
Fast Firewall Implementations for Software-based Routers
Lili Qiu

lqiu@cs.cornell.edu
Cornell University

George Varghese
varghese@cs.ucsd.edu

University of California, San Diego

Subhash Suri
suri@cs.wustl.edu

Washington University in St. Louis

ABSTRACT
Routers must perform packet classi�cation at high speeds to
e�ciently implement functions such as �rewalls. The classi�-
cation can be based on an arbitrary number of pre�x and range
�elds in the packet header. The classi�cation required for �re-
walls is beyond the capabilities o�ered by standard Operating
System classi�ers such as BPF [12], DPF [7], PathFinder [1]
and others. In fact, there are theoretical results that show the
general �rewall classi�cation problem has poor worst case cost:
for searching over N arbitrary �lters using k packet �elds, ei-
ther the worst-case search time is 
((logN)k�1) or the worst-
case storage is O(Nk).

In this paper, we re-examine two basic mechanisms that have
been dismissed in the literature as being too ine�cient: back-
tracking search and set pruning trees. We �nd using real
databases that the time for backtracking search is much bet-
ter than the worst case bound; instead of 
((logN)k�1), the
search time is only roughly twice the optimal search time1.
Similarly, we �nd that set pruning trees (using a DAG opti-
mization) have much better storage costs than the worst case
bound; it has memory requirements similar to the RFC scheme
of Gupta and McKeown [10]. We also propose several new
techniques to further improve the two basic mechanisms. Our
major ideas are a novel compression algorithm, the ability to
trade smoothly between backtracking and set pruning, and
algorithms to e�ectively make use of hardware if hardware is
available. We quantify the performance gain of each technique
using real databases. We show that on real �rewall databases
our schemes, with the accompanying optimizations, are close
to optimal in time and storage.

1. INTRODUCTION
As the Internet evolves into a global communication infras-
tructure, it is increasingly important to provide di�erentiated
services [6] to users with widely varying requirements, allow-
ing users to pay for di�erent levels of service. A key mecha-
nism that enables di�erentiation in a connectionless network is
packet classi�cation. In packet classi�cation routers, the route
and resources allocated to a packet can be determined by the
destination address as well as other header �elds of the packet
such as the source address and TCP/UDP port numbers. For
example, in the emerging di�serv architecture [6] core routers
classify packets based only on IP TOS �elds; however, edge
routers determine Per Hop Behaviors (PHBs) by setting IP
TOS bits based on destination, source and even port �elds.
More importantly (at least today), many router products al-
low a �rewall capability, such as Cisco Access Control Lists
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The height of the multiplane trie is regarded as optimal search time

throughout the paper, unless otherwise speci�ed.

(ACLs), which allow packets to be blocked based on the same
�elds.

A more abstract framework for packet classi�cation, consis-
tent with Cisco ACLs, is as follows. The packet classi�cation
database of a router consists of a potentially large number of
�lters (or rules in �rewall terminology) on key header �elds. A
general �lter consists of arbitrary pre�x or range speci�cations
on the destination, source, protocol, port number and possibly
other �elds. A given packet header can match multiple �lters,
so each �lter is given a cost, and the packet is forwarded using
the least cost matching �lter. The industry standard, Cisco
ACLs, speci�es �lter costs by entering the �lters (sometimes
called \lines") in a linear ordering and using the order num-
ber as an implicit �lter cost. Thus, in Cisco ACLs the �rst
matching �lter must be found.

While the di�serv proposal is still not mature, almost every
router today has support for ACLs. Edge routers need ACLs
to implement �rewalls. However, even large backbone routers
today implement ACLs to trace denial-of-service and 
ood at-
tacks. Thus our paper concentrates on techniques for speeding
up packet classi�cation for �rewalls using properties we have
observed in real �rewall databases. While we believe our tech-
niques generalize to other �lter databases such as di�serv, it
is di�cult to test this assertion because there are no models
of di�serv databases that are generally agreed upon.

The current state of the art in most routers is to either use
linear search of the �lter database or to use hardware, such
as ternary CAMs or other ASICs that perform parallel linear
search (e.g., [9]). Other solutions reported in the literature
that can be implemented in software (e.g., [16, 10]) are either
slow or take too much storage. With the advent of software
based routers (e.g., [13]), which are typically aimed at the edge
router space where classi�cation is particularly important, it
is particularly important to �nd fast software techniques for
fast �rewall implementations.

There is evidence that the general �lter problem is a hard
problem, and requires either O(Nk) memory or 
((logN)k�1)
search time, where N is the number of �lters and k is the num-
ber of classi�ed �elds [9, 16]. However recent research [10, 11,
17] indicates that such worst case behavior does not arise in
real databases. Based on this observation, these papers intro-
duce clever new techniques like pruned tuple search [17] and
Recursive Flow Classi�cation [10] that exploit the structure of
existing databases. However, if real databases have regulari-
ties that can be exploited, perhaps even the simplest packet
classi�cation algorithms will do quite well.

This question motivates us to re-examine the two simplest
packet classi�cation mechanisms we know of: backtracking search
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and set pruning trees. There is an interesting duality between
these two simple schemes: backtracking search requires the
least storage but can have poor worst case search times; set
pruning trees have minimal search times but have poor worst
case storage. Earlier researchers have dismissed backtracking
search as being too slow [17], and dismissed set pruning trees
as being suitable only for very small packet classi�ers [5, 17].

However, we �nd using real databases that the time for back-
tracking search is much better than the worst case bound.
Instead of (logN)k�1, the search time is only a constant fac-
tor (often only a factor of two) worse than optimal. Similarly,
we �nd that set pruning trees (using a DAG optimization) has
much better storage costs than the worst case bound of Nk

would indicate.

We also propose several novel techniques to further improve
the performance of backtracking and set pruning trees. First,
we design a novel compression algorithm that applies to any
multiplane trie. Our compression scheme is particularly use-
ful because it allows �lters that use port ranges to be stored
economically. We evaluate our compression scheme using both
theory and experiments. Our results indicate that compression
leads to signi�cant reduction in both lookup time and storage.

Given that backtracking search and set pruning trees are at
two ends of a spectrum between optimal storage and optimal
time, it makes sense to study the tradeo� between these two
extremes. As the two schemes are structurally similar and
use multiplane tries as their underlying basis, we show that
it is possible to smoothly trade storage for time using a new
mechanism called selective pushing. Our results show that the
tradeo� scheme o�ers more choices, and can improve the time
of backtracking search with only modest increases in storage.

Finally, we investigate the possibility of moving a subset of
�lters to hardware if it is available. Our results show that
by removing only a small number of �lters from software for
hardware lookup, the storage requirement and query lookup
time for the software approach (i.e. backtracking search and
set pruning trees) can be greatly reduced. This is signi�-
cant because they indicate the bene�t of adding small ternary
CAMs to software-based routers while yet allowing the �rewall
database to contain a large number of rules.

The paper is organized as follows. We give the standard
problem de�nition in Section 2, and review related work in
Section 3. In Section 4 we describe backtracking search and
introduce some simple new optimizations to improve search
time. We then evaluate its performance, and quantify the ef-
fects of each of the optimizations using the real �rewall databases.
In Section 5 we describe set pruning search, introduce some op-
timizations to improve storage, and present our experimental
results. In Section 6 we propose a novel compression scheme,
and evaluate its performance gain both in theory and with ex-
periments. In Section 7 we explore a tradeo� between time
and space by starting with backtracking search and using se-
lective pushing. In Section 8 we investigate ways to e�ectively
make use of a limited amount of hardware if it is available. We
conclude in Section 9.

2. PROBLEM SPECIFICATION
Packet classi�cation is performed using a packet classi�er, which
is a collection of �lters (or rules in �rewall terminology). Each

�lter speci�es a class of packet headers based on some criterion
on K �elds of the packet header. Each �lter has an associated
directive, which speci�es how to forward the packet matching
this �lter. We say that a packet P matches a �lter F if each
�eld of P matches the corresponding �eld of F . This can be
either an exact match, pre�x match, or a range match. The
match type is implicit in the speci�cation of the �eld. For ex-
ample, if the protocol �eld is speci�ed as UDP, then it requires
an exact match; if the destination �eld is speci�ed as 11*, then
it requires a pre�x match; if the port �eld is a range, such as
greater than 1023, then it requires a range match. Typically,
destination and source �elds use pre�x matches, port �elds
use range matches, and protocol �elds use exact or wildcard
matches. Since we can represent a range using multiple pre-
�xes [17], we assume for the rest of the paper that each �eld
in a rule is a pre�x unless otherwise speci�ed. 2

Since a packet can match multiple �lters in the database, we
associate a cost for each �lter to determine an unambiguous
match. Thus each �lter F in the database is associated with
a non-negative number, cost(F ). Our goal is to �nd the �lter
with the least cost matching a packet's header. The key metric
is classi�cation speed. It is also important to reduce the size
of the data structure to allow it to �t into high speed memory.
The time to add or delete �lters is often ignored in existing
work, but can be important for dynamic �lters.

We note that this form of classi�cation is beyond the capabil-
ities of classi�er techniques such as BPF [12], PathFinder [1],
DPF [7] etc, that are often used in operating systems. Such
classi�ers do not allow the use of pre�xes in every �eld.

3. RELATED WORK
Many router vendors do a linear search of the �lter database
for each packet, which scales poorly with the number of �lters.
To improve the lookup time, some vendors cache the result of
the search keyed against the whole header. Caching may work
well and have high hit rates [19] but still requires a fast packet
classi�cation scheme to handle the 10 � 20% cache misses. A
hardware-only algorithm could employ a ternary CAM (con-
tent addressable memory). However ternary CAMs are still
fairly small, in
exible and consume a lot of power.

[9] describes a scheme optimized for implementation in hard-
ware. The scheme computes the closest enclosing range for
each dimension. Each range is associated with an N bit vec-
tor. The intersection of the K vectors is computed, and the
best �lter corresponds to the �rst bit set in the intersection.
This scheme works well for up to 8000 �lters and should scale
further with further hardware improvements. However, it re-
quires specialized hardware. [17] proposes two solutions for
multi-dimensional packet classi�cation: grid-of-tries and crosspro-
ducting. The former scheme decomposes the multidimensional
problem into several 2-dimensional planes, and uses a data
structure, grid-of-tries, to solve the 2-dimensional problem.
Crossproducting is more general but either requires O(Nk)
memory or requires a caching scheme with non-deterministic
performance.

[10] proposes a simple multi-stage classi�cation algorithm, called
recursive 
ow classi�cation (RFC). RFC exploits the structure

2
There can be a large increase in the number of rules during range-

to-pre�x conversion. Our new compression algorithm will address this
issue as shown in Section 6.1.
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Filter Field1 Field2 Field3
F1 00* 00* 00*
F2 0* 00* 1*
F3 10* 1* *
F4 00* 00* 0*
F5 0* 0* 01*
F6 0* 0* 1*
F7 00* 0* 01*
F8 0* 0* 0*

Table 1: An example of eight 3-dimensional �lters.

and redundancy contained in real databases by determining
equivalence classes for packet headers. It has much better (but
still large) storage for real databases than cross-producting,
though its worst-case storage is still high. [16] suggests search-
ing through combinations of �eld lengths (tuples) and also sug-
gest a heuristic of �rst doing pre�x searches on the individual
�elds to prune the set of tuples to be searched. [11] suggests
another heuristic based on geometrically partitioning the clas-
si�cation space, which produces fairly good search times and
requires less memory than [10].

[8] considers a tradeo� between lookup time and storage cost.
However, their experimental results are only for 2-dimensional
databases, and it is not clear how the algorithm would perform
for the higher-dimensional real databases. We describe a com-
pletely di�erent algorithm that trades storage for lookup time
in Section 7 and evaluate its performance on 5-dimensional
real databases.

4. REVISITING BACKTRACKING SEARCH
Given that real �rewall �lter databases contain considerable
structure, in this section we revisit the simplest algorithm we
know of: backtracking search. We start by reviewing the basic
mechanism, and then show how it can be augmented by simple
optimizations.

4.1 Basic Backtracking Search
A trie is a binary branching tree, with each branch labeled 0
or 1. The pre�x associated with a node u is the concatenation
of all the bits from the root to the node u. It is straight-
forward to extend a single dimensional trie to multiple dimen-
sions [17]. We illustrate the idea using the following example
of a 3-dimensional trie, as shown in Figure 1. The trie corre-
sponds to the �lter database shown in Table 1.
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Figure 1: Backtracking Search Trie.

We �rst build a trie on the pre�xes of the �rst �eld, Field1.
Each valid pre�x in the Field1 trie points to a trie contain-
ing Field2 pre�xes (that follow Field1 pre�xes in some �lter).
Similarly, each valid pre�x in the Field2 trie points to a trie
containing Field3 pre�xes. Since each �lter is stored exactly
once, the memory requirement for the structure is O(NW ),
where N is the total number of �lters, and W is the maximum
number of bits speci�ed in any of the three dimensions.

Backtracking search is essentially a depth �rst traversal of the
tree which visits all the nodes satisfying the given constraints.
For the example shown in Figure 1, suppose we search for a
lowest cost �lter that matches the packet header of the form
[00*, 0*, 0*]. We �rst traverse the path A�B�C �D�E�
G�H. Then we bracktrack all the way back to node B, and
follow the path I � J �K � L. Finally, we backtrack to node
A. Since there is no subtrie attached to A, we stop and return
the best matching �lter, which is F8.

The lookup time of backtracking search can be as large as
�(WK), where K is the number of dimension. This is easy to
see using the same 3-dimensional trie example. In the worst
case, we may end up searching W two-dimensional tries hang-
ing from Field1. Searching over each two-dimensional trie in
turn may involve searching W one-dimensional tries, each at
a cost of O(W ). This yields altogether O(W 3) in the worst
case. The application of switch pointers, introduced in [17],
can help to avoid backtracking in the last two dimensions. This
reduces the worst-case lookup time to O(WK�1). Thus in the
2-dimensional case, the lookup time is O(W ).

4.2 Backtracking Search Optimizations
Before we introduce our major optimization ideas, we start by
describing some simple (but new) optimizations for backtrack-
ing search: considering optimal �eld order, pruning based on
cost, and generalizing switch pointers [17].

Optimal Field Ordering: We have observed that the lookup
time in backtracking search is sensitive to the order of �elds
in the trie. This is illustrated in the following example. Fig-
ure 2(a) and (b) correspond to the same database. The only
di�erence is the order: Figure 2(b) exchanges the order of
Field1 and Field3 in Figure 2(a). As we can see there is a
signi�cant di�erence in the number of steps involved in back-
tracking search: the worst case lookup time to search for a
header [00*, 00*, 00*] is 17 in Figure 2(a), and only 11 in
Figure 2(b).

Based on this observation, we can optimize backtracking lookup
time by choosing the best order. A straightforward way to �nd
the best order is to try all possible orders, and pick the one
that yields the best lookup time. For our examples that con-
tain 5 �elds, there are 120 possible arrangements. However,
since the protocol �eld generally requires either exact match
or matching *, it turns out to be nearly optimal to always ex-
amine the protocol �eld �rst. This leaves only 24 possible �eld
orderings to be examined.

We evaluated the e�ect of di�erent order on the query lookup
time using practical �rewall databases. (We will discuss our
experimental results in detail in Section 4.3.) Table 2 shows
the number of rules in the databases we studied, and the ratio
between worst lookup time vs. best lookup time. As we can
see, for some databases the e�ect of di�erent order is small
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Database # Rules worst time
best time

Database 1 67 111.64%
Database 2 158 164.71%
Database 3 183 130.68%
Database 4 279 145.54%
Database 5 266 127.40%

Table 2: Di�erent �eld ordering a�ects the lookup time

(only around 10%), while for other databases the e�ect is con-
siderably larger. However, for all the databases we have, the
di�erence is within a factor of 2. Moreover, we have found
that for almost all the databases, there are about half of the
orderings whose lookup times are within 10% di�erent from
that of the best ordering. Therefore a more e�cient alterna-
tive to �nd a good ordering is to randomly try a few orderings,
and choose the best one. This is much faster than exhaustive
search, and can achieve comparable performance.

A further enhancement to this approach is to use some heuris-
tic to pre-select some good orderings, and then randomly try
some of the selected orders. One possible heuristic we can use
is to choose the order that places the �eld with the most pre-
�x containment 3 as the last �eld. For example, this heuristic
would prefer Figure 2(b) over Figure 2(a) because Field 1 has
more pre�x containments than the other �elds. Other heuris-
tics were suggested in [11, 8].
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Figure 2: Di�erent �eld orderings can signi�cantly a�ect the
lookup time in backtracking search.

Pruning Based on Cost: The basic idea behind pruned
backtracking is as follows. During the backtracking search, if
we encounter a trie node such that the tree beneath the node
does not contain any lower cost �lter than the current match,
then we do not need to search through the trie below that
node. (Pruning based on cost is used in other �lter algorithms
such as [10, 2].).

For example, consider searching for a �lter [00*, 00*, 00*] in
the trie shown in Figure 3 using backtracking search. Suppose
we �nd that the incoming packet matches �lter F1, where
�lter F1 is the lowest cost �lter in the database. When we
backtrack to point P2, since we know P2's subtrie does not
contain any lower cost �lter, we do not need to search P2's
subtrie. Similarly we do not need to search over P1's subtrie,
since it does not contain a lower cost �lter than the current

3
Pre�x containment is the number of pre�xes that are pre�xes of a

given pre�x. For example, suppose we have the following pre�xes 0*,
00*, 001*, and 000*. Then the pre�x containment of 000* is 2, since 0*
and 00* are both its pre�xes.

Database # Rules # Rules in the pre�x format
Database 1 67 139
Database 2 157 496
Database 3 183 638
Database 4 279 1177
Database 5 266 1645

Table 3: Firewall databases

match. In general, we use precomputation to annotate every
node in the trie with the lowest cost �lter in the tree rooted at
the node. During backtracking search, if we encounter a node
whose annotated match is no better than our current match,
we do not search its subtrie.
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Figure 3: Pruned backtracking search.

Switch Pointers: We further optimize backtracking search
with switch pointers. Switch pointers were introduced in [17]
but the technique is limited to 2-dimensional packet classi�ca-
tion. We extend switch pointers to higher-dimensional packet
classi�cation by using it over the last 2 �elds, or by avoiding
the �rst backtracking, whichever is more bene�cial. We omit
details for lack of space.

4.3 Performance Evaluation
In this section, we experimentally evaluate backtracking search
to quantify the e�ects of the various optimizations described
above. We use total storage and worst case lookup time as
our performance metrics. Total storage is computed as the
total number of nodes in the multiplane trie. The worst case
lookup time is the total number of memory accesses in the
worst case assuming a 1 bit at a time traversal of each trie.
Finding worst case backtracking search times is non-trivial.
We develop a new algorithm for doing this which is described
in the Appendix.

We use a set of 5 industrial �rewall databases that we obtained
from various sites 4 for performance evaluation throughout the
paper. Table 3 shows the number of rules in the databases.
The rules in the �rewall are speci�ed either as exact match,
or as pre�x, or as ranges. In order to use a multiplane trie
for �lter classi�cation, we need to convert all the rules to a
pre�x format. Rules speci�ed as ranges are converted using
the technique of [17]. Column 3 in Table 3 shows the number
of rules after converting to the pre�x format, which increases
by a factor of 2 - 6 times.

The databases have the following characteristics:

4
For privacy reasons, we cannot disclose the names of the companies.
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� Pre�x containments: In our databases, no pre�x con-
tains more than 4 matching pre�xes for each dimension.
Most pre�xes contain 1, 2, or 3 matching pre�xes only.
We believe our performance results will be applicable for
other �lter databases that have a similar number of pre-
�x containments.

� Pre�x Lengths: The most popular source/destination pre-
�x lengths are 0 (wildcard) and 32. There are also a
number of pre�xes with lengths 21, 23, 24, 28, and 30.
This is very important for the performance of our com-
pression algorithm, described in Section 6.1.

� Port Ranges: 5% - 10% of the �lters have port �elds
speci�ed as � 1024 5. Such a range is converted into
6 pre�xes using [17], which contributes heavily to the
increase in the pre�x rules. Our new compression algo-
rithm, described in Section 6.1, will address this issue.

4.3.1 Performance Results
Our performance results for backtracking are summarized in
Table 4. Note that our results are based on searching one
bit at a time. A trivial extension is to search multiple bits
at a time. Clearly, if we search 4 bits at a a time, then the
memory accesses are reduced to 1

4
of the values reported here

but storage could increase by a factor of up to 16.

We compare three algorithms: basic backtracking, pruned back-
tracking, and pruned backtracking with the switch pointer op-
timization. We list the results for the best ordering in Table 4.
(The best ordering for all forms of backtracking search is the
order that minimizes memory accesses. As described in Sec-
tion 4.2, there are a handful number of good orderings that
can give comparable performance to the best performance re-
ported here.)

As we can see, the three backtracking search algorithms have
small memory requirements. The exact storage requirements
di�er by a small amount because the best ordering for the three
schemes is not necessarily the same. For all �ve databases,
even the basic backtracking cost is around twice the height of
the trie or less. This is somewhat surprising, since backtrack-
ing is usually regarded as too slow for packet classi�cation.
Thus for real databases with limited number of pre�x contain-
ments, we believe backtracking can be a�ordable in practice.
Using say an 8 bits at a time trie traversal, backtracking re-
quires around 18 - 26 memory accesses. This is better or as
good as any �rewall implementations we know using much less
storage.

Figure 4 shows the histograms of the percentage-wise improve-
ment over basic backtracking by using pruning and switch
pointers for the �ve databases. As we can see, the performance
gain of the two enhancements further reduce the number of
memory probes by up to 25%.

5. REVISITING SET PRUNING TREES
Set pruning trees were initially proposed in [5] and brie
y ex-
amined (and then discarded) in [17]. As with backtracking
search, set pruning trees work using multiplane tries. Set
pruning tries, however, di�er from backtracking search tries
by fully specifying all search paths so that no backtracking

5
This is common because of the convention that the well known ports

for standard services such as email etc, use port numbers < 1024.
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Figure 4: Histogram of the percentage-wise improvement of
using the cost-based pruning and extended switch pointers
(discussed in Section 4.2).

is necessary. However this is done at the cost of increasing
storage. In the worst case, set pruning trees may take up to
O(NK) storage.

We �rst review some standard terminology, and then explain
the process of converting a backtracking search trie to its cor-
responding set pruning trie.

We say that string S0 is a descendant of string S if S is a pre�x
of S0. We say that �lter A is a descendent of �lter B if for
all dimensions j = f1; 2; :::; kg, string A(j) is a descendant of
B(j). (Note that A(j) is allowed to be equal to B(j) and still
be a descendant of B(j).)

Converting a backtracking search trie to a set pruning trie is
essentially replacing a general �lter with its descendent �lters.
In other words, for every �lter F , we \push" F down to all its
descendent �lters, and then delete F . For instance, in Figure 5,
�lter [*, *, *] is pushed down to places corresponding to [0*,
0*, *], [0*, 0*, 0*], [0*,1*, *], [1*, 0*, *], and [1*, 1*, *], and
[1*, 1*, 1*], all of which are descendent �lters of [*, *, *].
After [*, *, *] is pushed down, we can simply delete it, since
it is now replaced with six more speci�c �lters. As we can
see, the pushdown step may potentially lead to memory blow
up. In the worst case, we may need O(NK) storage for K
dimensional �lters.
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F2F2

0 1

0
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0

0

1 0 1

1

Figure 5: Backtracking search trie versus set pruning trie.

We now consider two optimizations to reduce storage in set
pruning tries: the use of DAGs, and the use of optimal �eld
orderings.

5.1 Optimizing Storage using DAGs
A natural technique to reduce the memory of set pruning trees
is to change the tree structure of a multiplane set pruning trie
to a Directed Acylic Graph (DAG). This was �rst suggested
in [5]. We illustrate the idea using a 3-dimensional trie. As
shown in Figure 6, the tries that node A and B (both in the
�rst �eld) are pointing to are identical. So instead of keeping
several copies of identical tries, we only need to keep one copy,
and have both nodes point to the same 2-dimensional trie.
This is done at all �eld boundaries.
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Database Trie Depth # Memory Accesses Storage (# nodes)
BB PB SB BB PB SB

Database 1 86 146 134 129 1848 2428 2306
Database 2 102 153 146 143 5061 5061 5061
Database 3 102 176 170 164 5367 5367 10567
Database 4 102 202 176 170 6785 26020 6692
Database 5 102 219 204 196 9441 9441 9441

Table 4: Performance of backtracking search using one 5-dimensional trie, where BB, PB, and SB stands for basic backtracking,
pruned backtracking, and pruned backtracking with the extended switch pointer optimization (described in Section 4.2).

With DAGWithout DAG
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Figure 6: Set pruning trie with the DAG optimization.

The main technical problem is to decide when two tries are
identical. We introduce a new procedure to do this. Our
technique is general and works with all our other optimiza-
tions. Intuitively, two tries are identical to each other if and
only if they have the same geometric shape, and the �lter IDs
attached at the leaves are the same. We use the following al-
gorithm, whose pseudo-code is shown in Figure 7, to compare
if two tries rooted at A and B are identical to each other.

In more detail, a trie node has two major components: point-
ers to the trie nodes in the same dimension (denoted as Child),
and a pointer (denoted as InfoPtr) to the trie node in the next
dimension. The only exception is that nodes at the last dimen-
sion/�eld point to �lters. Any of these pointers can be NULL,
meaning there are no children or no trie/�lters attached to
the pointer. Trie i is identical to trie j if and only if (i) the
ith child of nodes A and B are identical, and (ii) the next
dimension tries or �lters that both nodes point to, if any, are
identical. We use LastField to denote the last �eld in the trie.

Identical(A, B) f
if ((A == NULL) and (B == NULL))

return TRUE;
if ((A:F ield == LastF ield) and (B:F ield == LastF ield))

return(InfoPtr(A) == InfoPtr(B));
if (!Identical(InfoPtr(A), InfoPtr(B)))

return FALSE;
for (i = 0; i < max children; i++)

if (!Identical(Child(A; i), Child(B; i)))
return FALSE;

return TRUE;
g

Figure 7: Compare if two tries are identical.

Our results show the DAG optimization helps to reduce mem-
ory blow up by two orders of magnitude in the complete set
pruning trie. We also experimented with using the DAG op-
timization at the same bit position within a �eld, but found
that the additional saving was insigni�cant, usually around
5 � 10%. Note that DAG optimization can also be applied

Database Worst Storage

Best Storage

Database 1 4.1382
Database 2 2.4909
Database 3 2.5359
Database 4 2.4065
Database 5 2.1596

Table 5: Variation in storage using di�erent order

to backtracking search tries, but the amount of storage saving
is much smaller. Moreover, since the memory requirement of
backtracking search trie is linear to the number of �lters, its
storage cost is usually not a concern.

5.2 Optimizing Storage using Field Order
As in backtracking search, we also �nd that �eld ordering af-
fects storage requirements signi�cantly. This is illustrated by
the example shown in Figure 8. By exchanging the order of
Field1 and Field3, the set pruning trie reduces from 11 nodes
in Figure 8(a) to 7 nodes in Figure 8(b).

0

0

0

1

0

0 0 1

0

0

F1 F2 F1 F2

Field 1

Field 2

Field 3

Field 3

Field 2

Field 1

(a) (b)
Figure 8: Di�erent �eld orderings can a�ect the size of set
pruning trees. signi�cantly.

Table 5 shows the ratio between largest storage and smallest
storage for the same database. As we can see, the best or-
dering cuts down the storage cost by a factor of 2 - 4. On
the other hand, we �nd for each database there are a handful
of orderings that give comparable performance (within 30%
di�erence) to the best ordering. This suggests we can ran-
domly try several orderings, and pick the best one. A further
enhancement to this approach is to use some heuristic to pre-
select some good candidate ordering, such as placing the �elds
with fewest branches at the top, and those with most branches
at the bottom. Then we can randomly pick a few of the se-
lected orderings. Other heuristics suggested in [11, 8] can also
be used.

5.3 Experimental Evaluation
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Database # memory accesses Storage (# nodes)
Database 1 86 13188
Database 2 102 78604
Database 3 102 92356
Database 4 102 191411
Database 5 102 263882

Table 6: Performance of set pruning trees (with the DAG op-
timization) using one 5-dimensional trie

In this section, we experimentally evaluate the performance of
set pruning trees using the same 5 industrial �rewall databases
described in Section 4.3.

We list the results for the best ordering in Table 6. (The best
ordering for a set pruning tree is the order that minimizes
storage.) Again our results are based on searching one bit at
a time.

Compared to several forms of backtracking search as shown
in Table 4, set pruning trees provide an optimal number of
memory accesses at the cost of large storage requirement. In
particular, the storage requirement increases to 7 - 28 times
as large as what is minimally required by the corresponding
backtracking search trie. Note that the databases 2, 3, 4, and
5 all have the same worst-case lookup time of 102, since this
is the maximum number of nodes we can ever visit without
backtracking 6.

6. COMPRESSION
Our �rst major new idea is to observe that we can further im-
prove backtracking search and set pruning trees using a novel
form of compression. A standard compression scheme for tries
(e.g., [5]) is to remove all single branching paths so that no
node has more than one child). Figure 9 shows an example:
the algorithm compresses the trie on the left into the one on
the right by collapsing multiple nodes into a single node when
multiple edges succeed each other without any branching. For
the performance of this standard compression algorithm, we
have the following theorem.

0

0

0

0

1

1

0 1

0 1 0000

0 1

11

01

Figure 9: A standard compression algorithm: merge a single
branch into one trie node.

Theorem 6.1. Consider a 1-dimensional trie with N leaf
nodes, and only leaf nodes are associated with �lters. After
compression, it has 2N � 1 nodes.

The proof is straight-forward. Suppose there are i internal
nodes, and N leaf nodes. Then the total nodes in the trie
is i + N . Since each node in the compressed trie has two

6
We have 32 bits each for source/destination address, and 16 bits each

for source/destination port. In each database there are less than 16
di�erent protocols, so we use 4 bits to distinguish them. Except the
protocol trie, which we search 4 bits at a time, all the other tries are
1-bit at a time. So the maximum number of nodes we can visit without
backtracking is 102 (including 5 roots in each dimension).

children, the total nodes is also equal to 2i + 1. So there are
N � 1 internal nodes, and thus 2N � 1 nodes altogether.

6.1 General Compression Algorithm
The standard compression scheme is e�cient when there is no
redundancy in the trie nodes. A trie has redundancy when
many trie nodes have the same pointer value: either pointing
to the same node in the next dimensional trie, or pointing to
the same �lter. Such redundancy especially arises when �lters
speci�ed in ranges are converted into those speci�ed in pre-
�xes, or when a more general �lter is pushed down to several
more speci�c �lters. The basic compression scheme cannot
exploit such redundancy. For example, it fails to compress
anything for the trie shown on Figure 10(a), since no node in
the trie has only a single branch.

0 branch
=01010

0 branch
<01010 1 branch

=111

1 branch
<111

F2 F4 F3F1

F2

F1

F1
F3

F3 F4

0

0

0

0

0

0

0

1

1

1

1

1

(a) (b)

Figure 10: Our new compression algorithm.

However, a closer examination of the trie in Figure 10(a) re-
veals an interesting property: all nodes on the right of path
01010* (and also on the branches starting with 0) point to �l-
ter 1. If we can use range comparison as well as an equality
test, we can compress all the branches starting with 0 by cre-
ating one center branch pointing to �lter 2 with value 01010,
and one side branch pointing to �lter 1 with value < 01010.
Similarly, we can compress all the branches starting with 1 by
creating one center branch pointing to �lter 4 with value 111,
and one side branch pointing to �lter 3 with value < 111. This
leads to a more compact trie as shown on Figure 10(b).

To generalize the above example, if a path AB satis�es the
following property, called the Compressible Property: (i) all
nodes on its left point to the same place L (either the same
�lter or the same node in the trie), and (ii) all nodes on its right
point to the same place R, then we can compress it as follows.
Let �(AB) denote the string labeling the path from node A to
node B. We compress the entire branches by creating three
edges: one center branch with value �(AB) pointing to B, and
one side branch with value< �(AB) pointing to L, and another
side branch with value > �(AB) pointing to R.

To simplify the following discussion, we use the data structure
shown in Figure 11 to represent a compressed node. We add 3
�elds to the original uncompressed trie node: value, len, and
rangeP tr as shown in Figure 11. Since some of the elements
may be empty, in practice we can have variable size trie nodes
which are just large enough to hold the non-empty elements.

The way we use the above data structure is as follows. If the
current input is 0, we check to see if it matches value[0] after
taking the appropriate bit mask. If so, we follow the pointer to
Child[0]. Otherwise, we follow its rangeP tr[0] if it is less than
value[0], or rangeP tr[1] if it is larger than value[0]. Similarly
for input 1. Figure 12 shows the pseudo-code.

We now examine the details of our general compression scheme.
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#de�ne MAX CHILD 2 // for binary trie
struct NODE f

struct NODE * Child[MAX CHILD]; // center branch
long value[MAX CHILD];
uchar len[MAX CHILD];
struct NODE * rangeP tr[2*MAX CHILD]; // side branch
... //other data members used in uncompressed trie node

g

Figure 11: Data structure for compressed node.

start = Level; end = Level+ node� > len[currBit]� 1;
value = num[Field]&Mask[start][end];

if ( value == node� > value[currBit] )
nextNode = node� > child[currBit];

else if (value < node� > value[currBit]) f
nextNode = NULL;
nextF ieldNode = node� > rangeP tr[2 � currBit];

g
else f

nextNode = NULL;
nextF ieldNode = node� > rangeP tr[2 � currBit+ 1];

g

Figure 12: Search on the compressed trie (compressed using
the general compression algorithm).

We need only consider the 1-dimensional case, since compress-
ing a higher-dimensional trie can be achieved by compressing
one dimension at a time.

A trie node has up to MAX CHILD paths. Each of these
paths can be compressed independently. (This is the same as
the standard compression scheme.) So we only need to solve
the problem of compressing one path. The basic idea is that at
each node we try to decide whether the next immediate step
to take can be compressed out. The next step is compressible
if and only if it satis�es the invariant that all the nodes on the
left of the center path (i.e. the path that will be converted to a
center branch) have the same pointer value, and all the nodes
on the right of the center path have the same pointer value.
Below we refer to the invariant as the compressible invariant.
To decide if the compressible invariant is maintained, we need
to look at the characteristics of the node's Child. In particular,
we classify a node into the following categories:

1. It has only one child, and none of its children are internal
nodes (i.e. nodes whose Child are not empty).

2. It has more than one child, and none of its children are
internal nodes.

3. Exactly one of its children is an internal node;

4. It has more than one child which are internal nodes.

It is clear that we cannot compress the nodes that are in case 4,
since the compressed path can retain the information of either
of the paths, but not both. For the other cases, we need to
check further to make sure the compressible invariant holds.
This involves two steps: (i) �nding the center path, and (ii)
verifying the invariant. The main issue is the �rst step, �nding
the center path. The second step is quite straight-forward once
the center path is given. The center path is easy to identify in
cases 1 and 3, since there is only one path we can possibly take.

In case 1, the center path is the branch between the current
node and its non-empty child node; in case 3, the center path is
the branch between the current node and the child node that is
an internal node. In case 2, there is more than one candidate,
and we pick one that satis�es the compressible invariant. We
omit further details for lack of space.

Analysis: We can show the above algorithm is correct, since
for each step we take we maintain the compressible invariant.
By induction, the paths that are compressed out will satisfy
the compressible property.

As for the performance of the above algorithm, it is clear that
Theorem 6.1 holds, since single-branching is a special case in
which there is no node on the left/right of the center path.
Therefore it satis�es the compressible property.

The general compression algorithm can perform much better
than the standard scheme when there is redundancy in the trie
nodes. As we described earlier, redundancy arises from range-
to-pre�x conversion or \pushing down" general �lters. Below
we quantify the performance of the general compression in the
case of range-to-pre�x conversion.

Range-to-pre�x conversion can lead to a large increase in the
number of rules. This is evident in Table 3. The number of
rules increases up to a factor of 2 - 6 times using the conversion
scheme in [17]. [8] introduces a novel technique that transforms
a query of range search with N points in the range into a
query of pre�x search with 2N pre�x rules. Our scheme is
more general (for example, it works for set pruning tries which
adds extra redundancy beyond that created by range to pre�x
conversions) and achieves the same e�ect as [8] for ranges.

More speci�cally, consider a set of 1-dimensional rules speci-
�ed in a non-overlapping interval. (If there exist overlapping
intervals, we �rst convert them into non-overlapping interval
as shown in [8].) The collection of intervals can be speci�ed as
a series of left end points of the intervals in the sorted order.
Suppose there are N points. The trie representing these N
points can be compressed to 2N � 1 nodes using the general
compression algorithm. This is stated in Theorem 6.2.

Theorem 6.2. For a trie representing N points in the range,
we can compress it to 2N �1 nodes using the general compres-
sion algorithm.

We sketch the proof brie
y. First, we build a binary trie using
the N points. Then, we convert the ranges into pre�xes using
any range-to-pre�x conversion, and build another binary trie
using these pre�xes. Comparing the two tries, we would �nd
the only di�erence between the two tries is that the second one
has more branches added around some paths. In particular,
suppose a �lter F1 speci�es Field1 � j (j is an integer, and
its bit representation is Sj). Then the second trie has a path
corresponding to Sj , which points to F1; every node on the
path that does not have a right child will have appended a right
child pointing to F1. Similarly, suppose a �lter F2 speci�es
Field1 � j. Then the second trie has a path corresponding to
Sj , which points to F2; every node on the path that does not
have a left child will have appended a left child pointing to F2.

This is illustrated with an example shown in Figure 13 for �lter
rule � 1024, a very common rule in �rewall databases for the
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port �eld. As shown in Figure 13, trie 1 is built using the end
point 1024, and trie 2 is built from the pre�xes which � 1024
is converted to. As we can see, the only di�erence between the
two tries is that every node that does not have a right child
in trie 1 is appended a right child in trie 2. According to our
general compression algorithm, all these newly added branches
in trie 2 can be compressed out. Therefore, the compressed
version of the two tries are identical. Since the �rst trie has N
leaf nodes, and only leaf nodes are associated with �lters, the
�rst trie after compression has 2 � N � 1 nodes (according to
Theorem 6.1).

F1
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F1

F1

F1

F1

Trie 1 Trie 2

10

0

0

0

0

1

1

1

1

1
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0
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Figure 13: General compression algorithm.

6.2 Experimental results for Compression
In this section, we evaluate our new compression algorithm ap-
plied to both backtracking search and set pruning trees using
the same �ve databases shown in Table 3.

We list the performance results for the best order (de�ned in
Section 4.3.1 and Section 5.3). Compared with the perfor-
mance results before compression, as shown in Table 4 and
Table 6, it is evident that compression improves performance
signi�cantly. More speci�cally, compression reduces memory
accesses and storage cost by a factor of 2 - 5 for backtrack-
ing search with and without cost based pruning. (We haven't
implemented compression with switch pointers, but we expect
similar performance gain as with the other types of backtrack-
ing search.) 7 For the set pruning trie, compression cuts down
storage by a factor of 2.8 - 8.7, and cuts down lookup time by
a factor of 1.6 - 4.

It is interesting to note that with compression, the lookup time
of backtracking search is close to that of set pruning trees, and
sometimes even better. This is because the high compression
ratio of the paths in the backtracking search trie o�sets the
cost of a small number of backtracks. More speci�cally, as
Table 7 shows, the total number of memory accesses is usually
less than twice the height of the compressed tries. On the
other hand, the compression ratio for the backtracking trie is
much higher: mostly above 3 or more. This is also higher
than the compression ratio of paths in its corresponding set
pruning trie. To understand the reason behind this, consider
the example shown in Figure 14. As the �gure shows, we
can compress the backtracking search trie on the left to the
one on the right. However in the set pruning trie, �lter 2
is pushed down to node N2, making the path N1 � N2 � N3

uncompressible. In general, \pushing down" �lters may reduce
the overall compression ratio. Careful readers may notice the
compression ratio | i.e. the ratio between the storage before

7
Since the compressed trie nodes are bigger than standard trie nodes,

each access to a trie node should strictly be charged twice the number of
memory accesses shown (to access the value and then follow the pointer).
However, since most processors prefetch a whole cache line, the second
access should be essentially zero cost as long as the node �ts in a cache
line. We use the same assumption for linear search.

compression vs. after compression | of set pruning trees is
no less than that of backtracking. This is because a signi�cant
part of compression in set pruning comes from the reduction in
the number of paths as opposed to the reduction in the length
of any individual path.

Field 2

Field 1 0

0 0

0

F1
F2

0

00 0

F2F1N2

N1

N3
Figure 14: An example to show a path that is compressible in
a backtracking search trie may become uncompressible in its
corresponding set pruning trie.

We also compare the performance of backtracking search and
set pruning trees with linear search. As we would expect, both
backtracking search trie and linear search have low storage
cost. On the other hand, the lookup time of linear search is
3 - 5 times larger than that required by backtracking search
or set pruning trees, as shown in Table 7. If we use multi-bit
tries, the performance of backtracking search and set pruning
trees can be even better. 8 Furthermore, the lookup time of
linear search increases linearly with the size of databases. In
contrast, the lookup time of set pruning trees is constant, at
most the maximum number of bits in the header �elds; the
lookup time of backtracking search is a constant factor of that
required by the set pruning trees for databases with limited
pre�x containments. Therefore both backtracking search and
set pruning trees have more scalable lookup time than linear
search.

As a �nal comment, search on our compressed tries involves
both equality test and range comparison. Thus the CPU cost
per node is a little higher with the compressed trie. With-
out special optimization, the CPU time spent per node almost
doubles after compression 9. However, the total CPU time
is actually less because compression cuts down the number of
nodes visited by mostly 3 times or more as shown in Table 7.
Moreover, the query time is dominated by the memory ac-
cesses, which is much less after the compression. Therefore
the performance gain of compression is almost the amount of
the reduction in memory accesses, and the additional CPU
overhead with compression is negligible.

In summary, in this section, we described a new compression
algorithm that can explore the redundancy in the multiplane
tries e�ectively. We evaluate the performance of the compres-
sion scheme, and show that it can reduce the storage cost and
lookup time by a factor of 2 - 8.

7. TRADING STORAGE FOR TIME
In the previous section, we showed that real databases contain
signi�cant structure, and that simple mechanisms like back-
tracking search and set pruning trees can perform much bet-
ter than the worst case bounds, especially using several op-

8
We are working on using multi-bit lookup on the compressed trie. We

expect using k bits at a time, the speedup in the lookup time of back-
tracking search will be close to, but smaller than, a factor of k.
9
The performance result is based on looking up one header �lter 1000000

times on an otherwise idle UNIX machine. We conducted the experi-
ments for di�erent header �lters and using di�erent databases, and the
performance is similar.
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Database # memory accesses Storage (# nodes)
Set Pruning BB PB Linear Search Set Pruning BB PB Linear Search

Database 1 22 30 (14) 28 (14) 67 1510 429 429 67
Database 2 46 51 (33) 42 (33) 158 22049 912 933 158
Database 3 49 49 (25) 43 (44) 183 32886 1261 1666 183
Database 4 64 99 (35) 85 (35) 279 52093 2831 4147 279
Database 5 45 59 (27) 58 (27) 266 81924 2815 2815 266

Table 7: Performance of compressing backtracking search and set pruning trees (with the DAG optimization) using one 5-
dimensional trie, where BB and PB stand for basic backtracking and pruned backtracking (described in Section 4.2). The
numbers in the parentheses are the height of the compressed trie. Sometimes the height is smaller than the memory accesses of
pruned backtracking, since some nodes can not be reached after pruning. For linear search, we assume each �lter �ts in a cache
line, and a �lter rule takes 1 memory accesses.

timization techniques (in particular, generalized compression)
we proposed. These two algorithms are at two extremes: one
has small storage requirement with suboptimal lookup times,
and the other o�ers good lookup time at the expense of a sub-
optimal memory requirement. Ideally we would like to have a
smooth tradeo� between the two extremes. That is, if we can
a�ord larger memory, we would like to have correspondingly
better lookup times. Similarly if the lookup time requirement
is relatively large, we would like to be able to use cheap ma-
chines (with less memory) to do �lter search. Such a tunable
algorithm would give designers more choices and 
exibility.

Note that, with compression, backtracking search may some-
times have better lookup time than set pruning trees. In this
case, we can still use the same technique, described below, to
tradeo� memory for lookup time. The only di�erence is that
compressed set pruning trees are no longer in the tradeo� re-
gion, for they neither yield the best storage requirement nor
the best lookup time.

7.1 Selective Pushing
As we have seen earlier in Section 5, set pruning tries eliminate
all backtracking by \pushing" down all �lters to its descen-
dents. So searching for a �lter in a set pruning trie is simply
searching for the longest matching pre�x in every dimension.
There is no need to do any backtracking. An important obser-
vation is that eliminating all backtracking can be potentially
storage intensive. If we are willing to a�ord small amounts
of backtracking, however, we can \push" down fewer �lters,
which can reduce storage requirements. Below we describe a
heuristic called selective pushing which decides which �lters to
push down.

The basic idea is that we only \push down" the �lters with
high worst case backtracking times, and leave the other �lters
intact. The code in Figure 15 shows the skeleton of the selec-
tive push algorithm. Basically it computes the search cost for
each header class, where a header class (de�ned in Appendix)
corresponds to a search path in the set pruning trie. If the
search time for the header class (itself represented as a �lter)
exceeds our required time bound, then we insert the �lter into
the trie. Note that the header class �lters may be di�erent
from the original �lters in the database.

After �lter F is inserted, then our search for F will be exactly
the same as in a set pruning trie: we simply search for the
longest pre�x match in each dimension, and the leaf will be
the matching �lter; no backtracking is necessary. Therefore we
must annotate the leaf of the pushed down �lter to indicate

foreach header class (represented as Filter(i))
cost = BacktrackSearch(trie,header);
if (cost > bound)

insertFilter(trie,Filter(i));
annotate the leaf so that search can stop at this leaf

end

Figure 15: Find worst-case search time.

that there is no need for backtracking search after encountering
this leaf.

Pushing down a �lter makes search time for that particular
�lter O(KW ), where K is the number of �elds, and W is the
maximum length of any �eld. However, as a side e�ect, adding
some more paths to the trie (during the pushdown) may make
searching for some other �lters longer.

For the example shown in Figure 16, if we require the lookup
time of all �lters to be no more than 11 memory accesses, then
the �lter [0*, 0*, 000*] with search cost of 12 memory accesses
is pushed down as shown in Figure 16(b). However this makes
the lookup time of �lter [0*, 0*, 001*] increase from 11 to
12 memory accesses, so we also need to push down the �lter
[0*, 0*, 001*] as shown in Figure 16(c). Therefore we need to
iteratively push down: we �rst get rid of the longest path; if
this push-down produces new long paths, then we need to get
rid of these as well. The algorithm stops either when the worst
case lookup time is below the required time bound (speci�ed
as an input), or the memory grows to the size of a set pruning
trie, corresponding to the state where all �lters get pushed
down.
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Figure 16: Selective pushing.

Selective pushing can be applied to both uncompressed and
compressed tries. The side e�ects of applying selective pushing
to the compressed trie are two fold: (i) adding more branches
may increase the search time for other �lters as shown in Fig-
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ure 16, and (ii) adding more branches may reduce the com-
pression ratio, which may in turn increase search time for a
large number of �lters. Therefore we need to be more conser-
vative when applying selective pushing to a compressed trie.
Our experiments suggest that a better heuristic in this case
is to push the �lters with largest search time in the current
iteration, and do it iteratively.

7.2 Performance Results of Selective Pushing
We evaluate the performance of selective pushing applied to
both uncompressed and compressed tries using the same 5
databases. For the following evaluation, we pick some arbi-
trary �eld orderings.

For the uncompressed trie, we apply selective pushing on ba-
sic backtracking augmented with cost-based pruning and ex-
tended switch pointers, described in Section 4.2. The results
are shown in Figure 17. As we can see, we can reduce the query
lookup time with little increase in storage when the lookup
time is large. For example, for database 1, there is almost no
increase in storage when the lookup time is reduced from 144
to 130 memory probes. Further decrease in the lookup time is
achieved at higher cost in storage. Similar behavior is observed
for database 2. Also for both databases, when the lookup time
comes close to the optimal, the storage costs saturate at those
of the corresponding set pruning tree, as we would expect.

For the compressed trie, we evaluate the performance of se-
lective pushing on basic backtracking search. (We haven't im-
plemented it for other types of backtracking, but we believe
the performance should be similar if not better.) The results
are shown in Figure 17. As before, when the lookup time is
large, it drops rapidly at very small cost in storage. For in-
stance, in database 1, we reduce the lookup time from 110 to
87 with little extra storage. Further decrease in lookup time
incurs higher cost in storage after we reach the \knee" of the
curve. The lookup time and storage cost eventually saturates
at those of its corresponding set pruning trees. For database 2,
we reduce the lookup time from 71 to 66 with little increase in
storage. Further decrease in lookup time is achieved at much
higher cost in storage.

To conclude, in this section we proposed a new mechanism,
called selective pushing, to smoothly tradeo� storage for lookup
time. We �nd selective pushing is useful to improve backtrack-
ing search times by around 10-25% with only a small increase
in storage. Once the knee of the tradeo� curve is reached,
however, further reduction in lookup time is achieved at the
cost of a large increase in the storage.

8. USING MINIMAL HARDWARE
Although this paper has largely focused on software techniques
for �rewalls, an interesting question is the sensitivity of our re-
sults to the availability of a small amount of hardware support.
For example, if we assume that small ternary CAMs are avail-
able for a small number of �lters, which �lters should we move
to the ternary CAM. Intuitively, we might expect that moving
�lters with a large number of wildcarded �lters should help.
However, we show below that the choice of which �lters should
be moved to hardware may depend on what metric we wish to
optimize.

Let us �rst consider the policies for reducing storage cost. We
propose two heuristics. (1) Remove from the software the �l-

ters with the largest number of wildcarded �elds. For �lters
with the same number of wildcarded �elds, we pick randomly
among them. (2) Remove from the software the �lters that
occur at largest number of nodes in the set pruning trees. The
intuition behind the �rst heuristic is that �lters with a large
number of wildcarded �elds are more likely to lead to memory
blow up during the \push down" stage. For example, �lter [*,
*, *, *, *] is pushed almost everywhere in the set pruning trie,
which contributes a large portion of storage cost. The second
heuristic tries to quantify the storage cost for each �lter rule
by counting the exact number of occurrences of each �lter in
the set pruning trees.

We evaluate performance using both heuristics on set prun-
ing trees. Figure 19(a) shows the results for uncompressed set
pruning trees. It has four curves using heuristic 1 with dif-
ferent random seed, and one curve using heuristic 2. As we
can see, using both heuristics, the storage cost initially drops
rapidly as more �lter rules are removed from software. For
example, using heuristic 2, the storage cost drops to 2

3
after

removing 10 rules, and less than one half after removing 20
rules. As we would expect, heuristic 2 out-performs heuristic
1, since the former quanti�es the storage taken by each �l-
ter, while the latter just gives a coarse estimation based on
the number of wildcarded �elds. Figure 19(b) shows the re-
sults for compressed set pruning trees. As before, the storage
decreases rapidly as more �lters are removed. On the other
hand, heuristic 2 no longer out-perform heuristic 1. We con-
jecture that this is because neither heuristic takes into account
the compression ratio, which is critical to the performance of
compressed tries. We are currently investigating better heuris-
tics for compressed tries.

To optimize the query lookup time, we propose two heuris-
tics. (1) Remove from the software the �lters with the largest
number of wildcarded �elds. For �lters with the same number
of wildcarded �elds, we just pick randomly among them. (2)
Remove from the software the �lter rules that incur the largest
number of memory accesses.

We apply the heuristics to backtracking search, and Figure 20
summarizes our results. As shown in Figure 20(a), there is a
big di�erence in performance between the two heuristics. The
lookup time drops relatively fast when heuristic 2 is used. For
example, removing 10 �lter rules helps to reduce the lookup
time by 15%. In comparison, the lookup time changes very
little when heuristic 1 is used. We also apply the heuristics
to the compressed tries. As shown in Figure 20(b), the re-
duction in lookup time is marginal after removing the �rst 20
�lter rules. We are currently investigating better heuristics for
compressed trie to take into account of compression ratio.

Compared with the reduction in storage, it is evident that
reduction in lookup time by removing �lters from software is
less signi�cant. This is because a small number of �lter rules
consume a large portion of the storage, while a considerable
number of �lter rules have relatively large worst-case lookup
time. This is con�rmed using the probability density function
of storage and worst case lookup time taken by �lter rules.
(We omit the �gures in the interest of brevity.)

9. CONCLUSION
This paper has four contributions. First, we showed experi-
mentally that the performance of simple trie based �lter schemes
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Figure 17: Selective pushing applied to uncompressed trie.
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Figure 18: Selective pushing applied to compressed trie.
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Figure 19: Moving a subset of �lters from software to hardware for storage savings.
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Figure 20: Moving a subset of �lters from software to hardware for better lookup time.
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Approach Description Performance Gain
Optimize backtrack search optimal �eld ordering a factor of 2 saving in lookup time

cost-based pruning 5% - 25% saving in lookup time
switch pointer 5% - 25% saving in lookup time

Optimize set pruning trees DAG two orders of magnitude saving in storage
optimal �eld ordering a factor of 2 - 4 saving in storage

New compression algorithm compress multiplane tries and e�ec-
tively exploit redundancy in trie nodes

a factor of 2 - 5 saving in lookup time, a
factor of 2.8 - 8.7 saving in storage

Selective pushing \push down" the �lters with high worst
case backtracking times to speed up
lookup time

10 - 25% decrease in time with only a small
increase in storage

Removal of �lters from soft-
ware

heuristics to remove a small number of
�lters to improve storage/lookup time

removing 10 - 20 rules cuts storage cost by
1

3
- 1

2
, or lookup time by 10%� 20%

Table 8: Summary of techniques introduced in the paper, and their performance gain for the �rewall databases we used.

(together with simple optimizations) is much better than worst-
case �gures predict. Second, we proposed a novel compression
algorithm that further reduces the lookup time and storage
cost. Third, we introduced a simple mechanism for trading
memory to improve the search time of backtracking search.
Finally, we also investigated ways to e�ectively utilize hard-
ware by moving a small subset of �lters rules from software
to hardware. Our contributions are summarized in Table 8.
Based on our results, we make �ve observations.

First, we observe that in existing databases simple backtrack-
ing search (together with multi-bit trie traversal and compres-
sion) works quite well, providing search times within a factor
of two of optimal. In particular, simple backtracking search
should be adequate for software �rewall implementations be-
cause it is fast and also has fast insertion times. Inserting �lter
F simply involves �rst placing the �rst �eld of F in the �rst
�eld trie, and then placing the second �eld of F in the second
�eld trie pointed to by the leaf of the �rst �eld trie, etc. Thus
insertion is as fast as K insertions into a standard trie.

Of course, the backtracking optimizations we introduced (such
as using switch pointers at the lowest two dimensions, �nding
optimal �eld orderings, and cost pruning) will slow down inser-
tion. But the contributions of these optimizations to lowering
search time are small enough to be ignored if insertion times
are important.

A second observation is that set pruning trees (with the DAG
and other optimizations) come close in storage performance
to the RFC [10] scheme. Unfortunately, we could not do a
head-on comparison with identical databases. Although the
two schemes look similar, it is not possible to theoretically
compare them in all cases. If the RFC scheme uses a simple
linear combining tree, then the DAG scheme can emulate the
performance of RFC. However, this is not true for more general
RFC combining trees; RFC allows �elds to be combined in a
tree form unlike set pruning trees. On the other hand, unlike
RFC, a set pruning trie needs storage for only those �lters
that have not been eliminated so far in the path. Thus one
can construct examples of �lter databases where RFC takes
less storage, and databases where set pruning tries take less
storage. A more fruitful approach would be to experimentally
compare the two schemes.

A third observation is that our compression algorithm can cut
down the lookup time and storage by an order of magnitude.

This is done by e�ectively exploiting redundancy in multiplane
tries.

Fourth, we observe that selective pushing allows a tunable
storage-time tradeo�. Selective pushing is useful to improve
backtracking search times (for both uncompressed and com-
pressed tries) by around 10 - 25% with only small increases in
storage. Once the knee of the tradeo� curve is reached how-
ever, the storage needs climb rapidly for even small decreases
in search time, quickly reaching the storage of set pruning
trees. However, we have only used a simple greedy heuristic.
We are currently investigating better tradeo�s using optimiza-
tion techniques.

Finally, we �nd by removing only a small number of �lters
from software to hardware, we can substantially cut down
the storage requirements and the search times of the software
approach. This enables us to e�ectively take advantage of
any limited hardware when it is available. Our schemes can
also potentially be useful for hardware implementations. Even
backtracking search can be pipelined across S stages using at
most a factor of S increase in storage.
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APPENDIX
A. COMPUTING BACKTRACKING SEARCH

TIME
Since we care about worst-case search times, we need to com-
pute the worst-case search time for backtracking search on
a given �lter database. It may appear trivial to �nd the
worst case search times in a backtracking search trie by us-
ing a bottom-up procedure and annotating each node with
the worst-case search time downwards from the node. Then
the worst-case search time for a parent node P might be con-
jectured to be the sum of two quantities: �rst, the worst-
case search time of any child of P (computed recursively);
and second, the worst-case search time to do a backtracking
search starting at P and moving to some next dimensional trie
pointed to by P . Unfortunately, the two worst-case times can
occur with di�erent packet headers. Thus this simple proce-
dure will overestimate search times.

One way to �nd the true worst case search cost is to compute
the search cost for each possible header. If there are K �elds,
each with length W , then the number of possible headers is
O(2KW ), which is prohibitive. Therefore it is necessary to
design an algorithm to reduce the header space into a smaller,
but equivalent, space. Our reduction algorithm is based on

the following observation. Many of these headers follow the
same search path in backtracking search. If the search path
two headers take are the same during backtracking search,
then they are indistinguishable as far as cost is concerned.
Therefore we divide the whole header space into a number of
classes. Two headers belong to the same class if and only if
they follow the same paths in backtracking search. We only
need to �nd the maximum search cost across all header classes.

It is not di�cult to see that two headers will follow the same
path in backtracking search if and only if they follow the same
path in the set pruning trie. Therefore, we can represent a
header class as a �lter describing its search path in the set
pruning trie. Di�erent search paths represent di�erent header
classes. For the example shown in Figure 21(a), the header
classes are [00*,0*], [00*,1*], and [01*,1*].

F2 F1 F1

0

0

0 1

1

1

F2

F1

0 1

0

0
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0

Field 1

Field 2

Field 2
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Figure 21: Di�erent �eld orderings can have di�erent header
classes signi�cantly.

A few comments follow. First, there is no overlap between
di�erent header classes. That is, if there exists a packet that
belongs to header class A and B, then A = B. Second, the
union of all header classes is the entire search space the �lter
database covers. So we have essentially converted an O(2KW )
search space into a smaller space represented by header classes.
Third, the header class is speci�c to the ordering of di�erent
�elds. For the example in Figure 21, if we swap Field1 and
Field2 shown in Figure 21(b), then the header class changes to
two header classes: [0*, 00*] and [1*, 0*]. Fourth, since con-
structing the set pruning trees is done o�ine for performance
evaluation purposes, the memory blowup is less of a concern.
(If storage is a concern, one can partially push �lters.)

Finally, having obtained the header classes, we can now �nd
the worst cast lookup time in backtracking by using backtrack-
ing search to search for every header class, and recording the
largest lookup time.

14


