
Antigone: A Flexible Framework for Secure Group Communication

Patrick McDaniel
EECS Dept.

University of Michigan
Ann Arbor

pdmcdan@eecs.umich.edu

Atul Prakash
EECS Dept.

University of Michigan
Ann Arbor

aprakash@eecs.umich.edu

Peter Honeyman
Center for Information Technology Integration

University of Michigan
Ann Arbor

honey@citi.umich.edu

May 23, 1999

Abstract

Many emerging applications on the Internet requiring
group communication have varying security require-
ments. Significant strides have been made in achieving
strong semantics and security guarantees within group en-
vironments. However, in existing solutions, the scope
of available security policies is often limited. This pa-
per presents the Antigone framework. Antigone provides
a suite of mechanisms from which flexible application
security policies may be implemented. Using this ap-
proach, developers may chose a policy that best addresses
their security and performance requirements. We describe
the Antigone’s mechanisms, consisting of a set of micro-
protocols, and show how different security policies can be
implemented using those mechanisms. We also present
a performance study illustrating the security/performance
tradeoffs that can be made using Antigone.

1 Introduction

IP multicast [Dee89] services are becoming more widely
available on the Internet. The use of group communi-
cation based on IP multicast as a fundamental building
block for a variety of applications such as video confer-
encing will increase. Many interesting applications that
require group communication, such as video conferenc-
ing, collaborative applications, data casting, and virtual
communities, are emerging on the Internet. These ap-
plications, depending on the perceived risks and perfor-
mance requirements, require different levels of security.
In this paper, we present a system, called Antigone, that
provides mechanisms for building a range of security poli-
cies for group communication.

There are two predominant policies provided by exist-
ing approaches. Secure multicast systems [HM97, Atk95]
view groups as collections of participants that require a

shared secret, called asession key, to secure application
traffic. Group membership may change without effecting
the security context. A potential security risk is that past
members of the group may have access to current content.
The advantage of this approach is low cost; rekeying after
membership changes is not needed.

Conversely, secure group communication systems
[Rei94] typically have threat models that require the
changing of the security context after each membership
change. Thus, protection from members not currently in
the group is achieved at the cost of the context change.
Some systems support stronger threat models than strictly
required by applications at a high performance cost.

The Antigone framework provides a flexible interface
for the definition and implementation of a wide range
of secure group policies. A central element of the
Antigone architecture is a set ofmechanismsthat pro-
vide the basic services needed for secure groups. Policies
are implemented by the composition and configuration of
these mechanisms. Thus, Antigone does not dictate the
available security policies to an application, but provides
high-level mechanisms for implementing them.

To make the task of application development easier, we
also provide a facility for rapidly configuring a security
policy from a set of standard policies that have been im-
plemented using the Antigone mechanisms. An applica-
tion is free to use these standard policies, if they are sat-
isfactory for its purpose, or build its own using the high-
level mechanisms provided by Antigone.

Antigone is targeted for those systems that are likely
to require IP-multicast services. The majority of existing
multicast based systems distribute high bandwidth content
to a highly dynamic membership. A natural requirement
of these systems is for efficient group and security man-
agement.

We see videoconferencing as representative of the types
of applications that may benefit from the Antigone frame-
work. However, we do not limit Antigone to continuous

1



media systems. A fully functional secure group communi-
cation system may be built on the Antigone mechanisms.

While there are well known techniques for providing
secure groups, Antigone has several goals which make it
unique. We state the following as the five primary goals
of Antigone.

1. Flexible Security Policy- An application should be
able to use a wide range of security policies, with
appropriate performance tradeoffs.

2. Flexible Threat Model - The system should support
threat models appropriate for a wide range of appli-
cations.

3. Security Infrastructure Independence - Our solu-
tion should not be dependent on the availability of a
specific security infrastructure.

4. Transport Layer Independence - The solution
should not depend on the availability of any single
transport mechanism (such as IP Multicast [Dee89]).
On the other hand, our solution should be able to take
advantage of IP-multicasts when they are available.

5. Performance - The performance overheads of im-
plementing security policies should be kept low.

An early version of Antigone into has been integrated
into thevic [Net96] videoconferencing system. The re-
sult of that effort, called the Secure Distributed Virtual
Conferencing (SDVC) application, was used to securely
broadcast the September 1998 Internet 2 Member Meet-
ing to several sites across the United States. The broad-
cast and other LAN tests indicate the viability of our ap-
proach. Using high speed cryptographic algorithms we
were able to attain television-like secure video frame rates
(30 frames/second) over a LAN. Details of the implemen-
tation and our experiences deploying SDVC can be found
in [MHP98, AAC+99].

The remainder of the paper is organized as follows.
Section 2 describes the design space of secure group com-
munication policies. Section 3 outlines existing designs
and techniques of secure group communication. Section 4
outlines the Antigone’s high-level layered architecture.
Section 5 presents the mechanisms that can be used to
implement a wide range of group security policies. Sec-
tion 6 shows that a wide range of security policies can be
implemented using these mechanisms. Section 7 presents
the available multicast transport modes of Antigone. Sec-
tion 8 presents preliminary performance results for some
of the policies that can be implemented using Antigone.
Section 9 summarizes our conclusions and presents direc-
tions for future work.

2 Group Security Policies

Different group communication applications require dif-
ferent security policies, depending on their threat model
and performance requirements. In this section, we point
out some of key dimensions along which group security
policies vary. To address the requirements of a wide range
of applications, Antigone attempts to provide a basic set
of high-level mechanisms that can be used to implement
a range of group security policies. The dimensions that
are discussed below are:session rekeying policy, applica-
tion message policy, membership awareness policy, and
failure policy. The session rekeying policy defines the re-
action of the group to changes in membership in terms
of rekeying sessions. The application message policy de-
fines the security guarantees with which application mes-
sages are transmitted. The membership policy dictates the
availability of membership information to members. The
failure policy defines the type of failures handled by the
system. The remainder of this section describes the nature
and implications of these policy decisions.

After joining the group, Antigone assumes that all
group members are trusted, i.e., members will not actively
attempt to circumvent the security of the system. Non-
members however may attempt to intercept messages,
modify messages, or prevent messages from being deliv-
ered.

2.1 Session Rekeying Policy

A common strategy to support secure group communica-
tion among trusted members is to use a common symmet-
ric session key. An important policy issue for a group
communication application is when a session is rekeyed,
i.e., the old session key is discarded and a new session key
is sent to all the members.

There is a close relationship between session rekeying
and group membership. Applications often need protec-
tion from members not in the currentview.1 Therefore,
changes in group membership require the session to be
rekeyed. If rekeying is not performed after each change in
membership, the view will not reflect a secure group, but
only indicate which members are actively participating in
the session. Past members may retain the session key and
continue to receive content. Future members may record
and later decode current and past content. In applications
that do not need protection from past or future members,
rekeying after membership events is unnecessary.

We define theview groupto be the set of members in the
current group membership view. Akey groupis the set of

1A groupview is the set of identities associated with the members of
the group during a period where no changes in membership occur. If the
membership changes (a member joins or leaves the group), then a new
view is created. This is a similar concept to a group view in [Bir93].

2



members who have access to the current session key. The
key group may be a subset, a superset, or overlap the view
group.

We say that a group security policy is said to besen-
sitive to an event if it changes the security context in re-
sponse to the reception of the event. Typically, the secu-
rity context is changed by distributing a new session key
(rekeying).

Group security policy is often sensitive togroup mem-
bership events. Group membership events include (1)
JOIN event, which is triggered when a member is allowed
to join the group; (2)LEAVEevents, which is triggered
when a member leaves the group; (3)PROCESS FAIL-
UREevents, when a member is assumed to have failed in
some manner; and (4)MEMBER EJECTevents, when a
previously admitted member is purged from the group ac-
cording to some group policy. In addition, sessions may
be rekeyed when a specified time interval has passed since
the last session rekey.

The sensitivity of a policy directly defines its threat
model. For example, consider a group model that is only
sensitive toMEMBER EJECTevents. Because the session
is rekeyed after member ejection, the key group will never
contain an ejected member. Thus, the application is as-
sured that no ejected member will ever have access to fu-
ture content. However, the session content is not protected
from processes that have left voluntarily, are assumed to
have failed, or join in the future.

The sensitivity mechanisms in Antigone can be used to
build a large number of session rekeying policies. In the
following text, we define and illustrate four general pur-
pose policies that are representative of the policies imple-
mented in existing systems.

Time-sensitive Rekeying Policy
Groups implementing a time-sensitive policy periodically
rekey, independent of group membership events. Periodic
rekeying prevents the session key from “wearing out”.
The group attempts to guard against cryptanalysis by us-
ing a session key only for a limited period.

By periodically rekeying, the group may be protected
from an adversary who wishes to block the delivery of
new session keys. An adversary blocking rekeying mes-
sages may intend of having the group continue to use the
current session key. With a time-sensitive rekeying policy,
if a new key is not successfully established after the cur-
rent session key expires, group members can choose to no
longer communicate rather than use the expired session
key.

Time-sensitive rekeying can be useful in a secure on-
line subscription service. Paying members would periodi-
cally be sent a new key that is valid until the next subscrip-
tion interval. The GKMP [HM97] protocol implements a
time-sensitive rekeying policy.

Typically, systems implementing time-sensitive groups

useKey Encrypting Keys(KEK) [HM97] to reduce the
costs of rekeying. In systems that use KEKs, the key
group contains all previous and current members of the
group. This approach is limited in that any member may
continue to access the group content after leaving. Sys-
tems that use KEKs cannot forcibly eject members with-
out additional infrastructure.

All rekeying in Antigone issession key independent.
Session key independence states that knowledge of one
session key provides no information about others. Due to
this independence, Antigone provides a slightly stronger
guarantee than time sensitive groups that use KEKs. A
member who has left the group may continue to access
the group content only until the next rekey. A past mem-
ber cannot access current or future group content without
again joining as a member.

Leave-Sensitive Rekeying Policy
Groups implementing a leave-sensitive policy rekey af-
terLEAVE, PROCESS FAILURE, andMEMBER EJECT
events. Thus, the key group may be arbitrarily larger than
the view group.

The threat model implied by leave sensitive groups
states that any member who has left the group will not
have access to current or future content. For example, a
business conferencing system that supports negotiations
between a company’s representatives and a supplier may
benefit from leave-sensitive rekeying. Once the supplier
leaves, a leave-sensitive rekey policy would prevent sub-
sequent discussions from being available to the supplier,
even if the supplier is able to intercept all the messages.

The Iolus [Mit97] implements a leave-sensitive rekey-
ing policy.

Join-sensitive Rekeying Policy
Groups implementing a join-sensitive policy rekey only
after membershipJOIN events. The threat model im-
plied by join sensitive groups states that any member join-
ing the group should not have access to past content. A
join-sensitive rekeying policy, by itself, does not ensure
that members who left the group or were ejected from the
group are not able to access current session content. The
assumption is that past members can be trusted to be not
interested in current content.

In practice, a join-sensitive rekeying policy is likely to
be used in conjunction with a time-sensitive or a leave-
sensitive rekeying policy so as to limit the duration for
past members can access current session content.

Membership-sensitive Rekeying Policy
Groups implementing a membership-sensitive policy
rekey after every membership event. The threat model
implied by membership sensitive groups states that any
group member joining the group will not have access to
past content, and that members who have left the group

3



will not have access to current or future content. This pol-
icy is the combination of leave-sensitive and join-sensitive
rekeying.

Applications with comprehensive security require-
ments will likely need a membership-sensitive rekeying
policy. Providing strong guarantees for message deliv-
ery (e.g. atomicity, reliability) often requires tight con-
trols over the message content. Without tight controls,
the guarantees may be circumvented. The RAMPART
[Rei94] system provides a type of membership-sensitive
service.

Other Rekeying Policies
Applications may require a combination of above policies
or may use different policies depending on the application
state and the specific attributes of an event.

In the business conferencing application, for example,
the policy may be to rekey only when the a member with
the role Supplier leaves, but not when a member with the
role Representative leaves. Allowing policies that make
distinction between members may allow the application
to optimize rekeying.

In certain circumstances it may be important for the
group to be more sensitive at certain times, but less at
others. Groups may wish sensitivity to be a function of
group size or resource availability. In this way, a group
could provide as strong a security model as can be sup-
ported by the network and host infrastructure.

Time-sensitive rekeying can be useful in combination
with any of the other schemes. Time-sensitive rekeying in
combination with membership-sensitive rekeying, for ex-
ample, helps ensure that an adversary cannot prevent ses-
sion rekeying indefinitely without detection after a mem-
bership change event.

2.2 Application Message Policy

An application message policy states the types of security
guarantees required for application messages. For exam-
ple, an application wishing to ensure no party external to
the group be able to access content will define confiden-
tiality as part of its policy.

The most common types of message security guaran-
tees are:integrity, confidentiality, group authenticity, and
sender authenticity. Confidentiality guarantees that no
member outside the group may gain access to the session
traffic. Integrity guarantees that any modification of an
application message is detectable by receivers. A session
key is typically used to obtain these guarantees. However,
some guarantees (such as sender authenticity) are diffi-
cult to obtain without additional security infrastructure.
Antigone supports these four message guarantees.

Note that a single policy need not apply to every mes-
sage. In most applications, different messages will require

different guarantees, depending on the nature of the mes-
sage and the assumed threat model.

2.3 Membership Policy

Identification of the membership within a group session is
an important requirement for a large class of applications.
As evidenced by a number of group communication sys-
tems, achieving strong guarantees for the availability and
correctness of group membership can be costly. In provid-
ing availability, any change in membership requires the
distribution of the new group membershipview to each
member.

Conversely, members in another class of systems need
not be aware of group membership at all. This is the
model used in typical multicast applications. In this en-
vironment, providing other services (such as reliability,
fault-tolerance, etc.) is commonly left to the application.

A membership policy indicates the availability of group
membership information. If the policy states that group
membership be supported, the groupview (membership
information) is distributed to each member as needed.

Antigone provides mechanisms to distribute keys with
and without membership information, primarily to allow
higher-performance applications when members do not
need membership information.

Currently, Antigone does not attempt to guarantee the
confidentiality of group membership. In general, hiding
the group membership from members and non-members
is difficult to do in current networks without introducing
noise network traffic. This is primarily because the ability
to intercept messages on the network allows access to the
source and destination of packets (in case of unicasts) and
at the multicast tree (in case of IP multicasts). In mounting
this traffic analysis attack), an adversary may deduce a
close approximation of group membership.

2.4 Process Failure Policy

A process failure policy states the set of failures to be de-
tected and the security to be applied to the failure detec-
tion mechanism. The defining characteristic of a failure
detection mechanism is the definition of its fault model.
The fault model defines the types of behavior exhibited
by a faulty process that the mechanism will detect. Typi-
cal crash models include fail-stop, message omissions, or
timing errors [Mul93]. In the strongest (Byzantine failure)
model, a faulty process may exhibit any behavior whatso-
ever.

A process failure policy may also state the need for se-
cure failure detection. In securing the failure detection,
the group may be protected from the masking of process
failures by an adversary. However, protecting the group
from an adversary who attempts to generate false failures

4



may be more difficult. Failures may be forced by blocking
all communication between the group participants. This is
a denial of service attack which is difficult to address in
software.

Antigone supports detection of fail-stop faults of group
members. To prevent problems due to timing errors, syn-
chronized clocks or timestamps are not used in Antigone
protocols. However, some mechanisms for failure detec-
tion and time-sensitive rekeying in Antigone do rely on
timeouts at individual processes. A process whose clock
progresses at incorrect rate may take longer to detect fail-
ures of other processes (if its clock progresses too slow)
or may mistakenly assume their is a failure (if its clock
progresses too fast and thus timeouts before an event).

3 Related Work

In this section, we review several of the key concepts and
known techniques in the design of frameworks for group
communication. Two fields applicable to our investigation
are secure group communication and design approaches
for configurable protocols. We present some of the major
findings in each of these areas.

Much of the existing technology on which group com-
munication is based was originally implemented in the
ISIS [Bir93] and later HORUS [RBM96] group commu-
nication systems. Using these frameworks, developers
can experiment with a number of protocol features. One
important feature of the HORUS system is the introduc-
tion of a comprehensive security architecture. An element
of this architecture is a highly fault-tolerant key distribu-
tion scheme. Process group semantics are used to facil-
itate secure communication. The session key distributed
to members in HORUS is maintained for the entire ses-
sion, thus providing no sensitivity to membership change
events. However, the vulnerability to attacks from past
or future members is limited. Application messages have
sender authenticity and may be confidential.

Virtual networks provide developers with an abstrac-
tion for building applications designed for (logically) lo-
cal network traffic, but executed across across physically
larger networks. The Enclaves system [Gon96] extends
this model to secure group communication. Enclaves pro-
vides a leave-sensitive group, distributing a newgroup key
after each member leave. Also, it is implied that the group
key should be changed periodically (time-sensitive). En-
claves supports membership information but is not depen-
dent on it. Messages have confidentiality and through
point-to-point communication, sender authenticity.

The RAMPART system [Rei94] provides secure com-
munication in the presence of actively malicious pro-
cesses and Byzantine failures. The system uses secure
channels between two members of the protocol to provide
authenticity. Protocols depend greatly on theconsensus

of processes to reach agreement on the course of action.
A membership-sensitive group is built on a secure group
membership protocol. The security context is not changed
through shared session keys, but the secure distribution of
new group views. Messages have sender-authentication
and integrity.

A limitation of many secure group communication sys-
tems is that they do not scale to larger networks. In
[Mit97], Mittra defines the1 effects nfailure, where a
single membership change event effects the entire group.
The Iolus system [Mit97], attempts to addresses this limi-
tation by introducing locally maintained subgroups. Each
subgroup maintains its own session key, which is replaced
after a membership change event in the subgroup. There-
fore, the effect of a membership change is localized to the
subgroup. Iolus provides a leave-sensitive group, and all
application messages are encrypted with the group session
key. No membership information is distributed in Iolus.

The Group Key Management Protocol (GKMP)
[HM97] attempts to minimize the costs associated with
session key distribution by loosening the requirement that
each session key be independent of others. After being
accepted into the group, newly joined members receive a
Key Encrypting Key(KEK) under which a future session
key will be delivered. A limitation of this group is that
misbehaving members can only be ejected by the estab-
lishment of a new group. GKMP reduces the costs of au-
thentication by introducing a peer-to-peer review process
in which potential members are authenticated by different
members of the group. The joining member’s authenticity
is asserted by existing members. GKMP provides a time-
sensitive group by rekeying at the end of a session key’s
lifetime. Note that this is a key management protocol, and
as such does not mandate how the session key is used. No
membership information is provided to members.

The IPSec [Atk95] standards attempt to achieve Inter-
net security by introducing security mechanisms at the
network layer. The Scalable Multicast Key Distribution
(SMKD) [Bal96] standard extends this infrastructure to
the multicast environment. Intended as an extension to
Core Based multicast routing [BFC93], SMKD uses the
router fabric to distribute session keys. As the multicast
tree is constructed, leaf routers obtain the ability to au-
thenticate and deliver session keys to joining members.
Thus, the cost of authentication and session key deliv-
ery can be distributed among the leaf routers. Similar to
GKMP, SMKD session keys are provides a time-sensitive
group which is rekeyed at the end of a session key’s life-
time.

With respect to security, the policies implemented by
these systems are essentially fixed. Applications must se-
lect a solution that provides a policy that best fits a min-
imal set of requirements. However, the accepted solution
may provide unnecessary functionality at an increased

5



cost.

An interesting development in configurable software
is the introduction of the micro-protocol [HS98] design
methodology. In using micro-protocols, a system de-
signer may decompose the facilities provided by proto-
cols into their atomic components.Composite protocols
are constructed from a collection of the smaller micro-
protocols. Differing facilities and guarantees may be pro-
vided through the composition of the micro-protocols.
In [HS98], the authors define and demonstrate a suite
of micro-protocols for maintaining group membership
within a distributed application. Group membership is
defined as a number of inter-related properties providing
varying semantics and guarantees. Developers using the
framework specify the facilities that are appropriate for
the current application context. Thus, the selection of a
set of facilities provides a definition of the group mem-
bership semantics, and indirectly the composite protocol
to be used by the application.

4 Architecture

Described in Fig. 1, the Antigone architecture consists of
three software layers; the broadcast transport layer, the
mechanism layer, and the predefined policy layer.

Though not typically associated with secure communi-
cation services, the broadcast transport component pro-
vides an abstraction for unreliable group communication.
A reality of today’s Internet is that there are varying levels
of support for multicast services. Although significant ef-
fort has been expended on the development of WAN mul-
ticasting, no single solution has been found to meet the
requirements of all users. Developers specify the level of
multicast support of the target environment at run time.
We describe the broadcast transport layer in Section 7.

The mechanism layer provides a set of mechanisms
used to implement application policies. The mechanisms
represent the basic features required for a secure group.
Policies are flexibly defined and implemented through the
selection and interaction of mechanisms. Associated with
each mechanism is a micro-protocol [HS98]. The group
protocol, called acomposite protocol, is defined by the
composition of the mechanism micro-protocols. We iden-
tify and describe the design of the Antigone mechanisms
in Section 5.

The predefined policy layer provides a suite of gen-
eral purpose policies. These policies represent those
commonly provided by secure group communication sys-
tems. Clearly, there are many other policies than avail-
able in this layer. Where required, an application may
extend or replace these policies by directly accessing the
broadcast transport and mechanisms layers. We describe
how the predefined polices are implemented through the

Antigone mechanisms in Section 6.

5 Mechanisms

We chose a composite protocol approach [HS98] for the
design of Antigone mechanisms. In composite protocols,
features are partitioned into modules consisting of shared
state, messages, events, and micro-protocols. This ap-
proach has several desirable properties that make it ap-
plication to Antigone. Firstly, the modular design allows
for the integration of future enhancements with minimal
effect on other modules. Second, the micro-protocol ap-
proach allows state sharing between modules. We avoid
the costs typically associated with state sharing between
protocols (message headers).

Antigone provides mechanisms for providing the fol-
lowing functions; authentication, member join, session
key and group membership distribution, application mes-
saging, failure detection, and member leave. The
Antigone micro-protocol variants associated with the each
mechanism are defined in Fig. 2. Before describing the
micro-protocols, we explain the principals in the proto-
cols and the notation used.

Fig. 3 shows the principals in an Antigone logical
group. A distinct member of the group whose identity
is known in advance to all members, called thesession
leader (SL), is the arbiter of group operations such as
group joins, leaves, etc. We chose an arbitrated group
because of its low cost and its applicability to many ap-
plications. For example, in a secure pay-per-view video
broadcast application, the cable company would provide
a session leader that enforces the desired access control
and key distribution policy.

A Trusted Third Party(TTP) provides the mechanism
for the session leader to authenticate joininggroup mem-
bers. Each potential member,A, of a group (including the
session leader) has a shared secretKA registered with the
trusted third party (TTP). This secret key is generated and
registered with theTTPbefore the party attempts to join
any session. We assume an out of band method for reg-
istering these keys and for informing everyone about the
identity of the session leader.

In our protocol descriptions, we use the termSLto refer
to the identity of the session leader,A to refer to a current
or potential member of the session, andTTPto refer to the
trusted third party.fXgk refers to messageX encrypted
under the keyk. The view identifier,g, is used to uniquely
tag the changing views of group membership. The term
SKg refers to a session key in viewg, andSKg+1 for the
(next) viewg + 1. The termI, possibly with a subscript,
refers to a nonce value. Key distribution protocols based
on Leighton-Micali define a term�A;B , called apair key,
used to support secret communication between collabo-

6



Multicast/TCP

IP

Application

Predefined Policies

Broadcast Transport

Point-to-point Asymmetric Multicast Symmetric Multicast

Join Failure Detection

Application
Message Policy

Membership
Policy

Process Failure
Policy

Rekeying Policy

Rekey/Group
Membership

Leave
Application
Message

Mechanisms

Authenticate

Figure 1: The architecture of Antigone consists of three layers; the broadcast transport layer, the mechanism layer,
and the predefined policy layer. The broadcast transport component provides a single broadcast abstraction for en-
vironments with differing levels of support for multicast. The mechanism layer provides a set of primitives used to
implement application policies. The predefined policies layer provides a suite of general purpose policies. Where
required, applications may define other policies by accessing the mechanism and broadcast transport layer directly.

rating membersA andB. Derived from the pair key, the
session leader and a potential memberA maintain a shared
secret key�SL;A. A MD5 hash [Riv92] for the textx is
described byH(x).

The format of the identity, nonce, key, and view identi-
fier values used in our current protocol implementation is
as follows. Each identity is a unique 16 byte null termi-
nated ASCII string of alphanumeric characters. A poten-
tial member is assigned this value when registering a long
term key with theTTP. Nonce values are unique 64 bit
values. To ensure nonces are not reused, some source of
monotonic values, such as the system clock, may be used.
Key format is algorithm dependent. The DES standard
uses an eight byte key (including eight parity bits). In the
future, as other ciphers are integrated into Antigone, we
will need to support other formats. The view identifierg
consists of a two parts. The first part is an eight byte null
terminated name string that identifies the group, used only
for displaying and debugging purposes. The second is an
eight bit nonce value. Each time a new view is created
(g + 1), a new nonce in generated and appended to the
group name string to create the new view identifier.

A [policy block] is distributed by the session leader
to each group member during the authentication process.
Defined by the application, the policy block is an arbitrary
byte string stating the group policy. We describe the use
of this data by the predefined policies layer in Section 6.

The session leader creates aasymmetric key pair(PuG,
PrG) during group initialization. The public key (PuG)
is delivered to potential members during the authentica-

tion process. The public key is used to reduce the cost of
sending secure heartbeats from the session leader.

Where sender authenticity is configured, we assume the
existence of a certificate distribution service [HFPS98].
The certificate service would provide access to certificates
for each group member (CA). Note that no certificate dis-
tribution service is required in our protocol to generate or
distribute the (PuG, PrG) asymmetric key pair.

We use DES [Pub77] for all encryption in the current
implementation. Its inherent strength is evident from its
20-year history, yet its 56-bit key length has long been the
subject of debate. Related algorithms such as triple-DES
[Ass85] or DESX [KR96] offer the strength of DES with
considerably longer keys. Our protocols are not tied to
any specific property of DES, and may be replaced with
other cryptographic algorithms as necessary.

We assume that all processes that have achieved mem-
bership, and thus have been authenticated, adhere to the
system specification. We assume no member willingfully
discloses its long term or session keys. All members trust
theTTPnot to disclose their long term key, and to gener-
ate pair keys according to the specification.

The following text describes each of the micro-protocol
modules in Fig. 2. All cited message numbers refer to
Fig. 2.
Authentication Mechanism - The authentication mech-
anism provides facilities for the authentication of poten-
tial group members. The purpose of this mechanism is
twofold. First, the session leader authenticates the poten-
tial group member. Second, a shared secret between the

7



Authenticate
1. A! SL : A; I0 (authentication request)
2. SL! TTP : SL;A; I1 (pair key request)
3. TTP ! SL : f[�SL;A = fAgKSL

� fSLgKA
]; I1gKSL

(pair key response)
4. SL! A : SL;A; fg;A; I0; I2; [policy block]; PuGg�SL;A (autnetication response)

Join
5. A! SL : A; fA; I2g�SL;A (join request)

Rekey/Group Membership
6a.SL! A : g; SSL; (A; fg; SKgg�SL;A)fH(g; SSL; (A; fg; SKgg�SL;A))gSKg

(key distribution)

6b.SL! A : g; SSL; (A; fg; SKgg�SL;A); B; C;D; : : : ; fH(g; SSL; (A; fg; SKgg�SL;A); B; C;D; : : :)gSKg

(key/group membership distribution)
6c. SL! group : g; SSL; (A; fg + 1; SKg+1g�SL;A); (B; fg + 1; SKg+1g�SL;B ); : : : ;

fH(g; SSL; (A; fg + 1; SKg+1g�SL;A); : : :)gSKg+1
(session rekey)

Application Messaging
7a.A! group : g;A; [message]; fH(g;A;message)gSKg

(with integrity)
7b.A! group : g; fA; [message]gSKg

(with confidentiality)
7c.A! group : g; fA; [message]; H(g;A;message)gSKg

(with integrity and confidentiality)
7d.A! group : g;A; [message]; H(g;A;message)CA (with sender authenticity)

Failure Detection
8. A! SL : g; SA; H(g; SA)�SL;A (member heartbeat)
9. SL! group : g; SSL; H(g; SSL)PrG (session leader heartbeat)
10.A! SL : g;A (key retransmit message)

Leave
11.A! SL : A; fg;A; fg;BgSKg

g�SL;A (leave request)

Figure 2: Antigone Micro-Protocol Description - micro-protocols for the various operating modes. Acomposite
protocolis constructed from the selection of a subset of these modes. In some configurations, some of these protocols
may be omitted entirely.

two parties is negotiated. The shared secret, called the
shared secret key, is later used as to implement a secure
channel between the two parties.

We chose the Leighton-Micali key distribution algo-
rithm [LM94] to authenticate the joining process and
negotiate the shared secret. The main advantage of
Leighton-Micali is low cost; it uses symmetric key en-
cryption throughout, with none of the modular exponen-
tiation operations associated with public key cryptosys-
tems. Public key cryptography requires significantly more
computation than symmetric algorithms. The de-facto
standard for public-key cryptography, RSA, can be up
to 100 times slower in software and 1000 times slower
in hardware than DES, the predominant symmetric algo-
rithm [Sch96].

A prospective member initiates the authentication pro-
cess by sending a message to the session leader containing
her identity and a nonce value (message 1). The session
leader then obtains the pair key�A;B from theTTP(mes-

sages 2 and 3). Derived from two identities and their as-
sociated long term keys, the pair key is used to establish
an ephemeral secure channel between the processes. To
prevent replay attacks, the session leader verifies the en-
crypted nonce valueI1 included in theTTP’s response.

The session leader computes the shared secret key for
communicating withA as follows. The session leader gen-
erates the valuefAgKSL

. This value is XOR-ed with the
pair key�SL;A received from theTTP. The resulting value
is a shared secret key (fSLgKA

= �SL;A) that is used to
create a secure channel between the session leader and the
prospective memberA.

Note thatA need not communicate with theTTP to ob-
tain the shared secret keyfSLgKA

= �SL;A; she can
compute it directly.A decrypts the session key with this
value and validates her nonce.

After obtaining the shared secret key, the session leader
responds with an authentication response message (mes-
sage 4). The response contains the identities of the session

8



leader and the potential group member, and a block en-
crypted with the shared secret key�SL;A. The encrypted
block contains the view (g) and group member (A) identi-
fiers, the group member nonce (I0), a session leader nonce
(I2), policy block ([policy block]), and the group public
key (PuG). Upon receiving this message, the receiver de-
crypts the contents and verifies the nonceI0.

Join Mechanism- The join mechanism provides a mem-
ber with facilities for gaining access to the group. The
mechanism also provides measures to ensure the reliabil-
ity of the join.

The potential group member (A) joins the group by
transmitting message 5 to the session leader.

Upon reception of message 5, the session leader val-
idates the nonce value (I2) passed to the joining mem-
ber during the authentication process. If the nonce is not
valid, the join request is ignored, and the group contin-
ues. If the nonce is valid, the new member is accepted
into the group. The reaction of the session leader to the
join request is dependent on the configured group model
(see below).

Note that the join message is unforgeable and fresh. A
session leader knows that a correct join message is fresh
and was generated by the member because of the presence
of the (I2) nonce value encrypted under the shared secret
key.

Mutual authentication is achieved through the verifica-
tion of the secretsA andSLshare with theTTP. The po-
tential member must be in possession of the secret shared
with theTTP to obtain the session leader nonce (I2) used
in joining the group in message 5. The session leader must
be in possession of the secret shared with theTTP to de-
termine the secret key shared withA. A is convinced that
message 4 is fresh by validating the nonce valueI0 sent
in the original request.

Rekey / Group Membership Mechanism - The
Rekey/Group Membership mechanism provides for the
distribution of group membership and session keys. We
note the distinction betweensession rekeyingandsession
key distribution. In session rekeying, all existing group
members must receive a newly created session key. In
session key distribution, the session leader transmits an
existing session key.

The rekey and session key and distribution messages
(6a, 6b, and 6c) all contain a group identifier (g), the latest
session leader sequence number (SSL), and a MAC calcu-
lated over the entire messageH(: : :). The group identifier
and sequence number identify the current group context.
The MAC ensures integrity of the message.

Session keys are distributed viasession key blocks
(A; fg; SKgg�SL;A). The intended member of each block
is identified by the group member identifier (A). The re-
mainder of the block is encrypted using the shared secret
key (�SL;A). If the group identifier is decrypted by the

...

Member 1

Member 2

Member 3

Member n

Trusted
Third Party

LAN/WAN

Session
Leader

Figure 3: An Antigone group consists of an arbiter called
thesession leader, a service providing member authentic-
ity called thetrusted third party, and the group members.
No assumptions are made about the network topology or
connectivity.

receiver correctly (matches the identifier in the message
header), the member is assured that the block was created
by the session leader.

Message 6a contains a session key block for one mem-
ber, and no group membership information. Message 6b
contains a session key block for one member and enumer-
ates the current group membership (B;C;D; : : :). In mes-
sage 6c, a session key block is generated for each member
in the group. Group membership in message 6c is ex-
tracted from the session key blocks.

Rekeying is performed by the transmission of message
6c. Rekeying in Antigone is similar to key distribution af-
ter aLEAVEoperation in the Iolus system [Mit97]. The
session leader caches the shared secret keys, so creating
this message is fast: encryption of 24 bytes (8 bytes of
new session key plus 16 bytes of new group identifier)
per member. Using the cached, shared secret key, the re-
ceivers of this message extract the session key out of the
session key block and begin using it immediately. The
size of this message grows linearly with group size, and
is potentially large. In systems that provide session key
independence, keying material needs to be sent to each
member individually. Therefore, the size of the message
is large by its nature, not as a side effect of our design.
Schemes that distribute a key to each member individ-
ually will transmit the same amount of data over many
more messages.

A potential problem occurs during the transition of
group views. During the rekeying process, application
data such as continuous media may continue to be broad-
cast using a previous session key. Because of delays in
the delivery of the session key, a process may receive a
message encrypted with a session key that it does not yet
or will never possess. An application may address this
issue by buffering, double encryption, dropping packets,

9



or other approaches. We present a detailed discussion
the positive and negative aspects of several of these ap-
proaches in [MHP98].

Application Messaging Mechanism- The application
messaging mechanism provides for the transmission of
the application level traffic. Each application level mes-
sage is secured using cryptographic keys distributed by
the rekey/group membership mechanism, or through the
use of external public key certificates.

The format of application messages is dependent on the
type of messaging policy. We achieve message integrity
throughMessage Authentication Codes(MAC) [Sch96],
and confidentiality by encrypting under the session key.
Message 7a shows the format of a message with integrity
only, message shows 7b confidentiality only, and 7c shows
a message with both integrity and confidentiality.

A MAC is generated by encrypting the an MD5 hash
[Riv92] of message data under the session key. A receiver
confirms the MAC by decrypting and verifying the MD5
hash value. If the hash is correct, the receiver is assured
that message has not been modified by some entity exter-
nal to the group.

Sender authenticity (message 7d) is achieved by digital
signature [DH76]. The signature is generated using the
private key exponent associated with the sender’s certifi-
cate. Receivers obtain the sender’s certificate and verify
the signature using the associated public key. Note that
a byproduct of the use of digital signatures is message
integrity. Our current implementation does not support
sender authenticity.

Failure Detection Mechanism- An application’s threat
model may require the system to tolerate attacks in which
an adversary prevents delivery of rekeying messages from
the session leader to the entire group or to a subset of
members. In such a case, some members will continue
to use an old session key, a security risk if the old key is
compromised.

Also, for accurate membership information, it may be
necessary for the session leader to be able to detect fail-
stop failures of members.

In Antigone, we providesecure heartbeatmessages as
the mechanism to detect failed processes. The session
leader detects failed processes through member heartbeats
(message 8). When some number of member heartbeat
messages are not received by the session leader, the mem-
ber is assumed failed and expelled from the group.

Group members confirm that the session leader is still
operating by receiving session leader’s secure heartbeat
messages (message 9). When some number (the value
of which is a policy issue for higher layers) of session
leader heartbeat messages are not received, the member
can assume that the session leader has failed.

Heartbeat messages serve a dual purpose. In addition
to failure detection, members use the heartbeats to ensure

Policy JOIN LEAVE FAILURE EJECT

Time Sensitive N N N N
Leave Sensitive N Y Y Y
Join Sensitive Y N N Y
Membership Sensitive Y Y Y Y

Table 1: The predefined rekeying policies may be defined
by their sensitivity to membership events. Note that join
sensitive groups areMEMBEREJECT sensitive to allow
for member ejection.

that they have the most current group state. The session
leader’s sequence number ensures the heartbeat is fresh.
The presence of the group identifier allows a group mem-
ber to be certain that they are using the most recent session
key. The heartbeats are encrypted to ensure that an adver-
sary cannot fake heartbeats. Without these protections, an
adversary may be able to prevent delivery of new session
keys and trick members into continuing to transmit under
an old session key indefinitely.

A member who fails to receive current session key or
membership information can attempt to recover by send-
ing a key retransmit message (message 10). The key re-
transmit message indicates to the session leader that the
member wishes to get the most recent group state. The
session leader will send the most key/group membership
distribution (message 6a, 6b, or 6c) in response to the key
retransmit message. In this case, the process will be able
to recover by installing the most recent session key and/or
group membership.

The Antigone infrastructure’s goal at this level only
provides mechanisms for reliable detection of session
leader’s failure and not recovery from its failure. Mecha-
nisms for detection of failures can, if desired, be used to
implement recovery algorithms using primary backup or
replicated approaches at higher levels.

Leave Mechanism- This mechanism provides an inter-
face for group members to gracefully exit the group. A
member sends message 11 to indicate that it is exiting the
group.

The leave mechanism has a secondary purpose. Using
the micro-protocol defined in Fig. 2, a group member may
request the ejection of other members from the group. To
request an ejection, the requester places the identity of
the member in thefg;BgSKg

block (asB). The session
leader receiving a message with this format will eject the
member in accordance with some local policy.

6 Policy Implementation

In this section, we show how flexible application policies
may be implemented through the Antigone mechanisms.

Membership Awareness Policy

10



If members should not explicitly be given the list of cur-
rent members in a group, then rekeying can be done via
point-to-point messages to each member using message
6a. Otherwise, using message 6c via a multicast to rekey
a group is generally more efficient. In either case, as
pointed out in the Section 5, we do not guarantee confi-
dentiality of group membership against adversaries who
are able to monitor network traffic and analyze packet
flows in the group.

When a member fails to receive a rekey message, it can
request a re-broadcast by sending message 10. If member-
ship awareness is required in the group, the session leader
can use message 6b or 6c to update the member; other-
wise, the session leader can use the smaller message 6a to
rekey the member, which is more efficient to encrypt and
send.

Rekeying Policy Implementations
To implement a time-sensitive group, the session leader
simply creates a new group identifier periodically, fol-
lowed by group rekeying as describe above.

To implement a join-sensitive group, after a member
joins (message 5), the session leader rekeys the session
using either message 6a to each member or via message
6c.

If the policy is not join-sensitive, when a member joins,
no rekeying is necessary. The new member is sent mes-
sage 6b or 6a, depending on whether it needs to be pro-
vided the group membership list or not, respectively.

To implement a leave-sensitive group, when any mem-
ber leaves (message 11), is ejected (message 11), or fails
(detected via secure heartbeats), the session leader rekeys
the group. The session leader rekeys the session by
sending message 6a to each member or by multicasting
message 6c to the group, depending on the membership
awareness policy.

To implement a membership-sensitive group, session
rekeying is done after joins, leaves, failures and ejections.

Other rekeying policies can be implemented by a ses-
sion leader, given the mechanisms in the previous sec-
tion, such as making membership-sensitive rekeying de-
pendent on the role of the joining or leaving member in
the group, or doing time-sensitive rekeying in combina-
tion with membership-sensitive rekeying.

Application Message Policy Implementations
Several choices with different guarantees are available for
sending messages (choices 7a, 7b, 7c, and 7d). It is up to
the application to make a judicious use of these available
choices, depending on the requirements. We will discuss
the performance implications of application message poli-
cies in the Performance section.

Predefined Policies
To simplify application development, Antigone provides
a simple specification interface to select a group security

policy. This specification interface allows selection from
several common policies. Applications that require cus-
tom policies can, of course, implement their own policies
directly though the Antigone mechanisms.

The predefined-policy layer in Fig. 1 uses the policy
block in message 4 (see Fig 2) to send six fields (GG,
SG, RK, HB, MM , andFP ) to select a policy from a
range of common policies.

The GG parameter is used to select from four
implemented policies. The policies (TIME SENS,
LEAVESENS, JOIN SENS, andMEMBERSENS) corre-
spond to the definitions presented in Section 2. Table 1 de-
scribes these policies in terms of their sensitivity to mem-
bership events.

TheRK parameter is used to specify the rekey timer
value. Each member resets the timer to the specified value
when a new key is received. If the timer expires, the mem-
ber considers the current session key to have expired and
requests the session leader to send a new session key. The
session leader should normally rekey a session prior to
the expiration of this timer. Note that the combination
of GG andRK parameters allow specification of rekey-
ing policies that are both membership-sensitive as well as
time-sensitive.

TheSG parameter is used to specify the security guar-
antee on application messages. The guarantees that can
be specified are:confidentiality, integrity, andsender au-
thenticity. A side effect of the selection of any of these
guarantees is that all application messages will have the
group authenticityproperty. The group authenticity prop-
erty states that messages can be verified to determine if
they emanated from a member of the group. We outline
the performance issues relating to these policies in Sec-
tion 8.

TheMM parameter is used to indicate if membership
awareness is required by group members. If membership
information is to be supported, it is distributed during ev-
ery rekeying operation via message 6c or, in case of re-
transmit requests, via message 6b. Otherwise, message 6a
is used to rekey members.

The failure policy (FP parameter) indicates whether
failures of session leader and the members are to be de-
tected. If the process failure policy states failures are to
be detected, heartbeat messages (9,10) are transmitted pe-
riodically. The failure detection mechanism will detect
failed members as defined in the previous section.

TheHB parameter is used to specify the periodicity of
heartbeat messages, if any.

In general, if an adversary can prevent messages from
being delivered, periodic heartbeats from the session
leader are important. Since the session leader’s heart-
beats carry the group identifier and a sequence number,
they help ensure that a group can be forced to use an old
session key only for a period implied by the heartbeat in-

11



terval.
Heartbeats are useful even when a combination of

membership-sensitive and time-sensitive rekeying is used.
For large groups, rekeying (message 6c) can be more ex-
pensive for the session leader compared to sending secure
heartbeats (message 9). In such cases, the session leader
can set the heartbeat interval to be lower than the rekey in-
terval. The lower heartbeat interval ensures that members
do not use an old key beyond that interval. In the absence
of heartbeats, the rekey interval will define the bound for
which an old key may be used.

7 Broadcast Transport Layer

Antigone provides three broadcast transport modes;sym-
metric multicast, point-to-point, and asymmetric mul-
ticast. In providing a single transport abstraction,
Antigone supports network environments with varying
levels of support for multicast.

The symmetric multicast mode uses multicast to deliver
all messages. Applications using this mode assume com-
plete, bi-directional communication is available via mul-
ticast. In effect, there is no logical difference between this
mode and direct multicast.

The point-to-point mode provides a broadcast service
based solely on point-to-point communication. All mes-
sage traffic intended for the group is unicast to the session
leader, and relayed to each group member via UDP/IP.
However, as each message must be transmitted to group
members individually, bandwidth costs increase linearly
with group size. In some applications, these costs may
be prohibitive. For example, a group of even modest sizes
would have difficultly in maintaining a video transmission
with reasonable frame rates.

In [AAC+99], we describe our experiences with the de-
ployment of a video application based on an early ver-
sion of Antigone. The deployed system was to securely
transmit video and audio of the September 1998 Internet
2 Member Meeting. The receivers (group members) were
distributed at several institutions across the United States.
While some of the receivers were able to gain access to
the video stream, others were not. It was determined that
the network could deliver multicast packets towards the
receivers (group members), but multicast traffic in the re-
verse direction was not consistently available (towards the
session leader). The problem was attributed to limitation
in reverse routing of multicast packets. We present signif-
icant technical detail of this issue in [AAC+99].

These problems coupled with costs associated with a
completely point-to-point solution lead us to introduce
asymmetric multicast. This mode allows for messages
emanating from the session leader to be multicast, and
member messages to be delivered point-to-point. Mem-
bers wishing to transmit a message to the group send the

message to the session leader as a unicast. The session
leader acts as a relay for all group communication. Any
message intended for the group received by the session
leader is re-transmitted via multicast. Thus, we reduce the
costs associated with group delivery of a point-to-point
solution to a unicast followed by a multicast.

The most substantial advantage of a single abstraction
is in its ability to change with updates in the networking
environment. As symmetric multicast becomes univer-
sally available, neither Antigone or applications built on
it will require redesign to make use of the newly available
service.

8 Performance

In this section we present preliminary findings of a study
of the costs associated with various Antigone mecha-
nisms. We illustrate the cost of the most CPU intensive
operations at the session leader; rekeying and application
message generation.

The experiments described in this section were per-
formed on an unloaded 300 megahertz AMD K6 running
the Linux kernel version 2.0.36. The test machine has 64
megabytes of RAM. To reduce the effect of experimen-
tal error on our results, each data-point represents the av-
erage of 50 trials. In all experiments, the granularity of
measurement is 200 microseconds.

Fig. 4 shows the cost of group membership/session key
message (messages 6a, 6b, and 6c) generation under vary-
ing group models and sizes. Note that further study is re-
quired to determine supportable group sizes. Future study
will include an investigation of the latency and throughput
of Antigone within increasing group sizes.

It is worth noting that while we report message gen-
eration costs for groups who contain 500+ members, we
do not assert that Antigone will reliably support groups of
that size. In larger groups, bottlenecks could occur due to
message loss on the network. We defer statements about
supportable group size until further analysis can be per-
formed.

Generation of the session key distribution message
without group membership information (message 6a)
should be constant under all group sizes. Creation of this
message includes the generation of one session key distri-
bution block and the generation of aMessage Authentica-
tion Code(MAC). The figure indicates a constant cost of
message generation. Note that the oscillation between 0
and 200 microseconds can be attributed to the granularity
of measurement.

The costs associated with key distribution with group
membership message (6b) generation increases slightly
with group size. A message created for a group of 500
members requires 1 millisecond to generate. The increas-
ing costs can be attributed to the increasing amount of data

12



100

1000

10000

100000

50 100 150 200 250 300 350 400 450 500

K
ey

/G
ro

up
 M

em
be

r M
es

sa
ge

 G
en

er
at

io
n 

Ti
m

e 
(m

ic
ro

se
co

nd
s)

Group Size

Session Key Distribution (Message 6a)
Session Key Distribution with Group Membership (Message 6b)

Session Rekey (Message 6c)

Figure 4: Group Membership/Session Key message
generation costs - Costs associated with the message
generation of groups of varying sizes and semantics.

to be hashed. As the group membership grows, the costs
associated with MAC generation increase.

The costs associated with the rekey message (6c) in-
creases linearly with group size, eventually requiring 7
milliseconds for groups containing 500 members. A ses-
sion key block is generated for each member, which re-
quires a distinct cryptographic operation. Similar to the
message 6b, the cost of MAC generation increases with
group size. Because of the speed of the underlying crypto-
graphic algorithms, increases in the cost of message gen-
eration due to MAC construction is significantly less than
increases due to session key block construction.

In Fig. 5, we show the costs associated with the gen-
eration of application messages of varying sizes and with
varying security guarantees. Although not surprising, the
figure shows that as the number of guarantees increase,
so do the costs of message generation. There is a natu-
ral ordering to these guarantees.INTEGRITY(message
7a) is least expensive,CONFIDENTIALITY(7b) is more
expensive, and theINTEGRITYandCONFIDENTIALITY
(7c) is the most expensive.2 We present data for mes-
sages without any guarantees (No Security) to illustrate
the constant costs associated with data copying and buffer
management.

The ordering of application message generation costs
mirrors the speed of the underlying cryptographic opera-
tions. We use DES [Pub77] to achieve confidentiality, and
MD5 [Riv92] to achieve integrity. Our implementation
uses the SSLeay v0.9.0b [HY98]crypto library. On
the test machine, we found that DES encryption (� 3:9
Mbyte/second) is about1=10 the speed of MD5 hashing

2Currently, we have not implemented the sender authenticity guaran-
tee (message 7d), and thus do not show its cost. As it requires private-key
encryption, we expect sender authenticity to be the most costly guaran-
tee to provide.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10 20 30 40 50 60

A
pp

lic
at

io
n 

M
es

sa
ge

 G
en

er
at

io
n 

Ti
m

e 
(m

ic
ro

se
co

nd
s)

Message Size (kbytes)

No Security (for comparison)
Integrity Only (Message 7a)

Confidentiality Only (Message 7b)
Integrity and Confidentiality (Message 7c)

Figure 5: Application Traffic message generation costs
- Costs associated with the generation of application
messages of varying sizes and security guarantees.

(� 39 Mbyte/second).

9 Conclusions and Future Work

In this paper, we presented the Antigone framework.
Antigone provides a flexible interface for the definition
and implementation of a wide range of secure group poli-
cies. Applications implement policy by composing and
configuring secure group primitives calledmechanisms.
Thus, Antigone does not dictate the available policies, but
provides facilities for building them.

The mechanisms provided by Antigone represent the
set of features required to implement a secure group. The
mechanisms include facilities for authentication, mem-
ber joins, session key and group membership distribu-
tion, application messaging, failure detection, and mem-
ber leaves. Policy-implementing software use these mech-
anisms to construct a feature set specific to the application
context and the assumed threat model.

The target applications of Antigone require a low-cost
solution. A result of this requirement is that the mech-
anisms in Antigone provide simple, but substantive, fea-
tures for implementing various security policies.

To validate the primitives as well as to simplify devel-
opment of applications, we have constructed a suite of
general-purpose security policies. These predefined poli-
cies represent those that have been found useful or have
been suggested as being useful by various group commu-
nication systems.

Thought not typically associated with secure group
communication services, Antigone provides an abstract
interface for multicasting. A reality of the existing In-
ternet fabric is its inconsistent support for multicast ser-
vices. In deploying multicast-based solutions, we have

13



found that though multicast connectivity in one direc-
tion is often possible, achieving bi-directional multicast
is more difficult. As a result, we introduce a transport
mode calledasymmetric multicasting. In asymmetric
multicasting, messages emanating from a single source
use multicast, and all others use unicast. Antigone’s im-
plementation provides interfaces for symmetric multicast
(bi-directional), asymmetric multicast, and point-to-point
(unicast) group communication.

Our initial performance study indicates that as policy
requirements increase, so do the performance costs. This
is not a surprising result, but indicates the need for secu-
rity infrastructures to support a range of security policies.
In the near future, we will extend this study to include
the analysis of latency, throughput, and scalability char-
acteristics of Antigone groups within several networking
environments.

An early version of Antigone has been integrated into
the thevic Videoconferencing application [Net96]. A
number of policy issues arose during the implementation
and deployment of the resultingSecure Distributed Vir-
tual Conferencing(SDVC) system [AAC+99]. The cur-
rent design of Antigone represents the many refinements
prompted by the analysis of SDVC.

Several challenges remain. Applications may have re-
quirements for greater fault tolerance. The need for ser-
vices that provide greater scalability is evident. In the fu-
ture, we hope to investigate ways to meet such require-
ments, while retaining simple mechanisms that support
flexible security requirements.

References

[AAC+99] W.A. Adamson, C.J. Antonelli, K.W. Coff-
man, P.D. McDaniel, and J. Rees. ”Secure
Distributed Virtual Conferencing: Multicast
or Bust”. Technical Report 99-1, CITI, Uni-
versity of Michigan, Januarary 1999.

[Ass85] American Bankers Association. ”American
National Standard for Financial Institution
Key Management”. ANSI, 1985. ANSI
X.917.

[Atk95] R. Atkinson. ”Security Architecture for the
Internet Protocol”. Internet Engineering Task
Force, August 1995. RFC 1825.

[Bal96] A. Ballardie. ”Scalable Multicast Key Dis-
tribution”. Internet Engineering Task Force,
May 1996. RFC 1949.

[BFC93] T. Ballardie, P. Francis, and J. Crowcroft.
”Core Based Trees (CBT)”. InProceedings

of ACM SIGCOMM ’93, pages 85–95. IEEE,
September 1993.

[Bir93] K. Birman. ”The Process Group Approach to
Reliable Distributed Computing”.Communi-
cations of the ACM, 36(12):37–53, December
1993.

[Dee89] S. Deering. ”Host Extensions for IP Multicas-
ting”. Internet Engineering Task Force, Au-
gust 1989. RFC 1112.

[DH76] W. Diffie and M.E. Hellman. New Direc-
tions in Cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654,
November 1976.

[Gon96] L. Gong. ”Enclaves: Enabling Secure Col-
laboration over the Internet”. InProceedings
of 6th USENIX UNIX Security Symposium,
pages 149–159. USENIX Association, July
1996.

[HFPS98] R. Housley, W. Ford, W. Polk, and D. Solo.
”Internet X.509 Public Key Infrastructure,
Certificate and CRL Profile”. Internet Engi-
neering Task Force, June 1998.
(draft-ietf-pkix-ipki-part1-08.txt).

[HM97] H. Harney and C. Muckenhirn. ”Group
Key Management Protocol (GKMP) Archi-
tecture”. Internet Engineering Task Force,
July 1997. RFC 2094.

[HS98] M. Hiltunen and R. Schlichting. ”A Config-
urable Membership Service”.IEEE Trans-
actions on Computers, 47(5):573–586, May
1998.

[HY98] T. Hudson and E. Young. SSLeay and SS-
Lapps FAQ, September 1998.
http://psych.psy.uq.oz.au/ ftp/Crypto/.

[KR96] J. Kilian and P. Rogaway. ”How to Protect
DES Against Exhaustive Key Search”. In
Proceedings of Crypto ’96, August 1996.

[LM94] T. Leighton and S. Micali. ”Secret-key
Agreement without Public-Key Cryptogra-
phy”. In Advances in Cryptology: Proceed-
ings of Crypto 93, 1994.

[MHP98] P. McDaniel, P. Honeyman, and A. Prakash.
”Lightweight Secure Group Communica-
tion”. Technical Report 98-2, CITI, Univer-
sity of Michigan, April 1998.

14



[Mit97] S. Mittra. ”Iolus: A Framework for Scal-
able Secure Multicasting”. InProceedings
of ACM SIGCOMM ’97. ACM, September
1997.

[Mul93] Sape Mullender. ”Distributed Systems”.
Addison-Wesley, New York, New York, First
edition, 1993.

[Net96] Network Research Group, Lawrence Berke-
ley Laboratory. vic - Video Conferencing
Tool, July 1996.
http://www-nrg.ee.lbl.goc/vic/.

[Pub77] Federal Information Processing Standards
Publication. ”Data Encryption Standard”,
1977. National Bureau of Standards.

[RBM96] R. Van Renesse, K. Birman, and S. Maf-
feis. ”Horus: A Flexible Group Communica-
tion System”. Communications of the ACM,
39(4):76–83, April 1996.

[Rei94] M. Reiter. ”Secure Agreement Protocols: Re-
liable and Atomic Group Multicast in Ram-
part”. In Proceedings of 2nd ACM Confer-
ence on Computer and Communications Se-
curity, pages 68–80. ACM, November 1994.

[Riv92] R. Rivest. ”The MD5 Message Digest Al-
gorithm”. Internet Engineering Task Force,
April 1992. RFC 1321.

[Sch96] Bruce Schneier.”Applied Cryptography”.
John Wiley & Sons, Inc., New York, Chich-
ester, Brisbane, Toronto, Singapore, second
edition, 1996.

15


