property/ Type Qualifier or Notes
Method Parameter
ManagedElement
ManagedSystemElement
LogicalElement
LogicalDevice
MediaAccessDevice
PhysicalTape
Tapelength Real32 Units ("Feet")
UnloadAnywhere boolean

Table 10: PhysicalTape Derivation

C.66 PortimplementsEndpoint

The PortImplementsEndpoint association class associates a LogicalPort with one or more
ProtocolEndpoints that are implemented “on it'.

Property/ Type Qualifier/ Req Description/Notes
Method Parameter
Dependency
ServiceSAPDependency
ForwardAmon
Antecedent |REF Key LogicalPort reference
Dependent |REF Key ProtocolEndpoint reference

Table 74: PortimplementsEndpoint Association Derivation

C.67 Product
(As defined by CIM)

Product is a concrete class that is a collection of PhysicalElements, SoftwareFeatures and/or other
Products, acquired as a unit. Acquisition implies an agreement between supplier and consumer which
may have implications to Product licensing, support and warranty. Non-commercial (e.g., in-house
developed Products) should also be identified as an instance of Product.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Product
IdentifyingNumber |string Key, MaxLen (64) e.g., SW s/n, HW die, RYO project
number
Name string Key, MaxLen (256) Commonly used product name
FC-GS InterconnectElement.Model
Name/Number
Vendor string Key, MaxLen (256) FC-GS InterconnectElement.Vendor Name
Version string Key, MaxLen (64) FC-GS InterconnectElement.Release Code

Table 75: Product Derivation

Bluefin Specification Version 1.0.0 Page 245 of 303

Detailed Class Derivations Bluefin Specification

C.68 ProductPhysicalElements
(As defined by CIM)

Indicates the PhysicalElements that make up a Product.

Property/ Type Qualifier/ Notes/Description
Method Parameter
[Association] Aggregation
Antecedent |REF Key ManagedElement Reference
Dependent |REF Key ManagedElement Reference
Association] ProductPhysicalElements
Antecedent |REF Override Product Reference
Dependent REF Override PhysicalElement Reference

Table 76: ProductPhysicalElements Derivation

C.69 ProtocolEndpoint
A ProtocolEndpoint represents a communication service used to link ports in LogicalNetworks.
LogicalNetworks collect a set of ProtocolEndpoints of a given type that can send or receive data over a
network using the InlLogicalNetwork association. Each ProtocolEndpoint is associated with the
FibrePort using the DeviceSAPImplementation class. Although a suitable specialization,
PortImplementsEndpoint, specialization is defined, it is preferable to use its superclass to accommodate
the possible coalescence of FibrePort and FibreChannelAdapter.

A Fibre Channel Adapter port that supports simultaneous use of multiple upper layer protocols uses a
separate ProtocolEndpoint class to represent communication using each protocol. Refer to "Upper
Layer Protocol Support" for additional information.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
ManagedSystemElement
LogicalElement

ServiceAccessPoint
Name string MaxLen (256)
CreationClass [string Key, MaxLen (256)
Name
SystemCreati [string Key, MaxLen (256)
onClassName
SystemName [string Key, MaxLen (256)

ProtocolEndpoint
NameFormat |string MaxLen (256) heuristic that ensures unique

name
ProtocolType |string MaxLen (64), ValueMap {} |"IPv4", "Fibre
Values {} Channel","InfiniBand", ...

OtherTypeDe |string MaxLen (64) used when ProtocolTYpe = "Other"
scription

Table 77: ProtocolEndpoint Derivation

Page 246 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Detailed Class Derivations

C.70 ProvidesServiceToElement
(As defined by CIM)

ProvidesServiceToElement is used to describe that ManagedElements may be dependent on the
functionality of one or more Services. An example is that a Processor and an Enclosure
(PhysicalElement) are dependent on AlertOnLAN Services to signal an incomplete or erroneous boot,
and hardware-related errors.

(As refined by Bluefin)
Property/ Type Qualifier/ Description/Notes
Method Parameter

[Association] Dependency

[Association] ProvidesServiceToElements

Antecedent |REF Override Service Reference

Dependant REF Override ManagedElement Reference

Table 78: ProvidesServiceToElements Derivation

C.71 Realizes
(As defined by CIM)

Realizes i1s the association that defines the mapping between a Logical Device and the physical
component that implements the Device.

Property/ Type Qualifier/ Notes/Description
Method Parameter

[Association] Dependency

[Association] Realizes

Antecedent |REF Override PhysicalElement Reference

Dependent |REF Override LogicalDevice Reference

Table 79: Realizes Derivation

C.72 RedundancyComponent
(As defined by CIM)

The RedundancyComponent association indicates that this set of fans' or 'these physical extents'
participate in a single RedundancyGroup.

Property/ Type Qualifier/ Description/Notes
Method Parameter
[Aggregation] Component
PartComponent |REF |KEY [ManagedElement Reference
[Aggregation] RedundancyComponent
GroupComponent |REF Override |[RedundancyGroup Reference

Table 80: RedundancyComponent Derivation

Bluefin Specification Version 1.0.0 Page 247 of 303

Detailed Class Derivations

C.73 RedundancyGroup
(As defined by CIM)

Bluefin Specification

A class derived from LogicalElement that is a special collection of ManagedSystemElements. This
collection indicates that the aggregated components together provide redundancy. All elements
aggregated in a RedundancyGroup should be instantiations of the same object class.

(As refined by Bluefin)

Indicates that underlying extents in BasedOn associations provide redundancy. Absence of this class

indicates lack of redundancy (for example, concatenation or RAID 0).

Property/ Type Qualifier/ Description/Notes
Method Parameter

ManagedElement
Caption string MaxLen (64) Short (one line) description
Description string Longer description

ManagedSYstemElement
InstallDate datetime
Status string MaxLen (10)
LogicalElement
RedundancyGroup

CreationClassName

string MaxLen(256)

The name of the concrete subclass

Name

string MaxLen(256),override

RedundancyStatus |Uintl6
Table 81: RedundancyGroup Derivation
C.74 RemoteServiceAcessPoint
(As defined by CIM)

RemoteServiceAccessPoint describes access and/or addressing information for a remote connection,
that is known to a "local' network element. This information is scoped/contained by the 'local' network

element, since this is the context in which it is 'remote’.

Why the remote access point is relevant and information on its use are described by subclassing
RemoteServiceAccessPoint, or by associating to it.")

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
ManagedSYstemElement
LogicalElement
ServiceAccessPoint
SystemName string |key
SystemCreationClassName |[string |key
CreationClassName string |key
Name string |key

RemoteServiceAccessPoint

Page 248 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter
AccessInfo string FCGS
InterconnectElement.Management
Addresss
InfoFormat uintl6é
OtherInfoFormatDescription |string

Table 82: RemoteServiceAccessPoint

C.75 SCSiController
(As defined by CIM)

Capabilities and management of the SCSIController.
(As refined by Bluefin)

Typically, each FCPort has a 1-1 association to a SCSIController which has the SCSI (as opposed to the
FC) aspects of the port.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Caption string MaxLen (64) Short (one line) description
Description string Longer description
ManagedSystemElement
InstallDate datetime
Status string MaxLen (10)
LogicalElement
LogicalDevice
SystemCreationClassName string MaxLen(256), The scoping System's
Key CreationClassName.
SystemName string MaxLen(256), The scoping System's Name.
Key
CreationClassName string MaxLen(256), The name of the concrete
Key subclass
DevicelD string MaxLen(64), Key [unique identifying information

PowerManagementSupported |boolean
PowerManagementCapabilities [Int16][]

Availability Int16
Statuslnfo Int16
LastErrorCode Uint32
ErrorDescription string
ErrorCleared boolean
OtherldentifyingInfo String[]
PowerOnHours Uint64
TotalPowerOnHours Uint64
IdentifyingDescriptions String[]
AdditionalAvailability Uintl6][]
MaxQuiesceTime Uint64

Controller

Bluefin Specification Version 1.0.0 Page 249 of 303

Detailed Class Derivations

Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
TimeOfLastReset datetime
ProtocolSupported Uintl6
MaxNumberControlled Uint32
ProtocolDescription string
SCSIController
Name string MaxLen (256),
Override, Key
Version string Maxlen (64), Key|<Major>.<Minor>.<Revision>
or
<Major><Minor><letter><rev
ision>
ProtectionManagement Intl6
MaxDataWidth Uint32
MaxTransferRate Uint64
ControllerTimeouts Uint32
SignalCapabilities Uintlé

Table 83: SCSIController Derivation, General Case

Property/ Type Qualifier/ Notes/Description
Method Parameter
ManagedElement
Caption string MaxLen (64)
Description |[string
ManagedSYstemElement
InstallDate datetime
Name string MaxLen (256)
Status string MaxLen (10)
LogicalElement
LogicalDevice
Controller
SCSIController
Name string Key, MaxLen (256),
Override
Version string Key, Maxlen (64) <Major>.<Minor>.<Revision> or
<Major><Minor> <letter><revision>
Table 84: SCSIController Derivation, Alternate Case
C.76 SCSlinterface
(As defined by CIM)

SCSIInterface is a ControlledBy relationship indicating which Devices are accessed through a

SCSiIController and the characteristics of this access.

(As refined by Bluefin)

Page 250 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter

[Association] Dependency

‘Association]DeviceConnection

NegotiatedSpeed Unit64

NegotiatedDataWidth |Unit32

[Association]ControlledBy

Dependent REF Override LogicalDevice Reference

AccessState Unitl6

TimeOfDeviceReset |datetime

NumberOfHardResets [Unit32

NumberOfSoftResets [Unit32

[Assosiation]SCSIInterface

Antecedent REF Override SCSIController Reference
SCSITimeouts Unit32
SCSIRetries Unit32
Initiatorld Unit32
Targetld Uint32
TargetLUN Unit64
SCSIReservation Unitl6
SCSISignal Unitl6
MaxQueueDepth Unit32

QueueDepthLimit Unit32

Table 85: SCSlinterface Derivation, General Case

C.77 SCSILUN
(As defined by CIM)

The association indicates a relationship between a Storage Volume exposed as a LUN through a slave
SCSI Controller. A new relationship is required in order to distinguish

between the 'Host' connection (represented by SCSIInterface) and the 'Target' connection (represented

by SCSILUN).
Property/ Type Qualifier/ Description/Notes
Method Parameter
[Association] Dependency
Association]DeviceConnection
NegotiatedSpeed Unit64

NegotiatedDataWidth (Unit32

[Association]ControlledBy

Dependent REF Override LogicalDevice Reference
AccessState Unit16
TimeOfDeviceReset |datetime
NumberOfHardResets |Unit32
NumberOfSoftResets [(Unit32

[Assosiation]SCSILUN
DeviceNumber lUnite4 | |

Table 86: SCSILUN Derivation

Bluefin Specification Version 1.0.0 Page 251 of 303

Detailed Class Derivations

C.78 Service
(As defined by CIM)

Bluefin Specification

A Service is a Logical Element that contains the information necessary to represent and manage the
functionality provided by a Device and/or SoftwareFeature. A Service is a general-purpose object to
configure and manage the implementation of functionality. It is not the functionality itself.

Property/ Type |Qualifier/Paramet Notes
Method er
ManagedElement
ManagedSystemElement
LogicalElement
Service
SystemCreationClassName |string |MaxLen
(256),Key,Propagate
d
SystemName; string [MaxLen
(256),Key,Propagate
d

CreationClassName

string |MaxLen (256),Key

Name string [MaxLen
(256),Key,override
StartMode String [MaxLen (10) See MOF
Started boole
an
StartService() uint32
StopService() uint32
Table 87: Service Derivation
C.79 ServiceAccessBySAP
(As defined by CIM)

ServiceAccessBySAP is an association that identifies the access points for a Service. For example, a
printer may be accessed by Netware, Macintosh or Windows ServiceAccessPoints, potentially hosted on

different Systems.

Property/ Type
Method

Qualifier/ Description/Notes
Parameter

[Association] Dependency

[Association] ServiceAccessBySAP

Antecedent |REF

Override System Reference

Dependant REF

Override ServiceAccessPoint Reference

Page 252 of 303

Table 88: ServiceAccessBySAP Derivation

Version 1.0.0 Bluefin Specification

Bluefin Specification

C.80 Setting

The Setting class represents configuration-related and operational parameters for one or more
ManagedSystemElement(s). A ManagedSystemElement may have multiple Setting objects associated
with it. The current operational values for an Element's parameters are reflected by properties in the
Element itself or by properties in its associations. "

Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Setting

Bluefin Specification

Version 1.0.0

Page 253 of 303

Detailed Class Derivations

Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
SettingID Maxlen(256) |Key The identifier by which the Setting object
is known.

VerifyOKToAp |Uint32 [IN]JCIM_ManagedSystemE|The VerifyOKToApplyToMSE method is

plyToMSE() lement ref MSE, used to verify that this Setting can be
[IN] datetime 'applied' to the referenced
TimeToApply, ManagedSystemElement, at the given
[IN] datetime time or time interval.
MustBeCompletedBy

ApplyToMSE(|Uint32 [IN]JCIM_ManagedSystemE|The ApplyTOMSE method performs the

) lement ref MSE, actual application of the Setting to the
[IN] datetime referenced ManagedSystemElement.
TimeToApply,
[IN] datetime
MustBeCompletedBy

VerifyOKToAp |Uint32 [IN]CIM_CollectionOfMSEs [The VerifyOKToApplyToCollection method

plyToCollectio
n ()

ref Collection,

[IN] datetime
TimeToApply,

[IN] datetime
MustBeCompletedBy,
[OUT] string
CanNotApply[]

is used to verify that this Setting can be
'applied' to the referenced Collection of
ManagedSystemElements, at the given
time or time interval, without causing
adverse effects to either the Collection
itself or its surrounding environment.

ApplyToCollec
tion()

Uint32

[IN]JCIM_CollectionOfMSEs
ref Collection,

[IN] datetime
TimeToApply,

[IN] boolean
ContinueOnError,

IN] datetime
MustBeCompletedBy,
[OUT] string

The ApplyToCollection method performs
the application of the Setting to the
referenced Collection of
ManagedSystemElements. The net effect
is to execute the ApplyToMSE method
against each of the Elements aggregated
by the Collection.

CanNotApply[]
VerifyOKToAp |Uint32 [IN] The
plyIncrement CIM_ManagedSystemElem [VerifyOKToApplyIncrementalChangeToMS
alChangeToM ent ref MSE, E method is used to verify that a subset
SE() [IN] datetime of the properties in this Setting can be
TimeToApply, 'applied' to the referenced
[IN] datetime ManagedSystemElement, at the given
MustBeCompletedBy, time or time interval.
[IN] string
PropertiesToApply[]
VerifyOKToAp |Uint32 [IN] The

plyIncrement
alChangeToM
SE()

CIM_ManagedSystemElem
ent ref MSE,

[IN] datetime
TimeToApply,

[IN] datetime
MustBeCompletedBy,

[IN] string
PropertiesToApply[]

VerifyOKToApplyIncrementalChangeToMS
E method is used to verify that a subset
of the properties in this Setting can be
'applied' to the referenced
ManagedSystemElement, at the given
time or time interval.

ApplyIncreme

Uint32

[IN]

The ApplyIncrementalChangeToMSE

Page 254 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter
ntalChangeTo CIM_ManagedSystemElem [method performs the actual application of
MSE() ent ref MSE, a subset of the properties in the Setting
[IN] datetime to the referenced
TimeToApply, ManagedSystemElement.
[IN] datetime
MustBeCompletedBy,
[IN] string
PropertiesToApply[]
VerifyOKToAp |Uint32 [IN] The
plyIncrement CIM_CollectionOfMSEs ref [VerifyOKToApplyIncrementalChangeToCol
alChangeToC Collection, lection method is used to verify that a
ollection () [IN] datetime subset of the properties in this Setting
TimeToApply, can be 'applied' to the referenced
[IN] datetime Collection of ManagedSystemElements, at
MustBeCompletedBy, the given time or time interval, without
[IN] string causing adverse effects to either the
PropertiesToApply[], Collection itself or its surrounding
[OUT] string environment.
CanNotApply[]
ApplyIncreme|Uint32 [IN] The ApplyIncrementalChangeToCollection
ntalChangeTo CIM_CollectionOfMSEs ref |method performs the application of a
Collection() Collection, subset of the properties in this Setting to
[IN] datetime the referenced Collection of
TimeToApply, ManagedSystemElements. The net effect
[IN] boolean is to execute the
ContinueOnError, ApplyIncrementalChangeToMSE method
[IN] datetime against each of the Elements aggregated
MustBeCompletedBy, by the Collection.
[IN] string
PropertiesToApply[],
[OUT] string
CanNotApply[]
Table 89: Setting Derivation
C.81 SettingContext

This relationship associates Configuration objects with Setting objects. For example, a NetworkAdapter's
Settings could change based on the site/network to which its hosting ComputerSystem is attached. In
this case, the ComputerSystem would have two different Configuration objects, corresponding to the
differences in network configuration for the two network segments. Configuration A would aggregate a
Setting object for the NetworkAdapter when operating on segment "ANet", whereas Configuration B
would aggregate a different NetworkAdapter Setting object, specific to segment "BNet". Note that many
Settings of the computer are independent of the network Configuration. For example, both
Configurations A and B would aggregate the same Setting object for the ComputerSystem's

MonitorResolution.

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

[Aggregation]SettingContext

Bluefin Specification

Version 1.0.0

Page 255 of 303

Detailed Class Derivations Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
Context REF |Override Configuration Reference
Setting REF |Override Setting Reference

Table 90: SettingContext Aggregation Derivation

C.82 SharedSecretService
(As defined by CIM)

SharedSecretService is a service which ascertains whether messages received are from the Principal
with whom a secret is shared. Examples include a login service that proves identity on the basis of
knowledge of the shared secret, or a transport integrity service (like Kerberos provides) that includes a
message authenticity code that proves each message in the message stream came from someone who
knows the shared secret session key.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
ManagedSystemElement
LogicalElement
Service
Name [string [Key |
SecuritySerice
AuthenicationService
CredentialService
LocalCredentialManagementService
SharedSecretSerice

Table 91: SharedSecretService Derivation

C.83 SharedSecret
(As defined by CIM)

SharedSecret is the secret shared between a Users Access and a particular SharedSecret security
service. Secrets may be in the form of a password used for initial authentication, or as with a session
key, used as part of a message authentication code to verify that a message originated by the principal
with whom the secret is shared.

It is important to note that SharedSecret is not just the password, but rather is the password used with
a particular security service.

Property/ ‘ Type ‘ Qualifier/ Description/Notes
Method Parameter
ManagedElement
Credential
SharedSecret

Page 256 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemCreationClassName |string Propagated,Key REQUIRED
SystemName string Propagated, Key REQUIRED

ServiceCreationClassName |string Propogated, Key, |REQUIRED
MaxLen (256)

ServiceName string Propogated, Key, |REQUIRED
MaxLen (256)

RemotelD string Key, MaxLen (256) |the name by which the user is known at
the remote secret key authentication
service

Secret String Secret known by the User Access

Algorithm string transformation algorithm, if any, used
to protect passwords before use in the
protocol

Protocol String the protocol with which the

SharedSecret is used

Table 92: SharedSecret Derivation

C.84 SoftwareElement

Multiple components of firmware and software are used to provide Fibre Channel Adapter capabilities.
Asset and state information about each component is provided by a separate SoftwareElement class.
The type of each SoftwareElement is indicated by the DeviceSoftware association class. Each
SoftwareElement may be associated with multiple FibreChannelAdapters by instantiating a separate
DeviceSoftware class for each association.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
ManagedSYstemElement
LogicalElement
SoftwareElement
Name string Key, MaxLen (256),
Override
Version string Key, Maxlen (64) <Major>.<Minor>.<Revision> or
<Major><Minor> <letter><revision>
SoftwareElementState uint16 Key, Values {} "Deployable", "Installable",
"Executable", "Running"
SoftwareElementID string Key, MaxLen (256)
TargetOperatingSystem |uintl6 Key, Values {} "WINNT", "Windows 2000", "Solaris", ...
OtherTargetOS string If TargetOperatingSystem = "Other"
Manufacturer string Maxlen (256)

Table 93: SoftwareElement Derivation

C.85 SpareGroup
(As defined by CIM)

Bluefin Specification Version 1.0.0 Page 257 of 303

Detailed Class Derivations Bluefin Specification

A class derived from RedundancyGroup indicating that one or more of the aggregated elements can be
spared. (The actual Spares are defined using the ActsAsSpare association.) An example is the use of
redundant NICs in a ComputerSystem - where one NIC is primary and the other is Spare. The
'primary' NIC would be a member of the SpareGroup (associated using the RedundancyComponent
class) and the 'other' NIC would be associated using the ActsAsSpare relationship.

(As refined by Bluefin)

Represents a collection of spare disks in a disk array.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Caption string MaxLen (64) Short (one line) description
Description string Longer description
ManagedSYstemElement
InstallDate datetime
Status string MaxLen (10)
LogicalElement
RedundancyGroup
CreationClassName |string MaxLen(256), Key The name of the concrete subclass
Name string MaxLen(256),override,
Key
RedundancyStatus |Uintl6
SpareGroup
Failover() uint32 FailoverFrom,
FailoverTo
Table 94: SpareGroup Derivation
C.86 StorageAccessService

A service providing interfaces to device-based access control (AKA LUN Masking) and setting a Logical
Unit number (AKA LUN masking). Methods are defined for exposing LogicalDevices to initiators one
at a time, or by manipulating groups of initiator IDs, target controllers, and logical devices. The group
commands model behavior in high-end disk arrays that allow an admin to define groups to avoid an
explosion of associations.

Property/ Type Qualifier or Notes
Method Parameter
ManagedElement
ManagedSystemElement
LogicalElement
Service

Page 258 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/
Method

Qualifier or
Parameter

Type

Notes

SystemCreati
onClassName

string

MaxLen (256),Key,Propagated

SystemName;

string

MaxLen (256),Key,Propagated

CreationClass
Name

string

MaxLen (256),Key

Name

string

MaxLen (256),Key,override

StartMode

String

MaxLen (10)

See MOF

Started

boolean

StartService()

uint32

StopService()

uint32

StorageAccessService

Expose()

[in,Description ("An instance of
a LogicalDevice that will be
exposed to an Initiator")]
CIM_LogicalDevice REF Device,

[in,Description ("An instance of
a target Controller through
which the Device (above) will
be exposed to an Initiator. A
null means all controllers are
exposed.")]

CIM_Controller REF Target,

[in,Description ("The ID of the
initiator being grated access.
The format of this ID is defined
in InitiatorIDFormat.")]

string InitiatorID,

[in, Description ("The format of
the IntiatorID."),ValueMap {"1",
"2", "3"%}, Values {"PortWWN",
"NodeWWN", "Hosthame"}]
uintl16 InitiatorIDFormat,

[in, Description ("Access Mode
granted"),ValueMap {"1", "2",
"3"%},Values {"ReadWrite",
"ReadOnly", "DefaultAccess"}]
uintl6 AccessMode

Expose a LogicalDevice to an
Initiator via a target Controller.
This method modifies the access
control in the associated storage
system and creates UnitAccess
associations that model the
granted access.

MapExpose()

Uint32

[in,Description ("The instance
of a LogicalDevice that will be
exposed to an Initiator")]
CIM_LogicalDevice REF Device,

[in,Description ("The Unit
Number to assign to the
Initiator. ")Juint64 Number,

Expose a LogicalDevice to an
Initiator via a target Controller and
assign a Unit Number (such a s a
SCSI LUN). This method modifies
the access control in the
associated storage system and
creates a UnitAccess association
that models the granted access.

Bluefin Specification

Version 1.0.0

Page 259 of 303

Detailed Class Derivations

Bluefin Specification

Property/
Method

Qualifier or
Parameter

Type

Notes

[in,Description ("The instance of
a Target Controller through
which the Device (above) will
be exposed to an Initiator. A
null means all controller will be
mapped and exposed.")]
CIM_Controller REF Target,

[in,Description ("The ID of the
initiator being grated access.
The format of this ID is defined
in InitiatorIDFormat.")]

string InitiatorID,

[in, Description ("The format of
the IntiatorID."),ValueMap {"1",
"2", "3"}, Values {"PortWWN",
"NodeWWN", "Hostname"}]
uint16 InitiatorIDFormat,
[Description("Access Mode
granted"), ValueMap {"1", "2",
"3"%},Values {"ReadWrite",
"ReadOnly", "DefaultAccess"}]
uint16 AccessMode

Map()

Uint32

[in,Description ("An instance of
a LogicalDevice that will be
assigned a unit number for the
specified controller. ")]
CIM_LogicalDevice REF Device,

[in,Description ("The Unit
Number to assign. ")]uint64
Number,

[in,Description ("An instance of
a target Controller through
which the Device (above) will
be exposed to Initiators. A null
means apply to all controllers")]
CIM_Controller REF Target,
[Description("Access Mode
granted"),ValueMap {"1", "2",
"3"%},Values {"ReadWrite",
"ReadOnly", "DefaultAccess"}]
uintl6 AccessMode

Specify the Unit address assigned
to all initiators for a Logical
Device.

Deny()

Uint32

[in,Description ("An instance of
a LogicalDevice that will be
exposed to an Initiator")]
CIM_LogicalDevice REF Device,

[in,Description ("An instance of

Deny Access from an initiator to a
LogicalDevice.

Page 260 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/
Method

Qualifier or
Parameter

Type

Notes

a Controller through which the
Device (above) will be Denied
access from an Initiator. A null
means all conrollers.")]

CIM_Controller REF Controller,

[in,Description ("The ID of the
initiator being denied access.
The format of this ID is defined
in InitiatorIDFormat.")] string
InitiatorID,

[in, Description ("The format of
the IntiatorID."), ValueMap
{Illll, |I2II, II3I|}, Values
{"PortWWN", "NodeWWN",
"Hostname"}]

uintl16 InitiatorIDFormat

UnExpose() Uint32

[in,Description ("An instance of
a LogicalDevice that will be
exposed to an Initiator")]
CIM_LogicalDevice REF Device,

[in,Description ("An instance of
a target Controller through
which the Device (above) will
be unexposed from an Initiator.
A null means all controllers are
exposed.")]

CIM_Controller REF Target,

[in,Description ("The ID of the
initiator being denied access.
The format of this ID is defined
in InitiatorIDFormat.")]

string InitiatorID,

[in, Description ("The format of
the IntiatorID."),ValueMap {"1",
"2", "3"%},Values {"PortWwN",
"NodeWWN", "Hosthame"}]
uintl16 InitiatorIDFormat

Invoke hardware mechanism to
undo the results of an Expose
method and remove the
UnitAccess association.

Createlnitiator|Uint32
ID()

[in, Description ("The intitiator
Name")]string Name,

[in, Description ("The initiator
name format"),ValueMap {"1",
"2","3"},Values {"PortWWN",
"NodeWWN", "Hosthame"}]
uintl6 NameFormat,

Create an InitiatorID object.

Bluefin Specification

Version 1.0.0

Page 261 of 303

Detailed Class Derivations

Bluefin Specification

Property/
Method

Qualifier or
Parameter

Type

Notes

[out, Description ("The new
InitiatorID.")]
CIM_InitiatorID REF InitiatorID

Removelnitiat [Uint32

orID()

[in,Description ("The InitiatorID
instance to remove.")]
CIM_InitiatorID REF InitiatorID

Remove an InitiatorID instance.

CreateCollecti |Uint32

on()

[in, Description ("The type of
collection to create"),ValueMap
{"1", |I2ll, Il3l|},Va|ues
{"LogicalDevices", "Controllers",
"InitiatorIDs"} Juintl6
DesiredCollectionType,

[in, Description ("A meaningful
name for the collection")] string
CollectionName,

[out,Description ("The new
CIM_Collection.")]
CIM_Collection REF Collection

Create a collection of
LogicalDevices, Controllers, or
InitiatorIDs. The resulting
collection is used in the
GroupExpose method.

RemoveCollec |Uint32

tion()

[in,Description ("The collection
to be removed.")]
CIM_Collection REF Collection

Remove a collection.

GroupExpose((Uint32

[in,Description ("An instance of
a Collection of LogicalDevice
that will be exposed to an
Initiator. A null menas all
devices.")] CIM_Collection REF
DeviceGroup,

[in,Description ("An instance of
a Collection of target Controller
through which the Devices in
the DeviceGroup (above) will be
exposed to Initiators. A null
means all controllers.")]
CIM_Collection REF
TargetGroup,

[in,Description ("An instance of
a collection of IDs of initiators
being granted access.")]
CIM_Collection REF
InitiatorIDGroup, [Description(
"Access Mode granted"),
ValueMap {"1", "2", "3"},
Values {"ReadWrite",
"ReadOnly", "DefaultAccess"}]
uintl6 AccessMode

Expose a group of LogicalDevices
to a group of Initiators via a group
of target Controllers. This method
modifies the access control in the
associated storage system and
creates UnitAccess associations
that model the granted access.

GroupDeny() [Uint32

[in,Description ("An instance of
a Collection of LogicalDevice

Deny access from a group of
LogicalDevices to a group of

Page 262 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

CIM_Collection REF Group,

[in,Description ("The member
to be added to the Group.")]
CIM_ManagedSystemElement
REF Member

Property/ Type Qualifier or Notes
Method Parameter
that will be exposed to an Initiators via a group of target
Initiator")] CIM_Collection REF |Controllers. This method modifies
DeviceGroup, the access control in the
associated storage system and
[in,Description ("An instance of |creates the GroupAccess
a Collection of target Controller |association with Deny
through which the Devices in AccessMode.
the DeviceGroup (above) will be
exposed to Initiators.")]
CIM_Collection REF
TargetGroup,
[in,Description ("An instance of
a collection of IDs of initiators
being granted access.")]
CIM_Collection REF
InitiatorIDGroup
GroupUnexpo |Uint32 |[in, Description ("The Invoke hardware mechanism to
se() GroupAccess association to undo the results of a GroupExpose
remove.")] CIM_GroupAccess |method and remove the
REF GroupAccess GroupAccess instance.
AddMemberTo [Uint32 [[in,Description ("The Collection [Add a target, or InitiatorID to a
Group() receiving a new member.")] collection.

AddDeviceToG|Uint32

[in,Description ("The Collection

Add a device to a collection,

[in,Description ("The member
to be removed from the
Group.")]
CIM_ManagedSystemElement
REF Member

roup() receiving a new member.")] assigning the ID common to

CIM_Collection REF Group, initiators associated to to this

DeviceGroup.

[in,Description ("The device to

be added to the Group.")]

CIM_LogicalDevice REF Device,

[in,Description ("The unit

number to assign to the device.

A device with this number must

not already exist in the

Group.")] uint64 Number
RemoveMemb (Uint32 |[in,Description ("The Remove a target controller, Logical
erFromGroup(Collection.")] CIM_Collection device, or InitiatorID from a
) REF Group, collection.

Bluefin Specification

Version 1.0.0

Page 263 of 303

Detailed Class Derivations Bluefin Specification

Property/ Type Qualifier or Notes
Method Parameter

SystemDefaul [Uint16 Default Access Mode for this

tAccessMode system."),ValueMap {"1", "2",
"3"%},Values {"ReadWrite",
"ReadOnly", "NoAccess"}

SetSystemDef [Uint32 [[in,Description ("The Access Method to set the System

aultAccessMod Mode to set."),ValueMap {"1", |DefaultAccessMode.

e() "2", "3"}, Values {"ReadWrite",

"ReadOnly", "NoAccess"}]
uintl6 AccessMode

AvailableMeth |string A list of the methods (above)
ods[] implemented by this service.
Table 95: StorageAccessService Derivation
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Caption string Maxlen (64) Short (one line) description
Description string Longer description
ManagedSystemElement
InstallDate datetime
Status string Maxlen (10)
LogicalElement
Service

SystemCreationClassName |string Maxlen(256), Key The scoping System's

CreationClassName.

SystemName string Maxlen(256), Key The scoping System's Name.

CreationClassName string Maxlen(256), Key The name of the concrete
subclass

Name string Maxlen(256), Override, Key

StartMode string Maxlen(10)

Started boolean

StartService() uint32

StopService() unit32

StorageAccessService

Table 96: StorageAccessService Alternate Derivation

C.87 StorageCapabilities
The UnitAccess relationship indicates which Devices are exposed through the Target Controller to
Initiators.
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Capabilities
StorageCapabilities

Page 264 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

InstanceType

Uintl6

Enumeration indicating the type of
instance this Storage Capabilities applies
to.

NoSinglePoint
OfFailure

boolean

Is No Single Point of Value supported?
Possible values are false = can't, true =
can do

NoSinglePoint
OfFailureDefa
ult

boolean

What is the default value for No Single
Point of Value? Possible values are false =
can't, true = can do

DataRedunda
ncyMax

Uintl6

DataRedundancy describes the number of
complete copies of data maintained.
Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or
more copies are maintained. This
parameter describes the maximum
supported value. Possible values are 1 to
n

DataRedunda
ncyMin

uUintl6

DataRedundancy describes the number of
complete copies of data maintained.
Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or
more copies are maintained. This
parameter describes the minimum
supported value. Possible values are 1 to
n

DataRedunda
ncyDefault

uintlé

DataRedundancy describes the number of
complete copies of data maintained.
Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or
more copies are maintained. This
parameter describes the default value.
Possible values are 1 to n

SpindleRedun
dancyMax

Uintl6

Spindle redundancy describes how many
disk spindles can fail without data loss
including, at most, one spare. Examples
would be RAID5 with a Spindle
Redundancy of 1, RAID6 with 2, RAID 6
with 2 spares would be 3. This parameter
describe the maximum supported value.
Possible values are 0 to n

SpindleRedun
dancyMin

Uintl6

Spindle redundancy describes how many
disk spindles can fail without data loss
including, at most, one spare. Examples
would be RAID5 with a Spindle
Redundancy of 1, RAID6 with 2, RAID 6
with 2 spares would be 3. This parameter
describe the minimum supported value.
Possible values are 0 to n

SpindleRedun
dancyDefault

Uintl6

Spindle redundancy describes how many
disk spindles can fail without data loss
including, at most, one spare. Examples

Bluefin Specification

Version 1.0.0

Page 265 of 303

Detailed Class Derivations

Bluefin Specification

Property/
Method

Type

Qualifier/ Description/Notes
Parameter

would be RAID5 with a Spindle
Redundancy of 1, RAID6 with 2, RAID 6
with 2 spares would be 3. This parameter
describe the default value. Possible
values are 0 to n

DeltaReserva
tionMin

uintl6

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies
how much space should reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the lower limit

DeltaReserva
tionMax

uintl6

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies
how much space should reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the upper limit

DeltaReserva
tionDefault

uintlé

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies
how much space should reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.
This parameter sets the default value

Table 97: StorageCapabilities Derivation

C.88 StorageConfigurationJob

StorageConfigurationdob is a job that has been scheduled/started by a 'Start' method within the
StorageConfigurationService. It contains parameters showing the status of the method execution. The
instance must be deleted, once the job completes. Note that Instance Indications can be used to track
execution. The status the job should be shown as 'starting' until the instance being created exists.
Status will then change to 'OK'. When the job finishes an Instancelndication may be delivered with
Status set to 'stopping' or 'error’

Property/
Method

Type

Qualifier/ Description/Notes
Parameter

ManagedElement

ManagedSystemElement

LogicalElement

Job

Page 266 of 303

Version 1.0.0 Bluefin Specification

Bluefin Specification

Detailed Class Derivations

on

Property/ Type Qualifier/ Description/Notes
Method Parameter

JobStatus string A free form string representing the Job's
status.

TimeSubmitt |datetime Time that the Job was submitted.

ed

StartTime datetime Time that the Job was begun.

ElapsedTime |datetime Length of time that the Job has been
executing.

UntilTime datetime Time after which the Job is invalid or
should be stopped.

Notify string User to be notified upon Job completion
or failure.

Owner string User that submitted the Job.

Priority uint32 Indicates the urgency or importance of
execution of a Job.

StorageConfigurationjob

SystemCreati |String Key The scoping Services's

onClassName [MaxLen(256) SystemCreationClassName.

SystemName |String Key The scoping services's SystemName.

MaxLen(256)

ServiceCreati |String Key The scoping Services's

onClassName [MaxLen(256) CreationClassName.

ServiceName |String Key The scoping services's Name.

CreationClass|String Key CreationClassName indicates the name of

Name MaxLen(256) the class or the subclass used in the
creation of an instance. When used with
the other key properties of this class, this
property allows all instances of this class
and its subclasses to be uniquely
identified.

InstancelD |String Key Unique identifies the job within the
scoping system

MethodName |String The name of the method invoked.

PercentComp |Uint16 Percentage of job complete

lete

ErrorCode Uintl6 Vendor error code. Will be set to 0 if the
job completed without error.

ErrorDescript |string Free form string containing error

description.

C.89

Table 98: StorageConfigurationJob Class Derivation

StorageConfigurationService

This service allows the active management of a Storage Server. It allows jobs to be started for the
creation, modification and deletion of Storage Objects (storagePools and Storage Volumes)

Property/ Type Qualifier or Notes
Method Parameter
ManagedElement

ManagedSystemElement

Bluefin Specification

Version 1.0.0

Page 267 of 303

Detailed Class Derivations

Bluefin Specification

Property/ Type Qualifier or Notes
Method Parameter
LogicalElement
Service

Page 268 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/ Type Qualifier or Notes
Method Parameter

SystemCreati [string [MaxLen (256),Key,Propagated

onClassName

SystemName; [string [MaxLen (256),Key,Propagated

CreationClass [string [MaxLen (256),Key

Name

Name string |MaxLen (256),Key,override

StartMode String |MaxLen (10) See MOF

Started boolean

StartService() [uint32

StopService() [uint32

StorageConfigurationService

KillJob() Uint32 |[IN,MappingStrings{"CIM_Stora [Kill the StorageConfigurationJob with the
geConfigurationJob.InstancelD" [specified instance ID, any underlying
}, Description("Identifier for processes and remove any 'dangling’
storage job")] string InstancelD [associations. Note that the job to be

killed must be linked to this Service via
ExecutingStorageConfigurationJob
CreateStorage|Unit32 ([Out, Start a job to create a StoragePool. This
Pool() in(false),Description("Handle to |function takes a size to attempt to

job (may be null if job
completed)")]
CIM_StorageConfigurationJob
ref Job,

in,Description ("The an instance
of StorageCapabilities to be
maintained by the created
StoragePool. If set to a null
value, the default configuration
from the source pool will be
used")]
CIM_StorageCapabilities ref
Goal,

[in,out, Description("Size of
pool")] uint64 Size,

[in, Description ("Array of
strings containing
representations of references to
input CIM_StoragePool
instances.")] string InPool[],

[in, Description ("Array of
strings containing
representationsof references to
CIM_StorageExtent instances")]
string Extent[],

[out, in(false), Description

achieve and returns the size achieved.
Space is taken from either or both of
input StoragePools and Extents.
Capabilities attributes that the Pool must
support are passed in by the
CapabilitiesGoal. if the requested size
cannot be created, no action will be
taken, the Return Value will be 0x1002
and the output value, size will be set to
the nearest possible size. If 0 is returned,
no StorageConfigurationJob instance is
created.

Bluefin Specification

Version 1.0.0

Page 269 of 303

Detailed Class Derivations

Bluefin Specification

Property/ Type Qualifier or Notes
Method Parameter
("Handle to pool being
created")] CIM_StoragePool ref
OutPool
CreateStorage|Uint32 [[Out, in(false), Start a job to create a StorageVolume.
Volume() Description("Handle to job (may|This function takes a size to attempt to

be null if job completed)")]
CIM_StorageConfigurationJob
ref Job,

[in, Description("The definition
for the StorageSetting to be
maintained by the created
StorageVolume. If set to a null
value, the default configuration
from the source pool will be
used")] CIM_StorageSetting ref
Goal,

[in, out, Description("Size of
volume")] uint64 Size,

[in, Description("Pool to create
volume from")]
CIM_StoragePool ref InPool,

[out, in(false)
Description("Handle to volume
being created")]
CIM_StorageVolume ref
QutVolume

achieve and returns the size achieved.
Space is taken from the input
StoragePool. The desired settings of the
Volume created are specified by Goal. If
the requested size cannot be created, no
action will be taken, the Return Value will
be 0x1001 (Size and the output value,
size will be set to the nearest possible
size. If 0 is returned, no
StorageConfiguration]ob instance is
created. If 0x1000 a
StorageConfigurationJob will be started to
create the StorageVolume

DeleteStorage
Pool()

Uint32

[Out, in(false),
Description("Handle to job (may
be null if job completed)")]
CIM_StorageConfigurationJob
ref Job,

[in, Description("Handle to pool
to delete")] CIM_StoragePool
ref Pool

Start a job to delete a StoragePool. The
freed space is returned to the source
StoragePool.If 0 is returned, no
StorageConfiguration]ob instance is
created. If 0x1000 a
StorageConfigurationJob will be started to
delete the StoragePool

DeleteStorage
Volume()

Uint32

[Out, in(false),
Description("Handle to job (may
be null if job completed)")]
CIM_StorageConfigurationJob
ref Job,

[in, Description("Handle to
volume to delete")]
CIM_StorageVolume ref Volume

Start a job to delete a StoragePool. The
freed space is returned to the source
StoragePool.If 0 is returned, no
StorageConfigurationJob instance is
created. If 0x1000 a
StorageConfigurationJob will be started to
delete the StorageVolume

ModifyStorage
Pool()

Uint32

[Out, in(false),
Description("Handle to job (may
be null if job completed)")]

tart a job to modify a StoragePool. This
function takes a size to attempt to
achieve (+ or -) and returns the size

Page 270 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/
Method

Qualifier or
Parameter

Type

Notes

CIM_StorageConfigurationJob
ref Job,

[in, Description ("The definition
for the StorageCapabilities to be
maintained by the modified
StoragePool.")]
CIM_StorageCapabilities ref
CapabilitiesGoal,

[in,out, Description("Size of
pool")] uint64 size,

[in, Description ("Array of
strings containing
representations of references to
input pools")] string InPool[],

[in, Description ("Array of
strings containing
representations of references to
source extents")] string
Extent[],

[in, Description ("Handle to pool
being modified")]
CIM_StoragePool ref OutPool

achieved. Space is taken from either or
both of input StoragePools and Extents or
space is freed back to the source pool.
Capabilities attributes that the Pool must
support are passed in via the class
instance specified by CapabilitiesGoal. If
the requested size cannot be created, no
action will be taken, the Return Value will
be 0X1001 and the output value 'size' will
be set to the nearest possible size. If 0 is
returned, no StorageConfigurationJob
instance is created. If 0x1000 a
StorageConfigurationJob will be started to
modify the StoragePool

ModifyStorage [Uint32

Volume()

[Out, in(false),
Description("Handle to job (may
be null if job completed)")]
CIM_StorageConfigurationJob
ref Job,

[in, Description ("The definition
for the StorageSetting to be
maintained by the created
StorageVolume.")]
CIM_StorageSetting ref Goal,

[in,out] uint64 Size,

[in] CIM_StorageVolume ref
Volume

Start a job to modify a StorageVolume.
This function takes a size to attempt to
achieve (+ or -) and returns the size
achieved. Space is taken from the input
StoragePool or space is freed back to the
StoragePool. The desired settings of the
modified Volume are specified by Goal. If
the requested size cannot be created, no
action will be taken, the Return Value will
be 0X1001 and the output value 'size' will
be set to the nearest possible size. If 0 is
returned, no StorageConfigurationJob
instance is created. If 0x1000 a
StorageConfigurationJob will be started to
modify the StorageVolume

CreateReplica(|Uint32

)

[Out, in(false),
Description("Handle to job (may
be null if job completed)")]
CIM_StorageConfigurationJob
ref Job,

[In, Required, Description(
"Source Storage Object™)]

Start a job to create a new Storage
Object which is a Replica of the Source
storage object. Note that based on,
CopyType this function can be used to:
instantiate the Replica, and to create an
ongoing association between Source and
Replica. If 0 is returned, no
StorageConfigurationJob instance is

Bluefin Specification

Version 1.0.0

Page 271 of 303

Detailed Class Derivations

Bluefin Specification

Property/
Method

Type Qualifier or
Parameter

Notes

CIM_LogicalElement ref
SourceElement,

[Out, in(false), Description(
"Handle to created replica.")]
CIM_LogicalElement ref
TargetElement,

[In, Description("The definition
for the StorageSetting to be
maintained by the Target
StorageVolume.")]
CIM_StorageSetting ref
TargetSettingGoal,

[In, Description("New storage
for the TargetElement, will be
drawn from TargetPool if
specified, otherwise allocation is
implementation specific.")]
CIM_StoragePool ref
TargetPool,

[In, Description("CopyType
describes the type of copy that
will be made Values are:
Async: create and maintain an
asynchronous copy of the
source. Sync: create and
maintain a syncronised copy of
the source. UnSyncAssoc:
create an unsyncronised copy
and maintain an assocation to
the source. UnSyncUnAssoc:
create unassociated copy of the
source element. "), Values
{"Async", "Sync",
"UnSyncAssoc",
"UnSyncUnAssoc",

"DMTF Reserved", "Vendor
Specific"}, ValueMap {"0", "1",
2", "3, ", "0x8000.."}]
uintl6 CopyType

created. If 0x1000 a
StorageConfigurationJob will be started.

DetachReplica
O

Uint32

[Out, in(false),
Description("Handle to job (may
be null if job completed)")]
CIM_StorageConfigurationJob
ref Job,

[In,Description("Target
StorageExtent")]

Starts a job to 'forget' the
synchronization association between two
storage objects. If 0 is returned, no
StorageConfiguration]ob instance is
created. If 0x1000 a
StorageConfigurationJob will be started.

Page 272 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/
Method

Qualifier or
Parameter

Type

Notes

CIM_LogicalElement ref
ReplicaElement

FractureReplic

a()

Uint32

[Out, in(false),
Description("Handle to job (may
be null if job completed)")]
CIM_StorageConfigurationJob
ref Job,

[In,Description("Target
StorageExtent, LogicalFile, or
FileSystem. ")]
CIM_LogicalElement ref
ReplicaElement

Start a job to suspend the
synchronization between two storage
objects. The association is remembered
and typically changes are remembered to
allow a fast resynchronization. This is
typically used during a backup cycle to
allow one of the objects to be copied
while the other remains in production. If
0 is returned, no StorageConfigurationJob
instance is created. If 0x1000 a
StorageConfigurationJob will be started.

ReSyncReplica
0O

Uint32

[Out, in(false),
Description("Handle to job (may
be null if job completed)")]
CIM_StorageConfigurationJob
ref Job,

[In,Description(
"StorageSyncronized
association describing
association")]
CIM_StorageSynchronized ref
Syncronization

Start a job to re-establish the
syncronization of a replica. If CopyJob is
Sync or Async, this will negate the action
of the StartFractureReplica method. If
CopylJob is UnsyncAssoc, this will update
the replica to reflect the latest contents of
the source. If O is returned, no
StorageConfigurationJob instance is
created. If 0x1000 a
StorageConfigurationJob will be started.

RestoreFromR [Uint32 |[Out, in(false), Start a job to renew the contents of the
eplica() Description("Handle to job (may|original Storage Object from a replica. If
be null if job completed)")] 0 is returned, no StorageConfigurationJob
CIM_StorageConfigurationJob [instance is created. If 0x1000 a
ref Job, StorageConfigurationJob will be started.
[In,Description(
"StorageSyncronized
association describing
association")]
CIM_StorageSynchronized ref
Syncronization
Table 99: StorageConfigurationService Derivation
C.90 StorageExtent
(As defined by CIM)

StorageExtent describes the capabilities and management of the various media that exist to store data
and allow data retrieval. This superclass could be used to represent the various components of RAID
(Hardware or Software) or as a raw logical extent on top of physical media.

(As refined by Bluefin)

Bluefin Specification

Version 1.0.0

Page 273 of 303

Detailed Class Derivations

Bluefin Specification

StorageExtent represents a (logically) contiguous unit of disk storage. StorageExtent is a superclass of
StorageVolume. When used a concrete class, it generally means storage which is internal to the Disk
Array and not available to external entities.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Caption string MaxLen (64) [Short (one line) description
Description string Longer description
ManagedSystemElement
InstallDate datetime
Name string MaxLen
(256)
Status string MaxLen (10)
LogicalElement
LogicalDevice
SystemCreationClassName string MaxLen(256) [The scoping System's
, Key CreationClassName.
SystemName string MaxLen(256) [The scoping System's Name.
, Key
CreationClassName string MaxLen(256) [The name of the concrete subclass
4 Key
DevicelD string MaxLen(64), |[unique identifying information
Key
PowerManagementSupported boolean
PowerManagementCapabilities Intl16[]
Availability Int16 primary availability and status of the
Device
Statuslnfo Intl6
LastErrorCode Uint32 captures the last error code reporte
ErrorDescription string
ErrorCleared boolean error reported in LastErrorCode is
now cleared
OtherldentifyingInfo String[] captures additional data, beyond
DevicelID information, that could be
used to identify a LogicalDevice
PowerOnHours Uint64
TotalPowerOnHours Uint64
IdentifyingDescriptions String[] free-form strings providing
explanations and details behind the
entries in the OtherldentifyingInfo
AdditionalAvailability Uintl6[]
MaxQuiesceTime Uint64
StorageExtent

Page 274 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter

DataOrganization uintl6 "Other", "Unknown", "Fixed Block",
"Variable Block", or "Count Key
Data"

Purpose String

Access Uintl6 readable, writable, ...

ErrorMethodology String type of error detection and
correction

BlockSize Uint64

NumberOfBlocks Uint64

ConsumableBlocks Uint64 maximum number of blocks, of size
BlockSize, which are available for
consumption when layering
StorageExtents using the BasedOn
association

IsBasedOnUnderlyingRedundancy boolean

SequentialAccess boolean FALSE for disk storage

C.91
(As defined by CIM)

StorageMedial ocation

Table 100: StorageExtent Derivation

StorageMediaLocation is a PhysicalElement where PhysicalMedia may be placed. This class describes an
entity that holds Media and is not just a 'place' (as is conveyed by the Location object). This class is
typically used in the context of a StoragelLibrary. Examples of StorageMedialocations are
MediaAccessDevices, InterLibraryPort s or 'slots' in a Library's panel.

Property/
Method

Type

Qualifier/Paramet

er

Description/Notes

ManagedElement

ManagedSystemEle
ment

PhysicalElements

PhysicalPackage

StorageMedial ocati
on

Bluefin Specification

Version 1.0.0

Page 275 of 303

Detailed Class Derivations Bluefin Specification

Property/ Type |Qualifier/Paramet Description/Notes
Method er
LocationType Uintlé "Unknown", "Other",
enum "Slot", "Magazine",

"MediaAccessDevice
", "InterLibrary
Port", "Limited
Access Port",
"Door", "Shelf",

"Vault"
LocationCoordinates string
MediaTypesSupported |Uint16[] |ArrayType See MOF for list of media types
enum ("Indexed")

MediaSizesSupported Real32[] |ArrayType
("Indexed"), Units

("Inches")
MediaCapacity Uint32
TypeDescriptions String[] |ArrayType
("Indexed")
Table 101: StorageMedialLocation Derivation
C.92 StorageLibrary
(As defined by CIM)

A Storagelibrary is a collection of ManagedSystemElements that operate together to provide cartridge
library capabilities. This object serves as an aggregation point to group the following elements:
MediaTransferDevices, a LabelReader, a library Door, MediaAccessDevices, and other Library

components.
Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
InstanceName |string | |
ManagedSystemElement
OperationalStatus luint16 | |
LogicalElement
System
CreationClassName String |MaxLen(256), Key Name of Class
Name String |MaxLen(256), Key
StorageLibrary

Page 276 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter
Capabilities Uintl6[["Unknown", "Other",
] "Automatic Cleaning",

"Manual Operation", "Front
Panel Lockable"

Overfilled boolean
AuditNeeded boolean
AuditInProgress boolean
MaxAuditTime Uint64 |[Units ("Seconds")
Automated boolean
RoboticsEnabled boolean

EnableRobotics([IN] Uint32
boolean Enable)

Table 102: StorageLibrary Derivation

C.93 StoragePool

A pool of Storage that is managed by a particular System. StoragePools may consist of component
StoragePools or StorageExtents. StorageExtents/StoragePools that belong to the StoragePool have a
Component relationship to the StoragePool. StorageExtents/StoragePools that are components of a pool
have their available space aggregated into the pool. StoragePools and StorageVolumes may be created
from StoragePools. This is indicated by the AllocatedFromStoragePool association StoragePool is weak
to a system associated by SystemStoragePool.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Caption string MaxLen (64) Short (one line) description
Description string Longer description
ManagedSYstemElement
InstallDate datetime
Status string MaxLen (10)
LogicalElement
StoragePool

Bluefin Specification Version 1.0.0 Page 277 of 303

Detailed Class Derivations Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter

SystemCreationClas |String MaxLen(256),Key The scoping System's

sName CreationClassName.

SystemName String key The scoping System's Name.

CreationClassName |[String MaxLen(256),Key A unique name in the context of
the System that identifies this
pool.

PoolStatus|[] Uintlé |Building","Ready","De |Indication of current status of

graded","DMTF storage pool over and above that

Reserved","Vendor provided by Operational Status.
Specific (ValueMap)

GetSupportedSizes([Uint32 |[in, Description ("Goal |For pools that support discrete

) to qualify volume size |sizes for volume or pool creation,
by")] this method can be used to
CIM_StorageSetting [retrieve a list of supported sizes.
ref Goal, Note that different pool
[out, in(false), implementations may support
Description ("List of [|either or both the
support sizes for GetSupportedSizes and
Volume and Pool GetSupportedSizeRanges at
creation/modification" |different times depending on Pool
), configuration. Also note that the
Units ("Bytes")] advertized size may change after
uinté4 Sizes[] the call due to requests from other

clients. If the pool currently only
supports a range of sizes, then the
return value will be setto 1

Page 278 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter
GetSupportedSizeR (Uint32 For pools that that support a
ange() [in, Description ("Goal [range of sizes for volume or pool

to qualify volume size |creation, this method can be used
by")]CIM_StorageSett |to retrieve the supported range.

ing ref Goal, Note that different pool
implementations may support

[out, in(false), either or both the

Description ("The GetSupportedSizes and

minimum size of a GetSupportedSizeRanges at

volume"),Units different times depending on Pool

("Bytes")]Juint64 configuration. Also note that the

MinimumVolumeSize, |advertized size may change after
the call due to requests from other

[out, in(false), clients. If the pool currently only
Description ("The supports discrete sizes, then the
minimum size of a return value will be set to 1

volume"),Units
("Bytes")]Juint64
MaximumVolumeSize,

[out, in(false),
Description ("A
volume size must be a
multiple of this
value"),Units
("Bytes")Juint64
VolumeSizeDivisor

TotalAvailableSpace |Uint64 Raw available space in pool.

Table 103: StoragePool Class Derivation

C.94 StoragePoolComponent
From MOF

StoragePoolComponent is a specialization of the Component association that establishes 'part of'
relationships between a StoragePool and the StorageExtents of which it is composed.

Property/ Type Qualifier/ Description/Notes
Method Parameter

[Aggregation] Component

Aggregation] StoragePoolComponent

Pool REF |Override StoragePool Reference

Component REF |Override Component Reference

Table 104: StoragePoolComponent Derivation

C.95 StorageRedundancyGroup
(As defined by CIM)

Bluefin Specification Version 1.0.0 Page 279 of 303

Detailed Class Derivations

Bluefin Specification

A class derived from RedundancyGroup containing mass storage-related redundancy information.

StorageRedundancyGroups are used to protect user data.
PhysicalExtents, or one or more AggregatePExtents.

They are made up of one or more
StorageRedundancyGroups may overlap.

However, the underlying Extents within the overlap should not contain any check data.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Caption string MaxLen (64) Short (one line) description
Description string Longer description
ManagedSystemElement
InstallDate datetime
Status string MaxLen (10)
LogicalElement
RedundancyGroup
CreationClassName [string MaxLen(256) The name of the concrete subclass
Name string MaxLen(256),override
RedundancyStatus |Uint16
StorageRedundancyGroup
TypeOfAlgorithm Uintl6 The TypeOfAlgorithm specifies the algorithm
used for data redundancy and reconstruction.
StorageRedundancy [Uint16 provides additional information on the
state of the RedundancyGroup, beyond the
RedundancyStatus property. Information like
"Reconfig In Progress" (value =1) or
"Redundancy Disabled" can be specified
using this property.
IsStriped Boolean
IsConcatenated boolean
Table 105: StorageRedundancyGroup Derivation
C.96 StorageSetting

StorageSetting is roughly equivalent to a Service Level Agreement (SLA) when associated by
ElementSetting to a StorageVolume. StorageSetting is a Service Level Objective (SLO) when usedin a
StartCreateStorageVolume method. It defines a series of properties with Maximum and Minimum
values that the object should stay between.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Setting

Page 280 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter
VerifyOKToAp |Uint32 [IN]CIM_ManagedSystemE|The VerifyOKToApplyToMSE method is
plyTOMSE() lement ref MSE, used to verify that this Setting can be
[IN] datetime 'applied' to the referenced
TimeToApply, ManagedSystemElement, at the given
[IN] datetime time or time interval.
MustBeCompletedBy
ApplyToMSE((Uint32 [IN]JCIM_ManagedSystemE|The ApplyToMSE method performs the
) lement ref MSE, actual application of the Setting to the
[IN] datetime referenced ManagedSystemElement.
TimeToApply,
[IN] datetime
MustBeCompletedBy
VerifyOKToAp (Uint32 [IN]JCIM_CollectionOfMSEs |The VerifyOKToApplyToCollection method
plyToCollectio ref Collection, is used to verify that this Setting can be
n () [IN] datetime 'applied' to the referenced Collection of
TimeToApply, ManagedSystemElements, at the given
[IN] datetime time or time interval, without causing
MustBeCompletedBy, adverse effects to either the Collection
[OUT] string itself or its surrounding environment.
CanNotApply[]
ApplyToCollec|Uint32 [IN]JCIM_CollectionOfMSEs |The ApplyToCollection method performs
tion() ref Collection, the application of the Setting to the
[IN] datetime referenced Collection of
TimeToApply, ManagedSystemElements. The net effect
[IN] boolean is to execute the ApplyToMSE method
ContinueOnError, against each of the Elements aggregated
IN] datetime by the Collection.
MustBeCompletedBy,
[OUT] string
CanNotApply[]
VerifyOKToAp (Uint32 [IN] The
plyIncrement CIM_ManagedSystemElem [VerifyOKToApplyIncrementalChangeToMS
alChangeToM ent ref MSE, E method is used to verify that a subset
SE() [IN] datetime of the properties in this Setting can be
TimeToApply, 'applied' to the referenced
[IN] datetime ManagedSystemElement, at the given
MustBeCompletedBy, time or time interval.
[IN] string
PropertiesToApply[]
VerifyOKToAp (Uint32 [IN] The
plyIncrement CIM_ManagedSystemElem [VerifyOKToApplyIncrementalChangeToMS
alChangeToM ent ref MSE, E method is used to verify that a subset
SE() [IN] datetime of the properties in this Setting can be
TimeToApply, 'applied' to the referenced
[IN] datetime ManagedSystemElement, at the given
MustBeCompletedBy, time or time interval.
[IN] string
PropertiesToApply[]
ApplyIncreme|Uint32 [IN] The ApplyIncrementalChangeToMSE

ntalChangeTo
MSE()

CIM_ManagedSystemElem
ent ref MSE,

method performs the actual application of
a subset of the properties in the Setting

Bluefin Specification

Version 1.0.0

Page 281 of 303

Detailed Class Derivations

Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
[IN] datetime to the referenced
TimeToApply, ManagedSystemElement.
[IN] datetime
MustBeCompletedBy,
[IN] string
PropertiesToApply[]
VerifyOKToAp |Uint32 [IN] The
plyIncrement CIM_CollectionOfMSEs ref [VerifyOKToApplyIncrementalChangeToCol
alChangeToC Collection, lection method is used to verify that a
ollection () [IN] datetime subset of the properties in this Setting
TimeToApply, can be 'applied' to the referenced
[IN] datetime Collection of ManagedSystemElements, at
MustBeCompletedBy, the given time or time interval, without
[IN] string causing adverse effects to either the
PropertiesToApply[], Collection itself or its surrounding
[OUT] string environment.
CanNotApply[]
ApplyIncreme|Uint32 [IN] The ApplyIncrementalChangeToCollection
ntalChangeTo CIM_CollectionOfMSEs ref [method performs the application of a
Collection() Collection, subset of the properties in this Setting to
[IN] datetime the referenced Collection of
TimeToApply, ManagedSystemElements. The net effect
[IN] boolean is to execute the
ContinueOnError, ApplyIncrementalChangeToMSE method
[IN] datetime against each of the Elements aggregated
MustBeCompletedBy, by the Collection.
[IN] string
PropertiesToApply[],
[OUT] string
CanNotApply[]
StorageSetting
SettingID MaxLen(256) |Key A unique ID for the instance.
NoSinglePoint|Bool Desired value for No Single Point of
OfFailure Failure. Possible values are false = can't,
true = can do.
DataRedunda |Uint16 DataRedundancy describes the number of
ncyMax complete copies of data maintained.
Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or
more copies are maintained. This
parameter is the desired maximum value.
Possible values are 1 to n
DataRedunda |Uint16 DataRedundancy describes the number of
ncyMin complete copies of data maintained.
Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or
more copies are maintained. This
parameter is the desired minimum value.
Possible values are 1 to n
SpindleRedun [uint16 Spindle redundancy describes how many

dancyMax

disk spindles can fail without data loss

Page 282 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

including, at most, one spare. Examples
would be RAID5 with a Spindle
Redundancy of 1, RAID6 with 2, RAID 6
with 2 spares would be 3. This parameter
describe the desired maximum value.
Possible values are 0 to n

SpindleRedun
dancyMin

uintl6

Spindle redundancy describes how many
disk spindles can fail without data loss
including, at most, one spare. Examples
would be RAID5 with a Spindle
Redundancy of 1, RAID6 with 2, RAID 6
with 2 spares would be 3. This parameter
describe the desired mnimum value.
Possible values are 0 to n

DeltaReserva
tion

uintl6

Delta reservation is a number between 1
(1%) and a 100 (100%) that specifies
how much space should reserved in a
replica for caching changes. For a
complete copy this would be 100%, but it
can be lower in some implementations.

C.97 StorageSettingWithHints

Table 106: StorageSetting Class Derivation

This subclass of StorageSetting allows a client to specify 'hint's for optimization of the volume
performance. The effect that these hints have will be implementation dependent.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Setting

Bluefin Specification

Version 1.0.0

Page 283 of 303

Detailed Class Derivations

Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
VerifyOKToAp |Uint32 [IN]CIM_ManagedSystemE|The VerifyOKToApplyToMSE
plyTOMSE() lement ref MSE, method is used to verify that this
[IN] datetime Setting can be 'applied' to the
TimeToApply, referenced
[IN] datetime ManagedSystemElement, at the
MustBeCompletedBy given time or time interval.
ApplyToMSE((Uint32 [IN]JCIM_ManagedSystemE|The ApplyToMSE method performs
) lement ref MSE, the actual application of the
[IN] datetime Setting to the referenced
TimeToApply, ManagedSystemElement.
[IN] datetime
MustBeCompletedBy
VerifyOKToAp |Uint32 [IN]CIM_CollectionOfMSEs |The VerifyOKToApplyToCollection
plyToCollectio ref Collection, method is used to verify that this
n () [IN] datetime Setting can be 'applied' to the
TimeToApply, referenced Collection of
[IN] datetime ManagedSystemElements, at the
MustBeCompletedBy, given time or time interval,
[OUT] string without causing adverse effects to
CanNotApply[] either the Collection itself or its
surrounding environment.
ApplyToCollec|Uint32 [IN]JCIM_CollectionOfMSEs |The ApplyToCollection method
tion() ref Collection, performs the application of the
[IN] datetime Setting to the referenced
TimeToApply, Collection of
[IN] boolean ManagedSystemElements. The net
ContinueOnError, effect is to execute the
IN] datetime ApplyToMSE method against each
MustBeCompletedBy, of the Elements aggregated by the
[OUT] string Collection.
CanNotApply[]
VerifyOKToAp |Uint32 [IN] The
plyIncrement CIM_ManagedSystemElem [VerifyOKToApplyIncrementalChang
alChangeToM ent ref MSE, eToMSE method is used to verify
SE() [IN] datetime that a subset of the properties in
TimeToApply, this Setting can be 'applied' to the
[IN] datetime referenced
MustBeCompletedBy, ManagedSystemElement, at the
[IN] string given time or time interval.
PropertiesToApply[]
VerifyOKToAp |Uint32 [IN] The
plyIncrement CIM_ManagedSystemElem [VerifyOKToApplyIncrementalChang
alChangeToM ent ref MSE, eToMSE method is used to verify
SE() [IN] datetime that a subset of the properties in
TimeToApply, this Setting can be 'applied' to the
[IN] datetime referenced
MustBeCompletedBy, ManagedSystemElement, at the
[IN] string given time or time interval.
PropertiesToApply[]
ApplyIncreme|Uint32 [IN] The

ntalChangeTo

CIM_ManagedSystemElem

ApplyIncrementalChangeToMSE

Page 284 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter
MSE() ent ref MSE, method performs the actual
[IN] datetime application of a subset of the
TimeToApply, properties in the Setting to the
[IN] datetime referenced
MustBeCompletedBy, ManagedSystemElement.
[IN] string
PropertiesToApply[]
VerifyOKToAp (Uint32 [IN] The
plyIncrement CIM_CollectionOfMSEs ref [VerifyOKToApplyIncrementalChang
alChangeToC Collection, eToCollection method is used to
ollection () [IN] datetime verify that a subset of the
TimeToApply, properties in this Setting can be
[IN] datetime 'applied' to the referenced
MustBeCompletedBy, Collection of
[IN] string ManagedSystemElements, at the
PropertiesToApply[], given time or time interval,
[OUT] string without causing adverse effects to
CanNotApply[] either the Collection itself or its
surrounding environment.
ApplyIncreme|Uint32 [IN] The
ntalChangeTo CIM_CollectionOfMSEs ref [ApplyIncrementalChangeToCollecti
Collection() Collection, on method performs the
[IN] datetime application of a subset of the
TimeToApply, properties in this Setting to the
[IN] boolean referenced Collection of
ContinueOnError, ManagedSystemElements. The net
[IN] datetime effect is to execute the
MustBeCompletedBy, ApplyIncrementalChangeToMSE
[IN] string method against each of the
PropertiesToApply[], Elements aggregated by the
[OUT] string Collection.
CanNotApply[]
StorageSetting
SettingID MaxLen(256) |Key A unique ID for the instance.
NoSinglePoint|Bool Desired value for No Single Point
OfFailure of Failure. Possible values are false
= can't, true = can do.
DataRedunda |Uint16 DataRedundancy describes the
ncyMax number of complete copies of data
maintained. Examples would be
RAID 5 where 1 copy is
maintained and RAID 1 where 2 or
more copies are maintained. This
parameter is the desired
maximum value. Possible values
arelton
DataRedunda |Uint16 DataRedundancy describes the
ncyMin number of complete copies of data

maintained. Examples would be
RAID 5 where 1 copy is

maintained and RAID 1 where 2 or

Bluefin Specification

Version 1.0.0

Page 285 of 303

Detailed Class Derivations

Bluefin Specification

Property/
Method

Type

Qualifier/
Parameter

Description/Notes

more copies are maintained. This
parameter is the desired minimum
value. Possible values are 1 to n

SpindleRedun
dancyMax

uintl6

Spindle redundancy describes how
many disk spindles can fail without
data loss including, at most, one
spare. Examples would be RAID5
with a Spindle Redundancy of 1,
RAID6 with 2, RAID 6 with 2
spares would be 3. This parameter
describe the desired maximum
value. Possible values are 0 to n

SpindleRedun
dancyMin

uintl6

Spindle redundancy describes how
many disk spindles can fail without
data loss including, at most, one
spare. Examples would be RAID5
with a Spindle Redundancy of 1,
RAID6 with 2, RAID 6 with 2
spares would be 3. This parameter
describe the desired mnimum
value. Possible values are 0 to n

DeltaReserva
tion

uintl6

Delta reservation is a number
between 1 (1%) and a 100
(100%) that specifies how much
space should reserved in a replica
for caching changes. For a
complete copy this would be
100%, but it can be lower in some
implementations.

StorageSettingWithHints

DataAvailabili
tyHint

Uintl6

This hint is an indication from a
client of the importance placed on
data availability. Values are
0=Don't Care..10=Very Important

AccessRando
mnessHint

Uintl6

This hint is an indication from a
client of the randomness of

accesses. Values are 0=Totally
Sequential..10=Totally Random

AccessDirecti
onHint

Uintl6

This hint is an indication from a
client of the direction of accesses.
Values are 0=Totally
Read..10=Totally Write

AccessSizeHi

nt[]

Uint16[]

This hint is an indication from a
client of the access sizes to
optimize for. Several sizes can be
specified.

AccesslLatenc
yHint

Uintl6

This hint is an indication from a
client how important acccess
latency is Values are 0=Don't Care
.. 10=Very Important

AccessBandwi

Uintl6

This hint is an indication from a

Page 286 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification

Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter

dthWeight client of bandwidth prioritization
Values are 0=Don't Care..10=Very
Important

StorageCostH [Uint16 This hint is an indication of the

int importance the client places on
the cost of storage. Values are
0=Don't Care..10=Very
Important.

StoragekEfficie [Uint16 This hint is an indication of the

ncyHint importance placed on storage
efficiency by the client. Values are
0=Don't Care..10=Very
Important. A StorageVolume
provider might choose different
RAID levels based on this hint

Table 107: StorageSettingWithHints Derivation
C.98 StorageVolume
(As defined by CIM)

A StorageVolume is an Extent that is presented to the Operating System (for example, by a hardware
RAID cabinet), to a File System (for example, by a software volume manager) or to another entity.
StorageVolumes do NOT participate in StorageRedundancy Groups. They are directly Realized in
hardware or are the end result of assembling lower level Extents.

(As refined by Bluefin)

The StorageVolume class is used to represent storage that a disk array exports to a host system or to

another SAN component.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Caption string MaxLen (64) [Short (one line) description
Description string Longer description
ManagedSYstemElement
InstallDate datetime
Name string MaxLen
(256)
Status string MaxLen (10)
LogicalElement
LogicalDevice

Bluefin Specification

Version 1.0.0

Page 287 of 303

Detailed Class Derivations

Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
SystemCreationClassName string MaxLen(256) |[The scoping System's
, Key CreationClassName.
SystemName string MaxLen(256) |[The scoping System's Name.
/4 Key
CreationClassName string MaxLen(256) |The name of the concrete subclass
/4 Key
DevicelD string MaxLen(64), |unique identifying information
Key
PowerManagementSupported boolean
PowerManagementCapabilities [Int16][]
Availability Intl6
Statuslnfo Intl6
LastErrorCode Uint32
ErrorDescription string
ErrorCleared boolean
OtherldentifyingInfo String[]
PowerOnHours Uint64
TotalPowerOnHours Uint64
IdentifyingDescriptions String[]
AdditionalAvailability Uint16][]
MaxQuiesceTime Uint64
StorageExtent
DataOrganization Uintl6
Purpose String
Access Uintl6
ErrorMethodology String
BlockSize Uint64
NumberOfBlocks Uint64
ConsumableBlocks Uint64
IsBasedOnUnderlyingRedundanc|boolean
Y
SequentialAccess boolean
StorageVolume

C.99 SystemDevice
(As defined by CIM)

Table 108: StorageVolume Derivation

LogicalDevices may be aggregated by a System. This relationship is made explicit by the SystemDevice

assoclation.

(As refined by Bluefin)

Provides the association from the disk array ComputerSystemDefinition (storage controller) to

volumes and ports.

Page 288 of 303

Version 1.0.0

Bluefin Specification

Bluefin Specification Detailed Class Derivations

Property/ Type Qualifier/ Description/Notes
Method Parameter

[Aggregation] Component

[Aggregation] SystemComponent

[Aggregation] SystemDevice

GroupComponent REF |Override System Reference

PartComponent REF |Override LogicalDevice Reference

Table 109: SystemDevice Derivation

C.100 TapeDrive
(As defined by CIM)

Capabilities and management of a TapeDrive, a subtype of MediaAccessDevice.

Property/ Type Qualifier or Description/Notes
Method Parameter
ManagedElement
ManagedSystemElement
LogicalElement
LogicalDevice
MediaAcessDevice
TapeDrive
EOTWarningZoneSize |Uint32 Units ("Bytes")
MaxPartitionCount Uint32
Padding Uint32 Units ("Bytes")
MaxRewindTime uUint64 Units
("MilliSeconds")

Table 110: TapeDrive Derivation

C.101 UnitAccess

The UnitAccess relationship indicates which Devices are exposed through the Target Controller to

Initiators.

Property/ Type Qualifier/ Description/Notes
Method Parameter
Dependency
UnitAccess
Antecedent |REF Key Controller reference
Dependent |REF Key LogicalDevice reference
Table 111: UnitAccess Association Derivation

C.102 Zone

(As defined by CIM)

A set of ZoneMembers or ZoneAliases that collectively specify a set of endpoints in a fabric that are

allowed to participate together in the fabric.

Bluefin Specification Version 1.0.0 Page 289 of 303

Detailed Class Derivations Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Collection
SystemSpecificCollection
SystemCreationClassName |string Propagated,Key [REQUIRED
SystemName string Propagated,Key [REQUIRED
InstancelD string Key REQUIRED
InstanceName string The Zone Name
FCGS Zone.Name
ZoneType uintlé Default or Protocol, REQUIRED
(enum)
ProtocolType uintl6 FCP, VI, IP
(enum)
ReadOnly Boolean
Active Boolean Indicates that this ZoneSet is active and
cannot be changed. REQUIRED

Table 112: Zone Derivation

C.103 ZoneAlias
(As defined by CIM)

A set of ZoneMembers and is used as a management entity to collect subsets of ZoneMembers to be
added to one or more Zones.

Property/ ‘ Type ‘ Qualifier/ Description/Notes
Method Parameter
ManagedElement
Collection
SystemSpecificCollection
SystemCreationC |string Propagated,Key |REQUIRED
lassName
SystemName string Propagated, Key |REQUIRED
InstancelD string Key REQUIRED
InstanceName string Zone Alias Name
FCSW ZoneAlias.Name, REQUIRED
ZoneAlias
Active boolean Indicates that this ZoneAlias is part of an active
ZoneSet and cannot be changed. REQUIRED

Table 113: ZoneAlias Derivation

C.104 ZoneCapabilities
(As defined by CIM)

The capabilities of the zoning in the AdminDomain.

Page 290 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Detailed Class Derivations

Property/ ‘ Type ‘ Qualifier/ Description/Notes
Method Parameter
ManagedElement
Capabilities
SystemSpecificCapabilities
SystemCreationClassName |string Propagated,Key REQUIRED
SystemName string Propagated, Key REQUIRED
InstancelD string Key REQUIRED
InstanceName string REQUIRED
ZoneCapabilities
ZoneNameMaxLen uintl6é
ZoneNameFormat uintlé
(enum)
MaxNumZoneSets uint32
MaxNumZones uint32
MaxNumZoneMembers uint32
MaxNumZoneAliases uint32
MaxNumZonesPerZoneSet (uint32

Table 114: ZoneCapabilities Derivation

C.105 ZoneMember
(As defined by CIM)

Is an association to fabric element that is used to define the participating end port in the Zone.

Property/ Type Qualifier/ Description/Notes
Method Parameter
MemberOfCollection
Collection Collection Key Zone
Member ManagedElement Key FCPort, ZoneAlias, or LogicalPortGroup
ZoneMember
ZoneMemberType |uintl6 (enum) Other, Unknown, PortWWN, FCID,
DomainPort
FCGS ZoneMember.Identifier Type

Table 115: ZoneMember Derivation

C.106 ZoneService
(As defined by CIM)

The Service responsible for defining the zone enforcement for the fabric. The ZoneService is Hosted on
an AdminDomain and defines the containment and scope of the zoning entities.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
ManagedSystemElement
LogicalElement

Bluefin Specification Version 1.0.0 Page 291 of 303

Detailed Class Derivations Bluefin Specification

Property/ Type Qualifier/ Description/Notes
Method Parameter
Service
Name lstring Key |
ZoneService

OperationalStatus |uintl6 (enum) REQUIRED

CreateZone() uintlé

DeleteZone() uintl6

CreateZoneSet() uintl6
DeleteZoneSet() uintlé
CreateZoneAlias() |uintl6
DeleteZoneAlias() uintlé
ActivateZoneSet() uintl6
DeactivateZoneSet() |uint16

Table 116: ZoneService Derivation

C.107 ZoneSet
(As defined by CIM)

A set of zone definitions for a fabric containing one or more Zones which when activated define the zone
enforcement for a Fabric.

Property/ Type Qualifier/ Description/Notes
Method Parameter
ManagedElement
Collection

SystemSpecificCollection
SystemCreationClassName |string |Propagated,Key |REQUIRED

SystemName string |Propagated, Key [REQUIRED
InstancelD string |Key REQUIRED
InstanceName string The ZoneSet name.
FCGS ZoneSet.Name, REQUIRED
ZoneSet
Active boolean Indicates that this ZoneSet is active and

cannot be changed.

Table 117: ZoneSet Derivation

Page 292 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Futures

D.1

D.2

D.3

D.4

D.5

D.6

Appendix D: Futures

HBA LUN masking and persistent binding

This section should be refined and expanded to assure that the specification is properly integrated with
other standards for LUN masking and persistent binding (i.e., HBA API).

Managed Hub Section

The current Bluefin specification doesn’t address managed hubs as a possible SAN component. If they
continue to be of interest, the specification will need to be expanded to address any concerns particular
to managed hubs.

IPSEC

The current Bluefin specification doesn’t address IPSEC. As part of the specification refinement and
completion, it will need to be expanded to appropriately address IP security and authentication.

Multi-Path Modeling

The current specification doesn’t include support for multipathing within its array profile. The profile
and its models should be expanded to provide appropriate support and infrastructure.

Provider Modeling
Provider Modeling is emerging DMTF work that needs to be monitored.

Requirements Highlighting

The current specification is not structured to make it easy for an implementer to identify and
enumerate the set of implementation and compliance requirements that to which he is subject. A
future revision of the Bluefin specification should create and include a standard format for
compliance/requirements statements throughout the document. In addition, these requirements should
be fully integrated with any compliance tests that are developed as part of the deployment of a formal
SAN management standard.

Non-Fibre Fabrics

In future versions of this specification, it is intended that the fabric model and durable names for ports
will be extended to cover other types of connectivity, such as InfiniBand, IP networks, etc.

Although the current fabric model is specific to Fibre Channel, a best-efforts approach was taken in
defining it to allow for future extensions to include additional types of connectivity.

When the fabric model is extended for a new type of connectivity, it will be necessary to define durable
names for the ports on the new type of connectivity. For instance, the durable names for ports on an IP
network might be MAC addresses. It is expected that durable names for ports will be connectivity
specific, and may be different for each different type of connectivity.

One important thing should be noted when extending the model to handle additional types of
connectivity. In the current model, durable names are not defined for SCSIController objects, since
there is always a one-to-one relationship between SCSIController objects and FCPort objects in Fibre
Channel. Since FCPort objects have durable names, SCSIController object instances can always be
unambiguously identified using the association to the corresponding FCPort object instance.

Note that this one-to-one relationship may not hold for other types of connectivity. If the relationship
between SCSIController objects and port objects can be one-to-many (or vice versa), then a different
method of uniquely identifying SCSIController object instances must be defined.

Bluefin Specification Version 1.0.0 Page 293 of 303

Futures Bluefin Specification

D.8 Compliance Notification

A method i1s needed to allow a provider to inform clients that it complies to Bluefin’s indications
profiles. Emerging work from the DMTF Interop Workgroup relates to this problem. Rather than
offering a competing approach, Bluefin will re-evaluate this work in the near future. The Interop work
1s described in the “Modeling Profiles” section.

D.9 Cascaded Agents

The following wording was developed as the subcommittee considered the ramifications of a multi-level
agent hierarchy, in which a given agent could provide a management interface to higher-level devices
while simultaneously relying on the management interface provided by agents “below”it. While this was
felt to be an important and likely scenario, time did not allow it to be fully developed.

1. Description

As discussed in section 2.3.2, components may implement both agent and client
behavior. One or more such components can be configured into a chain or cascade
terminating in non-cascading agents. Such configurations are not supported in the
first release of Bluefin. This section outlines an approach for adding support;
compliance statements of “must” and “should” are not intended to apply to the first
release of Bluefin.

Cascaded agents can add value in several ways.
¢ Provide a single point of control proxy for multiple device agents.

e Implement storage or management services, such as virtualization, using
device agents.

o Improve scalability through aggregation and consolidation.
e Distribute a set of management functions across several computer systems.

e However, cascaded agents need some constraints and support to avoid
several problems.

e Redundant control over a given device
e Ambiguous or unstated control over a given device

e Cyclic dependencies among agents and other improper configurations
2. Client-to-Agent Dependencies

All Bluefin agents are required to implement the interop schema (see section 7.4). In
particular, each agent creates an ObjectManager instance to represent its own agent
role. A cascaded agent must explicitly represent its client dependency on other
Bluefin agents by creating Dependency instances between its own ObjectManager
and the ObjectManager instances created by the agents it depends on. The
dependent end of the Dependency association is the client’s local ObjectManager and
the antecedent end is the server’s remote ObjectManager. The client (cascaded
agent) does not create local proxies for the server ObjectManager instances.

Page 294 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

Bluefin Specification

Futures

A cascaded agent must model the Bluefin agents it depends on, and this client-to-
agent link can be relied on by clients. Optionally, a cascaded agent may represent
additional, more specific service dependencies. For example, a virtualization
system’s StorageAccessService might depend on the StorageAccessServices of one or
more arrays. The agent for the virtualization system is permitted to explicitly model
these dependencies.

If the cascaded agent models any additional Service-to-Service dependencies, a client
may infer that this is the complete and exclusive set of such dependencies. In
particular, the absence of a Dependency between two specific Services is significant.
If the cascaded agent models only ObjectManager-to-ObjectManager dependencies, a
client must assume the cascaded agent depends on the server agents in unrestricted
ways.

Cascading relationships reported through Dependency are not exclusive of any other
dependencies. Presence of client-to-agent links does not imply anything about
unique or comprehensive control over the agent. For example, a virtualization
system may depend on several disk storage systems but we can not conclude the
storage systems are totally under the control of the virtualization system.

To traverse one step in an agent cascade, start with the client service of interest and
follow Dependency in the reverse direction (client is the dependent end of the
association). If there are no such dependencies, follow HostedService to System, then
follow HostedService to an ObjectManager. From ObjectManager follow Dependency
to other agent ObjectManagers. Because Dependency is a generic association, it may
be used for purposes other than showing cascading relationships. While traversing
agent cascades, users should check for appropriate Service subclasses and ignore
objects of other classes.

Version 1.0.0 Page 295 of 303

Futures

Bluefin Specification

- -

-

Dependency

Service

HostedService

System

SystemDevice

Device

3. Device Multiple “Ownership” Not Supported

Page 296 of 303

One crucial feature of our profiles is that some objects are modeled by multiple
agents. For example, the StorageVolume exported by a disk storage array (and
reported by its agent) is the same volume imported by a host or virtualization
system (and reported by its agent as well) and has the same durable name.

However, use of this feature must be carefully controlled. In the example just given,
the storage array uniquely “owns” the volume, while the host only acknowledges it.
To manipulate the properties of the device in the array, a client must interact with
the array’s agent.

Definition: A Service “owns” a Device if it is a HostedService on a System with a
SystemDevice relation to the device, or if the device is ControlledBy such a system
device. In other words, we can construct the sequence of associations shown
vertically in the left side of the figure above.

We presume that a service controls only the devices it owns, either through service
extrinsic methods or CIM intrinsics (such as set attribute). Many agents may
enumerate a given device and expose its attributes and associations with other
objects, but control or modification of the device is provided by owning services.

Version 1.0.0 Bluefin Specification

——=

Bluefin Specification

Futures

Bluefin does not support ownership by competing services. It is OK for a device to
have no owning service, or multiple distinct unrelated owning services, but not two
services of classes related by inheritance. Classes with a common ancestor are
(necessarily) OK, but not one class that is an ancestor of the other. The intent is to
provide a unique service (and agent) to perform any given control action for a device.
Bluefin does not prevent or prohibit agent cascades from implementing ambiguous
or redundant control, however the behavior of such a configuration is not defined.

This is primarily an issue for cascaded agents that perform simple aggregation or
single point of control proxy services. If both the cascaded agent and the agents it
depends on “own” the same resource, clients may choose to work on the same
resource through different agents. This quickly leads to fatal problems like deadlock.
Therefore, Bluefin does not support this situation. Either the non-cascading agents
must be hidden from clients of the cascaded agent, or the cascaded agent can not
host services in common with the non-cascading agents.

4. Locking Considerations

Some additional rules are required for lock management (clause 6) in the presence of
cascaded agents. Without these restrictions, the likelihood of deadlock or persistent
lock request failure increases substantially.

The Dependency associations between agents form a directed graph which generally
should have no cycles. This DAG has richer information about client-agent
interactions than the set of LMGroups and can be used to control the risk of
deadlocks. For the purposes of this section, “up” and “above” mean the toward-client
direction in the graph, while “down” and “below” mean the toward-agent direction.

Resources controlled by different levels of an agent cascade (e.g., a virtualization
system above a pair of storage arrays) may be apparently independent but actually
dependent. To lock and operate on a resource at one level may require locks and
operations on resources at levels below. These dependencies are not apparent to the
client making the initial request.

Use well-defined, common LMGroups

Bluefin lock management clients are supposed to identify all the resources needed
for a given operation and required to acquire the corresponding locks before
manipulating any of the resources. To acquire multiple locks in a single lock request,
the client and lock management agents must belong to a common LMGroup.

In principle, a different LM Group could be used for each complex operation by a lock
management client. It is strongly recommended that a cascaded agent and all agents
below it belong to a common LMGroup and that this LMGroup be used for all
locking operations by the cascaded agent (as a lock management client). In any
event, it is critical for cascaded agents to obey the requirement for acquiring all locks
before manipulating any resources (sections 6.9, 6.13), preferably by issuing a single
LockRequest.

A cascaded agent may belong to multiple LMGroups. In particular, it may use
LMGroup ONE as a Bluefin lock management client and LMGroup TWO as a
Bluefin lock management agent. The resources it requests from agents below will be
locked in group ONE, and the resources it exposes to clients above will be locked in
group TWO. This will be especially common for virtualization systems.

Grant locks bottom-up

Bluefin Specification

Version 1.0.0 Page 297 of 303

Futures Bluefin Specification

To avoid deadlock and minimize the risk of persistent lock refusal, resources must
be locked bottom-up. That is, a client lock request from above can not be granted
until all implied lock requests to lower levels have been granted. Because clients do
not know what lower lock requests may be required, a cascaded agent must hold a
client’s lock request and initiate requests to agents below. Figure X illustrates this
behavior. The cascaded agent in this figure corresponds to the LM Agent 1 of Figure
65.

LMClient Upper LMServer Cascaded Agent Lower LMServer Lower LMAgent

T
|
|
|

LockRequest()

LMAgentRequest()

Lock Request()

i
I
I
I
I
I
I
I
I
I
I
I
I
LMAgentRequest() }
I

LMAgentGrant() m(

LockGrant() F

i :

Figure X: Nested Locking with Bottom-up Grants

Asnoted in C.X.4.1, the cascaded agent may belong to different LMGroups (and use
different lock management servers) in its roles as agent (above) and client (below).
This is illustrated in Figure X by Upper LMServer and Lower LMServer. Because
the use of different LM Groups is not mandatory, these may in fact be the same lock
management server.

A lock management AgentRequest contains a specific list of CIMObjectPath’s
1dentifying the resources to be locked, and optionally a list of methods and properties
to be manipulated on these resources. An empty or missing list implies that all
methods and properties may be manipulated. Therefore, a cascaded agent can
predict what resources below it may have to be locked. It must issue lock requests
for all such resources and receive grants before granting the request from above.

The prediction of resources below must be inclusive of all necessary resources. It is
expressly prohibited for a cascaded agent to defer a lock request for a resource below
until a subsequent client operation “ensures” that particular resource is needed.

Page 298 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification Futures

A cascaded agent may need to lock resources below it, even when carrying out an
unlocked operation for a client. This is a natural consequence of virtualization and
abstraction; the resources below and related locking requirements are hidden from
the client above. Figure Y shows a sequence diagram for implied locking.
OperationRequest and OperationResponse are implemented by the cascaded agent
in its role as a Bluefin agent (clause 7), rather than lock management agent (clause
6). For example, these may be CIM-XML intrinsic operations.

LMClient Cascaded Agent Lower L MServer Lower LMAgent

T
OperationRequest() :
I

T
|
|
|
|
Lock Request() :
|

T
|
|
|
|
|
|
|
:

LMAgentRequest() :

|

LMAgentGrant()

I
LockGrant() |:_|<

Figure Y: Implied Nested Locking
Lease durations

A cascaded agent, like all lock management agents, must return a TTL value when
granting a lock management client’s request. Several considerations apply when
choosing a legal and appropriate TTL value.

A cascaded agent can not promise to its clients more than it has been promised by
agents below. The TTL it returns in an AgentResponse MUST NOT exceed the
minimum TTL granted from below. If the cascaded agent makes a single
AgentRequest, the lock management server will compute the minimum for the
corresponding AgentResponse. If the cascaded agent makes multiple AgentRequests,
1t MUST determine the minimum TTL of the multiple AgentResponses, taking into
consideration the time required to receive each response. This is the same function
required of lock management servers.

A cascaded agent SHOULD attempt to account for the time required to generate lock
requests and collect lock grants, by requesting somewhat longer leases from agents
below. This is most important for lock and lease renewal requests with short
LeaseDurations, as the original requested duration might be consumed by nested
request-grant overhead. The objective at each level in the cascade is to satisfy the
immediate client with its requested LeaseDuration; it is not necessary or desirable
for a cascaded agent to attempt to compensate for multiple levels of cascading.

Bluefin Specification Version 1.0.0 Page 299 of 303

Futures

Bluefin Specification

In general, the amount of LeaseDuration compensation for a given cascaded agent
must be determined heuristically. Simple implementations may hardcode a value
like 50ms. More sophisticated implementations can monitor actual performance and
adjust their compensation dynamically.

Minimize implied or hidden locking

The requirements that all locks be acquired at one time and bottom-up have an
important implication. A cascaded agent should not initiate a lock request
downward during the execution of a locked operation (equivalently, an operation on
a locked resource). The cascaded agent MUST initiate lock requests only during the
execution of explicit lock requests (as shown in Figure X) or during unlocked
operations from above (as shown in Figure Y).

An end client never performs a locked operation in this sense, therefore it MAY issue
lock requests at any time.

There are two general situations. First, a cascaded agent intends to add to a set of
previously locked resources while servicing a client request. This violates the lock-
at-once and lock-bottom-up requirements. Strict adherence to the deadlock
management rules of section 6.9 will prevent a catastrophic failure, but wasted
locking and time is likely with no guarantee of eventual completion of the client
request due to persistent lock rejection and lack of forward progress.

Second, a cascaded agent intends to lock a new set of resources independent of any
resources currently locked. This might be in support of an unlocked client operation
(Figure Y) or due to the cascaded agent’s own autonomous operations (i.e., as an end
client). If the resources are truly independent of all others currently locked, the
LockRequest can be granted. However, a client at a given level of a cascade can only
know the dependencies established by itself. Agents below generally hide resource
dependencies. To minimize failure of LockRequest’s and OperationRequest’s due to
hidden dependencies, locks should be explicitly acquired as early and as high in a
cascade as possible.

5. End Client Considerations

Page 300 of 303

Discover all the services available for a given device

Starting with the device, follow ControlledBy (if appropriate) to a system device, then
SystemDevice to a System, then HostedService to an enumeration of potentially
useful owning services. If no System is found, the device is in the agent’s DMZ and
the agent offers no relevant services that own the device; other agents must be
examined for available services.

There will not always be cascaded agent relationships between interacting systems.
For example, a virtualization system may import volumes from a storage array
without being a Bluefin client of the array. Therefore, a client can not always find
the service available for a device by starting at an arbitrary agent and following
association links. A comprehensive list of available services can be constructed by
brute force, repeating this process with all agents discovered through SLP.

Determine the scope of an agent’s services

Version 1.0.0 Bluefin Specification

Bluefin Specification

Futures

An end client can determine the set of all devices that might be affected by a given
agent by following the client-to-agent dependencies together with HostedService to
obtain a set of Systems. SystemDevices of these systems and devices ControlledBy
these system devices might be affected by the given agent.

This is the maximum possible scope known through the object model. There is no
guarantee and no default inference about how much of the scope can actually be
affected by the agent. The agent may also be able to affect devices through
proprietary mechanisms not reported through the object model.

Verify an agent is using the proper set of device agents

An end client can follow the client-to-agent dependencies to obtain a list of Systems
and/or ObjectManagers. This list can be compared with a list of expected agents
obtained from other sources.

Discover how virtualization systems depend on one another

For any given virtualization system, an end client can follow the client-to-agent
links to discover these dependencies explicitly. By starting with an enumeration of
virtualization systems, the dependency graph for the entire SAN can be constructed.

Find the appropriate agent to manage a given device

An end client can begin by discovering all the services available for the device, and
using only the specific service of interest (e.g., StorageAccessService). If the intent is
to manage a device directly, there should be no more than one relevant owning
Service. If the intent is to manage the device indirectly, the end client may have to
apply some external policy for choosing among multiple agents.

Ambiguous ownership

Multiple agents may claim ownership of a common resource, regardless of Bluefin’s
lack of support for the situation. For example, several hosts may have access to a
JBOD and model the disks in the JBOD as their own system devices. This modeling
ambiguity reflects the actual ambiguity about which system has control over which
disk. The problem has been referred to as “I claim this disk in the name of
Cincinnati!”

Bluefin does not currently have a solution for this situation. We recommend against
allowing it to arise.

6. Agent Considerations

Agent addition and removal

Bluefin Specification

As a cascaded agent discovers relevant agent dependencies, through SLP discovery
or other processes, it must create Dependency instances between its local Service
objects and the relevant Services on the other agent(s). If the other agent has failed
or is otherwise unavailable, creation of these Dependency instances may have to be
deferred until the relevant Service and System keys of the other agent can be
obtained.

As noted above, the dependency between ObjectManager services representing the
agent(s) themselves must be represented, and more specific dependencies among
other services (e.g., StorageAccessService) should be represented.

Version 1.0.0 Page 301 of 303

Futures Bluefin Specification

Avoidance of cyclic dependencies

A cascaded agent, or indeed any client, can create a dependency graph of all its
direct and indirect dependencies. If the agent ever appears as an agent in its own
dependency graph, a cycle has been detected.

Bluefin does not specify what actions the agent should take in response to a detected
cycle, but the options include generating notifications, shutting down operation, and
removing sufficient immediate dependencies to break the cycle.

Indication management

A high-quality cascaded agent will manage indications in a useful way. For example,
a virtualization system should transform an incoming indication of disk failure into
outgoing indications of failure or reduced availability for any affected exported
volumes.

In the agent-to-client direction, this may not require any additional effort. Clients
subscribe to whatever is of interest to themselves, and the cascaded agent updates
its internal state (perhaps triggering indications to its own clients) in response to
notifications from server agents.

However, new subscriptions may required cascading in the client-to-agent direction.
If the virtualization system used in this example was subscribing to disk failure
indications by default, the arrival of a client subscription for volume status or
availability should cause the cascaded agent to issue new subscriptions requests to
the server agents below it.

7. Additional Issues
The following features have not been sufficiently developed at this time.
Providers

The CIM WBEMService class hierarchy should be incorporated into the mandatory
cascaded agent dependencies in a well-defined and interoperable way. This will
capture dependencies of CIM providers on Bluefin agents below, which is more
precise than saying an entire ObjectManager has such dependencies.

It is appropriate for a self-contained agent to model its unqualified dependency on
other agents. However, an ObjectManager may contain many providers, each
responsible for a different profile or namespace. Those providers which depend on
Bluefin agents generally will depend on completely independent sets of agents. We
want to capture this level of detail, especially to verify that the ObjectManager and
its providers have been configured properly (see consideration C.X.5.3).

Agent-to-client links

The Dependency relation described here is strictly client-to-agent. Some benefits
accrue from explicit representation of corresponding links in the opposite direction,
but there are also several technical problems in maintenance of these links which we
declined to solve at this time.

Given client-to-agent links, the agent-to-client links can be inferred through a brute-
force examination of all agents of interest.

Local representation of remote Service and System objects

Page 302 of 303 Version 1.0.0 Bluefin Specification

Bluefin Specification

Futures

The Dependency relation described here relates local Service instances to instances
implemented by other agents. If these other agents are (temporarily) unavailable,
we can not express the continuing relationship robustly. Adding Service (and System
because Service is weak on System) instances to the local agent as mirrors or
surrogates for the remote agent’s instances would allow a robust solution, but again
there are some technical problems we declined to solve.

Current CIMOM implementations may autonomously purge associations with stale
references to remote objects. Remote Service instances can become “stale”
transiently due to agent initialization, and therefore may be removed by a CIMOM
even when that is inappropriate. The agent that created the association receives no
indication that the association has been removed, and must monitor its
Dependencies and restore them as needed. The use of local proxy instances for
remote services and systems gives more control to the agent.

7.1. Glossary additions

DMZ Demilitarized Zone. Bluefin jargon for the set of object instances created
by an agent as proxies for objects owned by other agents.

DAG Directed Acylic Graph. Standard terminology for a data structure with
directed paths between elements without cycles anywhere in the structure.

D.10 Durable ID Formats

The format of properties like durable IDs (e.g. Fibre Channel world-wide name) must be precisely
specified in future revisions of this specification to insure seamless interoperability between multi-
vendor implementations.

Bluefin Specification

Version 1.0.0 Page 303 of 303

