POLICY MANAGEMENT IN SECURE GROUP COMMUNICATION

Patrick Drew McDaniel

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in the University of Michigan
2001

Doctoral Committee:

Professor Atul Prakash, Chair

Adjunct Professor Peter Honeyman
Research Staff Member Trent Jaeger, IBM
Assistant Professor Sugih Jamin

Associate Professor Paul Resnick
Principal Researcher Aviel Rubin, AT&T

© Drew Patrick McDaniel
All Rights Reserved

2001

For Megan

ii

ACKNOWLEDGEMENTS

I would like to thank first and foremost Atul Prakash, Peter Honeyman, Avi Rubin, and
Sugih Jamin who have taught me much of what I know about computer science. They have
had a profound affect on my life and any future success I may have is due in large part to
their efforts.

Atul Prakash has been my advisor since arriving at the University of Michigan. He
has been a key figure in all aspects of my academic life, and drove me to be successful.
Antigone and this thesis exist because of Atul’s constant questioning of my assumptions
and solutions.

Peter Honeyman introduced me to security. His unfounded belief that I could someday
become a useful graduate student during my first years at Michigan allowed me to explore
interesting research. Simply put, I would not have pursued a career in security research if
it were not for Peter’s advice and encouragement.

Avi Rubin has been a friend and mentor over the last few years. The time I spent at
AT&T research was among the most value of my academic career. Avi has helped me to
understand the process of completing and presenting research.

Many of the tools I use to perform research I learned from Sugih Jamin. Sugih demon-
strated infinite patience while working with me early in my academic career. In particular,
his many editorial comments taught me the basics of presentation.

I would also like to thank Trent Jaeger, Paul Resnick, Kevin Compton and Brian Noble
for their help in understanding the execution of research. Their technical and philosophical
assistance in formulating and completing the thesis has been invaluable. I would like to
particularly thank Brian for his help in navigating the academic world.

Hugh Harney has been a friend, collaborator, and sounding board for ideas. Our phone
calls during the final days of the thesis allowed me to maintain some sense of perspective.
I value our friendship immensely.

I would like to thank my family for their seemingly inexhaustible well of faith and
support. I wish to thank my mother for giving me the strength to persevere, and my father
with the drive to be successful. I would like to thank Robert and Nancy who have always
been there for me. Thanks to Sean and Matthew for remembering who I am. I would
like to thank Dean and Donna for inviting me into their family and always treating me as
one of their own. Thanks to Alissa, Liam, Thomas, Shannon, and Ella for helping me to
understand what is important.

I would like to thank the National Security Agency, National Aeronautics and Space
Administration, and the Defense Advanced Research Projects Agency for their financial
support. In particular, I would like to thank Doug Maughan for his support and direction
of the Antigone project.

Finally, I would like to thank Megan. She has served at different times as my personal
cheerleader, critic, editor, psychologist, and caretaker. She has listened to my rants, put
up with my moods, encouraged me during my failures, and celebrated my successes. More
than any other single person, Megan has made the completion of this degree possible.

iii

TABLE OF CONTENTS

DEDICATION

ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER

1 Introduction
1.1 Secure Group Policy
1.2 Thesis Structure

2 Secure Group Policy
2.1 Secure Group Policy Definition
2.1.1 Local Policy

2.1.2 Policy Instantiation

2.2 The Life-cycle of a Group Policy
2.3 Requirements of Policy Management
2.4 Policy Design Space o
2.4.1 Session Rekeying Policy,

2.4.2 Data Security Policy

2.4.3 Membership Policy

2.4.4 Process Failure Policy

2.4.5 Authentication and Access Control Policy

25 Goals

3 Related Work
3.1 Policy Management o
3.2 Group Communication
3.2.1 Secure Reliable Group Communication

3.2.2 Membership Management

3.2.3 Failure Detection and Recovery

3.3 Secure Group Communication
3.3.1 Group Key Management

3.3.2 Data Services

v

ii

iii

vii

xi

3.4 Component Systems oL 62

3.5 Broadcast Communication L. 64
Policy Representation and Analysis 66
4.1 System Model 68
4.2 Approach 69
4.3 Provisioning Clauses 74
4.4 Action Clauses 7
4.4.1 Reprovisioning the Group 79
4.4.2 Integrating Ismene with External Authentication Frameworks . 79
4.5 Policy Processing 80
4.5.1 Evaluation L 80
4.5.2 Reconciliation oL L o 81
4.5.3 Compliance e 83
454 Analysis 85
4.6 Algorithm Analysis 86
4.6.1 Evaluation 86
4.6.2 Reconciliation Lo oo 90
4.6.3 Compliance 97
4.6.4 Analysis 99
Policy Enforcement in Antigone 103
5.1 Policy Enforcement oL 104
5.1.1 Mechanisms e 105
5.1.2 Signals 106
5.1.3 Group Interface oo 108
5.1.4 TheEvent Bus 108
5.1.5 Attribute Sets 110
5.1.6 Policy Enforcement Illustrated 111
5.1.7 Architecture 113
5.1.8 Alternative Architectures 114
5.2 Group Interface L 116
5.3 The Policy Engine 117
5.4 Mechanisms 119
5.4.1 Authentication Mechanisms 119
5.4.2 Membership Mechanisms 122
5.4.3 Key Management Mechanisms 124
5.4.4 Data Handling Mechanisms 127
5.4.5 Failure Detection and Recovery Mechanisms 128
5.4.6 Debugging Mechanisms, 131
5.5 Broadcast Transport Layer 131
5.6 Optimizing Policy Enforcement 133
5.6.1 Generalized Message Handling 134
5.6.2 Caching Authentication and Access Control 136
5.6.3 Memory Management 137
Case Studies: Virtual Private Filesystems in AMirD 138
6.1 AMirD 139

6.1.1 Control Groupo 140

6.1.2 Download Groupo 142

6.2 Policy e 143

6.2.1 Scenariol -Local LAN 144

6.2.2 Scenario 2 - Mobile Users 145

6.2.3 Scenario 3 - Coalition Networks 147

6.2.4 Scenario 4 - Site Mirroring 148

6.2.5 Illustrating Policy 149

6.3 Implementation o 155

6.3.1 AMirD Configuration 155

6.3.2 Signal Handling 157

7 Performance e e 159

7.1 Implementation and Experimental Setup 160

7.2 Policy Determination L. 162

7.3 Policy Enforcement oo 0oL 166

7.4 End-to-end Performance 172

8 Conclusions and Future Work 175

8.1 Goals e 175

8.2 Future Work 177
APPENDIX 179
REFERENCES 184

vi

1.1

1.2
1.3

21

2.2

3.1

3.2

3.3

3.4

4.1

4.2

LIST OF FIGURES

Scenario 1 - A pay-per-view service broadcasts a movie to a group of subscribing
clients. oL
Scenario 2 - The headquarters company X broadcasts a series of presentations.
Antigone Session Policy - A session defining group policy is created by a policy
issuer and stored in the policy repository. The initiator reconciles the local
policies of the expected participants prior to session initialization. The re-
sulting policy instantiation is transmitted to group members prior to their
acceptance into the group.o L oL oo

Policy Life-cycle - issuers specify policy during creation. The policy is sub-
sequently interpreted towards an unambiguous instantiation identifying the

group provisioning, authentication, and access control enforced by the group.

Mechanism equivalence - Policies implemented by members of Subgroup a must
be equivalent to those implemented by Subgroup b. Failure to implement
equivalent policies may result in undetected vulnerabilities.

IETF Policy Working Group Representation - abstract (a) and translated policy
(b) rules in an example schema. oL
IETF Policy Framework working group architecture - architecture supporting
the creation, distribution and enforcement of network management policies.
GAA API clause definition - these example clauses define an authentication
and access control policy for network printer stating: if the printer queue
associated with PRINTER al contains fewer than 10 entries and the current
time is between 6AM and 8PM, then any entity authorized by the local
Kerberos KDC may submit jobs.
CC Policy - nominative, descriptive and domain constraint policy rules in the
Cholvy and Cuppens specification language.

System Model - A session is a collection of participants collaborating towards
some set of shared goals. A policy issuer states a group policy as a set
of requirements appropriate for future sessions. The group and expected
participant local policies are evaluated to arrive at a policy instantiation
stating a concrete set of requirements and configurations. Prior to joining
the group, each participant checks compliance of the instantiation with its
local policy.

The Ismene Policy Language Grammar. A word represents a string of non-
whitespace alphanumeric characters. A string is a string of alphanumeric
characters (i.e., may contain newline and whitespace characters).

vii

19

39

39

43

45

69

71

5.1

5.2

5.3

5.4

9.5

5.6

0.7

0.8

Mechanism Signal Interfaces - Policy is enforced through creation and processing
of events, timers, and messages. To simplify, events are posted to and received
via the event bus. The expiration of timers registered to the timer queue is
signaled to the mechanism through the process timer interface. Messages are
sent to the group via the send message interface, and received through the
process message interface. Lo Lo

The Event Bus - the event bus manages the delivery of events between the group
interface and mechanisms of Antigone. Events are posted to the bus controller
event queue. Events are subsequently broadcast to all software connected to
bus in FIFO order. Note that the event bus is implemented in software and
is completely independent of network broadcast service supported by the
broadcast transport layer.

Policy Enforcement Illustrated - an application sendMessage API call is trans-
lated into a send event delivered to all mechanisms (a). This triggers the
evaluation of an authentication and access control policy via upcall (b), and
ultimately to the broadcasting of the application data (c). The send triggers
further event generation and processing (d). Note that the policy engine does
not listen to or create events. oL

Antigone consists of four components; the group interface layer, the mechanism
layer, the policy engine, and the broadcast transport layer. The group inter-
face layer arbitrates communication between the application and lower layers
of Antigone through a simple message oriented API. The mechanism layer
provides a set of software services used to implement secure groups. The
policy engine directs the configuration and operation of mechanisms through
the evaluation of group and local policies. The broadcast transport layer pro-
vides a single group communication abstraction supporting varying network
EenVIronments. L. e e e e e

Authentication Mechanism - The authentication mechanism is initialized by the
policy engine (a), after which authentication request event is received. The
mechanism responds by locating the authentication service and establishing
a secure channel (b,c,d). After authenticating the group (e), the channel is
used to exchange policy and session state (f). The authentication process
is completed by posting a policy received and authentication complete event
(g,h) to the event controller. L.

The AGKM construction - members are distributed seed information from which
session keys are calculated. Session keys can only be calculated after authen-
ticating information is disclosed by the GKC.

Antigone Scope Interface - the scope mechanism records and displays all state
changes signaled via the event bus.

Generalized Message Handling (GMH) - GMH abstracts the complex tasks of
data marshaling. Senders associate data with each field defined in a (A Mes-
sageDef) message template object. GMH marshals the data as directed by
the template using the supplied information. Receivers reverse the process by
supplying additional context (such as decryption keys) based on previously
unmarshaled fields. In the figure, shaded boxes represent marshaled or un-
marshaled data (at the sender and receiver respectively), and dots represent
known field values. L

viii

108

109

112

114

120

126

132

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

The Control Group - filesystem announcements are broadcast by exzporters to the
control group at a policy dictated periodicity (a). Importers noting missing
or stale content request updates via download requests (b). Exporters iden-
tify the location of download groups (associated with a single file download)
through a download group announcement (¢).

Filesystem Announcement - AMirD filesystem content announcements are frag-
mented into per-directory sub-announcements. Each sub-announcement con-
tains the pertinent information regarding the files and directories of the an-
nouncement directory. L oL

The Download Group - The file associated with the download group is broadcast
through windowed protocol (a). Selective acknowledgments (b) received by
the exporter are used to direct transmissions. The group is disbanded when
the file transfer is complete.o Lo

Scenario 1 - Members and services in this LAN environment are mutually trusted.
Access to filesystem content is predicated on local filesystem access rights. .

Scenario 2 - The mobile users in this environment use AMirD to synchronize
mobile devices with filesystems in their home environment. As the device
is executing in an untrusted network, the control and download information
must be protected. L

Scenario 3 - The enterprises comprising the coalition have conditional and fluid
trust. The policy under which the control and download content is distributed
is a direct reflection of these conditions.

Scenario 4 - The contents of a website are synchronized to a large body of largely
untrusted mirror sites. The authenticity of the content is of paramount im-
portance. L L L e e e e e e

An example AMirD configuration file. 0oL

Experimental Environment - all tests described in this chapter were executed
in within the Antigone cluster. Group tests were executed over five member
group containing the hosts; cete (session leader), swarm, skulk, covey, and
POod. . e e

Evaluation Algorithm Performance - time to evaluate randomly generated poli-
cies containing fixed number of clauses and configuration consequences.

Reconciliation Algorithm Performance - performance of reconciliation under ran-
domly generated policies containing a fixed number of clauses and configu-
ration CONSEeqUENCES. v v v i it e e e e e e e e e e e e

Local Policy Reconciliation - performance of reconciliation with a fixed number
of satisfiable and unsatisfiable local policies.

Compliance Algorithm Performance - time to test the compliance of a randomly
generated local policy with an instantiation containing a fixed number of
configurations. L

Online Analysis - Algorithm Performance - time to test the compliance of a ran-
domly generated local policy with an instantiation containing a fixed number
of configurations. L

Antigone Throughput - throughput of Antigone under diverse data handling
policies. L

Antigone Latency - latency of Antigone under diverse data handling policies.

ix

140

141

142

144

146

147

148
156

160

163

164

164

165

165

7.9 Source authentication throughput - throughput of Antigone under a set of source
authentication policies. L o
7.10 Source authentication latency - measured latency of Antigone under a set of
source authentication policies.
7.11 Receive Processing - breakdown of Antigone protocol stack operation involved
in the receive of an application message.
7.12 Send Processing - breakdown of Antigone protocol stack operations involved in
the broadcasting of an application message to the group.
7.13 Reliable Broadcast Transfer - average transfer times for files of varying size under
AMirD scenario policies. e

168

168

170

170

21

4.1

4.2

4.3

5.1

5.2

6.1

6.2

7.1

7.2

LIST OF TABLES

SMUG Authentication and Access Control Policy - group members assume roles
as defined by authorizing credentials. Access to group action is governed by
the roles assumed by members.

Policy Algorithm Complexity - asymptotic time complexity of the algorithms
used for policy processing. All algorithms denoted with (*) are used within
the current implementation. oo

Notation - notation used throughout the algorithm analysis presented in Sec-
tion 4.6. . . . L. e

Complexity of PPR - time complexity of each step in the Prioritized Policy
Reconciliation algorithm. o o oo

Basic Antigone Events - events signal a change of state in the group. Mechanisms
are free to define new events as needed.
Basic Antigone Actions - actions under which Antigone authentication and access
control policy is defined. New actions may be introduced by mechanisms and
applications as needed. L. e

Scenario Provisioning Policy Summary - policies appropriate for the environ-
ments described in Section 6.2. Lo
AMirD configuration - parameters stating the policies and configuration of an
AMirD agent.

Cryptographic Algorithm Performance - performance of algorithms used by
Antigone on an unloaded host. The bits field indicates the performance
of the algorithm under the given key (or hash) length. All symmetric algo-
rithms were tested under 1 kilobyte blocks of randomly generated data. All
asymmetric algorithms were tested by encrypting 53-bit blocks (the size of a
512-bit RSA signature).

AMirD Performance - time, in seconds, to synchronize two AMirD filesystems
under the scenario policies.o e

xi

33

87

88

94

107

111

150

157

161

CHAPTER 1
INTRODUCTION

Policy is a temporary creed liable to be changed, but while it

holds good it has got to be pursued with apostolic zeal.
Mahatma Gandhi (1869 - 1948), [Gan22]

Advances in the use of digital technologies to carry out our personal and professional lives
have changed the fundamental nature of communication. Where once sending electronic
mail to your mother was considered an aberration, it has become a matter of course for
many. However, these emerging technologies have a cost; we have sacrificed much of the
privacy and security afforded by traditional forms of communication in exchange for the
ease of online life.

Applications increasingly combat the limitations of existing Internet security and privacy
by providing basic security services. However, the types of security provided are often the
result of decisions made by either software architects or system administrators. As a result,
one must accept the security and trust model embodied by the application.

Group communication, in particular, has suffered from the lack of security. Long used
as a foundation upon which distributed systems are built, groups provide a single commu-
nication context under which participating entities can efficiently share information. The
security requirements of groups are more complex than found in traditional peer commu-
nication; groups embody associations that are larger and more fluid than their pair-wise
counterparts. Therefore, the mismatch between changing user needs and statically defined
security is felt more forcefully and frequently in groups.

Security policies bridge the gap between static implementations and user requirements.
A security policy is a statement of a communication participant’s security desires, abilities,
and requirements. In systems supporting policy expression and enforcement, each com-
munication is subject to the reconciliation of the policies stated by all interested parities.

The way in which communication security is served (i.e., the definition of the guarantees

Broadcaster

Subscriber

Video Data

Live
P.resentation

Headquarters

Subscriber

Customer/
Vendor

Video Data

K s s s
Playback Playback Playback Playback
Device Device Device Device

Salesperson

Figure 1.1: Scenario 1 - A pay-per-view ser- Figure 1.2: Scenario 2 - The headquarters
vice broadcasts a movie to a group of sub- company X broadcasts a series of presenta-

scribing clients. tions.

provided and the means by which they are achieved) is a direct result of the reconciliation
process. Communication can occur where the requirements of all parties can be met through
a single definition. Where not, the parties can choose to revise their policies or abort the
session.

Standard security services for group communication have yet to emerge. This is due in
large part to the security and user communities’ inability to articulate a single model ad-
dressing the needs of many useful environments. However, policy may provide sufficient flex-
ibility to make a secure general-purpose group communication framework feasible [HCMO1].
Thus, through the precise definition and enforcement of policy, each session can implement
a security model appropriate for its needs.

The following scenarios illustrate two distinct environments in which a group application

can be deployed. These environments, a pay-per-view broadcast and a sales-conference,
represent very different kinds of sessions that are built upon the same video-conferencing
application.

The pay-per-view service defined in scenario one and depicted in Figure 1.1 broadcasts
movies to client subscribers. The video-stream is generated from persistent storage and
transmitted at an established schedule. Clients playback received video content on local de-
vices. Several secure group communication frameworks are designed specifically to address
the requirements of this kind of pay-per-view application [BF99, Bri99].

In a pay-per-view environment, the ability to receive video data is predicated solely
on client subscription. The broadcaster restricts access to the content based on evidence
of payment. Clients arriving at a session present payment evidence (e.g., an electronic
receipt), and receive the keying material necessary to view video content. All video content
is directly or indirectly decoded from this keying material.

The pay-per-view session forms a loosely connected group. The server need not have
knowledge of the subscribers viewing content over the course of the session. However, the
server must be able to ensure that only paying subscribers can view video content. For the
purposes of this example, there is no need to protect the group from past or future members;
each client who has paid for the broadcast is free to view any part of the session. However,
the server may wish to reduce the vulnerability of the session content to cryptanalysis by
periodically changing the keys.

Client admission (i.e., payment, key distribution) is performed by a service external to
the video source. Little, if any, interaction occurs between the server and clients. Clients
assume their identity is shielded from other viewers (e.g., anonymity). In meeting this
expectation, it is important that due diligence be exercised in protecting membership in-
formation from the clients and non-participants.

The video content itself must be protected. The broadcaster wishes to prevent eaves-
dropping by enforcing data confidentiality. In contrast, the client desires only the contents
be delivered at a rate that makes viewing acceptable (i.e., playback frame-rate).

Figure 1.2 depicts a second scenario supporting a video sales-conference. A video source
at the headquarters of company X uses the session to broadcast a series of presentations
describing a new product line to its sales-force, suppliers, and customers. At the end of

an initial product line presentation, the customers and vendors are required to leave the

session. Following their departure, the video source convenes a presentation informing the
sales-force of the product line pricing structure.

Initially, the group should consist only of employees, suppliers, and customers. Thus,
each participant must be authenticated prior to being admitted to the group. Similar to
subscription, this requires that participants establish a means by which they can authenti-
cate themselves before joining the session. As the expected participants are likely to have
previously established a relationship with X, it would be efficient to use existing forms of
authentication. Assume that X has issued digital certificates for all of its employees and
passwords to all customers and suppliers. In this case, the admittance service authenti-
cates potential session participants via certificate (e.g., using SSL authentication [Gro00])
or password.

The content and tone of each presentation is a direct result of the participants present.
Hence, the video source requires knowledge of the membership throughout the session.
Failure to provide membership information may lead to the (possibly undetected) disclosure
of important information by X. For these reasons, company X additionally wishes to ensure
that its customers and suppliers are not able to continue receiving content during the
pricing presentation. In this case, the keys used to protect the video stream must be made
unavailable to customers and suppliers at all points following the conclusion of the initial
presentation.

As in the pay-per-view environment, the video feed is required to be confidential. How-
ever, additional protection may be needed. X may wish to prevent malicious or compromised
participants from altering the video stream. This requires that any modification to the data
be detectable (and ultimately discarded), and that the source of a message be accurately
identified.

These scenarios highlight two of many session environments appropriate for groups.
While the sessions use the same conferencing application to distribute video data, the session
requirements dictate very different kinds of security. The description of each scenario defines
a unique trust and threat model. A policy is the embodiment of these models. Architectures
supporting policy construction and subsequent enforcement address the requirements of
these and many other session environments in a flexible and secure way.

As it exists today, new environments require customized software or the acceptance of

existing application security. The acceptance of existing application security can lead to un-

addressed requirements, and ultimately insecure operation. For example, an infrastructure
designed for scenario one does not address all the requirements of scenario two. Similarly,
applications can incur performance penalties where unnecessary security infrastructure is
provided. A policy management infrastructure addresses these mismatches through the
explicit specification and subsequent enforcement of application policies meeting session
requirements.

While recent advances have increased the quality and availability of standard security
services for peer communication (i.e., IPSec [KA98], SSL [Gro00]), similar advances in group
communication have not been forthcoming. Policy-based group communication systems
present us with a unique opportunity: using previous successes and failures as a guide, we
can accelerate the adaptation of group communication as a building block of distributed
systems. The flexible security afforded by policy management allows new approaches to
be constructed and deployed rapidly. These frameworks require that policy specifications,
rather than the applications or infrastructure, be modified to take advantage of new security
services.

The goals of this thesis are summarized in the following statement:

An essential aspect of group security is the definition of infrastructures in which
the abilities and requirements of communication participants can be efficiently

reconciled and enforced.

Hence, this thesis investigates the algorithms, construction, and performance of architec-
tures supporting policy determination and enforcement in secure group communication. The
investigation of policy determination considers the form, meaning, and processes used to
represent and derive group and member security requirements. The investigation of policy
enforcement considers the means by which the requirements are addressed.

Policy management is not a panacea. The fundamental costs associated with systems
supporting policy often take the form of infrastructure complexity and system performance.

Hence, a central goal of this thesis is quantification of the costs of policy management.

1.1 Secure Group Policy

Policy is used to address changing user and environmental needs. Through policy, software

services state and reconcile the (sometimes conflicting) needs of all communication partic-

ipants in real time. Each session occurs within the context of a shared policy defining the
acceptable behavior and requirements of its participants. Thus, rather than relying solely
on the system designers or network administration to define service behavior, the interests
of all parties are considered at the point at which communication occurs. While this the-
sis focuses on the definition and enforcement of policies appropriate for secure groups, the
identified techniques are likely to be applicable to other contexts.

A group is defined as a collection of collaborating entities communicating over a real

or virtual broadcast medium®

. Early work in group communication focused on the study
or reliable communication [KT91, Bir93, RBM96]. Often, groups are organized around
a single session leader? and potentially many group members. The session leader directs
all group behavior by coordinating the addition or ejection of members, the ordering of
messages (where delivery semantics are implemented), and recovery from lost messages or
failed members. Group members are clients acting at the behest of the session leader.
More flexible models have been investigated as group communication has matured. Recent
work has investigated groups containing multiple or backup session leaders [DM96] and
hierarchies of subgroups [Mit97]. In the extreme, an egalitarian (or peer) group consists of
a collection of equal partners [SSDW98].

The advent of the Internet heightened concerns over the lack of security available to
groups. The first protocols implementing secure groups applied well-understood techniques
previously used in peer communication. This led to useful, but limited, security [HM97b,
HM97a, Bal96, Gon96]. Other works focused on the development of techniques for secure
reliable group communication [Rei%4], or on techniques addressing security requirements
unique to multiparty communication [PSTC00, WGL98].

In this thesis, a group security policy is defined as the statement of the entirety of
security-relevant parameters and facilities used to implement the group. This best fits
the viewpoint of policy as defining how security directs group behavior, which entities are
allowed to participate, and what mechanisms will be used to achieve mission-critical goals.

Note that this definition is not restricted to electronically distributed statements; facets of

'Typically, group broadcast is implemented by a transport layer protocol such as IP multicast [Dee89)].
However, where unavailable, groups can be implemented over a logical broadcast channel built on point-to-
point protocols [Fra99, BCG*00, CRZ00, JGJ*00, CMB00].

2No single name has been accepted for the group authority. Largely defined by their responsibilities
within a given system, other labels include; controller, arbiter, and sequencer. Throughout, this entity will
be referred to as the session leader.

policy are often implicitly stated through the design and configuration of software.

This definition differs from previous work in security policy. Authentication [TJM 199,
RNO00] and trust management systems [BFL96, BFIK99b, CFL 98] view security policies as
statements of acceptable authentications and access control. Policy is specified and evalu-
ated within a well-defined and often rigorously evaluated framework. However, provisioning
and enforcement is largely outside the scope of these systems. Conversely, in policy based
networking [SWM™99], a policy defines generalized rules for the configuration of network
resources. Used for network management, these systems define how hardware and soft-
ware present in a network are configured, and in the presence of changing environments,
reconfigured.

Recent work in secure group communication embraces a more flexible definition of group
policy. Policies in contemporary secure group communication systems [HM97b, HM97a,
DBH"00, MPH99] are chiefly designed to dictate the provisioning of security mechanisms
(e.g., parameters and algorithms for session keying). Although these systems provide in-
creased flexibly in defining group behavior, they often dictate the trust embodied by the
group. Moreover, it is not immediately clear that the enforcement infrastructure adequately
addresses all session security requirements.

The approaches described in this thesis are evaluated through the construction and eval-
uation of the Antigone group communication framework. The core components of Antigone
include the Ismene Policy Determination Engine and Antigone Policy Enforcement Archi-
tecture. Ismene defines the representation and processes used to derive security policy.
The Antigone enforcement architecture implements a secure group communication service
meeting the requirements stated in the derived policies.

Group policies in Antigone are created by policy issuers. The policy issuer is the logical
owner of the group and is trusted to faithfully identify session requirements. Once spec-
ified, the policy is stored in a well-known and available policy repository. The repository
commonly treats policies as opaque data. For example, LDAP [YHK95] may be used for
this purpose.

A policy can be stated abstractly or conditionally. An abstract policy states some
conceptual aspect of security that is to be achieved or implemented. For example, while
a confidentiality policy is abstract, a DES encryption policy is not. A conditional policy

indicates, based on the operating environment, which policies should be enforced. An exam-

Policy Issuer A/IEI (Member (Ml))
l Initiator (M) | —» : (Member M))
2

— / (Member (Mg))

Key :

Group Polic P L S

Va — p Policy E(Member (Mn)):

| Instantiated : :

Policy : +

Policy [Local Policy 1 :
Repository /i

Figure 1.3: Antigone Session Policy - A session defining group policy is created by a policy
issuer and stored in the policy repository. The initiator reconciles the local policies of the
expected participants prior to session initialization. The resulting policy instantiation is
transmitted to group members prior to their acceptance into the group.

ple conditional authentication policy states that employees of company X may participate
during normal working hours, but not at other times.

A policy may be discretionary. Statements of discretionary policy allow the initiator
some flexibility in defining the group. An example discretionary policy states that either
Triple-DES [Nat99] or DESX [KR96] be used for confidentiality. The semantics of such a
statement indicate that one of the two algorithms must be used, but not both or neither.

Each participant states its set of local requirements on a future session through a local
policy. These policies explicitly enumerate the conditions upon which the member’s partic-
ipation is predicated. Similar to group policies, these statements may express provisioning,
authentication, and access control requirements.

Figure 1.3 describes the use of policy over the course of one session of an Antigone
group M. M is a centralized group containing a session leader My and a set of members
M; (where 1 < 4 < n and n is the number of members of group). Note that depending
on the user and system needs, other attributions of trust and group organization will be
appropriate. Antigone is not restricted to groups of the type defined in this example;

peer, hierarchy, or multiple session leader groups can be constructed from a collection of

appropriate mechanisms.

Based on a session announcement or invitation, My begins session initialization by re-
trieving the group policy and the local policies of the expected participants. The group
and local policies are reconciled to arrive at a policy instantiation. A policy instantiation
contains unambiguous configuration directives and statements of authentication and access
control.

M, initializes the session as directed by the instantiation. At some later point, a group
member M; attempts to join the group. However, before joining, M; must first acquire
the policy instantiation. This leads to a problem; if the policy must be protected (e.g.,
confidential), how does M; perform authentication before knowing the means by which
authentication is required to be performed? In this case, it is necessary to establish a
secure channel between My and M; prior to the knowledge of the policy [HCMO01]|. This
issue is addressed through the establishment of a publicly available authentication policy
(see Chapter 5). M; obtains the instantiation following the authentication process.

Note that it may not be possible to derive an instantiation that meets the requirements
of all members. Therefore, M, tests the compliance of the received instantiation with its
local policy via a compliance algorithm. A compliant instantiation is consistent with all
statements in the local policy. Failure of the instantiation to comply with the local policy
can result in the modification of the local policy or the abstention of the participant from
the session.

The enforcement of policy occurs in two phases. Initially the provisioning policy defines
the mechanisms and configuration used to implement the group. The mechanisms and con-
figurations used to support group communication are explicitly stated in the instantiation.
The statements are used by M; to initialize all local interfaces and software. The second
phase of policy enforcement occurs over the course of the session. The fine-grained authen-
tication and access control policies defined in the instantiation restrict access to specific
group actions. Based on supporting credentials and contextual information, these policies
are used to assess an entity’s right to perform actions within the group.

Any number of events occur over the course of a session. Those represented by messages
require each receiver to evaluate sender authentication. For example, consider the member
M receiving a rekey message. M1 must determine that some authority authorized to modify

the session sent the message. The member maps the credentials and conditions associated

10

with the rekey message onto a set of rights. If the right to assert a new session key is

granted, then the new session key is accepted.

1.2 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 develops a definition of
secure group policy and presents a taxonomy of group security requirements. Chapter 3
considers the technologies supporting security policy and group communication. Chapter 4
defines Ismene and analytically evaluates the algorithms used for determination. Chapter 5
describes the design and use of the Antigone policy enforcement architecture. Chapter 6
considers the expressiveness of [smene via an investigation of the security requirements of
the AMirD content distribution service in diverse environments. Chapter 7 evaluates of the
costs of policy determination and enforcement within Antigone. Chapter 8 recapitulates
the goals of this thesis and identifies avenues for future work.

This thesis investigates architectures and algorithms used for policy determination and

enforcement in secure group communication. The main contributions are:

Identification of the policy space relevant to secure groups:

This thesis presents a map of group security policies derived from an evaluation
of group frameworks, applications and environments. Group security require-
ments can be categorized into policies defining provisioning, authentication, and
access control. Provisioning policies define how the group addresses session needs
by the appropriate configuration of security mechanisms. An authentication pol-
icy states the identities allowed to participate in the group. This policy not only
identifies the parties that may participate, but also the conditions under which
they may participate. An access control policy defines in the capacity by which
authorized parties can participate. This largely defines the trust embodied by
the group by mapping authorized participants or credentials to a set of relevant
actions. A comprehensive survey of techniques used to define and enforce these

policies is presented in Chapter 3.

A language and algorithms for multiparty policy determination

11

Policy determination in multiparty communication is more complicated than
those found in peer environments. This is due in large part to the number of
entities involved, the complexity of services used, and the multitude of entity
relationships that must be supported. Converging on singular definitions that
meet the requirements of all interested parties is non-trivial. The Ismene lan-
guage and associated algorithms allow conditional and flexible statements to be
used to derive a universally accepted policy. Moreover, unlike many previous
policy approaches, policy encompasses the totality of the security context. The
tractable nature of all algorithms used in the critical path of session creation
and maintenance is determined via formal analysis. Confidence in the efficiency

of these algorithms is further established experimentally.

The use of policy to define flexible group services

The means by which enforcement is performed ultimately determines the ef-
fectiveness of any policy approach. The Antigone framework presented in this
thesis provides flexible interfaces for the enforcement of group security policy.
Antigone constructs group services from software mechanisms that implement
the basic services required by groups. The composition and configuration of
mechanisms is directed at run-time by policy. Policy is enforced through the
response to relevant events observed by the composed mechanisms. The design
and limitations of event and component-based systems construction is evaluated,

and policy implementing abstractions described.

The investigation of the requirements and costs of policy determination and enforcement

While many mechanisms designed to address specific security requirements in
groups have recently emerged, little is known about their requirements and
performance in integrated application environments. This thesis considers the
policy requirements of group systems in several diverse environments through
the systematic definition and implementation of the AMirD content distribution
services. A number of policy alternatives are considered and trade-offs identified.

A further exploration assesses the cost of enforcement. Experiments evaluating

12

the throughput and latency characteristics of Antigone have shown that policy

is not in conflict with groups requiring high-performance networking.

CHAPTER 2
SECURE GROUP POLICY

The promise of policy is its ability to conform to changing environmental and user require-
ments. However, existing group security policy is limited in scope and flexibility; much
of the group security is defined a priori in its implementation. This chapter considers the
design space of group security policy. The processes used to develop and ultimately enforce
policy are explored. A subset of the policy dimensions relevant to secure group communi-
cation is considered. The structure and operation of the Ismene Policy Language used by
Antigone (see Chapter 4) is based on the results in this chapter.

The remainder of this chapter is organized as follows. The next section defines a group
security policy through the decomposition of its expository requirements. Section 2.2 iden-
tifies the entities, algorithms, and life-cycle of a group security policy. Section 2.3 considers
the general requirements of policy determination and enforcement. Section 2.4 presents a
subset of the group policy design space derived from an investigation of contemporary ap-
plications, frameworks, and environments. Section 2.5 summarizes the chapter and revisits

the goals of this thesis.

2.1 Secure Group Policy Definition

Security policy has been used in many contexts to define the means by which desired se-
curity properties are guaranteed. Often implicit, a definition of policy is derived from
the goals of the system being designed. For example, trust management systems [BFL96,
BFIK99b, CFL™98] are designed to evaluate authentication and access control using poli-
cies defining trust and delegation. Conversely, in the Route Policy Specification Language
(RPSL) [ABG™98], policy is defined (in part) as sets of packet filtering rules.

Often, policy is defined as the statement of the entirety of security relevant parameters

of a group. More specifically, this thesis adopts the policy definition found in the GSAKMP

13

14

specification, where:

(a policy defines) ... the group security relevant behaviors, access control pa-

rameters, and security mechanisms. [HCH™00]

This definition best fits the viewpoint of policy as defining how security defines group
behavior, which entities allowed to participate, and what mechanisms will be used to achieve
mission critical goals.

In meeting this definition, any policy specification must explicitly define the following
aspects of group security [MHCT00]. Note that these aspects may be stated using simple

or implicit rules, but no aspect may be left unspecified.

1. Identification - The group must have some means by which it can be unambiguously
identified. Failure to correctly identify the group policies, messages, and participants

can lead to incorrect and insecure operation.

2. Authentication - A group policy must be able to identify the entities allowed to
perform action. Thus, each operation within the group must be performed in the
presence of some identifying context (e.g., credentials). An authentication policy

states the required context.

3. Access Control - A mapping of contextual information to allowable action must
be specified. An access control policy defines this mapping. For example, a simple
access control policy states that any application level message encrypted under the
session key should be accepted. This policy could be extended to accept only rekeying

messages signed with session leader private key.

4. Mechanisms - Each policy must identify the security services and parameters used to
implement the group. The configuration of these services determines the performance
and robustness of the resulting solution, and greatly influences the quality of the
security provided to the group. Each service can have further parameters and policies
unique to its implementation. An example mechanism policy identifies the algorithms
and protocols used to derive session keys (e.g., a key management mechanism; see

Chapter 5).

15

5. Verification - Each policy must present evidence of its validity. The means by which
the origin, integrity, and freshness of the policy is asserted (e.g., via digital signatures)

must be known prior to its acquisition.

Policy is stated at varying levels of abstraction. Explicit policy systems define all aspects
of the group in concrete terms (e.g., GKMP data structure [HM97b, HM97a]). Conversely,
abstract policy systems provide interfaces for the formulation of abstract policies (e.g., as
found in the Policy Working Group framework [SWM™99]). An abstract policy makes a
statement defining a requirement of group operation, but does not specify how that require-
ment is to be achieved. For example, a policy can state that a strong confidentiality service
be used for the transmission of application messages. How the group achieves strong con-
fidentiality is subject to the interpretation by the policy infrastructure. Often, statements

in the policy itself direct the mapping of abstract policies to concrete configuration.

2.1.1 Local Policy

A local policy defines the capabilities and requirements of each potential group member.
This policy identifies, at a minimum, the services and credentials available to the local
member. The member assesses of whether they will be able to participate in the group using
local policy. A member incapable of implementing the group policy cannot participate in
the group.

A local policy also states the local requirements that must be met by the group. These
requirements can be viewed as a set of minimal standards placed on the group by the mem-
ber. Participants determine- whether the group policy meets these requirements through
a compliance test. The means by which the compliance test is performed is a direct result
of the policy representation and semantic. Participants encountering a group policy that
does not comply with the local policy can either refrain from participation, revise their local

policy, or attempt to effect a change in the group policy through negotiation.

2.1.2 Policy Instantiation

Group and local policies need not be dictatorial; each may state the conditions under which
a set of requirements are relevant or specify a range of acceptable behaviors. However,

enforcement requires that a group operate under an unambiguous specification. Hence,

16

Figure 2.1: Policy Life-cycle - issuers specify policy during creation. The policy is subse-
quently interpreted towards an unambiguous instantiation identifying the group provision-
ing, authentication, and access control enforced by the group.

group participants must agree on a uniform policy (see policy requirements in Section 2.3).
The means by which agreement is achieved is central to the design of any policy management
infrastructure.

A policy instantiation is a fully specified group policy in which all configurations and
statements of authentication and access control are explicit. The instantiation is the result of
the interpretation of a group policy with respect to the evaluation of run-time conditions,
local policies, and where supported, negotiation (i.e., reconciliation, see below). Policy
instantiations can evolve as group requirements change. Evolution can occur in response
to changes of membership, environmental conditions, or content sensitivity. The policy

instantiation itself must specify the conditions under which evolution occurs.

2.2 The Life-cycle of a Group Policy

Group behavior is defined by interdependent and ongoing processes of policy determina-
tion and enforcement. Policy determination is the process used to derive session defining-
specifications (i.e., policy instantiations). Group participants implement the semantic of
established policies through policy enforcement.

Figure 2.1 and the following text present a view of the process used to construct and
enforce a group policy; the ordering illustrates one possible policy life-cycle. Depending

on environmental and security requirements, other orderings are possible and appropri-

17

ate. Where less flexibility is required, some processes can be omitted entirely (with the
obvious exception of policy creation and enforcement). These abstract policy processes

are [MHC™00):

Creation - One or more informed authorities specify the group policy during creation.
Policies can be abstract or specific to an implementation. A specific policy could
state that all group messages be encrypted using the 3DES-CBC [Nat99] algorithm.
Conversely, the (abstract) strong confidentiality policy could be mapped to the 3DES-
CBC algorithm. While both policies could result in the same behavior, an abstract
policy allows the group to select an alternative enforcement mechanism when 3DES-

CBC is unavailable or inappropriate.

Evaluation - When a session is to be created, the group policy is retrieved and
evaluated. Evaluation arrives at the set of acceptable configurations and statements
of authentication and access control rules that can be used to implement the group.
However, this may not represent a fully instantiated policy; rules may state ranges of

acceptable behaviors.

Reconciliation - Further resolution of policy is necessary when evaluation does not
result in a fully-specified policy instantiation (as is the case where ranges of acceptable
behaviors exist). Reconciliation resolves these statements via consultation with local
polices or through negotiation. Reconciliation attempts to find an instantiation that
is consistent with the evaluated group policy and all local policies. However, it is
not always possible to find an instantiation meeting the requirements of all policies.
Therefore, the reconciliation process must implement a resolution discipline. The
chosen discipline will directly determine which members can participate. Chapter 4

considers several reconciliation resolution disciplines.

Negotiation attempts to reach an acceptable instantiation via explicit participant co-
ordination. For example, a negotiation protocol allows the group members to propose
(and possibly counter-propose) new policies meeting group and local requirements.
Once agreement of group policy has been reached, the session may proceed. If no
agreement can be reached, those members with unaddressed requirements must choose
to accept the group policy or refrain from participation. This thesis does not address

policy negotiation protocols [DBH™00].

18

Compliance - Each member should test the compliance of a received instantiation
with respect to its local policy. If the instantiation is not compliant, the member may
request policy evolution, revise its local policy, or abstain from participation in the
group. Note that compliance is an ongoing process; new instantiations resulting from

policy evolution may fail to meet local policy requirements.

Enforcement - Enforcement occurs at each group member. This includes monitoring
for relevant events and executing existing policies. For example, as directed by a
rekeying policy, a group may distribute a new session key following each group member
departure. Other policies, such as the 3DES-CBC policy described above, require only

that mechanisms be correctly configured at the beginning of the session.

Evolution - Policy evolution occurs when some event requires modification of an
existing policy. For example, the arrival of a member that lacks the ability to im-
plement an existing policy may result in policy evolution. This process can lead to

further evaluation, reconciliation, and compliance testing.

2.3 Requirements of Policy Management

The direct application of policy approaches used in two-party communication is unlikely to
meet the needs of groups. This is due in large part to fundamental differences between peer
and group policies; group policy conveys information about an association greater and more
abstract than its pair-wise counterpart. The following text identifies and illustrates universal

principles resulting from an analysis of group and peer communication policies [HCMO01].

Principle 1: Enforcement of group policy must be consistent across a group

While it may evolve over the course of a session, the group requires a singular policy
definition. Failure of members to operate under the same security context can lead to
vulnerable or incompatible solutions. Similarly, policy frequently requires trust among the

group members'. Each member trusts that all participants have been admitted, and that

!Several works have investigated support for groups whose members do not trust each other [Rei94].
However, the performance of the resulting solutions has been poor. The current mechanisms of Antigone
implement only groups in which the members are largely trusted not to expose group information (e.g.,
session keys, policy, etc.). Other mechanisms designed to address other threats can be integrated into the
framework.

19

Controller

Subgroup b O

|
|
Subgroupa |
) |
l

F
|
_____ =

Figure 2.2: Mechanism equivalence - Policies implemented by members of Subgroup ¢ must
be equivalent to those implemented by Subgroup b. Failure to implement equivalent policies
may result in undetected vulnerabilities.

they enforce the policy specification correctly. If a consistent view of policy cannot be
established, members have no way to infer this trust.

Two facets of policy consistency are mechanism equivalence and synchronization. Two
mechanisms are equivalent if a) they implement the same service (e.g., data confidential-
ity), and b) the security of the mechanisms is not qualitatively different. For example,
Figure 2.2 describes a group implementing a confidentiality policy. Subgroup « (in the fig-
ure) implements confidentiality using a strong data encryption algorithm. Furthermore, a
cryptographic gateway gw co-exists in both Subgroup ¢ and a second Subgroup b. Subgroup
b contains mobile devices with limited computing resources. gw translates all communica-
tion between the strong algorithm implemented by a to a weaker algorithm implemented
by the mobile devices in b.

Clearly, an adversary attempting to uncover group content will mount an attack against
data transmitted under the weaker algorithm. Thus, for this group, the confidentiality
is only as strong as provided by the weaker algorithm. Because the algorithms are not
equivalent, the security of the group as a whole is weakened. Worse, members of Subgroup
a may be unaware of the use of the weak algorithm.

Session keying in two party communication is well understood [AN96]. Peer end-points

20

exchange a new key via an agreement protocol. Because both participants assert acceptance,
subsequent use of the key is unambiguous. The issues, design, and vulnerabilities of two
party key exchanges have been thoroughly researched and are well understood [LABW92].

Session rekeying in group communication is inherently more difficult. As defined by the
group threat model, rekeying is triggered by security relevant events. Rekeying is often
initiated, for example, when a session key lifetime is reached, following member arrival and
departure, and to complete recovery from the compromise of a group member [MHDPO0O0].
However, knowledge of these events is not often universally available.

Rekeying of the group is required to be synchronized. An arbitrary number of end-
points must reach agreement not only on the new secret key, but synchronize its subsequent
use. For example, consider a group that has recently distributed a new session key. A
member receiving a message encrypted under an old session key is faced with a dilemma,;
in the absence of synchronized delivery, the message may represent a) delayed delivery of
a correct message encrypted under the old session key, or b) a message generated by an
adversary who has gained access to a deprecated key.

Synchronization requires all received policies be fresh, authentic, and unmodified. The
means by which policy freshness is assessed must conform to some a priori meta-policy. For
example, group members could verify that a policy revision number increases monotoni-
cally. The group member would never accept a policy update with an unexpected revision
number. Group members must be able to verify that the policy has not been modified dur-
ing dissemination (e.g., integrity of received policies is preserved). This requires that each
member be able to verify that a policy originated from an authoritative source. Of course,
any policy must contain some evidence of its authenticity (i.e., policy verification). For ex-
ample, a keyed message authentication code (HMAC) [KBC97] or digital signature [DHT76]
can be used to assert the authenticity of a policy.

Rekeying, and the synchronization of policy in general, are instances of distributed con-
sensus. Agreement on the new session key or policy is reached through group communication
protocols. However, in the general case, distributed consensus algorithms are complex and
expensive [FLP85, Mul93]. Many existing group systems attempt to avoid these costs by
relaxing synchronization requirements.

One way to relax key synchronization requirements is to allow several session keys to

be simultaneously valid. For example, suspending transmission of data during rekeying in

21

a video-conference is highly undesirable [AAC*99]. So, a group may elect to continue to
use (accept packets encrypted under an old session key) previous keys until consensus on
the new key has been reached, if ever. Attacks that delay the consensus process can be
mitigated by limiting the time a session key is used (and by direct corollary the minimal
freshness of received messages). This approach and other relaxations to the general case of
this key transition problem are considered in [MPH99].

Policy is also required to be synchronized. The policy a group member enforces must be
identical at all members of the group. If not, then members may diverge from the session

specification arbitrarily, introducing any number of vulnerabilities.

Principle 2: Only authorized entities can affect the group security context

Groups require an authorization model that is more complex than those commonly found
in two-party communication policy (see Section 2.4.5). This fact is a direct reflection of the
many actions that can alter the group security context. Because each of these actions can
affect the security of all group members, they must be associated with the set of entities that
are authorized to perform them. For example, a group allowing an adversary to perform

security-relevant actions would be, among others, vulnerable in:

e Policy creation - The unauthorized entity can modify policy in arbitrary ways. Thus,

the group may be manipulated into operating in an insecure way.

e Key dissemination - An unauthorized group controller can distribute bad, compro-

mised, or old keying material.

e Initiate rekey - An unauthorized entity can perform a denial of service attack by
forcing the group to rekey continually. The group would expend considerable resources

performing key management functions.

e Group destruction - If an unauthorized group destruction command is accepted, the
group will disband prematurely. Clearly, this represents a grave denial of service

vulnerability.

Groups commonly designate one or more entities to act as authorities within the group.
To illustrate, an entity wishing to join the group communicates with an entity authorized

to admit members. A member is allowed into the group only after the admittance authority

22

verifies that the member possesses the appropriate credentials. However, unless otherwise
specified by policy, the admitted member should not have the authority to admit other
members. The group resulting from the admittance of the member represents a new security

context; a new group member is trusted with the group key.

Principle 3: Group content must be protected

Data security mechanisms provide the means by which content confidentiality, authenticity,
and integrity can be protected. These mechanisms implement protection by transforming
content using cryptographic algorithms and session keys. Thus, the security of a group is
predicated on the security of the processes restricting access to session keys.

As stated indirectly by principle 2, access to session keys must be restricted to entities
with authority to receive them (i.e., through an authentication and access control policy).
For example, consider a group policy stating that a member must prove possession of
company X credentials (in the form of a public key certificate) before being admitted to the
group. Thus, the associated authentication and access control policy directly or indirectly
states: the entity must possess the private key of a certificate, the certificate must state
that the organization of the entity is the desired company, and the certificate must be issued
from the company’s certificate authority.

An admittance authority enforces the access control policy (on a signed join request
containing the certificate) by verifying the certificate organization and issuer fields, validat-
ing the signature, and checking that the certificate has not been revoked (e.g., through an
appropriate certificate revocation service [Ken93, Koc98, NN98, MJ00]). If this process is
successful, the member receives and subsequently uses the session key to communicate with
the group.

Because the group policy is enforced correctly, and the underlying cryptographic algo-
rithms are secure?, group content protection is ensured. However, if any of these authen-
tication, access control, or data security policies is incorrectly enforced, then the security
of the group as a whole may be lost. This demonstrates the fragility of security; incorrect

implementation of any one function can invalidate guarantees provided by others.

2There is significant debate on the correct design of secure group data transforms. For the purposes of
this discussion, we assume that all mechanisms are fundamentally secure; the cryptographic algorithms and
data transforms are sound.

23

Principle 4: Groups must be able to recover from security-relevant failures

It is necessary for groups to recover to a secure operating state when a subset of its member-
ship is found to be untrustworthy. Thus, a policy must state the way in which compromise
is detected and, if available, the mechanisms used for recovery. There are myriad ways
that a group may recover from member compromise. Early systems disbanded immediately
following compromise [HM97b, HM97a]. More recent, group systems employ sophisticated
rekeying approaches to recover from member compromise [WHA98, WGL98, MPH99]. In
these systems, compromised members are ejected by way of their exclusion from the subse-
quent rekey process.

A group may also require recovery from member failures. The effect of network parti-
tions [DM96], process crashes [MP00], and other failures on the group security context is
an open area of research. Mechanisms used for failure detection and recovery have unique
security requirements. For example, the heartbeat-based chained failure detection mech-
anism requires heartbeats be authentic [MP00]. Otherwise, in the absence of authentic
failure detection, an adversary may be able to mask the failure of group members through

forged heartbeats.

2.4 Policy Design Space

A group policy defines the ways in which a session’s security requirements and performance
constraints are addressed by member applications. This section outlines policies commonly
implemented by secure group communication systems. While not exhaustive, the enumera-
tion of policies is representative of the services available in contemporary group frameworks
and applications.

A mechanism policy defines the services used to achieve the group’s mission-critical
goals. These policies state what and how information is to be shared and the means by
which these goals implemented. This section points out some of the important dimensions
along which mechanism policies vary. Mechanism policy can be decomposed into: session
rekeying policies, data security policies, membership policies, and process failure policies. A
session rekeying policy defines how and under what circumstances group security contexts
(e.g., session keys) are refreshed. A data security policy defines the security guarantees pro-

vided to application messages. Membership policies dictate the availability and guarantees

24

associated with the distribution of membership information. A failure policy defines the
type of failures handled by the system.

An authentication and access control policy defines not only the entities that can par-
ticipate in a group, but also the actions they may perform. Moreover, this policy states the
prerequisites for participation; members can perform actions only after providing the ap-
propriate credentials, and/or when a set of environmental conditions are met. Section 2.4.5
discusses the model and requirements of policies defining authentication and access control.

The following sections consider these dimensions in further detail.

2.4.1 Session Rekeying Policy

A popular approach used to implement secure groups among trusted members is the dis-
tribution and subsequent maintenance of shared session keys. An important issue in the
use of these keys is determining when a session must be rekeyed, i.e., the old session key is
discarded and a new session key established. The session rekeying policy states the desired
properties of the rekeying process. These properties indicate the lifetime and acceptable
exposure of the session keys to past and future members of the group, and represent threats

from which the group is required to be resistant. Four important rekeying properties are:

e session key independence - Knowledge of a session key does not provide any meaningful

information about past or future session keys.

e membership forward secrecy - A member joining the group cannot obtain meaningful
information about past group communication. This requires that knowledge of a
session key does not give any meaningful information about past session keys (called
perfect forward secrecy, PFS?), and session keys are replaced after each member joins

the group.

e membership backward secrecy - A member leaving the group cannot obtain meaningful
information about future group communication. This requires that knowledge of a
session key does not provide any meaningful information about future session keys
(called perfect backward secrecy, PBS), and that the session be rekeyed when any

member leaves, fails or is ejected from the group.

3There are conflicting definitions of perfect forward (and backward) secrecy within the security literature.
This thesis accepts Canetti et al.’s definition, where PFS (PBS) is defined as the property that compromise
of a session key does not provide any meaningful information about past (future) content [CGIT99].

25

e limited lifetime - This property states that a session key has a maximum lifetime
measured in time, bytes transmitted, or other globally measurable metric. Thus,
a session key with a limited lifetime is required to be discarded (and the session
rekeyed) when its lifetime is reached. Limited lifetime rekeying is typically used to
combat cryptanalysis (i.e., limiting the amount of content transmitted under a session

key reduces the amount of data available for cryptanalysis).

Session key independence is a prerequisite for both membership forward and backward
secrecy. If the process through which a key is derived is not independent of other session
keys, then a member may surreptitiously obtain past and future session keys.

Rekeying properties may be combined to define the desired group security. For ex-
ample, a group may wish to enforce a policy with both membership forward secrecy and
limited lifetime. Thus, current group content would be protected from future members,
and each session key would have some maximum lifetime. The combination of these two
properties identifies a particular threat model for the group (where the group is resilient
to past members and the exposure of session keys to cryptanalysis is limited by the session
key lifetime). Thus, as user environments evolve, their associated threat models may be
addressed through composition of basic rekeying properties.

Session rekeying and group membership are clearly related. Applications often need
protection from members not in the current view*. Therefore, as determined by the group
threat model, changes in membership require the session to be rekeyed. If rekeying is not
performed after each change in membership, the view does reflect a secure group, but indi-
cates only the set of members that are actively participating in the session. Past members
may retain the session key and send and receive the group content. Future members may
record and later decrypt current and past content. Thus, applications that need protection
from past or future members require rekeying after each relevant membership event.

A group security policy is sensitive to an event if the group changes the security context
in response to the observation of the event. Typically, the security context is changed by
distributing a new session key (rekeying). A group security policy is often sensitive to group

membership events. Group membership events include:

“A group wview is the set of identities associated with members of the group during a period where no
changes in membership occur. When the membership changes (i.e., a member joins, leaves, fails, or is
ejected), a new view is created. This is a similar concept to Birmans’s group view [Bir93].

26

JOIN - triggered when a member is accepted into the group
LEAVE - triggered when a member leaves the group.
FAILURE - triggered when it is determined (or assumed) that a member has failed

EJECT - triggered when a previously admitted member is purged from the group.

With respect to a session key, policy sensitivity directly defines the group threat model.
For example, consider a group model that is sensitive only to EJECT events. Assuming
rekeying provides independence, because the session is always rekeyed after an ejection, no
ejected member can access current session keys. However, the session is not protected from
members that have left voluntarily, are assumed to have failed, or join in the future. This
policy defines the ejection secrecy rekeying property.

Sensitivity mechanisms can be used to build a large number of session rekeying policies.
The following text defines and illustrates four rekeying policies representative of those found

in existing systems.

Time-sensitive Rekeying Policy

Groups implementing a time-sensitive policy periodically rekey based on a maximum session
key lifetime measured by wall-clock time. Thus, the group limits the exposure of the
session to cryptanalysis by using the key only for a limited period. Other kinds of limited
lifetime rekeying operate essentially in the same way, save the means by which the lifetime is
calculated. For example, a system supporting limited lifetimes based on bytes transmitted
rekeys when a threshold of data has been transmitted under a particular session key. The
GKMP [HM97b, HM97a] protocol implements a time-sensitive rekeying policy.

By periodically rekeying, the group is partially protected from an adversary who wishes
to block the delivery of new session keys. An adversary who blocks rekeying messages
may intend the group continue to use an old session key. If a new key is not successfully
established after the current session key expires, members can suspend operation until a
fresh key is obtained. The majority of existing secure group communication systems provide
some form of limited lifetime rekeying.

The MARKS group key management system [Bri99] illustrates the use of time-sensitive

rekeying. In this service, paying members receive session keys valid for a predetermined

27

subscription interval. Because knowledge of a session key is predicated only on member
subscriptions, there is no need to support sensitivity to membership events. Members may
join or leave the group without loss of security; they have the right to all content for which
they have paid.

Typically, systems implementing limited lifetime rekeying (only) use Key Encrypting
Keys (KEK) [HM97b] to reduce the costs of rekeying. KEKs do not provide session key
independence. Because the KEK provides access to all session keys and content, the group
is not protected from past or future members. Note that systems that use KEKs cannot
forcibly eject members without additional infrastructure.

Another promising approach is to use KEKs only where no relevant membership events
have occurred since the last rekey. In this way, a group is able to achieve the performance
of KEKs when no loss of security results, and the strength afforded by other rekeying
approaches elsewhere. Key hierarchies [WHA98, WGL98] use a similar approach to reduce
the costs associated with group rekeying (where the root of the key hierarchy acts as a

KEK).

Leave-Sensitive Rekeying Policy

Groups implementing a leave-sensitive policy rekey after LEAVE, FATLURE, and EJECT events.
Leave-sensitive groups are resistant to the malicious past members (i.e., any member who
has left the group does not have access to current or future content). For example, a business
conferencing system that supports negotiations between a company’s representatives and a
supplier may benefit from leave-sensitive rekeying. Once the supplier leaves, a leave-sensitive
rekey policy would prevent subsequent discussions from being available to the supplier, even
if the supplier is able to intercept all the messages. The Iolus [Mit97] implements a form of
leave-sensitive rekeying.

Groups that implement leave-sensitive policies must consider liveness requirements. Un-
less each group member periodically asserts its presence in the group, process failures cannot
be detected. Hence, the group members may incorrectly believe they are communicating
with failed member. The cost of these assertions may be high in large or highly dynamic

groups.

28

Join-sensitive Rekeying Policy

Groups implementing a join-sensitive policy rekey only after JOIN events. Join-sensitive
groups are resistant to the malicious future members (i.e., any member joining the group
is unable to access past content). In large or highly dynamic groups, the cost of rekeying
after each join can be prohibitive. For example, the number of receivers in a network ra-
dio broadcast is often large and little control over member arrival and departure can be
asserted. However, the threat models associated with join sensitivity are not commonly
found in applications such as broadcasting. Several techniques are commonly used to mit-
igate the costs of implementing join sensitivity (e.g., batched joins, minimum session key
lifetimes [SKJHO0]). In practice, a join-sensitive rekeying policy is likely to be used in

conjunction with a time-sensitive or leave-sensitive policy.

Membership-sensitive Rekeying Policy

Groups implementing a membership-sensitive policy rekey after every membership event.
Membership-sensitive groups are resistant to the malicious past and future members (i.e.,
joining members will not have access to past content, and that past members will not have
access to current or future content). Thus, this policy is the combination of leave-sensitive
and join-sensitive rekeying. Membership-sensitive policies achieve both membership back-
ward and forward secrecy. Because each membership event triggers rekeying, the group view
defines exactly those members who have access to current content. Membership-sensitive
policies are often among the most expensive to implement. Thus, these policies are typically
avoided unless strictly needed by an application. The RAMPART [Rei94] system provides

a type of membership-sensitive service.

Other Rekeying Policies

Application events can influence rekeying. For example, in a business conferencing applica-
tion, a policy may state that rekeying occur only when a member with the role Supplier
leaves. In providing policies that integrate application semantics with rekeying, the group
can achieve exactly the desired behavior at a minimal cost. Similarly, it may be important
for the group to be more sensitive at certain times, but less at others. Similarly, groups
may wish sensitivity to be a function of group size or resource availability. In this way, a

group can adapt to the capabilities of the available infrastructure.

29

2.4.2 Data Security Policy

A data security policy states the security guarantees applied to application messages. The
most common types of data security are: integrity, confidentiality, group authenticity, and
sender authenticity [CGIT99]. These policies are essential for protecting application content,
and define in large part the quality of security afforded by the group.

Integrity guarantees that any modification of a message is detectable by receivers. Stan-
dard reliable communication mechanisms (point to point TCP [J81], reliable group com-
munication [FJL'97]) do not provide any integrity guarantees. Adversaries can trivially
alter sequence numbers, checksums, and other components of these protocols to manipulate
message content. The use of keyed message authentication codes (HMAC) [KBC97] is an
inexpensive way to achieve message integrity.

Confidentiality guarantees that no member outside the group may gain access to session
content. Although typically implemented through encryption under the session key, other
techniques may be used to limit content exposure. For example, confidentiality may be
achieved via steganography, or via encryption of only critical portions of messages.

Group authenticity guarantees that a received message was transmitted by some member
of the group, and is typically a byproduct of other data security policies. In many cases,
proof of knowledge of the session key (as achieved through most confidentiality and integrity
guarantees) is sufficient to establish group authenticity.

Sender authenticity (also known as source authentication) guarantees that the sender
of a message can be uniquely identified. Achieving sender authenticity is expensive using
known techniques (e.g., off-line signatures [EGM96] and stream signatures [GR97]). Thus,
for high throughput groups, sender authenticity is often avoided.

One may consider a number of other useful data security policies. For example, some
systems may require non-reputability, where the originator of non-reputable data cannot
later deny its source. Another policy is anonymity, in which the sender of a message
specifically cannot be identified.

Closely related to data security policies, a cipher-suite policy is one or more crypto-
graphic algorithms used to enforce specified policies. As encryption algorithms have varying
availability and characteristics, a cipher suite policy specifies acceptable algorithms, param-
eters, and modes. A cipher suite policy is relevant not only to data security, but to any

mechanism using cryptographic techniques.

30

Note that a single policy need not apply to every message. In many applications,
individual messages have unique data security requirements, depending on the nature of
the message and the assumed threat model. Thus, it is useful to provide facilities for the

specification of data security policies at the granularity of a single message.

2.4.3 Membership Policy

Distribution of group membership is an important requirement for a large class of applica-
tions. For example, many reliable group communication systems need accurate membership
information for correct operation. Conversely, as seen in typical multicast applications,
members need not be aware of group membership at all. Here, providing other services
such as reliability and fault-tolerance is often left to the application. Because each rele-
vant change in membership requires the distribution of new group views, guaranteeing the
correctness and availability of membership views can be costly.

A membership policy states the availability and accuracy requirements of view distri-
bution. Views need be only as accurate as required by an application. Thus, it is useful to
provide a range of membership guarantees with associated costs. Several useful membership

policies include:

e best-effort membership - membership data is delivered as available and convenient.
No guarantees about the accuracy or timeliness of this information are provided.

However, it is expected that due-diligence is expended in providing accurate views.

e positive membership - guarantees that within specific time bounds, no member who

has left, failed, or been ejected from the group is listed in the view.

e negative membership - guarantees that within specific time bounds, every member

who has joined the group is listed in the view.

e perfect membership - guarantees that within specific time bounds, no member who
has departed and every member who has joined is listed in the view. That is, both

positive and negative membership information is provided.

Confidentiality of group membership is a requirement of some applications. However,
concealing membership from members and non-members is difficult in current networks.

This is primarily due to the ability of adversaries to monitor messages on the network.

31

These messages expose the source and destination of packets (in the case of unicasts) and
at the multicast tree (in the case of IP multicasts). In mounting this traffic analysis attack,

an adversary may deduce a close approximation of group membership [RR98].

2.4.4 Process Failure Policy

A process failure policy states the set of failures to be detected, the security required by
the failure detection process, and the means of recovery. The defining characteristic of
a failure detection mechanism is its fault model. The fault model defines the types of
behavior exhibited by a faulty process that the mechanism detects. Typical crash models
include fail-stop, message omissions, or timing errors [Mul93]°. In fail-stop failures, a failed
member immediately and permanently stops transmitting messages to the group. A message
omission occurs when a process does not generate or transmit an expected message. Timing
failures arbitrarily delay the generation or transmission of group messages. In the Byzantine
failure model, a faulty process may exhibit any behavior whatsoever. Many variants of these
models exist. For example, network failures can cause a group to be become partitioned,
and no communication between partitions is possible.

Often, the failure detection process itself is required to be secure. In securing failure
detection, the group is protected from the adversaries masking of process failures. However,
protecting the group from an adversary who attempts to generate false failures may be
more difficult. Failures may be forced by blocking all communication between the group

participants. This denial of service attack is difficult to address in software alone.

2.4.5 Authentication and Access Control Policy

An authentication and access control policy states the prerequisites and conditions under
which participants may perform group action. These actions, or rights, provide a road-
map for the group operation. The definition of participant requirements, conditions, the
enumeration of rights, and the mapping of identities and conditions to rights are the core
components of an authentication and access control policy.

An authentication policy states the means by which members can establish their right

% Another widely accepted taxonomy defines failures within time and value domains [Pow92]. Time domain
failures occur when an event is observed outside its expected (time) window. Value domain failures occur
when an unexpected data value is observed.

32

to perform an action. Members are often authenticated at or before joining a group [NS78]
using public key certificates (e.g., PGP [Zim94]), or through the use of centralized au-
thentication servers (e.g., Kerberos [NT94]). In other applications, such as pay-per-view
broadcasts, group members can establish rights through credentials obtained from applica-
tion specific subscriptions [BF99]. In many cases, the true identity of the member need not
be known (e.g., anonymous groups [SCP98, RR98]). The credentials provided during initial
authentication typically serve as authorizing data throughout the session. However, where
specific group rights (e.g., member ejection) cannot be inferred from these credentials, other
authentication infrastructure is necessary.

An access control policy dictates the conditions under which an action can be performed.
Historically, access control in groups has been course-grained; once admitted, the group
member is able to perform any action within the group. This model is in direct conflict
with the requirements of secure groups (see Principle 3 in Section 2.3). Hence, fine-grained
access control is required by many groups to meet this goal. Environmental conditions often
dictate when a member is allowed to perform an action [RN0O].

For example, consider a group supporting space shuttle monitoring instruments at
NASA, Kennedy Space Center. The KSC technical staff is free to use the group to calibrate
instruments outside of launch windows. However, during launch windows, modification of
instrument configuration is prohibited. Hence, a group access control policy supporting this
environment must state that write access (group send) is not allowed during launch win-
dows. The determination of a launch window is contextual; policy must state the conditions
under which the send action may be performedS.

Access control policies are defined by models gleaned from the organization of the
participants or underlying communication infrastructure. For example, as presented in
Table 2.1, the draft Secure Multicast Research Group (SMUG) policy framework assigns
rights based on the assumed roles MHDPO0O]. In implementing this role base access control
model [SCFY96, SBCY97], the authentication and access control policy must state a) what
authentication information and environmental conditions are required to assume a role and,
b) what rights are associated with the assumed role. Other models and rights assignments

are appropriate for groups with differing requirements. Hence, it is highly desirable to allow

5This scenario represents an issue observed at the KSC launch control facility. The failure to impose a
context sensitive access control policy has limited the ability of technical staff to control launch monitoring
equipment [Bee97].

33

‘ Role

‘ Description

group owner (GO)

group initiator and policy issuer

group key authority (GK)

controller of keying actions within the group

group membership authority (GM)

controller of membership actions within the group

member (M)

admitted member of the group

Action

Description

Rights

GO |GK|GM [M

key creation

create a session key/rekeying material

key dissemination

distribute keying material

rekey action initiation

initiate a group rekey

key access

gain access to the session key

NN

policy creation

create/assert a group policy

policy modification

modify the group policy

grant rights

delegate group rights

N

authorize member

authorize/state member authenticity

admit member

admit a member to the group

eject member

remove a member from the group

RN

audit group

monitor group access information

vV |V

Table 2.1: SMUG Authentication and Access Control Policy - group members assume roles
as defined by authorizing credentials. Access to group action is governed by the roles
assumed by members.

34

policy, rather than the communication or security infrastructure, to dictate a proper model.

2.5 Goals

This thesis adopts the definitions and requirements of a general-purpose policy management
infrastructure presented in this chapter. Based on these requirements, the goals of this thesis

are:

e Flexible Representation - a group policy should encompass the entirety of the session
security context. Hence, the policy representation (language) should allow the spec-
ification of both provisioning and authentication and access control. Moreover, the

language must support both conditional and discretionary policies.

o Multiparty Determination - policy must be efficiently derived from the desires and
abilities of all communication participants. This requires that a policy instantiation
should be the result of the reconciliation of all participant requirements. Moreover,
members must be able to determine the compliance of an instantiation with local

policies.

o Flexible Policy Enforcement - the way in which security requirements are addressed
is determined by the available technology and performance requirements. Therefore,
any enforcement architecture should allow the integration of a wide range of security

services.

e Efficient Enforcement - the usefulness of any policy management infrastructure is
largely determined by its efficiency. Hence, overheads associated with policy enforce-

ment must not significantly hamper application performance.

e Transport Agnostic - for numerous economic and technological reasons, multicast is not
yet (and may never be) globally available [AAC'99]. Hence, it is important to provide

alternative transport channels where standard services [Dee89] are not available.
This thesis does not address the following aspects of policy management:

o Multiparty Negotiation Protocols - negotiation protocols are an area of active inves-
tigation [KT93, MC94, WYL™99]. These works investigate techniques by which the

participant can perform policy determination through coordinated communication.

35

e Participatory Group Communication - recent works have investigated self governed
groups of peer participants [SSDW98, CC89, FN93, BD96, BW98, AST00] (e.g., egal-
itarian groups that do not contain a single guiding authority). While Antigone does
not implement participatory group infrastructure, the architecture is not restricted to

centralized groups.

e Policy Storage and Retrieval - Antigone assumes a service supporting storage and
retrieval of group and local policies. Previous policy management services suggest
numerous possible repository solutions (e.g., LDAP [YHK95]). It is expected that

each environment use local information services for this purpose.

The remainder of this thesis considers the means by which these goals are met in a flexible

and efficient way in Antigone.

CHAPTER 3
RELATED WORK

A number of efforts have touched on the issues of group policy management identified in the
preceding chapter. Although these works have not fully addressed flexible determination
and enforcement, they do provide insight into the problems and pitfalls of policy manage-
ment infrastructures. This chapter considers services and technologies used to represent,
construct, and ultimately enforce group security.

This chapter is organized as follows. The next section considers the design of existing
policy management infrastructures that address various aspects of policy representation
and determination. Section 3.2 reviews approaches for group formation and maintenance.
Section 3.3 investigates services used enforce group security policies. Section 3.4 considers
the design of component based middleware. Section 3.5 discusses technologies supporting

broadcast communication.

3.1 Policy Management

Policy is used in many different contexts as a vehicle for representing authentication and
access control [WL93, BFL96, CC97, WL98, RN00], peer session security [ZSCT00], quality
of service guarantees [BH99], and network configuration [WSST00]. These approaches define
a policy language or schema appropriate for their target problem domain. Policy in these
systems is largely static. Hence, the ability to alter behavior in the presence of changing
conditions or requirements is limited.

Recent group communication systems support the notion of a group defining security
policy that identifies the services and configuration of the group. The Group Secure Associa-
tion Key Management Protocol (GSAKMP) [HCH' 00, HCMO01] defines an architecture and
protocol used to implement secure multicast groups. Policy is implemented in GSAKMP

through the distribution of session-specific policy tokens distributed to each group member.

36

37

Similar in spirit to the security associations (SA) of IPSec [KA98] used for peer communica-
tion, the policy token defines the security requirements and access control for a lightweight
multicast session. Policy tokens define the entirety of the security provided to the group,
and participant requirements are addressed during token construction (prior to the creation
of the group). Hence, the token is the direct result of out-of-band specification, and cannot
react to changing conditions or fluid group membership.

General-purpose policy reconciliation is largely unaddressed by existing policy based
communication frameworks. In the two-party case, the emerging Security Policy System
(SPS) [ZSCT00, SCI8] defines a framework for the specification and reconciliation of local
security policies for the IPSec protocol suite [KA98]. SPS supports the flexible definition
and distribution of policies used to define IPSec (peer communication) security associations
(SA). In SPS, policy databases warehouse and distribute specifications to policy clients
and servers. Policy servers coordinate (with clients) the interpretation, negotiation, and
enforcement of SA policies. The scope of policy in SPS is limited. To simplify, SPS policies
state acceptable connections and identify the use of cryptographic message transforms (i.e.
connection access control and message security). The IPSec SA policy approach has been
extended to multicast groups in a Group Domain of Interpretation [BHHWO01]. The GDOI
specification adopts a policy definition modeled from the GSAKMP policy token.

Reconciliation need not be centralized. The DCCM system [DBH'00] reconciles local
provisioning policies though negotiation. In the first phase of the DCCM negotiation pro-
tocol, an initiator sends a policy proposal to each potential member. Clients assess the
proposal with respect to a local policy and transmit counter proposals. The initiator subse-
quently declares a final policy that potential members can accept or reject, but not modify.
Policy proposals define an acceptable configuration (which, for particular aspects of a pol-
icy, can contain wildcard “don’t care” configurations). An advantage of this protocol is
that the local policy need not be revealed to the initiator. However, the authors of DCCM
view authentication and access control as orthogonal to the definition of the group policy.
Hence, no services are provided for authentication and access control policy negotiation.

Reconciliation has also been used as a means of coordinating the definition of inde-
pendent sessions occurring within dynamic environments. Patz et al. describe a policy
management system targeted to dynamic coalitions in [PCKS01]. The Multidimensional

Security Management and Enforcement (MSME) system describes a model and processes

38

used to reconcile member Policy Level Agreements (PLA) towards a unified Resolved Policy
Level Agreement (RPLA). All peer communication between entities within the coalition is
governed by session definition policies identified in the RPLA.

Each PLA (and RPLA) in MSME is constructed from a top down policy model. In
this model, security services describe the end system security goals (e.g., confidentiality,
integrity, etc.), security mechanisms describe the means by which these goals are achieved
(e.g., AES, MD5 based HMACSs), and security implementations describe specific instances
of the security mechanisms (e.g., IPSec). The policy for a particular communication is
identified by mapping services to mechanisms, and ultimately to implementations. The
acceptable mappings are identified in the member PLA.

PLAs consist of policy rules. Each rule describes a condition/action pair, where each
action and condition consists of the tuple [consumer, producer, service], where the consumer
is an entity receiving the service, the producer provides a service, and the service describes

some policy goal. For example, consider the following MSME policy rule;

Ry : (bob, umdb, con fidentiality) — (bob, umdb, integrity)
Ry : (z,web, transit) — (x,C Ay, authenticity)

Logically, R; states that any communication from bob to umdb that is confidential must
also have integrity guarantees. Rule Ry states that anyone communicating with the web
must receive authenticity guarantees from the C'A; certificate authority.

To simplify, the PLAs of the members of the coalition are reconciled through intersection;
all policy rules that are not in conflict and can be resolved to an implementation are added
to the RPLA. After resolution completes, the result is distributed to the coalition members.
A second model in which each member performs reconciliation is suggested, but a number

of technical issues remain.

Policy Architecture

Traditional network management infrastructures are increasingly strained by the size and
complexity of contemporary networks. The overhead of solutions that require network
administrators manage each device independently is quickly becoming infeasible. One way

to address this problem is to use policy to manage the network.

39

(a) ifnetwork is congested
then drop all packets from subnet 1 received at border routers

(b) if congestion monitor counter > 5
then delete route snl /dev/ethO

Figure 3.1: IETF Policy Working Group Representation - abstract (a) and translated policy
(b) rules in an example schema.

Policy Editor

Policy Consumer <4—»

Policy Target

Policy Consumer

Policy Repository Policy Target

Policy Consumer 4—»

Figure 3.2: IETF Policy Framework working group architecture - architecture supporting
the creation, distribution and enforcement of network management policies.

The IETF Policy Framework working group (PWG) is charged with developing an ar-
chitecture and set of specifications for the management of network devices through abstract
policies. The group’s draft framework specification [SWM™99] identifies the entities and
functions of policy implementing components for IP network devices.

Policy is represented in the PWG framework through sets of policy rules [DBCT00].
A policy rule is a conditional statement identifying a set of abstract configurations to be
applied in those situations where the conditions are true. For example, policy rule (a) in
Figure 3.1 states that border routers drop packets received from subnet 1 when network
congestion is detected. This rule differs from traditional network management in that the
rule is stated abstractly; the mechanism used to detect network congestion, how border
routers are identified, and the means by which router interfaces are configured during times
of congestion are outside the scope of the policy. The policy infrastructure must interpret
and enforce these aspects of policy.

The reference architecture supporting the use of PWG policies is described in Figure 3.2.
The architecture is defined over four types of policy components; policy editors, policy

repositories, policy consumers, and policy targets. A policy editor provides interfaces for

40

adding, deleting, and updating sets of policy rules. The policy editor is responsible for
detecting (and potentially resolving) instances of global conflicts. A global conflict occurs
when two rules imply conflicting actions in the absence of any operational context. For
example, rules stating that subnet A should get both best effort and guaranteed service for
the same traffic constitutes a global conflict. The policy editor delivers rule updates to the
policy repository.

The policy repository is a persistent store for policy rules. Policy consumers obtain
relevant rules in the process of evaluating policy. In general, the policy repository does not
act on or interpret policy rules. For example, LDAP [YHK95] is suggested as a reasonable
repository solution.

A policy consumer is responsible for acquiring, evaluating, and translating policy rules
into device-dependent action'. Given some operational environment, the consumer acquires
relevant rules from the policy repository and evaluates their contents. The policy consumer
is responsible for detecting local conflicts. A local conflict occurs when two rules conflict
only in the presence of contextual information. For example, a rule stating that a device
should be enabled only during a maintenance window may conflict with a second rule that
states that the device should be disabled when a denial of service attack is in progress.
Resolution of both global and local conflicts is an area of active research.

Rule evaluation is performed following the acquisition of relevant information through
active probing of the network and target device. The policy is translated into device action
(enforcement) when the conditions of the rules are satisfied. Generally, this requires the
re-provisioning of the device itself. For example, the rule “drop all packets from the subnet
1 received at the border routers” is translated into individual commands that alters the
internal tables of border interfaces of the relevant routers.

A policy target is an entity that alters its behavior in accordance with policy rules.
Policy targets can have varying levels of support for policy. It is assumed in the above
example that the border routers have no native understanding of the policy rules. However,
in other environments, the targets might understand the policies themselves. Returning to
the example described in Figure 3.1, a policy consumer might translate the abstract rule

(a) into a device specific rule (b).

11t is suggested that some translation duties may be carried out by the policy target itself. In general,
this does not significantly affect the operation of the architecture.

41

Note that the PWG architecture can be applied to other problem domains. Any pol-
icy infrastructure must support services implementing policy creation (editors) and policy
enforcement points (consumers and targets). Antigone loosely adopts the PWG architec-
ture, where policy issuers acts as editors (through the apce compiler; See Chapter 4), and
participants assume the roles of both policy consumers and targets.

Authentication frameworks regulate access to resources in distributed systems. Wong
and Lam [WL98] introduce a generalized authentication service. derived from theory and
design heuristics [WL93]. The resulting Generalized Access Control List (GACL) language
and associated architecture is used to express and evaluate authentication requests in dis-
tributed environments. Central to the GACL architecture is a set of authentication servers
to which evaluation of access control is delegated. The ability of an authentication server
to authorize clients for an end service is established through a contract protocol. Authen-
tication certificates are later obtained by clients (if the client is to be allowed access) and

presented to end services (when services are used).

Authentication and Access Control Policy

Language-based approaches for specifying authentication and access control have a rich lit-
erature [WL93, BFL96, CC97, WL98, BFIK99b, RN00O]. These approaches govern access
by mapping identities, credentials, and conditions onto a set of allowable actions. The
flexibility and granularity with which access control is stated is defined by the policy repre-
sentation. Several authentication and access control languages currently used in distributed
environments illustrate the issues and design trade-offs of these languages.

An authentication policy is expressed in the GACL authentication framework through
the GACL language [WL98]. The design of GACL is based on a strong theoretical foun-
dation; that is, with respect to the semantics of the language definition, each policy is
guaranteed to be evaluated correctly. Requests for authentication are evaluated within
the context of the current system state and credentials provided by clients. To simplify,
all GACL policies are expressed as objects and lists of expressions defining access rights.
Clients are authorized if, based on available information, the lists indicate that access should
be granted. The evaluation of GACL lists depends on the evaluation ordering stated in its

definition. The following GACL rule is ordered:

42

my.exe declare ordered
list < Alice, Bob >, [—execute],
< [Dept], [exzecute] >,
highload —< [|,[—ezecute] >,
inherit my.doc ::< [%], [write] >

The evaluation of an authentication request for object my.exe begins at the first clause.
If the first clause (stating that both Alice and Bob should not be allowed to execute the
my.exe) does not reject the action, the second clause (stating any person in the Dept
group is allowed to execute) is assessed. The analysis proceeds through each clause until
a definitive answer is obtained or no more clauses are defined. Unlike traditional ACLs
where denial is always assumed, if no definitive answer is obtained the failure is returned.
The third clause (designated as highload) tests system state through pre-defined predicates.
The fourth clause defines an inherit(ed) authentication. This clause states that execute
authentication is granted (or denied) only where it is indicated that write access is allowed
to my.doc. Unordered rules are assessed by evaluating all clauses simultaneously. Failures
are generated when conflicting authentications are detected.

In GACL authentication services do not by themselves have sufficient context to as-
sess access control in distributed environments. This widely accepted philosophy implies
that application context must play a role in the evaluation of access control policy. This
realization is not unique to GACL; the vast majority of recent languages and frameworks
provide interfaces for similar language independent condition evaluation [SCR96, BFL96,
CC97, IKBS00, RN0O].

The GAA API [RNO0O] defines a representation and programming interface for the spec-
ification and evaluation of access control and authentication in heterogeneous distributed
systems. Policies are represented in the GAA API as tuples defining conditions under which
rights should be granted to authenticated parties. Each clause, called an Extended Access
Control List (EACL), is logically defined as a tuple consisting of an access identity, a grantor
identity, a set of access rights, and a set of conditions. The access identity is the entity to be
granted the access rights defined in the EACL. The grantor is the entity stating the rights.
The set of conditions identify when the access rights are to be granted. Identities are stated
abstractly; a user can assume the identity stated in the EACL based on authentication
provided by another EACL. Conditional statements are either generic or specific. Generic

conditions are expressed as parameterized applications of statically defined operators. The

43

Clause 1 Clause 2

Token Type: | authentication_mechanism Token Type: | time_window
Authority: security_office_manager Authority: pacific_tzone

Value: Kerberos. V5 Value: 6AM-8PM

Clause 3 Clause 4

Token Type: | printer_queue_length Token Type: | pos_access_rights
Authority: printer-manager Authority: network_manager

Value: i 10 Value: PRINTER_al:submit_job

Figure 3.3: GAA API clause definition - these example clauses define an authentication
and access control policy for network printer stating: if the printer queue associated with
PRINTER al contains fewer than 10 entries and the current time is between 6AM and 8PM,
then any entity authorized by the local Kerberos KDC may submit jobs.

meaning of each of these operators is globally understood, so each conditional is internally
evaluated by the GAA API. Conversely, specific conditions test the environment through
application defined functions.

The use of the GAA API is illustrated in Figure 3.3, which defines an authentication
and access control policy for the network printer PRINTER_al. The policy for this printer
is evaluated at the point at which a user submits a job. In making this request, the local
environment possesses authentications associated with the requesting entity. If one of these
authentications is from the local Kerberos 5 server, then Clause 1 is satisfied. Clause 2 is
evaluated by checking the current time. Clause 3 is application specific. Thus, via an up-
call, the application is asked if the current queue length has fewer than 10 entries. Finally,
if Clause 1, 2, and 3 are satisfied, then the access rights stated in Clause 4 are given to the
entity. In this case, the entity originating the request is granted the right to submit the
print job.

An important contribution of GAA API is its abstract interface for authentication and
access control. The heterogeneity of current networks requires that the assessment of both
credentials and conditions be flexible. Hence, the generalized interfaces provided by GAA
APT eliminate the need to modify applications to make use of environment specific authen-
tication and access control services. Moreover, the use of a single specification language
across applications promotes a more complete and consistent definition of environmental
security.

Developed within the larger DCCM architecture, the Policy-Based Cryptographic Key

Release Project (KRP) [BB0O0] defines a language and architecture used to state and enforce

44

key release policies. Key release (e.g., access to cryptographic material) is defined as sets
of access control and authentication rules. Policies are modified by events occurring in
the system. Access to keys is allowed when the current state (identified by monitoring
processes) satisfy the set of rules associated with the key.

KRP policies are organized into a tree defining organizational structures. For example,
a policy stated by the University of Michigan supersedes an Electrical Engineering and
Computer Science departmental policy, which in turn supersedes a policy stated by pdmcdan.
Access is allowed (or denied) based on the traversal of the rules from the root of the tree
to leaf keys. Thus, each policy must be satisfied on the path from the root towards the leaf
nodes.

The KRP language is defined formally. The authors assess the correctness of a policy
specification using the Prototype Verification System (PVS) [SCR96]. PVS is given a set
of assertions about the semantics of stated policies. If the assertions hold for all possible
instantiations of the policy, then it is said to be correct. Each policy is also evaluated for
consistency and completeness. A policy is consistent if there is no environment in which an
access is both granted and denied. A policy is complete if there exists some occurrence of
events where access to the key will be granted.

The ability to analyze the correctness of a policy is essential to any solution. Languages
providing formal semantics (e.g., GACL) seek to ensure correctness by construction, while
others (e.g., KRP) perform analysis on the policies themselves. While the former approach
does not rely on informed users for a statement of correctness (and hence is less error prone),
it does not allow correctness to be defined in terms of environmental constraints.

In [CC97], Cholvy and Cuppens develop a language and formalism used to specify and
analyze access control and authentication policies. A central contribution of this work is
the identification of a formal definition of policy consistency. This definition states that if
there exists any world (i.e. operational environment) that both allows and denies access to
an object for some principal, then it is inconsistent. The authors present a mathematical
framework in which the consistency of policies written in the proposed language can be
evaluated.

The Cholvy and Cuppens language, denoted throughout as the CC language, is based on

the Standard Deontic Logic (SDL)2. CC extends the traditional access control and authen-

2Deontic logic defines logical relationships among propositions that assert actions that are deemed oblig-

45

Rule Rule Type Specification
1 Nominative Vf,VA, File(f) A Public(P) A Play(A,User) — Read(A, f)
2 Nominative Vp,VA, Passwd(A,p) A Old_Passwd(A) A Play(A,User) —
(with obligation) O Change_Passwd(A)
3 Descriptive VA, Play(A, User) = Jlevel, Login(A, level)

4 Domain Constraint Vf, forall A, Read(A,User) — Access_System(A)

Figure 3.4: CC Policy - nominative, descriptive and domain constraint policy rules in the
Cholvy and Cuppens specification language.

tication languages by introducing obligation. Rules defining obligation indicate operations
actions that are required of principals. The language provides machinery to reason about
principals who fail to meet obligations. For example, a user who fails to change its password
can be barred from accessing its files. In this case, the obligation to change the password
is stated in one rule, and the consequence of not changing the password in another.

To simplify, the CC language is based on the development of three types of rules. Similar
to traditional access control statements, normative rules define the conditional mapping of
roles to potential obligatory access rights. Descriptive rules define the set of conditions
under which principals will assume a role. Domain constraint rules define the basic set of
constraints assumed by the domain in which the rules are interpreted. Figure 3.4 presents
four rules defined in the CC language.

The nominal rule (rule 1 in figure 3.4) indicates that any principal should be allowed
read access to public files only if they have assumed the User role. The predicate Play(p,r)
asserts states that the principal p has assumed the role r. The consequence action (right
side of implication, Read(A, f)) is true if the conjunction of predicates of the left side of the
equation evaluates to true. The universal quantifiers state that this rule should be applied
to all principals who wish to gain access to public files. The nominal with obligation rule (2)
states that principals assuming the User role are required to change their password when
it becomes “old”. Similar to trust management approaches GAA API, the semantics and
evaluation of predicates is outside the scope of the language.

A descriptive rule defines the conditions under which a principal assumes a role. The

descriptive rule (3) states that any user who has logged into the system accepts the role of

atory, permissible, or not permissible.

46

User. Finally, the domain constraint rule (4) states that read access can only be allowed
until the principal accesses the system. Similar to nominal rules, a definition of the semantics
of “accessing the system” is outside the scope of the specification.

One language extension allows users to define a total (or partial) ordering of the roles.
The ordering is used to resolve specification conflicts. For example, a principal assuming
both the User and Root roles may not be allowed write access to a password file. (based
on a User nominal rule), but be given the write privilege (based on a Root nominal rule).
This conflict is resolved by roles ordering; the higher ordered roles will take precedence.

An observation made by the authors of KRP states,

Policies must be specified in a language understandable by people to be useful,

and in a language understandable by computers to be enforceable. [BB0O]

This statement highlights a fundamental tension of language-based approaches. Natural
languages are best suited for expressing policy. However, because they are often ambiguous,
automated interpretation and enforcement of these languages is difficult. Semantically
rich languages represent another extreme; while operators such as global and existential
quantifiers provide mathematical rigor and expressiveness (e.g., in CC), they increase the
complexity of specification.

The PolicyMaker [BFL96] and KeyNote [BFIK99b] systems provide a powerful and easy
to use framework for the evaluation of credentials. Generally, support for provisioning and
resolving multiple policies is not the focus of these systems. When desired, these systems
can be invoked in Ismene conditionals to leverage their expressive power and extend their
use to group communication systems.

Blaze et al. introduced a unified approach for the specification and evaluation of access
control in the PolicyMaker system [BFL96]. At the core of any trust management system is
a domain independent language used to specify the capabilities, policies, and relationships
of participant entities. Applications implementing trust management consult an evaluation
algorithm (engine) for access control decisions at run-time. The engine evaluates the ac-
cess control request using pre-generated specifications and environmental data. Therefore,
applications need not evaluate access control decisions directly, but defer analysis to the
trust management engine. Through rigorous analysis, the PolicyMaker [BFL96] trust man-

agement engine has been proven to be correct. Thus, with respect to access control, any

47

application using PolicyMaker is guaranteed to evaluate each decision correctly. However,
enforcement is left to the application. Several other systems (e.g., KeyNote [BFIK99b] and
REFEREE [CFL"98]) have extended the trust management architecture to allow easier
integration with user applications and a minimal set of enforcement facilities.

In [IKBS00], KeyNote has been used to define a distributed firewall application. The
technique is to use conditional authentications, where conditions involve checking port num-
bers, protocols, etc. However, it still remains problematic to construct a configuration,
based on multiple local policies, or for determining the correctness of a configuration. The
provisioning clauses and legal usage assertions of Ismene can help address these problems.

Modification of access rights in traditional authentication and access control frameworks
by resource owners has been historically difficult. Policies are frequently stated though
singular specifications created, distributed, and evaluated by the authentication framework.
Hence, any rights modification must be mediated by the service, and not by the resource
owner. Trust management approaches the intermediate step by allowing resource owners
to arbitrarily create and delegate rights. This is stark contrast to Antigone approach,
where group rights are the result of the coordinated reconciliation of member and issuer

requirements.

3.2 Group Communication

While group communication is often used in distributed computing, no single definition of a
group has been universally accepted. In common usage, the definition of a group is typically
derived from the application domain in which the group is used. Antigone defines a group

as ...

... the set of entities that maintain some form of shared context. Within a net-
working environment (which is the only instance within the scope of this chap-
ter), the participants may be hosts, processes, network devices, other groups, or

any other addressable entity.

Groups can be open or closed. In an open group, any member or non-member may
transmit a message to the group. In a closed group, only members of the group may
transmit messages to the group. The vast majority of secure group communication systems

provide a closed group.

48

Centralized groups identify one or more distinct group controller participants.> A group
controller is the logical leader of the group the manages session initialization, access control,
and other aspects of the group. Groups containing more than one group controller can dis-
tribute group management tasks to single controllers, delegate to a subordinate controllers,
or share duties among peer controllers.

Peer groups (which do not contain any group controllers) manage the group through
consensus. These groups typically share state via an ordered reliable broadcast mecha-
nism [RBM96]. Decisions of access control, the introduction of new members, and key
management within peer groups have been studied extensively. However, because of the
need for consensus building, peer groups are particularly costly to implement.

This thesis focuses primarily on the closed, centralized groups implemented by the vast
majority of group communication frameworks and applications. However, Antigone is in
no way restricted to centralized or closed groups. The investigation of the mechanism and

policy requirements of these groups is left to future work.

3.2.1 Secure Reliable Group Communication

Much of the early work in group communication was targeted to the development of proto-
cols providing delivery guarantees (e.g., total, casual, FIFO, etc.). Later works investigated
infrastructures supporting reliable and secure groups existing within diverse environments.
The following considers the design, facilities, and models of several representative group
communication systems, and considers the trade-offs between reliable and unreliable group
communication.

Often cited as the genesis of current group communication technologies, the ISIS [Bir93]
and later HORUS [RBM96] frameworks provide interfaces for the construction of group
architectures. Using these frameworks, developers can experiment with a number of protocol
features through the composition and configuration of protocol modules. One important
feature introduced by the HORUS system was a comprehensive security architecture. A
central contribution of this architecture was the identification of a highly fault-tolerant key
distribution scheme. Process group semantics are used to facilitate secure communication.

A single session key is used throughout each HORUS session. Hence, HORUS groups are

No single term denoting the logical group leader has emerged in the literature. In different contexts, a
group leader is known as a session leader [MPH99], a sequencer [KT91], or group agent [Mit97].

49

vulnerable to past or future members of the group.

Reiter further explored the highly robust security and group management in the RAM-
PART system [Rei94]. The RAMPART system provides secure group communication in the
presence of actively malicious processes and Byzantine failures. Protocols in RAMPART
rely heavily on distributed consensus algorithms to reach agreement on the course of group
action. Secure channels between pairs of members are used to ensure message authenticity.

4 constructed

Authenticity guarantees are used to ensure the accuracy of the group views
through membership protocols. The security context is not changed through shared session
keys, but through the secure distribution of group views.

A limitation of reliable group communication is cost; the consensus protocols used to
provide strong delivery guarantees frequently require each member to actively participate
in delivery through message acknowledgments. More recent work has investigated security
within best effort delivery groups. For example, virtual private networks provide an ab-
straction in which applications designed for (logically) local network traffic can be executed
across physically larger networks. The Enclaves system [Gon96] extends this model to se-
cure group communication. Enclaves secures the group content from previous members by
distributing a new group key after any member leaves the group. Emerging group systems
increasingly accept this latter model; group applications are infrequently willing to pay
the cost of group reliability in networks with low or highly variable throughput (e.g., the

Internet). A number of other unreliable group systems are identified in Section 3.3.

3.2.2 Membership Management

Historically, the facilities used to manage and distribute information about the membership
of the group is called Process Group Management [Cri91, RVR93, Bir93]. These services
typically use reliable group communication facilities to ensure that the membership infor-
mation is distributed in a consistent and timely manner. However, as with reliable group
communication, the cost of providing this consistency is high. Hence, a number of approx-
imation techniques have been used to mitigate these costs. Chapter 2 identifies a range of

guarantees associated with these techniques.

“A group wview is the set of identities associated with members of the group during a period where no
changes in membership occur. When the membership changes (a member joins, leaves, fails, or is ejected),
a new view is created. This is a similar concept to Birmans’s group view [Bir93].

50

3.2.3 Failure Detection and Recovery

The failure of a group member can have an immediate effect on both the security of the group
and the operation of the supported application [Rei94, AS98]. For example, the failure of a
leader in a centralized group can lead to undetected events which would normally require
the modification of the group session key, prevent access to the group, or delay the ejection
of failed or compromised members. Similarly, some applications cannot progress without
the presence of critical members (e.g. the sender in a video broadcast). Thus, depending
on policy and application requirements, groups often require a mechanism that detects and
recovers failed processes.

Failure detection is implemented by one or more failure monitor processes. Kach failure
monitor (which may or may not be a member of the group) actively monitors the state
of a subset of the group membership. A member that has failed is denoted as failed, and
denoted [live otherwise. Depending on the crash model and available facilities, the failure
monitor chooses the correct course of action to recover from the failure. Often, this simply
requires the monitor notify the group of the failure.

A failure monitor may require periodic proof that monitored processes are operating
correctly. This proof typically takes the form of a member-generated statement indicating
its continued correct operation. These statements must be authenticated for a failure de-
tection mechanism to be secure; some information proof that the stated member generated
the message is necessary. If authenticating information is not included, an adversary can
mask failures by generating counterfeit statements. In groups where the members are not
completely trusted (or resiliency to member compromise is required), the authentication
information must uniquely identify the sender (see source authentication 3.3.2).

Traditional detection of failed process requires the encryption and transmission of a
periodically generated freshness indicator under a known key [FKTT98]. The freshness
indicators may take the form of timestamps (where some secure source of time is globally
available) or nonces. Known as heartbeats or keep-alives, the indicator messages are gen-
erated by any party wishing to state its continued presence in the group, and validated
by failure monitors. In high throughput, dynamic, or large groups, the costs of processing
heartbeat messages from each member can be prohibitive [MPO0O].

Many of the techniques used for the detection of group member failures were developed

within the context of reliable communication. Typically, these systems detect failures by the

ol

presence or absence of message acknowledgments. A central property of reliable multicast is
safety; a message is either received by every non-failed member or by none. Thus, systems
providing safety must receive an acknowledgment from each member before committing it.
Because these acknowledgments implicitly state a non-failed state, they serve a dual purpose
as message acknowledgments and heartbeats. For example, members of RAMPART groups
are removed (detected as failed) from the current group if they are deemed unresponsive
(i.e. fail to respond to group messages). More recent systems (i.e. TRANSIS [DM96],
Ensemble [RBH'98], and CACTUS [HJSU00]) rely on similar reliability or process group
management protocol mechanisms to detect failures.

Similar to the traditional heartbeats, group members in the Iolus system [Mit97] are
required to periodically re-assert their presence in the group. However, rather than using
these messages as periodic proof of a process’s continued presence, they provide a means
by which a group member can REFRESH its membership in the group. Each member is
assigned a membership expiration time during the join process. The member may refresh
its membership prior to the expiration time. Any member who does not refresh its mem-
bership before the expiration time is ejected from the group. While this approach has the
advantage of being sender-driven, it requires a refresh acknowledgment mechanism. With-
out an acknowledgment, the refresh can be lost and the member incorrectly ejected from
the group.

The way in which groups should recover from failures is largely dependent on the group
threat model and session context. Several possible ways in which the group can react to the
detection of a member failure include: a) the group disbands or suspends operation until
the group member recovers and re-joins the group (in the case where the failed process is
essential to the group mission), b) the group can purge the member and continue, or c)
ignore the failure.

The reliable group communication Transis System [DM96] provides services supporting
continued group operation in the presence of network partitions. To simplify, each partition
establishes a new group when the failure is detected. The new groups corresponding to the
partitions record all group messages. After the partition is repaired, the recorded messages

are transmitted to the members of the other partitions.

92

3.3 Secure Group Communication

Although solutions for security in peer-to-peer communication are well understood, group
security has been less forthcoming. This is due in large part to the complexity of establishing
and maintaining a security context in groups with large and potentially dynamic member-
ship. Beyond issues of complexity, performance and scaling requirements often limit the
quality of solutions [SSVO01].

The focus of the majority of the work in group security has centered on the investigation
of group key management, and data services. A group key management service is used to
establish and maintain session keys (e.g., key distribution). Data services provide security
guarantees over group messages (e.g., confidentiality). Thorough treatments of the issues
and design alternatives of secure group communication services are presented in [CP00,
CGI"99]. The following subsections consider a number of seminal works used to provide

security within these services.

3.3.1 Group Key Management

A central determinant to the quality of security provided to a group is the means by which
session key are established and replaced. Session keys are typically used to provide other
security guarantees (e.g., confidentiality). Hence, the ability to restrict access to session

keys is critical to group security. To simplify, group key management can be defined as:

Given group G with membership M at time ¢
Goal Each m! € M at time ¢ can obtain session key SK

Constraint FEach m* ¢ M at time ¢ is can not obtain SK.
However, the degree to which the constraint is enforced limits the cost of key manage-

ment [SSV01]. Many key management approaches relax the constraint in different ways to
achieve a more efficient solution. Each relaxation represents a set of threats accepted by
the group.

Another area limiting the performance of a key management solution is the cost of
initial group access. Any solution must provide a means by which members can initially
make contact and receive key management data. However, in large or highly dynamic
groups, centralized services can become overloaded with requests for key data. Thus, the
means by which group exchanges are accomplished will have an affect on the scalability of

the group.

93

Key-Encrypting-Key (KEK) management approaches remove all timing constraints.
This implies that any m; that is in (or ever will be) M has (will have) access to the
session keys. Hence, the group is not protected from past and future members. For ex-
ample, in the Group Key Management Protocol (GKMP) [HM97b, HM97a], newly joined
members receive a KEK under which all future session keys are delivered. A limitation of
this approach is that misbehaving members can only be ejected by the establishment of a
new group. GKMP reduces the costs of authentication by introducing a peer-to-peer re-
view process in which potential members are authenticated by active members of the group.
Existing members assert the joining members’s authenticity.

In an approach implementing a service similar to GKMP, the Scalable Multicast Key
Distribution (SMKD) [Bal96] implements key management at the transport layer. De-
veloped for the Core-based Multicast Routing Protocols [BFC93], SMKD uses the router
infrastructure to distribute session keys. As the multicast tree is constructed, leaf routers
obtain the ability to authenticate and deliver session keys to joining members. Thus, the
overheads associated with member authentication and key management can be distributed
among the leaf routers.

Often referred to as the simple group key distribution method, the Antigone 1.0 [MPH99]
system implements a key distribution approach using pair-wise secure channels established
during member authentication (e.g., a pair-key known only to the controller and the mem-
ber). New session keys are distributed to each member independently through a key distri-
bution block encrypted under the pair-key. This results in either n unicasts, or a broadcast
of size n times the size of the key distribution block. Thus, because of its linear growth,
this approach does not scale well to large groups. Similarly, the state held at the controller
(pair-keys) grows linearly with group size.

Mittra categorizes the effect of the key management constraint as a I-effects-n failure,
where a single membership change event can affect the entire group [Mit97]. Mittra’s Iolus
system addresses this limitation through locally maintained subgroups. Each subgroup
establishes and replaces its own session key through simple group key management. A
second meta-group key is established and maintained between subgroup controllers. Hence,
the inherent cost of simple group key distribution is mitigated by localizing rekeying to
subgroups. However, this approach introduces other latencies. Group messages must be

translated as it crosses the subgroup to meta-group and meta-group to subgroup boundaries.

o4

Subgrouping has been used to establish key management domains mapping onto au-
tonomous systems. For example, Hardjono et al. propose a scalable framework for group
key management in [HCDO00]. The framework consists of two planes defining a group man-
agement service; a network infrastructure plane and a key management plane. The network
infrastructure plane consists of the protocols and entities providing the broadcast (multi-
cast) medium. The key management plane consists of the protocols and entities providing a
group security context. Hardjono’s framework is targeted for large groups spanning poten-
tially many autonomous systems. Thus, the authors sought to support the heterogeneous
protocols and infrastructures of each AS by introducing a region of meta-key management.
This region, called a trunk region, maintains a region key under which participating key
managers secure communication. Leaf regions consisting of group members transmit data or
security related requests to a border key manager. The framework has the same advantages
(i.e., localized key management) and disadvantages (i.e., message translation) as Tolus.

Logical Key Hierarchies [WHA98, WGL98] (LKH) provide an efficient alternative to
subgrouping in achieving scalable, secure key distribution. A key hierarchy is a singly rooted
n-ary tree of cryptographic keys. The session leader assigns all interior node keys. Each leaf
node key is a secret key shared between the session leader and a single member. Once the
group has been established, each member knows all the keys between their leaf node key and
the root. As changes in membership occur, rekeying is performed by replacing only those
keys known (required) by the leaving (joining) member. Rekeying without membership
changes can be achieved by inexpensively replacing the root key. Thus, the total cost
of rekeying in key hierarchies scales logarithmically with group size. Many incremental
variants of LKH have been proposed [Per97, MS98, CGIT99, CEK199, WCS*99]. These
improvements seek to reduce the costs by reducing message overhead or state held at the
group controllers and members.

Similar in construction to LKH, one-way function trees [MS98] (OFT) implement a
structure used to establish and replace session keys. OFT key trees are established by
assigning keys to the leaf nodes representing members. All interior node keys are generated
by combining hashes of the two keys below in the hierarchy. OFT based key management
behaves in all other respects as LKH.

The VersaKey system [WCST99] extends the LKH algorithm by converting the key

tree into table of keys. Each group controller maintains a 2zl table of Key Encrypting

95

Keys (KEK), where | = logz(n) for a group of n members. The table contains entries for
each 0 and 1 bit of user identifiers (e.g. the key for bit 3, value 0 is indexed k3p). Each
member receives keys associated with its identifier and a traffic encrypting key (TEK) (e.g.
a member with binary identifier 1011 would receive keys ko 1, k1,0, k2,1, k3,1). Thus, based on
the identifier, each member maintains a unique combination of keys from the table. When a
member is to be ejected, only those keys associated with the ejected member identifier and
traffic encrypting key are replaced and distributed. In the case of a member join, each key
associated with the identifier of the new member and the traffic encrypting key is modified
by applying a one way hash function to its random data. Thus, in the case of joins, no key
distribution to current members is necessary.

The VersaKey approach significantly reduces the amount of state held by group con-
trollers (O(2n) in LKH to O(2logz2(n) in VersaKey). This allows key management to scale
to very large groups. However, VersaKey is vulnerable to collusion of ejected members. For
example, two colluding members with complimentary identifiers cannot be ejected without
simultaneously replacing the entire table. The authors present an algorithm for simul-
taneously replacing arbitrary numbers of group members. A second variant supporting
environments containing multiple group controllers is described.

Independent of group changes, the frequency with which the group is rekeyed has an
effect both on the security and efficiency of the group. By enforcing a lower bound on
rekeying frequency, the key management constraint can be relaxed by limiting the gran-
ularity with which time ¢ is measured. Setia et al. challenge the need (and measure the
effect) of arbitrarily small measurements of ¢ in Kronos system [SKJHO00]. The Kronos key
management system promotes the use of limited lifetime rekeying for distributing keying
material. Using analytical techniques, the authors of the Kronos system showed that the
large or highly dynamic groups quickly become limited by the speed at which they can per-
form rekeying. Using this as justification, they introduce a limited lifetime rekeying system
based on the subgrouping techniques found in Iolus. A distinct member of each subgroup
is responsible for distributing keys to all members within the subgroup. However, unlike
previous approaches, rekeying occurs only at policy defined intervals.

In [SKJHO00], the performance of Kronos, LKH, and Iolus systems were compared via
simulation. It was found that periodic rekeying provided the lowest latency for group

content, and that the leave and join latencies were acceptable (a 1 second rekeying interval

o6

was tested). For large groups, it was shown that periodic rekeying was the only approach
where rekeying was not the bottleneck.

Egalitarian groups require key management to be participatory. In decentralized keying
or key-agreement systems, a number (> 1) of group members contribute to the establishment
of the session key. Proposed participatory key management solutions [SSDW98, CC89,
FN93, BD96, BW98, AST00] are largely applications of the n-party Diffie-Hellman key
exchange [DH76] under a given set of assumptions and constraints.

A secure lock [CC89] protocol introduced by Chiou and Chen is representative of key-
agreement approaches. Secure locks allow the distribution of secret information to an
arbitrary number of members without prior establishment of group keys. This approach is
used to quickly (in 1 message) distribute a session key to the membership of a group.

Systems implementing secure locks assume each member of an universe of members U
(where u; € U, for all i | 1 > i > m) have established a publicly known and pair-wise
relatively prime number (IV;). Additionally, each u; establishes an encryption key known
to the sender (k,,). Each message M is encrypted under a symmetric one-time key (k).
A secure lock X for message M and group G (where G C U) is generated by solving the

following system of equations using the Chinese Remainder Theorem [Sti95]:

X =Ry mod Ny for all u; € G
=R R; = {k},,
X — R d N v Uy
! .r.no ’ where N; = publicly known value for u;
X = R,;, mod N, m is the size of G

Upon receiving the message u; computes (R; = X mod N;) to obtain {l%}kul Using its
secret key, u; obtains k and decrypts the message. In the case of key distribution, M will
contain the group session key.

Secure locks are attractive because the size of each distribution message is constant.
However, the costs associated with the generation of a secure lock grow linearly with the
group size. The generation of each R; requires an encryption of the one time key. Addition-
ally, finding the X based on the system of equations requires n computationally expensive

modular exponentiations.

3.3.2 Data Services

Data transforms are used to provide security over application or control data. A transform

defines a manipulation of data meeting some set of security requirements. Requirements

o7

are satisfied by the application of cryptographic algorithms over a set of data and keys. For

example, consider the following simplified data transform,
D — E(SK,D),E(SK,H(D))

where SK is a session key known only to the current group members, D is the data to
be transmitted, £ is an encryption function accepting key and data parameters, and H
is a collision-resistant and non-invertible hash function. This transform guarantees group
authenticity, integrity, and confidentiality. These properties inferred from the fact that SK
is only known to the members of the group; only an entity in possession of SK can generate
the transformed data. The implicit assumption made by this construction is that it is
computationally infeasible to obtain the key or data from E(SK, D) or invert H. While
there has been considerable debate on validity of these and similar assumptions in the
general case, investigation of the strength of cryptographic algorithms is outside the scope
of this thesis.

Transforms are not only used for application content. Based on the threat model,
each group service requires some set of guarantees be preserved over the control data.
For example, key management services often require that key distribution data remain
confidential. Transforms similar to those defined in this section are used to provide these
guarantees. However, the algorithms and keys used to implement the transforms will be
driven by service requirements and available resources.

The following considers the canonical data security guarantees required by groups. Note
that there are other guarantees which may be necessary in some environments (e.g., non-
repudiation, anonymity, etc.). For brevity, a description of approaches providing these

guarantees are omitted.

Confidentiality, Integrity, and Group Authenticity

Confidentiality guarantees that no member outside the group may gain access to session
content. Although typically implemented through encryption under a symmetric key, other
techniques may be used to limit content exposure. For example, confidentiality may be
achieved though the use of stenography [AP98], or through encryption of only critical por-
tions of messages.

Integrity guarantees that any modification of a message is detectable by receivers. As

o8

they are fundamentally insecure, one cannot trust underlying reliable communication (point
to point TCP [J81], reliable group communication [FJLT97]) to guarantee integrity. Se-
quence numbers, checksums, and other components of these protocols can be trivially altered
by adversaries to manipulate message content. The use of keyed message authentication
codes (MAC) [Sch96, KBC97] is an inexpensive way to achieve message integrity.

Group authenticity guarantees that a received message was transmitted by some member
of the group, and is typically a byproduct of other data security policies. In many cases,
proof of the knowledge of the session key (as achieved through most integrity guarantees)

is sufficient to establish group authenticity.

Source Authentication

Source authentication approaches uniquely identify the sender of a message. Efficiently
providing sender authenticity (or source authentication) in groups is an area of active re-
search. However, the inherent complexity and cost of providing source authentication has
been found to be daunting. The following considers a number of constructions providing
source authentication.

In an obvious approach, a group establishes secret keys between each pair of senders and
receivers. The pair-wise secret keys are subsequently used to generate an unique keyed hash
(i.e., HMAC [KBC97]) delivered to each receiver. The authenticity of the message is inferred
from knowledge of the secret key. In the general case, the generation of the potentially
n? pair-wise secret keys can be problematic. Moreover, if such keys were available, each
message would require the generation and transmission of up to n — 1 HMACs. Thus, the
costs associated with a single transmission grow linearly with group size.

Several attempts have been made to apply symmetric message authentication codes
(MACs) to the problem of source authentication. For example, Canetti et al. define a
source authentication mechanism resilient to k collaborating members in [CGI199]. In
one proposed construction, £ keys are initially created (where ¢ = O(w log(1/q)), w is
the number of collaborating members from which the group is to be resilient, and ¢ is
the desired probability that the collaborating members share all the keys known by some

non-collaborating member®, for that non-collaborating member (e.g., it is suggested should

®Trivially, a collaboration which knows all keys known to a non-collaborating member can generate a
counterfeit message that will be accepted by the non-collaborating member. ¢ embodies the likelihood that

99

be ¢ = 2729). Each receiver u is given a subset of the keys R, C R,R = {ki,...,k}.
Each source s is given the set of second generation keys S; = {fi,(s),..., fx,(s)}, where
f is some pseudo-random, non-invertible function. Each message M creates a specialized
MAC with one output bit for all MAC(f,(s), M) such that i|]1 < 7 < £. The ¢ output
bits are transmitted with the message. Each receiver computes f, (s) and MAC(fi, (s), M)
for each one k; it knows. If all the bits verify correctly, then M is deemed authentic.
Because of the way the keys are assigned, no collaboration of receivers of k or less can (with
probabilistic certainty) generate counterfeit messages. As each sender knows a unique set of
authentication keys, no amount of sender collaboration will provide more information than
the set of individual sender keys. k resilient schemes provide probabilistic security. The
cost of the construction is a direct result of the desired strength of its protection (i.e., the
assignment of k).

Digital signatures [DH76, RSA78] have been used in many contexts to provide authen-
ticity guarantees to large or indeterminate sets of receivers. Source authentication can
be achieved in groups by simply signing each message. Any member with access to a
sender’s authenticated public key (e.g., via some certificate distribution service [HFPS99])
can accurately determine the source of a message. A limitation of signature based source
authentication is cost; asymmetric algorithms can be 1000 times more expensive than sym-
metric algorithms [Sch96]. Thus, high throughput groups using a signature solution will be
limited by the speed at which a sender (receivers) can generate (validate) signatures.

Off-line signatures [EGM96, GR97] mitigate the costs of signature generation and vali-
dation by removing public key operations from the critical path of message marshaling. For
example, the off-line signature approach defined [GR97] defines a table of size m + loga(m)
random values is constructed for each message using the following construction. For a mes-
sage M (of size m in bits®), a random signing key (sk) and resulting public key (pk) are

created:

sk =2Z1,..., Trmtlogs(m) € 0, 1k

pk = f(xl)a s af(merlogz(m))

where k is the size of the output of some one way hash function f. The public key is signed

any such situation occurs. Thus, it is important to assign a statistically insignificant value for q.
5Typically, M is a hash of the data to be sent. Hence, m is the number of bits of output of f.

60

off-line using a normal asymmetric private key. A signing process begins by the signer
appending a binary representation of the number of zero bits in M to M. The signature

8 = S1...Sm4logy(m) CONsisting of m + loga(m) values is generated:

s; = x; if bit ¢ of message m is 0, and

s; = f(x;) if bit 7 of message m is 1.

s, and M are transmitted to the receivers. pk can be distributed prior to transmission or
in conjunction with the signature. Verification requires the receiver validate that the last
log2(m) values encode the correct number of zeros. Because conversion of 1 to 0 in the first
m bits would cause a bit to flip from a 0 to a 1 in the last logs(m) bits, M cannot be forged
without inverting f.

Off-line signatures are limited by bandwidth consumption. A table and signature is
required for each message (e.g. often exceeding 1kb of signature data). Thus, this ap-
proach is not likely to meet the needs of groups in limited bandwidth environments. Hybrid
schemes [Roh99] reduce off-line signature costs by trading off computational resources or
security for decreased bandwidth usage.

In another attempt to mitigate the costs of signature generation, Gennaro and Rohatgi
introduced stream signatures in [GR97]. Rather than authenticating each packet individ-
ually, stream signatures amortize signing costs over blocks of messages. Two schemes are
proposed in [GRI7]; off-line and on-line stream signatures.

Off-line stream signatures require the transmission data be available prior to the session.
Initially, the transmission data B is broken into k blocks (Bi,...,By). k + 1 blocks are

generated and transmitted using the following construction:

By = pks, {f(B1,K)}pk,
le = BZ?‘H(7€+1)
B, = By, 0000

The first packet (Bj) contains a signature generated using the private key of an asym-
metric key pair pks of the sender. The signature is calculated over the hash of the first
data packet and the total number of packets in the transmission. Each subsequent packet
contains a hash of the following packet of the transmission. The single signature validates
all data packets by chaining the hashes across the entire transmission. However, if any

packet is lost, the chain is broken and no further packets can be authenticated.

61

The on-line stream signatures operate in essentially the same way, with the exception
that it is not assumed all data packets are known prior to transmission. In this case, packets
are buffered by the sender as data is generated. When enough packets are available, a stream
signature is generated and the data is transmitted to the group. In this way, the sender
trades off authentication costs with the latencies caused by buffering. Wong and Lam soften
the reliability requirements of on-line signatures using forward error correction techniques
in [WL99].

Source authentication is frequently relevant in non-group environments. For example,
Chueng presents the Optimistic Link State Verification (OLSV) protocol in [Che97]. The
OLSV target environment consists of a number of routers exchanging link state information
from which routing tables are generated. OLSV augments existing link state distribution
protocols by authenticating updates. The authors note that previous approaches were
insufficient for high speed networks. Establishing a single symmetric key shared by all the
routers would not prevent a compromised router from creating bogus updates. For reasons
cited above, the costs of an approach based solely on digital signatures or that establishes
pair-wise secrets was deemed equally undesirable.

To simplify, OLSV uses a commit-release approach. Each update is signed” using a
symmetric key generated from a hash chain. The last value in the hash chain itself is signed
using the sender’s private key and distributed to all interested routers. The values of the
hash chain (keys) are subsequently exposed and used by receivers to validate MAC values.
However, OLSV requires that an update be received prior to the release of the associated
key. Failure to preserve this property could result in forged updates (i.e., an adversary
could generate an arbitrary update using the released key). OLSV is optimistic; all updates
are accepted as authentic until the key is released. If it is later found that an update was
forged or altered, the other perform a recovery protocol removing the misbehaving routers
or hosts.

Timed Message Authentication Codes [PSTCO00] (TMAC) provide group source authen-
tication in a manner similar to OLSV. Each packet contains a keyed hash computed under
a key to be released at a later time. If a receiver can determine that a message was re-
ceived before the associated key was released, the packet is deemed authentic. However, like

OLSV, the security of the this scheme is directly related to security of the timing information

"More properly, a message authentication code (MAC) is calculated using the symmetric key.

62

held at both the sender and receiver. The authors propose a group timing synchronization
algorithm used in support of TMACs in [PCB100].

A limitation of Timed MAC is their inability to provide non-repudiation. Also defined in
[PSTCO00], the Efficient Multi-Chained Stream Signature (EMSS) addresses this limitation
by defining a tiered stream signature. In one construction, each packet P; in EMSS contains
a hash of the packets Pj_i, P,_s, Pj_4, Pi_g. Later, a signature packet (P;, where j > i)
signing the hash of packets P; 1, Pj 2, Pj 4, Pj g is sent. When P; is received, the
authenticity of all previous packets can be asserted by following the hash chains backward
from the signed values. Because the packet was signed with a private key, non-repudiation is
assured. An optimization of this scheme uses error correcting codes to reconstruct missing
hash values. Simulations of EMSS found that environments with high loss rates (60%) can

achieve robustness (i.e., authenticity can be assessed > 95% of the time).

3.4 Component Systems

Monolithic protocol stacks are often difficult to construct, debug, and maintain. Component-
based systems limit the complexity associated with stack implementation and maintenance
by decomposing services into software modules. Protocol stacks are synthesized at compile
or run-time from ordered collections of software components implementing the desired func-
tionality. Hence, each service can be implemented and tested in isolation. Moreover, the
cost of developing new stacks is low; uniform interfaces allow components to be reorganized
quickly. Mechanism composition has long been used as a building block for distributed
systems [O0SS94, RBM96, Ber96, BHSC98, FKTT98, NK98]. However, the definition
and synchronization of stack specifications (e.g., component organization graphs) in these
systems is largely relegated to system administrators and developers.

An early seminal work used to rapidly construct protocol stacks from protocol com-
ponents was the x-kernel [HP94]. Course grained protocol objects in x-kernel implement a
single protocol (e.g., TCP [J81], UDP [Pos80], IP [Pos81]). Protocol objects are composed
at compile time to implement a particular stack as directed by the developer. Each protocol
in the x-kernel is represented by a directed acyclic graph defining the data flow of through
the layers of the stack. A session object explicitly states the path through the protocol
graph (e.g., A RPC call packet would traverse nodes associated with RPC, TCP, IP, and

63

physical layer objects).

The ADAPTIVE system [SFS93] extended the x-kernel philosophy to the construction
of protocols from a specification language. The Protocol Machine Specification Language
(PMSL) used by ADAPTIVE acts as a form of policy; protocols are constructed for the
particular Quality of Service, performance, and reliability requirements of the target system.
PMSL protocol specifications are translated in a task graph defining the implementation.
To simplify, an ADAPTIVE protocol machine instantiation is constructed at runtime from
intermediate PMSL specifications.

Isis [Bir93] and Horus [RBM96] applied the course grained protocol object approach to
reliable group communication. These works define protocol components implementing group
services (e.g., ordering guarantees, membership management), rather than the general-
purpose transport protocols. Different protocol variants (with potentially different delivery
semantics and guarantees) are composed to construct an efficient group communication
service.

The use of component frameworks as a building block for security was considered by
Orman et al. in [OOSS94]. The authors assert that basic cryptographic functions and pro-
tocols can be interposed into general-purpose protocol graphs to achieve end to end security.
The authors further state that general-purpose security services (e.g., authentication) can
be constructed in a similar manner. The authors demonstrate the viability of this approach
by implementing client and server interfaces for Kerberos [NT94] within the x-kernel. As
illustrated through their implementation of Kerberos, sessions providing specific security
guarantees are implemented through the decomposition of a protocol’s transport and secu-
rity goals, and realized through an appropriate protocol graph. Where multiple protocol
variants are required (as is the case where support for different security policies is required),
(de)multiplexing components are added to the graph.

A limitation of the original x-kernel and similar systems system was the granularity
of its protocol objects. Each protocol object often implements a general-purpose proto-
col, which may be complex and inefficient. For example, TCP is a complex protocol, with
many options and boundary cases. The Coyote [BHSC98] system investigated the use of
fined-grained micro-protocol components in the construction of end to end protocols [HS98].
Micro-protocols implement properties, rather than services, as separate modules. For ex-

ample, while HORUS may implement group FIFO delivery, Coyote may implement separate

64

micro-protocols for reliable delivery and ordering. Protocols in Coyote are configured from
collections of micro-protocols implementing the protocol semantic required by an appli-
cation. Similar to Antigone, communication between Coyote micro-protocols modules is
implemented through generic event interfaces (see Chapter 5).

Component composition must be restricted to only those compositions preserving se-
mantic correctness and interface compatibility. A number of works investigating tech-
niques for configuration programming have been studied (e.g. Polylith [Pur94], DAR-
WIN [MKM94]). Hiltunen investigates a specification language for configuration program-
ming in [Hil98], which he subsequently applied to the construction of data security services
in Cactus [HJSUOO]. Hiltunen’s specification language describes the legal system construc-
tions through the conflict, dependency, independence, and component relations, where con-
flicting (dependent) components must (must not) be used in conjunction, and independent
components may or may not be used in conjunction. These relations are used at the build
time to ensure correctly operating implementations.

The ADAPTIVE system builds executable Protocol Machine Instantiation from a two
phase process; a PMSL specification is complied into intermediate Protocol Machine Task
Graph Language by the Protocol Machine Configurator. This process translates protocol
requirements into a graph representing orderings relationships between the protocol tasks
(e.g., CRC, sequencing). An executable instantiation is created by the Protocol Machine
Synthesizer by mapping the various tasks to protocol components. Legal usage relations
between components are enforced by knowledge internal to the configurator and synthesizer.
This has the disadvantage of requiring additional knowledge be programmed into these tools

when new components are introduced into the system.

3.5 Broadcast Communication

A prerequisite to efficient group communication is a broadcast transport media. Histor-
ically, the predominate transport mechanism used for group communication has been IP
multicast [Dee89]. IP multicast provides a connectionless point-to-multipoint communica-
tion service. Membership of a multicast group is not bounded by location or restricted
in any way. A host may be connected to any number of groups simultaneously, and need

not explicitly join prior to sending data. Messages sent by member applications are deliv-

65

ered as best effort traffic to all members that have explicitly indicated their interest in the
group (e.g., via IGMP [Dee89]). The difficulties inherent to multicast routing in wide-area
networks have spawned a significant body of research [WPD88, Moy94, Bal97b, Bal97a,
EFHT98, Moy98, DEF199]. As evidenced by the multitude of multicast routing protocols,
the issues surrounding multicast routing are difficult to solve with singular solutions.

Due to a number of technical limitations [AAC*99], no single broadcast transport ser-
vice has been universally adopted. Owverlay Networks [Fra99, BCGT00, CRZ00, JGJT00,
CMBO00] address the limitations of IP multicast routing protocols by providing a broadcast
transport at the application layer. These networks implement a broadcast channel through
host-level self-organization and routing. Member hosts or dedicated servers act as mul-
ticast routers by constructing a virtual network over point-to-point communication. The
topology of the overlay network is modified as the group membership or characteristics of
the physical network change. Thus, the group attempts to converge on the lowest cost (as
defined be any number of metrics) broadcast tree. Overlay networks have the advantage of
allowing the group membership to control the broadcast media. Hence, issues of scaling,
inter-domain communication, and addressing are all within the purvey of the participating

hosts.

CHAPTER 4
POLICY REPRESENTATION AND ANALYSIS

A consideration of any policy management infrastructure is the means by which policy is
represented. Previous policy management systems have sought to identify a structure or
schema allowing the specification of all germane aspects of a session context appropriate for
the target environments. The Ismene Policy Language extends this work by considering a
language under which policies for a large number of application domains, system models,
and environments can be defined.

To motivate the goals of Ismene, the following presents simplified security requirements
for an example group teleconferencing application, tc. The tc application is to be de-
ployed within a company widget.com. widget.com’s organizational policy for tc requires

the following:

e the confidentiality of all session content must be protected by encryption using DES

or AES (provisioning requirement)

e participation in a session is restricted to widget.com employees (access control re-
quirement,)
Now suppose Alice wishes to sponsor a session of application tc that meets her following
local policy:
e Alice wishes to use only AES cryptographic algorithm only (provisioning require-

ment); and

e she wishes to restrict the session to the BlueWidgets team (access control require-

ment)

A basic requirement on the policy language is that it must be able to specify provisioning
and access control policies for each group member and resolve them into a specific session

policy instantiation. In the above example, the result of such resolution is that Alice’s

66

67

session is restricted to members who are in both BlueWidgets and widget.com (access
control requirement), and the cryptographic modules must be configured so that all content
is encrypted using AES (provisioning requirement).

In general, security requirements can be more complex. For example, Alice may wish
to restrict access to certain hours of the day, require that the session be rekeyed when new
members join or leave, etc. Furthermore, other members in the group may have their own
local security policies. A member must be able to check whether the session’s policy satisfies
the member’s local policy. If the local policy is not satisfied, the member can choose to
abstain from the group rather than compromise its security policy.

Policy must also be responsive; changes in membership or the execution of a security-
relevant action can affect the session configuration. Conversely, the session must be able to
make access control decisions based on the use and configuration of security mechanisms.

Ismene, thus, has the following primary goals:

e flexible provisioning - Ismene must allow the provisioning of groups based on an as-

sessment of environmental conditions and the local policies of the members.

e qction-dependent provisioning - Ismene must allow the modification of session con-
figuration based on changes in membership or the execution of a security-relevant

action.

e authentication and access control - The authentication and access control embodied by
a session must be explicitly, but flexibly, stated in Ismene. Authentication and access
control should not only be based on operating conditions, but also on the current

session configuration.

e policy compliance - Any member participating in a group must be able to assess

compliance of a configuration with its local security policy.

e legal usage analysis - Ismene must be able to determine whether a configuration rep-
resents the proper usage of the underlying security mechanisms.
Contemporary policy languages for group communication focus on the development of
security schema meeting the needs of existing group applications (e.g., [HM97a, HCO1,
DBH'00, HCDO00]). While entirely appropriate for the target environments, the introduc-

tion of new security requirement necessitates modification of the not only the language, but

68

also of all frameworks supporting the group [BBD799]. This is in direct contrast with the
goals of this thesis; a flexible policy management infrastructure must address unforeseen
requirements (and integrate new infrastructure) without modification to the architecture or
supporting policy language [HCH™00].

Authentication and access control has been studied extensively for 25 years [BLT73].
Recent approaches have accepted that access control, and security in general, is contex-
tual [WL93, CC97, WL98, RN0O]. As such, recently proposed access control languages
map not only users and objects, but also environmental context to access rights. However,
these languages do not regulate how access is provided. Trust Management approaches
extend context to encompass service provisioning [BFL96, BFIK99b]. Trust management
access policies typically state the configurations under which access is granted. Access is
stateless in these languages, which limits the ability to construct and enforce a coordinated
access control policy throughout the lifetime of a session.

The languages cited above largely assume policies are completely specified prior to ses-
sion initialization by a single authority. Hence, these languages do not adapt to participant
requirements at run-time. Existing languages supporting reconciliation (e.g., DCCM [DBH00],
MSME [PCKSO01]) are limited in scope, or construct policies appropriate for peer-to-peer
communication. These limitations led to the design of Ismene, which builds significantly
upon the design and philosophy of these languages.

The remainder of this chapter considers the Ismene policy model, the construction of
the Ismene Policy Language, and the design of the algorithms supporting its use. Hence,
this chapter addresses two of the primary objectives of this thesis identified in Chapter 2;
Flexible Representation and Multiparty Determination. The following section begins by

further motivating the goals of the Ismene policy language.

4.1 System Model

An Ismene policy specifies the central components of a group communication security con-
text: provisioning and authentication and access control. Both aspects are specified in group
and local polices. A group policy defines the entirety of security-relevant properties, param-
eters, and facilities used to support a group session. Each group participant states the set

of local requirements on group sessions through a local policy. The group and member local

69

Analysis Evaluation/
[’) Reconciliation A/- (Member ™))
Policy Issuer 1
[Initiator (M)] —> :
l (Member (MZ))
-
:

l Key :
/ policy | M\ o :
8 Specification
Policy Local Policy | ==l .
Repository Compliance

Instantiated Policy

g

Figure 4.1: System Model - A session is a collection of participants collaborating towards
some set of shared goals. A policy issuer states a group policy as a set of requirements appro-
priate for future sessions. The group and expected participant local policies are evaluated
to arrive at a policy instantiation stating a concrete set of requirements and configurations.
Prior to joining the group, each participant checks compliance of the instantiation with its
local policy.

policies are reconciled within an environment prior to the establishment of each session.

A group provisioning policy identifies the security requirements of the group. These
policies requirements are mapped into a configuration of security-related services or mech-
anisms. Ismene group and local policies are reconciled to arrive at a specific configuration
for a session. Potential participants of a session verify that the session’s configuration is
compliant with their local policy before participating. A group policy is tested against a set
of legal usage assertions through analysis to ensure that any configuration resulting from
reconciliation will not introduce undesirable side effects.

Authentication and access control defines how sessions regulate action within the group.
The authentication and access control implemented by a group is explicitly stated in its
configuration. Ismene is limited to expressions of positive criteria under which access is
allowed, but permits the integration of other authentication frameworks where more ex-

pressive power is required.

4.2 Approach

Depicted in Figure 4.1, a group is modeled as the collection of participants collaborating

towards a set of shared goals. The existence of a policy issuer with the authority to state

70

session requirements is assumed. The issuer states the conditional requirements of future
sessions through the group policy. Each member states the set of local requirements on
future sessions through a local policy. Each participant trusts the issuer to create a group
policy consistent with session objectives. However, a participant can verify the compliance
of a policy instantiation with their local policy.

An initiator is an entity that generates an policy instantiation from group and local
policies. The initiator may or may not be a participant of the group. An instantiation
concretely defines the provisioning and authentication and access control rules to be en-
forced. The instantiation is the result of the evaluation and reconciliation of the group and
local policies within the run-time environment. Provisioning identifies the relevant session
requirements, and defines how requirements are mapped into a configuration. The initiator
is trusted (by the group members) to evaluate and reconcile the group and local policies
correctly.

Ismene policies are collections of totally ordered provisioning and action clauses. Pro-
visioning clauses identify configuration. Participant software is modeled as collections of
security mechanisms. Associated with a mechanism is a set of configuration parameters
used to direct its operation. Each mechanism provides a distinct communication service
that is configured to address session requirements. A provisioning clause explicitly states
configuration through a set of mechanisms and parameters. Authentication and access con-
trol rules are defined in action clauses. An action clause defines the conditions under which
a protected action should be allowed.

Each provisioning and action clause is defined as the tuple:
<tag> : <conditionals> :: <consequences>;

Tags are used to provide structure to the policy. Intuitively, tags represent session re-
quirements or identify a protected action. The organization of tags dictates the relationships
between clauses, and ultimately guides policy reconciliation. Conditionals contain zero or
more predicates describing the conditions under which the consequences are to be enforced.
Predicates are Boolean functions used to test the operating environment, session configura-
tion, local or global state, or the presence of credentials. The result of the evaluation of a
predicate is true where the represented condition holds and false otherwise. Consequences
identify provisioning and authentication. Each consequence states a session requirement,
a configuration, or the acceptance of an access request. The complete Ismene grammar is

presented in Figure 4.2.

71

1 <policy> := <statements>

2 <statements> := <statement> ";" ["," <statements>]

3 <statement> := <attribute> | <prov_clause> | <action_clause> | <assertion>
4

5 <attribute> := <identifier> ":=" "<" <value> ">" |

6 <identifier> ":=" "<" <value list> ">"

7 <value list> := "{" <value> "}" ["," <value list>]

8 <identifier> := word

9 <value> := string

10

11 <prov_clause> := <tag> ":" [<conditionals>] "::" <consequences>

12 <tag> := <identifier>

13 <conditionals> := <var> "=" <value> ["," <conditionals>] |

14 <predicate> "(" [<args>] ")" ["," <conditionals>]
15 <var> := "$" <identifier>

16 <predicate> := <identifier>

17 <args> := <var> | <identifier> ["," <args>]

18 <consequences> := <pick> | <config> | <tag> ["," <consequences>]
19 <pick> := "pick" "(" <config> "," <config> ["," <configs>] ")"

20 <configs> := <config> ["," <configs>]

21 <config> := "config" "(" [<cfgstmts>] ")"

22 <cfgstmts> := <mechanism> [" (" <params> ")"] [, <cfgstmts>]

23 <mechanism> := <identifier>

24 <params> := <identifier> "=" <value> ["," <params>]

25

26 <action_clause> := <tag> ":" [<action_conditionals>]

27 "::" "accept" [, "reconfig"l]

28 <action_conditionals> := <action_condition> ["," <action_conditionals>]
29 <action_condition> := <conditionals> | <credential> | <config> | <pick>
30 <credential> := Credential "(" <bind var> "," <cred_args> ")"

31 <bind var> := "&" <identifier>

32 <cred_args> := <identifier> "=" <value> ["," <cred_args>] |

33 <identifier> "=" <var> ["," <cred_args>] |

34 <identifier> "=" <bind var> ["," <cred_args>]

35

36 <assertion> := "assert" ":" [<assert_conds>] "::" <assert_args>;

37 <assert_args> := [!] <pick> | [!] <config> ["," <assert_conds>]

Figure 4.2: The Ismene Policy Language Grammar. A word represents a string of non-
whitespace alphanumeric characters. A string is a string of alphanumeric characters (i.e.,
may contain newline and whitespace characters).

72

The semantic of a clause is as follows; if all the conditionals in the clause evaluate
to true, then the consequences need to be enforced. For example, a clause containing
conditionals ¢; ... ¢, and consequences ¢ . .. ¢, represents the logical expression (c; A... A
¢n) = (@@ A...Agp). Thus, the result of an evaluation over a set of clauses is a conjunction
of consequences. The collection of consequences defines precisely how the session’s security
parameters are allowed to be configured.

One or more clauses may be defined with a tag. Clauses associated with a single tag
are evaluated in the order in which they are defined in the policy. Evaluation of a tag stops
when a clause evaluates to true (i.e., the conditionals hold). In this case, the consequences
are enforced and all other clauses associated with the tag are ignored. If a clause evaluates
to false then the next clause associated with the tag is evaluated. If, for a particular tag,
no clause evaluates to true, then the policy is rejected. A rejected policy indicates that
the stated security requirements cannot be met in the current environment. All interested
parties are notified of the failure, and the session is aborted.

Returning to the widget.com example described in the previous section, the network
administrator responsible for setting application policy at widget.com acts as the policy

issuer. The administrator generates the following group policy for the tc application:

provision : :: config(idhdlr()),
pick(config(idhdlr(conf=des)), config(idhdlr(conf=aes)));
join : Credential (&cert,iss=$CA,subj.0=widget.com,subj.CN=$joiner) :: accept;

The idhd1r defined in the provision clause is the mechanism providing security guar-
antees over application content. The conf=des and conf=aes are configuration parameters
applied to the idhdlr mechanism stating how confidentiality is to be provided. The pick
configuration is used to state flexible policy; either DES [Nat80] or AES [DR98, DRO0] can
be used to implement confidentiality, but not both or neither. The join action! clause states
that only entities supplying a certificate credential with subject organization of widget.com
and issued by a (known and trusted) CA should be admitted to the group.

Local policies are used by each participant to describe local requirements on future

sessions. Alice defines her local policy as follows:

provision : :: config(idhdlr()), config(idhdlr(conf=aes));
join : Credential(&cert,iss=$CA,subj.0=BlueWidgets,subj.CN=$joiner) :: accept;

!The join action in this example is not a Ismene reserved word; the set of actions defined in each policy
should those understood by the provisioned mechanisms.

73

Through this local policy, Alice states that any session must implement a confidentiality
policy using the idhdlr mechanism implementing AES. The join clause states the session
must enforce a policy that requires participants supply a certificate issued by a trusted CA
with a subject organization of Blue Widgets.

Alice acts as the initiator in sponsoring the tc session. She acquires the local policies
from the expected session participants. For this example, only the group policy and Alice’s
local policy are used. The instantiation resulting from evaluation and reconciliation is as

follows:

provision : :: config(idhdlr()), config(idhdlr(conf=aes));
join : Credential(&cert,iss=$CA,subj.0=widget.com),
Credential (&cert,iss=$CA,subj.0=BlueWidgets,subj.CN=$joiner) :: accept;
The reconciliation of the tc group and Alice’s local policies attempts to find a configura-
tion that is consistent with both policies. In this case, the configuration config(idhdlr (conf=aes))
is selected. The use of two credential conditionals in the join clause represents a conjunc-
tion; credentials fulfilling the criteria for each condition must be supplied to gain access to
the group?.
The $CA descriptor in the above examples identifies an attribute defining the public key
of a known and trusted certificate authority. An attribute describes a single or list-valued

variable. For example, the following attributes define a single-valued version number and

list-valued ACL:

version := < 1.0 >;
JoinACL := < {bob}, {john}, {george} >;

The occurrence of the symbol “$” in any clause signifies that the attribute should be
replaced with its value. The attribute set is the set of all attributes. An application can add
to the attribute set by passing name/value (list) pairs to the Ismene algorithms. Hence, the
attribute set can be used to supply environmental context not representable by Boolean-
valued conditionals. The attribute set serves the same function as the action environment
in KeyNote [BFIK99a)].

Prior to their use in any session, group policies are analyzed to determine if they rep-
resent legal configurations. Legal configurations are stated through assertions. Assertions

represent invariant properties required by all instantiations. Logically, these statements

2Note that this does not imply a unique credential must be supplied for each Credential test. As well
may be the case in the example above, a single credential may satisfy several credential tests.

74

identify illegal and mandatory configurations. Assertions are created by mechanism de-
velopers and security personnel, and provide a means by which provisioning correctness

principles are guaranteed over all sessions. For example, the assertion:

assert: config(keymgt (mem=leavesens)) :: config(membership(leave=explicit));
states that a key management mechanism configured with leave sensitivity [MPH99] requires
(is dependent on) the membership mechanism configured to provide explicit leaves. Thus,
for this assertion to hold, any instantiation defining the leave sensitive key management
must also define the membership mechanism with explicit leaves. Through analysis, Ismene
guarantees that no instantiation resulting from the reconciliation of the group policy with
any set of local policies will violate policy assertions.

Each potential participant acquires the policy instantiation prior to joining a group. The
participant determines the consistency of the instantiation with its local policy through a
compliance algorithm. A late joiner (i.e., a member whose local policy was not considered
during the creation of the instantiation) is free to participate if the instantiation complies
with their local policy. Participants in the tc session check the compliance of the instanti-
ation received from Alice, and if successful, can participate in the session. Note that any
participant whose local policy is used in the initial reconciliation phase is trivially compliant.

The following sections describe the format and use of the two types of clauses in Ismene;

provisioning clauses and actions clauses.

4.3 Provisioning Clauses

Provisioning clauses are used to develop a policy instantiation from conditional statements.
Each provisioning clause identifies zero or more conditionals used to define when the conse-
quences are applied to the instantiation. Configuration, tag, and pick consequences define
how the instantiation is derived and defined.

Environment conditionals test the session environment. Each environment conditional
is defined as a (possibly parameterized) predicate assessing a measurable aspect of the en-
vironment. However, the evaluation of environmental conditionals is outside the scope of
the Ismene language. The environment in which Ismene is used is required to provide an
interface for the evaluation of predicates. This approach separates the definition of relevant

conditionals from the process of policy evaluation. Similar to other authentication and ac-

75

cess control [RN00], Ismene defers condition evaluation to domain specific implementations
(upcalls).

Configuration consequences define how the requirements of a session are realized through
configuration. Each such consequence identifies either a mechanism or mechanism configu-
ration to be added to the policy instantiation. For example, consider the following clauses

defining secrecy and integrity policies:

confidentiality : privateGroup() :: config(idhdlr()), config(idhdlr(guar=conf));
integrity : RmteScope($mcaddr) :: config(idhdlr()), config(idhdlr(intg=rfc2104,hash=md5));

The confidentiality clause states confidentiality should be provided when a group is
private (as indicated by the privateGroup predicate, but does not state how this is achieved
(i.e., assumes the specification of a cryptographic algorithm occurs elsewhere). The second
clause indicates that integrity is enforced through MD5-based HMACs [Riv92a, KBC97] if
the session multicast address is remotely scoped (e.g., multicast traffic will extend beyond
the local network). The application or infrastructure using Ismene is required to provide
interfaces for evaluating the privateGroup and RmteScope conditionals.

Pick consequences afford the initiator flexibility in developing the session. Semantically,
the pick statement indicates that exactly one configuration must be selected. Informa-
tion in the local policies guide reconciliation towards the most desirable configuration (see
Section 4.5.2).

Tag consequences describe the organization of the group policy. The structure defined
by the organization of tags defines the dependencies between sub-policies. Each tag con-
sequence requires the evaluation of other clauses, which may lead to the introduction of
further configurations and tags.

Consider the following policies appropriate for public and private sessions in a confer-
encing application:

provision : private($addr,$pt) :: config(idhdlr()), config(idhdlr(guar=conf)),
strong_key_mgmt, confidentiality;
provision : :: config(idhdlr()), config(idhdlr(guar=conf)),
weak_key_mgmt, confidentiality;

strong_key_mgmt : :: config(lkh_rekeying()), secrecy;

secrecy : ManagerPresent($group) :: config(lkh_rekeying(sens=mem));

secrecy : :: config(lkh_rekeying(sens=leave));

weak_key_mgmt : Audio(), Video() :: config(kekkey()), config(kekkey(rekeyperiod=240));
weak_key_mgmt : Video() :: config(kekkey()), config(kekkey(rekeyperiod=120));
weak_key_mgmt : :: config(kekkey()), config(kekkey(rekeyperiod=60));

confidentiality : sensitive($subject) :: pick(config(idhdlr(encr=3des)),

config(idhdlr (encr=desx)));
confidentiality : :: config(idhdlr(encr=des));

76

This policy states that private groups should be configured with strong key management
and confidentiality, and non-private groups with weak key management and confidentiality.
Initially, the conditionals associated with the first provision clause are evaluated. If the
group is private (as determined by the address), then the idhdlr mechanism is configured to
enforce confidentiality and the strong key mgmt and confidentiality tags are evaluated.
If this fails, the evaluation falls to the next clause defining a policy for non-private groups by
applying the idhd1r configuration and evaluating the weak key mgmt and confidentiality
tags.

The evaluation of the strong key management requirement illustrates how a session
provisioning can be responsive to membership. The (unconditional) strong key manage-
ment clause states that a LKH (key management) mechanism should be used. However, in
applying the secrecy tag consequence, the instantiation will arrive at a backward or member-
ship rekeying policy, depending on a manager being expected to participate. Thus, groups
with managers are afforded greater protection from non-members through a membership-
sensitive policy that rekeys following any membership change.

The weak key mgmt clauses describe how the quality of service provided by key man-
agement can be determined by the types of data being transmitted (e.g, audio and video
groups rekey least frequently, followed by video only, followed by other groups). Thus,
through similar policies, configuration can be a reflection of the available resources or the
demands made on surrounding infrastructure.

Pick consequences are useful in environments where the issuer wishes to set standards
for operation, but does not wish to mandate an implementation. The first confidentiality
clause states that, for groups with sensitive subjects, the idhdlr mechanism can (only)
be configured to use either the 3DES [Nat80] or DESX [KR96] algorithms to implement a
strong confidentiality policy. If the subject is not sensitive, then the group will implement
confidentiality by DES encryption.

To illustrate this process, the following configuration is the result of evaluation of a

public, but sensitive, Audio/Video session;

config(idhdlr()), config(idhdlr(guar=conf)),
config(kekkey()), config(kekkey(rekeyperiod=240))
pick(config(idhdlr(encr=3des)), config(idhdlr(encr=desx)));

Local policies are evaluated exactly as the group policy. Described in Section 4.5.2, the

reconciliation algorithm resolves each pick statement in the evaluated group policy based

77

on evaluated local policies. Hence, the result of provisioning reconciliation is a completely
defined session configuration (consisting of only mechanism and mechanism configuration

consequences).

4.4 Action Clauses

The action clauses defined in an instantiation identify the authentication and access control
policy enforced by the group. Action clauses can contain configuration, credential, and
environmental conditionals (i.e., tag consequences are not allowed) and are restricted to
accept and reconfig consequences. An accept consequence indicates that an action should
be allowed. The reconfig consequence represents the need for a re-evaluation of the group
and member provisioning policies.

Ismene represents a closed world in which denial is assumed. An action is allowed only
if the evaluation of an associated action clause leads to an accept consequence. The tag
of an action clause identifies the action to be considered (e.g., join, send). The set of
protected actions are defined by the issuer, and assumed known a priori by the security
mechanisms (see Chapter 5. Ismene is consulted for acceptance when any protected action
is undertaken.

Configuration conditionals test the presence of configurations in an instantiation. A
configuration conditional returns TRUE when the configuration is defined in the instanti-
ation. The semantics of a pick conditional is the or of the configurations; the conditional
returns TRUE if any one of the configurations described in the pick are contained in the
instantiation.

Credential conditionals test the characteristics of authentication information associated
with a protected action. A credential is modeled in Ismene as a set of attributes. For
example, an X.509 certificate [HFPS99] can be modeled as attributes for subj.O (subject
organization), issuer.CN (issuer canonical name), etc. To illustrate, consider the following
action clause:

join : Credential (&cert,sgner=$ca,subj.CN=$joiner) : accept;

The first argument of a credential conditional (denoted with “&” symbol) represents
binding. The credential test binds the matching credentials (see below) to the (&cert)
attribute. This binding is scoped to the evaluation of a single clause. Conditionals are

evaluated left to right.

78

The second and subsequent parameters of a credential conditional define a matching
of credential attributes with attribute or constant values. The above example binds the
credentials that were issued by a trusted CA (sgner=$ca) and have the subject name of
the joining entity (subj.CN=$joiner) to the &cert attribute. The conditional returns true
if a matching credential can be found. The assertion of valid and appropriate credentials is
outside the scope of Ismene. Hence, it is up to the enforcement architecture and application
to supply the set of validated credentials associated with an action.

Consider the following set of action clauses:

join : config(idhdlr(encr=des)), In($JoinACL,$joiner),

Credential (&cert,sgner=$ca,subj.CN=$joiner) : accept;
join : Credential (&cert,sgner=$ca,delegatejoin=true),

Credential (&tocert,sgner=&cert.pk,subj.CN=$§joiner) :: accept;
eject : sensitive($subject),

Credential (&cert,sgner=$ca,role=X,subj.CN=§ejector) :: accept;

send : Credential (&key,key=$sessky), pick(config(idhdlr()),
config(gdhdnlr())) :: accept;

The first join describes an ACL-based policy for admitting members to the group. The
member is admitted to the group if she is identified in the JoinACL list attribute, she can
provide an appropriate credential, and the session is encrypting traffic using DES.

Action clauses are evaluated like provisioning clauses. The second join is consulted
only when the conditionals of first clause do not evaluate to TRUE. The second join clause
describes a delegation policy. The first credential conditional binds &cert to the set of
credentials delegating join acceptance (in this case, the set of certificates from the CA
delegating join acceptance). The second conditional tests the presence of any credential
signed with a delegated public key. Ismene is restricted to explicit delegation chains; each
link in the chain must be explicitly stated as a credential conditional.

The eject clause describes basic role-based authentication and access control. This
clause states that the eject action will be allowed only if a credential stating the requester’s
right to assume the role X can be found. If the credential is found, the requester, acting in
role X, is allowed to eject another member. A similar clause can be defined for each action
role X is authorized to perform.

Credentials can be used to test knowledge of session specific keys. For example, the
send action clause describes the conditions under which an application message should be
accepted. The clause states that the right to send a message in sessions configured with the
idhdlr or gdhdnlr mechanism is predicated only on proof of the knowledge of the current

session key (matching $sesskey).

79

4.4.1 Reprovisioning the Group

The reconfig consequence provides a means by which the group may advise the environ-
ment of a need to re-evaluate the session configuration. This reconfig consequence indicates
to the group that some action representing a fundamental change in the group is about to
occur. The following example illustrates one such change.

Consider the following action clauses that define a group policy requiring re-provisioning

before members belonging to the SpecialUsers group are admitted:
prejoin : In($SpecialUsers, $joiner),
Credential (&cert,sgner=$ca,subj.CN=$joiner) :: accept, reconfig;
join : In($SpecialUsers,$joiner), config(idhdlr(encr=des)),
Credential (&cert,sgner=$ca,subj.CN=$joiner) :: accept;
provision : SpecialUsersPresent() :: config(idhdlr(encr=aes));
provision : :: config(idhdlr(encr=des));

To support re-provisioning, joining the group becomes a two phase process. Initially
the member will perform a prejoin, after which the environment will be requested to re-
provision the session. The provision tags specify that AES encryption should be configured
if SpecialUsers are present and DES otherwise. In this policy, the reconfig consequence
signals to the group that security requirements need to be re-assessed when a SpecialUser
member joins.

reconfig only causes notification; actual re-provisioning is outside the scope of Ismene.
Re-provisioning may or may not be successful. However, the non-trivial task of transitioning
a group to a new policy has yet to be fully investigated. The prejoin step was introduced to
handle the possibility that re-provisioning could fail or take substantial time. Only after the

session is successfully re-provisioned to use AES, a member belonging to the SpecialUsers

is admitted.

4.4.2 Integrating Ismene with External Authentication Frameworks

Ismene provides a simple model and language for stating group authentication and access
control. However, it is often the where more expressive power is required. Moreover,
many environments will require enterprise-internal authentication services be used across
applications. A central design goal of Ismene is to allow the delegation of authentication
and access control decisions to external services.

Ismene desires to take advantage of widely deployed or more expressive authentica-
tion frameworks (e.g., Kerbeos [NT94], PolicyMaker [BFL96], KeyNote [BFIK99b], GAA
APT [RN00], Akenti [TJM*99]). In this way, Ismene need not replace existing approaches,

80

but augment them. The following action clause describes how KeyNote can be used within
an Ismene policy:
join: KeyNote($joiner,$attrset,$grppol,$creds) :: accept;

This clause states that a member should be admitted to the group only if KeyNote can
generate a proof of compliance stating authentication to join the group. The conditional
states that requestor ($joiner), action description ($attrset), policy to be enforced ($grppol),
and credentials ($creds) be passed to KeyNote. This is precisely the set of information used

to evaluate a KeyNote policy.

4.5 Policy Processing

The following subsections describe the use of the Ismene policy algorithms to flexibly enforce
group security policy. The construction and complexity of these algorithms are considered

in detail in Section 4.5.4.

4.5.1 Evaluation

The Provisioning Evaluation algorithm (PEVL) is used to determine the provisioning that
is appropriate for the run-time environment. The evaluation algorithm recursively assesses
clauses defined over the set of tags, conditionals, and consequences. The special provision
tag is the start symbol for reconciliation of provisioning. Obviously, group and local policies
are required to have at least one clause defined with the prowvision tag. The evaluation of
provisioning clauses is described in detail in Section 4.3.

The group and local policies are evaluated prior to reconciliation to arrive at an evalu-
ated policy. The evaluated policy contains a set of mechanisms, mechanism configurations,
and pick statements. The following restrictions are placed on the Ismene policies. These

restrictions allow efficient policy reconciliation and compliance checking.

Restriction 1 - A mechanism can only be stated in at most one pick statement in

an evaluated policy.

Restriction 2 - A mechanism configuration can only be stated in at most one pick

statement in an evaluated policy.

81

Note that if the result of evaluation is unconstrained (i.e., does not conform to these re-
strictions), reconciliation of even a single policy becomes intractable®. The tangible result
of these restrictions is that the pick statements identifying a particular mechanism or con-
figuration are mutually exclusive (in terms of evaluation). These restrictions allow the

reconciliation of pick statements to be independent of others within the same policy.

The Authentication and Access Control Evaluation algorithm (AEVL) determines ac-
ceptance or denial of action request within the run-time environment by assessing the action
clauses defined in the instantiation. Hence, unlike provisioning clauses, the action clauses
are evaluated each time an action is undertaken. The clauses defined in an instantiation
are the result of the reconciliation process (see next section).

The AEVL algorithm evaluates clauses in the same manner as provisioning policy eval-
uation. However, because accept and reconfig are the only legal consequences, only singular
clauses associated with the particular action (e.g., join) are consulted. If all conditionals of a
clause associated with the action evaluate to true, then action is accepted, else it is rejected.

The evaluation of action clauses and credential conditionals is described in Section 4.4.

4.5.2 Reconciliation

The evaluated group policy is reconciled with the evaluated local policies of the expected
participants to arrive at a concrete configuration. Thus, reconciliation determines the re-
quirements that are relevant to a session, and ultimately how the session is implemented.
Reconciliation assumes that all policies have been previously evaluated. For this reason,
the “evaluated” policy qualifier is omitted from the following discussion.

Ismene group policies are authoritative; all configurations and pick statements used to
define the instantiation must be explicitly stated in the group policy. Local policies are
consulted only where flexibility is expressly granted by the issuer through pick statements.
Hence, the group policy acts as a template for the session. Local policies are used to further
refine the template towards a concrete instantiation.

The local policy of an expected participant guides the resolution of pick statements
to the most desirable configuration. To simplify, if a configuration in the pick is in the

evaluated local policy, it is selected. If the local policy provides no such guidance, the pick

A thorough treatment of unconstrained reconciliation is presented in Section 4.6.2

82

is left unresolved and the other local policies are consulted.

Conflicts may arise when consulting multiple local policies. For example, consider a
group policy pick statement defining configurations for A and B. A conflict occurs when
some local policies require A and others require B. The resolution of the pick statement
determines who can participate in the session.

One potential resolution algorithm, Largest Subset Reconciliation (LSR), attempts to
find a configuration compliant with the largest number of local policies. However, this
approach has the undesirable property that it may fail to allow the participation of required
members (for example, by excluding the video source in a video conference). Moreover, as
shown in Section 4.6.2, LSR is intractable.

A second algorithm, Prioritized Policy Reconciliation (PPR), establishes an ordering of
local policies. Higher prioritized policies representing more important members are consid-
ered first; lower priority policies are considered only when higher priority policies provide
no guidance. The restrictions defined in the previous section allow this algorithm to be
efficient. The current implementation of Ismene uses this solution. The following group
and local policies illustrate prioritized reconciliation (where the local policy [; is ordered

before [3):
group policy config(A), pick(config(B), config(C)), pick(config(D), config(E))

local policy I config(A), config(B)

local policy 9 config(B), config(D)

Initially, the group policy and [are reconciled first. The instantiation is initially defined
with the configuration A (A is a mandatory configuration in the group policy). Next the
algorithm attempts to reconcile the pick for (B, C). config(B) would be selected from
the first pick statement because l; requires it. [; provides no guidance for the second pick
statement. [is completely reconciled at this point, and other policies are considered. [s is
consulted and D selected from (D,FE), after which [, and the group policy are reconciled.
Thus, the instantiation contains A, B, and D. Note that the introduction of other local
policies or requirements may lead to an irreconcilable local policy. For example, if [; also
required config(E), the algorithm would arrive at the instantiation A, B,and E. In this
case, the requirement for D in s cannot be satisfied, and the member associated lo would

not to participate in the group.

The authentication and access control policy enforced throughout the session is the

result of the reconciliation of action clauses stated in the group and local policies. The

83

reconciliation algorithm is designated as the Authentication and Access Control Policy
Reconciliation Algorithm (AACR).

The set of clauses determining authentication and access control in an instantiation is
defined by the intersection of the group and local policies. For example, consider group
policy that defines the action clauses (¢; : ¢ :: accept;) and (¢;: co :: accept;). Further, a
local policy defines an action clause as (¢;: ¢3 :: accept;), and another local policy defines the
action clause (¢;: ¢4 :: accept;). Authentication reconciliation algorithm takes the logical
and of these policies; the action clause is for ¢; is logically defined as

t1: ((e1 Vo) Aes Aey) it accept
Authentication reconciliation constructs an action clauses for each action ¢; defined in the
group and local policies. reconfig consequences listed in any of the policies are added to
the action clause in the instantiation. For convenience, an action clause is added for each
conjunction of the disjunctive normal form (DNF) of the conditional expression. In this
example, two clauses would be introduced for ¢; with the conditionals (¢; A ¢z A ¢q) and

(02 Acs A\ C4).

4.5.3 Compliance

Not all participant local policies are required to (or can) be consulted during reconciliation.
Hence, a participant must be able to check the compliance of an instantiation with its local
policy prior to participating in a session. Compliance is successful if all requirements stated
in the local policy are satisfied by the instantiation. There are two phases of compliance;
provisioning and authentication.

The Provisioning Compliance (PC) algorithm compares an evaluated local policy with
a received policy instantiation. Each configuration and pick statement must be satisfied by
the instantiation. A configuration is satisfied if it is explicitly stated in the instantiation.
A pick statement is satisfied if exactly one configuration from the list is contained in the
instantiation. Thus, provisioning compliance is as simple as testing the satisfaction of the
evaluated local policy by the instantiation.

Participants may wish to place requirements on the kinds of authentication and access
control enforced by the group. Ismene defines authentication and access control compliance

as;

84

The authentication and access control policy stated in the instantiation must be

no more permissive than the local policy.

More precisely, compliance determines if, for any action and set of conditions, an action
accepted by policy instantiation would also be accepted by the local policy. This emobodies
a conservative approach to compliance, where any action that would be denied by the
local policy must be denied by the instantiation. Hence, compliant instantiations always
respect the limitations stated in the local policy. Gong and Qian consider a more restrictive
definition of authentication and access control compliance between a composition of two
policies in [GQ94]. Gong and Qian’s definition of secure interoperability requires that both
the principle of security as well as autonomy be preserved in policy composition. The
principle of security is identical to the above compliance definition; the composition must
be no more permissive than either policy. The principle of autonomy requires that any
action accepted by one policy must be accepted by the composition (is no less permissive).

The Authentication and Access Control Compliance algorithm (AAC) assesses whether
the instantiation logically implies the local policy. Given an expression e; describing the
conditionals of action clauses in an instantiation, and a similar expression describing a
local policy es, it is intellectually easy to check compliance between the policies by testing
whether the expression e; = e; is a tautology. To illustrate, consider the action clauses

defined in the following instantiation and local policies:

policy instantiation X : (c1 A co) V c3 :: accept;
X :cy i accept;
X :c3::accept;

local policy A

local policy B X :cy,c3 : accept;

The policy instantiation is compliant with the local policy A because the policy is less
permissive (e.g., (¢ Ac2) V ez = ¢1 Ve3z). The group policy is not compliant with local
policy B because the group policy is more permissive (e.g., (c; A ca) Veg 7 c1 A c3).
General purpose tautology testing is intractable [Coo71]. However, the lack of negative
conditionals in Ismene allows efficient compliance testing. These factors are explored in

depth in Section 4.6.3.

85

4.5.4 Analysis

It is important to restrict instantiations to legal configurations. Thus, Ismene must be able
to describe the acceptable usage and configuration of the security mechanisms. Assertion
clauses are used to describe the legal and required relations between mechanisms and mech-
anism configurations. Semantically, an assertion indicates that a configuration must or must
never be true in any instantiation. Assertions are independent clauses (i.e, the clause does
not contain tag consequences). Positive (negative) assertions must (not) be satisfied by any
policy instantiation.

A number of systems have investigated techniques guaranteeing correct and efficient
construction of software from components [Hil98, LKvR"99]. These approaches typically
describe relations defining compatibility and dependence between components. A configu-
ration is deemed correct if it does not violate these relations. For example, Hiltunen [Hil98]
defines the conflict, dependency, containment, and independence relations. The following

describes assertions representing these relations (where independence is assumed):

conflict (A is incompatible with B) assert : :: ! config(A()),config(B());
dependency (A depends on B) assert : config(A()) :: config(B());
containment (A provides B) assert : config(A()) :: ! config(B());

An analysis algorithm attempts to assess whether a policy can or an instantiation does
violate the assertions. The Online Policy Analysis algorithm (ONPA) assesses an instanti-
ation with respect to a set of assertions. This algorithm simply tests the configurations of
the instantiation against the relations described in the assertions. If no violation is found,
the instantiation can be used.

The Offline Policy Analysis algorithm (OFPA) algorithm attempts to determine if any
instantiation resulting from a group policy violates a set of assertions. In the worst case,
this requires the generation of all possible instantiations (there may an exponential number
of them). Offline policy analysis is performed by the issuer, and thus does not affect the
efficiency of session initialization or operation. Moreover, most reasonable configurations
exhibit a degree of independence; the introduction of a configuration is largely the result of
the reconciliation of a few clauses. Hence, the evaluation of an assertion can be reduced to
the analysis of only those clauses upon which the configurations stated in the assertions are
dependent. An algorithm for OFPA is presented in Section 4.6.4, but optimization of the
algorithm is left to future work.

Assertions can be used by the issuer as sanity checks on future instantiations. For

86

example, the issuer may wish to assert a completeness property [JSS97, BB00] that any
instantiation resulting from reconciliation enforces confidentiality over the application data.
Thus, knowing in advance that the Ismene, generic, and zor data handler mechanisms
configured with confidentiality are the only available means by which this property can be

provided, the issuer states the following completeness assertion:

assert : :: pick(config(idhdlr(guar=conf)), config(gendhlr(guar=conf)),
config(xordhlr(guar=conf)));

The analysis algorithm rejects any policy failing to preserve this requirement.

4.6 Algorithm Analysis

This section considers the construction and complexity of the algorithms used to process
Ismene policies. The central result of this analysis is that all algorithms used over the
lifetime of a session are tractable. Hence, with respect to policy, Ismene instantiations
can be efficiently generated, distributed, and enforced. Table 4.1 summarizes the results of
this analysis. The remaining sections defines the Ismeme policy processes and algorithms.
Table 4.2 describes the notation used throughout the remainder of this chapter.

The analysis presented in the following section identifies complexity bounds on policy
evaluation. A key question to be answered is whether the use of non polynomial bounded
algorithms makes policy management infeasible. Clearly, for trivial policies, such algorithms
will be reasonable (as is true trivial input to a large number of NP algorithms). However,
real world policies can contain hundreds of clauses and configurations (see Chapter 6).

Hence, such input strongly suggests that the use of NP algorithms is not feasible.

4.6.1 Evaluation

The evaluation algorithm is used to determine which configurations (or actions) are appro-
priate for (accepted by) the run-time environment. The result of the provisioning evaluation
(called an evaluated policy) is a conjunction of configuration and pick statements. This con-
junction is later used as input to the provisioning reconciliation algorithm. The result of
authentication and access control evaluation is the acceptance or denial of an action. The
clauses used to direct the authentication evaluation process are defined by the authenti-

cation and access control reconciliation algorithm. See Section 4.6.2 for further details of

87

Type Algorithm Complexity
Evaluation Provisioning Evaluation (PEVL) p*
Authentication/Access Control Evaluation (AEVL) linear*
Generalized Policy Reconciliation (GPR) NP
Reconciliation Prioritized Policy Reconciliation (PPR) p*
Largest Subset Reconciliation (LSR) NP
Authentication/Access Control Reconciliation (AACR) p*
Compliance Provisioning Compliance (PC) p*
Authentication and Access Control Compliance (AAC) p*
Analysis Online Policy Analysis (ONPA) p*
Offline Policy Analysis (OFPA) coNP*

Table 4.1: Policy Algorithm Complexity - asymptotic time complexity of the algorithms
used for policy processing. All algorithms denoted with (*) are used within the current
implementation.

reconciliation. The following describes efficient algorithms for provisioning and authentica-

tion and access control evaluation.

Algorithm 4.1 (Provisioning Evaluation (PEVL)) Given: An unevaluated
policy P. Find: A set of configuration and pick statements R C EP defined by the assess-

ment of conditional statements in P.

Provisioning evaluation recursively assesses policy clauses defined over the set of tags, con-
ditionals, and consequences. Evaluation begins by testing the conditionals associated with
the first provision clause in the group policy. If all conditionals evaluate to true (or no
conditionals are defined for that clause), the consequences are applied to the instantiation.
If not, then the next clause associated with the tag is evaluated. If no clause evaluates to
true, then the policy cannot be successfully evaluated and the policy is rejected.

Applied configuration and pick statement consequences are added to the evaluated pol-
icy result. Tag consequences indicate the need for further evaluation. All applied tag
consequences are added to the ordered set of tags that must be evaluated. Clauses associ-
ated with these tags are recursively evaluated as described above. The evaluation algorithm
terminates when the set of tags to be evaluated is empty. The following states the algorithm
more formally.

Note: in the description below, @) is an ordered set tags C T, and Q.first, is the first

element of (). All conditionals c?j are modeled as Boolean valued variables (where the

88

Symbol Description
g a group policy, where |g| is the number of clauses € g
L the set of local policies considered during reconciliation, where |L| is the

number of local policies € L

l; a single local policy € L, where |l;| is the number of clauses € [;
Cp the set of all clauses defined in a policy p. C' is used where it is unambiguous.
|C| is the number of clauses € C'
i a provisioning clause € C'
ct the tag of ¢;
4 a set of conditions € c;, where c;ij is a single conditional € ¢
F the set of all possible configurations (mechanism and configuration parame-
ters)
cg a set of consequences € ¢;, where cgj is a single consequence € cg
TP the set of all tags defined by a policy p. T is used where it is unambiguous
EP the set of all mechanism, configuration parameter, and pick statements de-
fined by a policy p. E is used where it is unambiguous
ef the set of all mechanism, configuration parameter, and pick statements de-
fined by an evaluated policy p. e is used where it is unambiguous
el a single mechanism, configuration parameter, or pick statement defined by
an evaluated policy p. e; is used where it is unambiguous
€ j a single configuration parameter for mechanism %, parameter j
1 a policy instantiation
i a single pick statements defined by the Instantiation I, (|é;| = 1)
AP the set of all action clauses in policy p
A? . the set of all action clauses in policy p for action ¢;
A‘Z,j a single action clauses in policy p for action ¢; indexed by j
S a set of assertions
S; a single assertion s; € S
sd the conditions of assertion s; € S
s the consequences of assertion s; € S

Table 4.2: Notation - notation used throughout the algorithm analysis presented in Sec-
tion 4.6.

89

Boolean value is the value returned by its run-time result).

Q = “provision”
repeat
select cj|ct = Q.first,minimum(i),c; €

P
i1f no such c; exists reject
if Vel € ¢d, ¢ = TRUE {
foreach cI' € ¢! {
if leT
append cI' to Q
else
R=R~+c]
¥
Q=0 —Q.first
¥
G=G—-¢
until |Q] =0

Each policy represents a graph whose nodes are clauses and edges are tag consequences.
The removal of clauses during evaluation ensures that the evaluation graph is acyclic (by
removing possible cycles). Logically, this prevents recursively defined requirements. This
ensures that no reconciliation of policy can lead to the introduction of a previously evaluated
clause. Note that no clause or condition is visited more than once. Hence, assuming
conditionals are evaluated in O(1), evaluation is P-time computable in the number of clauses

(or actually linear in the number of clauses)*.

Algorithm 4.2 (Authentication and Access Control Evaluation (AEVL))
Given: A policy instantiation I. Find: Accept if the evaluation of an action clause in
I is satisfied by the run-time environment (as represented by conditional statement), and

deny otherwise.

Statements of authentication and access control are represented by action clauses. Each
clause defines a conjunction of conditionals which are evaluated to determine acceptance of
action. The conditionals of each clause associated with the request action are tested. If for
any clause, all conditions returns TRUE, then action is allowed. Hence, assuming conditionals
are evaluated in O(1), AEVL is trivially linear time in the number of action clauses in the

instantiation.

“Evaluation is actually bounded linearly with the number of clauses. This section is primarily concerned
with classification of algorithms as P or NP. Hence, the stated bound on algorithm is P.

90

Note that the evaluation of Credential conditions is also linear time; a given set of
credentials is scanned for the appropriate attributes. If such a credential is found, the

condition returns TRUE, and FALSE otherwise.

4.6.2 Reconciliation

The process of reconciliation attempts to find a policy instantiation that is consistent with
the group policy and all local policies. Unrestricted reconciliation of (even) a single Ismene
policy is intractable in the most general case. The following illustrates this point by reducing
3SAT [CooT71] to Generalized Policy Reconciliation (GPR). Note that an alternate, albeit
significantly less illustrative, reduction from ONE-IN-THREE SAT [Sch78] to GPR also

exists.

Reduction 4.1 (Generalized Policy Reconciliation (GPR))
The following definitions state specifics of 3SAT and GPR.
Definition 4.1 (Generalized Policy Reconciliation (GPR))
Given: A group policy g. Question: Is there a selection of configurations from

picks statements that satisfies g?

Definition 4.2 (3SAT)

Given: The set U of variables and a collection C' of clauses over U such that each

c € C has |¢| = 3. Question: Is there a truth assignment for U that satisfies C7
The following construction reduces 3SAT to GPR in polynomial time. Create g by defining a
pick statement for for each x € U representing a variable or its negation (where i represents

the negation);
pick(config(x;), config(z;))
and for ¢; € C,¢; = (21 V 22 V x3), create the following pick statement
pick(Mizs, Myg3, My33, Mi33, Mias, Migs, Miss),

where My93 = config(xz1, z2,3).
A non-deterministic algorithm can simply guess the satisfying assignment of configura-
tion statements for g, and verify its correctness in P-time. Thus, GRP is in NP. Assume

a polynomial time algorithm exists for GPR. The configuration returned by GPR g is a

91

satisfying truth assignment for U, where each x; (or &;) represents the truth assignment for
z;. The reduction is completed by returning TRUFE where such a configuration exists, and
FALSFE otherwise. Thus, as 3SAT is a known NP complete problem, GPR is NP complete.

a

This result indicates the reconciliation of the most general form is intractable. The
language restrictions defined in Section 4.5.1 were introduced to address precisely this prob-
lem. These restrictions do not allow the specification of the pick statements described in
the previous reduction. Hence, the restrictions lead to the following efficient reconciliation

algorithm.

Algorithm 4.3 (Prioritized Policy Reconciliation (PPR)) Given: An eval-
uated group policy g and an evaluated local policies L. Find: A set of configurations

gnt+1 € Ey (where n = |L|), L C L such that gn1 satisfies both g and all l; € L.

The PPR algorithm attempts to reconcile each local policy with the group policy ac-
cording to priority. The highest priority local policies are reconciled first. If reconciliation
with the local policy is successful, the group policy is reduced modulo the reconciliation. If
not, the local policy is marked as irreconcilable. This process is repeated until an attempt
to reconcile all local policies has been completed. The following assumes that the local
policies have been placed in L in priority order (i.e., [; is the highest priority, followed by [5,
etc.). For ease of exposition, configuration statements are modeled below as single valued

pick statements.

Step 1: Set g1 = g.

Step 2: Reconcile local policy. for i = 1...|L|. If g; is completely reconciled (all pick
statements contain a single configuration), then add I; to L only if the provisioning

defined by g; is compliant (as determined by the PC algorithm, Section 4.6.3). i.e.,

gi+1 = Gi o
if PC(g;,l;) = compliant then L = L +;

If g; is not completely reconciled do steps 3 through 7.

Step 3 Extract irrelevant statements from the group policy. Remove all pick

statements (containing solely) configurations € g;, but not € [;, and place them

92

in g;4+1. For example,

gi = 6(%1,%2),6(153),6((1)4),6(:55,(1)6) gi = 6((L‘1,(L‘2),6((L‘3)
_)
li = e(w2,z7), e(r1,3) gi+1 = e(w4), e(xs5, T6)

Step 4: Collapse equivalent configuration sets. A set of equivalent configurations
is a set of two or more configurations contained within the same pick statement
in both g; and I;. For example, if e(z1, 22, z3) € g, and e(x1,x3, x5, %) in [;, then
z1, %3 is an equivalent configuration set. By restriction 1, any sets of equivalent
configurations A and B, AN B = (). Thus, equivalent sets of configurations can
be treated as single values (because any configuration x; in a satisfying selection
for g; and [; can replaced with any other equivalent configuration x; any retain
satisfiability). For this reason, common sets are replaced with a new single (meta)

configuration.

Step 5: Reduce both g; and [; by the single valued pick statements; i.e., for each
|e§i| =1 and |e§-i| = 1 add the (single) configuration to g;+1 and reduce the pick
statements containing the single value. All values of the reduced pick statement
must be removed from both policies (because the selection of a configuration
requires the others in the pick statement not be selected). For example, consider

the following expressions

9i = e(z1,12), e(z3)
l; = e(zg,z3),e(x1,24)

then e(z3) is added to g;11 and reduce g; and [; modulo 3 and z9. Hence, the

result is
gi = 6($1)
li = e(xl, :E4)
gi = T3

which can lead to further reduction. g; and I; would reduce to (z3,21).

If, as in this example, this leads to a completely reconciled instantiation (all pick
statements are single valued), the algorithm adds [; to L and returns to step 2
(for the next [;). If any pick statement in g; or [; reduces to zero values, the local
policy is marked as irreconcilable and the algorithm aborts further reconciliation.
In this case /; is marked as irreconcilable, and g;; is set to the original g; (as

defined prior to step 3), and the algorithm returns to step 2.

Step 6: Remove all configurations not shared by both policies; delete any config-

uration in g; but not /; or in [; but not g;. No such configuration can be selected

93

(because it would not be consistent with the other policy). Thus, it is safe to
remove all such configurations. For example, given the following policies

gi = e(z1,12), e(z3,25)
l; = e(x1,4), e(x3,26)

x4, 5 and g are not shared, so they are removed from each expression resulting
in;

9i = e(z1,72), e(x3)
li = e(z1), e(x3)

If, as it is in this example, it is the case that any expression is reduced to a single
configuration, the algorithm returns to step 5. If any pick statement reduces to
zero values, the local policy is marked as irreconcilable and the algorithm aborts
further reconciliation (of /;) as defined in step 5. If neither of these cases occur,

then the algorithm continues to step 7.

Step 7- Selection of satisfying configurations. At this point, every configuration
in the g; and I; occurs ezactly twice (once in g; and once in [;). This follows from

restriction 1 and step 5. Construct an undirected graph R = (V, E) as follows:
1. (V) Create a vertex for each e?i € e% and eé-i € eli (below as labeled e;).
2. (E) For each configuration z,, € g; or l;, create an edge {e;,e;}, where e;

and e; are the two expressions in which z,, occurs.

For example, the graph resulting from this construction over the e% and el

defined below would be;

e = ey (x1,72), e2(23, 74), €3(x5, T6) N
eli = ey(z1,34), e5(22, 75), e6(23, T6)

Note that the edge cover EC (or perfect matching [GHR95]), if it exists, is a
satisfying assignment of configurations for g; and [;. By definition, any edge
cover will have at least one end-point of a selected edge on each vertex. Thus,
each expression e; has at least one selected x;. This follows from the definition of

edge cover where the number of vertices is even (|g;| = |I;| = |g; +1;| mod 2 = 0).

94

Step Description O()
1 This is a copy of g, linear time. lg]
2 This set is executed |L| times. If, at some ¢ the PC algorithm is |L|.

triggered the cost is |l;] * |g;|, which in all cases is less than or
equal to cost of executing steps 3-7. Thus, for the purposes of
complexity analysis, we can assume this case never occurs.

3 The extraction of irrelevant statements requires the scanning of |Li| * |l
l; |gz| times.

4 Detection and equivalent requires, scanning of /;, |g;| times. Re- |Li| * |l
placement is linear time (|g;| + |1;]).

5 Reduction of single values require linear time for detection (|l;| |g| * (|i;| + |g])

or |g;|), and linear time for reduction (|/;| + |g;|). However, each
reduction may lead to other singular values. This may occur at
most O(|l;] + |gi|) times (one for each clause).

6 Detection and equivalent requires scanning of I; |g;| times (once ell;| * |gil
per variable).

7 Graph construction is linear in the number of clauses and vari- |E9|?
ables (|l;| + |gi| + |E?]). EC is polynomial (n?) in the number of
edges (number of configurations in g, EY)

8 Executed in linear time by scanning g|r,41 |9)L}+11

Table 4.3: Complexity of PPR - time complexity of each step in the Prioritized Policy
Reconciliation algorithm.

Because no more than one edge xz; € EC' is incident to a vertex, no more than
one z; is selected for any e. Thus, EC is a satisfying solution for g; and /;. Add

all z;’s in EC to the configurations in g;11. Now replace each selected equivalent

configuration sets with pick statements containing their original definition.

Step 8: Arbitrarily reconcile the pick statements in gz 1 by selecting their first value.

The result is the completely reconciled policy g,+1 and reconciled local policies L.

The complexity of each step of the PPR algorithm is defined in table 4.3. Using the data
presented in the table, PPR executes in®
2 2 2 2
Olgl + LI = (4 (L] = 1g]) + lgI” + [E7) + |g)1+11) = O(lg” + [E7]%)

Hence, PPR is polynomial in the number of clauses and configurations in g. O

An attractive reconciliation solution is to identify the largest subset of local policies that

can be satisfied by the group policy. However, finding the largest subset is intractable. The

5As |g| forms an upper bound for |g;|, all occurrences of g; are replaced with g in the complexity expression.

95

following subsection illustrates the intractable property of such an algorithm by reduction

from the known NP complete MAX2SAT problem [GJ79, GJS76]°.

Reduction 4.2 (Largest Subset Reconciliation (LSR))

The following definitions state specifics of LSR and MAX2SAT.
Definition 4.3 (Largest Subset Reconciliation (LSR))
Given: A group policy g and a set of local policies to be considered by reconciliation
L. Question: What is the largest L C L such that g and all policies I; € L are

satisfied?

Definition 4.4 (M AX2SAT)

Given: The set U variables, collection C' clauses over U such that each ¢ € C has

lc| = 2, and a positive integer K < |C|. Question: Is there a truth assignment for

U that simultaneously satisfies at least K of the clauses in C?
The following construction reduces MAX2SAT to LSR. Assume U = {z1,z9,...,2,}. Con-
struction: For each ¢; € C,¢; = (z1 V x2), create three local policies as follows:

ley1 = pick(z1), pick(z2), pick(xs, T3), . . . , pick(Tn, Tn)
le,o = pick(2y), pick(x2), pick(xs, 3), . . ., pick(zy, T,)
leys @ pick(z1), pick(z2), pick(zs, T3), . . . , pick(Tn, Tn)

Note that each policy describes mandatory configurations (pick statements containing only
one configuration). Negative variables are inverted. For example, the expression ¢; = (aVb)
generates the following local policies;

ley1 : pick(a), pick(b), . ..

le,2 : pick(a), pick(b), . ..

le,s : pick(a), pick(b),. ..
Create the group by creating a pick statement for each variable in U as follows;

g =Yv; € U : pick(v;, 7;)
For example, if U = {a, b, ¢}, then

g = pick(a,a), pick(b,b), pick(c,).

Note by this construction, g can only satisfy 0 or 1 of the clauses associated with each ¢;.

Each local policy represents the (mutually exclusive) ways in which each clause ¢; can be

satisfied, and the reconciliation of ¢ with L is simply a truth assignment for U.

It has been shown that there exists a polynomial time algorithm for this MAX2SAT where K =
|C| [EIST76].

96

Assume a polynomial time algorithm exists for determining the largest satisfiable sub-
set of all considered local policies. Answering MAX2SAT simply becomes the process of
evaluating the policies resulting from the construction. If |fJ| > K, then MAX2SAT returns
true, and false otherwise. Thus, because MAX2SAT is a known NP complete problem, LSR

is NP complete. O

Reconciliation of authentication and access control is achieved by performing a logical
AND of the group and local policies (see Section 4.5.2). This is achieved through the
P-time AACR algorithm described below. The result of this algorithm is a set of action
clauses used by AEVL to enforce authentication and access control. For reasons described
in Section 4.6.3, it is convenient for the resulting action clauses to be stated in disjunctive

normal form (DNF).

Algorithm 4.4 (Authentication and Access Control Reconciliation (AACR))
Given: A group policy g and and set of local policies L. Find: A set of action clauses A’
representing the logical and of g and L.

step 1: Repeat steps 2 through 5 for each t; € TY.

step 2: Drop impossible actions. If |AZ| = 0 for some I; € L, return to step 1
(next t;).
step 3: Construct initial action clause expression. Create an expression ey by
logically ORing the conditionals of each Af“k € A;‘ZZ_. E.g.,

L A

e= Vi Ati,k
Mark each conjunction associated with a clause containing a reconfig conse-
quence.
step 4: Refine each clause with action clauses defined in each local policy. For
each local policy, repeatedly apply the conditions of each relevant action clause
to the conditionals conjuncts of e. E.g.,
Vi; € L,V conjuncts ¢; € ei_l,VAii“k € A,Z;Z ei=¢ V(e A AZ,I@)

Mark each conjunction associated with a clause containing a reconfig conse-
quence. Propagate such marks from previous rounds.
step 5: Add an action clause to the instantiation for each conjunction of ¢; € e

Add a reconfig consequence to each clause associated with a marked conjunction.

97

E.g.,
Al = AT +¢; - ¢; =2 accept;
Al = AT 4t; - ¢; = accept, reconfig; (where marked)
To illustrate, the following describes intermediate and final results of the reconciliation of
a group policy with two local policies for an action a; (where u, v, w, z, y, and z are
conditionals, and * denotes a reconfig mark);

Policy Intermediate Result
Group Policy

ai :u,v ::accept;

aj : w : accept; e=(uAv)Vw

Local Policy 1
ay : z,y :: accept, recon fig;

aj : z :: accept; e=WAvAzAY)*V(uAvAz)V(wAzAy)*V (wAz)
Local Policy 2

aj : u i accept; e = (UAVAZAY)* V(uAvAZ)V(uAwATZAY)* V (uAwAz)
Result ay :u,v,z,y :: accept, reconfig;

ai :u,v, 2z :: accept;
a1 :u,w, T,y :: accept, recon fig;
a :u,w, 2 :: accept;

Note that most reasonable policies will exhibit significant overlap in the action clause
conditions. The example above describes an extreme case which is unlikely to occur fre-
quently.

AACR is a P-time algorithm. The internal loops will be executed once per distinct
combination of policy and action clauses. Because each clause is defined for exactly one
action, the worst case execution of AACR is,

O(SV AL | |4 v A",
where |Agj| and |Ai’;| is the number of action clauses defined by the group and local policy

for t;, respectively. Hence, AACR is polynomial in the number of action clauses in I and

L. O

4.6.3 Compliance

Compliance determines whether a received policy instantiation is consistent with the local
policy. One must check the compliance of both the provisioning and authentication and

access control policies.

98

The provisioning policy compliance algorithm tests to see if the received instantiation
satisfies the evaluated local policy. The definition of provisioning compliance states that
all configuration and pick statements in the evaluated local policy must be satisfied by the

instance. Hence, the algorithm simply tests satisfaction.

Algorithm 4.5 (Provisioning Compliance (PC)) Given: A policy instanti-
ation I and a local policy |. Find: Is I consistent with | evaluated within the run-time

environment?

step I: Evaluate local policy. Evaluate L (using PEVL) to arrive a pick statements
E.

step 2: Remove all compliant policies. Repeat 3 until |E| = 0.

step 3 Remove individual compliant policies. Pick e € E. If |ey N I| = 1,

remove e from FE. Otherwise return non-compliant.
step 4: Return compliant.

The evaluation algorithm used in step 1 is in P. Step 3 is repeated a maximum of |F|,
times, each of which executes in O(|I]) (by scanning I'). Step 4 executes in constant time.
In the worst case, the algorithm executes O(O(PEV L) + (|E| * |I|), and PC is polynomial

in the number of configuration values in £ and 1.

In general, determining compliance of authentication and access control policies has been
found to be intractable. Gong and Qian found that the closely related problem of determin-
ing interoperability between general purpose authentication policies is NP complete [GQ94].
However, by disallowing negative conditions, Ismene can compute compliance in P-time.

As identified in Section 4.5.3, the process of determining the compliance of an instanti-
ation and a local policy can be reduced to a tautology test. However, the set of connectives
used to describe authentication and access control represents a truth-functionally incom-
plete fragment of Boolean logic. The set authentication clauses resulting from the PEVL
algorithm logically contain (A) and (V) operators, and inference (—) is required for testing
compliance. The lack of negation (=) makes the fragment incomplete. From this property
and [Lew78], it can be inferred that a P-time algorithm exists for determining compliance.

The following describes one such algorithm.

99

Algorithm 4.6 (Authentication and Access Control Compliance (AAC))
Given: A policy instantiation I and a local policy I. Question: Is I no more permissive

than I (i.e., I — L)?
For each t; € T! {
For each Aéi,j € Al {
if |Aj,l=00r3 Al € Al |A] . Z Al ,
return non — compliant

}
}

return compliant

The AAC algorithm simply determines for each ¢; € T', if some Aii j 1s not completely
contained within all clauses of Al (or no Aii,j exists). If this test fails, then there is a
set of conditions under which an action would be allowed by I but not L (which is the
definition of non-compliance). AAC scans each A,{Z_ once for every Aii,j, and AAC executes
in O(|A!| % |Al]). Hence, AAC is polynomial time in the number of action clauses in [and

1.

4.6.4 Analysis

Analysis tests a policy (or in the case of on-line analysis, a policy instantiation) against
a set of correctness assertions. Each assertion is a conditional statement representing the
legal relations between configurations. Online analysis is performed immediately following
the completion of reconciliation as a sanity check of the resulting instantiation. However,
this step is not necessary if offline analysis was performed by the policy issuer. A group
policy which was deemed consistent by offline analysis cannot be reconciled (with any set
of local policies) to an instantiation violating the assertions. The following considers the

complexity and construction of analysis algorithms.

Algorithm 4.7 (Online Policy Analysis (ONPA)) Given: A instantiation T

and a set of assertions S? Find: Is I consistent with the assertions S?

Online analysis tests whether a policy instantiation is compliant with the set of asser-
tions. I defines a truth assignment for F' (where each configuration z € F is true if x € I
and false otherwise). Online analysis is the process of evaluating the truth of each expres-
sion s; € S over this truth assignment. As the ONPA algorithm is obvious and trivially in

P, further details are omitted.

100

Offline analysis attempts to determine if any set of conditions and local policies can lead
to an instantiation violating the assertions. Unlike authentication and access control clauses,
negated conditionals are allowed in assertions. Negation is required for the specification of
incompatibility, and thus essential to defining relations between configurations. As offline
analysis seeks a succinct disqualifer (counter-example) for a functionally complete fragment

of Boolean logic, it is in coNP. The following reduction confirms this fact.

Reduction 4.3 (Offline Policy Analysis (OFPA))
The following definitions state specifics of OFPA and VALIDITY.
Definition 4.5 (Offline Policy Analysis (OFPA))
Given: A group policy g and set of assertions S. Question: Would any possible

reconciliation of g violate an assertion in S7

Definition 4.6 (VALIDITY)

Given: An arbitrary Boolean expression e defined over the universe of variables U.

Question: Is e valid?
Clearly, a non-deterministic Turing machine can guess a violating set of conditions for
OFPA, so OFPA is in coNP. The following construction reduces VALIDITY to OFPA in
polynomial time. Create g by defining a provision clause containing a tag consequence (l;)
for the first variable 1 € U. Create four clauses for each variable z; € U as follows;

provision : :: lq; lo: xo, Ty 2 fail;
Iy : 21,77 = fail;

l1:xy 1o /\ li »z; p;
Iy : T o o li 2T = p;
l1:: fail; lj : 22 fail;

Note that the last set of clauses for z; € U references a tag to the clauses for p. Convert
e into DNF'. For each conjuncts ¢; € e, create the clause p : ¢; :: r;, where the conditionals
enumerate are the (possibly negated) variables of ¢;, and r is a arbitrary configuration.
Complete g by appending the default clause containing a single f configuration clause
(p: = f;), and a fail clause (fail : :: t;). Complete the construction for by creating a

single assertion (assert : ::If;).

To illustrate, an expression (a AbAc)V (@AbAd)V (€AdAe) would result in the following

g and S

101

g = provision : :: ly; le ::: fail;
lg :a,a :: fail; P
lg ia::ly; p:
lg i@ ly; /‘ p:
lg @ fail; P
Iy : b,b:: fail; f

S = assert:: If;

Now consider the possible evaluations of g. Each positive or negative assignment of
variable z; € U is defined as a unique condition. The evaluation of the clauses [,, has
two possible results; if the condition z; and Z7 are both true or neither is, the evaluation
algorithm will immediately drop to the fail clause which defines a single condition ¢. In
this case, the assertion test will trivially be satisfied by this evaluation. If exactly one of
the conditions z; and 77 is TRUE, then the clauses associated with z5 are consulted. This
process repeats until either the fail clause or the first clause associated with p is reached.
If the p clause is reached, then the conditions represent a legal truth assignment for U.
Moreover, it is clear that no legal truth assignment for U arrives at fail.

Now, consider the evaluation of the clauses of p. Because e is represented in DNF, any
truth assignment for U must satisfy at least one conjunct for e to be valid. The evaluation
of some p clause will arrive at configuration ¢ if any conjunct is satisfied by the truth
assignment for U, and f otherwise. If e is valid, the default clause for p will never be
reached (because no legal truth assignment will not satisfy at least one conjunct of €). The
assertion will never be violated by OFPA. Because any invalid expression will violate some
not satisfy all p clauses for some truth assignment, the assertion will violated by OFPA.

Because VALIDITY is a known to be in coNP, so is OFPA. O

Even though offline analysis is intractable, it provides an essential service. The following
algorithm reduces the cost over a naive approach by identifying independence between
configurations and conditions. This allows analysis to be performed only over the set of

conditions relevant to an assertion.

Algorithm 4.8 (Offline Policy Analysis (OFPA)) Given: A group policy g and

set of assertions S. Question: Would any possible reconciliation of g violate an assertion

102

m S?

step 1: Construct an expression for each configuration identified in an assertion de-
scribing the conditions under which may be reached. This is accomplished by travers-
ing g backward from any clause in which the configuration is a consequence. For

example,

provision : di,ds : ty;
provision : ta;

ty:d3,dy i fo; .

ty: o ts; _y Jii(diAdy A (d3 Vds) ANds) V ((d1Vdz) Nds)
to i ds i f1; fo:(di ANdo ANdg Ndy) V ((Vdsy) A ds)

to i fo

ts:ds :: f1;

The resulting expression for each configuration d; € S is denoted as e

step 2: Construct assertion expressions. For each assertion s; € S, construct an

expression representing the relation described. For example, the assertions
assert : config(dy),config(ds) : lconfig(ds),config(dy);
assert : pick(config(dy),config(ds)) : config(ds);
would result in the following expressions, respectively;
(ef A e2) — ((ed3) A)
(ehr Vvedz) — eds
The resulting expression for each configuration s; € S is denoted as e
step 3: Detect assertion violations. Analysis is the process of determining if each e®i
is valid. Any truth assignment making e false represents a set of conditions under
which the assertion is violated. Hence, a general purpose validity tester is used for

analysis and violations reported.

Note that the e® expressions constructed by offline analysis can also be used to detect
potential violations of the language restriction 1 defined in Section 4.5.1. An expression
ei represents a disjunction of conditions leading to each distinct occurrence of d; € g.
The language restriction requires that each such occurrence be mutually exclusive. Hence,
violations of the language restriction can be detected by testing the satisfiability of the
logical and of the pair-wise disjunctions. A satisfying truth assignment of conditions would

represent an evaluated policy in which a configuration occurs twice, and hence be a violation

of the restriction.

CHAPTER 5
POLICY ENFORCEMENT IN ANTIGONE

Network security has historically suffered from poorly coordinated services. Developers
must often construct applications from diverse and largely disconnected security services.
Moreover, the introduction of additional application requirements (e.g., fault tolerance) re-
quires a re-assessment of the use of security. Subtle interactions between services introduced
by naive implementations can lead to undetected vulnerabilities.

Traditional monolithic security architectures seek to address all aspects of security in
a single, tightly integrated implementation [FKTT98]. Applications built on these archi-
tectures often defer all aspects of security to the architecture. The flexibility with which
trust and threat models appropriate for an application or session are defined is frequently
limited. As a result, applications must pay a performance penalty (in implementing unnec-
essary security services) or accept undesirable vulnerabilities (where security requirements
are unaddressed).

Antigone extends previous work in component based security through a policy enforce-
ment architecture. Previous systems have sought to compose protocols or collections of
services from compile- or configuration-time specifications. However, the delivery, correct-
ness, and synchronization of specifications is outside the scope of their definition, and few
systems have meaningfully addressed authentication and access control. Hence, while these
frameworks allow the efficient construction of services, little support for the management
of the run-time session context is provided. Antigone builds on these works by providing
not only a service construction framework, but by regulating the construction and use of
the service using run-time distributed security policies.

This chapter details the design and operation of the Antigone policy enforcement archi-
tecture. Antigone is a middleware layer [Ber96] enforcing group security policy through the
initialization, configuration, and coordination of services needed to implement the group.

Group and service activities are directed by a policy instantiation provided by an external

103

104

policy determination architecture. Each end system security service is implemented through
a mechanism conforming to uniform signal interfaces. As is the promise of component based
systems, different services (supporting potentially different policies) can be composed freely.

Antigone assumes that a policy determination architecture (e.g., Ismene) is available.
However, Antigone is not dependent on Ismene. Other group policy specifications (e.g.,
GSAKMP policy token [HCHT00], DCCM Cryptographic Context [BBD*99, DBH*00])
can be used to direct the Antigone services. However, the use of these policy specifica-
tions requires the creation of software compliant with the Antigone policy interfaces (see
Section 5.3).

The following sections address several primary objectives of this thesis identified in
Chapter 2; Flexible Policy Enforcement, Efficient Enforcement, and through the broad-
cast transport layer, Transport Agnostic communication. The following section presents
an overview of the Antigone policy enforcement approach and architecture. Section 5.2
describes the operation of the group interface layer. Section 5.3 gives an overview of the
integration of a policy determination architecture through the policy engine interfaces. Sec-
tion 5.4 presents the mechanism layer, and details the design and operation of several exam-
ple mechanisms. Section 5.5 presents the broadcast transport layer. Section 5.6 concludes

with a description of several architectural constructs used to optimize policy enforcement.

5.1 Policy Enforcement

Enforcement is the process whereby the semantics of a policy are realized in software. Policy
can be defined by separate, but related, aspects of policy representation, system provisioning
and session authentication and access control. The following considers the goals of Antigone
with respect to these facets of policy.

A policy representation determines the form and semantics of policy. Each environment
may have different systems for determining and evaluating policy. Hence, as no single
policy representation is likely to be applicable to all environments, enforcement should not
be dependent on any policy determination architecture.

Provisioning defines the services and configurations used to support communication.
However, the static provisioning found in monolithic security architectures is not appropriate

for all environments. The requirements of an application may differ for each session. Hence,

105

communication provisioning should be made in accordance with the run-time requirements
dictated by policy. The effort required to integrate security services addressing new security
requirements should be low.

Authentication and access control determines whom and in what capacity processes
may participate in a session. A singular model or service for authentication access control
is unlikely to meet the requirements of all environments. Hence, Antigone should support
a variety of authentication and access control services. Note that while the enforcement
of authentication and access control must be performed by Antigone, the interpretation of
policies (decision making) is deferred to the policy determination architecture.

The remainder of this section defines how these goals are addressed through a policy

enforcement architecture.

5.1.1 Mechanisms

An Antigone mechanism defines some basic service required by the group. Each mechanism
is identified by its type and implementation. A type defines the kind of service imple-
mented. Antigone currently supports six mechanism types; authentication, membership
management, key management, data handling, failure detection and recovery, and debug-
ging. A mechanism implementation defines the specific service provided. For example,
there are currently three key management implementations; Key-Encrypting-Key, Implicit
Group Key Management, and Logical Key Hierarchy. These categories are not exhaustive;
new types (e.g., congestion control) or implementations (e.g., One-Way Function Tree Key
Management) can be integrated with Antigone easily. Associated with each mechanism is a
set of configuration parameters (or just configurations). Configurations are used to further
specify the behavior of the mechanism. For example, a data handling mechanism providing
confidentiality may be configured to use triple-DES. Details of the current mechanisms are
detailed in Section 5.4.

The set of mechanisms and configurations used to implement the session (provisioning)
is explicitly defined by policy. The policy determination architecture is consulted at session
initialization (or following policy evolution) for a provisioning policy. This policy is enforced
by the creation and configuration of the appropriate mechanisms.

Unlike traditional protocol objects in component protocol systems [SFS93, HP94, BHSC98],

mechanisms are not vertically layered (e.g., layered services of TCP/IP stacks). This does

106

not imply that an implementation be defined by monolithic or course-grained component
protocol stacks. Each mechanism implements an independent state machine, which itself
may be layered. For example, the Cactus-based membership service defined in [HS98] can
be used as a membership mechanism within Antigone. In this case, the mechanism config-

uration determines the protocol graph constructed at run-time.

5.1.2 Signals

Internally, group operation is modeled in Antigone as signals. Each signal indicates that
some relevant state change has occurred. Policy is enforced through the observation, gen-
eration, and processing of signals. Antigone defines event, timer expiration, and message
signals.

Events signal an internal state change. An event is defined by its type and data. For
example, send events are created in response to an application calling the sendMessage
API. This event signals that the application desires to broadcast data to the group. A
send event has the type EVT_SEND_MSG and its data is the buffer containing the bytes to
be broadcast. A table of the basic events defined by Antigone is presented in Table 5.1.
Note that mechanisms are free to define new events as needed. This is useful where sets of
cooperating mechanisms need to communicate implementation specific state changes.

A timer expiration indicates that a previously defined interval has expired. Timers
may be global or mechanism-specific; all mechanisms are notified at the expiration of a
global timer, and the creating mechanism is notified of the expiration of a mechanism
specific timer. Similar to events, a timer is defined by its type and data. For example, a
join request retry mechanism timer may signal that a request has timed out. The timer
data identifies context-specific information (a nonce) required to generate a join request.
Timers are registered with a global timer queue (ordered by expiration). Timers may be
unregistered (removed from the queue) or reset prior to expiration.

Messages are created upon reception of data from the underlying broadcast transport
service (i.e., broadcast transport layer, see Section 5.5). Messages are specific to (must be
marshaled/processed by) a mechanism. Every message m is defined by (and is transmitted
with a header including) the tuple {m, m;, my}, where m; identifies a (one byte) mechanism
type, m; identifies a (one byte) mechanism implementation, and a (two byte) m; defining

the message type. For example, the header {KEY_MECH, KEK_KEY MECH, AKK_REKEY} header

107

\ Event | Meaning | Data
EVT_AUTHREQ | Authentication request none
EVT_AUTH_COM | Authentication complete join nonce
EVT_AUTH FAL | Authentication failed none
EVT_JOIN REQ | Join request join nonce
EVT_JOIN_COM | Join complete None
EVT_JOIN_MEM | New user in group member identifier
EVT REJN_MEM | Member attempting to rejoin | member identifier
EVT_LEAV REQ | Request to leave none
EVT_EJCT REQ | Request member ejection member identifier
EVT_MEM_EJCT | A member has been ejected member identifier
EVT_EJCT_COM | Member ejection Boolean (TRUE = successful)
EVT_MEM_LEAV | A Member has left the group | member identifier
EVT_LEFT_GRP | Local left group none
EVT_NEW_GRUP | New group ID accepted none
EVT_SEND_MSG | Send message application data
EVT_SENT MSG | A message has been broadcast | application data
EVT DAT RECV | Data message received received application data
EVT KDST DRP | Lost key distribution message | none
EVT_GROP_LST | Group communication lost none
EVT_PRC_FAIL | Process failure member identifier
EVT_CRECOVER | Client recover request member identifier
EVT_POL_RCVD | Policy received policy
EVT_NGRP_POL | New Group Policy none
EVT_POL_EVGP | Policy Evolution policy
EVT_SHUTDOWN | Group Shutdown shutdown the interfaces to the group
EVT_SHUT_COM | Group Shutdown Complete shutdown complete
EVT_INFO MSG | Informational Event information string
EVT_ERRORED | Signal Unrecoverable error error description string

Table 5.1: Basic Antigone Events - events signal a change of state in the group. Mechanisms
are free to define new events as needed.

identifies a key management, KEK implementation, rekey message. Type, implementation,
and message identifiers are used to partition the message identifier space. Header informa-
tion is later used to route the message to the appropriate implementation for unmarshaling
and processing (see below).

The interfaces used to create and deliver signals are presented in Figure 5.1. Each signal
type uses a process function to deliver the signal to the mechanism. Events are created and
queued via the post event interface. Timers are created and placed in the timer queue
via the register timer interface. Messages are sent to the group using the send message

interface.

108

Event Bus
E, %

\
Process Eventi Timer Queue
Process Time

Post Event
& O
A

Ta] Register Timer

=

Mechanism
Message Interface

Send Message O~ «
Process
2 Message

!

v

Transport Layer

Figure 5.1: Mechanism Signal Interfaces - Policy is enforced through creation and processing
of events, timers, and messages. To simplify, events are posted to and received via the event
bus. The expiration of timers registered to the timer queue is signaled to the mechanism
through the process timer interface. Messages are sent to the group via the send message
interface, and received through the process message interface.

5.1.3 Group Interface

The group interface arbitrates communication between the application and mechanisms of
Antigone through a simple message oriented API. Actions such as join, send, receive, and
leave are provided through simple C++ object methods. These actions are translated into
events. Group state (e.g., received messages) are polled by the application through API
calls.

The group interface implements event and timer signal processing functions. The group
interface implementation does not directly send or receive messages. All communication
with other processes is performed indirectly through mechanisms. However, the group
interface acts as a de-multiplexer for received data. Messages received from the group
are forwarded to the appropriate mechanisms based on header information. Mechanisms

subsequently unmarshal and process received messages.

5.1.4 The Event Bus

The event bus directs the delivery of events to mechanisms. Depicted in Figure 5.2, the
event bus defines the interface between the group interface and mechanisms. To simplify,

all communication between these layers and between mechanisms is through the event bus.

109

Bus
Group Interface Policy Engine | | Controller

) T L Post

»
[[

l l l l

Data Handling Detection e

Membership Key
Management Management

Broadcast Transport

Figure 5.2: The Event Bus - the event bus manages the delivery of events between the group
interface and mechanisms of Antigone. Events are posted to the bus controller event queue.
Events are subsequently broadcast to all software connected to bus in FIFO order. Note
that the event bus is implemented in software and is completely independent of network
broadcast service supported by the broadcast transport layer.

During initialization (see Section 5.3), the set of mechanisms defined by an instantiation
are created and logically connected to the event bus. Mechanisms are removed from the
bus when the group is destroyed or reprovisioned during policy evolution.

The bus controller is a software service that implements ordered delivery of events.
The group interface and mechanisms post events to the bus controller. Posted events are
subsequently delivered in FIFO order. Critical events (e.g., group errored) are placed at
the head of the queue through a priority post.

Logically, the event bus is a broadcast service. All posted events are delivered to every
mechanism and the group interface. Each mechanism processes events received on the bus
in accordance with its purpose and configuration. After that, the mechanism signals the
bus controller that the event has been processed. Unprocessed events are logged.

Event delivery is modeled as being simultaneous. The event bus guarantees that a)
events are delivered in FIFO order and,) an event will be delivered to all mechanisms and
the group interface before any other event (including a priority event) is processed. These
guarantees are preserved by mechanism acknowledgement of event processing completion.
The event bus provides no guarantees on the ordering of mechanisms to which the event is

delivered. This places additional requirements on event processing.

110

For example, consider a data handling service that transmits a message in response
to a send event, and a group congestion control service [MJV96] that wishes to place an
upper bound on transmissions per quanta. A naive implementation of a data handler
would simply transmit data upon reception of a send event, and the congestion control
mechanism would queue messages when the local member’s fair share (of bandwidth) is
exceeded. The naive implementation would thus (incorrectly) both transmit and queue the
data. Several solutions to this problem exist. First, congestion control and data handling
may be integrated into the same mechanism (which in many cases may not be possible or
convenient). Second, one could require that all policies configuring congestion control must
also configure the data handler to be cognizant of congestion control (e.g., through policy
assertions). In this case, the data handler would ignore sent events, and only transmit in
response to a congest_send event posted by the congestion control mechanism.

In general, dependencies between events are few [MPH99]. Hence, the response of a
mechanism to a particular event is largely independent of other mechanisms. However,
careful analysis of the effect of an event on all possible mechanisms is necessary. The
composition mechanisms should be restricted (e.g., through assertions in Ismene) to only

allow compatible mechanisms and configurations.

5.1.5 Attribute Sets

State is shared by the components of Antigone through the group attribute set. Similar to
the KeyNote action environment [BFIK99b], the attribute set maintains a table of typed
attributes. Attributes are defined through a {name, type, value} tuple. Mechanisms and
the group interface are free to add, modify, or remove attributes from the table. Attributes
are defined over basic data types (e.g., strings, integers, Boolean), identities (e.g., unique
identifier), and credentials (e.g., keys, certificates). The group attribute set defines the
current context of the group. For example, groups using a symmetric session key maintain
the current session key through the SessionKey attribute. Mechanisms access the key by
acquiring it from the group attribute set.

Authentication and access control decisions are deferred to the Policy Engine (See Sec-
tion 5.3). However, mechanisms must supply information describing the context under
which a particular action is attempted. The mechanism testing an action constructs an

action set (which is frequently a subset of the group attribute set) from relevant informa-

111

Action

| Meaning

group_auth

member authentication of group

member_auth

group authentication of member

acquire a potential participant policy acquisition
join a member access to the group
view-dist accept a view distribution
eject request the ejection of another member
leave accept a leave request
leave_resp accept a leave response
key_dist accept a key distribution
rekey accept a group rekey
send send data to the group

content_auth

source authenticate data

group-mon

accept a group monitor information

member_mon

accept member monitor information

accept_policy

accept a policy instantiation

reconfig

initiate policy evolution

shutdown

accept a shutdown message

Table 5.2: Basic Antigone Actions - actions under which Antigone authentication and access
control policy is defined. New actions may be introduced by mechanisms and applications
as needed.

tion. The context primarily consists of the credentials used to prove identity and rights.
All cryptographic material (e.g., keys, certificates) are modeled as credentials. Mechanisms
provide the set of credentials and attributes associated with the action being performed
through the action set. For example, a certificate provided by a joining member may be
used as a credential to gain access to the group. The mechanism must decide, based on
information provided, on the appropriate set of attributes to provide to the policy engine.
For example, acceptance of an incoming packet encrypted under a current session key im-
plies knowledge of the session key. Hence, the session key can be used as credential when
assessing acceptance. The action being attempted is defined through the action attribute.

A table of basic actions used in the current implementation are presented in Table 5.2.

5.1.6 Policy Enforcement Illustrated

This section briefly illustrates how the group interface, policy engine, event controller,
and mechanisms work in concert to enforce policy. The following example demonstrates

the enforcement of data security, failure detection, and authentication and access control

112

| Dat Application Application
sendMessage
) Group Policy Event Group Poli_cy Event
Interface Engine Controller Interface ,Englne Controller
- /!
Send? |/ -
! SE
Post ,/ Accept
| [‘ I e R
A v 2
Data Failure Data Failure
Handler Detection Handler Detection
Transport ‘ ‘ Transport

(2) (b)

Application Application
Group Policy Event Group Policy Event
Interface Engine Controller Interface Engine Controller
W
st
Post’
r T y >
[I | i
v a4
Data Failure Data Failure
Handler Detection Handler Detection
Send | | | |
— ™
‘ | Buf Transport ‘ ‘ Transport

(c) (d)

Figure 5.3: Policy Enforcement Illustrated - an application sendMessage API call is trans-
lated into a send event delivered to all mechanisms (a). This triggers the evaluation of an
authentication and access control policy via upcall (b), and ultimately to the broadcasting
of the application data (c). The send triggers further event generation and processing (d).
Note that the policy engine does not listen to or create events.

policies associated with the sending of an application message. The policy under which
this example is defined requires application content confidentiality. Furthermore, the policy
requires failure detection to be supported through a timed heartbeat detection mechanism

(see Section 5.4.5). Figure 5.3 and the following text illustrate how this policy is enforced
(where the letters a, b, ¢ and d correspond to the labeled figures);

a) The application attempts to broadcast data to the group via the sendMessage API
call. The call is translated into an EVT_SEND_MSG event (SF) by the group interface,

113

which is posted to the event controller. The application data (Dat) is encapsulated

by the send event.

b) The event controller delivers the send event to all mechanisms. The data handler tests
the send action in response to the delivery of this event by an upcall to the policy
engine. Credentials supplied by the local user are passed to the policy engine. For

this example, the policy engine accepts the send action.

c) The data handler mechanism encrypts the application data using a session key ob-
tained from the attribute set. A confidentiality only message is constructed by placing
the appropriate headers and encrypted data into a buffer (Buf). The buffer is then
broadcast to the group via the transport layer. An EVT_SENT_MSG (S7T') event contain-

ing the sent buffer is posted to the event queue following the transmission.

d) The sent event is posted to all mechanisms. The failure detection mechanism, using
the send as an implicit heartbeat message, resets an internal heartbeat transmission

timer.

Other policies may dictate very different behavior. For example, the kinds of data
transforms and the reaction of mechanisms to sent data may be very different. This is the
promise of policy driven behavior; an application can specify precisely the desired behavior

through the definition of group provisioning and authentication and access control.

5.1.7 Architecture

Described in Fig. 5.4, the Antigone architecture consists of four components; the group
interface layer, the mechanism layer, the policy engine, and the broadcast transport layer.
As described in Section 5.1.3, the group interface layer arbitrates communication between
the application and mechanism layer.

The mechanism layer provides a set of mechanisms used to implement security policies.
The mechanisms and configuration to be used in a session are defined by the policy instance.
While the Antigone implementation currently provides a suite of mechanisms appropriate for
many environments, new mechanisms can be developed and easily integrated with Antigone.
Note that mechanisms need not only provide security services; other relevant functions (e.g.,
auditing, failure detection and recovery, replication) can be implemented. For example,

Antigone implements a novel crash failure detection mechanism [MP0O].

114

Application

Antigone Group Interface

<+

A
'i' o vV
<l

. 2 M, M, f* Policy
R 44| Engine
\A4

vy v
Antigone Broadcast Transport Layer

v

vy

UDP/Multicast/IP

Figure 5.4: Antigone consists of four components; the group interface layer, the mecha-
nism layer, the policy engine, and the broadcast transport layer. The group interface layer
arbitrates communication between the application and lower layers of Antigone through a
simple message oriented API. The mechanism layer provides a set of software services used
to implement secure groups. The policy engine directs the configuration and operation
of mechanisms through the evaluation of group and local policies. The broadcast trans-
port layer provides a single group communication abstraction supporting varying network
environments.

The policy engine directs the configuration and operation of mechanisms through the
evaluation of policies (i.e., reconciliation and compliance checking). Initially, as directed
by the policy instance, the policy engine provisions the mechanism layer by initializing and
configuring the appropriate software mechanisms. The policy engine subsequently governs
protected actions through the evaluation of authentication and access control policy.

The broadcast transport layer defines a single abstraction for unreliable group communi-
cation. Due to a number of economic and technological issues, multicast is not yet globally

available. Thus, where needed, Antigone emulates a multicast channel using the available

network resources in the transport layer.

5.1.8 Alternative Architectures

While many aspects of the Antigone architecture are present in previous works, the unique
requirements of policy enforcement made the direct use of existing component frameworks
inappropriate. Centrally, the need to compose re-configurable, tightly coupled, and fine-

grained protocol components dictated the development of infrastructure not present in

115

extant systems.

A number of recent works have investigated the construction of flexible and efficient
distributed systems from components [HP94, SFS93, O0SS94, BHSC98]. Components
conforming to uniform interfaces are composed in different ways to address application
requirements. Hence, new requirements can be quickly addressed by altering the compo-
sition of underlying components. This approach has been successfully extended to secu-
rity [MQRG97, NK98, HISU00, Wra00], where services and protocols addressing a specific
set of security requirements are built from components. These works significantly constrain
system organization; largely motivated by protocol stack designs, components are organized
into vertical or hierarchical message processing pipelines. Hence, these frameworks are suit-
able for the creation of tightly coupled protocol state machines. Antigone, in contrast,
composes loosely coupled services. Each Antigone service transmits messages, processes
timers, and monitors state independently of other services. Hence, the traditional model of
layered services (e.g., TCP/IP) is inconsistent with the needs of Antigone. Moreover, the
interfaces over which state is communicated in traditional protocol component systems are
typically restricted to connection management and data handling information. Note that
while these architectures are not well suited to Antigone, they may be useful in creating
flexible implementations of individual mechanisms within Antigone.

Typically used in the construction of complex distributed systems in heterogeneous
environments, configuration programming frameworks specify component interfaces through
a language-agnostic module interconnection language (MIL) [Kra90, Pur94]. Distributed
systems are constructed by developers from component interconnection specifications. The
framework translates and routes all communication between the components defined by
the developer. As these systems are designed to support communication between largely
autonomous and distributed components, shared state is explicitly forbidden. In contrast,
the mechanisms of Antigone are required to share a significant amount of state (e.g., keys,
timers, attributes, etc.). Hence, the loose coupling and translation overheads make these
frameworks inappropriate for end-host policy enforcement.

Software buses have traditionally been used to construct distributed object architec-
tures [HWC95, Sch95, Ses97, Vin94, Wal99, OKP00]. Components in these frameworks are
typically used to define interfaces to database, compute, or user-interface services. Com-

munication between components is handled via standardized marshaling interfaces. Hence,

116

tool-kits of diverse components can be used to flexibly construct distributed systems. Com-
ponents in these systems represent course-grained and possibly distributed services. Hence,
the overheads associated with inter-component communication (i.e., marshaling and inter-

process communication) are in conflict with the needs of high-performance protocol stacks.

5.2 Group Interface

The group interface acts as a conduit for communication between the application and the
Antigone mechanisms, and performs the high level direction of the policy management.
These duties include the translation of application requests into events, the coordination of
mechanism initialization and operation, and the queuing of incoming and outgoing data.

As detailed in Section 5.3, the group interface consults the local policy for an initial
configuration (prior to receiving the policy instantiation). This policy (minimally) defines a
service used to initiate communication with the group and acquire the instantiation. Once
the group interface and mechanisms are initialized, the application is required to call the
blocking Connect API. This call is translated into an EVT_AUTH REQ event posted to the
event controller. The various mechanisms will perform authentication in response to this
event (see authentication mechanism Section 5.4.1). The completion of the authentication
process is signaled through the EVT_AUTH_FAL (authentication failed) or EVT_AUTH_COM (au-
thentication successful) event. If authentication fails, an error is reported to the application.
If authentication is successful, an EVT_POL_RCVD event identifying the instantiation is posted
by the authentication mechanism. The group interface passes the opaque policy structure
associated with the event to the policy engine. The policy engine deactivates the initial
configuration and configures the mechanisms layer as dictated by the instantiation. Once
the policy engine completes this task, an EVT_NGRP_POL initialization event is posted, and
the Connect call returns.

The group interface provides a simple message oriented API. However, an application
desiring to view the current membership, obtain the current group state, or access policy
is free to use advanced interfaces. Each relevant API call is translated into an event by the
group interface. For example, an EVT_SEND_MSG event is created in response to an application
sendMessage API call. The event is posted to the event controller and ultimately delivered

to the mechanisms via the event bus.

117

Similarly, relevant events delivered to the group interface over the event bus are signaled
to the application. The means by which this signaling is achieved is event-specific. Upon
reception of an EVT_DAT RECV event, the group interface places the message buffer associated
with the event on the receive queue. The application can determine the state of the receive
queue through the messagePending API. Messages are extracted from the receive queue via
the readMessage API. Typically, an application polls the receive queue, acquiring message
buffers as they become available!.

EVT_ERRORED events signal to the group interface that an unrecoverable error has oc-
curred. An EVT_SHUTDOWN event is posted following the observation of an error event. The
group interface waits for an EVT_SHUT_COM event. This latter event indicates that the local
mechanisms have cleaned up their internal state and the group interface may be destroyed.

An application exits the group via the blocking Quit API call. The Quit call posts an
EVT_LEAV_REQ handled by the appropriate mechanisms. The EVT_LEFT_GRP event is used
to signal the completion of the member leave. Antigone is then deactivated through the

shutdown events as described above.

5.3 The Policy Engine

Depicted in Figure 5.4, the policy engine acts as the central enforcement agent in Antigone.
All interpretation of policy occurs within the policy engine. This has the advantage of
allowing the integration of other policy approaches. For example, a group desiring to
enforce the policy defined by a GSAKMP policy token [HCH'00] would simply replace the
current Ismene policy engine with a GSAKMP policy engine. As is true for Ismene policy
instantiations, the token would be distributed by the authentication mechanisms as opaque
data. Subsequent enforcement of the policy is relegated to the replacement policy engine.
There are three central tasks of a policy engine; initialization, authentication and access
control policy evaluation, and group evolution. The policy engine directs the initialization
and configuration of mechanisms upon reconciliation or reception of the policy instantia-
tion. The initiator interprets the provisioning policy by creating a mechanism object for

each mechanism defined in the policy instantiation. Mechanisms are configured using the

!The group interface provides timed or indefinitely blocking receive methods, and select and file de-
scriptor set utility methods. Hence, Antigone can be quickly integrated with existing applications using
standard network programming techniques.

118

configuration statements in the instantiation immediately following their creation.

Non-initiator participants are faced with a dilemma prior to contacting the group; they
do not possess the instantiation with which they can initialize Antigone. This is solved
by using an instantiation resulting from the self-reconciliation of the local policy (which
in Ismene, for any correctly constructed policy, is guaranteed to terminate successfully?).
However, several requirements are placed on this local policy. First the local policy must
specify an authentication mechanism used to contact the group and acquire the instantiation.
Secondly, an access control policy stating from whom an instantiation can be accepted must
be defined. The instantiation defined by the local policy is used to initialize the set of services
used to contact the group. Once the instantiation is received, the member determines its
compliance with the local policy. If compliant, the mechanisms and configuration defined
by the local policy are discarded, and Antigone is re-initialized using the configurations
defined in the instantiation.

The enforcement of authentication and access control is performed by the policy engine
throughout the session. Each mechanism is cognizant of the actions to be protected by pol-
icy (i.e., hard-coded in implementation). For example, a membership mechanism consults
the policy engine when a participant attempts to join the group. The policy stating the
requirements to gain access to the group (i.e., the conditions and credentials) are stated in
the join authentication and access control clauses. The Ismene policy engine performs the
Authentication and Access Control Evaluation algorithm (AEVL) defined in Section 4.6.1
to arrive at an acceptance decision. Note that how a participant joins the group is largely
independent of evaluation. Policy engines implementing other languages behave in essen-
tially the same way, with the exception of the evaluation of conditions and authentication
statements. Antigone supports a range of basic actions protected by policy through the cur-
rent mechanism implementations. However, mechanisms are free to define new protected
actions. All policies must acknowledge the existence of the action through the definition of
authentication and access control clauses.

Policy evolution occurs when a reconfig consequence (or similar construct in other
policy languages) is enacted by the policy engine. reconfig signals to the group some

aspect of the group has fundamentally changed, and that this change requires the group

2Not all policy languages implement local policies. In this case, some other means of communicating an
initial configuration must be found. For example, a simple configuration file can be used to state a local

policy.

119

re-assess its provisioning and authentication and access control (policy evolution). The
group disbands in response to the observation of the reconfig event. At this point, the
initiator performs reconciliation (potentially under a new set of local policies), and the
group is initialized as before. Note that initiation of the this process is in itself a protected
action. Left unprotected, a malicious member of the group may mount a denial of service

by continually signaling reconfiguration.

5.4 Mechanisms

Policy in Antigone is enforced through the software modules called mechanisms. Each
Antigone mechanism consists of a set of behaviors and associated protocols designed to
perform some service within the session. The current mechanisms layer defines six types of
mechanisms; authentication, membership, key management, data handling, failure detection
and recovery, and debugging.

The mechanisms layer coordinates the construction of mechanisms. Mechanisms are
created from a repository of implementations by the mechanism factory as directed by the
policy engine. The factory maps unique mechanism identifiers onto an implementation.
Once created, the mechanism is configured and attached to the event bus.

This section describes mechanisms for a centralized group. Centralized groups contain
a distinct member performing policy distribution and authentication (known throughout as
the authentication service), membership management (admittance entity), key distribution
(group key controller), and failure detection (failure monitor). For simplicity, the following
assumes the initiator is the central entity for all these functions. However, new mechanisms
and policies may be introduced to distribute the various centralized functions to one or more
members of the group. In the extreme case, such as in participatory key management, all
members collaborate to provide a function. The following text describes the requirements,

interfaces, and operation of Antigone mechanisms.

5.4.1 Authentication Mechanisms

Authentication mechanisms provide facilities for potential group members (requestors) to
initiate communication with the group. All authentication mechanisms implement proto-

cols performing mutual authentication and acquiring the policy instantiation. This typically

120

Policy Event Poli Event
" Engine Controller olicy ven
a Engine Controller
S 4
N : > >
i ®] ' L
@ (o _| v © [O
. . |Authentication " |Authentication | M
| Mechanism | Mechanism :
“a 4 o
OpenSSI; > OpenSSL >
] | |
| (C)i‘(_% Authentication | (f)’i»% Authentication
Broadcast) - =5 Service Broadcast % Service
Transport Layer 13! Transport Layer ' o!
- =
|~ |~

Figure 5.5: Authentication Mechanism - The authentication mechanism is initialized by
the policy engine (a), after which authentication request event is received. The mechanism
responds by locating the authentication service and establishing a secure channel (b,c,d).
After authenticating the group (e), the channel is used to exchange policy and session state
(f). The authentication process is completed by posting a policy received and authentication
complete event (g,h) to the event controller.

requires an authentication and key exchange protocol between the member and an authen-
tication service. The authentication mechanism implements both the requester (joining
member) and service (initiator processing authentication requests) sides of the authentica-
tion.

As with any mechanism, the authentication mechanism is created by the policy engine
when the application is initialized. The local policy is evaluated to arrive at a set of mech-
anisms and their configurations. The mechanisms are created by calling the appropriate
mechanism constructor functions which are passed the configuration parameters. The newly
initialized mechanisms then wait for events.

The requestor initiates an authentication protocol after receiving an EVT_AUTH_REQ event
(emitted after completion of the mechanism initialization) . How the mechanism proceeds
is dependent on its implementation, its configuration, and statements of authentication
and access control. Typically, the requestor will initiate an exchange with the authenti-
cation service. For example, the Leighton-Micali key exchange [LM94] protocol was used
in an early version of Antigone [MPH99|. Alternately, mutual authentication can be es-
tablished via some external authentication service, (e.g., Kerberos [NT94]). Antigone cur-
rently implements three authentication mechanisms; a null authentication mechanism, an

OpenSSL [Gro00] based mechanism, and a Kerberos mechanism. The following text and

121

Figure 5.5 describe the operation of the OpenSSL based authentication mechanism. How-
ever, independent of an implementation, the operation of each of these mechanisms is largely
similar.

The mechanism is created and initialized as directed by the evaluated local policy (a).
Upon reception of the EVT_AUTH REQ event, the OpenSSL mechanism initiates communi-
cation by establishing a mutually authenticated secure channel. The means by which the
authentication service is identified is external to Antigone (it is currently implemented by
the broadcasting of a locator message to the group). The authentication service responds
with an address and port to which the requestor may connect (b). However, other im-
plementations are free to use other mechanisms (anycast, expanding ring searches, session
announcements, etc.).

The certificate used to prove authenticity of the local entity is explicitly stated in the
local policy through a configuration parameter. The associated certificate file is read from
the local disk and passed to OpenSSL (c¢). The SSL implementation performs the handshake
protocol [Gro00], which receives an authenticated public key certificate for the service (d).
The certificate is translated into an Antigone credential, and provided to the policy engine
for evaluation of the group_auth action (e). A positive result signals that the local policy
states the certificate is sufficient to prove the authenticity of the authentication service. The
authentication request is aborted on a negative result.

If the service authentication is successful, the authentication mechanism obtains the
policy instantiation, a join nonce, and a group public key®, and to establish a pair-key. This
is accomplished through a single request-response exchange over the OpenSSL connection.
The local member creates and transmits a pair key (for a configured algorithm), and
the server responds with the nonce, group public key, and policy instantiation (f). The
SSL connection is closed, and the local entity places nonce and group public key in the
(mechanism) group attribute set. An EVT_POL_RCVD event containing the instantiation is
posted to the event controller. The mechanism signals the completion of the authentication
process by posting an EVT_AUTH_COM (h) event.

The authentication service performs the server side of the exchange. The member_auth

action is evaluated upon completion of the OpenSSL connection establishment. A positive

3The group public/private key pair is generated by the initiator during initialization of some centralized
groups. The private key is later used to guarantee the (source) authenticity of broadcast data (e.g., rekey
messages, failure detection messages).

122

evaluation signals that the client side certificate is sufficient to prove rights to access the
instantiation, and the exchange is completed as described. The pair key is placed in the
authentication service’s attribute set.

Note that a number of error conditions can occur during the authentication process. A
retry timer is registered when the authentication mechanism begins initialization (the length
of which is defined through a configuration parameter). Any exchange not completing prior
to expiration is retried and a retry count incremented. If the (configurable) maximum retry
count is reached, a fatal error is generated and the authentication is aborted. Similarly, any

denial of a group_auth or member_auth action fatally errors the authentication attempt.

5.4.2 Membership Mechanisms

Membership mechanisms provide facilities for a previously authenticated member to join
and leave the group, to request the ejection of other group members, and for the distribu-
tion of group membership lists. The original Antigone implemented these facilities in the
Join, Leave, and Rekey/Group Membership mechanisms. However, it was found that the
separation of these membership tasks among different mechanisms limited flexibility; modi-
fication of membership services required changes across several mechanisms. This conflicted
with the component philosophy, and hence led to the new structure. Antigone currently
implements a single membership mechanism (the Antigone membership mechanism).

The membership mechanism implements both client (member joining group) and server
(admittance entity) services. The client implementation initiates the join protocol in
response to the EVT_JOIN REQ event posted by the group interface in response to the
EVT_AUTH_COM event. The client simultaneously registers a join retry timer and sends a
join request message to the admittance entity. The completion of the join is signaled by
a key management mechanism through the EVT_NEW_GRUP event, after which all timers are
unregistered.

While in general any cryptographic material may be used to prove the authenticity
of the joining member, the current implementation uses the pair-key established by the
authentication mechanism. Some environments may desire to separate the authentication
of members from the join process [BHHWO1]. Hence, other implementations may require a
second authentication protocol to join the group.

The admittance entity, through the policy engine, evaluates the join action upon recep-

123

tion of the join request. If the action is permitted, a join accept message is broadcast to
the group, and a join reject otherwise. The admittance entity posts an EVT_JOIN_MEM if the
member was not previously in the group, and an EVT_REJN_MEM if the member is currently
in the group. The latter event signals that the joining member’s state is stale and should
be refreshed.

The EVT_REQ_LEAV event signals that the local member desires to leave the group. The
membership mechanism broadcasts a member leave message and posts EVT_MEM_LEAV event.
As configured by policy, the local member may or may not wait for a leave response before
exiting.

EVT_EJCT REQ events signal that the local entity wishes to eject another member. The
event data identifies the member to be ejected. The associated text identifier is placed in
the ejection request message broadcast to the group. The ejection is either accepted or
denied by the admittance entity, the result being reported in the ejection response message.
The positive or negative result of the ejection is reported through the EVT_ECJT_COM event.
The admittance entity restricts access to the ejection through the evaluation eject action.
Based on configured policy, eject requests may either be encrypted using the pair key or
digitally signed. In the latter case, the certificate itself is included with the request. Hence,
the right to eject members can be explicitly granted through an issued certificate.

Policy determines when membership lists are distributed. For example, the current
membership mechanism supports policies for none, best-effort, positive, negative, or perfect
membership. Based on the policy, a sequenced and signed (with the group private key) mem-
bership list is distributed following every member leave (EVT_MEM_LEAV and EVT_PRC_FAIL
events) (positive), every member join (EVT_JOIN_MEM) (negative), or on all membership
events (perfect). In all cases except a none policy, the membership list is broadcast to the
group periodically. Members failing to receive membership lists can request the membership
list via the membership request message.

Membership lists contain two sequence numbers. The interval identifier states the cur-
rent interval (which increases by one per configurable quanta). The view identifier sequences
the membership changes between intervals. Because the intervals are fixed, the accuracy of
membership information is bounded by the configured announcement periodicity (quanta).
The current interval and view sequence numbers are reported to a joining member during

the join request/response protocol.

124

5.4.3 Key Management Mechanisms

Key management mechanisms are used to establish and replace the ephemeral keys used to
secure the group. While Antigone currently implements a Key Encrypting Key (KEK) [HM97b],
Authenticated Group Key Management (AGKM, see below), and Logical Key Hierarchy
(LKH) [WHA98, WGL98| key management mechanisms, others are possible. For exam-
ple, the current interface can be used to implement participatory key management (e.g.,
Cliques [AST00]). The following assumes that the KEK mechanism managing a single sym-
metric session key is used to secure the group. Key management implements two distinct
operations; key distribution and rekey management.

The group key controller (GKC) creates a key encrypting key and a traffic encrypting
key (TEK) for the configured cryptographic algorithm upon reception of the EVT_NGRP_POL
event. A key distribution message encrypted with the member pair-key and containing the
KEK, TEK, and a group identifier is subsequently sent to a joining member in response
to the reception of each EVT_JOIN_MEM or EVT REJN_MEM event. A member receiving the
message places the KEK and TEK in the local attribute set and posts an EVT_NEW_GRUP
event signaling that the join has been completed.

The group identifier uniquely identifies the session context. A group identifier is the
concatenation of a text identifier and nonce value. The text identifier is an eight byte, null
terminated name string that uniquely identifies the session. The nonce is a four byte nonce
value. The group identifier is used by all mechanisms to identify under which context (e.g.,
key) a message was sent. The nonce is incremented by one each time the group is rekeyed.

Policy determines when the group is rekeyed. Similar to membership management, the
group rekeying is defined over time, leave, join, and membership sensitive policies. These
policies indicate that the group is rekeyed periodically, after member leaves, joins, or all
membership events, respectively. However, only time sensitive policies are meaningful in
KEK based schemes. KEK mechanisms are required to be time-sensitive. Hence, a timer
is created with a configured period at initialization. A group rekey message containing a
new TEK encrypted with the KEK is distributed following each timer expiration. Clients
receiving a group rekey message install the new group identifier and TEK, and post an
EVT_NEW_GRUP as described above.

EVT_KDST_DRP events signals that the local member has missed a rekey message. These

events are posted by any mechanism receiving a message containing a group identifier for

125

which a corresponding key has not been received. A naive implementation would simply im-
mediately transmit a key request. However, message loss caused by network congestion may
be exacerbated by the simultaneous generation of retransmit requests by many members.
Known as sender implosion, this problem is likely to limit the efficiency of key distribution
in large groups or on lossy networks. A retransmit mechanism similar to SRM [FJLT97]
addressing this limitation is used. The member sets a random timer before sending a key
request message. If another key request is received prior to expiration of the timer, the
request is suppressed. The GKC retransmits the last rekey message upon reception of a key

request message.

Authenticated Group Key Management (AKGM)

The Authenticated Group Key Management (AGKM) mechanism implements a variant of
KEK key management. With respect to Antigone, it processes signals as described above.
However, TEKSs are calculated rather than distributed. Hence, because any member receiv-
ing seeding data can calculate session keys, much of the complexity associated with key
management can be avoided.

Described in Figure 5.6, AGKM provides a sequence of authenticated session keys pre-
serving the advantages of KEK-based solutions. This approach provides session key inde-
pendence; knowledge of a session key provides no information with which other session keys
can be determined (without inverting hA()). This approach also suffers from some of the
disadvantages of KEK-based key management; it is not possible to eject members without
replacing all keying material.

AGKM offers several advantages over traditional KEK approaches. Every key is authen-
tic; proof of its origin can be obtained from the authenticator values. Moreover, membership
forward secrecy is guaranteed only by distributing the most recent seed values to a joining
member. Because a malicious member of the group cannot generate validation information
for future session keys, new keys can only be released by the group key controller. Hence,
a member can only use those keys that have been released.

An alternate use of AGKM places a header containing the current validator information
on each transmitted message. Members receiving any message are able to directly calcu-
late the session key. Hence, much of the cost of explicit key distribution is avoided. This

approach is useful in large groups (e.g., as one might find in large scale multimedia appli-

126

Configuration Parameters Initial Values Generated by the GKC
[length of key chain ko random key seed of size |h()|
h() collision resistant hash function Vo random authenticator seed of size |h()]

g*, g~ group public key pair

Construction
v; = h' (1) authenticator values
k; = h*(ko) key seed values

SK; = h(k; ®v;) session key

1. The session keys are used in index order (e.g., SKo, SKi, ..., SK,). Hence, the
session key SK; is valid only during the interval 7, and is replaced periodically (see
Section 5.4.3) through the rekeying process.

2. A member joining during interval i receives the 4, v;, k;, and g*. These values are
transmitted under a pair key known only to the GKC and the joining member.

3. The group is rekeyed by incrementing i and transmitting ¢ and v; (in cleartext). When
the values of v; are exhausted (e.g., i = p), a reseed message is broadcast to the group.
The reseed message has the following structure;

{%a {Oa ko, UO}E}SIG(g*)

Where v, and E are the last validator and key seed values from the previous chains,
and SIG(g~) is a digital signature generated using the group private key g . The
new values of £ and v are used to seed the new key chain.

4. Any member who does not receive a rekey or reseed value can request it directly from
the GCK. However, the GCK will never broadcast past values of k£ or v (e.g., 0, ko,
and vy are replaced with the current interval values — i,k;, and v;). In all cases, the
session key is calculated from the header information and known values of v and k.

5. Any v’ can be authenticated by evaluating the truth of the expression v; | = h(v").
More generally, any member who has received the key distribution data for some index
j < i can validate v; by applying h() the appropriate number of times to the initially
authenticated (via digital signature) v;.

Figure 5.6: The AGKM construction - members are distributed seed information from
which session keys are calculated. Session keys can only be calculated after authenticating
information is disclosed by the GKC.

cations); providing reliability for rekeying information can lead to sender implosion. The
cost of this construction is header size; assuming a 16 byte hash function, AGKM requires
18 bytes of header per message.

AGKM is not the first implicit key management approach. The NARKS [BF99] and
MARKS [Bri99] systems use a seeded hierarchy to implement implicit key management for
pay-per-view video. However, AGKM’s construction is significantly less costly. Receivers

in NARKS and MARKS must maintain state that grows logarithmically with the number

127

of session keys supported (as opposed to the constant amount of state required by AGKM).

5.4.4 Data Handling Mechanisms

The data handling mechanism provides facilities for the secure transmission of application
level messages. The security guarantees provided by the current Antigone data handler
mechanism include: confidentiality, integrity, group authenticity, and sender authenticity.
The mechanism is configured to provide zero or more of these properties. A data transform
is defined for each unique combination of properties.

Upon reception of an EVT_SEND_MSG event, the data handler evaluates the send action
via the policy engine. This tests whether the local member has the proper credentials to
send a message. If a positive result is returned, the data handler mechanism performs the
appropriate transform and broadcasts the data via the broadcast transport layer. Once the
message is sent, an EVT_SENT_MSG event is posted to the event queue.

The mechanism receiving the message performs the reverse transform and evaluates the
send action (using the context supplied in the message rather than local credentials). If a
positive result is returned, an EVT_DAT_RECV event identifying the received data is posted.
Note that a received message may require a session key that the local member has not yet
received (or never will). In this case, recovery is initiated by the posting of an EVT_KDST_DRP
event. The key management mechanism is required to recover by attempting to acquire the
key. Messages associated with unknown keys are dropped.

Confidentiality is achieved by encrypting the application data under the session key. The
algorithm used for encryption is defined by a policy. Note that the key management and
data handling mechanisms must be configured to use compatible cryptographic algorithms.
This is stated as a policy requirement in Ismene policies through assertions (see Chapter 4).

Integrity is achieved through Keyed Message Authentication Codes (HMAC) [KBC97].
To simplify, an HMAC is generated by XORing a hash of the message with the session
key. A receiver determines the validity of an HMAC by decrypting and verifying the hash
value. If the hash is correct, the receiver is assured that the message has not been modified
in transit by an adversary external to the group. Group authenticity is a byproduct of
integrity. Two constructions supporting source authentication are currently available. In
either construction, the content is accepted if the message and authenticating information

is properly formed and the content_auth action evaluates successfully.

128

The packet signing source authentication construction implements source authentication
through digital signature [DH76]. The signature is generated using the private key exponent
associated with the sender’s certificate. Receivers obtain the sender’s certificate and verify
the signature using the associated public key.

Due to the computational costs of public key cryptography, the use of per-message digital
signatures to achieve sender authenticity is infeasible in high throughput groups. Several
efforts have identified ways in which these costs may be mitigated [EGM96, GR97, WL98].
While the speed of these algorithms is often superior to strictly on-line signature solutions,
their bandwidth costs make them infeasible in high throughput groups.

The online construction implements source authentication through a custom variant of
Gennaro and Rohatgi online signatures [GR97]. In this approach, outgoing data is buffered
for a configurable period. A online digital signature is applied when a configurable threshold
of data (called a frame) is buffered or the period expires. The signature performs a forward
chaining approach in which a packet signs (contains a hash) of the immediate succeeding
packet. The first packet is digitally signed, all data is transmitted to the group. Receivers
can validate the first and subsequent packets as they arrive. However, all packets following
a lost packet are dropped; the chained signature is broken (however the mechanism is
resilient to packet re-ordering). This makes this approach inappropriate for networks with
significant packet loss. An investigation of the feasibility of both the online and packet

signing is presented in Chapter 7.

5.4.5 Failure Detection and Recovery Mechanisms

Failure detection mechanisms provide facilities for the detection and recovery of process or
communication failures. The current chained failure detection (CFD) mechanism detects
crash failed processes. However, other mechanisms (e.g., partition detection and recov-
ery [DM96]) may be integrated through the event interfaces. The remainder of this section
assumes a CFD failure detection mechanism.

An application’s threat model may require that the system tolerate attacks in which an
adversary prevents delivery of rekeying material. Thus, without proper failure detection,
members who do not receive the most recent session information will continue to transmit
under a defunct session key. Additionally, the accuracy of membership information is in

part determined by the ability of the session leader to detect failed processes. Thus, in

129

support of the other guarantees, the goal of CFD is to determine a) which members are
operating, and b) that each process has the most recent group state (session keys and group
view).

Failure detection in CFD is symmetric. The failure monitor is a centralized service mon-
itoring all current members of the group. Conversely, each member monitors the group via
communication with the failure monitor. As dictated by policy, members who are deemed
failed are removed from the group. A member detecting the failure of the monitor assume
the group has failed and attempts recovery. If recovery fails, the member notifies the ap-
plication and errors the communication. Each member and the failure monitor periodically
transmit heartbeat messages. CFD detects failed processes through the absence of correct
heartbeats. If a policy stated threshold of contiguous heartbeats is not received, the member
or monitor is assumed failed. The current group context (e.g., group and view identifiers) is
included in each heartbeat. Hence, heartbeats are used to detect when current group state
is stale.

The CFD mechanism creates a heartbeat transmission timer during initialization. A
heartbeat is transmitted and the timer reset at its expiration. Members associate a timer
with the failure monitor after being admitted to the group (e.g., on a EVT_JOIN_COM event).
If no valid failure monitor heartbeat is received before the expiration of this timer, the
group failure is signaled through the EVT_GROP_LST event.

Upon reception of an EVT_JOIN_MEM, the failure monitor creates a timer for the joining
entity (this timer is reset on an EVT_REJN_MEM event). The timer is reset on valid heartbeats
received from the member. If the timer expires, then the member is assumed to have failed
and an EVT_PRC_FAIL event is posted. Member timers are deactivated on EVT_MEM_LEAV
events, and all timers are reset on EVT_NEW_GRUP events.

A member detecting a stale state or lost heartbeat messages can initiate recovery by
sending a client recovery message. This message indicates to the session leader that the
member requires the most recent group state. The reception of this message triggers an
EVT _KDST_DRP event at the failure monitor, which ultimately leads to the re-distribution of

the current session state.

130

Chained Failure Detection

CFD uses secure heartbeats to detect failed or disconnected processes. The presence of a
sequence number in the heartbeat ensures that it is fresh. Group and view identifiers are
used to verify that the sending process has the most recent state.

With respect to group members, the goal of the current failure protection mechanism
is the reliable detection of a session leader’s failure, not its recovery. As needed, additional
mechanisms can be introduced in the future that implement recovery algorithms using
primary backup, replication, or voting protocols to establish a new failure monitor, group
key controller, and admittance entity.

Hash chains [Lam81] are used to amortize the cost of heartbeat generation over many
messages?. A hash chain is the sequence of values resulting from the repeated application of
a secure hash function (f) on some initial value. For example, given an initial value z and
chain of length k + 1, the hash chain is: {f°(z) = z, f'(2), f*(2),..., f¥(z)}. Because, by
definition, (even partial) inversion of f is not feasible, knowledge of f*(z) gives no meaningful
information to derive fi~!(z), for some 4,0 < i < k. By revealing f*(z) securely, the
remaining values can be used in reverse order as proof of the knowledge of z. This is useful
in authentication schemes (one-time passwords) because only a person who has knowledge
of z can generate the intermediate values.

Heartbeats are generated as follows. Initially, a sending process A generates a random
value z of length equal to the output of the hash function (e.g., MD5 has a 128 bit output).
Freshness is asserted through monotonically increasing heartbeat sequence numbers (Sf4),
the first of which is selected at random (S%). A applies f k times to generate the following

hash chain (where f and k are configured through configuration parameters):
60 =z,8' = f(x),6% = f2(z),...,0% = fk(z)

A generates a heartbeat validation block containing the group identifier g, her identity A,
the first heartbeat sequence number S, the last value in the hash chain f*(z) = 6%, and

an HMAC generated using the pair key of A, PK 4:

ga Aa S,%a 6ka {H(ga Aa S,%’ 6k)}PKA

“This use of hash chains is similar to those found in one-time password authentication systems [Hal94,
Rub96].

131

A heartbeat message is generated by concatenating the current sequence number (S% =
S% +4) and the next value in the hash chain (in reverse order, 0*%) with the validation
block. Because encryption is only required when creating the validation block and the hash
chain itself is cached, heartbeat generation is fast. When the values of a chain are exhausted
(i > k) or the session is rekeyed, the member generates a new hash chain and the associated
validation block. The failure monitor performs the same construction, save the HMAC is
replaced with a digital signature calculated under the group private key.

Heartbeats are validated by checking the HMAC (or signature) and testing the relation:
fSZ—S% (6k7i) — 5k

If the relation holds, then the heartbeat is valid. The heartbeat is authentic because of the
use of the pair key (or group private key) in the validation block generation. The heartbeat
is fresh because of the presence of the next value in the hash chain. After receiving and
validating the initial heartbeat for a hash chain, subsequent validation can be achieved by
byte comparison of a validation block of a previously validated heartbeat. Thus, heartbeat

validation is fast.

5.4.6 Debugging Mechanisms

Debugging mechanisms are used to view the internal state of the group through the ob-
servation of events. Depicted in Figure 5.7, the currently implemented Antigone Scope
mechanism logs the progress of the group and records the throughput and latencies charac-
teristics of the application content. Which information is recorded is defined by the policy
instantiation. The scope mechanism does not currently post events, but only passively
observes events posted to the event bus. As a result, one can debug event processing by
analyzing the type, data, and ordering of posted events.

The specialized EVT_INFO_MSG is used by mechanisms to post information to debugging
mechanism. This event specifies a single string containing some information of import to the

mechanism, and is frequently used to indicate state changes not reported through events.

5.5 Broadcast Transport Layer

Multicast services have yet to become globally available. As such, dependence on multi-

cast would likely limit the usefulness of Antigone. Through the broadcast transport layer,

132

[T B
% 2 This is a test hon My 78 12:00:40 2001 : Mon bay 78
% Lt g L My 26 12:00:40 2001 : SET FIELD |
%

May 28

i May 28 12:00:50 2001 : InfoMsg : Local hoartboal axpiration
T FIELD fsot

T FIELD [sat curvSitat{seasiankay) (36 72 0a bo 24 45 70 02 1
b Ly 28 120840 20w wcrep

% Last Modified | A conng i Artijone Stoge
% Attrbutes soction ? Group 10 [0l fpovasz0RTaTTA
" tocal I [ierver Serverid [aerver
gy (s i — T —
lorouphl =« tpol 31 o Group Address [724 27 27 285000 Sorvor faddress [F0R
myact 5 « bbob: o Session Kay [334311 13 81 14 59 67 Group Public Kay [0 00 00 04 78 70 67 ¢ | pmbarship

= R Es =P ek

Figure 5.7: Antigone Scope Interface - the scope mechanism records and displays all state
changes signaled via the event bus.

Antigone implements a single group communication abstraction supporting environments
with varying network resources. Applications identify at run time the level of multicast sup-
ported by the network infrastructure. This specification, called a broadcast transport mode,
is subsequently used to direct the delivery of group messages. The broadcast transport
layer implements three transport modes; symmetric multicast, point-to-point, and asym-
metric multicast.

The symmetric multicast mode uses multicast to deliver all messages. Applications using
this mode assume complete, bi-directional multicast connectivity between group members.
In effect, there is no logical difference between this mode and direct multicast.

The point-to-point transport mode emulates a multicast group using point-to-point com-
munication. All messages intended for the group are unicast to the session leader, and re-
layed to group members via UDP/IP [Pos80]. As each message is transmitted by the session
leader to members independently, bandwidth costs increase linearly with group size. This

approach represents a simplified Overlay Network, where broadcast channels are emulated

133

over point to point communication. Note that a number of techniques can be used to vastly
reduce the costs our implementation [CRZ00, JGJT00].

In [AACT99], the experiences with the deployment of the Secure Distributed Virtual
Conferencing (SDVC) application are reported. SDVC is a video-conferencing application
based on an early version of Antigone (LSGC [MHP98]). The deployed system was to
securely transmit video and audio of the September 1998 Internet 2 Member Meeting using
a symmetric multicast service. The receivers (group members) were distributed at various
cites across the United States. While some of the receivers were able to gain access to the
video stream, others were not. It was determined that the network could deliver multicast
packets towards the receivers (group members), but multicast traffic in the reverse direction
was not consistently available (towards the source). The lack of bi-directional connectivity
was attributed to limitations of the reverse routing of multicast packets [AACT99].

The limited availability of bi-directional multicast on the Internet coupled with the costs
of point-to-point multicast emulation lead to the design of the asymmetric multicast mode.
This mode allows for messages emanating from the session leader to be multicast, and
all other messages to be relayed through the session leader via unicast. Members unicast
each group message directly to the session leader, and the session leader retransmits the
message to the group via multicast. Thus, the costs associated with point-to-point groups
are reduced to a unicast followed by a multicast. The increasing popularity of single source

multicast [Gro01] make this a likely candidate for future use.

5.6 Optimizing Policy Enforcement

The architecture described throughout differs significantly from the initial Antigone de-
sign [MPH99]. Several lessons learned from the initial architecture drove the design of the
modified Antigone. First, the introduction of a formal policy language required fundamental
changes in the way in which policy is enforced (e.g., through repeated evaluation of authenti-
cation and access control policy). Secondly, any flexible policy infrastructure should provide
simple, yet powerful, interfaces for implementing the many required protocols. Finally, care
must be taken in designing efficient structures upon which policy is enforced. The following

describe several optimizations addressing these design considerations.

134

Sender Receiver
Creation (AMessage Constructor) Value Extraction (getFieldValue)
T <
AMessage Message e |
Object Buffer Mech <
| ® |
L@]
Field Definition (DEF_FIELD) Demarshaling Completion
(LTI TTT] (after getXContext)
-
[®]
Mech E e |
e | | & | «——
e & | +——
| & | +——
(@ | ¢—
Marshaling (prepareMessage)
BExTTY Initial Demarshaling
E (AMessage Constructor)
o — Fm
o —

: j— =
\
Transmission——»

Figure 5.8: Generalized Message Handling (GMH) - GMH abstracts the complex tasks
of data marshaling. Senders associate data with each field defined in a (AMessageDef)
message template object. GMH marshals the data as directed by the template using the
supplied information. Receivers reverse the process by supplying additional context (such
as decryption keys) based on previously unmarshaled fields. In the figure, shaded boxes
represent marshaled or unmarshaled data (at the sender and receiver respectively), and
dots represent known field values.

5.6.1 Generalized Message Handling

By definition, a flexible policy enforcement architecture must implement a large number of
protocols, messages, and data transforms. However, correctly implementing these features
requires the careful construction of marshaling code. Marshaling is widely accepted as a
difficult, time consuming, and error prone process. This belief was reinforced by difficulties
encountered while developing and debugging the first version of Antigone.

The Generalized Message Handling (GMH) service is designed to address the difficul-
ties of protocol development. This service abstracts marshaling by allowing the flexible

definition of message formats. GMH uses this information in conjunction with user sup-

135

plied context to marshal data. Encryption, padding, byte ordering, byte alignment, and
buffer allocation and resizing are handled automatically by GMH. Hence, the development
costs associated with implementing new protocols are reduced and bugs associated with
marshaling are largely eliminated.

An AMessageDef object defines the structure of a message. Typically, a static AMessageDef
object is defined for each message type implemented by a mechanism. For example, the
ADataHandler mechanism defines a definition object for each unique combination of data
security policies (e.g., confidentiality, integrity, etc.). The central attribute of each message
definition object is the msgDef string. This alphanumeric string defines the typed ordering
and encapsulation of fields. For example, the following defines a simplified key distribution
message:

msgDef = “LTH[H[E[DT]]"
Each alphanumeric character in the definition represents a field (data fields) or operation
spanning fields (encapsulation fields). The latter field types identify the scope of operations
using bracket symbols. In the above example the characters L, T, and D represent a long
integer (group identifier), string (identity), and data block (key). The symbols H[...] and
E[...] represent HMAC and encryption operations.

Described in Figure 5.8, a message is marshaled in three steps. First, an AMessage
object is constructed as directed by the associated AMessageDef object. Next, the values
for each field are assigned through the type checking DEF_FIELD macro (indexed by field
number). Data fields are passed the values to place in the message. Encapsulation fields are
passed Key objects (for encryption) or Key and HashFunction objects (for HMACs). Once
all field values have been assigned, the prepareMessage () method is called to perform the
marshaling. The marshaled data is accessed through the MsgBuf access method after the
prepareMessage () method returns. This buffer is used to transmit the marshaled message
to the group.

Upon reception of the message, receivers reverse this process through an AMessage
constructor accepting the received buffer. There may not enough information at the time of
reception to completely unmarshal the message. For example, the parent mechanism may
not know a priori the key that was used to encrypt a message. Hence, the mechanism must
determine the context under which a message was sent. The GMH service unmarshals as

much data as is possible, and calls the getEncryptionContext() or getHMACContext ()

136

method on the mechanism object. The mechanism can call getFieldValue() on every
field that has been unmarshaled within the context method. Fields values are used to
determine the appropriate context, and the appropriate keys and algorithms are reported
to GMH based on this information. Once the constructor completes, all fields values may

be accessed through the getFieldValue () method on the message object.

5.6.2 Caching Authentication and Access Control

Authentication and access control policy is consulted on every regulated action. Some
actions are undertaken frequently. For example, a video conferencing application may send
many packets per second. Thus, evaluating policy prior to the transmission of every packet
may negatively affect performance.

Antigone provides a two level cache for authentication and access control. The first
level cache stores the result of condition evaluation. As described in Chapter 4, the right
to perform an action may be predicated on measurable state. The measurement of state
is tested using special purpose functions implemented by mechanisms, the group interface,
or the application itself through the PolicyImplementor API. This API requires that each
condition evaluation return not only the positive or negative evaluation of the condition, but
must indicate the period during which the result should be considered valid. There are three
indicators associated with the reported period; transient, timed, and invariant. Transient
results should be considered valid for only the current evaluation. Timed results explicitly
state a discrete period during which the result should be considered valid. Invariant results
are considered valid for the lifetime of the session. The cache is consulted during the
evaluation of any authentication and access control policy.

A second level cache stores the results of policy evaluation. This cache stores the relevant
context under which an action was considered (e.g., credentials and conditions used during
evaluation). Entries in the cache are considered valid for the minimum of the reported
condition evaluations. Hence, any member testing the same conditions and credentials (as
would be the case in frequently undertaken actions) would simply access a cached result.

Both caches are flushed following policy evolution.

137

5.6.3 Memory Management

The cost of acquiring and releasing frequently used objects via the C++ new and delete
calls significantly contributed to the message processing overheads of the initial Antigone im-
plementation. For example, the management of Buffer objects are used to store messages,
keys, and identities negatively impacted system performance. These costs were exacerbated
by requirements for additional processing prior to object deletion. It is unsafe for Antigone
to release buffers to the free store without zeroing their contents. Zeroing prevents the
exposure of potentially sensitive information to other processes acquiring the previously re-
leased memory [Pro00]. While some implementations of C++ automatically initialize (zero)
allocated data, other methods do not (e.g., malloc [Pagb]).

Antigone mitigates the costs of free store management and memory zeroing by creating
internal heaps for the most frequently used objects (e.g., typically known as slab alloca-
tion [Bon94]|. The Buffer and String classes define a stack of Int1Buf objects as static
data. IntlBuf objects are resizable memory blocks used to implement both buffers and
strings. The buffer and string allocation methods (as called through either the free store
new or local variable stack allocation) consult the class specific Int1Buf stack for available
objects. If such an object exists, it is associated with the object being constructed. If no
such object is available, a new IntlBuf object is created. Buffer and string destructors
release these objects back onto the appropriate stack. Note that the internal heaps are
shared by all objects in the same address space. The Buffer class implements a service
similar to the x-kernel buffer manager [HMPT89] through the manipulation of attributes
and use of internal heaps.

Each stack will grow to a high-water mark. Once reached, no further memory allocation
for the objects is needed. Hosts with limited resources may wish to place an upper bound
on the size of these stacks, and garbage collect when the bound is exceeded. This is accom-
plished by assigning the Buffer: :maxBufferHeapBytes and String: :maxStringHeapBytes
static attributes to the desired threshold (measured in bytes). Any deallocation that causes
the stack to exceed the threshold is handled by zeroing and freeing the buffer directly. In

all cases, the stacks are flushed (and buffers zeroed and released) at process termination.

CHAPTER 6
CASE STUDIES: VIRTUAL PRIVATE FILESYSTEMS IN
AMIRD

The increasingly distributed nature of computing has heightened concerns over the security
of services used to share information. Software has historically been built upon ad hoc
collections of security mechanisms. The resulting designs address singular views of perfor-
mance and security. Hence, the resulting service is inappropriate for environments with
differing requirements. Users must accept performance penalties (where unnecessary secu-
rity infrastructure is provided) or highly undesirable vulnerabilities (where required security
is not provided).

This chapter presents the AMirD filesystem replication system. AMirD is used to effi-
ciently and securely replicate filesystems across agents. The Ismene policies defining and
driving the security services used to protect replication are constructed from run-time con-
ditions. These conditions can be a reflection of participant abilities and requirements, the
available resources, or any other measurable aspect of the environment. Hence, AMirD de-
termines an appropriate security model at run-time through the evaluation of policy. This
approach allows network administrators and users, rather than developers, to construct and
control the security infrastructure via the systematic enforcement of policy.

This chapter serves not only as an investigation of group-based filesystem replication,
but also as an exploration of the power of policy-based security. The four environments
discussed in the latter sections of this chapter represent distinct operating environments,
Each environment embodies a different set of security and performance requirements. The
presented policies demonstrate how the vastly different needs of each environment can be
met through a flexible policy representation. Ismene not only defines a set of security
requirements, but also defines under what conditions each should be considered relevant.

Independent of security, the use of broadcast communication can significantly reduce the

138

139

costs associated with content replication [JGJT00]. For example, the semantics of AMirD
make it ideal for mirroring (e.g., website, source code repositories). AMirD filesystems
are replicated at specified intervals or on demand. Collections of mirror sites receive the
scheduled broadcast updates in unison. Hence, updates can be scheduled to occur only
during periods of low use or during maintenance windows. Another scenario investigates
the use of mirroring in mobile environments. Mobile users have intermittent connectivity
with highly variable throughput. Thus, these users can refresh the local filesystem only
when it is convenient and desirable. Other environments (local LAN, coalition) implement
replication within one or more enterprises. These latter scenarios principally illustrate the
need for reconciliation of diverse security policies.

The remainder of this chapter is organized as follows. Section 6.1 describes the design of
AMirD. Section 6.2 describes policies appropriate for a number of operating environments.

Section 6.3 concludes with details on the configuration and management of AMirD agents.

6.1 AMirD

AMirD is a filesystem replication service based on secure group communication. An AMirD
agent is placed at each host participating in the distribution of files. The contents of each
filesystem are periodically identified and files updated at each agent as necessary. AMirD
is not a distributed filesystem in the traditional sense. No formal read/write semantics are
provided [Tan95]. Hence, the replication service avoids the inherent complexities and costs
associated with distributed filesystems (e.g., file locking). AMirD is focused on the reliable
and secure distribution of files across large and widely distributed communities. However, as
needed in the future, the design can be extended to provide stronger consistency guarantees.

AMirD separates advertisement from distribution. As a result, consistency management
and content distribution can operate under different security models. This differs from
previous replication services that enforce a fixed security (if any) over all communication.
This affords a greater degree of flexibility in meeting the needs of interested parties.

An AMirD filesystem is a securely replicated directory tree. Each filesystem is identified
by its local root pathname on the exporter host. An exporter subsequently directs both the
identification (announcement) and subsequent distribution (download) of files within the ex-

ported filesystem. Filesystem contents are communicated through periodic announcements.

140

Filesystem

Exporter

@, ()] (). .-

Figure 6.1: The Control Group - filesystem announcements are broadcast by exporters to the
control group at a policy dictated periodicity (a). Importers noting missing or stale content
request updates via download requests (b). Exporters identify the location of download
groups (associated with a single file download) through a download group announcement

().
Importers receiving announcements request downloads for each locally stale or non-existent
file. The files are reliably broadcast to all interested and authorized importers under a run-
time-generated security policy. Note that any agent can simultaneously act as the importer
or exporter for zero or more filesystems.

The control group is used for the distribution of filesystem announcements and download
requests. Download groups are used to reliably broadcast the contents of files. The following

subsections summarize the operation and use of these groups within AMirD.

6.1.1 Control Group

The control group is created by an initiator. The initiator creates a policy instantiation
through the reconciliation of a group policy and the local policies of each expected exporter
and importer (see Chapter 4)!. The policy instantiation is used to initialize the appropriate
services and establish the group context. Interested importers and exporters attempt to
gain access to the group. Entities that are successfully authenticated (and permitted access
by the authentication and access control policy) are admitted to the group.

Any number of exporters and importers can exist within a single control group. However,

!The means by which group and local policies are acquired is outside the scope of AMirD. It is currently
assumed that all such policies are made available to the initiator prior to the creation of the group. However,
future revisions may provide an additional service from which these policies may be acquired.

141

Announcement

‘ Exporter ‘ Filesystem ‘ Rel. Path ‘ Modification Date ‘Access Mode‘ Sym. Link Flag ‘

‘ # Entries ‘ Entry 1 ‘ Entry 2 ‘ ‘ Entry n ‘

Directory Entry
‘Name ‘ DIR‘ Modification Date ‘Access Mode‘ Sym. Link Flag ‘

File Entry

‘Name‘ FILE‘ Modification Date ‘Access Mode‘ Sym. Link Flag ‘

‘ Size ‘ Hash ‘ Pend. Download ‘

Figure 6.2: Filesystem Announcement - AMirD filesystem content announcements are frag-
mented into per-directory sub-announcements. Each sub-announcement contains the per-
tinent information regarding the files and directories of the announcement directory.

it may be desirable to limit the number of filesystems governed by a control group. This
is important where filesystem announcements are themselves sensitive, or where importers
wish to the limit processing of announcements in which they are not interested. The current
AMirD agent supports only a single control group. Hosts must execute a separate agent for
each control group managing distinct sets of filesystems.

Depicted in Figure 6.1, exporters describe the contents of filesystems through periodic
broadcasts. Export announcements are fragmented into sub-announcements identifying the
directories in the filesystem. Depicted in Figure 6.2, sub-announcements contain path in-
formation, modification times, and permissions of each directory entry. File entries are
augmented with a collision resistant hash of the file content (e.g., MD5 [Riv92a]). An-
nouncements are tagged with the exported filesystem and a unique exporter identifier.

Importers compare received announcements against the local filesystem. Directories
found to be inconsistent with an announcement are updated (or created) with the identified
permissions and modification dates. Files and directories not identified in the announcement
are removed. Stale file contents are detected via content hashes. Files whose content
is consistent (as determined by the content hash) are updated with the permissions and
modification dates as needed.

Importers indicate the need for updates through download requests. These single file
requests are broadcast to the group. Note that in a naive approach, sender implosion can
result from the many simultaneous request broadcasts resulting from an announcement.

The sudden burst of requests can overwhelm the exporter, cause congestion, and ultimately

142

File

] Exporter

@].

‘

il

)

Figure 6.3: The Download Group - The file associated with the download group is broadcast
through windowed protocol (a). Selective acknowledgments (b) received by the exporter are
used to direct transmissions. The group is disbanded when the file transfer is complete.

delay updates. Similar to SRM [FJLT97], implosion is mitigated by randomly delaying
requests (for 100-1000 milliseconds). Duplicates of requests received prior to the expiration
of the delay timer are suppressed.

Non-redundant download requests are queued for processing by the exporter. Exporters
initiate a download group for each requested file (in the order that the associated requests
are queued, round-robin by filesystem). The exporter broadcasts a download group an-
nouncement at the point at which the group is initialized. This announcement contains file

and network addressing information for the spawned download group.

6.1.2 Download Group

The exporter, acting as the initiator, creates a policy instantiation through the reconcili-
ation of the filesystem specific download group policy and the local policies of the control
group members. Consistency management and synchronization are separated through the
enforcement of the distinct download policy. Hence, the security used to protect file content
can be derived from the download file itself, the expected importers, or any other measur-
able aspect of the environment. Moreover, the authentication and access control policies
used to govern the group can be used to place controls over the individual files or sub-trees
within an exported filesystem (see Section 6.2.5).

Depicted in Figure 6.3, the download group reliably distributes the file to admitted im-

143

porters. The current download protocol ensures content reliability through a one-to-many
selective acknowledgment scheme [FF96]. The use of other reliability techniques [Bir93,
RBM96, FILT97, RBH" 98] with different performance characteristics and delivery seman-
tics may be integrated into AMirD as future needs dictate. The use of probabilistic relia-
bility protocols (e.g., FEC [Riz97] and SRM [FJL*97]) within Antigone is currently being
investigated [MPI101].

The exporter allows a configured period for importers to join, after which no further
members are accepted into the group. The download is configured with window (w) and
block (b) sizes. The configuration parameters are gleaned from the instantiation, or where
not specified, default values are used (see Section 6.3.1).

The exporter begins the download by broadcasting w packets of size b containing the
first blocks of the file. Upon reception of the w'” packet, each importer broadcasts a w-width
bitmask acknowledgment. If an acknowledgment is not received from each importer within a
specified interval, the exporter re-transmits the w'” packet. Re-transmissions are broadcast
as directed by the importer bitmasks once all acknowledgments have been received (or
the non-reporting import have been deemed failed and ejected from the download group).
This process is repeated until the window is fully acknowledged. This window acknowledge
protocol is repeated for each window. After completion of the download, the group is
disbanded.

In general, reliable broadcast is an expensive enterprise. The period waiting for explicit
acknowledgments represents a lost opportunity to transmit data. Furthermore, the efficiency
of the group is governed by the slowest and highest loss rate importers. Hence, to make
better use of the available resources, an exporter can initiate a policy driven number of

simultaneous download groups.

6.2 Policy

This section considers the construction of AMirD policies addressing the requirements of
four environments. The scenarios illustrate the use of policy to support secure replication
under diverse conditions. The policies designed for these environments represent singular
views of environmental requirements. A number of other interpretations may be entirely

appropriate and realizable in AMirD. Such is the promise of policy defined behavior; al-

144

Importer

@ Gateway

Figure 6.4: Scenario 1 - Members and services in this LAN environment are mutually
trusted. Access to filesystem content is predicated on local filesystem access rights.

@ Exporter

ternate interpretations leading to other application requirements can be addressed through
flexible policy definition and enforcement.

As described in Chapter 2, group security can be decomposed into provisioning and
authentication and access control. Provisioning policies can be further decomposed into
the basic sub-policies for authentication, membership, key management, data handling,
and failure detection. Note that while many security and system requirements can be met
through the definition of policies along these dimensions, many others exist (e.g., reliability).
These issues are largely orthogonal to the current work, and for brevity are omitted from

the following discussion.

6.2.1 Scenario 1 - Local LAN

Local LAN environments characterized by this scenario exist within a single administrative
domain. Depicted in Figure 6.4, an enterprise internal network supports users and services
within a small geographic area (a single building). The network itself is protected with
standard devices (i.e., firewalls, intrusion detection, etc.). The users within this community
largely trust the local services and each other. However, users should have (read) access
rights to the files prior to obtaining their content. AMirD provides (and suffers from the
limitations of) a service similar to NFS [SGK*85] in this environment.

Note that, for this environment, the existence and characteristics of exported files may

not be a concern. Hence, the control group can implement a low cost policy; content

145

announcements do not need protection. Similarly, requiring users to be authorized before
being allowed to participate in the control group is not necessary. This is reflected in the
minimal authentication, cleartext data handling policy. A simple key management service
configured with a (near) infinite rekey period implements an essentially static session key.
As users are largely trusted, membership information is not distributed.

The distribution of files within LAN should be protected, but users participating in the
distribution trust each other not to interfere with the exporting of files. Thus, the costs
of provided cryptographic guarantees such as integrity and authenticity of the files can be
avoided. Because the network is relatively isolated, weak (and thus efficient) data security
is acceptable. However, the level of secrecy should be commensurate with the sensitivity
and value of the exported files.

Access to exported files should be predicated on rights assigned by the local network
administrators. As a local authentication service is almost certainly to be used for a range of
existing services, it is highly desirable that this same service be used within the group. Once
admitted, no further authentication is required. The current authentication mechanism
transfers the UNIX user identifier (UID) during authentication, and are used to govern
access to download groups. However, this approach has similar limitations as NFS; forging

identifiers is trivial. Where needed, stronger mechanisms may be introduced.

6.2.2 Scenario 2 - Mobile Users

Mobile users? place a number of unique security and performance requirements on AMirD.
These members exist in untrusted environments with often inconsistent and limited con-
nectivity to their home enterprise. AMirD can be used in this context as a means by which
remote users synchronize content between a mobile host and resources at the home enter-
prise. Depicted in Figure 6.5, the synchronization service is implemented by a gateway
machine at the border of the home enterprise. Participants are expected to connect to the
home enterprise for short periods during which synchronization occurs.

The security of the control group is driven by the need for secrecy and authenticity.
Where characteristics of the filesystem are sensitive (such as the existence and names of

technical documents), the control group must be confidential. However, if the existence of

2This scenario defines a mobile user as a participant operating in remote, untrusted environments. The
use of wireless technologies for communication is neither assumed nor precluded.

146

Mobile User LAN

O, -®

@ Exporter
@ @ Importer

Mobile User @ Gateway

Figure 6.5: Scenario 2 - The mobile users in this environment use AMirD to synchronize
mobile devices with filesystems in their home environment. As the device is executing in
an untrusted network, the control and download information must be protected.

file content exposes little (such as email cache), confidentiality is not a concern. In all cases,
the (group) authenticity and integrity of control group communication must be preserved.
The typically limited computational power of mobile devices combined with unreliability
of the transport networks requires that low cost mechanisms for achieving these guarantees
should be employed.

Similar to the control group, download groups are primarily driven by the sensitivity
of the data being transmitted and the costs and availability of computational and net-
work resources. Thus, content secrecy should be predicated on the sensitivity of the data
transmitted. Due to resource limitations, low cost and robust protocols should be used for
distribution. For example, it is likely that many download groups in this environment may
contain only two participants (mobile users are likely to perform synchronization at their
own schedule). Thus, the download group protocol parameters can be tuned for smaller
groups.

Mobile users are first class members of the home enterprise, and as such may be trusted
with control group content. However, download groups must only allow access to members
with the relevant file read access. Where remote users are acting as exporters, it is likely
that only the gateway machine and the remote users should be allowed into the download
sessions.

A problem arises when dealing with user identities and credentials. If different creden-

tials are used for gaining access to the group and for exporter local file access, some mapping

147

Enterprise C . Enterprise A

@ Exporter
@ Importer

'Enterprise B @ Gateway

Figure 6.6: Scenario 3 - The enterprises comprising the coalition have conditional and fluid
trust. The policy under which the control and download content is distributed is a direct
reflection of these conditions.

must be used to enforce authentication and access control. AMirD currently implements
a credential mapping function between the two identities (Certificate common names and

UNIX identifiers). Members who have rights to the relevant file (as determined by the

mapping) are allowed access to download groups.

6.2.3 Scenario 3 - Coalition Networks

A coalition network allows independent enterprises to share information in a secure and
controlled manner [PCKS01]. Depicted in Figure 6.6, the example coalition contains three
separate networks communicating over the Internet. Each enterprise shares information
with the other enterprises via a single AMirD gateway host. The gateway host imports the
filesystems of the other enterprises in the coalition group, and exports a local filesystem.
Each enterprise maintains an enterprise internal session within which the external enterprise
filesystems are exported to local hosts.

The coalition session communicates over a potentially hostile network. Moreover, there
is limited and fluid trust between the coalition partners. For these reasons, the group
must be able to make progress in environments in which external adversaries or partners
attempt to disrupt the group. Hence, the coalition session should employ secrecy, integrity,
and authenticity guarantees. Strong cryptographic algorithms should be used to protect
the potentially sensitive announcements and content. Ejection of misbehaving members is

supported through an appropriate keying policy.

148

@ Exporter
Importer/
Website
@ Gateway

Figure 6.7: Scenario 4 - The contents of a website are synchronized to a large body of
largely untrusted mirror sites. The authenticity of the content is of paramount importance.

The coalition session should allow only negotiated coalition behavior. For example,
it may be necessary to restrict access to filesystems to only those coalition partners to
which the files are important and necessary. Thus, control over filesystem access should
be enforced. Moreover, it is unlikely that all enterprises will use the same mechanism
to evaluate access. Thus, a “lingua franca” must be agreed at the point at which the
coalition group is initiated. The reconciliation algorithm determines, based on the enterprise
local policies, which (authentication and provisioning) mechanisms are appropriate for the
session.

Enterprise local groups operate entirely within the local scope. As such, the policies may
be constructed in a manner similar to that identified in Scenario 1. However, it is likely
that allowing uniform access to (external) imported filesystems is insufficient. Thus, it may
be necessary to further restrict access by partitioning imported filesystems into smaller

filesystems exported to the local enterprise.

6.2.4 Scenario 4 - Site Mirroring

Website replication is increasingly being used to reduce client latency and Internet backbone
load. This scenario demonstrates how AMirD can implement a replication service efficiently
and securely. Described in Figure 6.7, an AMirD authoritative web server distributes web
content to a number of mirror sites over the Internet. Updates are announced at a configured

schedule. Hence, replication is performed automatically during periods of low usage (e.g.,

149

maintenance windows). Emergency updates are initiated without prior announcement (see
Section 6.3.2).

Because the content announcements of a mirrored website are unlikely to be sensitive,
secrecy of the content is unlikely to be a chief concern. However, the authenticity, integrity,
and freshness are necessary to ensure the correct and timely updates. Similarly, download
groups associated with public web-sites simply require authenticity and integrity. Private
or restricted web-sites (such as those provided by password or certificate protected content)
may have very strict requirements for secrecy, authenticity, and integrity.

While the remote mirrors are not likely to be under the administrative control of the
home website enterprise, it is likely that they can require a uniform set of services be
supported by all mirrors. Thus, the provisioning of the sessions can be statically defined in
the group policy.

It is important that web content be authentic. Thus, the access control policy should
state that only the authoritative web server is allowed to export, Similarly, one must ensure

authorized mirror sites are allowed to import the web filesystems.

6.2.5 Illustrating Policy

This section describes the representation and meaning of an example policy meeting the
scenario goals set forth in the previous sections. The policy cited in the following text
is summarized in Table 6.1 and presented in its entirety in Appendix A. A study of the
performance of AMirD under these policies is presented in Chapter 7. Note that these
policies represent one way to achieve the stated goals. In practical use, the construction and
content of Ismene policies will be a function of the application goals and issuer preferences.

As is true of any Ismene policy, evaluation of the AMirD policy begins with the provision
clause. This default clause states three sub-policies must be reconciled; antigone, monitor,
and application. Evaluation of the policy is largely driven by the grouptype predicate.

The following clauses direct reconciliation to the appropriate group provisioning;:

antigone : grouptype(locallan) :: lanprov;
antigone : grouptype(mobileuser) :: mobileprov;
antigone : grouptype(coalition) :: coalprov;
antigone : grouptype(website) :: webprov;

% Error on non-matched grouptype predicate

150

Poli Control Group Download Group
olicy . - . :
mechanism | configuration mechanism | configuration
Scenario 1 - Local LAN
Authentication | nullauth nullauth
Membership Antigone no membership | Antigone no membership
Key Management | KEK static key KEK static key
Data Handling | Antigone cleartext Antigone confidentiality
Failure Detection | none none
Scenario 2 - Mobile Users
Authentication | OpenSSL OpenSSL
Membership Antigone no membership Antigone no membership
Key Management | AGKM RC4 or Blowfish | AGKM RC4 or Blowtfish
Data Handling | Antigone integ/(conf) Antigone integ/(conf)
Failure Detection | none none
Scenario 3 - Coalition Networks
Authentication | OpenSSL OpenSSL
Membership Antigone membership Antigone no membership
Key Management | LKH leave/eject/fail | KEK or AGKM | RC4 or Blowfish
sens
Data Handling | Antigone sauth/integ/conf | Antigone sauth/integ/conf
Failure Detection | Chained FP none
Scenario 4 - Site Mirroring
Authentication | OpenSSL OpenSSL
Membership Antigone no membership Antigone no membership
Key Management | AGKM Blowfish AGKM Blowfish
Data Handling Antigone sauth/integ Antigone sauth/integ
Failure Detection | none none

Table 6.1: Scenario Provisioning Policy Summary - policies appropriate for the environments
described in Section 6.2.

Implemented by the application, grouptype identifies the environment and purpose of
the current AMirD agent. The last line (beginning with a %’ symbol®) denotes a com-
ment stating that reconciliation will fail if no previous grouptype predicate evaluates to
true. Further evaluation of sub-policies (see below) is directed by the isControlGroup and

isDownloadGroup predicates identifying the type of group being initiated.

Scenario 1 enforces a statically defined policy similar to those available in contemporary
group communication services (Local LAN, lanprov clauses). As is appropriate for the tar-
get environment, the control group is largely unprotected. Members are not authenticated
(and are trusted to provide their real identity), and all group text is sent in the clear. No

authentication and access control is enforced over the control group; anyone on the local

3All Ismene comments begin with the percent symbol and are implicitly terminated with an end-of-line
character.

151

network is free to join. This egalitarian policy is represented through authentication and

access control clauses of the form:
join : grouptype(locallan), isControlGroup() :: accept;

These clauses state that any member should be allowed access to Local LAN control groups.
However, the membership is free to augment these policies with additional restrictions
through local policies (See Chapter 4).

Download access (join) in scenario 1 is partially regulated by the hasReadAccess predi-
cate. Semantically, the predicate determines whether the identity of the member has rights
to access the download file. The user identity ($id) download ($file), and filesystem ($fsys)
are application attributes asserted by the agent at run-time. The predicate implementation
maps the user identities to UNIX a UID and GID. The predicate returns true if either
the UID or GID has read access to the file or filesystem. The inJoinPhase predicate im-
plemented by AMirD represents a further refinement download group access. Members
joining a download group in which a transfer is in progress cannot successfully complete
the download protocol. For this reason, no members are permitted to join the group after

the transfer is begun.

Scenario 2 (Mobile Users, mobileprov clause) requires a stronger security policy. Mem-
bers are authenticated using the local OpenSSL [Gro00] service. As determined by the
isSensitiveFile and hasSensitiveFilesystem predicates, the content may be confiden-
tial. The selection of a cryptographic algorithm used to protect content is driven by local
policies. In the clause,

mkey : :: config(agkmkey(kychlen=64,rekeyperiod=60,hash=shal)),

pick(config(agkmkey (crypt=rc4)),config(agkmkey (crypt=blowfish)));

the issuer states that either the RC4 or Blowfish encryption algorithms are acceptable.
Through reconciliation, the selection of a single algorithm is the result of the member
desires stated in the associated local policies.

All keys, certificates, and tickets used by Antigone are modeled as credentials. The
right to perform an action is partially derived from the credentials asserted by the member.
Credential conditions test the attributes associated with credentials. Actions are accepted
where the asserted credentials and conditions are sufficient to meet at least one authenti-

cation and access control clause.

152

Access to the control and download groups in scenario 2 is partially predicated on the

assertion of X.509 certificates [HFPS99]. The credential test in the clause,

member_auth : grouptype(mobileuser), inlist($id, $ssl_acl),
credential (&ca,issuer_CN=Antigone_SSL_CA),

credential (&cert,subject_CN=$id,issuer_CN=$ca.subject_CN) :: accept;

states that the member must provide a certificate issued by the known issuer Antigone_SSL_CA.
Note that the Antigone enforcement engine will only assert a certificate after it has been
validated internally; a certificate is deemed valid only if a certification chain rooted by a
locally stored CA certificate can be found*. In this case, validation will be based on the
locally stored Antigone_SSL_CA public key certificate.

The statically defined ACL attribute,

ssl_acl := <memberl:member2:member3:memberd4>; % ACL of Acceptable Members

defined in the policy further specifies group access. This ACL attribute (as processed by
the Antigone internal inlist predicate) explicitly enumerates the identities that have the
right to access the group.

Access to other group action requires the assertion of the appropriate keys. The policy
assumes two types of keys are established and maintained by Antigone. Negotiated during
initial authentication, pairkeys are ephemeral shared secret keys known only to the initiator
and a single member. Session keys are created by the key management mechanism and
replaced as directed by policy. These keys are used throughout the lifetime of the group as
authorizing information. For example, the clauses

join : grouptype(mobileuser), credential(&ky,name=$id) :: accept;

send : grouptype(mobileuser), credential(&ky,name=$gid) :: accept;

describe the keys required to join and send data to the group. The run-time asserted
attribute $id is used to identify the user. The pairkey specific name attribute identifies the
user or initiator. Hence, the credential condition is used to whether the pairkey associated

with the joining member was used to request the join. Similarly, the $gid attribute identifies

“Revocation, and certificate management in general, presents a number of difficult challenges [MRO0O0].
As such, Antigone currently does not make use of any online certificate acquisition or revocation service.
A mechanism based certificate service is being considered, and may be introduced in future revisions of
Antigone.

153

the current session key, and the credential test determines whether the session key was used

to generate the message sent to the group.

The environment of Scenario 3 (Coalition Network, coalprov clause) consists of a large
number of independent enterprises. However, the services available to each enterprise may
be very different. Hence, AMirD must allow groups to converge on an acceptable and
interoperable set of policy implementing mechanisms. This ability is demonstrated through

the evaluation of clauses associated with key management provisioning. The clause,
ckey : :: pick(config(agkmkey(crypt=rc4)),config(kekkey(crypt=rc4)));

states that either AGKM or KEK mechanism may be used for key management. The
decision of mechanism will be determined by the local policies. Moreover, access to the
group will be predicated on this determination; members whose local policy is satisfied by
the resulting decision will be free to participate. However, any member who requires the
mechanism that is not selected is precluded from participation.

Members must assert a certificate credential issued by an authority indicating the right
to participate in the control group. The clause,

member_auth : grouptype(coalition), inlist($id, $ssl_acl),
credential (&ca,issuer_CN=Antigone_SSL_CA),

credential (&cert,subject_CN=$id,issuer_CN=$ca.subject_CN) :: accept;

illustrates the use of credential binding. The first credential conditional binds all matching
authority certificates to the name ca. The second clause states that the member should
be allowed access only if the supplied certificate was issued by one of these authorities.
Hence, binding allows policy to specify trust relationships. In this case, the SSL authority
is trusted to regulate group access through certificate issuance.

The clauses,

eject : grouptype(coalition), config(amember (ejecttype=pairkey)),
IsServer($id) :: accept;

eject : grouptype(coalition), config(amember (ejecttype=pairkey)),
Credential (§ky,name=$id), inlist($id, $eject_acl) :: accept;

eject : grouptype(coalition), config(amember (ejecttype=cert)),
credential (&ca,issuer_CN=Antigone_Ejection_CA),

credential (&cert,subject_CN=$id,issuer_CN=$ca.subject_CN) :: accept;

154

demonstrate how several access control methods can be used in conjunction. The first clause
indicates that the server (initiator) should always be allowed to eject, and the latter two
state that any member listed in the ejection ACL or who can produce a ejection authority
certificate should be allowed to perform ejection. The config conditional states that all
access to eject should be predicated on the ejection service being enabled in the membership

mechanism.

The policy of Scenario 4 (Site Mirroring, webprov clauses) demonstrates a commonly
used content distribution policy. Members are allowed into the group if they can provide an
appropriate access certificate. Subsequent access to group functions is entirely predicated on
the initial authentication. All communication has integrity, but management of membership
or failures is deemed unnecessary.

Authenticity of group content is paramount in website mirroring. The clause,

content_auth : grouptype(website), credential(&ca,issuer_CN=$authorid),

credential (§cert,subject_CN=$id,issuer_CN=$ca.subject_CN) :: accept;

states that the content must be received from the authenticated source. As directed by
provisioning, the authenticity of the data is inferred from the packet or online content
signature. However, it is not realistic to assume that any entity will ultimately be the
authenticating body (CA) for all websites. Moreover, Antigone cannot determine the correct
authority; the application must identify an authenticating body based on the content. The
application signifies this judgment by identifying an authority through $authorid attribute.
Hence, a member will only be able to mirror a website after obtaining and locally storing
the appropriate public key certificate.

Similarly, the clause,
wath : ::config(sslauth(interval=10,retries=2,crypt=blowfish,cafile=$author));

indicates that the application will assert the desirable provisioning at run-time. Application
attributes are replaced in provisioning statements prior to reconciliation. In this case, the
CA filename will be asserted by the application. Hence, they are subject to the same
evaluation processes as other policy defined configuration statements.

Note that, in this scenario, there are no clauses associated with the eject action. The

AGKM keying mechanism does not provide backward secrecy (see Chapter 2). Hence, an

155

ejection would not prevent a member from continuing to view application content. Because

the key management mechanism does not support ejection, the action is invariantly rejected.

Monitoring and application policies are relevant to (enforced by) all scenarios. The
monitoring policy states that the ascope debugging mechanism be used. The Antigone
envvar predicate tests whether the TKSCOPE environment variable is set to TRUE. If so,
the scope user interface is presented at each local host (see Chapter 5).

Application polices allow the application configuration to be driven by policy evaluation.
The reserved mechanism designator applic is interpreted by Antigone as application policy.
All parameters defined in the instantiation for the applic mechanism are stored in the group
attribute set. Applications obtain the relevant policy by querying the group attribute set
at run-time. To illustrate, the group policy defines the clauses,

application : :: config(applic(followsymlinks=true)), apsauth;
apsauth : grouptype(locallan) ::
config(applic(maxexportsubgroups=20, maximportsubgroups=20));

apsauth : :: config(applic(maxexportsubgroups=10, maximportsubgroups=10));

which indicate that symbolically linked files and directories should be exported. The latter
two clauses place a maximum on the number simultaneous export or import groups in which
a member may participate. This ceiling is placed at 10 groups where a computationally
expensive sender authenticity policy is enforced (as determined by other evaluation), and

20 elsewhere.

6.3 Implementation

This section considers the configuration and use of AMirD. The following subsection dis-
cusses the means by which the AMirD filesystems and policies are specified through a
configuration file. Section 6.3.2 concludes with a brief discussion of the use of UNIX signals

to modify AMirD behavior at run-time.

6.3.1 AMirD Configuration

The configuration of an AMirD agent is specified through a run-time specified file lo-
cated on the local host (e.g., amird.conf). This configuration file specifies the filesystems,

parameters, and security policies to be used to direct the action of the local agent. The

156

1 # Configuration section
2 [config]

3 grppol = amird_scen.apd
4 locpol = amird_lscen.apd
5 exporter=initiator
6

7

8

9

Exports section

[Exports]

<filesystem root> <group policy> <local policy> [<authority file>]
10 /usr/local/amird amird_scen.apd amird_lscen.apd antigone_ca

12 # Imports section

13 [Imports]

14 # <exporter:filesystem root> <mount point> <local policy> [<authority file>]
15 antigone:/usr/local/import /usr/local/antigone amird_lscen.apd antigone_ca

Figure 6.8: An example AMirD configuration file

configuration file consists of three sections; a configuration section, an exports section, and
an imports section. Figure 6.8 shows a subset of an example AMirD configuration file, and
table 6.2 enumerates all configuration file parameters.

Designated with the [config] label, the configuration section defines the operational
parameters of the AMirD agent. This includes addressing information for the various control
and download groups, transport parameters, and behavioral parameters. Required only by
the initiator, the policy used to define the control group is specified through the grppol
parameter. The control group local policy is specified in the locpol parameter. The
exporter identifier is specified through the exporter parameter.

The exports section ([exports]) defines the filesystems to be exported by the local
agent. Each exported filesystem is identified by a one line definition consisting of three
fields; the local path to the root of the exported filesystem, and the group and local policies
to be used when initiating the associated download groups. If specified, the authority file
is used to identify the public key of authority issuing content authenticating certificates for
the exported filesystem.

The imports section ([imports]) defines the filesystem to be imported by the local
agent. Each import definition consists of three fields; the exported filesystem identifier, a
path to the root of the replicated filesystem (e.g., mount point), and the local policy to
be used when participating in download groups associated with the imported filesystem.
The exported filesystem is uniquely identified by the exporter identifier and exported path

filename. The imported filesystem content authority file is optionally specified.

157

General Configuration
exporter exporter identifier
isserver local initiate control group flag
updateperiod frequency of AMirD advertisements
minupdateperiod | minimum advertisement frequency
mcloopback flag enabling multicast loopback
Control Group Configuration
grppol control group policy
locpol control group local policy
authoritycert control group admittance authority certificate
transport control group transport mode
mcaddr control group multicast address
mcport control group multicast port
srvraddr control group server address
srvrport control group server address
Download Group Configuration
sgtransport subgroup transport mode
sgaddr subgroup address
sgport subgroup multicast port
sgsrvraddr subgroup server port (asymmetric, overlay) modes
sgsrvrport subgroup port (starting)

Table 6.2: AMirD configuration - parameters stating the policies and configuration of an
AMirD agent.

6.3.2 Signal Handling

AMirD is designed to be executed as a background process. However, UNIX signals [Pagc]
delivered through kill [Paga] (or similar service) can be used to trigger AMirD action.

The following signals are currently supported by AMirD;

e SIGHUP - reinitialize. This terminates participation in all groups, destroys sensitive
state, and re-reads the configuration and policy files. Configuration information is

used to direct the initialization of all identified filesystems, and to re-join the control

group.

e SIGUSR1 - re-synchronize filesystems. Announcements are immediately broadcast (re-

quested) for each exported (imported) filesystem.

e SIGINT, SIGQUIT - gracefully terminate the local agent. AMirD immediately exits

control and download groups, destroys sensitive state, and terminates.

158

Signals are useful in managing the mirrored filesystems. For example, a (importer) user
desiring an immediate update uses the SIGUSR1 signal to indirectly trigger an announce-
ment. However, the ability to arbitrarily trigger announcements can lead to congestion or
introduce latencies in the download process. The minupdateperiod configuration param-
eter is used to mitigate this problem by placing a lower bound on consecutive filesystem

announcements.

CHAPTER 7
PERFORMANCE

A prerequisite to the acceptance of any policy infrastructure is an understanding of its
inherent cost. Any solution that significantly impedes the achievement of application goals
will not likely be useful. This chapter seeks to identify the fundamental costs of policy
determination and enforcement within Antigone. The processes and mechanisms defined
by the Antigone architecture are measured and analyzed. It is through this analysis that
the limitations of group policy infrastructures are illuminated, and specific enhancements
to Antigone identified.

This chapter considers the degree to which Ismene and Antigone satisfy the goals for Effi-
cient Multiparty Determination and Efficient Enforcement. This evaluation of the Antigone
policy infrastructure described throughout is partitioned into three areas. The first area
studies the costs associated with policy determination. A stated goal of this thesis is the
identification of approaches that allow efficient policy processing. Section 7.2 considers the
run-time costs associated with Ismene policy evaluation, reconciliation, compliance check-
ing, and analysis under a number of diverse policies. A second area of investigation pre-
sented in Section 7.3 considers whether Ismene policies can be efficiently enforced. This
study evaluates the throughput and latency characteristics of Antigone under a range of
group policies. The study further investigates direct enforcement costs by profiling the
dominant factors associated with communication. Finally, an investigation of application
performance is presented in Section 7.4. The AMirD filesystem mirroring application oper-
ating under the four scenario policies presented in Chapter 6 is measured, and the effects

of several security and application policies explored.

159

160

Internet % I:I = E
Juuuuuuu | Juuuuuuu =
a0nnnn| \a0oonnof —

group cete

+——100 Mbit—»

=

-

swarm skulk covey

Figure 7.1: Experimental Environment - all tests described in this chapter were executed in
within the Antigone cluster. Group tests were executed over five member group containing
the hosts; cete (session leader), swarm, skulk, covey, and pod.

7.1 Implementation and Experimental Setup

The Antigone enforcement architecture and Ismene Policy Description Language have reached
maturity. The current implementation of Antigone consists of approximately 58,000 lines
of C++ code in 133 classes, and has been used as the basis for several non-trivial group
applications. All source code and documentation for Antigone, Ismene, and applications
are freely available from the Antigone website (http://antigone.eecs.umich.edu/).

Interfaces to the Ismene policy determination support libraries are defined though the
Ismene Applications Programming Interface (API). The API defines interfaces for the cre-
ation, parsing, reconciliation, and analysis of Ismene policies. A number of tools used to
support the development of Ismene policies have been constructed. The Ismene policy
compiler, apcc, validates the syntax of group and local policies, and performs the policy
algorithms defined in Chapter 4. This tool is used extensively in the following section to
evaluate efficiency of the Ismene policy processing.

The Antigone enforcement architecture provides two programming interfaces; the Antigone
application and mechanism APIs. The former defines a set of interfaces used to integrate
applications with Antigone [MPIT01]. The latter API is used to integrate user defined
mechanisms within Antigone and Ismene.

All experiments described in this chapter were performed in the Antigone cluster envi-
ronment depicted in Figure 7.1. This environment used five 750 megahertz IBM Netfinity
servers running the Redhat 7.1 distribution of Linux kernel 2.2.14-5. Each host contains 256

161

Symmetric Algorithms Asymmetric Algorithms
Algo. | Bits | MB/Sec Algo. Bits | Enc KB/Sec | Dec KB/Sec | Sig/Sec
DES 56 14.12 RSA Pub. | 512 273.00 285.27 2423
RC4 128 51.17 RSA Priv. | 512 28.82 28.66 274
Blowfish | 160 24.30 RSA Pub. | 1024 94.02 98.13 804
MD5 128 | 107.24 | RSA Priv. | 1024 5.37 5.36 45
SHA-1 | 160 51.05 RSA Pub. | 2048 28.70 29.5 254
RSA Priv. | 2048 0.88 0.89 8

Table 7.1: Cryptographic Algorithm Performance - performance of algorithms used by
Antigone on an unloaded host. The bits field indicates the performance of the algorithm
under the given key (or hash) length. All symmetric algorithms were tested under 1 kilobyte
blocks of randomly generated data. All asymmetric algorithms were tested by encrypting
53-bit blocks (the size of a 512-bit RSA signature).

megabytes of RAM and a 16 gigabyte disk. The Antigone cluster is connected by a 100Mbit
Ethernet LAN. Antigone and all applications defined in this chapter were complied using
the GNU G4+ compiler version egcs-2.91.66. The communication experiments were
executed over the isolated LAN, and all hosts were unloaded during testing.

The cryptographic functions used by Antigone are implemented by the crypto library
distributed with the OpenSSL toolkit [Gro00]. This library has been in existence for several
years and is widely used to support SSL-enabled applications. The current implementation
has been optimized for the x86 architecture. Table 7.1 presents a performance analysis of
the cryptographic functions implemented in the crypto library. Throughput for the various
algorithms was established by measuring the processing time (using a local hardware clock)
of a single application of the cryptographic algorithm on a block of randomly generated
data. This process was repeated 300 times and throughput calculated from the average of
the collected metrics.

The symmetric key algorithms used by Antigone (i.e., DES [Nat77], RC4 [Riv92b], and
Blowfish [Sch94]) were evaluated over 1 kilobyte blocks!. Another battery of tests evaluated
the algorithms under larger input block size (10 and 50 kilobytes). The results showed that
the throughput DES and Blowfish is independent of block size (within 0.9% and 1.3%,

respectively). However, for large input block sizes (100k), RC4 was up to 50% faster. This

'To simplify evaluation, all experiments described in this chapter reflect the fixed key sizes defined in
Table 7.1. Where supported by the algorithm, however, variable length key sizes may be altered to suit the
application.

162

is largely due to the setup costs; the initialization of RC4 S-Boxes significantly impacts
throughput.

RSA [RSAT78] is the only asymmetric key algorithm currently used by Antigone. The
throughput of RSA under the varying key sizes was calculated from 53-byte input blocks
(the largest input size allowed by the OpenSSL RSA implementation). Larger key size may
accommodate larger input sizes. Hence, the throughput of RSA 1024 and 2048 may actually
have throughput sizes twice or four times the reported throughput, respectively.

Asymmetric algorithms are rarely used to encrypt data in Antigone. These algorithms
are used to sign data associated with some member or the group. Hence, the important
metric for these algorithms is the throughput of signing operations. As is demonstrated in
the latter sections of this chapter, the speed of signing operations can be a limited factor

in groups enforcing sender authenticity.

7.2 Policy Determination

While Chapter 4 demonstrated the tractability of the algorithms used to construct and
analyze Ismene policies, the run-time costs associated with Ismene policy determination
will ultimately determine the feasibility of the approach. This section investigates these
costs by benchmarking policy operations in a number of environments.

The apcc policy compiler was used in all experiments. apcc implements the predicates
defined in any policy by invarienently returning FALSE. Hence, the algorithm performance
cited below reflects low cost predicate evaluation; based on the semantic and implemen-
tation, application predicates may increase run-time costs. However, where possible, the
predicate evaluation cache will mitigate these costs (See Chapter 5).

The policies used in the experiments below were randomly generated by the mkpolicy
utility. mkpolicy creates group and local policies as dictated by command line arguments
defining the number of clauses, configurations, and local policies. By construction, a spec-
ified subset of local policies are guaranteed to be compliant with any policy instantiation
resulting from reconciliation with the group policy. Clauses in generated policies are con-
structed in a linear fashion, where three clauses are defined for each tag. The final clause
defined for a tag is unconditional (a default clause), and contains a consequence directing

evaluation to the subsequent tag. For example, a subset of clauses for a randomly gener-

163

1000

100

Time (milliseconds)

10

—

1
(50/5) (50/10) (500/50) (500/50) (500/50) (500/50) (500/50) (500/100) (5k/500) (5ki/1k)
Clauses/Configuration Consequences

Figure 7.2: Evaluation Algorithm Performance - time to evaluate randomly generated poli-
cies containing fixed number of clauses and configuration consequences.

ated policy is defined as follows (where n is the number of clause and k is the number of

configurations);

ti-1 : :: cnsqj(), ti;
ti : p3(), p4() :: unreach(); # Unreachable
ti : p5(0), p5() :: unreach(); # Unreachable

ti @ :: cnsqj(), ti+l;
tn : :: cnsqgk;

Because all predicates will return FALSE, evaluation is guaranteed to traverse all clauses.
The configurations are evenly split among pick and configuration consequences. mkpolicy

creates an average of two predicates per non default clause.

All policies, whether group or local, are evaluated to determine the set of configurations
potentially relevant to the group. Evaluation performs directed testing of predicates defined
in the policy and records the resulting configuration consequences. The performance of the
evaluation algorithm under randomly generated policies is presented in Figure 7.2. The
figure describes the cost of the evaluation of a single policy containing the identified number
of clauses and configurations.

The figure illustrates a central feature of evaluation; performance is largely independent
of the number of configurations. The number of clauses traversed, and hence the number of
predicates tested, will determine the cost associated with evaluation. Because the predicates

used in this test simply return invariant/false, these results serve as a lower bound to

164

Time (seconds)

Time (seconds)

o RN s OO

30
35
Local Policies 40 75 5<%

Figure 7.3: Reconciliation Algorithm Per-
formance - performance of reconciliation un-
der randomly generated policies containing
a fixed number of clauses and configuration

Figure 7.4: Local Policy Reconciliation - per-
formance of reconciliation with a fixed num-
ber of satisfiable and unsatisfiable local poli-
cies.

consequences.

evaluation. In practice, the cost of evaluation will largely be determined by the costs
associated with predicate implementations.

The Reconciliation algorithm attempts to find an instantiation satisfying at the group
policy and as many local policies as is possible. Reconciliation begins by evaluating the
group and each local policy. The set of consequences resulting from group policy evaluation
is used as a template; any instantiation will contain a subset of the configurations defined in
the config and pick statements. Local policies are used to further refine the template (e.g.,
via selection of values of pick statements). Local policies (and any refinements resulting
from its reconciliation) that cannot be satisfied by the instantiation are discarded.

The performance of the reconciliation algorithm under policies with a fixed number of
clauses and configurations is presented in Figure 7.3. Note that these experiments measure
not only the refinement process, but also the evaluation of each policy. Hence, the figure
describes the total time required to reconcile a collection of policies. The figure illustrates,
for the generated policies, that the costs associated with reconciliation increase gradually
with the number of configuration consequences. Hence, the reconciliation of each conse-
quence requires a constant, albeit small, cost. The number of clauses has a much larger
affect on reconciliation. The evaluation of the group and (10) local policies used in these
tests dominate measured costs.

While the previous experiments indicate that the number of local policies is a central de-

terminant of the cost of reconciliation, all local policies were satisfiable. Figure 7.4 considers

165

10000

1000

Time (milliseconds)
.
2
8

10

10 100
Configuration Consequences

1000

25

20

=
o

Time (milliseconds)

=
1S

100 200 300 400 500 600 700 800 900
Configuration Consequences

1000

Figure 7.5: Compliance Algorithm Perfor-
mance - time to test the compliance of a ran-
domly generated local policy with an instan-
tiation containing a fixed number of configu-
rations.

Figure 7.6: Online Analysis - Algorithm Per-
formance - time to test the compliance of a
randomly generated local policy with an in-
stantiation containing a fixed number of con-
figurations.

the cost of reconciliation where a subset of local policies are unsatisfiable (where the group
and all local policies contain 500 clauses and 50 configuration consequences). The figure
shows that the satisfiability of the local policy does not significantly impact performance.
As satisfiability of a local policy is not known a priori, the reconciliation algorithm must
attempt to find a satisfying instantiation. Because evaluation dominates the refinement
process, the effect of non-compliance has little impact on performance.

The Provisioning Compliance algorithm tests whether a local policy is satisfied by a
policy instantiation. This consists of searching the instantiation for configurations satis-
fying the consequences resulting from the evaluation of the local policy. Configuration
consequences are satisfied if the instantiation defines the associated configuration. Pick
consequences are satisfied if exactly one of the configurations is defined by the instantia-
tion. Hence, to simplify, the provisioning compliance algorithm calculates the intersection
of the instantiation and each local policy consequence. A consequence is satisfied when the
size of the intersection is exactly one.

Figure 7.5 depicts the measured performance of the provisioning compliance algorithm.
In all tests, the number of local policy consequences was equal to the number of con-
figurations. The figure shows the linear relationship between the number of configura-
tions/consequences and performance; there is a constant cost of performing policy intersec-
tion. As the number of consequences and configurations grows, so do the costs of performing

the intersection.

166

An analysis algorithm determines whether a set of invariant configuration properties
defined by an assertion clause are preserved by policy. mkpolicy automatically creates
two assertions with each policy. By construction, the first assertion (consisting of a sin-
gle configuration consequence) is guaranteed to not be violated by (any) reconciliation.
While occurring frequently, the configuration consequence defining the second assertion is
guaranteed to be violated.

Semantically similar to provisioning compliance, Online analysis evaluates assertions at
run-time by analyzing an instantiation against the set of configuration assertions. This
is performed by searching an instantiation for the (non)existence of the identified sets of
configurations. Depicted in Figure 7.6, this simple search is performed quickly; even very
large instantiations can be searched in a matter of milliseconds. As one would expect, the
search costs grow linearly with the number of configurations to be searched.

Offtine analysis attempts to determine whether, under a given policy, a set of asser-
tions can ever be violated via reconciliation with a set of local policies. This intractable
problem requires analysis search the space of possible instantiations. Variability (e.g., pick
statements) of the group policy can exponentially increase this space. Tests of the offline
analysis demonstrated this explosion; a policy containing pick consequences clauses took
under 1 second to complete, and a policy with 20 clauses took over 1 hour. While a more
efficient implementation of the wvalidity test that forms the foundation of offline analysis
may glean faster results, it is not clear that offline analysis of large, highly variable policies

is feasible.

7.3 Policy Enforcement

An oft-cited liability of component and event based systems is cost. The added overheads
of event management and generalized interfaces may slow group progress, and ultimately
lead to implementations that are inappropriate for high-speed communication. This section
considers the performance of Antigone under a number of policies. It is from this analysis
that an understanding of the fundamental limitations of flexible policy enforcement can be
gleaned.

The measured throughput and latency of Antigone under a number of data handling

policies is given in Figures 7.7 and 7.8. These tests attempt to find the maximum data

167

Integrity, Conf. And Source Integrity, Conf. And Source L |
Authentication 7:| HE Authentication] BEen 17
Confidentiality (RC4) 27 Confidentiality (RC4) 2157

Confidentiality (Blowfish) 2.57| Confidentiality (Blowfish) 2312
Integrity 269 Integrity | 2520
MNull | | | 7. 78 THull B31
Direct : : : i 18.93 Direct 664
000 200 400 600 800 1000 0 1000 2000 3000
Megabytes/Second Microseconds

Figure 7.7: Antigone Throughput - through- Figure 7.8: Antigone Latency - latency of
put of Antigone under diverse data handling Antigone under diverse data handling poli-
policies. cies.

rate and average round trip latency of group communication under direct, null, integrity,
confidentiality and an integrity, confidentiality, and source authentication policy. The di-
rect test estimates the maximum throughput possible on the network through standard
send/receive socket calls. The null experiment implements a group that transmits data
in the clear (implements a cleartext policy). The integrity policy is enforced by attaching
SHA-1/RC4 based HMACs to each packet. The confidentiality policies encrypt all data us-
ing the identified cryptographic algorithm. The final experiment implements a strong data
handling policy where SHA-1, Blowfish and 1024 bit off-line signatures (frame size=20, see
below) are used to ensure integrity, confidentiality, and source authentication. Note that
the latency measurements calculate the total round trip time of a single message on an
unloaded network. Hence, the latency metrics represent four traversals of the Antigone
protocol stack.

The throughput of Antigone closely follows the strength of the enforced security policy.
The direct and null data test identifies Antigone overheads. The environment is capable
of transmitting up to 9 MBytes/Second, and Antigone is limited to just under 8. This
represents an 11% reduction in throughput. A detailed investigation of Antigone overheads
is presented below.

Integrity and confidentiality policies exhibit similar throughout. It is interesting that
confidentially policy using the much slower Blowfish algorithm only marginally reduces
throughput over confidentiality implemented with the fast RC4 algorithm. Both algorithms
are significantly faster than the throughput of the network. Hence, unlike many previous

systems, throughput is not limited by encryption, but on message marshaling. The dra-

168

1400 T T T 1400

1200 4 1200

1000 - 1 1000 -

800

800

600 600

Throughput (KB/Sec)
Throughput (KB/Sec)

400 4 400

200 1 200

. . . .
Packet Signing Online Signatures Online Signatures Packet Signing Online Signatures Online Signatures
F F 0) F F 0)

Figure 7.9: Source authentication through- Figure 7.10: Source authentication latency -
put - throughput of Antigone under a set of measured latency of Antigone under a set of
source authentication policies. source authentication policies.

matic differences in throughput between these policies and null policy can be attributed to
encryption and marshaling; confidentiality and integrity transforms require an additional
buffer copy and the setup of the appropriate cryptographic algorithms.

The integrity, confidentiality, and source authentication policy demonstrates the canon-
ical strong group data handling policy. While it has been suggested that similar policies are
difficult or impossible to implement in group communication [CP00], Antigone can achieve
high data rates (1.16 Mbytes/second) through the proper application of off-line signatures
and high-speed encryption. It is worth noting that the test environment made use of high-
end hardware. Contemporary desktop machines may not be able to achieve these rates.

The latencies associated with these policies mirror throughput. The null and direct
(differing by 10%), confidentiality and integrity policies (differing by at most 4%) exhibit
similar latencies. Note that the latency of integrity, confidentially, and source authentication
policy is dominated by a data forwarding timer (see below). This timer delays the packet
transmission by 100 milliseconds in both directions. In all cases, the observed latencies were
well within normal application tolerances.

A number of works have addressed the problem of source authentication in group com-
munication [EGM96, GR97, Roh99, WL99]. The authors of these works frequently state
that the cost of digital signature generation is in conflict with the abilities of high speed
groups. However, experiments within Antigone have shown that this need not always be
true. Figures 7.9 and 7.10 describe the throughput and latency of source authenticated

data under three policies. Note that each experiment uses 1024-bit RSA keys and transmit

169

1024 bits packets.

The packet signing transform implemented by the current Antigone Data Handler mech-
anism signs each packet as it is transmitted to the group. Receivers validate each signature
using a locally stored public key certificate. Off-line signature caches a policy determined
number of packets (called the frame size). The packets are cached for a maximum pe-
riod defined by the data forwarding timer (50 milliseconds in all tests). An off-line sig-
nature [EGM96, GRI7] is generated for all packets in the frame when either the frame
becomes full or the data forwarding timer expires. The off-line signature is calculated by
appending a forward hash chain to all packets in the frame, and signing the first packet (see
Chapter 3).

Figure 7.9 shows that reasonable data rates can be achieved with packet signing. Over
100 packets per second can be signed and processed. Moreover, this rate can be significantly
improved with packet size increases; the cost of digital signature generation are largely
independent of the size of the signed content. For example, the 3.5Mbps through required
by a 30 frames per second MPEG-1 video stream [AACT99] could be achieved through 4096
byte packets.

Off-line signatures act as rate multipliers. Throughput under source authentication poli-
cies are dominated by signature generation. Hence, by only signing every k* packet (where
k is the frame size), you can linearly increase the throughput of source authentication. This
is demonstrated in the figure, a frame size of 5 provides nearly 5 times the throughput of
packet signing. A performance ceiling is reached at a frame size of 12, where signature
generation no longer dominates cost. In this case, other aspects of message handling (e.g.,
signature generation, marshaling) begin to affect throughput.

Off-line signatures are limited by latencies, reliability, and bursty transmission. Laten-
cies are incurred when an entire frame of data is not sent. Off-line signatures also exacerbate
message loss. Any packet received following a dropped packet (until the end of the frame)
cannot be validated. Finally, there is a burst of packets following the completion of the frame
or after the data forwarding timer expires. These limitations can be mitigated by shorter
data forwarding timers and through the application of forward error correction [WL99] and
rate-controlled transmission [ZF94].

While the previous experiments indicate the efficiency of Antigone, they do little to

illuminate the direct costs of policy enforcement in Antigone. The following considers

170

8% T

O Event Processing

E Event Processing

W Marshaling W Marshaling

30%

49% m]lie] 0% m]lis}

O Autharization and Access
Caontrol

B Buffer Management and
Clueuing

O Authorization and Access
Caontraol

M Buffer Management and
Queueing

7%

Figure 7.11: Receive Processing - break- Figure 7.12: Send Processing - breakdown of
down of Antigone protocol stack operation Antigone protocol stack operations involved
involved in the receive of an application mes- in the broadcasting of an application mes-
sage. sage to the group.

the costs associated with the Antigone protocol stack. These tests calculate the average
of 100 measurements of Antigone protocol operations during application send and receive
operations. All measurements were taken under a Blowfish confidentiality data handling
policy

The costs associated with event processing, marshaling, I1/0, authentication and access
control, and buffer management and queuing were measured by collecting hardware timing
information at many points in the Antigone protocol stack. Event processing metrics mea-
sure the time consumed in the creation, queuing, and delivery of events. Marshaling is the
process of message parsing and unparsing. I/O measures the time consumed by send()
and recv() socket calls. Authentication and access control measures the time consumed
by the policy engine in evaluating action clauses and caching results. Buffer management
and queuing measures the time taken to create and destroy buffers, and the management
of message queues.

Figures 7.11 and 7.12 present the costs associated with the reception and transmission
of a single packet, respectively. Note that almost half of the 93 microseconds? of receive
overhead is consumed by event processing. This is due to event processing by other mech-
anisms; unlike send events, receive events may incur mechanism action. For example, the
scope mechanism records the length of sent data. Hence, the application receive is delayed

by the processing of the received data by other mechanisms. Similarly, event processing

2 All metrics reflect the Antigone specific operations. Hence, the performance reported by the read/write
breakdown does not include encryption costs. The time spent, including encryption and decryption costs,
in the readMessage and sendMessage calls is 115 and 96 microseconds, respectively.

171

consists of about 40% of transmission overhead.

Event processing costs are dominated by the event creation and queuing. Unlike other
event systems (e.g., Cactus [HJSU00]), event delivery is broadcast rather than directed by
subscription. The costs associated with this design are small; event delivery (a function
call) are dominated by the cost of event creation and event queue management. Note that
subscription based approaches will have a set of costs not present in Antigone, where the
event must be mapped onto the set of mechanisms to which it will be delivered.

About 30% of time spent in message processing is consumed by marshaling. While the
generalized message handling interface significantly reduces the effort required to develop
new message transforms, it comes at a cost. The interpretation of the message template
structures presents additional overheads over hard coded message marshaling code. The
generalized message marshaling implementation has not as yet been optimized. Hence,
based on an evaluation of the current design, there may be several ways to mitigate mar-
shaling costs. The average per cost message marshaling is about 27 microseconds for receives
and 20 for transmissions.

An interesting observation made during these experiments indicates that the time spent
in the send system call (15 microseconds) is about twice that of the receive call (8 mi-
croseconds). A test of send and recv calls external to Antigone resulted in similar results.
Hence, the difference can be attributed to the Linux implementation of the IP protocol
stack.

Enforcement of fine-grained authentication and access control has often been cited as
too inefficient to be realizable in high speed communication. In Antigone, however, the use
of the evaluation caching mechanism is demonstrated to mitigate the costs associated with
content regulation. The “send” action used to govern broadcast data in the test environment
is predicated (only) on knowledge of the session key. Therefore, the send action is evaluated
on the first reception from a sender, and cached results are used until the session is rekeyed.
Authentication and access control becomes the process of searching the cache. However,
other policies requiring the evaluation of transient predicates may incur significantly higher
evaluation costs.

The remainder of the costs associated with Antigone represent those required by any
protocol implementation; buffer management and queuing. These costs are associated with

the creation and destruction of send/receive/intermediate buffers and the management of

172

4500
4000
3500

£ 3000

=
S 2500
-3

£ 2000

= 1500
1000

ol s =M= |

Local LAN Mobile User Coalition Website

[m1 Kilabyte m 100 Kilabytes o1 Megabyts |

Figure 7.13: Reliable Broadcast Transfer - average transfer times for files of varying size
under AMirD scenario policies.

the receive queue. With the notable exception of off-line signature data handling policies,
all data is transmitted during the application send Message call. Therefore, no output queue

is necessary.

7.4 End-to-end Performance

While throughput measurements provide insight into the costs of policy based commu-
nication, only through its use in meaningful applications can confidence in the Antigone
approach be gained. This section considers the characteristics of the AMirD application
under the scenario policies presented in Chapter 6. The results of file transfer experiments
using the AMirD reliable transfer protocol are depicted in Figure 7.13. These tests mea-
sured the average time of 10 file transfers of 1-kilobyte, 100 kilobyte, and 1 megabyte files
using AMirD under the scenario policies. All tests transmitted 1-kilobyte blocks and used
an acknowledgment window of 100 packets.

For all file sizes, the local LAN and mobile user policies exhibited significantly shorter
transfer times than the other, relatively costly policies. This is consistent with the through-
put measurements presented in the preceding section. The confidentiality policy enforced by
the LAN policy requires the encryption of data. However, encryption is sufficient to only
marginally delay transmission. The mobile user policy implemented both confidentiality
and integrity. Hence, the round trip times were delayed while the HMACs were calculated
and additional marshaling performed.

The transmission of smaller (1k) and medium (100k) sized files is completed through a

173

Member Policy

Local LAN | Mobile User | Coalition | Website
Member 1 68 151 155 149
Member 2 68 136 155 148
Member 3 68 152 156 164
Member 4 69 151 155 152

Table 7.2: AMirD Performance - time, in seconds, to synchronize two AMirD filesystems
under the scenario policies.

single window of data. Hence, in all policies, the transmission is completed in less than 500
milliseconds. The difference between transfer rates can be attributed to receivers waiting
for the data forwarding timers to expire.

While qualitatively similar, data forwarding and confidentiality policies affected coalition
and website environments differently. Both the coalition and mobile user policies enforced
confidentiality, integrity, and sender authenticity policies. The coalition policy implemented
a 250 millisecond data forwarding timer. Therefore, the longer transfer times can be at-
tributed to increased waiting periods associated with window acknowledgments. The short
(50 millisecond) data forwarding timer and lack of confidentiality (no transferred files were
deemed sensitive) in the mobile user policy resulted in faster transfer rates.

These results serve as a cautionary tale; one must be aware of the effects of the selected
policies. In this case, the data forwarding timer used by off-line signatures limits the speed
with which data can be transferred. Hence, it is incumbent on a policy issuer not only to be
aware of the security required by an environment, but also to be cognizant of the secondary

effects of enforcement.

Table 7.2 describes the total time required by an AMirD agent to synchronize two
filesystems under the test environment. The first filesystem contains ten 1 megabyte files,
and the second contains one hundred 1 kilobyte files. Note that each transfer is delayed
by a 3 second join period and a 3 second shutdown period. The setup protocol is required
because the exporter does not know a priori the identity of all interested importers, and
thus must allow ample time for members to join. The shutdown protocol is required to
gracefully destroy the group.

Synchronization times are partially a reflection of the file transfer rates and application

policies. Simple, efficient policies allow the file transfers to process at a rapid rate. Moreover,

174

the Local LAN policy allows twice as many simultaneous download groups (10) than the
other policies (5). The limited amount of processing required by the simple policy leads
to greater opportunities to transmit data. Such is the promise of policy behavior; through
policy, the application can be responsive to the security policy appropriate for a given
session.

Note that differences in reported measurements represent timing conflicts and dropped
packets. A member who is delayed while processing other group content can either become
aware of a spawned subgroup after the transfer has begun, or miss announcements entirely.
In this case, the member will must request and subsequently await the re-scheduling of the
missed transfer. Moreover, packet loss was exacerbated by the use of SSL. The expensive
authentication protocol used by SSL consumed significant resources (the initiator performed
this exchange for each member in every download group).

Note that, unlike Antigone, AMirD has yet to mature. The measurements and insights
gleaned from these tests indicate areas of possible improvement. For example, a more effi-
cient startup protocol may increase the rate at which filesystems can be updated. Similarly,
delays incurred by the acknowledgment window have been demonstrated to severely limit
throughput under off-line signature policies. A further improvement may allow the window
to be adaptive; the acknowledgment window can grow where no packet loss is detected.
Moreover, knowledge of the appropriate window can be persistent over time. In this lat-
ter strategy, the sender will use receiver profiles developed over the course of an AMirD

session.

CHAPTER 8
CONCLUSIONS AND FUTURE WORK

This thesis has investigated technologies supporting policy management in secure group
communication. The goals identified at the outset of this work have been largely addressed.
Antigone realizes these goals through an architecture supporting flexible and efficient pol-
icy determination and enforcement. This chapter considers the contributions and future
directions relating to Antigone. The following section considers how the goals presented in

Chapter 2 are addressed. Section 8.2 presents several avenues of future investigation.

8.1 Goals

The goals presented in Chapter 2 identify the requirements of a general-purpose group
policy management infrastructure. The following text revisits each of these goals.

The Ismene policy determination engine supports flexible representation through the
specification of policies encompassing the entirety of the group security context. Policy
issuers and members state the requirements for group provisioning, authentication, and
access control. Provisioning policies identify not only the security guarantees provided to
the group, but also the means by which they are achieved. Policies can be conditional and
discretionary. Conditional policies state the environmental conditions under which a pro-
visioning policy is relevant. Discretionary policies state a range of acceptable provisioning
alternatives.

Authentication policies identify the members that are allowed to participate in the group.
Fine-grained access control policies define the actions admitted members are permitted to
perform. However, the actions to be governed by policy are not fixed; new actions can be
defined as requirements arise. Moreover, access is not only predicated on the presentation
of appropriate credentials, but also on environmental conditions.

The ability of Ismene to represent policies of real-world applications and environments

175

176

is demonstrated in Chapter 6. Policies appropriate for the Antigone-based AMirD content
distribution service in diverse environments are represented through the Ismene language.
The performance of AMirD under these policies is further considered in Chapter 7. As
expected, these experiments show that the strength of security afforded by the group has a
dramatic affect on performance.

A central requirement of this work is the definition of techniques for multiparty determi-
nation. Policy must be efficiently derived from the desires and abilities of all communication
participants. The policy instantiation enforced by a group is the result of the reconciliation
of the group policy and the local policies of each expected member. Members joining the
group use the compliance algorithm to determine if the instantiation meets the requirements
stated in their local policy.

Note that the security defined by a policy instantiation must adhere to a set of cor-
rectness principles. Failure to adhere to these principles may result in the creation of a
group service that is insecure or non-functional. The analysis algorithms assess whether an
instantiation (in the case of online analysis) or group policy (in the case of offline analy-
sis) adheres to a set of policy-validating assertions. Hence, the security of a policy can be
assessed prior to the creation of the group.

The efficiency of policy determination has been assessed both analytically and exper-
imentally. The formal analysis presented in Chapter 4 shows that all algorithms used in
the critical path of session creation and maintenance are tractable (in the time-complexity
sense). Experiments in Chapter 7 further demonstrate that the policy determination algo-
rithms are efficient; an instantiation resulting from the reconciliation of many large group
and local policies can be executed in a matter of seconds. Moreover, policy reconcilia-
tion with more modest policies (such as those defined in Chapter 6) can be performed in
microseconds.

Flezible policy enforcement is achieved through the Antigone component architecture.
Security mechanisms are composed and configured as determined by policy. Policy is subse-
quently enforced by mechanisms through the observation of and reaction to relevant events.
The unique requirements of policy management require infrastructure not present in existing
protocol frameworks. A number of architectural optimizations reducing both development
and run-time costs allow the easy integration and efficient use of new security mechanisms.

The flexibility of Antigone mechanism interfaces is demonstrated in Chapter 5 through the

177

definition of a number of diverse security mechanisms.

The ability of Antigone to provide efficient enforcement is investigated in Chapter 7.
Experiments show that the high-throughput, low latency communication can be supported
by the architecture. The cost of policy enforcement in Antigone is small; in the test envi-
ronment, an application message send and receive is completed in about 100 microseconds.
These costs primarily represent those features present in any event-based protocol imple-
mentation; about three quarters of the processing overhead can be attributed to event
handling and message marshaling.

Antigone is required to be transport agnostic. Hence, other means of broadcast commu-
nication must be supported where multicast is not readily available. Described in Chap-
ter b, the broadcast transport layer provides a single abstraction for multiparty communi-
cation in the presence of varying network services. The broadcast transport layer supports
three modes. These include symmetric multicast (implementing a broadcast media over
n-directional multicast), asymmetric multicast (using single source multicast), and point-

to-point (using unicast).

8.2 Future Work

While this thesis has achieved its stated goals, it does not address the requirements of all
possible environments. The following considers areas of investigation that may advance the
state of the art in group policy management.

The Ismene reconfig consequence signals that some state change has occurred that
requires policy evolution. Antigone currently disbands and reforms the group under the
new instantiation. More efficient means of policy evolution may exist. It may be possible to
transition to new mechanisms and policies without loss of security. However, the subtleties
of mechanism transition warrant further investigation.

Participatory groups provide an egalitarian environment in which all members contribute
the definition and enforcement of policy. Hence, for many applications (e.g., auctions),
participatory groups may be highly desirable. While Antigone is not restricted to centralized
groups, more investigation into the requirements and constraints of participatory groups is
necessary. Such an investigation is likely to not only increase the scope of policy supported

by Antigone, but also improve the quality and robustness of its infrastructure.

178

The cost of policy enforcement in real applications is likely to be dominated by the tech-
niques and algorithms used to provide security guarantees (e.g., key management, source
authentication, fault tolerance). While the performance of point solutions has been inves-
tigated [SKJHO0], a comprehensive study of the trade-offs between security policies and
mechanisms has not been documented. A thorough investigation of the techniques used to
provide group security will guide the construction of future architectures, and is likely to
accelerate the adoption of secure group communication services.

Group negotiation protocols have been studied in many contexts [KT93, MC94, WYL"99].
The use of these protocols in Antigone would allow participants to perform policy determi-
nation through coordinated communication, rather than through prior distribution of local
policies. Moreover, negotiation allows members to more flexibly adapt local policies to the
requirements stated by other participants.

Antigone can be used to define application policies. These policies allow developers
and administrators to dictate application configuration through the policy determination
process. However, the advantages of this facility have yet to be fully explored. The use
of application policy may result in more coordinated behavior, and ultimately reduce the
management burden placed on users.

Antigone is currently designed for unreliable group communication in high-speed net-
works. The integration of other services (e.g., such as reliable group communication, surviv-
ability) into Antigone may yield a more complete solution. Moreover, these services may be
made more flexible through policy. Similarly, resource assumptions (i.e., bandwidth, com-
puting power) may limit the effectiveness of Antigone in some environments (e.g., wireless
environments and mobile devices). The study and realization of mechanisms and policies
appropriate for these environments will expand the domains in which Antigone is useful.

A technical limitation of the current architecture is that all mechanism implementations
must be available at build-time. It is often inconvenient to recompile Antigone and all its
applications after introducing a new security mechanism. The use of dynamically loaded
mechanism implementations is currently being investigated. Dynamic loading will allow
security implementations to be distributed independently of applications. In the presence

of such facilities, the mechanisms themselves can be distributed with a policy instantiation.

APPENDIX A

This section presents the Ismene policies used to control the AMirD application presented
in Chapter 6 and evaluated in Chapter 7.

AMirD Group Policy

This following listing describes the group policy used in all cited AMirD test environments.
A throughout discussion of the construction and use of this policy is presented in Sec-
tion 6.2.5.

% Description : This is a AMirD group policy for the Chapter 6 scenarion.
YA policy processing algorithms.

% Created : August 24, 2000
Last Modified : May 29, 2001

% Attributes Section
groupid 1= < amird >;

© 0 N Ot s W N
=

% Antigone Group-based Policy Derivation

-
o

11 provision: :: antigone, monitor, application;

12 antigone : grouptype(locallan) :: lanprov;

13 antigone : grouptype(mobileuser) :: mobileprov;

14 antigone : grouptype(coalition) :: coalprov;

15 antigone : grouptype(website) :: webprov;

16 % Error on non-matched grouptype predicate

17

18 % Scenario 1 - Local Lan

19 lanprov : :: lath, lkey, lmem, ldat;

20 lath : isDownloadGroup() :: config(nullauth(interval=10,retries=2,crypt=des));
21 lath : :: config(nullauth(interval=10,retries=2));

22 lkey : :: config(kekkey(rekeyperiod=65536,hash=md5,crypt=des));
23 lmem : :: config(amember (memdist=none,retries=3,interval=2));
24 ldat : isDownloadGroup() :: config(adathndlr(conf=true));

25 ldat : :: config(adathndlr(none=true));

26

27 join : grouptype(locallan), isControlGroup() :: accept;

28 join : isDownloadGroup(), inJoinPhase(), hasReadAccess($id,$file) :: accept;
29 member auth : grouptype(locallan) :: accept;

30 leave : grouptype(locallan) :: accept;

31 leave_resp : grouptype(locallan) :: accept;

32 shutdown : grouptype(locallan) :: accept;

33 eject : grouptype(locallan) :: accept;

34 key_dist : grouptype(locallan) :: accept;

35 rekey : grouptype(locallan) :: accept;

36 send : grouptype(locallan) :: accept;

179

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

180

group_mon : grouptype(locallan) :: accept;
member_mon : grouptype(locallan) :: accept;

% Scenario 2 - Mobile User

mobileprov : :: math, mkey, mmem, mdat;

math : :: config(sslauth(interval=10,retries=2,crypt=rc4,cafile=ssl_ca));
mmem : :: config(amember (memdist=none,retries=5,interval=5));

mkey : :: config(agkmkey(kychlen=64,rekeyperiod=60,hash=shal)),

pick(config(agkmkey (crypt=rc4)),config(agkmkey(crypt=blowfish)));
mdat : isControlGroup(), hasSensitiveFilesystem()
config(adathndlr (integ=true,conf=true)), halg;
mdat : isDownloadGroup(), isSensitiveFile($file)
config(adathndlr (integ=true,conf=true)), halg;

mdat : :: config(adathndlr(integ=true,conf=false)), halg;
halg : :: pick(config(adathndlr(hash=md5)),config(adathndlr(hash=shal)));
ssl_acl := <memberl:member2:member3:member4>; J ACL of Acceptable Members

member_auth : grouptype(mobileuser), inlist($id, $ssl_acl),
credential (&ca,issuer_CN=Antigone_SSL_CA),

credential (&cert,subject_CN=$id,issuer_CN=$ca.subject_CN) :: accept;
join : grouptype(mobileuser), credential(&ky,name=$id) :: accept;
leave : grouptype(mobileuser), credential(&ky,name=$id) :: accept;
leave_resp : grouptype(mobileuser), credential(&ky,name=$id) :: accept;
shutdown : grouptype(mobileuser), credential (&ky,name=$gid) :: accept;
key_dist : grouptype(mobileuser), credential(&ky,name=$id) :: accept;
rekey : grouptype (mobileuser),credential (¢ky,name=$gid) :: accept;
send : grouptype (mobileuser), credential(&ky,name=$gid) :: accept;
content_auth : credential(&ca,issuer_CN=Antigone_Content_CA),
credential (§cert,subject_CN=$id,issuer_CN=$ca.subject_CN) :: accept;

% Scenario 3 - Coalition

coalprov : isControlGroup() :: cath, cmem, ckey, cdat, cfdr;
coalprov : :: cath, cmem, ckey, cdat;
cath : :: config(sslauth(interval=10,retries=2,crypt=rc4,cafile=ssl_ca));
cmem : :: config(amember(retries=5,interval=5)),
config(amember (ejectenabled=true)), memd;
memd : isControlGroup() :: config(amember (memdist=conf, intlen=60)),

config(amember (ejecttype=pairkey, joinsens=true,leavesens=true,
ejectsens=true,failsens=true));

memd : :: config(amember (memdist=none,ejecttype=cert));

ckey : isControlGroup() :: config(agkmkey(kychlen=64,rekeyperiod=60,hash=shal));

ckey : :: pick(config(agkmkey (crypt=rc4)),config(kekkey(crypt=rc4)));

cdat : isControlGroup() :: config(adathndlr(integ=true,conf=true)),
config(adathndlr (sauth=true,satype=signpkt)) ;

cdat : isDownloadGroup() :: config(adathndlr(integ=true,conf=true)),
config(adathndlr (sauth=true,satype=online,frmsize=32,datfwd=250)) ;

cfdr: :: config(afpchain(hash=shal,maxdrophb=5,hbperiod=5,chainlen=20));

eject_acl := <memberl,member4>; % Acceptable Pair Ejection Members

member_auth : grouptype(coalition), inlist($id, $ssl_acl),
credential (&ca,issuer_CN=Antigone_SSL_CA),

credential (&cert,subject_CN=$id,issuer_CN=$ca.subject_CN) :: accept;
join : grouptype(coalition), credential(&ky,name=$id) :: accept;
leave : grouptype(coalition), credential(&ky,name=$id) :: accept;
leave_resp : grouptype(coalition), credential(&ky,name=$id) :: accept;
eject : grouptype(coalition), IsServer($id) :: accept;
eject : grouptype(coalition), config(amember(ejecttype=pairkey)),
Credential (&ky,name=$id), inlist($id, $eject_acl) :: accept;

eject : grouptype(coalition), config(amember(ejecttype=cert)),
credential (&ca,issuer_CN=Antigone_Ejection_CA),

99
100
101
102
103
104
105
106
107

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

181

credential (§cert,subject_CN=$id,issuer_CN=$ca.subject_CN) :: accept;
shutdown : grouptype(coalition), credential(&ky,name=$gid) :: accept;
key_dist : grouptype(coalition), config(kekkey()),

credential (&ky,name=kek) :: accept;

key_dist : grouptype(coalition), credential(&ky,name=$id) :: accept;
rekey : grouptype(coalition), config(kekkey()),

credential (&ky,name=kek) :: accept;
rekey : grouptype(coalition),credential (&ky,name=$gid) :: accept;
send : grouptype(coalition), credential(&ky,name=$gid) :: accept;
content_auth : credential(&ca,issuer_CN=Antigone_Content_CA),

credential (&cert,subject_CN=$id,issuer_CN=$ca.subject_CN) :: accept;

group_mon : grouptype(coalition), credential(&cred,name=$grp) :: accept;
member_mon : grouptype(coalition), credential (&cred,name=$id) :: accept;

% Scenario 4 - Website Mirroring

webprov : :: wath, wmem, wkey, wdat;

wath : :: config(sslauth(interval=10,retries=2,crypt=blowfish,cafile=$author));
wmem : :: config(amember (memdist=none,ejectenabled=false));

wkey : isControlGroup() :: config(agkmkey(kychlen=64,rekeyperiod=60,hash=shal));
wkey : :: config(agkmkey(crypt=blowfish,hash=shal));

wdat : isControlGroup()
config(adathndlr (integ=true,sauth=true,conf=false,satype=signpkt,hash=shal));
wdat : isSemnsitiveSite($author)
config(adathndlr (integ=true,sauth=true,conf=true,hash=shal)), sapl;
wdat : :: config(adathndlr(integ=true,sauth=true,conf=false,hash=shal)), sapl;
sapl : :: config(adathndlr(satype=online,frmsize=15,datfwd=50));

member_auth : grouptype(website), credential(&ca,issuer_CN=$authorid),

credential (&cert,subject_CN=$id,issuer_CN=$ca.subject_CN) :: accept;
join : grouptype(website), credential(&ky,name=$id) :: accept;
leave : grouptype(website), credential (&ky,name=$id) :: accept;
leave_resp : grouptype(website), credential(&ky,name=$id) :: accept;
shutdown : grouptype(website), credential (&ky,name=$gid) :: accept;
key_dist : grouptype(website), config(kekkey()),

credential (&ky,name=kek) :: accept;
key_dist : grouptype(website), credential(&ky,name=$id) :: accept;
rekey : grouptype(website), config(kekkey()),
credential (&ky,name=kek) :: accept;

rekey : grouptype (website),credential (¢ky,name=$gid) :: accept;
send : grouptype(website), credential(&ky,name=$gid) :: accept;
content_auth : grouptype(website), credential(&ca,issuer_CN=$authorid),

credential (§cert,subject_CN=$id,issuer_CN=$ca.subject_CN) :: accept;
group_mon : grouptype(website), credential(&cred,name=$grp) :: accept;
member_mon : grouptype(website), credential(&cred,name=$id) :: accept;

% Monitoring
monitor : envvar (TKSCOPE,TRUE)

config(ascope (tclmon=true,log=scope.log,update=250));
monitor : :: config(ascope(tclmon=false));

% AMirD Application Policies
application : :: config(applic(followsymlinks=true)), apsauth;
apsauth : grouptype(locallan)
config(applic(maxexportsubgroups=10, maximportsubgroups=10));
apsauth : :: config(applic(maxexportsubgroups=5, maximportsubgroups=5));

182

AMirD Local Policy

The following listing describes the local policy used by the initiator and all clients in the
AMirD test environment.

% Description : This is a test local policy used for testing the policy
% processing algorithms.

Created : August 22, 2000
% Last Modified : August 22, 2000

% Attributes Section

© 00 N O O s W N
=

=
o

% Policy Section

-
—=

% Scenario 1 - Local Lan

= e
A Wwow

provision: grouptype(locallan)
config(nullauth()) ,config(amember()) ;

=
[

17 % Scenario 2 - Mobile User

18

19 provision : grouptype(mobileuser)

20 config(sslauth(crypt=rc4,cafile=ssl_ca)),

21 config(amember (retries=5,interval=5)),

22 config(agkmkey (crypt=blowfish)),

23 config(adathndlr (hash=shal)) ;

24

25 % Scenario 3 - Coalition

26

27 provision : grouptype(coalition), isDownloadGroup()

28 config(sslauth(crypt=rc4,cafile=ssl_ca)),

29 config(amember (retries=5,interval=5)),

30 config(kekkey (crypt=rc4d));

31 provision : grouptype(coalition), isControlGroup/()

32 config(sslauth(crypt=rc4,cafile=ssl_ca)),

33 config(amember (retries=5,interval=5)) ;

34

35 wath : :: config(sslauth(interval=10,retries=2,crypt=blowfish,cafile=$author));
36 wmem : :: config(amember(memdist=none,ejectenabled=false));

37

38 & Scenario 4 - Website Mirroring

39

40 provision : grouptype(website)

41 config(sslauth(crypt=blowfish,cafile=$author)), config(amember());
42

43 % Authorization and Access Control

44

45 group_auth : config(nullauth()) :: accept;

46 group_auth : grouptype(mobileuser), credential(&ca,issuer_CN=Antigone_SSL_CA),

183

AMirD Initiator Configuration File

The following listing describes the complete initiator AMirD configuration file used by all
clients in AMirD testing. The initiator acts as the exporter for all filesystems in the test
environment.

1 #
2 # File : initaitor.conf
3 #
4 # Description : Configuration file for AMirD initator
5 #
6 #
7
s #
9 # Configuration section
10 [config]
11 grppol = amird_scen.apd
12 locpol = amird_lscen.apd
13 exporter=initiator
14 1isserver=true
15 transport=symmetric
16 mcaddr=224.27.27.1
17 mcport=6500
18 srvraddr=192.168.27.4
19 srvrport=6400
20 updateperiod=60
21 authoritycert=ssl_ca
22 mcloopback=true
23 sgtransport=symmetric
24 sgaddr=224.27.27.2
25 sgport=6500
26 sgsrvraddr=192.168.27.4
27 sgsrvrport=7400
28
20 #
30 # Exports section
31 [Exports]
32 /usr/local/experiments/amird/exportsa amird_scen.apd amird_lscen.apd ssl_ca
33 /usr/local/experiments/amird/exportsb amird_scen.apd amird_lscen.apd ssl_ca
34
35 #
36 # Imports section
37 [Imports]

184

AMirD Client Configuration File

The following listing describes the complete client AMirD configuration file used by all
clients in AMirD testing. Clients act as the importers for all filesystems in the test envi-
ronment.

1 #
2 # File : memberl.conf
3 #
4 # Description : Configuration file for AMirD client.
5 #
6 #
7
s #
9 # Configuration section
10 [config]
11 grppol = amird_scen.apd
12 locpol = amird_lscen.apd
13 transport=symmetric
14 mcaddr=224.27.27.1
15 mcport=6500
16 isserver=false
17 updateperiod=60
18 mcloopback=true
19 srvraddr=192.168.27.4
20 srvrport=6400
21 sgtransport=symmetric
22 sgaddr=224.27.27.2
23 sgport=6500
24 sgsrvraddr=192.168.27.4
25 sgsrvrport=7400
26 authoritycert=ssl_ca
27
28 #
20 # Exports section
30 [Exports]
31
32 #
33 # Imports section
34 [Imports]
35 initiator:/usr/local/experiments/amird/exportsa \
36 /usr/local/experiments/amird/importsal amird_lscen.apd ssl_ca
37 initiator:/usr/local/experiments/amird/exportsb \
38 /usr/local/experiments/amird/importsbl amird_lscen.apd ssl_ca

[AAC*99]

[ABG*98]

[AN96]

[AP9S]

[AS98]

[ASTO00]

[Bal96)]

[Bal97al

[Bal97b]

[BBOO]

[BBD+99]

REFERENCES

A. Adamson, C. Antonelli, K. Coffman, P. D. McDaniel, and J. Rees. Se-
cure Distributed Virtual Conferencing. In Proceedings of Communications
and Multimedia Security (CMS ’99), pages 176-190. September 1999. URL
http://www.eecs.umich.edu/ pdmcdan/docs/cms99.pdf, katholieke Univer-
siteit Leuven, Belgium.

C. Alaettinouglu, T. Bates, E. Gerich, D. Karrenberg, D. Meyer, M. Terpstra,
and C. Villamizer. Routing Policy Specification Language (RPSL). Internet
Engineering Task Force, January 1998. RFC 2280.

M. Abadi and R. Needham. Prudent Engineering Practice for Cryptographic
Protocols. IEEE Transactions on Software Engineering, 22(1):6-15, January
1996.

R. J. Anderson and F. A. P. Petitcolas. On the Limits of Steganography. IFEE
Journal on Selceted Areas in Communications, 16(4):474-481, May 1998.

Y. Amir and J. Stanton. The Spread Wide Area Group Communication Sys-
tem. Technical Report CNDS-98-4, The Center for Networking and Distributed
Systems, The Johns Hopkins University, 1998.

G. Ateniese, M. Steiner, and G. Tsudik. New Multi-Party Authentication Ser-
vices and Key Agreement Protocols. IEEE Journal of Selected Areas in Com-
munication, 18, March 2000.

A. Ballardie. Scalable Multicast Key Distribution. Internet Engineering Task
Force, May 1996. RFC 1949.

A. Ballardie. Core Based Trees (CBT) Multicast Routing Architecture. Internet
Engineering Task Force, September 1997. RFC 2201.

A. Ballardie. Core Based Trees (CBT version 2) Multicast Routing. Internet
Engineering Task Force, September 1997. RFC 2189.

D. Branstad and D. Balenson. Policy-Based Cryptographic Key Management:
Experience with the KRP Project. In Proceedings of DARPA Information Sur-
vivability Conference and Ezposition (DISCEX ’00), pages 103-114. DARPA,
January 2000. Hilton Head, S.C.

D. Balenson, D. Branstad, P. Dinsmore, M. Heyman, and C. Scace. Crypto-
graphic Context Negotiation Template. Technical Report TISR #07452-2, TIS
Labs at Network Associates, Inc., February 1999.

185

[BCG*00]

[BDY6)]

[Bee97]

[Ber96]

[BF99)]

[BFC93]

[BFIK99a]

[BFIK99b]

[BFLY6]

[BH99]

[BHHWO1]

[BHSCYS]

[Bir93]

186

A. Basso, C. Cranor, R. Gopalakrishnan, M. Green, C. Kalmanek, D. Shur,
S. Sibal, C. Sreenan, and J. van der Merwe. PRISM, an IP-Based Architecture
for Broadband Access to TV and Other Streaming Media. In Proceedings of

International Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV). IEEE, June 2000.

M. Burmester and Y. Desmedt. Efficient and Secure Conference Key Distribu-
tion. In Proceedings of 1996 Cambridge Workshop on Security Protocols, pages
119-129. April 1996.

T. Beever. Personal communication, November 1997. National Aeronautical
and Space Administration, Kennedy Space Center.

P. A. Bernstein. Middleware: A Model for Distributed System Services. Com-
munications of the ACM, 39(2):86-98, February 1996.

B. Briscoe and I. Fairman. Nark: Receiver-based Multicast Non-repudiation
and Key Management. In Proceedings of E-commerce 99. ACM, Denver, Col-
orado, June 1999.

T. Ballardie, P. Francis, and J. Crowcroft. Core Based Trees (CBT). In Pro-
ceedings of ACM SIGCOMM 93, pages 85-95. ACM, September 1993.

M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The Role of Trust
Management in Distributed Systems Security. In In Secure Internet Program-
ming: Issues in Distributed and Mobile Object Systems, volume 1603, pages
185-210. Springer-Verlag Lecture Notes in Computer Science State-of-the-Art
series, 1999. New York, NY.

M. Blaze, J. Feignbaum, J. Ioannidis, and A. Keromytis. The KeyNote Trust
Management System - Version 2. Internet Engineering Task Force, September
1999. RFC 2704.

M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In
Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 164—
173. November 1996. Los Alamitos.

D. C. Blight and T. Hamada. Policy-Based Networking Architecture for QoS
Interworking in TP Management. In Proceedings of Integrated network man-

agement VI, Distributed Management for the Networked Millennium, pages
811-826. IEEE, 1999.

M. Baugher, T. Hardjono, H. Harney, and B. Weis. Domain of Interpreta-
tion for ISAKMP (Draft). Internet Engineering Task Force, February 2001.
draft-ietf-msec-gdoi-00.txt.

N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W. Chiu. Coyote: A Sys-
tem for Constructing Fine-Grain Configurable Communication Services. A CM
Transactions on Computer Systems, 16(4):321-366, November 1998.

K. Birman. The Process Group Approach to Reliable Distributed Computing.
Communications of the ACM, 36(12):37-53, December 1993.

[BL73]

[Bon94]

[Bri99]

[BW9S]

[CC89]

[CC97)

[CEK*99]

[CFL*98]

[CGI*99]

[Che97]

[CMB00]

[CooT1]

[CP00]

187

D. Bell and L. LaPadula. Secure Computer Systems: Mathematical Founda-
tions and Model. Technical Report M74-244, MITRE Corperation, Bedford,
MA, 1973.

J. Bonwick. The slab allocator: An object-caching kernel mem-
ory allocator. In USENIX Summer, pages 87-98. 1994. URL
citeseer.nj.nec.com/bonwick94slab.html.

B. Briscoe. MARKS: Zero Side-Effect Multicast Key Management Using Arbi-
trarily Revealed Key Sequences. In Proceedings of First International Workshop
on Networked Group Communication. November 1999.

C. Becker and U. Wille. Communication Complexity of Group Key Distribu-
tion. In Proceedings of 5th ACM Conference on Computer and Communications
Security. ACM, November 1998. San Francisco, California.

G.-H. Chiou and W.-T. Chen. Secure Broadcasting Using the Secure Lock.
IEEE Transactions on Software Engineering, 15(8):929-934, 1989.

L. Cholvy and F. Cuppens. Analyzing Consistancy of Security Policies. In 1997
IEEE Symposium on Security and Privacy, pages 103-112. IEEE, May 1997.
Oakland, CA.

I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key Management
for Secure Internet Multicast using Boolean Function Minimization Techniques.
In Proceedings of IEEE Infocom 1999, volume 2, pages 689-698. IEEE, March
1999.

Y. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss. REF-
EREE: Trust Management for Web Applications. In Proceedings of Financial
Cryptography ’98, volume 1465, pages 254-274. Anguilla, British West Indies,
February 1998.

R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast
Security: A Taxonomy and Efficient Constructions. In Proceedings of IEEE
Infocom 1999, volume 2, pages 708-716. IEEE, March 1999. New York, New
York.

S. Cheung. An Efficient Message Authentication Scheme for Link State Rout-
ing. In 13th Annual Computer Security Applications Conference, pages 90-98.
1997. San Diego, California.

Y. Chawathe, S. McCanne, and E. Brewer. RMX: Reliable Multicast in Het-
erogeneous Network. In Proceedings of IEEE INFOCOM 2000, pages 795-804.
IEEE, March 2000. Tel Aviv, Israel.

S. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of
3th Annual ACM Symposium on Theorey of Computing, pages 151-158. ACM,
1971.

R. Canetti and B. Pinkas. A Taxonomy of Multicast Security Issues (Draft).
Internet Engineering Task Force, August 2000.
draft-irtf-smug-taxonomy-01.txt.

[Cri91]

[CRZ00]

[DBC+00]

[DBH+00]

[Dee89]

[DEF+99]

[DHT6]

[DM96]

[DRIS]

[DROO]

[EFH*98]

[EGMO6]

[EIS76]

[FF96]

[FIL*97]

[FKTTO8]

[FLP85]

188

F. Cristian. Reaching Agreement on Processor Group Membership in Synchronous
Distributed Systems. Distributed Computing, (4):175-187, October 1991.

Y. Chu, S. G. Rao, and H. Zhang. A Case For End System Multicast. In Proceedings
of ACM Sigmetrics, pages 1-12. ACM, June 2000. Santa Clara,CA.

D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry. RFC 2748, The
COPS (Common Open Policy Service) Protocol. Internet Engineering Task Force,
January 2000.

P. Dinsmore, D. Balenson, M. Heyman, P. Kruus, C. Scace, and A. Sherman. Policy-
Based Security Management for Large Dynamic Groups: A Overview of the DCCM
Project. In Proceedings of DARPA Information Survivability Conference and Exposi-
tion (DISCEX ’00), pages 64-73. DARPA, January 2000. Hilton Head, S.C.

S. Deering. Host Extensions for IP Multicasting. Internet Engineering Task Force,
August 1989. RFC 1112.

S. Deering, D. Estrin, D. Farinacci, V. Jacobson, A. Helmy, D. Meyer, and L. Wei.
Protocol Independent Multicast Version 2 Dense Mode Specification (Draft). Internet
Engineering Task Force, June 1999. draft-ietf-pim-v2-dm-03.txt.

W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, 1T-22(6):644-654, November 1976.

D. Dolev and D. Malki. The Transis Approach to High Availibility Cluster Communi-
cation. Communications of the ACM, 39(4), April 1996.

J. Daemen and V. Rijmen. AES Proposal: Rijndael. AES submission, June 1998.
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.prf.

J. Daemen and V. Rijmen. The Block Cipher Rijndael. In Quisquater and B. Schneier,
editors, In Proceedings of Smart Card Research and Applications, volume LNCS 1820,
pages 288-296. Springer, 2000.

D. Estrin, D. Farinacci, A. Helmy, D. Thalerxs, S. Deering, M. Handley, V. Jacobson,
C. Liu, P. Sharma, and L. Wei. Protocol Independent Multicast-Sparse Mode (PIM-
SM). Internet Engineering Task Force, June 1998. RFC 2362.

S. Even, O. Goldreich, and S. Micali. On-Line/Off-Line Digital Signatures. Journal of
Cryptology, 9(1):35-67, 1996.

S. Evan, A. Ttai, and A. Shamir. On the Complexity of Timetable and Multicommodity
Flow Problems. SIAM Journal of Computing, (5):691-703, 1976.

K. Fall and S. Floyd. Simulation-Based Comparisons of Tahoe, Reno, and SACK TCP.
ACM Computer Communication Review, 26(3):5-21, July 1996.

S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing. IEEE/ACM
Transactions on Networking, pages 784-803, December 1997.

I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Architecture for Com-
putational Grids. In Proceedings of the 5th ACM Conference on Computer and Com-
munications Security, pages 83-92. ACM, 1998.

M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus with
One Faulty Process. Journal of the ACM, 32(2):374-382, 1985.

[FNO3]

[Fra99]

[Gan22]

[GHR95]

[GIT79]

[GJST6]

[Gon96]

[GQ94]

[GR97]

[Gro00]
[Gro01]

[Hal94]

[HCO1]

[HCDOO]

[HCH*+00]

[HCMO1]

[HFPS99]

189

A. Fiat and M. Naor. Broadcast Encryption. In Proceedings of CRYPTO 93, pages
480-491. 1993.

P. Francis. Yoid: Extending the Multicast Internet Architecture, September 1999.
http://www.yallcast.com.

M. Gandhi, March 1922. Letter, 8 Mar 1922, to the general secretary of the Congress
Party, India.

R. Greenlaw, H. Hoover, and W. Ruzzo. Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press, New York, Oxford, first edition, 1995.

M. R. Garey and D. S. Johnson. Computers and Intractibility, A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., New York, NY, first edition, 1979.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some Simplified NP-Complete Graph
Problems. Theoretical Computer Science, (1):237-267, 1976.

L. Gong. Enclaves: Enabling Secure Collaboration Over the Internet. In Proceedings
of the Sizth USENIX Security Symposium, pages 149-159. USENIX Association, July
1996.

L. Gong and X. Qian. The Complexity and Composability of Secure Interoperation.
In Proceedings of the IEEE Symposium on Research in Security and Privacy, pages
190-200. IEEE, Oakland, California, May 1994.

R. Gennaro and P. Rohatgi. How to Sign Digital Streams. In Proceedings of CRYPTO
97, pages 180-197. August 1997. Santa Barbara, CA.

T. O. Group. OpenSLL, May 2000. http://http://www.openssl.org/.

S.-S. M. W. Group. Source-Specific Multicast Charter, March 2001. Internet Engi-
neering Task Force,
http://www.ietf.org/html.charters/ssm-charter.html.

N. Haller. The S/Key!™ One-Time Password System. In Proceedings of 1994 Inter-
net Society Symposium on Network and Distributed System Security, pages 151-157.
February 1994. San Diego, CA.

H. Harney and A. Colegrove. The GSKKMP Security Policy Token with IPSec. Pro-
ceedings of the Internet Society Symposium on Network and Distributed System Secu-
rity, February 2001. (o appear).

T. Hardjono, B. Cain, and N. Doraswamy. A Framework for Group Key Manage-
ment for Multicast Security (Draft). Internet Engineering Task Force, February 2000.
draft-ietf-ipsec-gkmframework-02.tx.

H. Harney, A. Colegrove, E. Harder, U. Meth, and R. Fleischer. Group Secure As-
sociation Key Management Protocol (Draft). Internet Engineering Task Force, June
2000.

draft-harney-sparta-gsakmp-sec-02.txt.

H. Harney, A. Colegrove, and P. McDaniel. Principles of Policy in Secure Groups.
In Proceedings of Network and Distributed Systems Security 2001. Internet Society,
February 2001. URL http://www.eecs.umich.edu/ pdmcdan/docs/ndssO1.pdf.

R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. Internet Engineering Task Force, January 1999. RFC
1949.

[Hil98]

[HISUOO]

[HM97a]

[HMO7b]

[HMPTS9]

[HP94]

[HS98]

[HWC95]

[TKBS00]

[781]

[IGI*+00]

[7SS97]

[KA9S

[KBC97]

[Ken93]

[Koc98]

[KRI6]

190

M. Hiltunen. Configuration Management for Highly-Customizable Software. IEE Pro-
ceedings: Software, 145(5):180-188, 1998.

M. Hiltunen, S. Jaiprakash, R. Schlichting, and C. Ugarte. Fine-Grain Configurabil-
ity for Secure Communication. Technical Report TR00-05, Department of Computer
Science, University of Arizona, June 2000.

H. Harney and C. Muckenhirn. Group Key Management Protocol (GKMP) Architec-
ture. Internet Engineering Task Force, July 1997. RFC 2094.

H. Harney and C. Muckenhirn. Group Key Management Protocol (GKMP) Specifica-
tion. Internet Engineering Task Force, July 1997. RFC 2093.

N. Hutchinson, S. Mishra, L. Peterson, and V. Thomas. Tools for Implementing Net-
work Protocols. Software - Practice and Experience, 19(9):895-916, December 1989.

N. Hutchinson and L. Peterson. The x-Kernel: An Architecture for Implementing
Network Protocols. IEEE Transactions on Software Engineering, 17(1):64-76, January
1994.

M. Hiltunen and R. Schlichting. A Configurable Membership Service. IEEFE Transac-
tions on Computers, 47(5):573-586, May 1998.

M. J. Handley, I. Wakeman, and J. Crowcroft. CCCP: Conference Control Channel
Protocol: A Scalable Base for Building Conference Control Applications. In Proceedings
of ACM SIGCOMM °95. ACM, 1995.

S. Ioannidis, A. D. Keromytis, S. Bellovin, and J. M. Smith. Implementing a Dis-
tributed Firewall. In Proceedings of Computer and Communications Security (CCS)
2000, pages 190-199. 2000. Athens, Greece.

P. J. Transmission Control Protocol - DARPA Internet Protocol Program Specification.
Internet Engineering Task Force, September 1981. RFC 793.

J. Janotti, D. Gifford, K. Johnson, K. M, and O. J. Overcast: Reliable Mutlicasting
with and Overlay Network. In 4th USENIX Symposium on Operating System Design
and Implementation (OSDI 2000), page (to appear). USENIX, October 2000. Santa
Clara,CA.

S. Jajodia, P. Samarati, and V. Subrahmanian. A Logical Language for Expressing Au-
thorizations. In In Proceedings of the 1997 IEEE Symposium on Security and Privacy,
pages 31-42. IEEE, Oakland, CA, March 1997.

S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. Internet
Engineering Task Force, November 1998. RFC 2401.

H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Au-
thentication. Internet Engineering Task Force, April 1997. RFC 2104.

S. Kent. Internet Privacy Enhanced Mail. Communications of the ACM , 36(8):48—-60,
August 1993.

P. Kocher. On Certificate Revocation and Validation. In R. Hirschfeld, editor, Fi-
nancial Cryptography, volume 1465, pages 172-177. Springer, Anguilla, British West
Indies, February 1998.

J. Kilian and P. Rogaway. How to Protect DES Against Exhaustive Key Search. In
Proceedings of Crypto 96, pages 252-267. August 1996.

[Kra90]

[KT91]

[KT93]

[LABW92]

[Lam81]

[LewT78]

[LKvR*99]

[LMOA4]

[MC94]

[MHC*00]

[MHDPOO]

[MHP9g]

[Mit97]

[MJOO]

191

J. Kramer. Configuration Programming - A Framework for the Development of Dis-
tributable Systems. In Proceedings of IEEE International Conference on Computer
Systems and Software Engineering (CompEuro 90), pages 374-384. May 1990. Tel-
Aviv, Israel.

M. Kaashoek and A. Tanenbaum. Group communication in the Amoeba Distributed
Operating System. In Proceedings of the 11th International Conference on Distributed
Computing Systems, pages 222-230. IEEE, May 1991.

R. Kakehi and M. Tokoro. A Negotiation Protocol for Conflict Resolution in Multi-
Agent Enviroments. In In Proceedings of International Conference On Intelligent and
Cooperative Information Systems, pages 185-196. May 1993.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in Distributed
Systems: Theory and Practice. ACM Transactions Computer Systems, 10(4):265-310,
November 1992.

L. Lamport. Password Authentication with Insecure Communication. Commuications
of the ACM, 24(11):770-772, November 1981.

H. R. Lewis. Satisfiability Problems for Propositional Calculi, 1978. Unpublished
manuscript.

X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hayden, K. Birman, and R. Constable.
Building Reliable High-Performance Communication Systems from Components. In
Proceedings of 17th ACM Symposium on Operating Systems Principles (SOSP’99),
volume 33, pages 80-92. ACM, 1999.

T. Leighton and S. Micali. Secret-key Agreement without Public-Key Cryptography.
In Proceedings of Crypto 93, pages 456—479. August 1994.

C. W. M. Chang. A Speech-Act Based Negotiation Protocol: Design, Implementation
and Test Use. ACM Transactions on Information Systems, 12(4), February 1994.

P. McDaniel, H. Harney, A. Colegrove, A. Prakash, and P. Dinsmore. Mul-
ticast Security Policy Requirements and Building Blocks (Draft). Internet Re-
search Task Force, Secure Multicast Research Group (SMuG), November 2000.
URL http://www.ietf.org/internet-drafts/draft-irtf-smug-polreq-00.txt,
(draft-irtf-smug-polreq-00.txt).

P. McDaniel, H. Harney, P. Dinsmore, and A. Prakash. Multi-
cast Security Policy (Draft). Internet Research Task Force, Se-
cure Multicast ~ Research ~ Group (SMuG), June 2000. URL

http://www.ietf.org/internet-drafts/draft-irtf-smug-mcast-policy-00.txt,
(draft-irtf-smug-mcast-policy-00.txt).

P. McDaniel, P. Honeyman, and A. Prakash. Lightweight Secure
Group Communication. Technical Report 98-2, Center for Informa-
tion Technology Integration, University of Michigan, April 1998. URL
http://www.citi.umich.edu/techreports/reports/citi-tr-98-2.pdf.

S. Mittra. Iolus: A Framework for Scalable Secure Multicasting. In Proceedings of
ACM SIGCOMM 97, pages 277-278. ACM, September 1997.

P. McDaniel and S. Jamin. Windowed Certificate Revocation. In Proceed-
ings of IEEE INFOCOM 2000, pages 1406-1414. IEEE, March 2000. URL
http://wuw.eecs.umich.edu/ pdmcdan/docs/info00.pdf, tel Aviv, Israel.

[MIV6]

[MKM94]

[Moy94]

[Moy98]
[MP0O]

[MPH99]

[MPI*+01]

[MQRGY7]

[MR00]

[MS98]

[Mul93]

[Nat77]

[Nat80]

[Nat99]

[NKOS]

[NNOg]

192

S. McCanne, V. Jacobson, and M. Vetterli. Receiver-Driven Layered Multicast. In
Proceedings of ACM SIGCOMM 96, pages 117-130. ACM, September 1996.

J. Magee, J. Kramer, and M.Sloman. Regis: A Constructive Development Environment
for Distributed Programs. Distributed Systems Engineering Journal, 1(5):663-675,
1994.

J. Moy. Multicast Extensions to OSPF. Internet Engineering Task Force, March 1994.
RFC 1585.

J. Moy. OSPF Version 2. Internet Engineering Task Force, April 1998. RFC 2328.

P. McDaniel and A. Prakash. Lightweight Failure Detection in Secure Group Com-
munication. Technical Report CSE-TR-428-00, Electrical Engineering and Computer
Science, University of Michigan, June 2000. URL docs/CSE-TR-428-00.pdf.

P. McDaniel, A. Prakash, and P. Honeyman. Antigone: A Flexi-
ble Framework for Secure Group Communication. In Proceedings of the
8th USENIX Security Symposium, pages 99-114. August 1999. URL

http://www.eecs.umich.edu/ pdmcdan/docs/usec99.pdf.

P. McDaniel, A. Prakash, J. Irrer, S. Mittal, and T. Thuang. Flexibly Con-
structing Secure Groups in Antigone 2.0. In Proceedings of DARPA Information
Survivability Conference and FExposition II, pages 55-67. IEEE, June 2001. URL
http://wuw.eecs.umich.edu/ pdmcdan/docs/discex01.pdf.

M. Moriconi, X. Qian, R. A. Riemenschneider, and L. Gong. Secure Software Archi-
tectures. In In Proceedings of the 1997 IEEE Symposium on Security and Privacy,
pages 84-93. May 1997.

P. McDaniel and A. Rubin. A Response to ‘Can We Eliminate Certifi-
cate Revocation Lists?’. In Proceedings of Financial Cryptography 2000. In-
ternational Financial Cryptography Association (IFCA), February 2000. URL
http://www.eecs.umich.edu/ pdmcdan/docs/finc00.pdf, anguilla, British West
Indies.

D. McGrew and A. Sherman. Key Establishment in Large Dynamic Groups Using One-
Way Function Trees. Technical Report TIS Report No. 0755, TIS Labs at Network
Associates, Inc., May 1998. Glenwood, MD.

S. Mullender. Distributed Systems. Addison-Wesley, First edition, 1993.

National Bureau of Standards. Data Encryption Standard. Federal Information Pro-
cessing Standards Publication, 1977.

National Bureau of Standards. DES Modes of Operation - FIPS PUB 81. Federal
Information Processing Standards Publication, December 1980.

National Bureau of Standards. Data Encryption Standard (DES) - FIPS PUB 46-3.
Federal Information Processing Standards Publication, December 1999.

P. Nikander and A. Karila. A Java Beans Component Architecture for Cryptographic
Protocols. In Proceedings of 7th USENIX UNIX Security Symposium, pages 107-121.
USENIX Association, January 1998. San Antonio, Texas.

M. Naor and K. Nassim. Certificate Revocation and Certificate Update. In Proceedings
of the 7th USENIX Security Symposium, pages 217-228. January 1998.

[NS78]

[NT94]

[OKPO00]

[008S94]

[Paga]
[Pagb]
[Pagc]

[PCB+00]

[PCKS01]

[Per97]

[Pos80]

[Pos81]

[Pow92]

[Pro00]

[PSTCO0]

[Pur94]

[RBH+98]

[RBMO6]

[Rei94]

193

R. Needham and M. Schroeder. Using Encryption for Authentication in Large Networks
of Computers. Communications of the ACM , 21:393-399, 1978.

B. C. Neuman and T. Ts’o. Kerberos: An Authentication Service for Computer Net-
works. IEEE Communications, pages 33—-38, September 1994.

J. Ott, D. Kutscher, and C. Perkins. The Message Bus: A Platform for Component-
based Conferencing Applications. In Proceedings of CBG2000: The CSCW2000 work-
shop on Component-based Groupware. December 2000. Philadelphia, PA.

H. Orman, S. O’Malley, R. Schroeppel, and D. Schwartz. Paving the Road to Network
Security or the Value of Small Cobblestones. In Proceedings of the 1994 Internet Society
Symposium on Network and Distributed System Security. February 1994.

U. M. Page. kill man page. Linux 2.2.18, Section 1.
U. M. Page. malloc man page. Kernel 2.2.18, Section 3.
U. M. Page. signal man page. Linux 2.2.18, Section 7.

A. Perrig, R. Canetti, B. Briscoe, D. Tygar, and D. Song. TESLA: Multicast
Source Authentication Transform. Internet FEngineering Task Force, July 2000.
draft-irtf-smug-tesla-00.txt.

G. Patz, M. Condell, R. Krishnan, and L. Sanchez. Multidimensional Security Pol-
icy Management for Dynamic Coalitions. In Proceedings of Network and Distributed
Systems Security 2001. Internet Society, February 2001. San Diego, CA, (to appear).

R. Perlman. LKH+, 1997. Observation concerning LKH [WHAO98] from the conference
floor.

J. Postel. User Datagram Protocol. Internet Engineering Task Force, August 1980.
RFC 768.

J. Postel. Internet Protocol. Internet Engineering Task Force, August 1981. RFC 791.

D. Powell. Failure Mode Assumptions and Assumption Coverage. In Proceedings of
22nd International Symposium on Fault-Tolerant Computing (FTCS-22), pages 386—
395. IEEE, July 1992. Boston, MA.

N. Provos. Encrypting Virtual Memory. In Proceedings of the 9th USENIX Security
Symposium, pages 35—44. USENIX Association, August 2000. Denver, CO.

A. Perrig, D. Song, D. Tygar, and R. Canetti. Efficient Authentication and Signature
of Multicast Streams over Lossy Channels. In 2000 IEEE Symposium on Security and
Privacy, pages 56-70. IEEE, May 2000. Oakland, CA.

J. M. Purtilo. The POLYLITH software bus. ACM Transactions on Programming
Languages and Systems, 16(1):151-174, January 1994.

O. Rodeh, K. Birman, M. Hayden, Z. Xiao, and D. Dolev. Ensemble Security. Technical
Report TR98-1703, Cornell University, September 1998.

R. V. Renesse, K. Birman, and S. Maffeis. Horus: A Flexible Group Communication
System. Communications of the ACM, 39(4):76-83, April 1996.

M. Reiter. Secure Agreement Protocols: Reliable and Atomic Group Multicast in
Rampart. In Proceedings of 2nd ACM Conference on Computer and Communications
Security, pages 68-80. ACM, November 1994.

[Riv92al

[Riv92b]

[Riz97]

[RNOO]

[Roh99]

[RROS]

[RSATS]

[Rub96]

[RVR93]

[SBCY97]

[SCO8]

[SCFY96]

[Sch78]

[Sch94]

[Sch95]

[Sch96]

194

R. Rivest. The MD5 Message Digest Algorithm. Internet Engineering Task Force,
April 1992. RFC 1321.

R. Rivest. The RC4 Encryption Algorithm. Technical Report Document No. 003-
013005-100-000-000, RSA Data Security Inc., March 1992.

L. Rizzo. Effective Erasure Codes for Reliable Computer Communication Protocols.
ACM Computer Communications Review, 27(2):24-36, April 1997.

T. Ryutov and C. Neuman. Representation and Evaluation of Security Policies for Dis-
tributed System Services. In Proceedings of DARPA Information Survivability Confer-
ence and Ezposition, pages 172-183. DARPA, Hilton Head, South Carolina, January
2000.

P. Rohatgi. A Compact and Fast Hybrid Signature Scheme for Multicast Packet Au-
thentication. In Proceedings of 6th ACM Computer and Communications Security
Conference. ACM, November 1999. Singapore.

M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web Transactions. ACM
Transactions on Information and System Security, 1(1):66-92, 1998.

R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of the ACM, 21(2):120-126, February
1978.

A. D. Rubin. Independent One-Time Passwords. USENIX Journal of Computer Sys-
tems, 9(1):15-27, February 1996.

L. Rodrigues, P. Verissimo, and J. Rufino. A Low Level Processor Group Membership
Protocol for LANS. In Proceedings of 13th International Conference on Distributed
Computing Systems, pages 541-550. 1993.

R. Sandhu, V. Bhamidipati, E. Coyne, and S. G. C. Youman. The ARBAC97 Model
for Role-based Administration of Roles: Preliminary Description and Outline. In
Proceedings of 2nd ACM Workshop on Role-Based Access Control. November 1997.
Fairfax, Virginia.

L. Sanchez and M. Condell. Security Policy System (Draft). Internet Engineering Task
Force, November 1998. draft-ietf-ipsec-sps.txt.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 20(2):38-47, 1996.

T. J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of 10th
Annual ACM Symposium on Theorey of Computers, pages 216-226. ACM, 1978. New
York, New York.

B. Schneier. Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish).
In Proceedings of Fast Software Encryption, Cambridge Security Workshop, pages 191—
204. Springer-Verlag, 1994.

H. Schulzrinne. Dynamic Configuration of Conferencing Applications using Pattern-
Matching Multicast. In Proceedings of 5th International Workshop on Net. and O.S.
Support for Digital Audio and Video, pages 231-242. 1995. Durham, New Hampshire.

B. Schneier. Applied Cryptography. John Wiley & Sons, Inc., second edition, 1996.

[SCPYS]

[SCRY6]

[Ses97]

[SFS93)]

[SGK*+85]

[SKJHO0]

[SSDW9g]

[SSVO1]

[Sti95)]

[SWM+99]

[Tan95)

[TIM+99]

[Vin94]

[Wal99)]

[WCST99]

[WGLOS]

[WHAOS]

195

A. D. Santis, G. D. Crescenzo, and G. Persiano. Communication-Efficient Anony-
mous Group Identification. In Proceedings of 5th ACM Conference on Computer and
Communications Security, pages 73-82. 1998.

D. Stringer-Calvert and J. Rushby. A Less Elementary Tutorial for the PVS Spec-
ification and Verification System. Technical Report CSL-95-10, Computer Science
Laboratory, SRI International, August 1996.

R. Sessions. COM and DCOM: Microsoft’s Vision for Distributed Objects. John Wiley
and Sons, First edition, 1997. New York, NY.

D. Schmidt, D. Fox, and T. Sudya. Adaptive: A Dynmaically Assembled Protocol
Transformation, Integration, and eValuation Environment. Journal of Concurrency:
Practice and Ezxperience, 5(4):269-286, June 1993.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and Im-
plemention of the Sun Network Filesystem. In Proceedings of the Summer USENIX
Conference, pages 119-130. USENIX, 1985.

S. Setia, S. Koussih, S. Jajodia, and E. Harder. Kronos: A Scalable Group Re-keying
Approach for Secure Multicast. In 2000 IEEE Symposium on Security and Privacy,
pages 215-218. IEEE, May 2000. Oakland, CA.

D. Steer, L. Strawczynski, W. Diffie, and M. Wiener. A Secure Audio Teleconference
System. In Proceedings of CRYPTO ’88, pages 520-528. 1998.

J. Snoeyink, S. Suri, and G. Varghese. A Lower Bound for Multicast Key Distribution.
In Proceedings of IEEE Infocom 2001. IEEE, April 2001. Anchorage, Alaska.

D. Stinson. Cryptography: Theory and Practice. CRC Press, first edition, 1995.

M. Stevens, W. Weiss, H. Mahon, B. Moore, J. Strassner, G. Waters, A. Westeri-
nen, and J. Wheeler. Policy Framework (Draft). Internet Engineering Task Force,
September 1999. draft-ietf-policy-framework-00.txt.

A. S. Tanenbaum. Distributed Operating Systems. Prentice—Hall, Englewood Cliffs,
New Jersey, first edition, 1995.

M. Thompson, W. Johnson, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiari.
Certificate-based Access Control for Widely Distributed Resources. In Proceedings
of 8th USENIX UNIX Security Symposium, pages 215-227. USENIX Association, Au-
gust 1999. Washington D. C.

S. Vinoski. CORBA: Integrating Diverse Applications Within Distributed Heteroge-
neous Environments. IEEE Communications Magazine, 14(2), February 1994.

J. Waldo. The Jini Architecture for Network-centric Computing. Commaunications of
the ACM, 3(4):76-82, July 1999.

M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner. The VersaKey Frame-
work: Versatile Group Key Management. IEEE Journal on Selected Areas in Commu-
nications, Special Issue on Middleware, 17(8), August 1999.

C. K. Wong, M. Gouda, and S. S. Lam. Secure Group Communication Using Key
Graphs. In Proceedings of ACM SIGCOMM 98, pages 68-79. ACM, September 1998.

D. M. Wallner, E. J. Harder, and R. C. Agee. Key Management for Multicast: Is-
sues and Architectures (Draft). Internet Engineering Task Force, September 1998.
draft-wallner-key-arch-01.txt.

[WL93]

[WL9S]

[WL99]

[WPDS8S]

[Wra00]

[WSS+00]

[WYL*99]

[YHKO5]

[ZF94]

[Zim94]

[ZSC+00]

196

T. Woo and S. Lam. Authorization in Distributed Systems; A New Approach. Journal
of Computer Security, 2(2-3):107-136, 1993.

T. Woo and S. Lam. Designing a Distributed Authorization Service. In Proceedings of
INFOCOM ’98. IEEE, San Francisco, March 1998.

C. Wong and S. Lam. Digital Signatures for Flows and Multicasts. IEEE/ACM
Transactions on Networking, 7(4):502-513, August 1999.

D. Waitzman, C. Partridge, and S. Deering. Distance Vector Multicast Routing Pro-
tocol. Internet Engineering Task Force, November 1988. RFC 1075.

J. Wray. Generic Security Service API Version 2 : C-bindings. Internet Engineering
Task Force, January 2000. RFC 2744.

A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, J. Perry, S. Herzog,
A.-N. Huynh, and M. Carlson. Policy Terminology (Draft). Internet Engineering Task
Force, July 2000. draft-ietf-policy-terminology-00.txt.

X. Wang, X. Yi, K. Lam, C. Zhang, , and E. Okamoto. Secure Agent-Mediated
Auctionlike Negotiation Protocol for Internet Retail Commerce. In LNCS, editor,
In Proceedings of the 3rd International Workshop on Cooperative Information Agents
(CIA’99), volume 1652, pages 291-302. Springer, Stockholm, Sweden, July 1999.

W. Yeong, T. Howes, and S. Kille. Lightweight Directory Access Protocol. Internet
Engineering Task Force, March 1995. RFC 1777.

H. Zhang and D. Ferrari. Rate-Controlled Service Disciplines. Journal of High-Speed
Networks, 3(4), 1994.

P. Zimmermann. PGP User’s Guide. Distributed by the Massachusetts Institute of
Technology, May 1994.

J. Zao, L. Sanchez, M. Condell, C. Lynn, M. Fredette, P. Helinek, P. Krishnan, A. Jack-
son, D. Mankins, M. Shepard, and S. Kent. Domain Based Internet Security Policy
Management. In Proceedings of DARPA Information Survuvability Conference and
Exposition, pages 41-53. DARPA, Hilton Head, South Carolina, January 2000.

