On Random-Inspection-Based Intrusion
Dectection

Simon P. Chung and Aloysius K. Mok*

Department of Computer Sciences,
University of Texas at Austin, Austin TX 78712, USA.
Email:{phchung,mok}@cs.utexas.edu

Keywords: mimicry attacks, intrusion detection, computer security, random
inspection .

Abstract. Monitoring at the system-call-level interface has been an im-
portant tool in intrusion detection. In this paper, we identify the pre-
dictable nature of this monitoring mechanism as one root cause that
makes system-call-based intrusion detection systems vulnerable to mimicry
attacks. We propose random inspection as a complementary monitoring
mechanism to overcome this weakness. We demonstrate that random-
inspection-based intrusion detection is inherently effective against mimicry
attacks targeted at system-call-based systems. Furthermore, random-
inspection-based intrusion detection systems are also very strong stand-
alone IDS systems. Our proposed approach is particularly suitable for
implementation on the Windows operating system that is known to
pose various implementation difficulties for system-call-based systems.
To demonstrate the usefulness of random inspection, we have built a
working prototype tool: the WindRain IDS. WindRain detects code
injection attacks based on information collected at random-inspection
points with acceptably low overhead. Our experiments show that WindRain
is very effective in detecting several popular attacks against Windows.
The performance overhead of WindRain compares favorably to many
other intrusion detection systems.

1 Introduction

Ever since they were first introduced in [9, 15], system-call-based anomaly-
detection systems have been considered to be an effective approach to achieve
intrusion detection in computer security, but there are also weaknesses in this
approach. In particular, system-call-based anomaly-detection systems have been
found to be susceptible to various mimicry attacks. Examples of these attacks
can be found in [31, 32, 35]. Subsequently, a lot of work has been done to make
system-call-based intrusion detection systems more resilent to mimicry attacks.
However, system-called-based IDS are still vulnerable to different evasion tech-
niques for which countermeasures incur expensive run-time overheads. In this

* The research reported here is supported partially by a grant from the Office of Naval
Research under contract number N00014-03-1-0705

paper, we propose an approach for intrusion detection that is based on random
inspection of application code execution. Our approach is complementary to
system-call-based anomaly-detection in that evasion techniques that are effec-
tive against system-call-based detection are inherently vulnerable to detection
by our approach. Our approach is motivated by the following observations:

1. Vulnerability to mimicry attacks can be attributed to the predictable nature
of the monitoring mechanism: system-call-interface monitoring. Knowledge
of when/where checking will occur puts the attackers in a very favorable
position to launch mimicry attacks because they can “cover up” to make
their behavior appear “normal” before making system calls. Furthermore,
this monitoring mechanism does not preclude the attackers from exploiting
execution with impunity in user space. For example, the “null calls” inserted
by [13] can be found by an attacker who can then make those null calls
accordingly to appear “normal”.

2. Mimicry attacks usually take much longer than simple attacks that achieve
their goals directly. To avoid detection, mimicry attacks have to spend a
lot of extra effort in mimicking the normal behavior. In other word, the
deployment of system-call-based IDS has the effect of significantly increasing
the complexity and length of successful attacks. The example given in [35]
clearly illustrates this point; in order to evade a very primitive system like
pH [30], a simple attack of 15 system-calls has to be transformed into one
with more than a hundred system calls. This seems to be unavoidable for
any evasion to be successful.

Based on these two observations, we propose a different monitoring mech-
anism: random inspection. With random-inspection-based intrusion detection,
we stop the execution of the monitored program at random points and observe
its behavior. Based on the data collected at these random-inspection points, we
determine whether an intrusion is in progress. Two major properties of random-
inspection-based IDS are as follow:

1. The monitoring mechanism used by random-inspection-based IDS are less
predictable to the attackers inasmuch as they cannot predict when/where a
random inspection will occur, thus making it hard for mimicry attacks to
evade.

2. Random-inspection-based IDS are in general more effective against long at-
tacks. As the attack length increases, we can expect more inspections to
occur when the attack is in progress. This means more data collected about
the attack, and higher detection accuracy.

These properties make random-inspection-based IDS a strong complement
to system-call-based IDS. In particular, the two types of IDS together present
the attackers with a dilemma: in order to evade detection by system-call-based
systems, the attackers will need to “mimic” normal behavior. This will signifi-
cantly increas the length of the attacks. On the other hand, to avoid detection
by random-inspection-based systems, the attackers should keep their attacks as

short as possible. As a result, when random-inspection-based systems are used in
conjunction with system-call-based systems, it is very difficult (if not impossible)
for the attacks to evade detection.

The effectiveness against long attacks also opens up the possibility of boosting
random-inspection-based IDS with a new type of obfuscation techniques. Tradi-
tional obfuscation techniques as exemplified in [1, 2, 18] are designed to thwart
attacks directly by making them unportable among different machines. On the
other hand, obfuscation techniques designed to complement random-inspection-
based systems will not have to stop all attacks. Techniques that create an un-
familiar (but still analyzable) environment will serve the purpose. In such an
environment, extensive analysis will be needed for the attacker to achieve any-
thing “interesting”. This extensive analysis will significantly increase the length
and complexity of attacks, which in turn makes them very visible to our random-
inspection-based system. In addition to making attacks more visible and thus
improving the detection rate, these new obfuscation techniques can also help
reduce the performance overhead of random-inspection-based systems. We will
elaborate on this point in Sect. 5.3. In fact, Windows is by itself a very “obfus-
cated” system to the attackers; we shall explain why the Windows environment
makes attacks inevitably long in Sect. 4. This property makes Windows an es-
pecially suitable platform for our random-inspection-based IDS. We emphasize,
however, that the applicability of our approach is not limited to Windows. We
can apply other obfuscation techniques for machines running other operating
systems.

Finally, to demonstrate the usefulness of random-inspection-based IDS, we
have built a working prototype: the WindRain (WINDows RAndom INspection)
system. The WindRain system focuses on code injection attacks on Windows
systems. For this prototype, we adopt a very simple approach that checks the
PC values at the inspection points and determines if the observed PC value is
in a code region or a data region. If what is supposedly data is being executed,
WindRain will mark it as an intrusion. Because of the way it utilizes collected PC
values, WindRain is currently limited to code injection attacks. It cannot detect
existing code attacks. However, we emphasize that this is only a limitation of
the WindRain prototype and not a limitation to the general random-inspection
approach we propose. WindRain is a very simple proof-of-concept system, and
is not designed to show all the potentials of random-inspection-based intrusion
detection. We stress that the PC value is not the only piece of information that
an IDS can utilize at random-inspection points.

Our experiments show that WindRain is very effective against some “famous”
code injection attacks against Windows. We have tested WindRain on MSBlast,
Welchia, Sasser, SQLSlammer and Code Red, and all attacks are detected. As
for false positive rate, we found that WindRain works well with most of the
programs tested without generating ANY false alarm. In terms of performance,
WindRain has low runtime overhead and allows for tradeoffs. Based on these
results, we believe WindRain is a very strong stand-alone IDS in addition to
being an excellent complement to system-call-based systems. Finally, our pro-

totype system also demonstrates another advantage of random-inspection-based
IDS: it is easier to implement on Windows systems. The proprietary nature of
the Windows kernel (with an undocumented interface that changes over differ-
ent Windows versions, according to [29]) tends to make system-call interposition
difficult. The extensive use of dlls in Windows further complicates the imple-
mentation of system-call-based systems on Windows, since most of the current
systems do not work well with dlls.

2 Related Work

The idea of anomaly detection was first proposed by [7] in the 1980’s. At that
time, the only known mechanism for monitoring the behavior of processes is the
audit-log. The kernel and other system components are responsible for moni-
toring process behavior and make this result available in audit-logs. The IDS
will then read the audit-log and determine whether an intrusion is observed
based on what is read. A new monitoring mechanism only came on the scene
when [9, 15] proposed system-call-based anomaly detection. By using system-call
traces for intrusion detection, an alternative monitoring mechansim, namely the
monitoring of the system-call interface is implicitly introduced. Another major
contribution of [9, 15] is the introduction of black-box-profiling technique. This
is a technique that allows the normal behavior of a process to be profiled by just
observing its normal execution. The process is treated like a black box since the
availability of the underlying code being executed is not necessary. With this
normal profile, we can check the monitored behavior of a process and identify
any deviation from the profile as an intrusion.

Due to the richness and timeliness of the information available at the system-
call interface, system-call-based anomaly detection has become a mainstream ap-
proach in intrusion detection. A lot of work has been done in enhancing system-
call-based detection [20-22, 17, 25, 27, 37]; most of them focus on the profiling
technique. At the same time, black-box profiling for the traditional audit-log
monitoring mechanism has also received a lot of attention [4, 5, 12, 24, 38]. De-
spite all the work done in enhancing both system-call-based and audit-log based
anomaly detection, the underlying monitoring mechanisms have remained largely
the same. Monitoring at the system-call interface and monitoring through the
system audit log facility are still the two mainstream monitoring mechanisms.
There are some other monitoring mechanisms proposed (implicitly with the use
of new observable behavior for anomaly detection, such as [3, 16, 39]), but none
of these is as general as the two traditional approaches.

On the other hand, a lot of studies [31, 32, 35] have been done to find out
the limitations and weaknesses of these system-call-based IDS. A lot of evasion
strategies for avoiding detection have been identified. [35] presents a systematic
analysis of these evasion strategies and introduces the notion of mimicry attacks.
Afterwards, a lot of work has been done to overcome the weaknesses identified.
The major focus of these approaches is to improve the accuracy of the profile for
normal process behavior used for anomaly detection. With an inaccurate profile,

the IDS has to be more tolerant to behavior that deviates from that predicted by
the profile. Otherwise, excessive false positive will result from the misprediction
of normal, valid behavior. Unfortunately, this tolerance can be exploited to the
attacker’s advantage. With a more accurate profile, the IDS can be stricter in
its enforcement and mark any slight deviation from the normal profile as an
intrusion.

Among the work done in this direction, the work in [36] is one of the most ex-
emplary. [36] first proposed the white-box-profiling technique. Instead of treating
the process being profiled as a black box, we can build the profile based on anal-
ysis of the corresponding program. They have proposed several techniques for
white-box profiling, varying in the accuracy of the profile, as well as the efficiency
of run time monitoring. If the analysis is done correctly, white-box profiling
guarantees zero false positive. As a result, we can avoid the false-positive-false-
negative tradeoff mentioned above. However, high profile accuracy comes at the
cost of higher complexity in runtime monitoring. Some of the most accurate pro-
filing techniques proposed in [36] make it extremely difficult for the attackers to
evade detection. Unfortunately, the monitoring overhead based on these profiles
is likely to be high, owing to the nondeterministic nature inherent in profiles
generated by program analysis. In general, monitoring in this way has extremely
high complexity, and is so slow that it is impractical for monitoring in real time.
Requiring the availability of source code is another major drawback of this work.
This makes it impossible to apply their techniques to commodity software.

Some work [8, 13, 14, 23, 40] has been done in overcoming these two draw-
backs. To tackle the problem of high monitoring overhead, some tried to optimize
the profile generated. There are also proposals for the monitoring of other pro-
cess characteristics that allows the differentiation of states that are seemingly
the same. Some other works attempt to instrument the corresponding program
so that it will report the needed context information during execution time. The
problem of unavailability of source code is to be solved by binary code analysis
and binary code instrumentation. Also, as is pointed out in [35], both input ar-
guments and return values of system-calls are ignored in many system-call-based
anomaly detection systems. Efforts to utilize the input and output of system-calls
in anomaly detection are seen in [21, 22, 13, 14].

In addition to improving both profile accuracy and monitoring efficiency,
many of these works propose new kinds of inputs for anomaly detection (e.g.,
return address, call stack information). Many of these new types of inputs are
much harder to imitate by the attackers (as compared to system-call traces).
This will also make the IDS built more resilent to mimicry attacks.

In some sense, WindRain, our prototype random-inspect-based system, is
also like a specification-based intrusion detection system [28, 34]. The difference
between WindRain and a specification-based system is that on WindRain, we
have only specified one rule to govern the behavior of the entire system. On the
other hand, for specification-based systems, a very detailed rule is devised for
each individual process.

Two other related areas of work are instruction-set randomization [1, 18]
and Program Shepherding [19]. One can regard our WindRain system as a prob-
abilistic implementation of some Program Shepherding policies, targeting the
same attacks as [1, 18]. The main advantage of WindRain over both instruction-
set randomization and Program Shepherding is its smaller runtime impact; and
WindRain is by default a system-wide protection mechanism. As a result, we
believe that protection provided by WindRain is stronger than the by-process
protection by Program Shepherding.

As mentioned before, research approaches that use obfuscation/diversification
techniques as a means of defense are closely related to our work. The idea of us-
ing diversity in computer systems as a defensive measure is proposed in [6, 10].
The idea is demonstrated in the instruction-set-randomization systems [1, 18]
and the address obfuscation system in [2]. In the case of WindRain, though we
are not introducing any diversity, we do utilize the diversity amongst Windows
systems to boost the effectiveness of WindRain.

Finally, our prototype WindRain traps intrusion by catching code executing
in data space. In this respect, it is similar to that of the NX (or “Execution
protection”) technology. According to Microsoft’s Security Developer Center,
the NX technology “prevents code execution from data pages, such as the de-
fault heap, various stacks, and memory pool”. Since the NX technology leverages
hardware support from latest CPUs (including AMD K8 and Intel Itanium fam-
ilies), it has the obvious advantage over WindRain in terms of performance. On
the other hand, WindRain (and random-inspection-based IDS in general) is ap-
plicable to legacy systems of which there are many, and more importantly, it is
flexible as we shall explain below. Since NX is built on top of hardware features
available only on new CPUs, it is obvious that NX cannot support legacy hard-
ware. The problem with legacy software needs some elaboration. Even though it
is reasonable to expect that executable code will never appear in “data space”,
some legacy software actually violates this rule. Some examples of these offending
software include the JIT compiler in many JVM, as well as WindowsMediaPlayer
and WindowsExplorer (more details on these software will be given in Sect. 5.2).
In order to run these software on NX-protected systems, we will have to turn off
the protection for these software. Another alternative is to mark all those data
pages which contain code as executable. Both proposals are very coarse-grained
solutions. In contrast, with the flexibility of a software solution, we can program
our IDS to recognize the offending code that got placed in data space and ac-
cept their execution as normal. In fact, this is exactly our solution for supporting
WindowsMediaPlayer and WindowsExplorer under WindRain. It is also possi-
ble for random-inspection-based IDS to judge whether the execution of “data”
indicates an intrusion base on some addition information. A very good example
is to base such decision on the execution history of the offending program. Once
again, this solution demonstrates a level of flexibility that is impossible on NX.
For NX, all that is available for this decision is a single point of data: the point
where “data” is executed. Thus the introduction of NX does not solve all the
problems that WindRain can solve.

3 Technical Detalils

In this section we present our proposed system for anomaly detection based on
random inspection. We first discuss how random inspection is performed. Then
the implementation details of our WindRain system, which performs anomaly
detection based on the PC values collected at random inspection points, will be
given. In the next section, we will take a look at the environment presented by
Windows to the attackers. This will reveal the problems faced by the attackers
and will explain why WindRain is an effective defense against code injection
attacks. We present the results of our experimental evaluation of WindRain in
Sect. 5.

3.1 The Core Random Inspection

Our implementation of random inspection makes use of a common hardware
feature called performance counter. Performance counters are hardware registers
that can be configured to count various processor-level events (e.g. cache miss,
instructions retirement, etc). This facility is mainly designed for high-precision
performance monitoring and tuning. Since events are counted by the CPU in
parallel to normal operations, we can expect very low overhead for the count-
ing. Furthermore, the CPU can be configured to generate an interrupt on any
performance-counter overflow. As a result, by properly initializing the perfor-
mance counters, we can stop the operation of the system after a certain number
of occurrences of a particular event. By resetting the counter to its initial value
at each counter overflow, we can configure the system to generate an interrupt at
a roughly constant frequency. This turns out to be exactly what we need for ran-
dom inspection: we can perform the inspections on counter-overflow interrupt,
which occurs at a constant, controllable frequency. However, the inspection fre-
quency is constant only in a system-wide perspective. The inspection frequency
observed by individual process will appear randomized, as we will show later.
It is also possible to make the occurence of inspections more unpredictable by
resetting the counter with random values after each overflow.

In order to perform random inspection using the performance-counter facility,
two more decisions have to be made: what event to count, and what initial
counter value to use. For the choice of event to count, we want an event that
occurs at high frequency in both normal and injected code. Furthermore, we want
this event unavoidable in the injected code. The first criterion allows us more
freedom in the choice of inspection frequency. The second criterion makes random
inspection more robust: the attackers cannot evade inspection by avoiding the
counted event.

For our implementation, we choose to count the instruction retirement events
1 that occur in user space. We believe this event satisfies the above criteria
very well. Furthermore, by counting events in user space only, we guarantee

! Instruction retirement marks the completion of the out of order execution of an
instruction and the update of processor state with its results

that inspection will only occur in user space. This allows easier utilization of
information collected at inspection points.

For the initial counter value, we make it a configuration parameter of our
system. By setting different values for this parameter, we can control the in-
spection frequency. In the following discussion, we shall name this parameter k.
In addition to being the initial value for the performance counter, k also gives
the number of instruction retirements that occur between two inspections. The
choice of k involves different tradeoffs between detection rate, detection latency
and performance overhead. We will talk about this tradeoff in Sect. 5.

We implement our prototype system on a machine with a Pentium III CPU.
We note that performance counters that generate interrupt on overflow is very
common in CPUs nowadays. Thus our idea is not limited to Intel CPUs. Fur-
thermore, we find the use of this facility is limited to profiling software only, so
our implementation will not disrupt normal system operation.

Finally, we would like to point out that Windows does not save counter val-
ues during context switches. In other word, the count stored in the performance
counter is a system-wide count, instead of the count for current process since its
last inspection. This is both an advantage and a disadvantage of our system. On
the positive side, random inspection provides protection for the entire system
by default. This is because inspection can occur in any process that executes in
user space, thus no process will be left unprotected. Furthermore, this introduces
randomness to our system and makes inspection unpredictable. Though we per-
form inspections at a fixed (and even possibly known) frequency, the attacker
cannot predict when an inspection will occur. This is because process scheduling
is non-deterministic in general, and thus it is impossible to determine when the
attacked process will be scheduled to run. This means the attacker has no way
to tell what the counter value is when the injected code starts executing?. In
other word, the attacker cannot tell when the next inspection will occur. This
randomness in inspection renders even extremely short injected code suscepti-
ble to detection with non-zero probability. On the negative side, this by default
system-wide inspection implies inevitable inspection on many supposedly safe
processes, which leads to some inefficiency. It is also impossible to perform in-
spection with different frequency for different processes. This problem can be
solved if we can intercept context switches in Windows.

3.2 The WindRain System

After discussing how random inspection is actually achieved, we now show our
implementation of intrusion detection under the random-inspection mechanism.
In the following, we present the details of our WindRain system.

The most important component of the WindRain system is a device driver
that runs on Windows systems. We have also written an application that loads
the driver and displays data received from the driver in a timely manner (most

% Intel CPUs of P6 family or later can be configured so that performance counter
values are readable only in kernel mode

importantly, notification about intrusions). The driver is responsible for setting
up the system to perform random inspection, i.e., configuring the performance-
counter facility. It also registers an interrupt-service routine to handle performance-
counter overflow. This interrupt service routine is the part that actually performs
intrusion detection.

On performance counter overflow, an interrupt is generated and the interrupt
service routine registered will be called. The interrupt service routine starts by
restoring the performance counter to its initial value, -k. It will then clear some
flags so that the counter can start upon return to the user space. After that, the
real intrusion detection starts. Among the arguments passed to the interrupt
service routine is the PC value of the interrupted instruction. WindRain will
determine whether that PC value corresponds to a memory location that holds
code or one that holds data (in the latter case, WindRain will mark it as an
intrusion). The decision is made by looking up a Windows internal data structure
called Virtual Address Descriptor tree.

To keep track of the usage of the virtual address space in each process, Win-
dows records information about each allocated (or “reserved”) virtual memory
region in a data structure called Virtual Address Descriptor (VAD). Among the
information stored in the VAD are the start address, end address and the protec-
tion attribute for the corresponding memory region. To facilitate fast look-up, all
VADs for a process are arranged as a self-balancing binary tree. Memory regions
allocated for code usually have very different protection attributes from those
for data (usually memory for code are copy-on-write, while memory for data are
simply writable). As a result, given a PC value, we can search through the VAD
tree of the corresponding process in an efficient manner. From the protection
attribute of the VAD found, we determine whether that address contains code
or data. If a PC value observed at an inspection point corresponds to a data
region in memory, WindRain will mark it an intrusion. Currently, WindRain is
a purely detection system, it does not have any capability to stop any intru-
sion from proceeding. Upon detecting an intrusion, the interrupt service routine
will notify the application part of WindRain to display some information about
the intrusion on the screen. Due to its inability to respond to attacks detected,
WindRain is quite susceptible to DoS attacks. In other words, the attacker can
try to turn off WindRain. We believe WindRain can perform reasonable self-
defense when equipped with certain auto-response capability. Nonetheless, we
believe the most ideal protection for WindRain (and possible any IDS) is from
the underlying OS: having Windows consider WindRain as a core component
(like 1sass.exe, the termination/failure of which will lead to a system crash).

4 Analysis: Why WindRain Works?

Before we present the results of our experimental evaluation on WindRain, we
first analyze the probability of WindRain detecting different code injection at-
tacks. We will also discuss what makes it so likely for WindRain to detect intru-
sions.

The simplest way to perform this analysis is to consider inspection as a
Poisson process, and calculate the probability that one or more inspection will
occur during the entire execution of the injected code. Suppose we are performing
inspection every k instructions (with 800 < k& < 2400), and the injected code
requires the execution of y instructions. The probability of detection is then
Pi=1-P(0)=1-e"t.

The above analysis does not assume continuous execution of the injected
code. Therefore the probability computed is valid even if context switching occurs
during the execution of the injected code. It also applies to the case where the
injected code calls some Windows library from time to time. A point worth noting
here is that if an inspection occurs during the execution of a library function
on behalf of the injected code, the intrusion will not be detected. Another very
important point is that the above analysis is only valid if the attacker cannot
predict when the next inspection will occur. Otherwise, it is (in theory) possible
for the attacker to evade detection by calling certain library functions when an
inspection is expected.

We should note that the Poisson-based analysis is overly pessimistic. Suppose
the injected code executes without making library calls for an interval that we
call “very visible period” (VVP). Let us make the following assumptions about
this VVP:

1. this interval is more than k instructions long
2. context switch occurs in the first k instructions of this VVP with probability
less than 1%

With these two assumptions, we argue that the actual detection probability
Py1 > 0.99 + 0.01 x P;, where P; is the detection probability predicted for the
corresponding k and y by our initial Poisson analysis. This is because in 99%
of time, no context switch occurs in the first k instructions of the VVP. Since
the injected code is “trapped” in the VVP for more than k instructions, we can
guarantee an inspection will occur while the injected code is executing in “data
space”. In this case, WindRain will detect the attack with probability one. The
second term of P;; accounts for the remaining 1% of time where a context switch
does occur in the VVP and we have to fall back to our Poisson analysis.

In the following, we shall validate our two assumptions about the VVP and
thus show that P;; > 0.99.

We start with defending our first assumption. From our study of Windows
shellcode, we find that they usually arrive encoded. This helps the shellcode
evading signature based IDS and systems like [33]. As a result, before performing
any “interesting” activities, the injected code has to decode itself first. This
decoding has complexity linear to the injected code’s length, and can take up
a few hundred instructions. Since there appears no library function for this
decoding process, the injected code will not execute any library function during
the decode phase.

A more important reason why the injected code does not execute any library
functions is that it may not know the address of any library functions. Due to
the extensive use of dlls in Windows, the addresses of library functions vary

10

across different machines. This is a very well known fact in the black-hat society
[29]. As a result of the dynamic nature of library loading, static address values
cannot be used for library calls. Otherwise, there will be portability issues for
the resulting shellcode. As a result, in order to execute any library functions,
the injected code has to dynamically search for the needed function addresses.
As discussed in [29], in order to do this in a portable manner, the complexity
of the library-function-locating process is usually linear to both the number of
functions in the desired library and the length of each function name. Such
complexity will imply a very significant number of instructions executed before
finding the address of one single library function.

From our discussion above, portability is the major issue that “traps” the
injected code in its VVP for an extensive amount of time. So a natural question
is: is it possible for the shellcode to sacrifice certain portability to speed up this
process and evade detection by WindRain? At first sight, it appears to be a
feasible solution for the attacker: certain library functions do stay in the same
address across a large number of machines. Furthermore, there are various values
related to function addresses that are static over different Windows versions. It
is thus possible to utilize these static values to speed up the process to constant
time and evade detection. In fact, the IAT technique given in [29] implements
this idea.

However, we argue that any approach of this kind can be thwarted with sim-
ple obfuscation techniques. This is because Windows does not depend on these
values being static to function properly. As a result, any obfuscation of these val-
ues can impose serious portability problem in the shellcode, without adversely
affecting the operations of Windows. For example, any shellcode that uses hard-
coded address for library functions can be thwarted by a simple application that
rebase every library on the system. In this case, a shellcode that works for one
machine will almost guarantee to fail on another.

From the above analysis, we see that is it very likely that an injected code
will execute more than k instructions without executing any library calls. We
will further validate this assumption with our experimental results in the next
section. We now move on to the second assumption: context switch occurs very
rarely in the VVP where no library calls are made.

Since the injected code is not making any library call, it is impossible for it
to get blocked. Thus the only reason for a context switch is the expiration of a
time slice. Now consider the following very conservative figures:

1. time slice in Windows ranges from 10ms to 200ms
2. Intel Pentium processor achieves 90 million instructions per second

From these two figures, we can assume that at least 900000 instructions
will be executed on any Windows machine before a time slice expires. Let us
model time-slice expiration as a Poisson process; the probability of expiration
is 1/900000 at any time. The probability that a context switch will occur in
the first k instructions of the VVP is then given by Psyitcn(0) = 1 — e~ 300000 .
With & < 2400, we have Psyitcn(0) < 0.01. Thus, we have validated our second
assumption.

11

As a result, we have shown that any injected code that executes more than k
instructions in their VVP will be detected by WindRain with probability close
to one. Our argument also shows that this is usually true for injected code.

5 Experimental Results

In this section, we will present the results of our experiments on WindRain. The
experiments attempt to evaluate WindRain at different inspection frequencies.
The evaluations focus on the following three aspects: false negative rate, false
positive rate and performance overhead.

5.1 False Negative Rates

We have tested WindRain’s ability to detect MSBlast, Sasser, SQLSlammer,
Code Red and Welchia (aka Nachi). The experiments are carried out at three
different inspection frequencies: once every 800 instructions, once every 1600 in-
structions and once every 2400 instructions. For each inspection frequency, we
repeated each attack 5 times, and WindRain is able to detect all the attacks for
all three configurations. In addition to testing whether WindRain can detect the
attack attempts, we are also interested in verifying our assumption in the previ-
ous section, namely, that injected code executes a large number of instructions
in their VVP, without executing any library calls. We validate this assumption
by noting when WindRain first detect each of the 15 attack trails. The results
of our experiments are presented in Table 1.

Table 1. The following table shows when WindRain first detects the attacks when
configured at different inspection frequencies. The three rows show the results for three
different inspection frequencies: once every 800, 1600 and 2400 instructions respectively.
For the entries of each row, “Decode” means WindRain detects the attack when the
injected code is decoding itself. “FindLib” means the attack is detected when the
injected code is resolving the addresses of library functions needed. “Spread” means
the attack is detected when it tries to infect other hosts. Each attack is repeated five
times for each inspection frequency, the number in the bracket indicates how many
times the attack is detected in the particular stage.

MSBlast Welchia Sasser SQLSlammer|| Code Red
800 FindLib(5) Decode(3), FindLib(2)||Decode(3), FindLib(2)|| Spread(5) ||[FindLib(5)
1600||Decode(2), FindLib(3) FindLib(5) Decode(3), FindLib(2)|| Spread(5) ||FindLib(5)
2400||Decode(1), FindLib(4)|/Decode(2), FindLib(3)|Decode(1), FindLib(4)|| Spread(5) ||/FindLib(5)

From our analysis of the above data, we are certain that the VVP of Welchia,

Sasser and CodeRed contain more than 2400 instructions. This is because both
“Decode” and “FindLib” for these worms are used exclusively in their VVP

12

(while “FindLib” is used outside the VVP of MSBIlast also). According to our
analysis in Sect. 4, this implies a detection probability close to 1 when WindRain
performs at least one inspection every 2400 instructions executed. We are also
pretty certain that WindRain cannot detect SQLSlammer in its VVP. However,
we are very certain that WindRain will detect any instance of SQLSlammer
with probability one. This is because the injected code is the entirety of the
SQLSlammer payload and runs on the stack indefinitely long. In fact, this is
also the case for CodeRed.

However, since both MSBlast and Welchia use their library-function-locating
code more than once, it is possible for future variants to use this code more effi-
ciently to evade detection. This is because once the “GetProcAddress” function
in kernel32.dll is located, address of any other library functions can be resolved
using this function (in fact, this is the method used by Sasser and CodeRed).
In order to clear such doubt, we experimented with the library-function-locating
code of the two worms. In our experiments, we copied the piece of code under
concern (with arguments for searching the “GetProcAddress” function) onto the
stack and execute them. We repeated each experiment 5 times, with WindRain
performing an inspection every 2400 instructions, and see if it can detect the “at-
tack”. WindRain successfully detects all the 10 “attacks”. Thus we are pretty
certain that WindRain can detect both MSBlast and Welchia in their VVP, even
if they are modified to make more efficient use of their library-function-locating
code.

Another way to increase our confidence in WindRain’s ability to detect the
five worms is to decrease the inspection frequency and see if it can still achieve
100% detection rate. Since SQLSlammer and CodeRed execute in “data space”
forever, we find it unnecessary to perform such test for these worms. For both
MSBlast and Welchia, we find that WindRain still achieves 100% detection when
configured to perform an inspection every 24000 instructions executed (as before,
we repeated each attacks 5 times). However, for Sasser, we tested WindRain by
increasing the interval between two inspections with step of 800 instructions.
We start with an inspection frequency of once every 2400 instrctions. We find
WindRain miss the first attack when performing inspection once every 7200
instructions. Among the five attacks tried at this frequency, only one is missed.

In conclusion, we are very confident that WindRain can detect the five worms
tested with probability very close to one. This is true even when WindRain
is performing inspection at a low frequency of once every 2400 instructions.
Furthermore, by detecting MSBlast, Welchia, Sasser and CodeRed in their VVP,
WindRain can guarantee to detect these attacks before they can cause any real
damage to the system. This is because in Windows, kernel services are only
accessible through library functions. Thus the Windows kernel is inaccessible to
the injected code when it is still in its VVP.

Finally, it appears possible to shorten the VVP of the tested worms by im-
proving their implementation. Nonetheless, we believe the underlying decoding
and library-function-locating algorithms will continue to have linear complexity.
With this observation, an inspection frequency of once every 800 instructions

13

should be sufficient to detect future injected code that is optimized to have
short VVP. However, we shall argue in Sect. 5.3 that the best way to guard
against these threats is to complement our system with obfuscation techniques.

5.2 False Positive Rates

We have evaluated the false positive rate of WindRain by performing some
daily activities with WindRain running on the background. In all of our tests,
WindRain is configured to perform an inspection every 800 instructions. By ex-
perimenting WindRain at such high inspection frequency, we have established
a worst-case false-positive rate. We expect the false-positive rate will only drop
when we decrease the inspection frequency of WindRain. Another reason for
choosing the number 800 is that we believe this inspection frequency is high
enough to detect most attacks with very high probability.

The daily activities we have tested include: surfing the web (using IE), read-
ing PDF files, creating word documents (using MSWord and Wordpad), viewing
PowerPoint presentations, connecting to a remote machine (using Telnet), com-
piling the entire WindRain system (using the MS VisualStudio for the applica-
tion part, and the MS DDXK for the device driver part), file management (under
WindowsExplorer), playing MP3s (using WindowsMediaPlayer) and Quicktime
movies (using QTPlayer) and using a bunch of GNU tools that comes with cyg-
win (including all the utilities tested in the performance analysis). Finally, we
have also tried compiling and running Java programs while WindRain is running.

The first false positives identified are from WindowsMediaPlayer and Win-
dowsExplorer. We find both WindowsMediaPlayer and WindowsExplorer exe-
cute small fragments of code on the heap, which cause the false alarms. The
violating code executed on the heap are thunks that pass control to some call-
back functions. This turns out to be a well documented “workaround” to pass
the “this” pointer of C++ objects to callback functions. This technique allows
instance methods to be called by the callback mechanism. To tackle this prob-
lem, we modified WindRain to recognize the structure of the thunk and make
sure it is passing control to some callback function. After the modification, there
are no more false alarms from these applications.

We have also observed occasional false positive when Microsoft software
prompts us to activate/register their products. We believe this is a technique
to avoid bypassing the corresponding check and use the software without acti-
vation/registration. The major offender in this category is winlogon.exe, which
keeps prompting the user to activate Windows. No more false positives are ob-
served after we activate Windows.

Finally, we find that both the compilation and execution of Java programs
will lead to false positives in WindRain. The false positives from executing Java
application is caused by the JIT compilation in the underlying JVM. When na-
tive code is generated during runtime, they are kept in writable memory areas.
This is mainly for efficiency reasons and allows new native code to be writ-
ten without first unprotecting the corresponding pages. The execution of these
dynamically-generated code will lead to false positives from WindRain. For the

14

compilation of Java code, we observe that the Java compiler uses code from the
JVM, which may explain the problem. We believe, in general, WindRain does
not handle programs that use dynamically-generated/self-modifying code very
well. A possible solution is to perform profile-based anomaly detection using the
library /function-calling pattern of the monitored program. In this solution, in-
stead of determining whether “data” is being executed, the IDS will keep track
of the function-usage pattern of the monitored program. By building a normal
profile of this pattern, the IDS can check if the observed function usage is nor-
mal. Any abnormal behavior is marked as intrusion. We believe this approach is
also useful in detecting existing-code attacks.

One last point about our experiments is that by running WindRain in a
Windows system, we have implicitly tested WindRain against those Windows
system processes. For system processes, we mean processes Windows created by
itself, including svchost.exe, Isass.exe, etc. In fact, it seems that these processes
are the ones that needed most protection. Our results show that WindRain has
zero false positive for all these processes after the user has activated Windows
with Microsoft. Thus it is possible to modify WindRain to only report intrusions
concerning these processes. This modification will allow WindRain to provide
very useful protection to some major threats against Windows systems, while
maintaining a zero false-positive rate.

5.3 Performance Overhead

Since WindRain does not need to keep any record about different processes, its
memory footprint is very small and is constant. The entire device driver (includ-
ing the interrupt service routine and all other code) is just 20KB. In other words
, WindRain has minimal space overhead. However, the frequent execution of the
interrupt service routine at inspection points can cause substantial overhead in
terms of execution time. In this section, we report WindRain’s runtime overhead
when tested on several programs in the SPEC2000 benchmark suite. The effect
of the inspection frequency on the runtime overhead is studied by running the
benchmarks under 9 different WindRain configurations.

Before we present the experimental results, let us briefly describe our experi-
ments. Each benchmark program is executed six times. They are executed on an
otherwise idle Windows system with all the Windows system processes running
on the background. From the execution times measured for the six runs, one
outlier is removed. This helps to avoid any fluctuation in the measured values
from affecting our results. We establish the base execution time of the bench-
mark program by averaging the remaining five data points. For each inspection
frequency studied, the process is repeated with WindRain running under the
corresponding configuration. Again, the execution time is measured six times
for each benchmark, and one outlier is removed to obtain five data points. The
averaged execution time is compared against the base execution time to obtain
the overhead caused by WindRain at the inspection frequency being tested. The
results of our experiments is shown in Fig. 1.

15

Performance Overhead vs Inspection Frequency

T T
link4la —+—

Peformance overhead in %
w
S

T T T T T A
/ iy

800 1000 1200 1400 1600 1800 2000 2200 2400
Inspection freq (in number of instr between inspections)

Fig. 1. Performance overhead of WindRain at different inspection frequency: y-axis
is the overhead in %, x-axis gives the inspection frequency in number of instructions
executed before an inspection occurs

From the results in Fig. 1, we see that the performance overhead drops
quite significantly as the inspection frequency decreases. This shows a signifi-
cant tradeoff between detection rate and performance overhead. Such tradeoff
once again highlights the value of obfuscation techniques that lengthen the VVP
of future injected code. Consider an obfuscation technique that guarantees any
injected code will spend at least 2000 instructions locating the needed library
functions. With such guarantee, we can perform an inspection every 2000 in-
structions and still guard against optimized injected code at an overhead of
around 20%. Otherwise, we will have to guard against these future attacks by
increasing the inspection frequency at the cost of higher performance penalty.
However, even when performing random inspection once every 800 instructions,
the performance overhead of WindRain still compares favorably against many
system-call-based IDS. According to [8, 27], system-call-based systems typically
incur more than 100% overhead in the interposition of system calls alone, unless
the kernel is modified for the task.

To study how much overhead is contributed by the random-inspection process
alone, we studied the performance overhead of a system that performs random
inspection without the PC-value checking. We compared the performance over-
head of both WindRain and the “empty” system at three inspection frequencies:
once every 800, 1600 and 2400 instructions respectively. Due to space limitation,
we omit the raw data of our experiments and simply report our findings below.

We find that a large proportion of the overhead (more than 89% in all our
experiments) comes from performing random inspection. On the other hand, the
checking of PC values obtained from random inspections only slightly increases
the overhead. This result demonstrates the feasibility of performing more so-
phisticated checking at each inspection point. For example, one would expect
the checking of the return address of the current stack frame to incur very small
extra overhead. This finding also allows us to conclude that the overhead is
mainly contributed by the side effect of random inspection, instead of perform-

16

ing the PC checking. This side effect includes the flushing of pipelines and the
consumption of extra instruction cache. We have also measured the effect of
random inspection on different cache miss rate and the paging rate. Our exper-
iments show no significant increase in these measures while performing random
inspection. As a result, we strongly believe that the flushing of pipeline caused
by the frequent performance-counter overflow and subsequent interrupt handling
is the major cause of the high overhead. Pipeline flushing is also identified as a
major cause of overhead in system-call interposition systems.

6 Conclusions and Future Work

In this paper, two problems of system-call-based anomaly detection systems
are discussed: its inherent vulnerability to mimicry attacks and its being non-
portable for the widely deployed Windows systems. These weaknesses have their
roots in monitoring at the system-call interface and the predictability thereof
to the attacker. Since this monitoring mechanism is shared by all system-call-
based systems, it is difficult to completely overcome these difficulties without
having an alternative and complementary mechanism. We propose random in-
spection as an alternative monitoring mechanism. We demonstrated that ran-
dom inspection can be implemented on Windows without requiring knowledge
or modification of the Windows kernel. Furthermore, owing to its random na-
ture, random-inspection-based intrusion detection is inherently less susceptible
to mimicry attacks. Random-inspection-based intrusion detection is a strong
complement to the more traditional system-call-based intrusion detection sys-
tems. Together these two types of IDS require attackers to deal with two con-
flicting constraints. In order to evade detection by random-inspection-based sys-
tems, the attacks need to be short. On the other hand, to evade detection by
system-call-based IDS, attacks must be more complicated and therefore take
longer to execute. Random-inspection-based systems also provide a second line
of defense for systems that depend on obfuscation/diversification as the main
line of defense. With our random-inspection-based detection as a complement,
even obfuscation/diversification techniques that are susceptible to reversal by
an attacker can become very useful defense mechanisms. In particular, random-
inspection-based detection will make the design of obfuscation techniques easier.
In reciprocal, both traditional system-call-based systems and obfuscation tech-
niques can complement random-inspection-based systems by forcing intruders
to lengthen the attacks. This will allow random inspection to be performed at
lower frequency while still maintaining a very high detection rate and a lower
frequency implies a lower performance overhead.

To demonstrate the usefulness of random-inspection-based detection, we have
implemented a working prototype: the WindRain intrusion detection tool. Our
prototype performs random inspection on the PC value of the instruction being
executed. If the inspected PC value corresponds to a region of memory that
contains data, WindRain will mark it as an intrusion. Despite being a very
simple system, our analysis shows that WindRain can detect most of the injected

17

code attacks with a very high probability. We have tested several attacks against
WindRain (namely, MSBlast, Welchia, Sasser, Code Red and SQLSlammer, all
famous attacks against Windows systems). We found that WindRain can detect
all the attempted attacks very effectively. This is even true with the lowest
inspection frequency tested. In terms of false positive, we found that WindRain
generates few false alarms for all but two applications we have tested, the Java
compiler and the JVM. Furthermore, WindRain was found to work well with
all the Windows system processes without raising any false positive. This makes
WindRain very suitable for system-wide protection. In terms of performance
overhead, WindRain compares favorably against many other intrusion detection
systems, even when performing inspections at a very high frequency.

We consider our work in this paper as an illustration of the usefulness of
random-inspection-based intrusion detection systems. There is a lot of interesting
work to be done in both enhancing the idea of random-inspection-based detection
and extending the capability of WindRain.

For the improvement of WindRain, we are working on solutions that allow
WindRain to work with dynamically-generated/self-modifying code (like those
generated by JVM). We believe the approach outlined in the Sect. 5.2 is very
promising. We are also interested in ways to turn off WindRain for non-critical
processes so that only critical processes incur the performance overhead from
WindRain. A possible direction would be to capture Windows context switch
and reconfigure WindRain accordingly. We have some preliminary evidence of
success on this. We note that the software approach we take allows us to attack
these problems in ways that the inflexibility of hardware-based technology such
as NX would have a much harder time to emulate.

In terms of the development of random-inspection-based systems, we are
interested in studying what kind of information is available at the random-
inspection points, and how to make use of it. An interesting direction of re-
search is to design profile-based intrusion detection systems under the random-
inspection mechanism. The profile-based approach will allow us to protect pro-
grams that use dynamically generated code without generating too many false
positives. It is also a promising approach to tackle existing code attacks. We
believe our work has opened up new directions for research of obfuscation tech-
niques that can be used as defensive mechanisms. With the complement of
random-inspection-based systems, new obfuscation techniques do not have to
thwart attacks directly. They only need to make attacks significantly more com-
plicated and visible to random-inspection-based detection. The work in [2] about
address obfuscation is a very good example in this direction. Another interesting
example is to reproduce the harsh Windows environment (where the kernel in-
terface is unknown) on Linux. This can be achieved by randomizing the mapping
between the system-call number and the corresponding kernel service. If we ob-
fuscate the kernel interface, we can avoid injected code from making direct calls
to the kernel. As a result, injected code will have to go through the long library-
function-locating process as on Windows. Thus this obfuscation technique will

18

allow injected code attacks to be detected easily by random-inspection-based
systems like WindRain.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.

Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, Trek S. Palmer,
Darko Stefanovic and Dino Dai Zovi, Randomized instruction set emulation to dis-
rupt binary code injection attacks, 10th ACM International Conference on Com-
puter and Communications Security (CCS), pp. 272 - 280. October 2003.
Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar, Address Obfuscation: An
Efficient Approach to Combat a Broad Range of Memory Error Exploits, 12th
USENIX Security Symposium, 2003.

F. Buchholz, T. Daniels, J. Early, R. Gopalakrishna, R. Gorman, B. Kuperman,
S. Nystrom, A. Schroll, and A. Smith, Digging For Worms, Fishing For Answers,
ACSAC 2002.

Sung-Bae Cho, and Sang-Jun Han, Two Sophisticated Techniques to Improve
HMM-Based Intrusion Detection Systems, RAID 2003.

Scott Coull, Joel Branch, Boleslaw K. Szymanski, and Eric Breimer, Intrusion
Detection: A Bioinformatics Approach, ACSAC 2003.

Crispin Cowan, Calton Pu, and Heather Hinton, Death, Tazes, and Imperfect Soft-
ware: Surviving the Inevitable, theNew Security Paradigms Workshop 1998
Dorothy E. Denning, An intrusion detection model, IEEE Transactions on Software
Engineering, 13-2:222, Feb 1987.

Henry H. Feng, Oleg Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo Gong,
Anomaly Detection Using Call Stack Information, IEEE Symposium on Security
and Privacy, 2003.

S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, A sense of self for UNIX
processes, IEEE Symposium on Security and Privacy, 1996.

S. Forrest, A. Somayaji, and D. Ackley, Building Diverse Computer Systems, Pro-
ceeding: 6 workshop on Hot Topics in Operating Systems, IEEE Computer Society
Press, pp. 67-72.

Tal Gar nkel, Traps and pitfalls: Practical problems in in system call interposition
based security tools, Proc. Network and Distributed Systems Security Symposium,
February 2003.

Anup K. Ghosh, Christoph Michael, and Michael Schatz, A Real-Time Intrusion
Detection System Based on Learning Program Behavior, RAID 2000.

Jonathon T. Giffin, Somesh Jha, and Barton P. Miller, Detecting manipulated re-
mote call streams, 11th USENIX Security Symposium, 2002.

Jonathon T. Giffin, Somesh Jha, and Barton P. Miller, Efficient context-sensitive
intrusion detection, 11th Network and Distributed System Security Symposium,
2004.

S. A. Hofmeyr, A. Somayaji, and S. Forrest, Intrusion detection using sequences of
system calls, Journal of Computer Security, Vol. 6, 1998, pp. 151-180.

Ruiqi Hu and Aloysius K. Mok, Detecting Unknown Massive Mailing Viruses Using
Proactive Methods, RAID 2004.

A. Jones and S. Li, Temporal Signatures of Intrusion Detection, ACSAC 2001.
Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering Code-
Injection Attacks With Instruction-Set Randomization. 10th ACM International
Conference on Computer and Communications Security (CCS), pp. 272 - 280.
October 2003.

19

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

V. Kiriansky, D. Bruening, and S. Amarasinghe, Secure ezecution via program
shepherding, 11th USENIX Security Symposium, 2002.

C. Ko, Logic Induction of Valid Behavior Specifications for Intrusion Detection,
IEEE Symposium on Security and Privacy, 2000.

C. Kruegel, D. Mutz, F. Valeur ,and G. Vigna, On the Detection of Anomalous Sys-
tem Call Arguments, 8th European Symposium on Research in Computer Security
(ESORICS), 2003.

Christopher Kruegel, Darren Mutz, William Robertson, and Fredrik Valeur,
Bayesian Event Classification for Intrusion Detection, ACSAC 2003.

Lap Chung Lam and Tzi-cker Chiueh, Automatic FEzxtraction of Accurate
Application-Specific Sandbozing Policy, RAID 2004.

T. Lane and C. Brodley, Temporal Sequence Learning and Data Reduction for
Anomaly Detection, ACM Trans. Info. and Sys. Security, 1999.

W. Lee and S. Stolfo, Data Mining Approaches for Intrusion Detection, Tth
USENIX Security Symposium, 1998.

p62_wbo_a@author.phrack.org, Jamie Butler, and p62_wbo_b@author.phrack.org,
Bypassing 3rd Party Windows Buffer Overflow Protection, Phrack, Issue #62, of
July 10, 2004

R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, A Fast Automaton-based
Method for Detecting Anomalous Program Behaviors, Proceedings of the 2001
IEEE Symposium on Security and Privacy.

R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou, Spec-
ification based anomaly detection: a new approach for detecting network intrusions,
ACM Computer and Communication Security Conference, 2002.

skape, Understanding Windows Shellcode, http://www.hick.org/code/skape/papers/win32-

shellcode.pdf

A. Somayaji, S. Forrest, Automated Response Using System-Call Delays, 9th Usenix
Security Symposium, 2000.

Kymie M. C. Tan, and Roy A. Maxion, “Why 62” Defining the Operational Limits
of Stide, an Anomaly-Based Intrusion Detector, IEEE Symposium on Security and
Privacy 2002.

Kymie M. C. Tan, Kevin S. Killourhy, and Roy A. Maxion, Undermining an
Anomaly-Based Intrusion Detection System Using Common Ezploits, RAID 2002
Thomas Toth, Christopher Krugel, Accurate Buffer Overflow Detection via Ab-
stract Payload Execution, RAID 2002.

P. Uppuluri and R. Sekar, Ezperiences with Specification-Based Intrusion Detec-
tion, RAID 2001

D. Wagner and P. Soto, Mimicry Attacks on Host-Based Intrusion Detection Sys-
tems, ACM Conference on Computer and Communications Security, 2002.

D. Wagner and D. Dean, Intrusion Detection via Static Analysis, IEEE Symposium
on Security and Privacy, 2001.

Christina Warrender, Stephanie Forrest, and Barak Pearlmutter, Detecting intru-
stons using system calls: alternative data models, IEEE Symposium on Security
and Privacy, 1999.

A. Wespi, M. Dacier and H. Debar, Intrusion detection using variable-length audit
trail patterns, RAID, 2000.

Matthew M. Williamson, Throttling Viruses: Restricting propagation to defeat ma-
licious mobile code, ACSAC 2002.

Haizhi Xu, Wenliang Du and Steve J. Chapin, Context Sensitive Anomaly Mon-
itoring of Process Control Flow to Detect Mimicry Attacks and Impossible Paths,
RAID 2004.

20

