NAME

twoprong—simulator of a fast distributed link restoration protocol based on two prong approach

SYNTAX

twoprong <net_file_name>.net /b=nodeX–nodeY [/options]

Simulation Options Section (below) explains available options. As an example, to simulate link restoration between nodes N03 and N08, with repeat limit of 14 and network restoration signaling channels operated at 192 kbps, in a network described in file ‘my_network.net’, the command is:

twoprong my_network.net /b=N03–N08 /r=14 /x=192

DESCRIPTION

twoprong is a distributed network restoration simulator which implements an version of Bicknell, Chow, and McCaughey’s algorithm. twoprong does not follow the conventional Sender-Chooser paradigm. The two end nodes assume similar role and flood out aggregated bandwidth request along each outgoing active span that contains spares. When a tandem node receives a request the first time, it floods the received request along each outgoing active span that contains spares. When a tandem receives a request later from the other end node, it recognizes that there is a restoration path and forwards, instead of floods, the request back to the end node which sends it the request first. The tandem node immediately makes DCS connections. Since most of the requests will be forwarded about half way along the path to the other end node, the flooding phase is shorten and the message volume is greatly reduced. Because the tandem nodes can make DCS connection concurrently, twoprong has very short restoration time. In order to establish all restoration paths in one wave of request messages and resolve the spare contention problem, twoprong implements a backtracking mechanism that allows the request to retry other spans when it reaches dead end.

The simulator operates on a network description file. The user specifies a network link break as well as desired options, and the simulator provides a step-by-step profile of the recovery process including the restored bandwidth, percentage of the restoration level, and associated time at which that level of restoration was achieved.

The NETRESTORE family of tools includes: network restoration simulators, such as, fitness, rreact, twoprong, and shn, a relaxation method based optimal spare algorithm called rx_mnet, and network file conversion utilities to facilitate the creation of network description files, such as nps2net, np2net, ns2net, nps2dat, np2dat, and ns2dat.

SIMULATION SCENARIO

In order to analyze a network using the twoprong simulator, a four step sequence will generally be followed. Each of the steps below is explained in more detail in later sections by the same name.

1) Generate Network Description File

2) Select Simulation Options

3) Assemble Simulation Command with Options, Run Simulation

4) Interpret Simulation Output.

NETWORK FILE GENERATION

A set of companion tools is available to facilitate the conversion of existing network files into a NETRESTORE file format shared by twoprong and other NETRESTORE simulators. They provide the basic statistics of the generated network file and generate the script file for the simulation of each link restoration in the network. A required input parameter for node processing delay is shared by all these file conversion utilities. nps2net takes the node, path, and spare files as input parameters. np2net takes the node and path files as input parameters, and allows users to specify the spare to working ratio for every span as an additional input parameter. The node file contains a list of node specification lines with four fields: sequence number, node ID, V and H coordinates. The path file contains the current traffic pattern with a node list of each of working path followed by ‘45’, DS3 bandwidth, in each line. These two programs correlate the working and spare channels in each span, and the internal ports of each node from the path file. ns2net takes the node and span files as input parameters. The span file contains the span specification lines, which specify the working and span channels in each span, and the span distance in kilo meters. The ns2net correlates the number of input ports in each node from the span files. Check the ‘man page’ for nps2net, np2net, and ns2net. The nps2net file is located in $NETRES/bin.

As an example, the command for creating mci.net is:

nps2net mcinodes.txt mcipaths.txt mcispares.txt mci.net 0.01

Three files are required as input (nodes, paths, and spares) followed by the name of the target .net file and the default message processing delay (in seconds).

To change the message processing time of a specific node, the node specific repeat limit, or the span distance of a span, users are referred to the ‘man page’ for the NETRESTORE file format. The current version of simulators is case sensitive on the .net filename. Please use all lower cases for the .net filenames.

SIMULATION OPTIONS

Options and parameters available with twoprong are outlined below. Each option is invoked using the first character (lower case) of the option in question.

1TSTIME — This option relates to the transmission time of each individual signature. For those wishing a more fine grained analysis, the node signature transmission time can be set to something other than the default 0.0 seconds. For example, a delay of 2 msec would be set using: /1=0.002

2INDEX — Refractive index of the optical fiber can be specified with this option, which defaults to 1.5, corresponding to a 5 microsecond delay per Km. It may be changed to 1.4 using: /2=1.4

BREAK — Break is the means by which link failures are specified. The format is /b=<node1>(<node2>. This is a required parameter. The user specifies the end nodes using the same names as are contained in the companion ‘.net’ network file. Note that the name of a node, N07, is different from N7 and node 00 is interpreted different from node 0. For the break between N02 and N00, use: 	 /b=N02(N01

CROSS_CONNECT_TIME — This is the time delay for a node to effect DCS cross connect. A default time of 0.01 seconds is assumed. An 8 msec time would be specified as: /c=0.008

DEBUG — The DEBUG option is not interactive, but simply provides more detail on the restoration process. Specifically, it includes the output of additional simulation information to a log file (default NETSIM.OUT), a complete copy of the path listing as found in the .net file, as well as a list of specific path IDs which were disrupted. Details of the broadcast phase are also included. To invoke this option, add the ‘/d’ qualifier to the simulation command.

INTERACTIVE — More extensive diagnosis information on fault recovery progress is possible using the interactive mode. Details of events within each node are reported, for example. The user is given the option to continue examining events, abort, or skip ‘n’ events before stopping for another visual check. Interactive operation is invoked using: /i

MSG_LENGTH — Restoration time depends on the average length (bytes) of restoration messages exchanged by distributed nodes. The default message length is 8 bytes. Restoration message length could be changed to 12 bytes using: /m=12

OUT — Simulation results are stored in a default log file called NETSIM.OUT. An alternative file name can be specified using:	/out=<file_name>

PPTOVERRIDE — The default node processing time for each signature (distinct from 1STSTIME) used in ".net" files created with NETRESTORE translation utilities is ten msec. This overrides the node processing time of individual nodes, read in as the third parameter of the first line of each node description in the .net file. To override the node processing time to 8 msec, use: /p=0.008

REPEATS — This parameter represents the maximum repeat limit or hop count limit (13 is default) for restoration requests in the broadcast phase. It is observed that increasing repeat limit does not guarantee the increase in restoration level with a real-time constrain. The increase message volume may cause network congestion and results in slower restoration time and lower restoration level. Specify 9 hop limit as: /r=9

STOPTIME — Upper limit on simulation runtime (sec). Default value is ten (10.0) seconds. A five second runtime limit is specified as: /s=5.0

TIMEOUT — In the event that the Sender and Chooser are unable to achieve full restoration, the Sender will time-out and cancel the restoration request, releasing reserved bandwidth. A default timeout value of ten (10.0) seconds is assumed. To get a timeout of 5 seconds, use: /t=5.0

WRITE_LINK — The default is to use the link distance field from the .net file. Specifying /w as an option will cause the simulator to calculate the link distance (and hence link delay) according to V&H or pseudo latitude and longitude coordinates as appropriate.

X_SPEED — Transmission speed (kbps) for restoration messages on all links can be set with this option. A default value of 8 kbps is assumed. A transmission speed of 384 kbps is specified as: /x=384

Y_PARALLEL_DCS_MODE — The default is batch processing mode where the DCS connections of all the found bandwidth in a message processing can be done in one CROSS_CONNECT_TIME. /y=1 specifies the sequential DCS processing mode where each channel connection is done in one CROSS_CONNECT_TIME. /y=k, where k is an integer greater than 1, specifies the parallel DCS processing mode where the found bandwidth are connected in k channels as a batch and each k channels are connected in CROSS_CONNECT_TIME. Note that all the simulators implement this option except shnnew which finds and connects individual spare paths one at a time.A parallel DCS processing of connecting 4 channels in a batch is specified as: /y=4

SIMULATION OUTPUT INTERPRETATION

Simulation output starts with the statement "TWOPRONG algorithm results...with <net_file_name>". The first portion of the simulation output documents the principal options selected for this specific run. Next, twoprong reads in the .net file and checks its integrity. For example, the total number of working ports of a node matches that implies by the working channels in the node’s spans. The end nodes of the user specified link failure are listed, followed by the bandwidth needed for full restoration.

Restoration progress is reported by way of one record types. An example of the progress report with the simulation of the following command,

twoprong nj.net /b=N07-N04 /y=1

is as follows:

Path 1 (16 bw) 19.75% rstrd at 290.80 msec ((N07 N06 N04)�Path 2 (27 bw) 53.09% rstrd at 560.80 msec ((N07 N05 N04)�Path 3 (17 bw) 74.07% rstrd at 730.80 msec ((N07 N10 N04)�Path 4 (1 bw) 75.31% rstrd at 740.80 msec ((N07 N05 N00 N02 N04)�Path 5 (3 bw) 79.01% rstrd at 770.80 msec ((N07 N03 N00 N02 N04)�Path 6 (11 bw) 92.59% rstrd at 880.80 msec ((N07 N03 N00 N02 N04)�Path 7 (6 bw)100.00% rstrd at 940.80 msec ((N07 N03 N00 N01 N02 N04)�access file nj.dat.ls/N04_N07cut.l�optimal bandwidth that can be restored=81�optimal spare used =204�N07-N04 81/81=100.00% @0.940800 msgs=142/183 PNE=81/81 PLE=204/210

In this instance, the DCS’ are operated at the sequential processing mode, as it is indicated by the option /y=1. Each channel is connected with the default CROSS_CONNECT_TIME=0.01 seconds by the DCS’. Path 1 is reported as being restored after an elapsed time of 290.80 msec. It restored 16 channels and the accumulated percentage of restoration level is indicated as 19.75%. Specifically, a restoration path is found that originates from node N07, passes through node N06, and terminates at node N04. In fact, this is what is reported in the last part of the record pointed by an arrow. Note that here the Sender, N04, received the the ack message of 16 channels as early as 130.80 msec. But since its DCS is operated at the sequential processing mode with each channel connected at 0.01 seconds interval, Path 1 does not restore the last of 16 channels until 130.80+16*10=290.80 msec.

The last line of output again summarizes the end nodes connected to the failed link, restored bandwidth, the lost bandwidth, (also expressed as a percent). The time at which this level of restoration was achieved is reported. The two numbers after "msgs=" represent respectively the number of messages needed to restore bandwidth, and the total number of messages required by the algorithm (including cleanup). PNE stands for Path Number Efficiency. It is a measure for evaluating the restoration level achieved by a network restoration method. It contains two numbers. The first number represents the number of paths restored by the network restoration method being evaluated. The second number represents the maximum number of paths that can be restored. It was typically computed by an optimal algorithm called rx_mnet and read in by twoprong. PLE stands for Path Length Efficiency. It is a measure for evaluating the efficiency of a network restoration method in terms of the spare usage. It contains two numbers. The first number is the total number of spares in the paths found by the optimal spare usage algorithm. The second number is the total number of spares in the paths found by the network restoration method being evaluated. Note that the PLE ratio is only meaningful when the PNE=1. The higher the PLE ratio the better.

Here twoprong restored 81 channels the same as that found by the optimal algorithm. But twoprong found paths that use 210 while rx_mnet found paths that use 204 spares. twoprong also appends this summary information line to the file netres.twop.res in the working directory. This allows a script with all the span breaks to accumulate the summarized network restoration r
