/* * RTLinux scheduling accuracy measuring example * * (C) Michael Barabanov, 1997 * (C) FSMLabs 1999. baraban@fsmlabs.com * Released under the GNU GENERAL PUBLIC LICENSE Version 2, June 1991 * Any use of this code must include this notice. */ #include #include #include #include #include #include #include #include #include #include "common.h" int ntests=500; int period=1000000; int bperiod=3100000; int mode=0; int absolute=0; int fifo_size=4000; int advance=0; MODULE_PARM(period,"i"); MODULE_PARM(bperiod,"i"); MODULE_PARM(ntests,"i"); MODULE_PARM(mode,"i"); MODULE_PARM(absolute,"i"); MODULE_PARM(advance,"i"); pthread_t thread; int fd_fifo; void *thread_code(void *param) { hrtime_t expected; hrtime_t diff; hrtime_t now; hrtime_t last_time = 0; hrtime_t min_diff; hrtime_t max_diff; struct sample samp; int i; int cnt = 0; int cpu_id = rtl_getcpuid(); rtl_printf ("Measurement task starts on CPU %d\n", cpu_id); if (mode) { int ret = rtl_setclockmode (CLOCK_REALTIME, RTL_CLOCK_MODE_PERIODIC, period); if (ret != 0) { conpr("Setting periodic mode failed\n"); mode = 0; } } else { rtl_setclockmode (CLOCK_REALTIME, RTL_CLOCK_MODE_ONESHOT, 0); } expected = clock_gethrtime(CLOCK_REALTIME) + 2 * (hrtime_t) period; fd_fifo = open("/dev/rtf0", O_NONBLOCK); if (fd_fifo < 0) { rtl_printf("/dev/rtf0 open returned %d\n", fd_fifo); return (void *) -1; } if (advance) { rtl_stop_interrupts(); /* Be careful with this! The task won't be preempted by anything else. This is probably only appropriate for small high-priority tasks. */ } /* first cycle */ clock_nanosleep (CLOCK_REALTIME, TIMER_ABSTIME, hrt2ts(expected - advance), NULL); expected += period; now = clock_gethrtime(CLOCK_MONOTONIC); last_time = now; do { min_diff = 2000000000; max_diff = -2000000000; for (i = 0; i < ntests; i++) { ++cnt; clock_nanosleep (CLOCK_REALTIME, TIMER_ABSTIME, hrt2ts(expected - advance), NULL); now = clock_gethrtime(CLOCK_MONOTONIC); if (absolute && advance && !mode) { if (now < expected) { rtl_delay (expected - now); } now = clock_gethrtime(CLOCK_MONOTONIC); } if (absolute) { diff = now - expected; } else { diff = now - last_time - period; if (diff < 0) { diff = -diff; } } if (diff < min_diff) { min_diff = diff; } if (diff > max_diff) { max_diff = diff; } expected += period; last_time = now; } samp.min = min_diff; samp.max = max_diff; write (fd_fifo, &samp, sizeof(samp)); } while (1); return 0; } pthread_t background_threadid; void *background_thread(void *param) { hrtime_t next = clock_gethrtime(CLOCK_REALTIME); while (1) { hrtime_t t = gethrtime (); next += bperiod; /* the measurement task should preempt the following loop */ while (gethrtime() < t + bperiod * 2 / 3); clock_nanosleep (CLOCK_REALTIME, TIMER_ABSTIME, hrt2ts(next), NULL); } } int init_module(void) { pthread_attr_t attr; struct sched_param sched_param; int thread_status; int fifo_status; rtf_destroy(0); fifo_status = rtf_create(0, fifo_size); if (fifo_status) { rtl_printf("RTLinux measurement test fail. fifo_status=%d\n",fifo_status); return -1; } rtl_printf("RTLinux measurement module on CPU %d\n",rtl_getcpuid()); pthread_attr_init (&attr); if (rtl_cpu_exists(1)) { pthread_attr_setcpu_np(&attr, 1); } sched_param.sched_priority = 1; pthread_attr_setschedparam (&attr, &sched_param); rtl_printf("About to thread create\n"); thread_status = pthread_create (&thread, &attr, thread_code, (void *)1); if (thread_status != 0) { rtl_printf("failed to create RT-thread: %d\n", thread_status); return -1; } else { rtl_printf("created RT-thread\n"); } if (bperiod) { pthread_create (&background_threadid, NULL, background_thread, NULL); } return 0; } void cleanup_module(void) { rtl_printf ("Removing module on CPU %d\n", rtl_getcpuid()); pthread_cancel (thread); pthread_join (thread, NULL); close(fd_fifo); rtf_destroy(0); if (bperiod) { pthread_cancel (background_threadid); pthread_join (background_threadid, NULL); } }