
RICE UNIVERSITY

New Approaches to Routing for Large-Scale Data
Networks

by

Johnny Chen

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Dr. Peter Druschel, Chair
Assistant Professor in Computer Science

Dr. Devika Subramanian
Associate Professor in Computer Science

Dr. Edward Knightly
Assistant Professor in Electrical Engineering

Houston, Texas

June, 1999

New Approaches to Routing for Large-Scale Data
Networks

Johnny Chen

Abstract

This thesis develops new routing methods for large-scale, packet-switched data networks

such as the Internet. The methods developed increase network performance by considering

routing approaches that take advantage of more available network resources than do current

methods. Two approaches are explored: dynamic metric and multipath routing. Dynamic

metric routing provides paths that change dynamically in response to network traffic and

congestion, thereby increasing network performance because data travel less congested

paths. The second approach, multipath routing, provides multiple paths between nodes and

allows nodes to use these paths to best increase their network performance. Nodes in this

environment achieve increased performance through aggregating the resources of multiple

paths.

This thesis implements and analyzes algorithms for these two routing approaches. The

first approach develops hybrid-Scout, a dynamic metric routing algorithm that calculates in-

dependent and selective dynamic metric paths. These two calculation properties are key to

reducing routing costs and avoiding routing instabilities, two difficulties commonly expe-

rienced in traditional dynamic metric routing. For the second approach, multipath routing,

this thesis develops a complete multipath network that includes the following components:

routing algorithms that compute multiple paths, a multipath forwarding method to ensure

that data travel their specified paths, and an end-host protocol that effectively uses multiple

paths.

Simulations of these two routing approaches and their components demonstrate signif-

icant improvement over traditional routing strategies. The hybrid-Scout algorithm requires

3-4 times to 1-2 orders of magnitude less routing cost compared to traditional dynamic

metric routing algorithms while delivering comparable network performance. For multi-

path routing, nodes using the multipath protocol fully exploit the offered paths and increase

performance linearly in the additional resources provided by the multipath network. The

performance improvements validate the multipath routing algorithms and the effectiveness

of the proposed end-host protocol. Furthermore, this new multipath forwarding method

allows multipath networks to be supported at low routing costs. This thesis demonstrates

that the proposed methods to implement dynamic metric and multipath routing are efficient

and deliver significant performance improvements.

iv

Acknowledgments

This thesis is the culmination of many years of academic and personal education. I would

like to take this opportunity to thank the many people who have made significant contribu-

tions to my educational process.

First and foremost, I am indebted to my parents. I am especially grateful to my mother,

who made countless sacrifices to ensure that her children receive the best opportunity to live

full and joyful lives. My brother Steve and sisters Aileen and Jennifer have also given me

an immeasurable amount of fun, love, and advice. My family’s constant support provided a

level of personal and educational development that I would otherwise never have received.

This thesis is a tribute to the positive influences they have made in my life.

I also thank my advisors Peter Druschel and Devika Subramanian. Their high standards

of research sharpened not only my problem solving skills, but also my ability to effectively

convey technical and complex ideas. In addition, they gave me complete freedom to pursue

my research interests and were open to projects outside their core research areas. Of course,

this thesis would not have been possible without my advisors’ help and guidance. I also

thank my third committee member, Ed Knightly, for his assistance in my research.

My high school teachers Mrs. Cynthia Erdei, Mr. Lynn Rosier, and Mrs. Ann Koenig

played a significant role in my decision to pursue higher education. Their dedication to

teaching and challenging young minds opened doors for me to attend college. I wish for

their continuing success in teaching and positively shaping young lives.

I am grateful for the friends who have enriched my life: friends Bo and Jerry, and col-

lege friends Judd, Cash, Jeff, Eddie, and Deanna. These friendships have become stronger

over the years and will hopefully continue to develop. I have also made many life-long

friends while at Rice, including lunch buddies Zoran and Dejan; officemates Zhenghua,

Mohit, and Henrik; and good friends Cristiana and Phil. Others friends include Anita,

Gaurav, Honghui, Weimin, Bo, Karthick, Ram, Mike, Collin, James, Shriram, Robby,

John, Matthew, Cathy, Fay, Darren, and Mary. Each one of these friends has made my

life in Houston very enjoyable.

Last but not least, I thank my writing instructor Dr. Jan Hewitt for significantly improv-

ing my writing skills and her tireless evaluations of my thesis.

Contents

Abstract ii

Acknowledgments iv

List of Illustrations x

List of Tables xiii

1 Introduction 1
1.1 Contributions . 6

1.2 Dissertation Overview . 7

2 Background 9
2.1 The Distance Vector Routing Algorithm 9

2.2 The Link State Routing Algorithm . 11

2.3 The Internet . 12

2.4 Comparison of Routing Models . 15

2.4.1 Static and Dynamic Metrics . 15

2.4.2 Resource Usage . 17

2.4.3 Granularity . 20

2.4.4 Routing Model Summary . 21

3 Dynamic Metric Routing 23
3.1 The Hybrid Approach . 25

3.1.1 The Scout Algorithm . 26

3.1.2 Dynamic Metric Scout . 29

3.1.3 Scout-DV Hybrid . 30

3.1.4 Scout-LS Hybrid . 35

3.1.5 Algorithm Comparisons . 38

3.2 Simulation Results . 39

3.2.1 Simulation Environment . 40

3.2.2 A Forest Topology . 42

vi

3.2.3 Background Traffic . 48

3.2.4 Foreground Traffic . 50

3.2.5 Path Approximations . 52

3.3 Hybrid-Algorithm Summary . 53

4 Multipath Routing 55
4.1 Multipath Routing Definitions . 55

4.2 Multipath Routing Overview . 59

4.2.1 Multipath Advantages . 59

4.2.2 Multipath Disadvantages . 61

4.2.3 Multipath Implementation Cost 63

4.2.4 Multipath Benefits . 65

4.2.5 Static and Dynamic Metric Multipath Routing 68

4.3 Multipath Routing Summary . 69

5 Path Calculation Algorithms 71
5.1 Path Characteristics . 71

5.2 Path Calculation Algorithms . 73

5.2.1 Minimizing Delay . 74

5.2.2 Maximizing Throughput . 78

5.3 Path Calculation Summary . 79

6 Multipath Forwarding 82
6.1 The Multipath Forwarding Problem . 83

6.1.1 Multi-Service Path Forwarding . 85

6.1.2 Multi-Option Path Forwarding . 86

6.1.3 Suffix Matched Path Sets . 87

6.2 Distance Vector Extension . 90

6.2.1 Methods of Calculating Multiple Paths in DV 90

6.2.2 Multipath DV Extensions . 91

6.2.3 MPDV Example . 92

6.3 Link State Extension . 94

6.3.1 Multipath LS Extensions . 94

6.3.2 Example of LS Extension . 95

6.3.3 Suffix Matched Multipath Routing Algorithms 96

vii

6.3.4 Non-Suffix Matching Paths in LS 96

6.4 A Multipath Forwarding Example . 98

6.5 Multipath Forwarding Summary . 99

7 Multipath Transport Protocol 101
7.1 Usage Layer . 102

7.2 Throughput Optimization . 103

7.3 TCP . 105

7.4 MPTCP . 106

7.4.1 The MPTCP Algorithm . 107

7.4.2 MPTCP Fairness . 109

7.4.3 Path Information . 110

7.4.4 Limitations . 111

7.5 MPTCP Experiments . 112

7.5.1 Aggregate Throughput . 113

7.5.2 MPTCP Congestion Backoff Percentage 115

7.5.3 Foreground and Background Traffic 117

7.5.4 Network Resources and Throughput 120

7.6 MPTCP Summary . 121

8 Multipath Routing Algorithms 122
8.1 The MPDV Capacity Removal Algorithm 122

8.1.1 Data Structure Costs . 122

8.1.2 The MPDV Algorithm . 124

8.1.3 MPDV Capacity Removal Example 125

8.1.4 Capacity Removal MPDV Costs 128

8.2 The MPLS Capacity Removal Algorithm 129

8.2.1 The MPLS Algorithm . 129

8.2.2 Basic MPLS Forwarding . 130

8.2.3 Non-Suffix Matched Paths . 130

8.2.4 Capacity Removal MPLS Costs 132

9 Multipath Cost-Benefit Analysis 134
9.1 Simulation Environment . 135

9.2 Throughput Performance . 136

viii

9.2.1 Basic Throughput Performance 136

9.2.2 MPLS and MPDV Throughput Differences 138

9.2.3 MPLS and MPDV Path Calculation Process 140

9.2.4 MPLS and MPDV Throughput Summary 142

9.3 Latency and Message Drop Performance 142

9.3.1 The Multipath Ping Program . 143

9.3.2 Round-trip Latency . 144

9.3.3 Message Drop Probability . 145

9.3.4 Latency and Drop Probability Summary 146

9.4 Routing Costs . 147

9.4.1 Per Packet Forwarding Overhead 148

9.4.2 Router Storage Overhead . 150

9.4.3 CPU Usage in Path Computation 154

9.4.4 Routing Message Cost . 155

9.4.5 Routing Cost Summary . 158

9.5 Experimental Conclusions . 160

10 Related Work 162
10.1 Dynamic Metric Routing . 162

10.2 Multipath Routing . 166

10.2.1 Multipath Networks and Architectures 166

10.2.2 Multipath Calculation Algorithms 169

10.2.3 Multipath Forwarding Methods 171

11 Conclusions and Future Directions 173
11.1 Conclusions . 173

11.2 Future Directions . 175

11.2.1 Hybrid-Scout . 175

11.2.2 Multipath Routing . 176

A The Scout Routing Algorithm 179
A.1 Flood Based Route Discovery . 179

A.2 Scout Proof of Correctness . 184

A.3 Scout Summary . 186

ix

Bibliography 188

Illustrations

1.1 The static metric single shortest path routing model. 2

1.2 A conceptual diagram of the dynamic metric routing model. 4

1.3 A conceptual diagram of the static metric multiple path routing model. . . . 5

3.1 Traffic locality in dec-pkt-4 TCP packet traces from

http://ita.ee.lbl.gov/html/contrib/. 25

3.2 An example of the Scout routing algorithm. 28

3.3 Another example of the Scout routing algorithm. 28

3.4 An example of a path that the DV component calculates to a Scout

generating destination after the failure of link (R�P). 35

3.5 The forest topology used in the hybrid Scout experiments. 42

3.6 The performance graphs for dynamic metric DV, LS and hybrid Scout

algorithms. 44

3.7 The cost graphs for dynamic metric DV, LS and hybrid Scout algorithms. . 45

3.8 Comparative performance of hybrid Scout, LS and DV for 1 and 5 hot

destinations. 46

3.9 The foreground and background performance in a large network. 48

3.10 Routing costs of different dynamic metric routing algorithms. 50

3.11 Network performance and routing cost. 51

3.12 Routing performance and cost using hold-downs. 53

4.1 An example network topology. 60

4.2 A simple three node network with full-duplex links. 66

4.3 Simulation results obtained in a simple three node network. 67

4.4 Performance of Single path TCP versus MPTCP. 68

5.1 An Example Network Topology. 73

5.2 The pseudocode for the discount shortest path algorithm. 77

5.3 The pseudocode for the capacity removal algorithm. 80

xi

6.1 A forwarding example in a multi-service single-option multipath network. . 85

6.2 A forwarding example in a single-service multi-option multipath network. . 87

6.3 Example of MPDV. 93

6.4 Example of the multipath Link State Algorithm. 95

6.5 Example forwarding tables in a network with multi-service and

multi-option paths. 99

7.1 A simple three node network. 103

7.2 MPTCP connection using three paths. 108

7.3 Non-congestion aware multipath protocol versus MPTCP on a triangle

network. 113

7.4 Congestion backoff percentage on a three node network. 115

7.5 The foreground and background performance of MPTCP using the

capacity removal algorithm. 117

7.6 MPTCP throughput on a 20 node network with varying network

connectivity. 120

8.1 The pseudocode for the MPDV capacity removal algorithm. 126

8.2 An example of the capacity removal MPDV algorithm. 127

8.3 An example of the capacity removal MPLS non-suffix matched forwarding. 131

9.1 The foreground and background MPTCP performance using the MPLS

capacity removal algorithm. 137

9.2 The foreground and background MPTCP performance using MPDV

capacity removal algorithm. 137

9.3 The foreground performance of MPTCP and SPTCP using the capacity

removal MPLS and MPDV algorithms on a sparse network topology. 139

9.4 The number of path calculated by each the MPDV and MPLS algorithms

in a sparse network topology. 140

9.5 An example of the capacity removal path calculation to N�. 140

9.6 The percentage of non-suffix matched paths calculated by MPLS in a

cluster topology. 141

9.7 The measured round-trip latency observed by the MP ping and SP ping

programs. 144

9.8 The measured ping drop percentages of MP ping and SP ping. 146

xii

9.9 An example of a non-suffix matched path set. 151

9.10 The aggregate forwarding table storage for MPLS and MPDV in a cluster

network. 152

9.11 The total general storage cost for MPLS and MPDV in a cluster network. . 154

9.12 The routing message cost for capacity removal MPLS and MPDV

algorithms. 156

9.13 The routing cost of MPDV and MPLS for a single link failure and recovery. 157

A.1 Example network topology and the first round broadcast tree from N1. . . . 180

A.2 Broadcast tree after the second round of flooding. 182

A.3 Scout Algorithm Summary for Unrestricted Networks. 183

Tables

3.1 The scalability characteristics of hybrid-Scout, Distance Vector, and Link

State routing algorithms. 46

9.1 A summary of the routing costs incurred by different routing algorithms. . . 160

1

Chapter 1

Introduction

Large-scale, wide area data networks are a part of today’s global communication infras-

tructure. Networks such as the Internet have become an integral medium of information

transfer, ranging from personal communication to electronic commerce and entertainment.

The importance of such networks will only increase as the electronic world becomes more

prevalent.

The basic function of a data network is very simple: delivering data from one net-

work node to another. Achieving this goal requires many network components, including

physical computers and links, signaling protocols between computers, and data packaging

protocols. This thesis addresses one such component, routing, the process that logically

connects network nodes by calculating paths between nodes so that data sent by one node

traverses the calculated path to its destination.

Although many algorithms in graph and operational research literature calculate paths

between nodes, the challenge in developing network routing algorithms is in dealing with

the scale and distribution of the physical network. Because typical wide area networks

have nodes on the order of tens of thousands, routing algorithms must be scalable. In

addition, routing algorithms must be able to calculate paths in a distributed manner due to

the global and distributive nature of physical networks. Moreover, because of the actual

physical network, routing algorithms need to cope with events such as physical component

failures and recalculate paths whenever such events occur. Finally, routing algorithms need

to calculate paths to allow nodes to achieve high network performance.

In general, routing algorithms view a network as a weighted graph, where network links

are represented as graph edges and network routers as graph vertices. Network routers are

network nodes that execute routing algorithms and ensure that data travel the calculated

paths. In the weighted graph, the assignment of edge weights depends on the specific rout-

ing algorithm; typically, the assignment reflects the latency and bandwidth of the link [94].

After a routing algorithm makes these link cost assignments, it then computes paths be-

tween nodes. Thus, the specific routing algorithm that routers execute determines the paths

that data will travel in the network.

2

Routing algorithms in today’s Internet base their implementations on the static metric

single shortest path routing model. Single shortest path means that routing algorithms

provide, at any given time, the least-cost path between nodes. Static metric refers to link

cost assignments which are based on static properties of a link, such as its bandwidth or

latency. As shown later, the main drawback of this model is that static metric shortest paths

do not always provide good network performance.

Although Internet routing algorithms use static metrics, this does not imply that the

paths themselves are static. On the contrary, current Internet routing algorithms are adap-

tive, meaning they are able to recompute paths and reroute packets when network compo-

nents (nodes or links) fail or recover. Therefore, even if routers or links fail, as long as a

path exists between a node pair, Internet routing algorithms ensure that these two nodes can

communicate with each other. Figure 1.1 shows the conceptual Internet routing model.

Src

Dst

Figure 1.1 : The static metric single shortest path routing model. The solid line denotes the
single path provided between Src and Dst.

The solid line in Figure 1.1 shows the shortest path calculated between Src and Dst.

The shaded area denotes the network resources (network links and routers) that are not

allocated for this communication channel. In this figure, messages sent by Src to Dst

travel the solid path. Since the shortest path is calculated between nodes, packets travel

to their destinations using paths that minimize the statically assigned cost. If link costs

are uniform, then the shortest path minimizes the number of links and routers traversed. In

general, a link’s cost describes some notion of performance, usually given as a combination

of the link’s delay and bandwidth. For example, in the Internet, a link has a lower cost

compared to the cost of another link with higher delay and lower bandwidth. Here, a

3

link’s cost reflects a notion of performance in terms of the amount of time expected for

packets to traverse the link. With this cost assignment (expressed in terms of path delay

and bandwidth), the shortest path minimizes the “expected time” for packets to reach their

destinations.

However, performance measures based on the time a packet reaches its destination

depend not only on the static properties of the links the packet traverses, but also on those

links’ utilization levels. For example, it takes less time for a packet to traverse a path when

the path’s links are idle than when the links are congested�. In fact, work by Khanna and

Zinky [94] showed that computing paths that factor the dynamics of link utilization has a

large impact on network performance.

To provide better network performance, methods developed in this thesis implement

two routing models that deviate from the static metric single shortest path routing model.

These two models are dynamic metric single path routing and static metric multipath rout-

ing. The methods developed improve upon previous methods that implement the two

routing models. Conceptually, the two routing models increase network performance by

effectively utilizing currently unallocated network resources (links and routers). These un-

allocated resources are represented by the shaded region in Figure 1.1.

The first model, dynamic metric single path routing, provides one path between node

pairs, where the path computed considers network traffic and congestion. Dynamic metrics

are defined as link cost metrics that change dynamically. In the context of this thesis, a

link’s dynamic cost is based on the link’s utilization. With this type of metric, a link’s

cost is higher when it is experiencing congestion than when it is idle. In the dynamic

metric routing model, routers recompute least-cost paths between nodes in response to

dynamic changes in link costs. Because dynamically least-cost paths consider network

traffic, dynamic metric routing offers the ability to provide nodes with higher performance

paths (in terms of lower delay and/or higher throughput). Figure 1.2 shows a conceptual

diagram of the dynamic metric single path routing model.

In this figure, the solid line represents the current path a dynamic metric routing algo-

rithm provides between Src and Dst, and the three dotted lines denote potential paths Src

has to Dst, depending on different traffic conditions. In a dynamic metric single path rout-

ing model, Src has available, at any one time, only one path to Dst. This path is chosen by

the routing algorithm to carry data between Src and Dst. Because the routing algorithm

�A link is in a congested state when too many messages are contending for the link’s resources (e.g. link

bandwidth and allocated router buffer space for the link). In this scenario, the router buffering this link’s

out-going data may be forced to drop messages out-going on the link.

4

Src

Dst

Figure 1.2 : A conceptual diagram of the dynamic metric routing model. The solid line
denotes the current least-cost path between Src and Dst, and the dotted lines represent
potential least-cost paths depending on dynamic link costs.

continually recomputes the least-cost dynamic metric paths, the chosen path between nodes

reflects the current least-cost path. Notice that the path Src has to Dst depends on network

traffic and the routing algorithm’s recomputation speed.

The second routing model considered in this thesis, the static metric multipath routing

model, deviates from static metric single shortest path by providing multiple paths between

nodes. Routing algorithms in this model provide potentially multiple paths between nodes

concurrently, thereby increasing a node’s available resources and allowing the node to use

the multiple paths in ways that best increase its performance. Figure 1.3 shows the concep-

tual diagram of this routing model.

In Figure 1.3, the solid lines represent the available paths Src has to Dst. In this

example, a multipath routing algorithm provides three paths between Src and Dst. Ad-

ditionally, the model allows Src to decide how to send data on these paths. For example,

Src can send data to Dst on all three paths simultaneously, one path at a time, or any com-

bination it chooses. This model allows higher performance because Src can dynamically

detect and use path(s) that best maximize Src’s performance.

The ability to choose which path to use differentiates the solid lines in multipath routing

and the dotted lines in dynamic metric routing (for convenience, we use “dynamic metric

routing” instead of “dynamic metric single path routing” and “multipath routing” instead

of “static metric multipath routing”, unless otherwise specified). In multipath routing, the

decision of which path to use is delegated to the sending nodes (end-hosts or the applica-

tions running on the hosts). That is, multipath routing algorithms calculate multiple paths

5

Src

Dst

Figure 1.3 : A conceptual diagram of the static metric multiple path routing model. The
three solid lines denote the paths that a multipath network provides between Src and Dst.
Here Src can send data to Dst using any of the three paths.

between nodes, and the end-hosts choose which path(s) to use. In contrast, dynamic metric

routing algorithms provide, at any give time, the only one path between node pairs. Thus,

end-hosts in this environment do not have the option to choose among the paths the routing

algorithm might calculate.

Although the general multipath routing model can also use dynamic metrics (the dy-

namic metric multipath model provides multiple paths between nodes that consider traffic

patterns), this thesis primarily focuses on the static metric multipath routing model. The

reason is that if a static metric multipath routing algorithm calculates the appropriate paths

and if end-hosts manage these paths effectively, then the situations where dynamic metrics

can benefit are significantly reduced. For example, assume that in Figure 1.2, a multi-

path routing algorithm provides all four paths (both dotted and solid paths) between Src

and Dst. In this case, even if the multipath routing algorithm uses dynamic metrics, the

opportunity to recalculate paths are much reduced because the possible dynamic metric

candidate paths are already provided. Moreover, if end-hosts effectively use multiple paths

to avoid congestion, then link congestion is less likely to occur which, in turn, reduces path

recomputations. This issue is discussed in detail in Section 4.2.5.

Notice that the two routing models described are still adaptive to network changes. That

is, both dynamic metric and multipath routing models recalculate paths upon detection of

network component failures or recoveries. Therefore, methods proposed in this thesis are

adaptive in that they offer the same connectivity guarantees as the current Internet routing

model, but they promise higher achievable network performance.

6

1.1 Contributions

The contributions of this thesis stem from the development of methods that implement the

dynamic metric and multipath routing models. For dynamic metric routing, a novel algo-

rithm is developed which outperforms previous dynamic metric algorithms and requires

lower routing costs. For multipath routing, the major contributions are an efficient path for-

warding method and a multipath transport protocol that maximizes end-to-end throughput.

The contributions of this thesis are summarized below.

Contribution 1: A novel dynamic metric routing algorithm that outperforms previous
dynamic metric routing methods.

Dynamic metric routing has been implemented in the past; however, previous imple-

mentations suffer two problems: routing instability and high routing overheads [94]. Rout-

ing instability occurs when paths are constantly being recomputed and do not stabilize.

This instability degrades network performance and increases the probability of network

congestion and failures. The second problem is high routing overheads. The overheads are

in terms of the CPU cycles and messages required for path recomputation. Because rout-

ing overheads in traditional dynamic metric algorithms depend on network traffic patterns,

mechanisms such as thresholding and hold-downs [74] are needed to limit the amount of

routing overhead; however, the effects on route quality of these two mechanisms are un-

certain because routers often compute paths based on out-dated information of the network

state.

The new dynamic metric routing algorithm developed in this thesis reduces the above

problems. The algorithm, hybrid-Scout, reduces routing instabilities by using two tech-

niques: time staggered and selective dynamic metric path computation. Simulations show

that hybrid-Scout reduces the amount of routing cost by as much as an order of mag-

nitude while maintaining performance comparable to traditional dynamic metric routing

algorithms. This new algorithm promises to provide the benefits of dynamic metric routing

without the undesirable side-effects.

Contribution 2: An efficient multipath forwarding method.
One of the main challenges of multipath routing is the forwarding of data on their

intended paths. Multipath forwarding is difficult because each node has potentially multiple

paths to a destination; therefore nodes have to label data packets to indicate which path a

packet should travel. The path forwarding problem is defined as how to specify a packet’s

path and forward the packet along the specified path.

This thesis presents a novel multipath forwarding method to solve the path forwarding

problem by using small, fixed-length path identifiers (IDs). This method guarantees path

7

forwarding by chaining path ID agreements along paths [3, 85]. To do this with minimal

computation and message overhead, the method requires that the calculated path set satisfy

a specific property, called the suffix matched property. For path sets that do not satisfy this

property, efficient closure operators are developed to convert them into suffix matched sets.

The novel forwarding method uses a fixed-length per packet path ID and requires ad-

ditional router storage proportional to the number of paths calculated. This is a significant

improvement over the traditional source routing technique that requires variable length per

packet path IDs, and routing storage overhead proportional to the number of paths cal-

culated and their path length. The proposed forwarding method is a key component for

efficient implementations of multipath routing.

Contribution 3: MPTCP, a multipath transport protocol that effectively utilizes avail-
able bandwidth on multiple paths.

The performance gains of using multiple paths depend on how effective end-hosts use

the paths to increase their performance. The appropriate usage of these paths varies as

applications vary. For example, an FTP application needs to use multiple paths to increase

throughput, whereas a telnet application needs to use paths to decrease delay. The final

contribution of this thesis is the development of a transport protocol, called MPTCP, which

uses multiple paths to increase end-to-end throughput.

MPTCP stands for multipath TCP and is derived from the single path Transfer Control

Protocol (TCP) [83]. MPTCP provides a reliable bit stream service and relieves applica-

tions of the burden of managing multiple paths. MPTCP operates by opening TCP con-

nections on different paths and multiplexing data among them. The receiving MPTCP pro-

tocol coalesces data from the different connections to restore the original message stream.

MPTCP performs congestion and flow control, both critical for MPTCP’s high perfor-

mance.

Simulation results show that MPTCP is able to effectively use the additional resources

offered by multiple paths, even under heavy network utilization levels. This protocol

demonstrates that immediate end-to-end performance gains can be obtained from multi-

path networks.

1.2 Dissertation Overview

The rest of the dissertation is organized as follows. Chapter 2 presents the routing back-

ground necessary for the remainder of the thesis and discusses the differences between

the dynamic metric and multipath routing models. Chapter 3 describes the hybrid-Scout

8

routing algorithm, presents simulation results, and specifies the conditions under which

hybrid-Scout outperforms traditional dynamic metric algorithms.

Chapters 4 through 9 address issues in the multipath routing model. Chapter 4 pro-

vides a formal introduction to multipath routing and presents the cost and benefit tradeoffs

of multipath networks. Chapters 5 – 7 develop the components necessary for multipath

routing to succeed. Chapter 5 develops appropriate path calculation algorithms that calcu-

late quality paths between nodes. These paths are supported by the multipath forwarding

methods given in Chapter 6. Finally, Chapter 7 describes a transport protocol, MPTCP, that

effectively uses the multiple paths to maximize throughput.

Chapter 8 describes the implementation of two multipath routing algorithms. These two

algorithms are then tested in Chapter 9. Through simulation, Chapter 9 evaluates the entire

multipath routing model, from the performance of user protocols to the costs incurred by

the two routing algorithms. The results conclude that multipath routing can be implemented

efficiently and sufficient benefits obtained.

Finally, Chapter 10 describes the related work, and Chapter 11 summarizes the research

contributions of this thesis and discusses future research directions.

9

Chapter 2

Background

This chapter provides the necessary background for this thesis by describing the basic In-

ternet routing model and its current routing algorithms. The deficiencies in Internet routing

motivate the need for dynamic metric and multipath routing in large-scale data networks.

The chapter begins by describing the two predominant routing algorithms, the Distance

Vector and Link State routing algorithms, which are the basis of many Internet routing

protocols. Moreover, many of the routing algorithms developed in this thesis are based on

these two algorithms. Sections 2.1 and 2.2 describe the Distance Vector and Link State

algorithms respectively. To place these algorithms in context, a brief description of the

Internet is given in Section 2.3.

Section 2.4 then compares the Internet’s static metric single path routing model with the

dynamic metric single path and static metric multipath routing models. This comparison

highlights the advantages and disadvantages of each model and reveals performance critical

issues in dynamic metric and multipath routing models.

2.1 The Distance Vector Routing Algorithm

The first routing algorithm described is the Distance Vector routing algorithm (DV), a dis-

tributed, adaptive routing algorithm that computes shortest paths between all node pairs.

Based on a centralized method known as the Bellman-Ford algorithm [22, 62], DV is the

basis of many practical routing algorithms currently in use [7,111,133].

Basic Distance Vector Algorithm

A DV router computes a forwarding table which is used to forward packets on the best know

path to their destination. Each entry in a DV forwarding table contains three elements: the

destination address, the next-hop neighbor on the known shortest path to that destination,

and the cost of the known path. Each router’s forwarding table is continually updated by

the distributed DV algorithm to indicate, via the next-hop entry, the shortest path between

nodes. Routers update their forwarding tables by exchanging path information with their

10

neighbors via distance vector packets (DVP). A DVP carries the identity of the originating

router and a list of distance vectors of the form (dst addr, cost), which are taken from the

router’s forwarding table. An DVP entry (d� x) sent by a routerR indicates that R can reach

destination d, and the cost of the path is x.

The description of the DV computation uses the following notation. Let Cr
d be the

cost of the known least-cost path to destination d in r’s forwarding table, Nr
d the next-hop

neighbor on the path to d recorded in r’s forwarding table, and crs the cost of the link from

r to s. DV assumes that the path cost is additive and the cost of each link is positive. That

is, the cost C of a path (x�� � � � � xn) is C � cx�x� � cx�x� � � � �� cxn��xn and cxixi�� � �,

�� � i � n. The forwarding table in each router r is initialized as follows:

Cr
r � �� �s � s �� r� Cr

s ���

When a router r receives a DVP ��d�Cs
d�� � � � � from a neighbor s, r updates its forward-

ing table as follows: for all destinations d in s’s DVP,

if �Cs
d � crs � Cr

d or N
r
d � s� then �Cr

d � Cs
d � crs and Nr

d � s��

Notice that the cost added toCs
d is crs, the cost from r to s. This addition correctly computes

the path cost from r to d through s. Router r locally computes crs by observing its link

status to neighbor s.

Routers exchange DVPs with their neighbors periodically or in response to link/node

failures or recoveries. It can be proved that after a bounded number of DVP exchanges

following a topology or link cost change, all routers’ forwarding tables will contain values

reflecting the shortest paths to all destinations [22,157].

After DV forwarding tables converge, routers will then forward packets to their destina-

tions on the calculated shortest paths. Because DV computes all pairs single shortest paths,

tagging a packet with its destination address uniquely identifies the packet’s path through

the network. Data packets in DV are delivered to their destinations as follows: whenever a

router receives a packet, it finds the forwarding table entry for the packet’s destination and

forwards the packet to the next-hop router listed in the table entry. This process of looking

up the next-hop address and forwarding a packet to the proper neighbor continues until the

packet reaches its destination.

11

Dynamic Metric Distance Vector

To calculate dynamic metric paths, a DV router continually updates the cost of each of

its out-going links. When a router observes that the difference between a link’s current

cost and its last advertised cost exceeds a certain threshold, the router initiates (or trig-

gers) a Distance Vector route computation. Because link costs may change very frequently,

thresholding is used to dampen the number of path recomputations. Another mechanism

often used to further dampen the rate of recomputations is to use hold-downs [74]. A hold-

down limits the number of route computations a router can trigger within a certain time

interval.

Given that the cost change in link l causes router R to initiate a route computation, the

steps of recomputation are as follows:

1. In R’s forwarding table, for every path p with l as its out-going link, R updates p’s

cost to reflect l’s new link cost.

2. For each path updated, R sends a DVP containing these paths (and their new costs)

to all out-going links but l.

3. Upon receiving a DVP update, router P performs the usual path updates. After up-

dating its forwarding table, P sends DVPs containing path p if 1) p is newly acquired

(as in the static metric case) or 2) the new cost of p exceeds p’s old cost by a threshold.

After the DVP exchanges, the paths calculated between nodes will reflect l’s new cost.

Furthermore, the amount of dynamic metric computation is reduced by the use of different

thresholds in the computation.

2.2 The Link State Routing Algorithm

The Link State (LS) algorithm is another routing algorithm on which many protocols are

based. Example of these protocols are found in the Internet and in ATM networks [3, 110,

114].

The Basic Link State Algorithm

In the LS routing algorithm, every router periodically broadcasts (via flooding) its local

connectivity. This information is flooded in a Link State packet (LSP) which consists of

the router’s ID, a list of its neighbors’ IDs, and the cost of each connecting link. After

12

all routers broadcast their LSP, every router knows the entire network topology. A router

then performs a shortest-path spanning tree computation rooted at itself [54]. From the

computation of this tree, the shortest paths to all destinations in the network are known.

This information is then encoded in the router’s forwarding table. A LS forwarding table

is a list of tuples of the form (dst addr, next-hop), where dst addr is the address of the

destination, and next-hop is the neighboring router on the shortest path to that destination.

Since the LS algorithm also computes single shortest paths between nodes, the usage

of LS forwarding tables to deliver packets to their destinations is the same as DV.

Dynamic Metric Link State

Like DV, path recomputations in dynamic metric LS are also triggered by link cost changes.

Dynamic metric LS routers continually update the link costs of their outgoing links and trig-

ger path recomputation when the difference between the current and previously advertised

link costs exceeds a threshold. Again, similar to DV, cost thresholding and hold-downs are

used to limit the number LS path computations.

Upon detecting such link cost changes, an LS router broadcasts an LSP that contains

the new link cost. When a router receives an LSP, it performs its usual shortest-path span-

ning tree computation that incorporates the new LSP information. Thus, after every router

receives a dynamically triggered LSP and recomputes shortest paths, the paths provided by

a dynamic metric LS routing algorithm will reflect the new cost change.

2.3 The Internet

The Internet is a global data network, and as of 1999, it consists of approximately 40 mil-

lion hosts and 20,000 routers [136, 142]. The Internet is a best effort datagram network:

units of data transmission are packetized, and each packet is individually and indepen-

dently delivered (hop-by-hop) to its destination without any guarantees of success. That is,

packets can be dropped in transit. In this section, we describe the current Internet routing

architecture and show how LS and DV routing algorithms operate in and scale to large data

networks.

In order for a node to send packets to another node, the sending node must specify the

destination node. In the Internet today, every node is uniquely identified by an 32 bit IP

address�. Thus for node A to send a packet to node B, A must designate the IP address of

�In the next version of IP, called IPv6, nodes will be identified by an 128 bit address [26].

13

B as the packet’s destination. This universal naming allows every node in the Internet to

uniquely identify every other node.

Physically, the Internet is a collection of smaller inter-networks called routing domains

(or autonomous systems). Each routing domain is responsible for routing packets within

itself. That is, packets destined to hosts in a routing domain are routed by the domain’s

routing algorithm. An intra-domain routing algorithm refers to a routing algorithm that

routes packets within a domain, and an inter-domain routing algorithm is responsible for

routing packets between domains. Using this organization, packets sent from one domain

to another are first routed out of the sending domain, then to the destination domain, and

finally to the destination host by the destination domain’s routing algorithm. Thus, logi-

cal Internet connectivity is ensured by the cooperation of inter- and intra-domain routing

algorithms.

Because of the size of the Internet, two methods are used to make the network scalable:

subnetting and hierarchical routing domains. Subnetting uses the IP addressing structure

so that routers can route packets based on a set of hosts instead of individual hosts, and

hierarchical routing domains reduce the size of routing domains. Both of these methods

are described below.

Subnetting

Internet addresses are divided into subnets. A subnet is identified by some IP address

prefix. Whenever an organization wants to connect to the Internet, it needs to obtain a

unique subnet address or a set of unique subnet addresses. Furthermore, every host owned

by the organization that connects to the Internet needs to have an IP address such that the

IP prefix of the host address is the same as one of the subnet addresses obtained by the

organization. The number of bits in the IP prefix is variable length [65, 129, 133], and the

exact number of bits is not directly relevant to our discussion.

With subnet addressing, routers outside a subnet need to know and maintain only a

single route (i.e. state) for all the hosts in the subnet. That is, routers outside a particular

subnet do not need to maintain a route for every hosts in that subnet, but rather, these

routers only need to maintain one route to the subnet; this route is used to forward packets

to every host in that subnet. Because several thousand hosts can have the same subnet

address, subnetting allows substantial space savings in routers, making routing over the

Internet more scalable.

However, subnetting alone is not enough to provide scalability because there are hun-

dreds of thousands of subnet addresses in the Internet. To further reduce the amount of

14

information that routers have to process and store, hierarchical routing domains are used.

Hierarchical Routing

Hierarchical routing allows a routing domain to contain subnet addresses as well as other

routing domains (represented by a set of subnet addresses). Conceptually, routing is hi-

erarchically structured such that at the lowest level, a routing algorithm routes packets to

hosts with the same subnet address. At the second level, a routing algorithm routes packets

among second-level routing domains using the subnet addresses the routing domains en-

compass. Similarly, at level i, a routing algorithm routes packets to the appropriate level i

routing domain that contains the packet’s destination subnet address. Because of the inclu-

sive property of routing domains, a packet is routed to level i � � if the packet is destined

for a subnet address that is not in level i. Eventually, routers in the highest level of the

hierarchy, say level L, know about every subnet address and the level L routing domain

that contains the address.

Thus a packet destined for a different subnet first travels up the domain hierarchy, until

it reaches the routing domain that is the first common ancestor of both the source and

destination routing domains. From this ancestor domain, the packet then travels down

the hierarchy until it reaches the destination domain. The destination domain’s routing

algorithm then ensures the packet reaches its destination.

This hierarchical organization achieves scalability because a routing algorithm operat-

ing in a level i routing domain only needs to compute paths to nodes at that level. A node

at level i could be a host (if i � �) or a level i � � routing domain. If a node is a routing

domain, then the node advertises the subnet addresses that it encompasses. With this hi-

erarchical structure, a routing algorithm at a particular level only has to compute paths to

nodes at that level, thereby reducing the size of path recomputations that routers need to

perform.

Conceptually, the Internet routing hierarchy can have many levels. However, in prac-

tice, the Internet routing is divided into only two levels, intra-domain (lower level) and

inter-domain (higher level) routing levels.

Although the size of host addresses is different from domain addresses, a router’s basic

mechanisms for computing paths and forwarding packets are the same. Thus, the routing

algorithms described in this thesis are applicable for all the levels of the routing hierarchy.

More information on Internet routing is available in standard network text books such

as [93,129,154].

15

2.4 Comparison of Routing Models

As stated in Chapter 1, dynamic metric single path and static metric multipath routing mod-

els can offer higher network performance compared to current Internet routing algorithms

that implement the static metric single path routing model. This section compares the three

routing models and examines how their differences influence network performance.

Our comparison begins by examining routing algorithms under dynamic environments.

This discussion applies to both single path and multipath routing models. Next, Sec-

tions 2.4.2 and 2.4.3 compare the performance differences among the three different rout-

ing models: Section 2.4.2 presents how network performance is influenced by each model’s

resource usage, and Section 2.4.3 compares the operation granularity of multipath and dy-

namic metric routing models. Operation granularity refers to the scale in which a routing

algorithm computes its paths.

2.4.1 Static and Dynamic Metrics

A distributed routing algorithm (both single path and multipath) needs time t in order to

converge on the computation of its paths. This convergence time depends on factors such

as the actual routing algorithm, network topology, link transmission speed, and router com-

putation speed. For example, in the LS algorithm, convergence time depends on the time

needed to detect topology changes, to broadcast topology information, and to recompute

shortest paths.

When the network state changes, one expects that after time t, a routing algorithm will

converge and calculate the appropriate paths based on the new network state. For example,

assume that the convergence time for an LS algorithm is 5 seconds. Then 5 seconds after

a link failure, the LS algorithm will recompute shortest paths such that the new paths do

not use the failed link. In this case, the LS algorithm is correct because it calculates the

expected paths (the shortest path between nodes) and does so within 5 seconds. However,

the notion of correctness and convergence is less clear in scenarios where the network

state changes faster than a routing algorithm’s convergence time. This type of network

scenario typically occurs in dynamic metric routing because link costs can change much

more frequently than a routing algorithm’s convergence time.y

In the previous example, assume that the network topology (or link costs) changes every

second, then the LS algorithm can never catch up to the network changes and can never

yAlthough frequent network changes can also occur in static metric networks, these are usually networks

under special conditions such as highly mobile, wireless networks [87,127].

16

compute paths that reflect the actual shortest path in the current network. Rather, the paths

that the LS algorithm computes will reflect the shortest paths in an out-dated network state,

where the degree of out-datedness depends on the algorithm’s convergence time. In other

words, as the network changes, LS tracks the changes and computes paths according to its

most up-to-date view of the network, which may be the actual network state sometime in

the past. Note that system A tracks system B if whenever B changes to B�, A also changes

(say to A�) such that the difference between the output of A� and B� is less than or equal to

the difference between the output of A and B� [31]. Thus, a routing algorithm that tracks

network changes will recompute its paths such that the newly computed paths better reflect

the current shortest paths, compared to the previously computed paths.

In network scenarios where a routing algorithm does not have an up-to-date view of the

current network statez, one can still reason about the correctness of a routing algorithm.

Recall in networks where rates of change are slower than convergence time, a routing

algorithm is correct if it computes the expected path within its convergence time. Since a

routing algorithm computes paths based on its current view of the network, such algorithms

are correct if 1) their view of the network is consistent with the actual network and 2) the

expected paths are computed based on that view. A router has a consistent view of the

network if the router’s knowledge of the current network state is the same as the actual

state of the physical network.

In situations where a routing algorithm’s network view is not consistent with the current

network, a correctness criterion must ensure that the routing algorithm does not diverge in

its shortest path computation. That is, the paths that a routing algorithm actually calculates

should track the paths that the routing algorithm would calculate given it has the instanta-

neous network state. This property can be ensured by two criteria: 1) the algorithm’s view

of the network must track the actual state of the network. That is, the difference in the view

of the network at time X and X � � should reflect the actual network changes observed

in the elapsed time �. Of course, the amount of network updates during the elapsed time

depends on the actual parameters of the routing algorithm (e.g. threshold and hold-down

values). 2) Correct paths are calculated based on the algorithm’s view of the network state.

In the LS example, this means that given LS’s view of the network, the shortest paths are

calculated between nodes.

zA routing algorithm might not have an up-to-date network view either because the network state changes

too frequently or because the algorithm does not attempt to obtain the exact, moment-to-moment state of the

network due to efficiency issues. Mechanisms such as thresholding and hold-downs allow routing algorithms

to reduce routing cost at the expense of less accurate network view.

17

Assuming that dynamic metric versions of DV and LS are not guaranteed to have an

up-to-date view of the network state, both algorithms are still correct according to the crite-

ria given above. In both algorithms, shortest paths are computed based on each algorithm’s

current view of the network, and network views are continuely updated via triggered path

recomputations. In LS, the network view is updated by topology broadcasts, and each

broadcast partially updates the network view. Similarly in DV, the network view is up-

dated by messages received from neighboring routers that contain path information that

use current network link costs.

In practice, this implies that the accuracy with which a dynamic metric routing algo-

rithm tracks physical link costs directly affects the quality of the paths calculated. The

closer the tracking, the closer the calculated paths reflect the current state of the network;

however the cost of tracking the network state comes at a cost. Chapter 3 addresses this

issue and shows that achieving good network performance involves a tradeoff between the

cost of tracking the physical network and the quality of the paths calculated.

2.4.2 Resource Usage

This section compares the three routing models in terms of network resource consump-

tion and shows how their differences affect network performance. To understand these

issues, one needs to determine 1) what network resources are, 2) how these resources are

consumed, and 3) how network performance is defined. These terms are defined below.

First, there are two types of network resources, router and link resources: router re-

sources refer to router CPU cycles and memory, and link resources refer to link bandwidth.

Second, these network resources are consumed by two types of messages: data messages

and routing messages. Routing messages are sent by routers to compute and provide paths

between nodes, and data messages are sent by applications to other applications. Both

types of messages consume link resources as they traverse the network and router resources

because routers receiving these messages have to process and/or forward them. Third, net-

work performance is determined by application network demands. Examples of different

network demands are high throughput, low delay, and high probability of satisfying QoS

requestsx. Although network performance is application specific, in general, performance

can be characterized by the speed in which data messages are delivered to their destinations:

xQuality of Service (QoS) specifies a level of network service, typically expressed as a combination of

delay bounds and capacity requirements [9, 43, 60, 71, 95]. For example, a video conferencing application

that transmit real-time video and audio may need paths with 1Mb/s bandwidth and a delay bound of 10ms.

In this scenario, the video conferencing application needs to reserve this QoS specification on the path to its

18

the faster data messages are delivered from their sources to their destinations, the higher

the network performance. We shall use this general measure of network performance for

the remainder of the discussion.

Given these definitions, the following subsections analyze how the three routing mod-

els trade off between network performance and resource consumption of data and routing

messages.

Data Messages

This subsection examines how data messages use network resources as they travel to their

destinations. In static metric single path routing, the network resources used by data mes-

sages between a node pair are fixed given a particular topology: the paths provided are

based on static link costs and do not change with traffic conditions. The drawback of this

routing model is that network performance is dependent on traffic; therefore depending on

traffic patterns, the static metric shortest path might not provide good network performance.

In dynamic metric routing, the cost of a link considers the traffic on the link. In this

model, a link’s cost changes dynamically – a link’s cost increases if the amount of traffic on

the link increases. Thus, in dynamic metric routing, the network resources used between

a node pair change (via path recomputation) in order to minimize dynamic path costs and

to increase performance. In essence, with dynamic metric routing, data messages travel

different paths (i.e. use different network resources) depending on network traffic patterns.

In the multipath routing model, the routing algorithm provides multiple paths between

nodes and allows the sending nodes to choose how to send data using the provided paths.

With respect to network resource usage, the resources a message uses to its destination

depend on the paths calculated by the routing algorithm and on the end-host sending the

message. The paths that data messages can travel depend on the paths calculated by the

multipath routing algorithm. However, the path that data packets actual travel depends on

the end-host sending the packets. Thus, in multipath routing, end-hosts can increase their

performance given that they are able to gauge the performance of their available paths and

send data on paths that best maximize their performance.

In summary, both dynamic metric and multipath models offer higher performance than

static metric shortest routing by delivering data on paths which consider observed net-

work traffic. In dynamic metric routing, the routing algorithm observes network traffic and

destination. Notice that this request may be rejected by the network due to resource availability. However,

once reserved, the network is expected to provide the requested path performance to the application.

19

recomputes its paths to optimize a given performance metric. The data messages then au-

tomatically traverse the recomputed paths. With multipath routing, the multipath routing

algorithm simply computes multiple paths between nodes. It is the responsibility of the

end-hosts to observe the performance of the computed paths and send data on paths that

best increases their performance. This difference in data resource usage affect the two mod-

els’ cost-performance tradeoff. The tradeoff difference is discussed further in subsequent

sections.

Routing Messages

Routing messages are the other type of message that consume network resources. This sec-

tion considers the tradeoff between their resource consumption and network performance.

With respect to this tradeoff, the static metric single shortest path routing is at one

end of the spectrum that minimizes routing resources. This model uses the least amount

of resources among the three models because it computes only one path between a node

pair, and these paths do not change unless the network topology changes. In contrast,

dynamic metric and multipath models use more routing costs in the attempt to provide

higher network performance.

In the dynamic metric routing model, routing messages are used to track the network

state (e.g. link costs). Thus, if an algorithm uses more routing messages, it has a more ac-

curate view of the physical network, resulting in higher path quality because the computed

least-cost paths more closely reflect the actual least-cost paths in the physical network.

This higher path quality, in turn, increases performance because better paths increase the

speed that data messages reach their destinations (given that link metrics reflect packet

transmission time). However, because routing messages also consume network resources,

which affects network performance, dynamic metric algorithms must balance between the

accuracy of their network state information and the potential performance degradation of

obtaining the information.

Multipath routing algorithms also incur extra routing overhead in exchange for poten-

tially higher network performance. Extra overhead is incurred through calculating and

maintaining multiple paths between nodes. Thus, multipath routing algorithms must bal-

ance between the resources needed to compute and maintain paths versus their potential

performance gains.

To summarize, compared to static metric single shortest path routing, both dynamic

metric and multipath routing require more routing message resources. These extra re-

sources allow both models to obtain higher network performance. However, there is a

20

fundamental difference between dynamic metric and multipath cost-performance trade-

off. In dynamic metric routing, the current least-cost paths between nodes are determined

by the routing algorithm. Therefore, changing paths between two nodes requires routing

intervention, which entails routing costs. In multipath routing, however, the cost of cal-

culating multiple paths is incurred once for a particular network topology, and subsequent

path changes to avoid congestion are done by end-hosts and thus do not require routing

intervention or routing overhead. For this reason, the multipath routing model is inher-

ently more efficient than dynamic metric routing at making the routing cost versus network

performance tradeoff. We address this issue in more detail next.

2.4.3 Granularity

As shown in the previous section, both multipath and dynamic metric routing increase

network performance by using network resources that consider network traffic. However,

the difference between the two models is that end-hosts in multipath routing choose which

paths to use, whereas nodes in dynamic metric routing do not. This section explains how

this difference serves to distinguish the two routing models.

At a very abstract level, one can imagine that a dynamic metric routing algorithm can

“simulate” a multipath routing algorithm by allowing nodes to specify the desired path

before sending a packet and then compute the path fast enough that the routing algorithm

provides an illusion that there are multiple paths between nodes. This section shows that

this cannot be realized in practice. The reason points to the fundamental difference between

the two models – the granularity in which the two models operate. The difference can be

categorized into time and path granularities.

Time granularity refers to the time scale in which nodes can send data on different

paths. In a multipath model, nodes have the freedom to send data on any of their avail-

able paths. For example, a node can send consecutive messages on different paths in a

round-robin fashion. That is, the time granularity of path switching is on the message

level (or on the order of microseconds). However, in dynamic metric routing, switching

paths between nodes requires global path recomputation which is on a much larger time

granularity, typically on the order of seconds. The reason for the larger time granularity

is due to efficiency: computing paths on the microsecond granularity would consume a

prohibitively high amount of network resources, which can significantly reduce network

performance. Notice that in multipath routing, switching between paths does not incur any

routing overhead.

Path granularity refers to the scale of switching paths. In a multipath setting, when a

21

node decides to send data on different paths, the decision is made by the sending node alone

and affects only that node’s performance. That is, path switching is on an end-to-end gran-

ularity. In dynamic metric routing, however, path recalculation is done on a network gran-

ularity because path recomputation entails global calculation. This computation involves

potentially every router in the network and potentially affects paths of other connections.

Because of this global granularity, it is thus infeasible to allow nodes in a dynamic met-

ric environment to arbitrarily switch paths and request global path computations. Notice

that the end-to-end path granularity in the multipath model naturally allows nodes to freely

switch paths.

Because multipath and dynamic metric models offer different operating granularities,

in practice, the two models are very different and require different routing algorithms to

implement each model.

2.4.4 Routing Model Summary

In summary, both dynamic metric single path and static metric multipath models trade off

resource consumption for increased network performance by delivering data on paths that

consider the dynamics of network traffic. In the dynamic metric shortest path model, re-

sources are used to more accurately track the network state, resulting in better calculated

paths. Multipath routing, on the other hand, uses additional resources to compute and main-

tain multiple paths, thereby allowing end-hosts to achieve higher network performance.

Analysis of this cost–performance tradeoff reveals that multipath routing is intrinsically

more efficient than dynamic metric routing. This is derived from the observation that to

provide increased end-to-end performance, a multipath routing algorithm needs to compute

its paths only once (until the network topology changes), while a dynamic metric algorithm

needs to continually recompute paths to maintain path quality.

Although dynamic metric algorithms make this tradeoff less efficiently, an advantage

of this model is that it only requires changes in router software and minimal end-host

changes. Since dynamic metric routing provides one path between a node pair, current

end-host protocols and softwares need little change, if any, to obtain performance benefits.

In contrast, multipath routing requires updates to both router and host software in order to

reap multipath performance benefits.

As this section shows, the decision of which routing model to implement requires eval-

uating tradeoffs at various levels. Analysis of such tradeoffs continues throughout the re-

mainder of this thesis. The following chapters carefully consider the cost–performance

tradeoffs when developing algorithms that implement dynamic metric and multipath rout-

22

ing models.

23

Chapter 3

Dynamic Metric Routing

This chapter presents a novel routing algorithm that implements the dynamic metric short-

est path routing model. Dynamic metric routing has been implemented on the ARPANET

(the precursor of the Internet) and substantial improvements in network performance were

observed: Khanna and Zinky [94] showed that dynamic metric routing has a significant

impact on the ARPANET’s performance, where performance is measured in packet drops.

This dynamic cost metric, called the revised ARPANET routing metric, also reduced rout-

ing instabilities and oscillations compared to the previous dynamic metric based purely on

link delays. Despite their positive results, dynamic metrics are not widely used in today’s

Internet. The technical reasons are that 1) the amount of routing updates with dynamic met-

rics are hard to control a priori because routing updates are dependent on network traffic,

and 2) routing using dynamic metrics can cause routing oscillations, though Khanna and

Zinky’s dynamic metric lessens the problem.

The dynamic metric routing algorithm presented in this chapter to a large extent, over-

comes the limitations cited above. The algorithm uses Scout, a destination-initiated shortest

path computation technique. A destination node using the Scout algorithm initiates a path

computation from every node in the network to itself at periodic intervals. The period be-

tween route recomputations is controlled by the initiating node. The routing overhead of

the algorithm is a function of this period and is independent of the dynamic conditions in

the network. Therefore, Scout has the property that its routing overhead is predictable and

under the control of the initiating nodes.

Since each initiating node takes charge of its route recomputations, the updating of

routes to each initiating node is uncorrelated. In contrast, traditional dynamic metric al-

gorithms based on Link State (LS) and Distance Vector (DV) recompute paths between

all nodes quasi-simultaneously. This quasi-simultaneous computation has the unfortunate

tendency of shifting congestion causing traffic from a currently congested area to a cur-

rently uncongested one which then becomes the next congested area, triggering route re-

computations over again [163]. Because route recomputations in Scout are independently

controlled by the destinations, route updates to different destinations are uncorrelated and

24

usually staggered in time, thus allowing congested traffic to be split, significantly reducing

route oscillations caused by shifting all traffic in a congested zone at the same time.

However, this flexibility and autonomy in route recomputation comes at a price. Scout

is not as efficient as algorithms such as DV in computing all-pairs shortest paths. This is

because Scout destinations independently compute paths to themselves and do not share

path computations with other nodes; thus, using Scout to compute dynamic metric paths to

all nodes is inefficient.

To obtain the benefits of dynamic metric Scout while maintaining low routing costs,

Scout is integrated with the traditional LS and DV algorithms. In this hybrid algorithm,

the LS or DV component operates as usual and calculates static metric shortest paths. This

provides good baseline paths between nodes. The Scout component then computes dy-

namic metric paths to a small, selected number of “hot” destinations. Analysis of Internet

packet traces show that a high percentage of Internet traffic is destined to a small percent-

age of “hot” destination networks (see Figure 3.1). The main idea behind the hybrid is

that if a small number of destinations receive the majority of the traffic, then making sure

that their traffic do not experience congestion (by calculating dynamic metric paths to these

destinations) will reduce the probability that the remaining traffic experiences congestion.

By using Scout with dynamic metrics to improve path quality to hot destinations and

relying on traditional static metric algorithms to maintain paths to other nodes, the hybrid

algorithm reaps the benefits of dynamic metric routing without paying a high, unpredictable

routing overhead and without incurring significant routing instabilities. Moreover, since

static metric DV and LS algorithms efficiently calculate all-pairs shortest paths and Scout

efficiently calculates paths selectively, the hybrid algorithm combines the strength of the

different algorithms.

The rest of this chapter is organized as follows. Section 3.1 presents the hybrid ap-

proach. The section first describes Scout, a selective route recomputation algorithm that

takes advantage of network traffic locality. Scout description is followed by two sections

that describe Scout integration with DV and LS routing algorithms. Section 3.2 presents

experimental data showing the behavior of the different dynamic metric algorithms. The

results of the simulation show that hybrid Scout outperforms traditional dynamic metric al-

gorithms using significantly lower routing costs. Finally, Section 3.3 concludes this chapter.

25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

T
ra

ffi
c

P
er

ce
nt

ag
e

Destination Percentage

Cumulative TCP Traffic Plot (DEC-4)

Cum Pkts
Cum Bytes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

C
um

ul
at

iv
e

T
ra

ffi
c

P
er

ce
nt

ag
e

Destination Percentage

Top 10% Cumulative TCP Traffic Plot (DEC-4)

Cum Pkts
Cum Bytes

Figure 3.1 : Traffic locality in dec-pkt-4 TCP packet traces from
http://ita.ee.lbl.gov/html/contrib/. The graph shows the cumulative distribution of
network traffic to destinations. The trace contained an hour’s worth of wide-area traffic
from DEC’s corporate intra-net to the rest of the Internet. The x-axis shows the destination
percentage sorted by traffic frequency, and the y-axis shows the cumulative distribution.
The left graph shows the cumulative distribution of traffic to all destinations, and the
right graph shows distribution to the top 10% of destinations that receive traffic. The
distributions of traffic to sources exhibit the same distributions. The locality shown in this
trace is typical of other traces analyzed.

3.1 The Hybrid Approach

One of the key ideas of the hybrid approach is that routes based on dynamic metrics are

computed only for a minority of destinations, namely destinations that receive a majority

of the traffic. Due to the high destination locality observed in network traffic, being able

to calculate dynamic metric paths to these hot destinations has several advantages. First,

one hopes that calculating paths to a few destinations is cheaper than calculating paths to

all destinations. Second, not calculating shortest paths to all destinations simultaneously

reduces the route heredity problem [94] and therefore reduces route oscillation. In addition,

because these destinations receive a high percentage of routing traffic (say 50+%), rerouting

these paths enables the algorithm to shift enough traffic to alleviate areas of congestion.

The solution presented here for dynamic metric routing is based on two key concepts.

The first is the Scout routing algorithm that is able to selectively update paths to individual

destinations. The second key idea is to integrate Scout with traditional DV and LS algo-

rithms. This hybrid provides base static routes to a majority of destinations using DV/LS

and provides dynamic metric routes to selected destinations using Scout.

26

Scout is a host-initiated, selective route calculation algorithm that calculates least-cost

paths to individual nodes (or networks). Host-initiated means that the path calculation

process to a node (or network) is initiated by that node (or gateway router to the network).

Scout is selective because only paths to that destination are affected, and it is efficient

at computing routes to individual destinations. However, Scout does not aggregate path

computation, and therefore is not as efficient as LS and DV when computing paths to all

nodes. This deficiency motivated the integration of Scout with LS and DV.

The hybrid of Scout with DV and LS routing algorithms uses the traditional routing

algorithm to calculate paths between nodes using static metrics, while Scout continually

refines paths to selected nodes using dynamic metrics.

The remainder of this section is dedicated to describing the hybrid Scout algorithm.

The next section presents a brief description of the basic Scout algorithm and shows how it

computes least-cost paths between nodes. The integration of Scout with LS and DV follows

in Sections 3.1.3 and 3.1.4. Finally, Section 3.1.5 summarizes the hybrid-Scout LS and DV

algorithms.

3.1.1 The Scout Algorithm

This subsection briefly describes the Scout routing algorithm. Appendix A contains a full

description of Scout, including a proof of its correctness and convergence. The Scout

algorithm is described in a static metric network environment; Section 3.1.2 discusses the

algorithmic implications of using dynamic metrics.

In the Scout routing algorithm, each router maintains a forwarding table indicating for

each destination, the next-hop neighbor on the known least-cost path to that destination.

The forwarding tables are updated by Scout and are used in the same way as in LS and DV.

Scout’s basic mechanism of route computation is message flooding�. With Scout, desti-

nations periodically flood a Scout message throughout the network. Let R be the node initi-

ating the Scout message. The period between two consecutive floodings of Scout messages

from R is called the broadcast interval (BI). A Scout [R, CR, x] contains the originating

node’s address, R, and the cost CR to reach R, initially zero, and an increasing sequence

number x. When a node P receives a Scout message [R, CR, x] from its neighbor Q, P

�Flooding is a standard method of broadcasting information in a point-to-point network. The flooding

method operates as follows: whenever a node receives a flood message, it remembers the message and sends

the message to all neighbors except the neighbor that it received the message from. If a node receives a flood

message it has seen, the message is discarded. Thus, a flood message terminates after every node receives the

message.

27

first checks whether the sequence number x is valid. If not, the Scout is discarded. Other-

wise, P modifies the Scout’s cost CR to include the cost of sending a message from P to

Q, C �
R � CR � Cost�P � Q�. C �

R represents the cost a message will take if it is sent by

P via Q to R.

In the first broadcast interval (i.e. when P has no record of receiving a Scout from

R), P forwards the Scout [R�C �
R, x] immediately after receiving the first Scout message,

initiated by R, to all neighbors except Q, the neighbor which sent P the Scout. Node P

might receive more of R’s Scouts in the same BI, indicating different paths and path costs

to R. P remembers only the least-cost Scout to R and adjusts its forwarding table to reflect

the best known path, but P does not forward these Scout messages. For each node, the

next-hop to R is always the neighbor that provided the least-cost Scout in the current BI. In

the next and subsequent broadcast intervals of R, P waits to receive a Scout message from

its designated neighbor before flooding. We define node P ’s designated neighbor to node

R as the neighbor of P that provided the least-cost Scout to R in the previous broadcast

interval. When P receives the Scout from this designated neighbor, P forwards the least-

cost Scout received in the current BI (i.e. with the current sequence number) to R to all

neighbors except the one from which the least-cost Scout was received.

In the presence of node or link failures, a node P might never receive a Scout from its

designated neighbor because the designated neighbor may no longer be connected. This is

taken into account by requiring P to flood the first Scout message fromR if P did not flood

any of R’s Scout messages in the previous BI. In other words, if P waited for a Scout from

its designated neighbor Q in the previous BI but never received a Scout, instead of waiting

for Q, or any other neighbor in the current round, P immediately floods the first Scout it

sees in the current broadcast interval.

In this case, P is not allowed to wait for a neighbor in the current BI, in particular, the

designated neighbor, because if there are multiple failures, waiting for the best information

might cause cascading waits. Our decision was motivated by the observation that propa-

gating more recent, perhaps sub-optimal, information is more useful than trying to wait for

the best information which entails the risk of not propagating any information at all.

As an example, consider node A sending Scouts in its first broadcast interval (sequence

number �). A trace of how Scouts propagate through the network is shown in Figure 3.2.

Node A sends a Scout of the form [A� �� �], denoting the Scout originates fromA, with cost

�, sequence number �.

In this example, nodeA’s Scout forwarded byB reachesD before the one forwarded by

C . Since D has no previous information of A’s Scout, D sends the Scout [A� 	� �] to all its

28

A D

B

C

E

F

1

[A,0,0]

[A,0,0]

3

1

2

[A,1,0]

[A,5,0]
[A,5,0]

1
[A,5,0]

[A,4,0]

[A,3,0]

[A,3,0]

1
1

Figure 3.2 : A Scout Example. Node A Sends Scouts for the first time. In this network,
boxes denote routers and edges links. The number beside each link represents the cost of
that link.

neighbors, after adjusting the Scout cost. Notice that D learns the optimal path to A when

it receives the Scout [A� �� �] from C . However, D does not propagate this information in

the current BI. Instead, C becomes D’s designated neighbor (and next hop to A). In the

first BI, the only node that did not get the optimal cost to A is node F , even though it has

the optimal route. That is, because of hop-by-hop forwarding, F ’s packets destined to A

will traverse the path (F�D�C�A) with cost 3 even though F thinks it’s optimal path cost

is 6.

In the next BI, D will wait forC’s Scout before sending its Scouts. The trace is given in

Figure 3.3. Notice that D sends the Scout from C . The algorithm converges in two rounds

and every node has the least-cost path to A.

A D

B

C

E

F

1

[A,0,1]

[A,0,1]

3

1
[A,1,1]

1
[A,2,1]

[A,4,1]

[A,3,1]

[A,2,1]

2

[A,3,1]

[A,2,1]

1 1

Figure 3.3 : A Scout Example. A sends Scout in the second BI

There are five distinctive features of the Scout routing algorithm. First, the number of

29

Scouts forwarded in one BI is O�L�, where L is the number of linksy. Second, in a steady

state network, the worst-case number of BI’s needed for Scout to converge is proportional to

the longest calculated cost path (with respect to the originating node). However, this worst

case requires pathological conditions. In practice, Scout’s convergence is much better.

Simulations were conducted on networks with more than 100 nodes which showed that

Scout always converged in no more than three BI’s. Moreover, after a link failure, an

alternate (not necessarily least-cost) path is guaranteed to be computed after at most two

BI’s, if one exists.

Third, Scouts are small and fixed size and can therefore be piggybacked on a hop-by-

hop basis onto data packets, largely defraying their cost to the network. Fourth, Scout’s

route updates are completely controlled by the Scout generating node and not by network

changes; therefore Scout routing costs are easily controlled. Fifth, Scouts require very little

router computation. This is in contrast to LS and DV where a routing update may affect

entire forwarding tables.

3.1.2 Dynamic Metric Scout

The Scout routing algorithm can also compute paths using dynamic metrics. That is, Scout

can calculate paths to destinations when link costs change dynamically. The implementa-

tion of dynamic metric Scout is straightforward. Routers maintain each out-going link’s

dynamic cost as in dynamic metric LS and DV, and upon receiving a Scout from link l, the

router adds l’s current dynamic cost to the Scout cost and proceeds according to the usual

Scout algorithm.

Given that the number of BI’s for Scout to converge is proportional the longest cal-

culated path, it may be that the rate of link cost changes in a dynamic metric network is

higher than the Scout convergence rate. In this case, Scout might never converge to the ac-

tual dynamic metric shortest path to a particular destination. As stated in Section 2.4.1, the

correctness of dynamic metric Scout in this scenario depends on 1) whether Scout’s view

of the network tracks the physical network and 2) whether paths are correctly calculated

according to Scout’s current view.

Similar to DV, a Scout router updates its view of the network by receiving Scout mes-

sages from its neighbors. Scout messages update the network view because whenever a

yIt is not exactly L because it may happen that two neighboring nodes send Scouts to each other simulta-

neously. The number of Scouts is between L and �L.

30

router forwards a Scout, the most up-to-date link costs are added to the Scout. Thus, the

network view to a destination is tracked as the destination sends Scouts on every BI.

With respect to the second condition, the dynamic metric Scout algorithm also calcu-

lates the appropriate path given its current network view: a router always stores current

BI’s least-cost Scout in its forwarding table, and routers always forward the current BI’s

least-cost Scout as dictated by the Scout algorithm. Because Scout is an iterative algo-

rithm, Scout might not calculate the shortest path to a destination after one Scout broad-

cast. Therefore, although a Scout broadcast from destination d does not guarantee that

every router after the broadcast will have the shortest path to d, the calculation process is

still correct because Scout update and forwarding procedures guarantee reductions in path

costs and produce shortest paths in a steady state network.

Like dynamic metric LS and DV, the dynamic metric Scout algorithm trades off be-

tween routing costs and the accuracy that the calculated paths approximate actual least-

cost paths. For example, in dynamic metric LS and DV, the smaller the threshold and

hold-downs, the more closely the calculated path track actual least-cost paths. Smaller

thresholds and hold-down values allow more frequent routing updates; thus the routing

algorithm’s view of the network more closely tracks the actual network. Similarly, the

smaller the Scout BI’s, the better Scout paths track least-cost paths because smaller elapsed

time between consecutive BI’s reduces the difference between Scout’s view of link costs

and the actual costs.

The cost and performance of a dynamic metric routing algorithm can be measured by

how much routing resources (in terms of routing messages, router CPU, etc.) the algorithm

uses in order to provide a certain level of path quality. In our experiments, the cost of a link

is a function of the link’s queue length, which directly reflects link delay. Using this link

metric, path quality is measured by the time a packet reaches its destination. Therefore, an

algorithm that provides a lower overall network packet delay provides better performance

(or tracks network changes more closely) than algorithms that provide higher delays. An

ideal dynamic metric routing algorithm would provide minimum overall network packet

delay. Comparisons of routing cost and performance (in terms of packet delay) for hybrid

Scout and dynamic metric LS/DV algorithms are given in Section 3.2.

3.1.3 Scout-DV Hybrid

The Scout-DV hybrid algorithm combines the Distance Vector (DV) routing algorithm with

Scout. This section describes the integration of the two algorithms and justifies the behavior

of the resulting hybrid routing algorithm.

31

Scout-DV Algorithm

Scout-DV algorithm has a DV component and a Scout component. The DV component is

responsible for computing the least-cost paths using static link costs and propagates link

failures and recoveries in the usual way. The Scout algorithm is integrated with only a few

small changes described below. The Scout component directly modifies the DV forwarding

tables (the next-hop and cost fields) and uses dynamic link metrics.

Because the DV component of the hybrid algorithm computes static shortest paths be-

tween all destinations, the Scout component of the algorithm can take advantage of this.

The only modification to Scout is the following:

� If the Scout algorithm does not have any information on the designated neighbor,

the default is to use the next-hop neighbor computed by the DV algorithm as the

designated neighbor.

This feature is used in two places: 1) when a node generates its first Scout message and 2)

during the first Scout broadcast after a link failure/recovery (see below).

The two modifications to the DV algorithm are:

� When a router detects a link/node recovery, it exchanges forwarding tables with

neighboring routers in the usual DV manner, propagating the Scout paths as if they

were computed by DV. The receiving router performs the standard operations on the

received DVP and recomputes the shortest paths for both Scout and non-Scout send-

ing destinations.

� When a router detects a link/node failure, it follows the standard DV procedure and

sends to all its neighbors a DVP containing infinity cost for all destinations that use

the failed link (including Scout sending destinations). This process nullifies all DV

and Scout paths that use the failed link. Again, the standard DV recomputation mech-

anism will compute static metric shortest paths (if they exist) to all affected destina-

tions.

To ensure that a straggling Scout message from the previous BI does not re-advertise

a path through the failed link, the Scout-DV hybrid algorithm increments the Scout

sequence counter for Scout calculating destinations that were affected by the failure.

Notice this does not alter the Scout algorithm behavior in the next BI because the

sequence number will then be current.

The above modifications to Scout and DV algorithms serve to better Scout’s approxima-

tion of the least-cost path. The Scout modification provides an educated guess for a default

32

designated neighbor: lacking any dynamic metric path information, the static metric short-

est path is the most likely the shortest dynamic metric path. The DV modifications, on the

other hand, ensure that the Scout paths affected by a component failure/recovery become

valid in at least the same speed as affected DV paths. A valid path is defined as a path that

connects the source of the path to the destination. In a distributive routing environment,

this means that the forwarding table of every intermediate router on a valid path has, as its

next-hop field to the path’s destination, the next router on the path and that every link/router

along the path is operational. In other words, packets are forwarded to their destinations

only along valid paths.

Notice in the hybrid algorithm, the speed of convergence for paths to non-selected

destinations are the same as those in traditional DV algorithms (static metric DV). This is

because only the DV component of the hybrid algorithm calculates paths to non-selected

destinations. Therefore, paths to these destinations are updated by the DV component

in exactly the same manner as ones updated by traditional DV algorithms; thus paths to

non-selected destinations in hybrid-Scout must have the same convergence guarantees as

destinations in traditional DV algorithms.

The next section shows that the modifications to the DV component in the presence of

component failures/recoveries provide connectivity to Scout generating nodes.

Scout-DV Interactions

In the hybrid Scout-DV algorithm, the DV and Scout components interact in order to speed

Scout’s least-cost path computation and to speed the establishment of valid paths after

link/node failures. The purpose of this section is to show that the DV-Scout interactions

described above result in valid paths. Notice that the hybrid algorithm is still correct even

if the two components are completely decoupled: both DV and Scout are capable of calcu-

lating shortest paths without help from the other.

To show that valid paths are computed as a result of Scout-DV interactions, a distinction

is made between destinations that generate Scouts and destinations that do not. For those

that do not, their paths are updated only by the DV component, and therefore the validity

of their paths is the same as in the pure DV algorithm. The correctness of DV has been

proven in [22,62].

With respect to destinations updated by Scout, their paths are also updated by the DV

component. Only for these destinations do we need to verify that valid paths are computed.

Because the Scout and DV components interact only during certain events, we need to

ensure that after those events (or after the interactions), valid paths are provided by the

33

hybrid algorithm. The list below enumerates the points of Scout-DV interactions and the

conditions that ensure the calculation of valid paths.

1. When Scout does not have a designated neighbor, Scout’s usage of DV’s next-hop

neighbor as the default designated neighbor does not cause Scout to diverge in its

path computation.

2. After a link failure, the DV component nullifies all Scout calculated paths that tra-

verse the failed link. Moreover, DV calculates alternate paths and these paths are

valid.

3. After link recovery, the DV component calculates valid paths.

Justification of 1: In the pure Scout algorithm, if a router receives a Scout which it does

not have any previous information, the router will treat the neighbor that sent the first Scout

as its designated neighbor. With the DV optimization, the hybrid Scout will use the DV’s

next-hop neighbor as its designated neighbor. Notice that in the subsequent BI, the Scout

component will use the designated neighbor it computed from its previous BI. Thus this

optimization can only affect Scout behavior for the first BI; therefore the optimization does

not affect Scout correctness (i.e. its approximation of the least-cost path) in calculating

shortest paths to Scout generating nodes.

Justification of 2 and 3: In DV, whenever a router detects that a link has failed, it

nullifies forwarding table entries to destinations whose next-hop is through the failed link.

In addition, the router sends a DVP to all its neighbors indicating that it can no longer reach

the list of nullified destinations. The sending of DVP’s then initiates a network wide path

cancellation and recalculation process.

The complication with Scout-DV is that the DV component nullifies Scout calculated

paths and later recomputes these paths. The concern is whether this interaction causes the

calculation of invalid paths to Scout destinations.

To show that valid paths are computed as a result of interactions 2 and 3, we must show

that after the DV recalculation process, the collective Scout-DV forwarding tables reflect,

for every Scout destination affected by the topology change, a sequence of valid next-hops

that leads to the destination.

The crux of this justification is that Scout paths have exactly the same properties as DV

paths. Therefore, when Scout paths are nullified and recomputed by the DV component,

these paths will have the same resulting properties as paths calculated by DV. Thus the

34

validity of Scout paths that are (re)calculated by the DV component is reduced to the valid-

ity of DV paths. Given that the correctness of DV has already been established, reducing

Scout paths to DV paths shows that interactions 2 and 3 will produce valid paths to Scout

generating nodes.

The justification of interactions 2 and 3 proceeds as follows: first, we state the necessary

and sufficient conditions of DV paths. Second, we show that Scout paths have the same

properties as DV paths. The validity of DV-modified Scout paths then directly follows.

From the Bellman equations [22], the three necessary and sufficient conditions of a path

(x�� � � � � xn) calculated by DV are the following:

1. Node xi’s forwarding table entry has xi�� as its next-hop to xn, � � i � n.

2. The cost xi�� has to xn is less than xi’s cost to xn, � � i � n.

3. The information of this path flowed from xn to x� via the reverse path (xn� � � � � x�).

The Scout calculated paths also have these three properties: 1) if xi calculates the least-

cost path to xn as (xi� � � � � xn), then xi’s forwarding table entry for xn has xi�� as its

next-hop. This is from the basic Scout update rule. 2) Scout’s costs are additive, satisfying

the second property. 3) Like DV, Scout’s path information flows from the destination in the

reverse direction of the calculated path. This follows from the Scout flooding mechanism.

Because Scout’s paths look exactly like DV computed paths, whenever the DV compo-

nent updates router forwarding tables, it cannot distinguish the paths calculated by Scout

from the ones calculated by the DV component itself. Thus Scout calculated paths will be

altered in the same way as DV calculated paths and will have the same DV path properties

after link/node failure or recovery. That is, the DV component is guaranteed to nullify all

invalid Scout paths after a link failure and recompute valid paths to Scout destinations on

link recoveries. QED.

Figure 3.4 shows an example of a Scout path invalidated by a link failure and subse-

quently recomputed by the DV component. In this figure, the dotted curve between nodes

X and Y denotes the path node Y has to node X . Here, X is a Scout generating node. For

this example, assume the link between R and P fails and that the DV component detects

the failure before X generates another Scoutz. According to the hybrid algorithm, the DV

component will use static metrics to recompute the failed paths to X . Notice that DV will

zIfX broadcasts Scouts before DV’s link failure detection and that the Scouts calculate valid paths toX,

then DV will not nullify the newly calculated Scout path because the path would appear to be a valid DV

path.

35

R P

X
YS

Figure 3.4 : An example of a path that the DV component calculates to a Scout generating
destination after the failure of link (R�P).

invalidate all Scout paths that used link (P�R) but leave the valid paths untouched. In par-

ticular, the dotted curve from R to X remains valid while the curve from Y to P is invalid

due to the link failure.

In this example, the path that the DV component calculates from Y to X extends a

valid Scout path. The newly calculated path is denoted by the solid line from Y to S and

the dotted line from S to X . Furthermore, because DV calculates static metric shortest

path, the solid path from S to Y is the shortest, static metric path that connects Y to a valid

Scout path to X .

3.1.4 Scout-LS Hybrid

This section describes the Scout-LS hybrid algorithm. LS, like DV, is a widely used and

well understood routing algorithm. However, unlike DV, it computes paths in a centralized

manner: a topology broadcast mechanism ensures that each router knows the current state

of the entire network (i.e. topology and link cost), and paths are calculated by each router

knowing the entire network topology. This centralized path calculation method posses

slight problems to the hybrid algorithm when component failures occur. The basic hybrid

algorithm is described below, and solutions to address component failures follow.

Scout-LS Algorithm

The Scout-LS hybrid, like the Scout-DV hybrid, requires very little modification to either

algorithm. The LS component maintains its forwarding table, computes paths using the

static link metrics, and recomputes routes on detection of link/node failures/recoveries in

36

the usual manner to non-Scout generating destinations; LS processing of Scout paths is

discussed below. For Scout generating destinations, Scout messages directly modify LS

forwarding tables and compute dynamic metric paths to their initiating destinations. Like

the Scout-DV, Scout is modified such that a destination’s default designated neighbor is

LS’s next-hop neighbor to that destination. As proven earlier, this modification does not

affect the validity of Scout paths.

The following subsections describes the LS integration with Scout. The main area of

concern is the handling of Scout paths when the LS component detects network component

failures. This problem and its solution are described below.

Component Failures

LS routers exchange topology information to compute shortest paths. Whenever a network

failure occurs, the LS routers that detect the failure will broadcast this failure information,

which then triggers a network wide path recomputation. Because Scout paths do not carry

information as to the nodes/links they traverse, this means that whenever a Scout-LS router

receives a topology broadcast indicating a node/link failure, it cannot determine whether

a Scout path traverses the failed node/link. Thus if the LS component does not correct

Scout paths invalidated by the failure, these paths will remain invalid in the number of

Scout BI’s needed to correct these paths. To speed the validation of Scout calculated paths,

a mechanism is needed to correct invalid Scout paths. As in Scout-DV interactions, this

Scout-LS interaction is an optimization because the Scout component will correct its paths

in the following BI’s.

Unlike failures, component recoveries do not pose similar problems because Scout

paths affected by a recovery are still valid; therefore packets sent on these paths will reach

their destinations. Thus, ensuring that Scout paths are aware of component recoveries is

not as critical as in component failures. Because it is less critical and that relating Scout

paths to LS paths is difficult, the Scout-LS’s LS component does not alter Scout paths af-

ter node/link recoveries. Recall in Scout-DV, the DV component does “optimize” Scout

paths after component recovery. This optimize was performed because the DV and Scout

path computation mechanisms are very similar, allowing a natural implementation of this

optimization.

For Scout-LS, the different possible approaches to cope with component failures are

given below.

1. Do not update Scout paths. This means a Scout path could potentially be invalid for

37

two Scout BI’s. This is a reasonable solution in networks where the time to detect

link/node failures are on the order of the Scout BI’s.

2. Update all Scout paths to static metric LS shortest paths. This approach replaces

all Scout paths whenever LS recomputes paths due to a component failure. The

disadvantage of this method is that it changes all Scout paths, even those that do not

traverse the failed component(s).

3. Implement a DV style invalidation procedure. This approach implements a DV-like

procedure to nullify Scout paths after component failures. In this method, when a

failure is detected, Scout-LS routers that detect the failure will initiate the procedure

to nullify all Scout paths invalidated by the failure. This DV-like procedure is proven

to nullify all invalid Scout paths (Section 3.1.3). Notice that the procedure does

not need to recompute the nullified Scout paths because the LS component already

knows the static metric shortest paths to all destinations.

4. Attach source routes to Scouts. In this approach, Scouts maintain a source route of

the path they advertise. Thus, whenever a component failure occurs, routers simply

check if the link/node that failed is traversed by a Scout path; if so, the path is updated

to the LS calculated static metric shortest path. However, the disadvantage of this

approach is that it significantly increases the size of Scouts.

The four approaches listed above address link/node failures in different ways. The

first approach simply allows the Scout mechanisms to recalculate alternate paths. The

advantage of this approach is its simplicity and that it requires no changes to the Scout-

LS algorithm. The principal disadvantage is that the paths to selected destinations may be

invalid for 2 BI’s. This is undesirable because traffic to selected destinations are assumed

to be important, and therefore connectivity (i.e. valid paths) to these destinations should be

established as soon as possible.

The second approach indiscriminately invalidates all Scout calculated paths. This ap-

proach is simple to implement and immediately establishes connectivity to the selected

destinations. The drawback is that the invalidation causes a majority of Scout paths to un-

necessarily revert to the static shortest path (assuming a majority of the Scout paths are

not affected by the failure). This sudden change in routing behavior may have a negative

performance effect if the number of Scout paths are high [84].

The final two approaches accurately invalidate only the affected paths. The first ap-

proach uses the Scout-DV invalidation mechanism to delete Scout paths. This approach has

38

the disadvantage that it requires significant additions to the Scout-LS algorithm. The fourth

approach simplifies the path invalidation procedure but complicates the Scout component.

This approach attaches a source route to every Scout. With a source route, determining

whether a path traverses a link is trivial; however, the disadvantage is that Scout messages

are no longer fixed size, significantly decreasing their efficiency.

The solution adopted in this thesis is to modify the fourth approach such that Scout

paths are selectively and conservatively deleted while maintaining a fixed Scout size. The

solution is as follows: a 64-bit field is added to hybrid-LS Scout (initially zeros) and each

router is required to identify itself with a 64-bit ID. These router IDs do not have to be

unique. Every time a router forwards a Scout, the Scout’s 64-bit field is bit-ORed with the

router ID. A router stores a Scout’s 64-bit field if it uses the path advertised by the Scout.

Whenever a link or node fails, the attached routers broadcast the failure along with their

64-bit ID. Upon receiving this LS broadcast, routers recompute their paths as usual, and

for each Scout path, the path is invalidated if the broadcasting router’s ID is contained in

the 64-bit Scout field. This containment test is a simple bit-AND operation.

For example, consider a Scout passing through three routers with the following 8 bit

IDs: 00110000, 01001000, 00010001. The Scout’s bit field will be 01111001, the

bit-OR of all the three routers. If a link attached to the second router fails, the router will

broadcast an LSP that indicates the failure and that contains the router ID, 01001000.

Routers using the this Scout path will invalidate this path because the ID in this LSP is

contained in the Scout’s bit field. Using this method, all Scout paths that traverse a failed

component is guaranteed to be detected. However, if a router with ID 01100000, which

is NOT on the Scout path, broadcasts a component failure, then this Scout path will also be

invalidated. These false invalidations are called false positives.

Because this method is conservative, it may delete Scout paths that do not traverse the

failed component, as the previous example shows. Simulations show that if a router selects

its ID by randomly marking two bits in the 64 bit field and if Scout paths are 15 hops long on

average, then the number of false positives is around 15%. With the low false positive rate,

this approach provides a good tradeoff between Scout efficiency and invalidation accuracy.

3.1.5 Algorithm Comparisons

One of the main differences between hybrid-Scout (i.e. Scout-DV or Scout-LS) and dy-

namic metric LS and DV algorithms is that the efficiency and effectiveness of Scout de-

pends on the number of Scout generating destinations, Scout generation rate, and how

much traffic those destinations receive. In contrast, with dynamic metric LS and DV, rout-

39

ing costs depend on the degree of congestion experienced in the network.

As stated earlier, in order for hybrid-Scout to effectively reroute congestion, the amount

of traffic received by the Scout generating nodes must be “significant”. In addition, in order

for Scout to be efficient, the number of hot destinations must be “small”. We experimentally

quantify these two conditions in Section 3.2 and show that these conditions are typical of

real networks.

In summary, the main features of the hybrid-Scout algorithms are:

1. Hybrid-Scout can selectively upgrade paths to a destination to use dynamic metrics.

This is done by simply having the destination generate Scout messages.

2. Hybrid-Scout reduces route oscillation when compared to LS/DV with dynamic met-

rics. This is accomplished by computing dynamic metric paths to only selected des-

tinations in a time staggered manner.

3. In hybrid-Scout, the desired route quality to a destination can be determined indepen-

dently on a destination by destination basis. That is, hybrid-Scout can easily provide

different path qualities to different destinations, depending on their importance and

traffic usage. This adjustment is done solely on the part of the Scout generating node

by changing its Scout BI.

4. Hybrid-Scout’s routing traffic is independent of network traffic. Therefore, Scout

routing traffic can be easily controlled by limiting the number of Scout generating

nodes and their BI’s. LS and DV routing costs must be bounded using trigger thresh-

olds and hold-downs.

For this thesis, we assume that the set of “hot” destinations is statically known and

configured to send Scouts. In the Internet, for instance, ISPs and popular Web sites are

likely candidates. Should static configuration prove too inflexible, traffic monitoring can

be used to maintain the set of hot destinations dynamically (see Chapter 11.2).

3.2 Simulation Results

This section presents extensive simulation results to evaluate the proposed hybrid Scout

algorithms and to compare their behavior with dynamic metric DV and LS routing algo-

rithms. The purpose of these experiments is to determine whether the hybrid-Scout algo-

rithms deliver better overall network performance at lower costs. While network topol-

ogy is a key parameter determining the performance of all four algorithms, a single class

40

of topologies were chosen to study scaling effects: viz., Internet-like topologies. These

topologies are characterized by a highly connected backbone network, to which multiple

tree-like subnetworks are attached. The decision was made not only to simplify the exper-

imental analysis but also to make the results relevant to present-day networks.

Since hybrid-Scout recalculates routes based on dynamic metrics only to a set of “hot”

destinations (Scout generating nodes), a natural question that arises is how the routing

cost varies as the number of hot destinations changes? And as the skew in the traffic

distribution to these destinations is increased, is the improvement in route quality worth the

extra routing cost? Answers to these questions are obtained by studying the performance

of the considered algorithms under varying traffic distributions; in particular the number

of hot destinations and the percentage of traffic directed to them. A related question is

whether the improvement in route quality to hot destinations comes at the expense of those

to non-Scout generating destinations. This section presents an experiment which addresses

this question by measuring non-hot destination network performance. For simplicity, traffic

destined for Scout generating nodes (hot destinations) is called foreground traffic and traffic

destined for other nodes background traffic.

The experimental analysis consists of studying the effects of (1) network size, (2) fore-

ground traffic distribution, and (3) background traffic quantity on routing cost and overall

route quality delivered by the different algorithms. To evaluate the algorithms according

to these three parameters, different algorithms were tested on an Internet like topology

to show the different dynamic behaviors of each algorithm and their relative performance

and cost. Subsequently, background traffic is introduced to examine the behavior of these

algorithms with varying traffic distributions.

3.2.1 Simulation Environment

The simulation environment is based on the “x-netsim” package from the University of

Arizona [28], an execution-driven, packet-level network simulator. The simulator takes as

input a description of the network topology, including link characteristics such as band-

width and propagation delay, and a set of software modules that implement the various

protocols running on the routers and hosts of the network. Simulation time advances ac-

cording to the calculated transmission and propagation delay of packets in the network.

Software processing in the routers and hosts are assumed to have zero cost.

The four routing protocols are implemented in the simulation testbed: the two hybrid

Scout routing algorithms, a Distance Vector protocol similar to the Internet RIP proto-

41

col [74]x and a Link State protocol similar to the Internet OSPF [41] routing protocol. In

these experiments, only results for the hybrid DV-Scout algorithm are presented because

the behavior of the two hybrid algorithms using dynamic metrics are exactly the same. The

only difference is that the hybrid LS-Scout messages are 8 bytes larger than those used in

hybrid DV-Scout.

Dynamic metric LS and DV were implemented using trigger thresholds. As a router

continually updates its out-going link’s costs, it observes whether the difference between

any of its link’s current cost and the link’s cost that was last advertised exceeds the thresh-

old. If so, the router initiates a network wide shortest path recomputation. Trigger thresh-

olds are expressed as trigger percentages. A trigger percentage of 50% means that a link’s

cost has to increase/decrease at least 50% of its dynamic range in order to trigger a routing

update. The lower the trigger percentage, the more sensitive the algorithm is to link cost

changes, the higher the path quality, but also the higher the routing cost (traffic). Refer to

Sections 2.1 and 2.2 for more details on the dynamic metric DV and LS algorithm.

The LS and DV protocols are optimized such that route changes are propagated only

in response to a triggered update. In the hybrid-Scout algorithm, the DV/LS component

only calculates routes based on static metrics (i.e. it does not trigger on dynamic link cost

changes) and only the Scout component computes paths using dynamic metrics. Because

static metric paths are calculated once at the beginning of a simulation, the cost of the initial

static route calculation are removed for all algorithms. Thus, routing costs presented are

the direct result of changes in dynamic metrics.

The performance of the different routing algorithms is measured by average packet

delay. Packet delay is the elapsed time between the sending of the packet and its reception.

Each experiment is constructed such that packet drops do not occur; therefore, the average

packet delay reflects the amount of queuing that packets experience.

Not only is packet delay a good end-to-end measure of path quality, it also reflects the

precision in which a routing algorithm tracks network link costs. Given that link costs are

based on queue lengths (described below) and queue lengths directly affect packet delay,

an algorithm that minimizes a packet’s delay minimizes the cost of the path that the packet

traveled. Thus, the degree in which an algorithm tracks the network link cost changes is

reflected in the observed average packet delay.

The queue size for each router’s outgoing link is 100 packets long. A router samples

the length of its queues every 10ms. A link’s current average queue length is calculated

xOur implementation includes the “split horizon” and “poison reverse” heuristics.

42

from the average of its instantaneous queue length with the previous running average. The

dynamic metric cost function is linear from the static cost (average queue length of 0%) to

3 times the static cost (average queue length of 100%). All links have the same static link

cost, and all three algorithms use the same static link cost, dynamic link-cost calculation

mechanism, and link-cost function.

3.2.2 A Forest Topology

The purpose of the first experiment is to show the basic behavior and scalability of each

algorithm. To make the experiment more relevant to today’s networks, the DV, LS, and

hybrid Scout-DV algorithms were simulated on the topology shown in Figure 3.5. The

picture on the left shows a backbone topology consisting of 6 highly connected nodes.

Three of the backbone routers are attached to a tree-like topology, shown on the right. The

connections are denoted by a dotted triangle attached to a backbone router. The backbone

links have three times the capacity of tree links and all links have equal static costs. There

are also cross links between an interior router in each tree and the corresponding router in

the neighboring tree, which is not shown in the figure. Four hosts are attached to each tree

router and one host is attached to each backbone router. The network has a total of 111

hosts. For the purpose of the routing protocols, each host represents a separate destination.

Leaf nodes transmit a stream of 10,000 packets to a host attached to a backbone router

at 75% link capacity. Backbone routers with attached hosts that receive packets generate

Scouts (i.e. they are initiate dynamic metric path computation to themselves).

R1

R2 R3 R4

R5

R6 R7 R8 R9

Backbone Network Tree-like Topology

Figure 3.5 : The forest topology used in our experiments. The left-hand figure shows the
backbone network, and the right-hand figure shows a tree network. The three backbone
routers with a dotted triangle indicates that they have a tree network attached. Boxes rep-
resent routers and edges represent links between routers.

43

Routing Behavior

Before examining the simulation results for the complete topology, we use one “tree” of

the forest topology to demonstrate the routing behavior of each algorithm. For illustrative

purposes, assume that R� is the hot destination.

In this example, as the leaf nodes send their packets toR�, the queues for links (R
� R�)

and (R�� R�) will begin to fill up. As they accumulate, the costs for those links increase.

Once the cost of those links exceeds twice the link’s base value, the shortest path from R�

and R
 to R� shifts to the alternate path via R�, whileR� and R�’s packets still travel their

primary path. After a while, the queue on R	 will also start to accumulate, and the traffic

will shift back to the primary path. This shifting process continues until the transfers end.

The speed at which this path recalculation occurs depends on the sensitivity and gran-

ularity at which each algorithm is calculating the shortest path to R�. For LS and DV, this

is parameterized by their trigger percentages: the lower the percentage, the faster the al-

gorithm will trigger update messages upon link cost changes, and the faster it responds to

congestion. For hybrid-Scout, it is controlled by its broadcast interval BI: the lower the BI,

the better the calculated paths reflect the current link costs.

Routing Performance Versus Cost

Simulation results for the topology shown in Figure 3.5 is presented here. In this experi-

ment, the number of hot destinations is varied by having leaf nodes transfer data to varying

numbers of hosts attached to backbone routers. The traffic is uniformly distributed among

these “hot” destinations. There are potentially two levels where routing based on dynamic

metric can increase performance. The first is within each “tree” (as illustrated above), the

second is in the backbone network, where multiple alternate paths exist.

The performance and cost results are shown in Figures 3.6 and 3.7. In the performance

graphs in Figure 3.6, the left graph shows average packet delay of DV and LS with dynamic

metrics as a function of the trigger percentage, and the right graph shows hybrid-Scout’s

performance as a function of the broadcast interval. The routing costs incurred by each

algorithm are given in Figure 3.7. The label x-node denotes the number of distinct destina-

tions to which the leaf nodes are sending packets. The amount of traffic injected into the

network for the various number of destinations is fixed; only the distribution of the traffic

differs.

The two figures show the effectiveness and efficiency of the hybrid-Scout algorithm on

this topology. The performance and cost graphs show that hybrid-Scout achieves perfor-

44

80

100

120

140

160

180

10 20 30 40 50 60 70 80

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
m

s)

Trigger Percentage

Performance of DV and LS

DV 1node
DV 2nodes
DV 3nodes
DV 4nodes
DV 5nodes

LS 1node
LS 2nodes
LS 3nodes
LS 4nodes
LS 5nodes

80

100

120

140

160

180

20 40 60 80 100 120 140 160

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
m

s)

Scout Broadcast Inteval (ms)

Performance of Hybrid Scout

Scout-DV 1node
Scout-DV 2nodes
Scout-DV 3nodes
Scout-DV 4nodes
Scout-DV 5nodes

Figure 3.6 : The performance graphs for dynamic metric DV, LS and hybrid Scout algo-
rithms. In the DV/LS graph, the top cluster of curves represent DV performance and the
lower LS performance.

mance comparable to LS and DV at much lower routing cost. For example, the performance

of LS/DV at 50% trigger percentage is comparable to hybrid-Scout’s performance at a BI

of 100ms and one hot destination. However, the routing cost of hybrid-Scout compared

to LS and DV is approximately 15 and 40 times less, respectively. At five host destina-

tions, hybrid-Scout, DV and LS achieve comparable performance at 100ms, 25%, and 50%

trigger percentage; in this scenario, hybrid-Scout uses approximately 3 and 15 times less

routing resources than LS and DV, respectively.

To highlight this cost-performance tradeoff, Figure 3.8 shows the routing performance

versus routing cost of each algorithm with 1 and with 5 hot destinations. The x-axis denotes

the routing cost, and y-axis the performance at that cost. Results are better the closer they

are to the origin, indicating good performance at low cost. Compared to LS and DV, hybrid-

Scout consistently achieves better performance at lower costs.

As seen from the left graph showing one hot destination, hybrid Scout significantly out-

performs both DV and LS on this topology. The graph clearly shows that for the same per-

formance, hybrid Scout uses significantly less network resources than both LS and DV. For

example, at a packet delay of 105000us, hybrid Scout requires approximately 100Kbytes

of routing traffic while LS and DV require approximately 1224Kbytes and 4004Kbytes,

respectively. The right graph confirms that hybrid Scout also outperforms LS and DV with

5 hot destinations.

45

0

2000

4000

6000

8000

10000

12000

14000

16000

10 20 30 40 50 60 70 80

R
ou

tin
g

C
os

t (
K

by
te

s)

Trigger Percentage

Routing Cost of DV and LS

DV 1node
DV 2nodes
DV 3nodes
DV 4nodes
DV 5nodes

LS 1node
LS 2nodes
LS 3nodes
LS 4nodes
LS 5nodes

0

2000

4000

6000

8000

10000

12000

14000

16000

20 40 60 80 100 120 140 160

R
ou

tin
g

C
os

t (
K

B
yt

es
)

Scout Broadcast Inteval (ms)

Routing Cost of Hybrid Scout

Scout-DV 1node
Scout-DV 2nodes
Scout-DV 3nodes
Scout-DV 4nodes
Scout-DV 5nodes

Figure 3.7 : The cost graphs for dynamic metric DV, LS and hybrid Scout algorithms. In
the DV/LS graph, the top cluster of curves represent DV costs and the lower LS costs.

Routing Cost Versus Network Size

The routing cost for hybrid-Scout and LS algorithms are both O�L�, where L is the number

of links. The size of each Scout packet is constant (8 bytes for DV-Scout, 16 for LS-Scout)

whereas the size of LS packets is proportional to the number of outgoing links per router.

In addition, one hybrid-Scout broadcast (O�L�) recalculates all the current least-cost paths

to a Scout originating node. In LS, however, if there are several points of congestion (say

m points), every router at those points of congestion needs to perform a routing flood to

recalculate the least-cost path (O�mL�).

DV is less scalable than either hybrid-Scout or LS on this type of topology because

the size of each routing update is proportional to the number of destinations. The more

destinations a network has, the higher the routing cost. With the network used in the ex-

periment, the size of each DV packet is approximately 600bytes, compared to 32bytes for

a LS packet.

In addition, since LS and DV compute shortest paths to all destinations simultaneously,

they are more likely to cause massive route shifts (many paths simultaneously rerouted to

a common set of links). This shifting of many routes may result in congestion, causing

additional triggered updates. In hybrid-Scout, the shifting is less severe, because 1) hybrid-

Scout does not recalculate dynamic metric paths to all destinations and 2) paths calculations

for different destinations are independent and staggered in time.

Table 3.1 experimentally shows each algorithm’s scalability in routing cost with net-

work size. For LS and DV, the trigger percentage was 15% and for hybrid Scout, there was

46

70

80

90

100

110

120

130

140

150

0 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
m

s)

Routing Cost (KBytes)

2% Hot Destinations: Routing Algorithm Comparisons

Scout-DV 2% Hot
DV 2% Hot
LS 2% Hot

70

80

90

100

110

120

130

140

150

0 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
m

s)

Routing Cost (KBytes)

10% Hot Destinations: Routing Algorithm Comparisons

Scout-DV 10% Hot
DV 10% Hot
LS 10% Hot

Figure 3.8 : Comparative performance of hybrid Scout, LS and DV for 1 and 5 hot desti-
nations. The curves in these graphs are taken from graphs in Figures 3.6 and 3.7.

1 hot destination with BI of 25ms. The tree topology is the same as the one in Figure 3.5

and the different numbers of trees are configured as shown in Figure 3.5.

Tree Size Hybrid-DV-Scout Distance Vector Link State # of hosts # of links

1-tree 52 Kbytes 35 Kbytes 60 Kbytes 9 10

2-trees 175 Kbytes 1,785 Kbytes 745 Kbytes 68 22

3-trees 385 Kbytes 10,120 Kbytes 2,550 Kbytes 111 45

Table 3.1 : The scalability characteristics of hybrid-Scout, Distance Vector, and Link State
routing algorithms.

As the table shows, the scaling characteristics of routing cost for hybrid Scout and LS

are relatively linear with the network size. LS is higher because the number of congestive

points also increases with the increase in network size. The number of hosts attached to

each router increased from 1 to 4 between the 1-tree and 2-trees topology. Thus the routing

cost for DV increased significantly between the two topologies. This table confirms the

above cost analysis.

Sensitivity to Traffic Distribution

For the hybrid Scout algorithm, the number of Scout generating destinations and the amount

of traffic destined to them have a large impact on the algorithm’s performance. To examine

47

hybrid Scout’s sensitivity to these two parameters, this experiment varies the number of hot

destinations from 1 to 5 (approx. 1% to 5% of hosts) and the percentage of traffic destined

for these destinations.

With respect to performance, Figure 3.6 shows that hybrid-Scout actually performs

better when there are multiple “hot” destinations. This is because Scout calculates least-

cost paths to different hot destinations at uncorrelated times, which allows hybrid-Scout to

split traffic: paths to destinations that would have shared the same set of links if calculated

simultaneously may not, because later route calculations take into account the effect of

earlier route changes on network load.

The amount of traffic splitting that hybrid-Scout can achieve depends on the difference

in path calculation times. If paths to two neighboring destinations are calculated simulta-

neously (and thus based on the same link costs), the likelihood that their paths will have

common links is high. On the other hand, if their paths are calculated at different times and

some link costs change in the mean time due to previous route changes, then their paths

will have less links in common. This fact explains why hybrid-Scout’s traffic splitting is

more prominent at higher BI’s. At higher BI’s, the mean time between calculations to dif-

ferent nodes are higher; therefore link costs are more likely to reflect the effects of previous

route changes. As a result, congestion causing traffic is more likely to be split and network

performance is improved.

Hybrid-Scout’s routing cost is proportional to the number of Scout generating destina-

tions. As seen in Figure 3.7, the routing cost for five Scout generating nodes (approx. 5%

of the destinations) is exactly five times the cost with one Scout generating node.

The performance and cost of LS and DV are largely insensitive to the number of hot

destinations�, since these algorithms calculate shortest paths to all destinations. The cost of

updating paths to one hot destination is the same as updating paths to all destinations. This

property manifests itself as coinciding lines in the LS/DV cost graph in Figure 3.6. LS and

DV are able to split traffic to a lesser degree because they compute all pairs shortest paths

simultaneously, as indicated by the relatively close performance curves in Figure 3.6.

To see the cost-performance ratios of each algorithm, the right graph in Figure 3.8

shows the relative ratios for 5 hot destinations. Again, one sees that hybrid Scout is able

to provide better performance at lower costs than LS and DV, and that LS is more efficient

than DV.

�The performance and cost vary slightlybecause the traffic and congestion pattern change with the number

of destinations.

48

3.2.3 Background Traffic

The purpose of this next experiment is to test 1) whether the benefits of hybrid-Scout ob-

served in the previous section are maintained in the presence of background traffic, and 2)

whether the performance of background traffic suffers with the hybrid-Scout algorithm.

The same network topology is used as in the previous section. In this experiment,

the number of hot destinations is fixed at three (i.e. roughly 3% of the destinations are

sending Scouts), and the foreground traffic is fixed at 50% tree-link capacity. At this rate,

the foreground traffic by itself does not cause any network congestion; any congestion and

subsequent rerouting in the network is caused by the additional background traffic.

To add background traffic, each host in the network repeatedly chooses a node at ran-

dom and sends 100 packets to that node at 25% tree-link capacity. The amount of back-

ground traffic is controlled through the frequency of these transmissions. Increasing the

background traffic increases the total amount of traffic injected into the network. Back-

ground traffic percentage is defined as the ratio between the amount of background traffic

versus the total network traffic.

The experiment uses a trigger percentage of 15% for DV and LS and a BI of 25ms for

hybrid-Scout. These parameters were chosen based on their comparable performance. The

average packet delay for the foreground and background traffic are shown in Figure 3.9.

55

60

65

70

75

80

5 10 15 20 25 30 35 40

F
or

eg
ro

un
d

P
ac

ke
t D

el
ay

 (
m

s)

Percentage of Background Traffic

Foreground Traffic Performance

Scout-DV
LS
DV

24

26

28

30

32

34

36

38

5 10 15 20 25 30 35 40

B
ac

kg
ro

un
d

 P
ac

ke
t D

el
ay

 (
m

s)

Percentage of Background Traffic

Background Traffic Performance

Scout-DV
LS
DV

Figure 3.9 : The foreground and background performance in the large network. The per-
centage of background traffic is the percentage of traffic in the network that is destined for
non-hot destinations.

The left graph in Figure 3.9 shows the packet delay experienced by foreground traffic.

As the overall network traffic increases (marked by the increase in background traffic),

49

packet delay also increases. The results also show that hybrid-Scout’s ability to reroute

and split traffic allows it to achieve lower packet delay than LS and DV. We conclude

that the performance benefits achieved by hybrid-Scout are maintained in the presence of

background traffic.

The right graph shows packet delay experienced by the background traffic in the same

simulations. The packet delay for the background traffic is less than the foreground traffic

delay because most of the traffic do not encounter congested links. The fact that the back-

ground traffic performance of hybrid-Scout is comparable to DV and LS shows that the

increase in route performance for selected destinations obtained by hybrid-Scout does not

come at the expense of non-selected destinations. The intuition is that by shifting traffic

that contributes most to congestion (foreground traffic), the remaining traffic on those con-

gested links are not likely to continue causing congestion. Hence, the network performance

increases for non-selected destinations as well. The benefits obtained by hybrid-Scout for

foreground traffic also indirectly benefit background traffic, as long as there is “enough”

foreground traffic. The question of what is enough traffic is addressed in the next experi-

ment.

An interesting feature in the background traffic delay graph is the dip near 12% back-

ground traffic. At less than 12%, the background traffic that traverse congested points is not

enough to cause much rerouting; thus, packets experience queuing. Above 12%, enough

congestion accumulates to cause rerouting, hence the packet delay is decreased because

congestion is relieved. Of course, the packet delay again increases with background traffic,

because the benefits of rerouting are offset by the increase in traffic. The dip at 12% is not

observed in the foreground graph because the congestion that causes rerouting degrades the

foreground performance such that there is a net increase in delay as a result of rerouting.

The background traffic, on the other hand, always encounters congestion; therefore it can

only stand to benefit from rerouting.

Figure 3.10 shows the cost of each routing algorithm in this experiment. The hybrid-

Scout algorithm exhibits a constant routing cost with different levels of network traffic. LS

and DV’s costs increase with the amount of traffic, with DV increasing most rapidly.

The cost graph shows an important characteristic of the LS and DV triggering mech-

anism: as the network utilization increases (marked by the increase in background traffic

percentage), the LS and DV triggered updates also increase. This is undesirable because

these updates compete with data packets for link bandwidth and router CPU at a time when

links are already heavily utilized and routers are busy forwarding packets. This additional

network load increases the probability of severe congestion and packet loss.

50

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5 10 15 20 25 30 35 40

R
ou

tin
g

C
os

t (
K

by
te

s)

Percentage of Background Traffic

Routing Cost With Background Traffic

Scout-DV
LS
DV

Figure 3.10 : Routing costs for the experiment in Figure 3.9.

The cost graph also shows that LS and DV use less routing resources than hybrid-Scout

at low network utilization. Here, only a few links are getting congested, resulting in few

triggered updates. However, the advantages of this behavior under low network utilization

are not as important as the disadvantages under high utilization levels. Since most links

and routers are underutilized at low network utilization, the presence of additional routing

traffic does not have a significant adverse impact on network performance.

3.2.4 Foreground Traffic

One of the premises of the hybrid-Scout algorithm is that the amount of traffic received

by hot destinations must be “significant enough” for hybrid-Scout to be able to effectively

reroute congestion, and that the number of selected hot destination must be “low enough”

for hybrid-Scout to be efficient. The following experiment quantifies these conditions.

In this simulation, the same experimental setup as in the previous experiment (3 hot

destinations) are used. However, the total amount of traffic in the network is kept constant

while varying the distribution of foreground and background traffic. The performance and

cost are shown in Figure 3.11. Foreground traffic percentage is the ratio of foreground

traffic to total network traffic.

The performance graph (left graph) in Figure 3.11 shows the average packet delay of

both the foreground and background traffic. As the foreground traffic percentage increases,

more traffic is directed to fewer destinations, causing more packet queuing and higher aver-

age packet delay for all destinations. The performance graph also shows that hybrid-Scout

51

35

40

45

50

55

60

65

70

75

80

40 45 50 55 60 65 70 75 80 85 90

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
m

s)

Foreground Traffic Percentage

Traffic Performance With Mixed Traffic

Scout-DV
LS
DV

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000

40 45 50 55 60 65 70 75 80 85 90

T
ot

al
 R

ou
tin

g
C

os
ts

 (
K

by
te

s)

Foreground Traffic Percentage

Routing Costs With Mixed Traffic

Scout-DV
LS
DV

Figure 3.11 : Network performance and routing cost. The amount of traffic injected is held
constant while foreground and background traffic percentages vary.

is able to achieve performance comparable to LS and DV whenever the foreground traffic

accounts for greater than 50% of the network traffic. Notice that hybrid-Scout’s perfor-

mance is significantly worse than LS and DV at 45% foreground traffic. This is because

Hybrid-Scout can only reroute paths to hot destinations; therefore it cannot eliminate con-

gestion when these destinations only account for a minority of the traffic.

The cost graph (right graph) in this experiment shows that in the simulated network,

where 3% of the hot destinations are transmitting Scouts, the routing costs of hybrid-Scout

are around 3 to 4 times less than LS and an order of magnitude less than DV.

The routing costs for LS and DV actually increase at 45% and 50% foreground traffic.

The reason is that the background traffic is causing minor congestion at many points in

the network (as opposed to mainly on paths to the hot destinations when foreground traffic

dominates), thus triggering more LS and DV updates.

With the results of this experiment, the two questions posed earlier in this section can

be answered:

1. What fraction of total traffic do hot destinations have to receive in order for hybrid-

Scout to adequately reroute congestion?

From our experiments, the answer is at least 50%. The intuition is that if the dy-

namic routing algorithm is able to control 50% of the traffic, the likelihood that the

remaining 50% continues to cause serious congestion is low.

2. How many destinations can generate Scouts for the hybrid-Scout algorithm to be

52

efficient?

In our topology, if 10% of the nodes generate Scouts (in a highly utilized network),

the cost of hybrid-Scout is comparable to LS. That is, hybrid-Scout is cost effective as

long as the number of “hot” destinations is below 10% of the total number of nodes

in the network. Note that hybrid-Scout’s efficiency also depends on the network

utilization. As shown in the previous experiment, at low utilization LS/DV tend

to be more efficient, and hybrid-Scout is better at higher utilization levels. However,

efficiency at low utilization is not as critical as the efficiency at high utilization levels.

Recall that in our study of Internet traffic locality, 1% of the destinations account for

over 50% of the network traffic. This indicates that in the Internet, having the hottest 1% of

the destinations generate Scouts will be as effective as LS or DV with dynamic metrics in

increasing network performance. However, the cost of hybrid-Scout under these conditions

should be approximately an order of magnitude less than LS and 2 orders of magnitude less

than DV.

3.2.5 Path Approximations

As stated in Chapter 2, dynamic metric routing algorithms may not converge in scenarios

where rate of link metric change is faster than the algorithm’s convergence time. In these

scenarios, an algorithm is correct if it tracks the network state and computes the intended

paths over the algorithm’s current network view of the network. As shown in Section 3.1.2

and Chapter 2, dynamic metric DV, LS, and Scout algorithms are correct in this sense.

The Scout algorithm (and thus the hybrid-Scout algorithm) converges to least-cost paths

in at most l broadcast intervals after link metric changes, where l is the number of hops on

the longest calculated path. This is a loose upper bound: in our simulations, the Scout

always converges in at most three BI’s. Thus, in practice, if the frequency of link cost

changes is less than 2–3 BI’s, then the dynamic metric Scout algorithm will converge to

the least-cost paths. Unfortunately, link cost changes in most dynamic metric networks are

much more frequent than Scout BI’s.

In comparison to dynamic metric LS and DV, the converge of hybrid-Scout may take

longer for sufficiently large BI’s. However, it is important to note that unlike Scout, LS and

DV must use trigger thresholds and hold-downs to limit the frequency of metric changes

and maintain stability. Therefore, even if LS and DV technically converge while Scout

does not in a given scenario, the calculated paths are, in both cases, approximations of

the actual shortest paths because the cost metrics used in LS/DV calculations are not the

53

actual instantaneous link costs. In addition, note that the metrics used in our simulations

to determine routing cost and performance take into account effects of route accuracy and

stability.

To see hold-down’s effect on route quality, Figure 3.12 compares the cost and per-

formance of LS and DV using hold-downs. This experiment uses the same experimental

configuration that produced Figures 3.9 and 3.10. Here, the hold-downs for DV and LS are

set to 10-12 and 4-5 triggers per second respectively, and the hybrid Scout parameters are

unchanged.

50

100

150

200

250

300

350

400

450

5 10 15 20 25 30 35 40

F
or

eg
ro

un
d

P
ac

ke
t D

el
ay

 (
m

s)

Percentage of Background Traffic

Hold-Down Foreground Traffic Performance

Scout-DV
LS
DV

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5 10 15 20 25 30 35 40

R
ou

tin
g

C
os

t (
K

by
te

s)

Percentage of Background Traffic

Hold-Down Routing Cost

Scout-DV
LS
DV

Figure 3.12 : Routing performance and cost using hold-downs. The graphs represent the
performance and cost of LS/DV algorithms with hold-downs compared to hybrid-Scout.
The experiments used the same configuration as ones used in Figures 3.9 and 3.10.

The right-hand graph in Figure 3.12 shows the cost incurred by each algorithm. No-

tice that, compared to Figure 3.10, the routing cost of LS and DV are much lower at high

network utilization. This is because the hold-downs prevent excessive routing triggers.

However, the reduction in routing cost of using hold-downs comes at the expense of rout-

ing performance. The left-hand graph shows that the performance of both LS and DV is

dramatically worse using hold-downs. This confirms the argument that by delaying path

computation, hold-downs force LS and DV to more coarsely approximate dynamic met-

ric least-cost paths (i.e. more coarsely track the network state), thereby degrading network

performance.

3.3 Hybrid-Algorithm Summary

Dynamic metric routing has been shown to increase network performance in real networks.

However, they are currently not in wide use due to the dangers of routing instability and

54

high routing costs. This chapter presents a new approach to routing using dynamic metrics

that promises to overcomes the above limitations. The approach is based on the observation

that real network traffic exhibit a high degree of destination locality. Analysis of Internet

traffic traces shows that 1% of the hot destinations receive over 50% of the network traffic.

The proposed algorithm, hybrid-Scout, is able to calculate paths based on dynamic link

metrics to selected destinations, while paths to other destinations are calculated by tradi-

tional routing algorithms using static link costs. Extensive simulations were performed to

determine the effectiveness and efficiency of hybrid-Scout in rerouting congestion com-

pared to dynamic metric LS and DV algorithms, and under what conditions. Through sim-

ulations, these questions are answered using an Internet-like topology consisting of over

100 host networks and 30 routers. In summary, our simulations show that:

1. Hybrid-Scout is effective at rerouting congestion if at least 50% of the network traffic

is destined to hot destinations (i.e. hybrid-Scout generating destinations). Hybrid-

Scout is more efficient than both dynamic metric LS and DV if no more than 10% of

the network nodes are generating Scouts.

2. Hybrid-Scout is more scalable than LS and DV with dynamic metrics. While achiev-

ing comparable network performance (measured in packet delay), hybrid-Scout has

substantially less routing cost (in routing message bytes), from 4-5 times to 1-2 or-

ders of magnitude.

3. The selective update mechanisms of hybrid-Scout better splits congestion-causing

traffic, which reduces route oscillations. This splitting is achieved by 1) only rerout-

ing selected destinations based on dynamic link metrics and 2) by calculating new

routes for those selected destinations in a time staggered manner.

4. Hybrid-Scout’s routing costs are stable even under high network utilization levels.

This ensures that hybrid-Scout does not exacerbate network load during high network

utilization. This is in contrast to dynamic metric LS and DV algorithms that tend to

increase routing traffic at high network utilization levels.

55

Chapter 4

Multipath Routing

The second main contribution of this thesis is the development of a complete static metric

multipath routing model: from calculating multiple paths between nodes to end-host meth-

ods that utilize multiple paths to increase performance. Like dynamic metric single path

routing, multipath routing offers potential performance increase over single path routing by

better utilizing network resources. This introductory chapter presents the multipath routing

model� and describes the various components needed for its implementation.

The chapter begins with multipath routing definitions to facilitate later discussions.

Section 4.2 uses these definitions to discuss the advantages and disadvantages of multipath

routing. Finally, Section 4.3 summarizes the necessary multipath routing components for

increased network performance. These components are individually addressed in following

chapters.

4.1 Multipath Routing Definitions

A glossary of terms to describe multipath routing models is presented in this section. The

terms are structured to reflect the key parameters that define multipath networks and influ-

ence their performance. These parameters include

1. Basic definitions. The basic terms that describe a multipath routing model.

2. Path specification and calculation. Path specification describes the properties of the

paths to be calculated between nodes. Example specifications are to calculate node

disjoint paths, shortest K paths, and maximum flow paths between nodes. Path cal-

culation is the actual algorithm that calculates the specified paths.

3. Multipath types. This parameter describes the paths a multipath routing algorithm

provides between nodes. The two multipath types are multi-service paths where

�For convenience, the term “multipath routing” is used to denote static metric multipath routing, unless

otherwise specified.

56

the routing algorithm provides different paths with different characteristics (exam-

ple characteristics are high throughput and low delay) and multi-option paths where

an algorithm provides multiple paths with the same characteristic. A routing algo-

rithm that provides either or both multipath types is considered multipath routing

algorithm.

4. Usage layer. The software layer responsible for using multiple paths to a given des-

tination. This layer manages multiple paths by dictating which data packet should be

sent on which path and when. Example layers in today’s Internet protocol stack are

the network, transport, and application layers.

5. Multipath usage. The way an end-host (or the usage layer of the end-host) uses

multiple paths to transmit data.

Basic Definitions

The basic definitions of multipath routing are given here. First, a multipath routing model is

defined as a routing model where the routing algorithms provide potentially multiple paths

between node pairs and allows the end-hosts (or applications) to choose how to use these

paths. We require that end-hosts have control over which path to use because this control

offers the most flexibility in using multiple paths. This flexibility allows applications to use

multiple paths in ways to best maximize their performance.

Using this definition, dynamic metric, single path routing algorithms do not implement

the multipath routing model; although these algorithms may route packets between a node

pair on different paths, end-hosts do not control the path a particular packet will travel. For

the same reason, networks with backup paths, such as telephone networks [150], do not

implement the multipath routing model.

A multipath routing algorithm refers to a routing algorithm that provides multiple paths

between nodes so that data sent on a path travels that path through the network. A path

set refers to the set of paths that a routing algorithm calculates for a particular network

topology, and multipath networks are networks with routers that execute a multipath routing

algorithm. That is, multipath networks are networks that offer multiple paths between node

pairs.

57

Path Specification and Calculation

In order to calculate paths between nodes, one must first specify the characteristics of the

paths to calculate. The different path characteristics depend on the intended use of the

paths. For example, paths intended to maximize end-to-end throughput should be specified

such that, for any node pair, the aggregate throughput obtain on multiple paths is maxi-

mized. In contrast, paths intended to minimize transmission delay should be specified such

that, at any given time, there exist at least one low delay path between node pairs. Path

specification specifies the characteristics a particular path set.

A path calculation algorithm is the algorithm that actually calculates the paths specified

by path specification. A practical path calculation algorithm takes into account the oper-

ating resources and environmental constraints such as the distributed nature of a network.

Examples of path calculation algorithms are Dijkstra’s shortest path algorithm [54], Top-

kis’s initial link disjoint paths algorithm [156], and the Bellman-Ford distributed shortest

path algorithm [22,35].

Multipath Types

Path type specifies the relationship among the paths a routing algorithm provides between

node pairs. There are two path types: multi-service and multi-option. The first path type,

multi-service paths, denotes paths between nodes that have different characteristics (i.e.

different path specifications). Example services that a network could provide are low delay

and high bandwidth path services. Since applications may have different demands on the

network, providing paths with different characteristics allows applications to choose paths

that best fit their communication demands.

The second path type, multi-option paths, denotes the scenario where a routing algo-

rithm provides multiple paths with the same path service. For example, an algorithm might

provide four multi-option paths for the high bandwidth path service. That is, each end-host

has, to each destination, four paths that can provide high bandwidth to a destination.

Networks that support multi-service and/or multi-option paths are called multipath net-

works. For example, a multipath network can be one that provides multiple service paths

with only one path in each service (multi-service, single option), or one that provides only

one path service with many paths within that service (single service, multi-option).

This thesis considers the general multipath routing model where networks provide mul-

tiple services each with multiple paths.

58

Usage Layer

Usage layer refers to the highest protocol layer responsible for managing multiple paths.

The levels applicable in today’s Internet protocol stack are the network, transport, and

user/application layers. If the usage layer is the network layer, then it is the responsibility

of this layer to decide which path a packet should travel and to do this transparently to the

protocol layers above. Similarly, if the multipath usage layer is the transport layer, this

means the transport layer has the freedom to send data on multiple paths.

The protocol layer that manages multiple paths needs to effectively use these paths

to increase performance. The choice of usage layer depends on the tradeoffs between

flexibility, performance, and the software engineering issues of implementing multipath

management at a particular protocol layer. Chapter 7 discusses usage layers in more detail.

Multipath Usage

Usage mode characterizes how multiple paths are used. There are two prototypical mul-

tipath usage modes: using paths concurrently or one at a time. The choice of which us-

age mode is application specific. For example, for applications interested in maximizing

throughput, such as FTP, the right usage mode is to use all paths concurrently to obtain the

aggregate bandwidth of all available paths. On the other hand, the appropriate usage mode

for delay-sensitive applications, such as Telnet, is to use one path at a time, preferably the

path with the lowest delay. Another application is one that needs to send urgent messages;

here, the appropriate mode may be to send urgent messages on multiple paths concurrently,

minimizing the message delivery time to the minimum time of all the paths used.

In general, usage mode varies with application needs. In the foreseeable future, appli-

cations might require paths from different path services at the same time, thereby requiring

different usage modes. For example, a Web session may have concurrent large file transfers

and time-critical user interactions. In this scenario, the appropriate usage mode may be to

use paths from different services and multiplex data among these paths according to the

type of the data.

One expects that as network applications become more sophisticated, their usage modes

will increase in complexity as well. The multipath routing model is able to accommodate

these complex applications because it does not place restrictions on usage modes. Thus,

nodes are allowed to use the offered paths in ways that best fit their communication needs.

59

4.2 Multipath Routing Overview

This section presents a conceptual overview of the multipath routing model in order to

describe the potential benefits and costs of providing multiple paths and to highlight the

components needed to make multipath routing viable.

This section is organized as follows. The first two subsections present the advantages

and disadvantages of the multipath routing model and argue that the flexibility of the model

offers significant network performance gains that outweigh the potential disadvantages.

The latter two subsections, 4.2.3 and 4.2.4, present the key multipath implementation is-

sues. Solutions to resolve these issues are addressed in succeeding chapters.

4.2.1 Multipath Advantages

The multipath routing model offers applications the ability to increase their network per-

formance. Because of its multi-service paths, multi-option paths, and end-hosts’ freedom

to use these paths, the model provides a flexible interface to network resources that enables

applications with varying network demands to increase their performance.

In general, multipath performance improvements are obtained in two ways. First, multi-

service paths allow an application to use paths within a service that best suit the applica-

tion’s communication needs. Second, multi-option paths provide more network resources

per path service, allowing applications to aggregate these path resources. These two general

approaches are discussed below.

Providing the Right Paths

A multipath network with multi-service paths improves network performance because it

allows applications to choose the paths that best suit their communication style. For exam-

ple, an application such as FTP can improve its performance, measured in throughput, if it

uses high-bandwidth service paths. Similarly, an interactive application, such as Telnet, can

increase its performance, measured in response time, if it uses low-delay service paths. Be-

cause network performance depends on application demands, networks that provide paths

with characteristics that fit these demands will be able to increase application network per-

formance. Since network demands vary with applications, the generality of a multi-service

paths allows a multipath network to satisfy the needs of different applications.

Providing the appropriate paths to increase performance will become more significant

as the diversity of network applications increases. For example, in the foreseeable future,

60

network applications such as IP telephony, real-time medical imaging, and video confer-

encing will become more prevalent. These applications need paths with very different

characteristics from those of traditional applications. Specifically, many of these new appli-

cations need paths with QoS and real-time guarantees. In this environment, a multi-service

network might provide paths with different delivery guarantees, allowing applications to

select the paths that best suit their needs.

Notice that in a single path routing model, it is in general not possible to customize the

one path between a node pair with characteristics suitable for all applications. In practice,

single path routing algorithms calculate paths that compromise between throughput and

delay [94]. Although the paths generated by this single path compromise are sufficient

for today’s applications, it seems unlikely that these paths can effectively support future

applications that need paths with radically different characteristics.

Aggregating Multiple Paths

Multi-option paths increase application performance by giving applications the freedom to

use multiple paths within the same path service. Performance improvement is obtained in

two prototypical ways: 1) aggregating resources of multiple paths and 2) selectively using

the best available path. The descriptions of these two methods are given below.

A

B

C

E

D

F

H

I

G

2
2

1

3

2

1 2

1 2

3

2

2
2

Figure 4.1 : An example network topology. Boxes represent network nodes and edges
represent links. The number above each link shows the link’s capacity, and all links have
uniform delay.

Using multiple paths, the simplest method to increase performance is to aggregate path

resources. For example, consider node B maximizing its throughput to node D in Fig-

ure 4.1. In this figure, boxes denote nodes and the number above each link denotes the

link’s capacity. In a single, shortest path network, the maximum bandwidth between B and

D is 2 units: either the path (B�A�D) or (B�C�D), but not both. However, a multipath

61

network can provide both paths to B, allowing B to send data to D at 4 units of bandwidth.

Similarly, an QoS application can increase the probability that the network satisfy its QoS

request by combining the QoS reservations it makes on multiple paths. In general, this style

of resource aggregation can benefit any application that can use multiple paths in parallel.

End-hosts can also use multi-option paths to increase performance by selectively using

the available paths. For example, consider an application interested in low delay. In a single

path model, the application has no choice but to incur the delay of the one path provided

by the network to its destination. On the other hand, an application in a multipath network

can attain lower communication delays by probing the delays among the available paths to

the destination and then choosing the minimum delay path. Moreover, if low latency is one

of the multi-service paths, a node can choose among the paths in that service category.

In summary, end-to-end performance is measured with respect to application demands;

thus, different applications maximize their performance differently. These differences are

accommodated by multipath routing model’s multi-service and multi-option paths. This

model offers a flexible interface to network resources that allows different applications to

increase end-to-end performance compared to single path routing models.

4.2.2 Multipath Disadvantages

Routing algorithms play a major role in end-host resource usage because they allocate net-

work resources (in terms of paths) between nodes. By construction, multipath routing al-

gorithms offer more network resources to end-hosts than do single path routing algorithms,

both to specific destinations and to sets of destinations. The previous section showed that

the advantage of multipath routing is that these additional resources can be used to increase

end-host performance; however, a potential disadvantage is that these same resources can

also be used by a greedy or malicious user to deny other users their fair share of network

resources. This section argues that although multipath routing may exacerbate resource

denial, the problem is actually orthogonal to single or multipath routing.

For example, consider a FIFO datagram network that does not place any restrictions

on how much data end-hosts can send. In this network, excessive resource consumption

and denial of services cannot be prevented [52]. In today’s Internet (a single path, FIFO

datagram network), nodes can blast packets to random network destinations, consuming a

significant amount of resources and drastically degrading overall network performance. Al-

though malicious users in a FIFO multipath datagram network could deny more resources

than in a FIFO single path data network, the fact remains that FIFO datagram networks

do not have mechanisms to prevent resource abuses, whether single or multiple paths are

62

provided.

In general, two approaches can prevent or reduce excessive resource denial: cooper-

ative network communities and enforced network policies. In the cooperative approach,

network users/applications agree not to consume excessive resources. The Internet uses

this approach via congestion sensitive transport protocols (e.g. TCP [83]). These proto-

cols attempt to share resources fairly by regulating their sending rates in response to the

available bandwidth of the path they are using. Internet resource abuses are low because

these protocols are used by most users [124]. The advantage of the cooperative commu-

nity approach is that it does not require any network support – Internet routers do not need

any additional mechanisms to prevent resource abuse because end-hosts voluntarily do not

abuse resources. However, the disadvantage of this approach is that users (e.g. malicious

ones) may not abide by the convention and thus can consume excessive resources. In or-

der to control these users, a network needs mechanisms for admission and traffic control

(described below). The important point is that the success or failure of the cooperative

approach is independent of whether single or multiple paths are provided between nodes:

if all hosts cooperate, excessive resource consumption will not occur in either single or

multiple path networks. Similarly, if hosts do not cooperate, resource abuse can occur in

both types of networks.

The second method to prevent/reduce resource abuse is for the network itself to enforce

admission and traffic control policies [86, 135]. These networks enforce end-host resource

usage by regulating the number of senders and/or the amount of data each sender sends.

Regulating network traffic requires specific mechanisms in the network (e.g. in routers) to

monitor and enforce end-host sending policies. For example, a pricing network implicitly

discourages resource abuse by charging users for packets they transmit [121]. Users in

these networks are unlikely to maliciously consume excessive resources because they have

to pay for the resources they use.

Again, notice that the enforceability of traffic control in pricing networks is independent

of whether single or multiple paths are provided between nodes. Users in a pricing network

pay for packet transmission, regardless of whether they send their packets on different paths

or on the same path. Other networks with mechanisms and policies to discourage/prevent

excessive resource consumption can be found in [91,92,113,121,135]. Although the actual

implementation of the admission and traffic control mechanisms may differ, the enforce-

ability and effectiveness of admission and traffic control policies are orthogonal to the

routing model.

The advantage of the network enforcement approach is that it does not rely on the

63

cooperation of end-hosts; thus, it is much more robust and can prevent malicious users from

abusing the network. The primary disadvantage is that it requires network mechanisms to

regulate traffic and prevent abuse. These monitoring and enforcement mechanisms increase

network cost and may decrease performance because of additional packet processing.

In summary, although multipath routing can exacerbate resource abuse in certain types

of networks, the core issues of resource abuse are orthogonal to both single and multipath

routing. That is, the fact that a network is prone to resource abuse is independent of whether

it provides single or multiple paths between nodes. Because of this independence, the

remainder of the thesis assumes that users are greedy but not malicious. That is, end-users

greedily maximize their resource usage but attempt to avoid network congestion. This is

the same end-user assumption used in today’s Internet.

4.2.3 Multipath Implementation Cost

The advantages of multipath routing come at a cost. Recall that routing is a two-step

process: 1) calculating paths and 2) forwarding data on those paths. Implementing these

two routing tasks incurs the following three cost categories:

1. The cost of computing multiple paths

2. Per packet path specification overhead in bytes

3. Router overhead of processing and forwarding data packets.

The first category corresponds to the cost of path computation, and the latter two to the cost

of forwarding data on the computed paths. The three costs are described below.

Computing Multiple Paths

The first cost category, computing multiple paths, is measured in terms of routing messages

(in bytes) needed to propagate routing information and the router CPU time needed to

compute multiple paths. The number of messages and the amount of CPU usage depends

on the path calculation algorithm and the base routing algorithm.

For example, the number of routing messages needed to compute multiple paths heav-

ily depends on whether the routing algorithm is based on LS or DV. In an LS environment,

routing message overhead is generally low because path computations are done with the

knowledge of the network topology. Thus, the number of messages needed to disseminate

64

topology information is the same independent of whether multiple or single paths are cal-

culated. In contrast, DV based algorithms use routing messages (in the form of Distance

Vector packets) as the mechanism to propagate paths; therefore, computing multiple paths

generally requires more DV messages than computing single paths.

The amount of router CPU time to compute multiple paths has similar dependencies. In

LS, because path computations are centralized, standard complexity analysis of centralized

algorithms suffice to measure LS router CPU usage. As examples, calculating multiple K

initial link disjoint paths takes O�K � E � lg�E�� and calculating the shortest K loop free

paths takes O�nE � lg�E�� [58,141,156], where n is the number of nodes (or routers), and

E is the number of network edges. In DV, the analysis is not so straightforward because

path computations are distributed. In the worse case, the message and CPU complexi-

ties are exponential [25]. However, it has been shown that the average message and CPU

complexities is ��nM��ln�M���� [23, 157], where M is the average number of neighbor-

ing routers. Efficient multipath calculation algorithms based on DV and LS are given in

Chapters 5 and 6.

Specifying Multiple Paths

Because there are multiple paths between nodes, every packet needs to specify not only

its destination, but also a particular path to that destination. This is in contrast to single

path networks where a destination address uniquely specifies a packet’s path. The second

multipath cost category refers to this additional per packet cost of path specification. The

specification cost is measured in the number of bytes needed in order to ensure that a packet

travels its specified path. It is critical to minimize this cost because it is incurred on every

data packet. Chapter 6 describes an efficient method for packets to specify a particular path

to a destination.

Forwarding Multiple Paths

Finally, the per packet path specification implies that more router processing is needed to

forward each packet. The additional processing is needed for a router to decide, given

the packet’s destination address and path specifier, which outgoing link the router should

forward the packet to. This additional processing may slow router forwarding speed and

decrease network performance; thus it is critical to minimize this processing time. The cost

of this additional processing is called the router forwarding overhead. Not surprisingly,

this overhead is closely tied to how paths are specified in data packets. The efficient path

65

encoding method presented in Chapter 6 has low forwarding overhead.

4.2.4 Multipath Benefits

The previous subsections list the potential advantages, disadvantages, and costs of a mul-

tipath network; this subsection concludes the multipath discussion by addressing how the

benefits of a multipath network can be obtained. To obtain multipath benefits, 1) multipath

networks need to calculate appropriate paths, and 2) end-hosts need to effectively use these

paths. These two properties are described below.

Path Calculation

The extent of performance improvement users can obtain from a multipath network de-

pends on the quality of the calculated paths. For example, an application can obtain higher

throughput only if the multiple paths calculated actually provide greater combined band-

width than the one provided by a single path routing algorithm. Similarly, an application

can increase its probability of establishing a QoS connection only if the calculated paths

have, either individually or combined, a higher probability of satisfying QoS requests com-

pared to the probability of a single path.

For example, consider the three paths �A�D�H� I�, �A�C�D�H� I�, and �A�C�D�F�H� I�

from node A to node I in Figure 4.1. These three paths are not well chosen if A wishes to

increase its network throughput to node I because all three paths traverse the same bottle-

neck link �H� I� with capacity
. On the other hand, if a multipath network provides paths

�A�D�H� I�, �A�B�C�E�G� I�, and �A�D�F�E�G� I�, then node A has 4 capacity units

to node I .

As the example shows, a multipath network must provide the “right” paths in order for

nodes to obtain higher performance gains, where the right paths depend on the applications

that use the paths. In general, providing quality paths is a two-step process. First, determine

the type of path services to calculate (path specification), then develop efficient algorithms

to calculate them (path calculation algorithm).

Two algorithms are developed in this thesis, one that calculates paths to maximize

throughput and the other to minimize latency. The complexities of both algorithms are

linear in the number of paths calculated compared to computing single shortest paths. The

algorithms are described in Chapter 5.

66

Path Usage

The second component necessary for end-hosts to obtain increased performance in mul-

tipath networks is effective end-host usage of multiple paths. The fact that a network

provides quality paths between nodes does not necessarily imply that nodes are able to

effectively use these paths to maximize performance. This subsection shows the impor-

tance of effective multipath usage and its impact on network performance.

N1

N2

N3
Figure 4.2 : A simple three node network with full-duplex links. All links have equal
bandwidth and latency.

Consider the simple network in Figure 4.2 where all links have equal capacity and

delay. Here, the multipath routing algorithm calculates two link disjoint paths (the one link

and two link paths) between every node pair. Notice that the calculated paths provide the

optimal paths for maximizing throughput. In this setting, the two paths calculated provide

twice the capacity between nodes compared to single path routing; however, the effective

throughput between nodes depends on how each node uses its paths.

To show the potential harm of naively using multiple paths, this three node network

was simulated using TCP and a non-congestion aware, multipath striping protocol. The

multipath striping protocol clocks the sending of its data at full link capacity and distributes

the data by striping them along the two available paths. That is, given N packets destined

for destination D, the protocol sends packet
i on the one-hop path and packet
i�� on the

two-hop path to D, � � i � N�
. The single path TCP protocol sends all packets along the

shortest path. In this experiment, nodes randomly select a neighbor and then send a burst

of packets to that neighbor. The times between each burst are exponentially distributed.

Figure 4.3 shows TCP throughput versus the striping protocol’s throughput when all three

nodes are sending data.

In Figure 4.3, the y-axis represents the average end-to-end throughput of all nodes as a

percentage of link capacity, and the x-axis represents the aggregate sending rate normalized

by the total network capacity.

67

0

50

100

150

200

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 L

in
k

T
hr

ou
gp

ut

Network Input Percentage

Non-Congestion Aware End-to-End Throughput

Multipath Striping
Single Path TCP

Figure 4.3 : Simulation result using the network in Figure 4.2. The graph shows the perfor-
mance of single path TCP versus a multipath striping protocol without congestion control.

First, the graph shows that TCP performance is very stable despite the increase in traf-

fic. TCP does not achieve the maximum link bandwidth because its congestion and flow

control mechanisms cautiously probes the network for available bandwidth and reduces its

sending rate upon detection of congestion. On the other hand, the non-congestion aware

multipath striping protocol achieves very high throughput at low network utilization levels.

The reason is that at low network loads, the amount of contention from other connections is

low; therefore, multiplexing data between the one link and two link paths allows effective

aggregation of path resources, resulting in higher throughput than the single path strategy.

However, the relative performance of these two strategies changes at higher network

loads (60%): here, the TCP’s transmission strategy proves superior because at these

utilization levels, packets in the multipath striping protocol experience enough contention

from other connections to cause significant performance degradation (due to packet queu-

ing in router buffers). This contention is due to packets traveling on the two link paths

competing with packets from other connections. Furthermore, the contention increases as

more packets are injected into the network, resulting in degradation of both aggregate and

individual throughput.

To address this problem, this thesis develops a congestion-aware multipath transport

protocol, MPTCP. Details of the MPTCP protocol are given in Chapter 7. The effectiveness

of MPTCP is again compared against a single path TCP protocol on the same three node

network. The results are shown in Figure 4.4.

The x-axis and y-axis have the same representation as the previous figure. As this figure

shows, MPTCP outperforms the single path protocol at all levels of network utilization.

68

0

50

100

150

200

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 L

in
k

T
hr

ou
gp

ut

Network Input Percentage

Congestion Aware End-to-End Throughput

MPTCP
Single Path TCP

Figure 4.4 : Simulation result using the network in Figure 4.2. The graph shows the per-
formance of single path TCP versus MPTCP.

This demonstrates MPTCP’s ability to adapt to network conditions in order to increase

throughput.

Compared to the multipath striping protocol, MPTCP does not achieve the same level

of end-to-end throughput at low network utilization. This is because MPTCP is congestion

aware and incrementally tests the network for available bandwidth. This cautious approach

results in lower performance when the network is underutilized because it takes time for

MPTCP to fully exploit available path bandwidth. However, the same cautious approach

allows MPTCP to significantly outperform the striping protocol at high utilization levels.

The conclusion of this section is that in order for end users to benefit from a multipath

network, the network needs to provide not only the right paths, but the end-hosts also need

to be able to take advantage of the additional paths. As shown by a naive multipath strip-

ing approach (Figure 4.3), wrongly using multiple paths can degrade not only end-to-end

performance, but also the performance of other connections. This section also shows that

correctly using multiple paths can increase network performance and avoid performance

degradations.

4.2.5 Static and Dynamic Metric Multipath Routing

Like single path routing, multipath routing algorithms can use either dynamic or static

metrics. In dynamic metric multipath routing, routing algorithms monitor link costs and

recompute paths upon detection of link cost changes. This thesis does not specifically

address the dynamic metric multipath routing model because we believe this model can

be implemented by traditional dynamic metric triggering mechanisms; thus the methods

69

presented in this thesis for static metric multipath routing are also applicable to dynamic

metric multipath routing.

As stated in Chapter 2, the fundamental difference between multipath routing and single

path dynamic metric routing is that end-hosts in multipath networks control the use of its

paths on a much finer time and path granularity. Thus, given appropriate paths and end-

host protocols, multipath end-hosts can dynamically detect poor path performance, and

then switch and use other paths that provide better performance.

For example, consider an application that wishes to minimize its communication delay

to its destination, and the multipath routing algorithm calculates link disjoint paths. In

single path dynamic metric routing, if the path to the destination is congested, then the

application will incur the delay caused by the congestion, unless the routing algorithm

recompute a better path. In multipath routing, however, the application can dynamically

switch and use other paths to avoid the congestion without any router intervention. Thus, on

small time scales, the ability to control path usage allows end-hosts in multipath networks

to dynamically adjust to transient traffic patterns.y

Because end-hosts can adapt to small time-scale traffic patterns, a dynamic metric mul-

tipath routing algorithm does not need to recompute paths in fine time granularities. Con-

sequently, these routing algorithms should recompute paths that consider large time-scale

traffic patterns. For example, a dynamic metric multipath routing algorithm might monitor

traffic patterns for weeks and then recompute paths based on the gathered statistics. This

approach to path recomputation provides better paths by considering traffic trends rather

than transient traffic bursts (which are addressed by end-host multipath protocols). On this

time scale, problems such as route oscillations and excessive routing costs do not occur.

Thus, the traditional LS and DV triggering mechanisms are sufficient to implement the dy-

namic multipath routing model. The multipath routing algorithms developed in this thesis

are based on DV and LS.

4.3 Multipath Routing Summary

While it is clear that the static metric multipath routing model offers many advantages over

single path routing models, it is unclear whether enough benefits could be extracted to

offset the cost of their implementation. In short, in order to make multipath routing viable,

the following questions need to be resolved:

yThis conclusion assumes that the multipath routing algorithm provides quality paths between nodes

(Chapter 5) and that end-hosts effectively use these paths to increase their performance (Chapter 7).

70

1. What paths should be calculated between nodes and how?

2. How should routers efficiently provide multiple paths in a distributed routing envi-

ronment?

3. How should end-hosts use multiple paths to gain higher performance?

The first question deals with the potential gains of a multipath network. As illustrated

in Section 4.2.4, one of the necessary criteria for multipath networks to increase end-to-end

performance is to calculate the right paths. To address this issue, Chapter 5 surveys dif-

ferent multipath calculation algorithms. We then develop two algorithms, one maximizing

throughput and the other minimizing delay. The two algorithms appear in Chapter 5.

The second question deals with the cost of providing multiple paths between nodes. The

main cost of implementing multipath routing is solving the packet forwarding problem:

how to efficiently forward packets to the same destination but on different paths? The

novel solution developed in this thesis uses routing overhead linear in the number of paths

between nodes and has constant per packet path specification overhead. This low overhead

is achieved by requiring that paths calculated by a multipath routing algorithm satisfy the

suffix matched property. Complete details of this forwarding method and its requirements

are given in Chapter 6.

The last question is how end-hosts should best use a multipath network in order to

increase their performance. As demonstrated in the previous section, the way in which

multiple paths are used has a dramatic impact on individual and aggregate performance. A

congestion aware multipath transport protocol, MPTCP, is developed that effectively uses

multiple paths to increase throughput. The details of the protocol and its strategies are

provided in Chapter 7.

The algorithms and methods developed in Chapters 5 – 7 are combined to implement a

multipath network. Two multipath routing algorithms are implemented: one based on LS

and the other on DV. Details of their implementation are given in Chapter 8. Finally, Chap-

ter 9 presents simulation results that measure multipath routing’s obtained performance and

incurred costs.

71

Chapter 5

Path Calculation Algorithms

To provide multiple paths between nodes, a multipath routing algorithm first needs to calcu-

late the paths it wishes to provide. A multipath calculation algorithm refers to an algorithm

that calculates multiple paths between node pairs. The paths calculated between nodes di-

rectly affects the performance gains a node pair can obtain. For example, a throughput

application can only increase its throughput if the paths provided has a larger aggregate

bandwidth than the path provided by a single path routing algorithm.

To this end, this chapter surveys different path calculation algorithms and develops two

multipath calculation algorithms, one that computes low delay paths and the other high

bandwidth paths. Both algorithms are based on Dijkstra’s shortest path algorithm.

Before presenting the two algorithms, we first specify two path characteristics that al-

low end-hosts to benefit from using multiple paths. Section 5.1 presents these two path

characteristics. Then in the succeeding sections, we use these characteristics to guide the

development of multipath calculation algorithms that calculate paths for low delay and high

bandwidth path services.

5.1 Path Characteristics

The quality of a path set depends on the intended use of the paths in the set. For example,

a path set that provides high throughput may be very different from one that provides

low delay. Although path set quality (measured in potential performance improvements)

depends on the intended use of the path set, in general, there are some path characteristics

that allow applications to increase their performance.

In this section, we describe two such path characteristics, path quantity and path inde-

pendence. Path quantity refers to the number of paths calculated between nodes, and path

independence refers to the disjointedness of the calculated paths. These two characteristics

are based on the basic advantage of multipath routing – the increase of end-to-end perfor-

mance by providing multiple paths between nodes. In general, this increase in performance

is obtained through 1) aggregating path resources and 2) choosing the best path(s) among

72

the available paths. We describe the two path characteristics below.

Path Quantity

The fundamental difference between a multipath network and a single path network is the

number of paths provided between nodes. With more paths, nodes have more options to

interact with other nodes, potentially increasing their performance. Thus, the higher the

number of paths calculated between nodes, the higher potential a path set can improve

end-to-end performance.

There are many ways to describe path quantity. One method is to consider the total

number of paths calculated in a path set; the larger the number, the better the path set.

While this is straightforward, it does not capture the distribution of paths between node

pairs. For example, assuming uniform traffic distribution, a path set that provides every

node pair with 3 paths should be better than one that provides half the node pairs with 1

path and the other half with 5. That is, path sets with the same averages but higher variance

are less desirable because it means that some nodes have few paths while others have many.

Although there are subtleties in the precise description of path quantity, in general, a

multipath calculation algorithm that calculates more paths is better than one that calculates

less. However, path quantity only characterizes one aspect of a multipath set. Another

characterization is the independence among paths calculated between a node pair. This is

described next.

Path Independence

The second path characteristic, path independence, describes the disjointedness of the paths

provided between nodes. This property is important because the more independent a path

set, the more aggregate physical resources the set offers between a node pair (because

those resources are not shared), and the less likely the performance of one path affects

performances of other paths.

To illustrate the importance of path independence, consider the network in Figure 5.1.

Assume that a path set that has two paths from A to I as �A�D�H� I� and �A�C�D�H� I�

and another path set with paths �A�D�H� I� and �A�C�E�G� I�. Intuitively, paths in the

second set are more independent than the ones in the first set because paths in the second

set do not share links. The higher independence of the second set gives node A more

aggregate capacity to I . In addition, suppose a link on A’s shorter path is congested, then

the probability that A’s other path to I is also congested is less likely in the second path set.

73

A

B

C

E

D

F

H

I

G

Figure 5.1 : An Example Network Topology. All links have uniform capacity and delay.

This is because with the second set, at least one link in each paths must to be congested in

order for A to suffer congestion; whereas in the first set, A would suffer congestion affects

if either link �D�H� or �H� I� is congested.

In addition to increasing performance, path independence also allows end-hosts to

achieve higher network availability. Assume that a network link has failed and that end-

hosts can detect that a path is not delivering data� faster than the routing algorithm. In this

case, an end-host has a higher probability of reestablishing connectivity on a different path

if the paths provided are independent. In contrast, in a single path environment, where there

is no path independence (because there is only one path between nodes), an end-host must

wait for the routing algorithm to detect the failure and recompute the appropriate paths in

order for the end-host to reestablish connectivity.

In summary, we described two desirable multipath characteristics, path quantity and

path independence. Multipath sets with these characteristics better allow end-hosts to in-

crease their performance, compared with path sets that do not.

5.2 Path Calculation Algorithms

This section uses path quantity and independence to guide the development of multipath

calculation algorithms for high throughput and low delay path services. These two services

are chosen because their paths can provide immediate benefits to current network applica-

tions. The efficiency requirement of the considered algorithms is that their message and

CPU usage are within a linear factor in the number of paths calculated, compared to com-

�End-hosts can detect failed links in a path by observing that the path is not delivering data to the desti-

nation.

74

puting single shortest paths. This complexity bound is imposed to make the implementation

of these algorithms feasible in real networks.

In both low delay and high throughput paths, the performance of these paths depends on

the dynamics of network traffic. As stated in Chapter 4, a multipath routing algorithm (both

static and dynamic metrics) should compute paths that allow end-hosts to adapt to transient

(fine time-scale) traffic dynamics. That is, the paths provided between nodes should be such

that they preserve their intended performance benefits under varying traffic conditions.

We use the two path characteristics given in the previous section to guide the develop-

ment of path calculation algorithms that compute paths which preserve their performance

benefits under different traffic conditions. Section 5.2.1 presents an algorithm that com-

putes paths to decrease transmission delay, and Section 5.2.2 presents an algorithm that

increases throughput.

5.2.1 Minimizing Delay

One of the ways end-hosts can benefit from a multipath network is to lower their communi-

cation delays (or increase responsiveness) to other nodes. This can be done by monitoring

the round trip delay of available paths to the desired destination and dynamically choosing

the one with the least delayy. Since the minimal delay that an end-host can achieve depends

on the delay of the paths it has to its destination, end-host delay performance is closely tied

with the paths calculated. This section develops a path calculation algorithm that provides

the low delay path service.

In order to calculate paths that minimize delay, a path calculation algorithm needs to

gauge the expected delay of a link. For the following discussion, we assume that link delays

are given by a cost function; the higher a link’s cost, the higher the expected latency of the

link. In addition, for ease of explanation, we assume uniform link costs; therefore, a path’s

delay is determined by the number of hops.

For the low delay path service, the objective is to calculate paths so that the smallest

delay path between a node pair is minimized. Given that a path’s actual delay is traffic

dependent, a multipath calculation algorithm needs to calculate paths so that low delay can

be obtained under different traffic patterns. Below, we present several potential algorithms

and highlight their advantages and disadvantages.

yPath symmetry is not needed here. Path symmetry refers to the property that the path from A to B must

be identical to the reverse of the path from B to A. Symmetry is not necessary in real networks because

network traffic in one direction has no correlation with traffic behavior in the reverse. Thus, path symmetry

is not required for the correct functioning of data transport protocols.

75

Shortest K Paths

The most natural algorithm for minimizing delay is one that calculates paths with the short-

est total delay. A family of algorithms, called the shortest K algorithms, compute K paths

such that the total cost of the paths is minimized. Moreover, there are efficient solutions to

implement these algorithms [45,58,165].

Given that the link costs reflect delay, these algorithms provide path sets with the min-

imum total delay. However, the problem with these sets is that they do not consider path

independence. For example, consider the network in Figure 5.1 where three paths are

computed from node A to H . A shortest K algorithm will compute the paths �A�D�H�,

�A�C�D�H�, and �A�D�F�H�. Although this path set the three smallest hop paths (8 hops

total), it is clearly not a desirable set because of the high degree of link sharing (i.e. lack

of path independence). For example, in this path set, if the links on the shortest path are

congested (i.e. links �A�D� and �D�H�), then the other two paths will be congested as

well because these two links are also part of those paths. This lack of independence limits

the amount of benefits end-hosts can obtain under different traffic conditions.

In general, with shortest K algorithms, paths between node pairs will tend to share

many links, which reduces the effectiveness of providing multiple paths.

Link Disjoint Paths

Algorithms that overcome the problem of path independence are ones that calculate link

disjoint paths between nodes. Link disjoint paths are paths that do not have any links in

common. Like the shortest K algorithm, there are many algorithms to efficiently calculate

these path sets [36,118,146,152].

However, the link disjoint algorithm achieves high path independence at the expense of

path quantity and path delay. For example, consider the paths calculated by a link disjoint

algorithm from A to H in Figure 5.1. One possible path set is �A�D�H�, �A�C�E�F�H�,

and �A�B�C�E�G� I�H�. Here, the paths are disjoint, but the combined length of the path

set is 12 hops. This is 50% longer than the path set calculated by shortest K algorithm.

Because different paths between a node pair cannot share links, this may be too restric-

tive, resulting in paths of excessive delay or a small number of calculated paths. Both of

these consequences lowers the probability that end-hosts can obtain low delay paths to their

destinations.

76

Discount shortest path

In considering path quantity and path independence, we developed a path calculation al-

gorithm called the discount shortest path algorithm. The idea of the algorithm is to add a

uniform cost to all links on the previously calculated paths. Therefore the paths calculated

are compromises between the paths calculated by the shortest K and link disjoint algo-

rithms: the link disjoint algorithm is one that adds an infinite cost to used links, while the

shortest K algorithm selectively adds the minimum cost to the used links so that the next

shortest path calculated is distinct from the computed paths. The basic discount shortest

path algorithm is a variation of Dijkstra’s shortest path algorithm. Similar variations have

been published in the literature [156].

The discount shortest path algorithm assumes that for paths between any two nodes,

there is an upper bound on the cost of the longest path. This is reasonable since most

path calculation algorithms do not wish to calculate arbitrarily long paths. Cmax is used to

denote the maximum admissible path cost between a node pair. An example of Cmax is 3

times the cost of the shortest path [94,129].

The discount shortest path algorithm calculates paths with the following properties:

from node a to b, the ith path is the least-cost path from a to b such that the path’s cost

is less than Cmax. The cost of path i is calculated after adding cost increments to each

link in path j from a to b, � � j � i, where the cost increment of a path P is �Cmax �

Cost�P ���Length�P �.

To calculate discount shortest paths from node a to b, the algorithm first calculates the

shortest path P with cost Cp from a to b. Cmax is then calculated as Cost BOUND�Cp
(in our implementation, Cost BOUND is set to 3). Next, the cost increment for this path

is calculated as Pincr � �Cmax � �� � Cp. That is, a path’s cost is incremented by the

smallest amount so that the path exceeds the Cmax and therefore will not be admissible in

subsequent computations. This cost increment is then added uniformly to the cost of all

links on path P . That is, for every link in P , the cost is incremented by Pincr�length�P �.

To get the next path from a to b, this process is repeated using the newly incremented

link costs. The algorithm stops when either K paths are computed or there does not exist

paths from a to b with cost less than Cmax. After computing the paths from a to b, the link

costs are restored to their original costs, and the discount shortest path computation begins

for another node pair. The pseudocode for the discount shortest path algorithm is given in

Figure 5.2.

To calculate K paths from node a to b, the discount shortest path algorithm iterates

Figure 5.2’s main loop K times. In each iteration, the function Get Shortest Path()

77

numPaths = 0;

while(numPaths � K)

f

newPath = Get Shortest Path(Src, Dst);

if (newPath == NULL)

break;

if (numPath == 0)

Max cost = Cost(newPath) * Cost BOUND;

if (Cost(newPath) � Max cost)

break;

numPaths++;

StorePath(Src, Dst, newPath);

Cost diff = Max cost - Cost(newPath) +1;

Cost incr = Cost diff / Length(newPath);

forall links l � newPath

l.cost = l.cost + Cost incr;

g

Restore all link cost additions

Figure 5.2 : The pseudocode for the discount shortest path algorithm. The code shows the
calculation of K discount shortest paths between Src and Dst.

78

is called. Given E edges and n nodes, the function which takes O�E � lg�E��. In addition,

on each iteration, each link in the newly calculated path is traversed, which takes O�n�. At

the end of the loop, the added link costs are restored (O�K � n�). Thus, the complexity

of the discount shortest path algorithm in computing K paths from a to b is O�K � �E �

lg�E� � n� �K � n� � O�K � E � lg�E��. Notice that this is K times the complexity of

calculating the single shortest path between two nodes.

5.2.2 Maximizing Throughput

This subsection describes a path calculation algorithm for another path service, the through-

put path service. Throughput oriented applications such as FTP benefit from this path ser-

vice because multiple paths can increase their effective throughput. Again, the amount of

throughput an application obtains depends not only on the paths calculated, but also on

network traffic patterns. Thus, the paths calculated should be robust in the sense that they

provide high throughput under a variety of traffic conditions.

Again, without loss of generality, we assume that expected link bandwidth can be char-

acterized by a link capacity metric; the higher the link capacity, the higher the expected

available bandwidth of the link.

Maximum Flow Paths

The most straightforward algorithms to calculate throughput paths are maximum flow algo-

rithms. Calculating a set of links that provides the maximum flow between two nodes can

be done using conventional flow algorithms [5, 42]. However, applying these algorithms

directly has two main drawbacks.

First, the maximum flow algorithms do not produce a set of end-to-end paths; that is, a

maximum flow algorithm produces a set of links and capacities so that sending the specified

amount of data on each of those links provides the maximum flow. Thus, to calculate paths

requires an additional level of processing to convert the set of links into a set of paths. In

addition, since routing algorithms typically bound the number of paths it calculates (say

K) between a node pair, an algorithm needs to select K paths that maximizes flow from

the set of links. Selecting these K paths is not trivial because it depends on how the paths

are initially chosen from the maximum flow link set.

The second drawback of directly apply maximum flow algorithms is that these algo-

rithms do not consider path length (or path costs). Given that routing algorithms typically

want to control the length of the paths they calculate, the paths derived from a maximum

79

flow calculation may not provide a good path set given a length threshold.

Capacity Removal Algorithm

Due to the drawbacks of strictly applying maximum flow algorithms, we have developed

an algorithm called the capacity removal algorithm based on Dijkstra’s shortest path algo-

rithm. Similar to maximum flow, this algorithm calculates paths that aim to increase the

flow between node pairs. Moreover, the capacity removal algorithm explicitly considers

the number of paths to calculate and path length.

As in the discount shortest path algorithm, the capacity removal algorithm calculates

successive shortest paths; after calculating a path, the algorithm subtracts the path capacity

from every link along that path. The capacity of a path is the minimal capacity of all

links on the path. A link capacity threshold is used so that links with capacities below

the threshold are eliminated from subsequent path computations. The pseudocode for the

capacity removal algorithm is given in Figure 5.3.

The description of capacity removal paths can be summarized as follows: from node

a to b, the ith path is the least-cost path from a to b with cost less than Cmax and capacity

greater than the capacity threshold, where path i’s capacity is calculated after subtracting

the path j’s capacity from every link in path j, � � j � i.

The complexity analysis of the capacity removal algorithm is very similar to the dis-

count shortest path algorithm. To calculate K paths from node a to b, the capacity re-

moval algorithm iterates Figure 5.3’s main loop K times. In each iteration, the function

Get Shortest Path CapThresh() is called which takes O�E � lg�E��, and each

link in the newly calculated path is traversed O�n� times. At the end of the loop, link ca-

pacities are restored (O�K �n�). Thus, the complexity of the capacity removal algorithm to

calculateK paths between a node pair isO�K��E�lg�E��n��K�n�� O�K�E�lg�E��.

Again, like discount shortest path, the complexity of the capacity removal algorithm to cal-

culate K paths is K times the complexity of calculating the single shortest path between

two nodes.

5.3 Path Calculation Summary

This chapter presents two path calculation algorithms, one computing paths for low delay

path service and the other for high throughput path service. The two algorithms developed,

discount shortest path and capacity removal, are both shortest path based algorithms, and

their complexities are linear in the number of paths calculated compared to computing

80

numPaths = 0;

while(numPaths � K)

f

newPath = Get Shortest Path CapThresh(Src, Dst,

Capacity Threshold);
if (newPath == NULL)

break;

if (numPath == 0)

Max cost = Cost(newPath) * Cost BOUND;

if (Cost(newPath) � Max cost)

break;

numPaths++;

StorePath(Src, Dst, newPath);

Path cap = Capacity(newPath);

forall links l � newPath

l.capacity = l.capacity - Path cap;

g

Restore all link capacity subtractions

Figure 5.3 : The pseudocode for the capacity removal algorithm. The code shows
the calculation of K capacity removal paths between Src and Dst. The function
Get Shortest Path CapThresh(Src, Dst, Cap thresh) returns the shortest
path from Src to Dst such that all links in the path have capacity above Cap thresh.

81

single shortest paths.

The quality of capacity removal paths, measured in achievable throughput, is evaluated

in Chapters 7 and 9. Simulation results show that the capacity removal algorithm effectively

provides paths that allow end-hosts to increase their throughput.

82

Chapter 6

Multipath Forwarding

Network routing is a two-step process: the first step is computing the desired paths, and

the second is forwarding data on those paths. In a multipath network, the cost required to

support these two steps is higher than in single path routing. A summary of the multipath

overheads are

1. Algorithmic cost: router CPU and memory required to calculate multiple paths

2. Routing costs: extra forwarding table entries, CPU cycles, and routing messages

3. Per packet path specification costs: number of bits required to specify a packet’s path

4. Per packet forwarding time

For all but the algorithmic cost (addressed in Chapter 5), the costs listed above are

directly related to how paths are encoded and forwarded in a network. This chapter presents

solutions that efficiently accomplishes this forwarding task.

In multipath networks, packets need to specify not only their destinations, but a specific

path to their destinations. This means that routers need to recognize path specifications (or

encodings) in order to forward packets correctly. The problem of encoding and forwarding

packets along their intended path is called the path forwarding problem.

Methods of solving the path forwarding problem depend on whether packets are for-

warded on paths within the same path service (multi-option paths) or on paths from differ-

ent path services (multi-service paths). This differentiation is important because it affects

the implementation of the packet forwarding method. Path forwarding on different service

paths can be implemented in a straightforward manner using a service identifier; however,

this encoding scheme is not sufficient for multi-option path forwarding. Because multi-

service forwarding is relatively straightforward, this chapter briefly discusses multi-service

forwarding but primarily focuses on multi-option forwarding.

This chapter develops an efficient solution for the multi-option forwarding problem.

A forwarding method is efficient if the per packet path specification cost is small (in the

83

number of bits) and the path specification allows fast router packet forwarding. The solu-

tion developed uses 1) a per packet overhead of a small, fixed-length path identifier, and

2) router space overhead linear in K , the number of paths calculated between nodes. To

achieve these efficient bounds, the forwarding method requires that multi-option path sets

satisfy the suffix matched property.

The remainder of this chapter is organized as follows. The following section formally

defines the multipath forwarding problem, both multi-service and multi-option. The sec-

tion describes multi-service forwarding and develops the basis the proposed multi-option

forwarding method. In Sections 6.2 and 6.3, the multi-option forwarding method is applied

to Distance Vector and Link State routing algorithms. In addition, this chapter contains

proofs that 1) Distance Vector based algorithms compute suffix matched multipath sets,

and 2) Link State based algorithms yield suffix matched multipath sets for the criterion of

ranked k-shortest paths. Section 6.4 provides an example to demonstrate the forwarding

method in the context of a multi-service multi-option network. Finally, a summary of the

path forwarding method appears in Section 6.5.

6.1 The Multipath Forwarding Problem

A network can be represented as a graph G � �V�E�, where V is the set of network nodes

and E is the set of links or edges. Each link �xi� xj�
 E has an associated positive cost

cxixj . A path p in G is a list of nodes (x�� � � � � xn) such that �i� � � i � n, �xi� xi���
 E.

Path p has cost
Pn��

i�� cxixi�� . No node appears more than once in a simple or loop-free

path.

Abstractly, to route packets amongst nodes in a network, each node x
 V implements

two functions:

hx � V � �

Gx � �� V

The path selection function hx chooses a path identifier � (on a per-packet or per-

connection basis) for a given destination node d
 V from the set �. Path identifiers

encode distinct paths from x to d. The forwarding functionGx takes a path identifier �
 �

and provides the next-hop neighbor on path �. As an example, if node x wishes to send a

packet to node d on path �, it adds the label � to the packet, and forwards it to Gx���: the

next-hop on path � from x to d.

84

Single shortest path routing is a special case where there is no need to have a path

identifier set �. In this path setting, the path selection function is the identity function:

hx�d� � d� d
 V . This is because exactly one path p from x to d is used at any given time

— there is no choice of paths.� By the Bellman optimality principle, the shortest path from

any intermediate node n in p to node d is the subpath of p from n to d; thus from any node,

the path to a destination d can uniquely identify by d’s address.

One can replace the path identifier argument by the destination and simplify the for-

warding function in a single shortest path setting to be Gx � V � V which identifies the

next-hop for a given destination. Router x implements Gx by looking up its forwarding

table.

In a multipath setting, an originating node x has a choice of several paths to a particular

destination at any given time (i.e, the range of the function hx is a set of size 	 �). The

particular path (identified by hx�d� � � chosen by x for a destination d is a function of the

sending host’s objectives (refer to Section 5.2).

The forwarding functionsGx, for each x
 V need to respect the following constraint:

��
 � such that � identifies path � �x�� � � � xn��

Gxi��� � xi��� � � i � n�

Efficiently enforcing the above constraint on the Gx functions forms the crux of the

multipath forwarding problem.

In the proposed multipath routing model, the forwarding problem can be divided into

two parts, forwarding on different path services and forwarding within the same service.

This division is possible because the way a packet specifies its path service is independent

of how it specifies a path within that service. Thus, � can be represented by a fixed-length

triple (Dst, ��� ��) where Dst is the destination address, �� specifies the path service, and

�� specifies the particular path within the path service. This thesis uses this path identifier

representation to uniquely identifies a particular path in a multipath network.

The following subsections use this three tuple � representation to address the multipath

forwarding problem. The next subsection describes path forwarding on different path ser-

vices (specifying ��), and subsection 6.1.2 focuses on path forwarding among paths within

the same service (specifying ��).

�The actual identity of the shortest path between two nodes in the network may change as the network

changes, but at any given time a node can route to a destination along exactly one path.

85

6.1.1 Multi-Service Path Forwarding

Forwarding packets on different path services can be accomplished by tagging each packet

with a path service identifier. A service ID is an integer that distinguishes one path service

from another. Because this identifier disambiguates packets from different services, the

forwarding function G can be implemented by switching on service identifiers. That is,

upon receiving a packet, a router forwards the packet using the forwarding function G

specified by the packet’s service ID.

For example, in a multi-service single-option network, the forwarding function G for

each service is the same as a single, shortest path forwarding functiony. In this scenario,

upon receiving a packet, a router simply forwards the packet to the next-hop returned by

applying the function G specified by the path service.

1

2
A

D

B F

C

A’s forwarding table to F E’s forwarding table to F
service type next-hop service type next-hop service type next-hop

B

B

F
E F

F1 1 1

2 2 2

B’s forwarding Table to F

E

Figure 6.1 : A forwarding example in a multi-service single-option multipath network.

Figure 6.1 shows selected forwarding tables of a multi-service single-option network.

Here, the forwarding tables of routers A, B, and E show that each router computes two

service paths to F . The dashed lines show A’s two paths to F ; the number above the lines

show their path service number. In this setting, the forwarding function guarantees that ifA

sends a packet to F and tags the packet with the intended path service number, the packet

will travel the intended path to F .

For example, assume that A sends a packet on path service
 to F . This packet is than

tagged with the path identifier [F�
] and forwarded, according to A’s forwarding table,

to node B (for simplicity, the multi-option identifier �� is omitted because there is only

one path per service). Upon receiving this packet, B looks up its forwarding table for

yThis example uses single-option paths because we established earlier that the single shortest path for-

warding functionG correctly forwards packets because the paths satisfy the Bellman optimality principle.

86

destination F with service
 and forwards the packet to node E. E performs the same

lookup function and forwards the packet to F .

Path forwarding in this scenario is guaranteed because 1) the packet’s service identifier

ensures that every router uses the right forwarding function (e.g. looks up the appropriate

forwarding table entry), and 2) because one path is calculated between nodes within each

service, the single path forwarding function corresponding to each service guarantees that

packets are forwarded on their specified paths.

As this example shows, multi-service paths can be distinguished using a simple path

service identifier. The next section shows that a similar straight-forward multi-option iden-

tifier is not sufficient to guarantee that packets are correctly forwarded on multi-option

paths.

6.1.2 Multi-Option Path Forwarding

With multi-option paths, a router calculates multiple paths for the same path service. For

the purpose of discussion, we assume that each multi-option path is ranked. That is, when

a router computes multi-option paths to a destination, it locally assigns a unique number

i to each multi-option path, indicating that the path is the ith path to that destination for a

particular path service. For example, the ranking of paths could reflect the ith best path the

router calculates within a path service.

Unlike multi-service forwarding, path forwarding for multi-option paths cannot be

solved by simply tagging packets with the path’s rank number. Because multi-service IDs

are consistent and understood by all routers to denote a specific path service, tagging pack-

ets with a service ID unambiguously identifies a unique path service. In contrast, tagging a

packet with the rank of a multi-option path, in general, does not guarantee that the packet

will be forwarded on the specified path because multi-option ranks are not necessarily con-

sistent in all routers.z For example, assume that the path �x�� � � � � xn� is the
nd best path

from x� to xn. It is not guaranteed that �xi� � � i � n, xi’s
nd best path is �xi� � � � � xn�.

Figure 6.2 illustrates this property.

In Figure 6.2, routers compute one path service with two multi-option paths, where the

first path denotes the shortest path and the second denotes the second shortest path. The

zIf the multi-option IDs are consistent in all routers, then tagging packets with these IDs ensures correct

path forwarding. However, making multi-option IDs consistent for a particular path calculation algorithm

requires routers to know the paths computed by other routers, which increases both router computation and

storage overheads. The Compute All method described in Section 6.1.3 is one such approach.

87

2

2
1

1

D

B F

C

A’s forwarding table to F
path number next-hop path number next-hop

B

B

F
E

1 1

2 2

B’s forwarding Table to F
path number next-hop

1

2 B

E’s forwarding table to F

F

A E

Figure 6.2 : A forwarding example in a single-service multi-option multipath network.

dashed lines show A and E’s paths to node F . The figure demonstrates that a path number

(or multi-option rank number) is not sufficient to ensure path forwarding. For example, if

A wishes to send a packet on its second path to F and tags the packet with only the path

number (i.e. path ID [F�
]), the packet will not travel the intended path. To see this, after

A sends the packet to B tagged with [F�
], B receives this packet and will forward the

packet to B’s second path’s next-hop, E. E then forwards the packet on its second path,

which has B as the next-hop. Notice that E should forward the packet on its first path (to

node F). Following the example, B will then forward the packet back to E because E is

the next-hop of B’s second path. This results in the packet bouncing between E and B.

This example shows that because multi-option path ranks are not necessarily consistent

in all routers, multi-option forwarding is not always guaranteed by simply tagging and

forwarding packets based on rank numbers. To address this problem, the remainder of this

chapter develops an efficient method to forward packets on multi-option paths. The next

subsection describes suffix matched path sets, a crucial piece of the proposed method.

6.1.3 Suffix Matched Path Sets

This subsection presents an important class of path sets on which efficient multi-option

forwarding can be performed. However, before defining this set, we first survey some

existing multipath forwarding methods.

To implement the G functions in a multi-option environment, one needs a scheme for

constructing path identifiers that unambiguously identify paths between nodes. One com-

mon approach, called source routing, is to use the path description itself as the identifier. In

this method, path identifiers are of variable length; therefore the overhead of tagging indi-

vidual packets with these path IDs increases as the size of the network grows and the path

88

length between nodes increases. The implementation of theG functions at each node xi for

path (x�� � � � � xn), � � i � n, requires reading the received packet’s path ID [x�� � � � � xn]

and then computing Gxi��x�� � � � � xn�� to be xi��. No state information (e.g. forwarding

table) is needed at intermediate nodes; however complete path information is needed at the

sending nodes.

Although source routing is a general and flexible forwarding method, it is inefficient

because of its variable length, per packet path ID: the variable length path ID increases

the per packet path specification overhead, which decreases router forwarding efficiency

because routers have to examine a larger packet header to determine the next-hop. In

addition, source routing requires that sending nodes know the source routes of every path

they wish to use, thereby increases router storage requirements. This chapter focuses on

efficient path forwarding methods that use fixed-length path IDs and do not require sending

nodes to know path source routes.

Another approach to multi-option forwarding is to establish a consistent set of multi-

option IDs. The Compute All method is one such approach. With this approach, ifK multi-

option paths are maintained between source and destination pairs in an N node network,

Compute All uniquely identifies a path by the triple �s� d� i�, where s� d�
 V denoting

source and destination, and i is an integer, � � i � K . To obtain these consistent IDs,

each router computes, for each destination, not only its K paths, but every other router’s K

paths as well.

The aggregate forwarding table requirement for the Compute All method is O�KN� �

N� � O�KN��, which is the size of the mapping from each path identifier to the next-

hop (there are KN� paths) and is maintained by each node (there are N nodes). This

requirement can be reduced by observing that a node only needs to maintain paths that

pass through it. Let L be the average path length, then each path passes through L nodes

on average. Therefore it suffices that each node maintains only KNL path identifiers

on average, reducing the total space requirements on forwarding tables to O�KN�L�. In

contrast, single shortest path routing only require an aggregating forwarding tables space

complexity of O�N��.

Is it possible to efficiently forward packets on multi-option paths where packets are

annotated by short fixed-length path identifiers with space overhead for forwarding tables

no more than O�KN��, which is K times the cost for forwarding in single shortest path

systems? This question is answered in the affirmative for a interesting class of multipath

sets called suffix matched path sets.

Suffix matched path sets: A path set P is suffix matched iff for all paths �x�� � � � � xn�
 P ,

89

then �i� � � i � n, (xi� � � � � xn) is also in P .

Consider the path set P consisting of the single shortest paths between every pair of

nodes in a network. The Bellman optimality principle ensures that P is suffix matched. If

the shortest path p from node x� to xn is �x�� � � � � xn�, then for � � i � n, the shortest path

from xi to xn is the subpath �xi� � � � � xn� of p.

Proposition: Packets in an N node network with a suffix matched multipath set P can be

forwarded correctly with forwarding table space O�KN �� where no more than K paths are

maintained between any pair of nodes.

Proof: Let the path identifier for path p � �x�� � � � � xn� from x� to xn in a suffix matched

multipath set P be fx��xn�. Let the path identifier for the suffix paths pi � �xi� � � � � xn�

for � � i � n be fxi�xn�. Recall that all suffixes of p are in P by the definition of suffix

matched multipath sets.

To implement path forwarding correctly, one needs to ensure node xi knows the suffix of

its path fxi�xn� (the path �xi��� � � � � xn�) at its neighbor xi�� is called fxi���xn�. Therefore

one needs an identifier translation or swapping function Fxi � � � � at each node that

maps the path identifier fxi�xn� of suffix path pi to the path identifier fxi���xn� for � � i �

n. That is

fxi���xn� � Fxi�fxi�xn�� and

xi�� � Gxi�fxi�xn���

In other words, when node xi receives a packet with identifier fxi�xn� from its neighbor

xi��, it forwards it to node xi�� � Gxi�fxi�xn�� along with the new identifier fx���xn� �

Fxi�fxi�xn��. Each xj , i � j � n, performs the same two operations until the packet

reaches xn.

Notice that the definition of a suffix matched path set in a distributed environment

implies that if router x� computes the path (x�� � � � � xn), then router xi must also compute

the path (xi� � � � � xn), �i� � � i � n. This ensures that there exists a Fxi implemented by xi
that is guaranteed to translate a path identifier of xi to xi��’s corresponding path identifier.

The space requirements for the implementation of the mapping F is proportional to the

total number of paths in the network, i.e. O�KN��. This is because each path is matched

with at most one other path (there are O�KN�� paths), therefore the matching table is

at most O�
KN��. In addition, the space requirement for the mapping G is simply the

number of paths O�KN��. Therefore multipath forwarding of suffix matched paths can be

implemented with an aggregate space requirement of O�KN�� QED.

In the transient state when suffix matched path sets are in the process of being computed

at each router, correct path forwarding is not guaranteed because transient path sets are not

90

guaranteed to be suffix matched. In fact, this absence of forwarding guarantees during route

transitions affects most distributed routing algorithms, including Distance Vector and Link

State based algorithms.

6.2 Distance Vector Extension

This section describes a multi-option extension to a Distance Vector (DV) based routing

algorithm. Multiple services are not specifically addressed here because path forwarding

between services can be accomplished with a simple path service ID. The description of

the basic DV algorithm is given in Section 2.1. The next section extends the basic DV algo-

rithm to compute multi-option paths. We then prove that the new multipath DV algorithm

computes suffix matched paths sets. The proposed forwarding method is applied to the

extended DV algorithm in Section 6.2.2. The computation and space complexities are also

given in this section. Finally, an example of the DV suffix matched forwarding method is

presented in Section 6.2.3

6.2.1 Methods of Calculating Multiple Paths in DV

The single shortest path DV algorithm can be extended to allow the calculation of multiple

paths between each pair of nodes. For instance, to calculate the ranked k shortest paths to

each destination, each router maintains in its forwarding table (and advertises in its DVPs)

k entries for each destination. Upon receiving DVPs from its m neighbors, the router

computes its own k best paths from possible m � k paths received from its neighbors.

Path selection criteria other than k ranked paths, such as link or node disjoint paths, can

also be implemented in a DV environment. We show that any DV-based multipath routing

algorithm that satisfies the following conditions calculates suffix matched path sets.

1. A router r may install a forwarding table entry with N r
d � s only upon receiving a

corresponding distance vector for destination d from its neighbor s.

2. A router r never advertises a distance vector for destination d unless it has a corre-

sponding forwarding table entry for d.

Proposition: The path set P calculated by a multipath DV routing algorithm that satisfies

conditions 1 and 2 are suffix matched.

Proof: Assume the algorithm calculates a path �x�� � � � � xn�
 P that is not suffix matched.

Then there must exist a routerxi, � � i � n such that �xi��� � � � � xn�
 P , but �xi� � � � � xn� �

91

P . That is, xi�� has a forwarding table entry with Nxi��
d � xi, but xi does not have a for-

warding table entry with Nxi
d � xi��. Thus, either xi�� has installed the forwarding table

entry without receiving a corresponding distance vector from xi, or xi has advertised a dis-

tance vector without having a corresponding forwarding table entry. But, these possibilities

are ruled out by conditions 1 and 2 QED.

6.2.2 Multipath DV Extensions

In this section, we show how the proposed multipath forwarding method presented in Sec-

tion 6.1 can be applied to any DV based multipath algorithms that satisfies conditions 1 and

2, and thus calculates suffix matched path sets.

The implementation of functions F and G, defined in Section 6.1, in a DV environment

is defined as follows. Each router assigns an identifier � for each of its paths to a given

destination. Let �kr�d be the ID router r assigns its kth path to destination d. Then, the path

ID used by router r in the MPDV algorithm is pid � �d� �kr�d�
x. Adding � and evaluating F

andG during the packet forwarding process requires the following additions to the DV data

structures.

� Forwarding table entries have two additional elements, �� and ��. An entry in router

r’s forwarding table for the path �r� s� � � � � d� is now a five tuple �d�Cr
d��� s� ��� ���.

�� is r’s identifier for the path �r� s� � � � � d� and �� is neighbor s’s identifier for the

corresponding suffix path �s� � � � � d�. Note that Nr
d � s. Cr

d�� is the cost of r’s � path

to d.

� DVP entries have one additional element, �. A DVP originating from router r that ad-

vertises r’s path to destination d with identifier �� is now a three tuple �d�Cr
d���

� ���.

Let D be the set of destinations and �rd be r’s set of path identifiers to destination d.

In its DVP, each router r advertises a distance vector �d�Cr
d���

� ��� corresponding to its

forwarding table entry �d�C r
d���

� s� ��� ���, for each d
 D and for each ��
 �r
d.

To install a route in its forwarding table upon receiving a distance vector �d�Cs
d��� ��

from s, router r adds the entry �d�Cr
d���

� s� ��� ��, where �� is chosen by r to be unique

in �r
d; i.e. unique in its set of path identifiers to destination d. For instance, in the DV

multipath algorithm for k ranked paths, r’s identifier for the ith path to destination d can

xTo simplify the explanation, the path service identifier�� is omitted here. An example later in the chapter

incorporates both path specifiers.

92

be chosen as i. Cr
d���

, the cost of this path from s to d, is calculated in the usual manner as

Cs
d���

� crs.

The functions F and G can now be implemented directly via lookup of the forwarding

table. For path ID [d�], node r evaluates Fr��d� 	�� as [d�
] via lookup of the forward-

ing table entry for destination d and local identifier �� � 	, with
 � ��. Similarly, r

evaluates Gr��d� 	�� as Nr
d�� via lookup of the same forwarding table entry. A matching

forwarding entry is guaranteed to exist when evaluating F and G because the path sets are

suffix matched.

The additional storage required for the MPDV forwarding method is two path identifier

fields in each forwarding table entry and one in each DVP entry. Let K be the maximal

number of paths calculated to each destination, then the storage required for path identifiers

is d�log��K��e bits. The additional entries in the forwarding tables and DVP for MPDV

correspond to the number of alternate paths being calculated. That is, the storage over-

head is a factor of O�K� more than single shortest path DV. The aggregate router storage

complexity of MPDV is therefore O�KN��.

6.2.3 MPDV Example

The graph in Figure 6.3 represents a network and the number above each link represents the

cost of that link�. In table below are forwarding tables of selected routers to node F . The

forwarding tables are computed using the Distance Vector multipath extension algorithm.

For illustrative purposes, the path calculation algorithm calculates all paths with cost less

than 10. Notice that this path calculation criteria does not exclude paths that traverse a node

more than once. The number of paths to any destination is at most 4, ie. K � �. This DV

version is assumed to implement split-horizon. Below, we describe the operation of this

MPDV algorithm in two phases: path calculation/forwarding table construction and packet

forwarding.

Forwarding table construction. The process of calculating paths to node F begins by

F sending a DVP to its neighbors (E and B). The DVP contains the path (F , 0, 1), where

F is the destination address, 0 is the cost for F to reach F , and 1 � ��F�F . When neighbor

E receives this DVP, E adds the cost CEF �
 to every element in F ’s DVP. Since the

path to F has cost
 � � �
, it satisfies the path calculation criteria. E keeps this path and

augments its forwarding table with the entry (F , 2, 1, 1, F): F is the destination address,

�For simplicity, this example assumes that link costs are symmetric. MPDV functions correctly with

non-symmetric link costs as well.

93

C

EA

D

B F

next-hop
F
B
D
C

1
1
2
3
4

Φcost
2

10
7
7

cost
3
6
8

1Φ
1
2
3

next-hop
E
C
E

2Φ
1
2
4

E
D
E
D

next-hop1Φ
1
2
3
4

2Φ
1
1
3
3

cost
5
4
10
9

2Φ
1
1
2
2

5

5
3

2

1

9

1
1

E’s forwarding table to F D’s forwarding Table to F C’s forwarding table to F

Figure 6.3 : Example of MPDV.

is the cost of this path to F , the first 1 = ��E�F (E’s name for this path to F), the second 1

= ��F�F (node F ’s name for this path taken from F ’s DVP), and F � NE
F���F�F

is this path’s

next-hop neighbor.

Next time E sends out its DVP, it will contain the path entry (F , 2, 1) advertising a

path to F with cost 2 and ��E�F of 1. When neighbor C receives this DVP containing this

path to F , C augments its forwarding table with the path (F , 5, 1, 1, E) because this path

is admissible under the path calculation criteria. In this example, C also chose the name

of this path to be � � �. This process of path computation continues until all routers have

admissible paths to all other routers. As in the single path DV algorithm, the convergence

time of MPDV is proportional to the longest path calculated between any two nodes. The

complete forwarding tables to F for routers E, D, and C are shown in Figure 6.3.

Packet forwarding. Suppose node D wishes to send a packet to node F and D decides

to send on its third best path, the one with cost 8. According to the algorithm, D tags

the packet with the path ID [F , 4], where F is the destination address and � � �� in the

forwarding entry, and forwards the packet to the next-hop neighbor E. On receiving this

packet, E looks up its forwarding table and matches F and �� with the packet’s path ID.

The matching entry is the last entry in E’s forwarding table. Once found, E replaces the

packet’s path ID with [F, 2] (E’s �� for this path is 2) and forwards the packet to C . That is

FE��F� ��� � �F�
� and GE��F� ��� � C . C does the same lookup and forwards the packet

back to D with path ID �F� �� (here FC��F�
�� � �F� �� and GC��F�
�� � D). Following

the algorithm, D again performs the lookup and forwards the packet to E with the path ID

[F , 1]. On receiving this packet, E finally forwards the packet to F with the ID [F , 1].

For simplicity, the MPDV path calculation algorithm presented in this example did not

eliminate finite looping paths. Since this path forwarding method ensures forwarding on

all calculated paths, the algorithm will forward packets on finite-looping paths (e.g. path

94

(D�E�C�D�E�F)) as well as non-looping paths (e.g. (D�E�F)). There are well known

methods of ensuring loop-free path calculation in distance vector; refer to [93] for details.

6.3 Link State Extension

This section extends Link State (LS) based routing algorithms to use the proposed multi-

option forwarding method. The LS algorithm, like DV, is widely used and well understood.

However, unlike DV, it relies on a centralized route calculation algorithm. A topology

broadcast mechanism ensures that each router knows the current state of the entire net-

work (i.e. topology and link cost), and routes are calculated in a centralized manner in

each router. For a description of the LS algorithm, refer to Section 2.2. The next section

discusses multipath extensions to the LS algorithm to compute multi-option paths, and the

section following shows how the proposed forwarding method is applied.

6.3.1 Multipath LS Extensions

This section demonstrates how the proposed forwarding method applies to link state multi-

path algorithms that calculate suffix matched paths. Since routers in the link state algorithm

have access to the entire network topology, any centralized graph algorithm for computing

multiple, suffix matched paths can be used. As this section will show, the k ranked paths

algorithm [45], and the initial link disjoint k paths algorithm [156] are in this class. For

such algorithms, our multipath forwarding algorithm can be directly applied.

As in MPDV, let �kr�d be the identifier that router r assigns its kth path to destination

d. The path ID used by router r is of the form pid � �d� �kd�. Forwarding table entries

have two additional elements, �� and ��. An entry in router r for the path �r� s� � � � � d� is a

quadruple �d� s� ��� ���. �� is r’s identifier for the path �r� s� � � � � d� and �� is neighbor s’s

identifier for the corresponding suffix path �s� � � � � d�. Note that N r
d���

� s.

Forwarding entries are installed by the centralized link-state path calculation process.

As in MPDV, �� is chosen to be unique in r’s set of paths identifiers for destination d (i.e.

�r
d). To determine �� router r calculates the next-hop neighbor router s’s paths set for

destination d. Since the path sets are assumed to be suffix matched, s’s path set to d is

guaranteed to include the suffix path �s� � � � � d�. Then, r sets �� equal to s’s identifier ��
for that suffix path.

As in MPDV, the functions F and G can now be implemented directly via lookup of the

forwarding table. Node r evaluates Fr��d� 	�� as [d�
] via lookup of the forwarding table

entry for d and local identifier �� � 	, with
 � ��. Similarly, r evaluates Gr��d� 	�� as

95

N r
d�� via lookup of the same forwarding table entry.

The number of messages exchanged by MPLS routers is exactly the same as in the tradi-

tional LS algorithm. The storage overhead per router is O�NK� for the forwarding tables,

where N is the number of destinations and K is the number of paths to each destination.

However, our multipath forwarding method requires each router to calculate each of their

neighbor’sK paths as well. Therefore, the suffix matched forwarding method increases the

computational complexity of the multipath route calculation used in the routers by a factor

m, where m is the number of neighbors.

6.3.2 Example of LS Extension

Φ1 Φ2Dst next-hop

A’s forwarding Table to F C’s forwarding table to F

Φ1 Φ2Dst next-hop Φ1 Φ2Dst next-hop

C 2 22CF12DF2F

13DF13EF33CF

C

EA

D

B F
1

1

9

3 1

2

1

1

E’s forwarding table to F

F B 1 1 11FF11AF

Figure 6.4 : Example of the multipath Link State Algorithm.

Consider the network shown in Figure 6.4. The path calculation algorithm calculated

three paths from router A to F : (A�B�F), (A�C�D�E�F), (A�C�E�F), with costs 3, 5,

6 and names ��A�F � �, ��A�F �
, ��A�F � � respectively. Suppose A sends a packet to

F using its third best path. Following our algorithm, A tags the packet with the ID [F ,3],

where F is the destination address and 3 is the �� for that forwarding table entry. A then

forwards the packet to C , the next-hop node for this path. When C receives this packet, it

searches its forwarding table to find an entry with the destination address and �� � �. C’s

third forwarding entry matches this path ID. C then replaces the packet’s old path ID with

[F ,1] and forwards the message to E, the next-hop element of the matching entry. That is,

FC��F� ��� � �F� �� and GC��F� ��� � E. Similarly, E matches the ID [F ,1] and forwards

the packet with the ID [F ,1] to F .

96

6.3.3 Suffix Matched Multipath Routing Algorithms

The previous section presented an efficient forwarding method for link state based multi-

path calculation algorithms that calculate suffix matching path sets. Several existing mul-

tipath algorithms generate suffix matched paths. Here we show that the k ranked path

algorithm [45,58,141,165] produces suffix matched paths.

Proposition: The unconstrained k shortest (ranked) simple paths algorithm [58] produces

suffix matched path sets.

Proof: The unconstrained k shortest path algorithm uses the following invariant for com-

puting multiple paths between all pairs of nodes in the network. A path of rank k between

node x� and xn is composed of subpaths all of whose ranks are� k. Since each node main-

tains k paths between itself and every other node, all subpaths of a k ranked path between

x� and xn are guaranteed to exist in the multipath set computed by the algorithm. QED.

The k initial link disjoint paths algorithms proposed by Topkis [156] also produces suf-

fix matched path sets. In addition, we have already shown in Section 6.2 that any DV based

multipath algorithm that satisfies two straightforward conditions produces suffix matched

paths.

6.3.4 Non-Suffix Matching Paths in LS

The previous section shows that several important multipath calculation algorithms pro-

duce suffix matched paths and therefore can directly use the suffix matched forwarding

method. However, there are many other path calculation algorithms, including algorithms

that maximize flow between nodes, that are not guaranteed to produce suffix matched paths.

Unfortunately, for these algorithms, the suffix matched forwarding presented cannot be di-

rectly applied.

To use the suffix matched forwarding method for algorithms that do not calculated

suffix matched paths, one needs to convert the non-suffix matched path set into a suffix

matched one. We call the conversion of a path set P into a suffixed match set as “forming a

suffix matched closure over path set P ”. In general, suffix matched closures can be formed

by 1) deleting paths that are not suffix matched or 2) adding paths which are suffixes of

non-suffix matched paths. The solutions proposed in this section uses the latter approach.

The former approach is not mentioned here because deleting paths reduces the benefits of

multipath routing and does not increase the efficiency of forming suffix matched closures.

The following lists possible methods to forward packets along non-suffix matched paths.

1. Lazy Compute: this method forms suffix matched closures by dynamically comput-

97

ing non-suffix matched paths. The algorithm works as follows: upon receiving a

packet with a path ID that is not suffix matched (this is easily detected by a failure in

the path ID match), a router dynamically recompute the path and forward the packet

to the right next-hop. The newly computed path ID is then inserted into the forward-

ing table so that subsequent packet with the same ID do not need to be computed.

The disadvantage of this method is the potential slow down in packet forwarding time

for these paths because some packets require dynamic path computation. However,

this disadvantage is reduced because the lazy computation occurs once per path, not

once per packet on that path. The computational complexity of the lazy compute

method is O�W �pL�, where O�W � is the time needed to compute all pairs K paths,

p is the number of non-suffix matched paths, L is the average path length (notice that

every routers on a non-suffix matched path need to dynamically compute the path).

The forwarding table storage costs of this method is O�KN � pL�.

2. Explicit Routing: this method is similar to lazy compute except that computation

is exchanged with communication and that path IDs are of their original form (i.e.

[Dst, i]). In this method, when a router receives a path ID that it cannot match (i.e.

it is a non-suffix matched path), the router source routes the packet (notice that the

router has already computed the path during its path computation phase). As the

packet is source routed through the network, it establishes labels along the specified

non-suffix matching path. Once the labels are established, subsequent packets that

are destined on the same path are forwarded as if the path was suffix matched.

The advantage of this solution is that it requires no extra router computation. The

disadvantage is that packet header sizes need to accommodate source routes, which

may complicate packet forwarding procedures. However, like lazy compute, this

disadvantage is reduced by the optimization that packets on non-suffix matched paths

are source routed only once per path.

3. Common Naming: the idea behind this method is for each router to first calculate a

base suffix matched path set that establishes common path ID naming, and a desire

set of paths are then chosen from the paths in this base set.

This method works as follows: first, every router computes M shortest loop-free

paths to all other nodes, M � K [58, 103, 141, 165]. We call this set CM (the

common naming set). This base set is guaranteed to be suffix matching. Each router

then picks K paths from CM – these K paths are the ones computed by a non-suffix

98

matched path calculation algorithm. Let the ith path in K , denoted as Ki, match path

jth path in CM , denoted as CMj. Now when a router forwards a packet on its path

Ki, it will use the path ID CMj . The next-hop router is guarantee to match CMj

because the set CM is suffix matched.

The advantage of this method is that no extra routing messages are required, and

nominal additional router computation are needed to establish the common naming.

Moreover, unlike the lazy compute method, the path IDs can be computed a priori.

The main disadvantage of this method is that routers need M forwarding table entries

for each destination instead of K . That is, the per router space complexity of this

method is O�MN� instead of O�KN�.

The choice of methods to account for non-suffix matched paths depends on the net-

work environment and the efficiency of different path calculation algorithms. The three

different methods make different tradeoffs between router computation, routing messages,

router storage, and packet overhead. Lazy compute and explicit routing are best suited for

large networks where the percentage of non-suffix matching paths are low. Common nam-

ing imposes a constant CPU overhead (to calculate M shortest paths) and its efficiency is

independent of the percentage of non-suffix matching paths; however, the method requires

more forwarding table space.

6.4 A Multipath Forwarding Example

This section demonstrates the usage of the suffix matched forwarding method in a general

multi-service multi-option network. Recall that a path identifier � is a triple (Dst, ��� ��)

consisting of the destination address, a service identifier ��, and an identifier specifying a

path within that service ��. Section 6.1.1 showed that encoding�� requires a simple service

identifier to uniquely identify different path services, and the previous two sections showed

that using suffix matched forwarding, �� can be encoded as a fixed-sized integer. Notice

that both �� and �� has a fixed-sized per packet overhead and requires router memory

overhead proportional to the number of services and paths within each service. Therefore

the path identifier [Dst, ��� ��] is also fixed-sized and requires router storage overhead

proportional to the number of paths.

Figure 6.5 shows a six node network with link cost shown above the network edges. In

this example, the network provides two path services, numbered 1 and 2. The multi-service

and multi-option paths can be seen in the router forwarding tables given in Figure 6.5. The

forwarding tables for A, C , and E show that the first path service (denoted by P serv)

99

EA

D

B F
1

1
3 1

9

1

1

Φ1 Φ2 Φ1 Φ2 Φ1 Φ2

2

1

1

2

2

1

2

1

1

C

1

E’s forwarding table to F

FA

F

CD

next-hopP_serv

A’s forwarding Table to F C’s forwarding table to F

next-hopP_serv next-hopP_serv

E

1

1

2

1

1

2

1

1

2

1

1

1

1

1

2

1

1

2

B

B

C

Figure 6.5 : Example forwarding tables in a network with multi-service and multi-option
paths.

contains two paths (denoted by the �� column), and the second service has one path. The

tables show only the forwarding entries to node F .

In this example, assume A wishes to send a packet to F on the first service’s second

path, which is the path �A�C�D�E�F �. To do this, A tags the packet with the path ID

[F� ��
] and send it to C according to its forwarding table. On receiving this packet, C

matches the destination address, path service number, and �� to find that the next-hop for

this path is D. According to the suffix matched forwarding method, C sends the packet

to D with the path ID [F� �� �]. After D processes this packet, it sends the packet to E

with the ID [F� �� �]. E then forwards the packet to F , thereby successfully forwardingA’s

packet on path �A�C�D�E�F �.

Forwarding a packet on A’s second service path is accomplished in the same way. The

second service path from A to F is �A�B�E�F �. Although the �� and �� entries are

not necessary for single-option paths, it is shown in the Figure 6.5 to demonstrate that

single-option forwarding is a special case of multi-option suffix matched forwarding. In

this example, A sends a packet to B with the path ID [F�
� �]. B receives this packet and

forwards to E with the ID [F�
� �]. Upon receiving this packet, E looks up its forward-

ing table for destination F and path service 2. According to the result of this lookup, E

forwards this packet to node F with path ID [F�
� �].

6.5 Multipath Forwarding Summary

One of the main challenges of implementing a multipath network is solving the path for-

warding problem, defined as delivering packets on their intended paths. Because each

router individually decides where to forward packets, ensuring that a packet travels its cho-

100

sen path requires an agreement among all routers in the network. This path agreement is

encoded in the form of a path ID. This chapter develops a packet encoding and forwarding

method for multipath networks that uses a fixed-sized path ID and requires routing storage

proportional to the number of paths calculated.

The forwarding problem is solved differently depending on whether packets are for-

warded on multi-service or multi-option paths. This chapter addresses the two cases in-

dividually and combines the solution to solve the general multi-service, multi-option for-

warding problem. Because paths in different services can be consistently distinguished,

tagging packets with a path service identifier sufficiently distinguishes packets traveling

on different services. However, specifying multi-option paths is not so straightforward be-

cause multi-option path numbers do not necessarily denote consistent paths on different

routers.

To address this issue, chapter presents a novel multi-option forwarding method that uses

small, fixed-length path identifiers and requires router storage proportional to the number

of paths calculated. When compared to the general method for multi-option forwarding

with fixed-length identifiers, the proposed method reduces the router state space needed

for packet forwarding by a factor of L, where L is the average path length in the network.

This chapter defines the suffix matched property for multipath sets and shows that many

important multipath calculation algorithms produce path sets with this property. The suffix

matched forwarding method presented in this chapter exploits this property.

This chapter also applies the method to two well known classes of routing algorithms—

the distributed DV and the decentralized LS algorithms. For multipath extensions of DV,

the storage and message overhead required is proportional to the number of extra paths cal-

culated. In the LS multipath extension, no additional messages are needed. The additional

Link State computation and storage cost for suffix matched paths are also proportional to

the extra number of paths calculated. For paths calculated by non-suffix matched calcula-

tion algorithms, efficient methods to forward packets on these paths are also presented in

this chapter.

101

Chapter 7

Multipath Transport Protocol

The three elements necessary to make multipath networks viable are 1) appropriate paths

calculated between nodes, 2) efficient packet forwarding on calculated paths, and 3) effec-

tive end-host usage of multiple paths. Chapter 5 addresses the first issue by developing

path calculation algorithms that provide quality paths between nodes. Chapter 6 addresses

the second issue with an efficient multipath forwarding method. This chapter addresses

the third issue by developing an end-host protocol that effectively uses multiple paths to

increase end-to-end throughput.

A node’s method of transmitting data has a large impact on network and end-to-end

performance. In the current Internet, TCP is the predominant end-host transport protocol

that manages the transmission of data [124]. Studies have shown that the transmission

mechanisms of TCP have dramatic performance impacts on both end-to-end performance

and the performance of other connections [18,27,83,119,120,123]. In a multipath scenario,

the way in which nodes transmit data has an even greater performance impact because

nodes not only have to decide how much data to send on each path (as in the single path

environment), they also have to decide how to distribute the data over multiple paths. As

Section 4.2.4 showed, the way in which multiple paths are used can result in significant

performance enhancement or degradation.

This chapter develops the MPTCP transport protocol that effectively manages multiple

paths to increase end-to-end throughput. MPTCP demonstrates that applications can im-

mediately reap the benefits of multipath networks without any application modifications.

The remainder of this chapter is organized as follows. The next section addresses the

issue of usage layer and presents arguments in favor of developing MPTCP. Section 7.2

describes how multiple paths should be used in order to increase throughput. Section 7.3

describes the single path TCP protocol. Then in Section 7.4, the MPTCP algorithm is

presented. Simulation results that show the effectiveness of MPTCP are provided in Sec-

tion 7.5. The conclusion of this chapter is that MPTCP is able to effectively use multiple

paths to improve end-to-end and network-wide throughput.

102

7.1 Usage Layer

The multipath usage layer is the protocol layer responsible for distributing data over mul-

tiple paths. The choice of which layer should manage multiple paths depends on per-

formance issues as well as software engineering concerns such as system compatibility,

maintainability, and clean layering abstractions. There are three possible usage layers in

the current TCP/IP protocol stack: network, transport, and user/application. A description

of the different usage layers and our motivation for choosing the transport layer are given

below.

The lowest usage layer is the network usage layer. Implementing multipath routing at

this level means the decision of which packet should travel which path is made in the net-

work protocol layer. In the current Internet, this implies that the IP layer must be modified

to multiplex data among multiple paths. The advantage of this usage layer is that protocol

layers above the network layer do not need modifications in order to use the multiple paths.

However, this usage layer has two severe limitations. First, because the network layer is

unaware of the demands of the user/application, the IP layer does not have the necessary

information to properly distribute data onto paths that best improves application perfor-

mance. Second, because higher level protocols are unaware of the multipath capabilities

of the network layer, events such as out of order delivery and large delay variances may

adversely affect the performance of these protocols [83].

The second possible usage layer is the transport usage layer. This usage layer shifts the

responsibility of multipath management one level up in the protocol stack to the transport

layer. The principal disadvantage of this usage layer is the required modifications to the

transport and network protocols. Network protocols need to be modified to understand mul-

tiple paths to the same destination, and transport protocols need modifications to manage

these paths.

The transport usage layer has three principal advantages: 1) the transport layer has

the proper information to efficiently use multiple paths because it is already responsible

for connection based congestion and flow control. 2) Unlike the network usage layer, the

transport protocol performance will not be degraded by side-effects of using multiple paths

(e.g. out-of-order deliveries and large delay variances) because the protocol itself knows

that it is transmitting on different paths. 3) Since the transport layer is responsible for

packet fragmentation and reassembly, it is able to use multiple paths with great flexibility.

The third possible usage layer is the application usage layer. This layer offers the

greatest flexibility and information to achieve high performance, but requires that applica-

tion developers have expert knowledge in path management such as congestion and flow

103

control. Although there may be few specialized applications that can use this usage layer,

expecting general application developers to have sufficient knowledge to effectively use

multiple paths is unrealistic. As an example, one cannot assume that most application

developers today can manage data transfer on a single path as good or better than TCP.

After considering the possible usage layers, we chose to develop a multipath protocol

in the transport usage layer. The transport layer was chosen because it provides a simple

mechanism that allows general users to obtain performance benefits from multipath net-

works. The protocol developed, MPTCP, maximizes end-to-end throughput. Maximizing

throughput was chosen because it is a general service that can be used by many applications

and is a standard measurement of network performance.

The purpose of developing the MPTCP protocol is to demonstrate that applications

(end-users) can benefit from a multipath network without application changes. We envi-

sion that when multipath networks become prevalent, different transport protocols will be

developed that cater to different application needs. For example, applications with QoS

requirements will use a QoS transport protocol. Similarly, a transport protocol may be

developed in a pricing network that minimizes the monetary cost of sending messages. No-

tice that because this chapter develops a multipath transport protocol, this does not preclude

specialized applications from developing their own transfer protocols. In fact, we believe

applications such as Web browsers may do exactly this to increase their performance.

7.2 Throughput Optimization

One of the benefits of multipath routing is that end-hosts can aggregate the resources of

multiple path to increase performance. In maximizing throughput, the appropriate strategy

is to use multiple paths concurrently. However, the amount of data that should be transmit-

ted on different paths depends on the current availability of network resources.

N1

N2

N3
Figure 7.1 : A simple three node network. All links have equal bandwidth and latency.

For the purpose of explanation, consider a simple three node network shown in Fig-

104

ure 7.1 where all links have uniform bandwidth and delay and that the routing algorithm

calculates two link disjoint paths between every node pair.

In this network, assume that N1 wishes to maximize its data transmission to N3. If N1

is the only node using the network, then N1 can obtain twice the throughput if it uses two

paths (paths (N1, N3) and (N1, N2, N3)) than if N1 only uses the shortest path (N1,N3).

Because N1 is the only node using the two paths, there is no contention for network link

bandwidth, allowing N1 to fully utilize both paths.

Now consider the scenario where both N1 and N2 are maximizing their throughput to

N3. Assuming that both nodes use their two paths to N3 and that the nodes share contended

link bandwidth equally, then each node’s individual throughput will be the same as if the

nodes only used one path. The reason is that the link (N2, N3) is being used by both

connections, as is link (N1, N3). Because of this contention, each node only obtains half

the link bandwidth from each path.

When three nodes transmitting at the same time, one can see that if all three nodes

use their two paths equally to maximize their throughput, then each node will only get

1/3 of the bandwidth from each path. Given that each node uses two paths, this means

each node obtains 2/3 the throughput of a single path. Notice that if all three nodes simply

use the shortest path, their effective throughput will actually be higher. The consequence of

naively using multiple paths is confirmed both in Figure 4.3 in Chapter 4 and in experiments

presented later in this chapter.

This simple example shows that optimizing performance is a balance between con-

serving network resources (e.g. using only the shortest path) and employing additional

resources (e.g. using multiple paths) to surpass single path performance. First, at low lev-

els of network utilization, the optimization point favors using multiple paths because there

are plenty of underutilized network resources; thus using them allows increased throughput

and does not noticeably affect other connections. However, as network utilization increases

and the amount of underutilized resources decreases, the performance optimization point

shifts. After this point, a strategy that conserves resources achieves better performance

because the amount of additional resources used to deliver packets on non-shortest paths

causes enough contention to noticeably degrade performance of other connections, while

at the same time, offering little throughput gains for the transmitting node.

Thus one of the goals in designing a throughput based multipath protocol is to ensure

that the protocol can adapt to this shift in optimization point. The MPTCP protocol devel-

oped in this chapter has this adaptive ability. The description of the protocol is given in

succeeding sections.

105

7.3 TCP

Before presenting the MPTCP protocol, this section first describes the single path trans-

port protocol, TCP, on which MPTCP is based. Transmission Control Protocol (TCP) is

an end-to-end protocol that provides a reliable bit stream service between application pro-

grams [83]. That is, it ensures that the destination application receives the same data stream

sent by the sending application. Furthermore, TCP aims to fully utilize the available band-

width of the path it uses. In other words, TCP aims to maximize a connection’s throughput

while avoiding path congestion. Due to its efficiency and application interface, TCP has

become the predominant transport protocol in today’s Internet [122]. A brief description of

TCP’s data transfer mechanisms are given below.

In TCP, the TCP sender sends data to a TCP receiver using variable sized packets called

segments. For every segment sent by TCP, a sequence number is assigned to the segment.

These sequence numbers are used by the receiver to reassemble segments into their original

order and to acknowledge the reception of each segment. If the receiver does not acknowl-

edge a segment, the TCP sender will retransmit the unacknowledged segment. This ac-

knowledgment and retransmission scheme ensures that all data transmitted are eventually

received.

In addition to reliably transmitting data, TCP also provides flow control and congestion

control. Flow control ensures that the sender only sends as much data as the receiver

can buffer, and congestion control ensures a TCP connection never overloads a path with

data. That is, congestion control ensures that the path a TCP connection is using never

remains in a state of congestion. Congestion and flow control is achieved by the use of a

sliding window called the congestion window. The size of the window varies to indicate

the amount of unacknowledged data a sender is allowed to send without overloading the

path or the receiver.

Congestion control in TCP consists of three algorithms: slow start, congestion avoid-

ance, and fast retransmit and fast recovery. The slow start algorithm is active when the

congestion window is below a certain threshold called ssthresh. The sender in slow start

increases its congestion window by one segment each time an acknowledgment (ACK) is

received. Thus in slow start, every ACK causes the sender to send two new segments: the

first segment is sent to fill the congestion window made available by the ACK and the sec-

ond segment by slow start’s increase of the congestion window. In slow start, the size of

the congestion window is doubled each round trip time (RTT). The motivation for the slow

start algorithm is to quickly probe the amount of available path bandwidth.

The congestion avoidance algorithm is active when the congestion window increases

106

beyond ssthresh. In congestion avoidance, the sender increases its congestion window

by one segment every RTT. In this mode, the sender sends one new segment for every

acknowledged segment, and after n segments have been received where n is the current

congestion window size, the sender sends one additional segment. The goal of congestion

avoidance is to slowly probe the path for additional bandwidth.

The third TCP congestion control algorithm is the fast retransmit and fast recovery

mechanisms which deal with TCP’s response to lost segments. In TCP, a lost segments

is detected when the sender does not receive an ACK for the segment. A timeout mecha-

nism is used to trigger the sender to send unacknowledged segments; however, the timeout

mechanism typically takes a long time and thus reduces TCP performance. The fast re-

transmit mechanism speeds this process by retransmitting a “lost” segment after receiving

three duplicate ACKs. A TCP receiver sends a duplicate ACK whenever it receives a seg-

ment that is not the next segment in the sequence number. Using fast retransmit, the TCP

sender assumes that receiving three duplicate ACKs indicates that the oldest unacknowl-

edged segment never reached the receiver.

The fast recovery mechanism further optimizes fast retransmit by adjusting the con-

gestion window such that after a fast retransmit, the TCP sender is allowed to send half a

congestion window’s worth of new data. This optimization avoids stalling the sender while

waiting for the lost segment’s ACK. When the lost segment’s ACK is received , the fast

recovery algorithm terminates and reduces the TCP congestion window by half. After the

termination of fast retransmit and fast recovery, the TCP connection continues transmission

in congestion avoidance mode.

For more information about the TCP protocol, refer to [12,27,78,83,84,119,128,168].

7.4 MPTCP

This section describes the implementation of a reliable bit stream multipath transport pro-

tocol. The protocol, called MPTCP, aims to maximizes end-to-end throughput. MPTCP

requirements are that it

1. Performs congestion and flow control among multiple paths

2. Provides a reliable bit stream service (same as single path TCP)

The first requirement states that MPTCP must be sensitive to network congestion and

not overrun the receiver. Congestion control allows high effective throughput even at high

levels of network utilization. The second requirement states that an MPTCP receiver must

107

receive the same bit stream sent by the MPTCP sender. In using multiple path, this implies

that MPTCP need to fragment a sender’s data stream, send data on multiple paths, and

reconstruct the original data stream at the receiver.

The approach taken to implement MPTCP is to modify the single path TCP to use mul-

tiple paths. This approach has two main advantages. First, by extending TCP, one is able to

leverage the algorithmic advancements made in TCP; thus the performance improvements

made in TCP over the past decade can be directly translated into MPTCP performance.

The second advantage is that it allows MPTCP to readily take advantage of future TCP

improvements because MPTCP can easily upgrade whenever TCP upgrades.

7.4.1 The MPTCP Algorithm

This section describes the MPTCP algorithm. The base TCP algorithm used in MPTCP

is TCP New-Reno [84]. New-Reno was chosen because of its wide use and advanced

congestion control mechanisms. These mechanisms were described in the previous section.

MPTCP extends TCP very naturally. When a sender opens an MPTCP connection to

a destination, MPTCP opens K concurrent and independent TCP connections to the same

destination, where K is the number of paths the network provides between the sender and

receiver. In MPTCP, the TCP connection establishment procedure is unaltered (e.g. a

TCP three-way handshake is performed on each connection). Whenever the sender wishes

to send a data stream, it passes it to MPTCP. MPTCP then divides this data stream into

MPTCP segments and sequence numbers each segment�. The size of an MPTCP segment

is such that it is no larger than the size of the underlying TCP segment size (i.e. TCP’s min-

imum transmission unit) minus the length of MPTCP control information such as MPTCP

sequence number and MPTCP segment size. Because the MPTCP segment size does not

exceed TCP segment size, this ensures that TCP does not fragment an MPTCP segment

in order to send the data, increasing MPTCP’s overall efficiency. Notice that MPTCP’s

different sub-TCP connections may have different segment sizes; therefore the size of an

MPTCP segment size varies depending on the TCP connection it is sent on.

When a destination TCP connection receives segments from its TCP sending peer, it

reconstructs the received messages in the usual manner. The MPTCP receiver then reads the

TCP data stream to recover MPTCP control data. Using the control data, MPTCP receiver

then reconstructs the original MPTCP data stream from all its sub-TCP connections. This

�Notice there are two levels of sequence numbers, one for MPTCP and the other for TCP. The two se-

quence numbers are independent.

108

data stream is then returned to the receiving application. Notice that MPTCP does not

need to explicitly acknowledge segments because the underlying TCP connections ensure

reliable data delivery.

To make maximum use of each TCP connection, MPTCP sends on each of its TCP con-

nection the number of segments allowed by the connection’s congestion and flow control

mechanisms. To do this, MPTCP provides the next MPTCP segment to a TCP connec-

tion only when the connection is ready to send a new segment of data. This dynamic load

balancing allows MPTCP to fully utilize each TCP connection.

Because MPTCP uses TCP to transmit data, it inherits TCP’s congestion and flow con-

trol mechanisms. For example, when an MPTCP’s sub-TCP connection detects conges-

tion, the sub-connection will decrease its sending rate in the same manner as a normal TCP

connection. Thus, MPTCP’s congestion control is as good as TCP’s congestion control.

MPTCP performs flow control in the same way. Figure 7.2 shows an example MPTCP

connection.

Src Dst

A B C D E

3 C 2 B

D4

E5

A

Figure 7.2 : This example shows an MPTCP connection using three paths. The original
message is disassembled and sent on the three available paths using TCP. The destination
node reassembles the original message using MPTCP sequence numbers.

In Figure 7.2, Src uses MPTCP to send a data stream to Dst. The figure shows that

the Src MPTCP opens a TCP connection on each of the three paths provided by the net-

work. The TCP connections are represented by the horizontal lines in the figure. The

sender passes a message stream to MPTCP which are divided into five segments, labeled

A through E. MPTCP sequence numbers each segment and sends them onto the different

TCP connections. The boxes above each TCP connection in Figure 7.2 denote TCP frames

being transmitted by that connection. The number in the box denotes the MPTCP sequence

number, and the letter denotes the data segment. In this example, the MPTCP receiver has

already received segment A.

109

7.4.2 MPTCP Fairness

In a realistic multipath network, nodes using MPTCP will compete with nodes using other

protocols such as single path TCP. This scenario raises the concern that nodes using MPTCP

have an unfair advantage over TCP nodes because MPTCP not only uses multiple paths but

also competes for bandwidth equally with other TCP connections. This section extends the

MPTCP algorithm to address this fairness concern.

Before addressing MPTCP and TCP fairness, it is worth noting that TCP itself does

not provide fairness among competing TCP connections [168]. For example, in all current

implementations of TCP, if two connections share a link, then the connection with a lower

bandwidth-delay product will consume more bandwidth on that link. Furthermore, many

researchers such as Keshav and Kalmanek advocate that in order to enforce bandwidth

fairness, routers must support more intelligent queuing disciplines than Internet’s current

FIFO queuing [90, 113, 135]. This implies that MPTCP and TCP fairness is difficult to

achieve because the underlying network and TCP implementations do not have fairness

mechanisms.

In light of these factors, this section addresses the fairness concern by making MPTCP

secondary connections less aggressive in competing for bandwidth. A MPTCP secondary

connection is a connection that is not using the first path (primary path) in a path set. Details

of our solution are given below.

Congestion Backoff Percentage

To make an MPTCP’s sub-TCP connection less aggressive, we alter the TCP’s congestion

backoff strategy. Recall that in normal TCP, whenever the protocol senses network conges-

tion (e.g. via unacknowledged packets), TCP reduces its congestion window by ��
, or a

backoff percentage of 50%. To make secondary connections less aggressive, the proposal

sets secondary connection’s congestion backoff percentage to X%, where X � 	�. The

primary MPTCP connection is unaltered (i.e. its congestion backoff percentage is 50%).

The congestion backoff percentage also sets the connection’s ssthresh to same value as the

reduced congestion window size.

Notice that this method should affect a secondary connection’s throughput only when

congestion is encountered. That is, in the absence of contention from other connections, a

secondary connection should still exploits the bandwidth of a path as before. A secondary

connection’s performance should differ only when competing connections cause link con-

gestion. In this case, secondary MPTCP connections will back off more, thus giving the

110

TCP connections using that link more share of the bandwidth.

Unfortunately in practice, this is not always true: in TCP-new Reno for example, be-

cause the protocol probes network bandwidth by causing congestion, secondary connec-

tions will back off more even though there may not be any contending connections. On the

other hand, with more advanced TCP algorithms that do not probe path bandwidth through

causing congestion [27], their TCP secondary connections should behave the same in the

absence of congestion.

The impact of congestion backoff percentage on TCP fairness and MPTCP performance

is shown in Section 7.5.

7.4.3 Path Information

The previous sections describe the MPTCP protocol; however, they did not describe how

MPTCP obtains path information and how MPTCP specifies a packet’s path. This section

discusses these two issues.

For MPTCP to obtain information about the paths a network provides (both the type of

services and the number of paths in each service), it must query its local router. The result

of the queries should be a set of path IDs that the router calculates between network nodes.

Querying the local router is sufficient because the router knows the type and the number

of paths calculated to different destinations. How this information is exchanged and stored

between hosts and local routers depend on the details of the actual network. We believe that

this information can be efficiently propagated using a protocol similar to ones used in local

area networks to distribute information (e.g. NIS, ARP, and DNS). In addition, because this

information sharing is purely local, it does not have significant impact on the scalability,

cost, or performance of multipath networks. For these reasons, the actual protocols to

propagate this path information are not described in this thesis.

In order to specify a path in a multipath network, a packet needs to specify a destination

address and a path identifier. The forwarding method developed in Chapter 6 requires

that each packet is tagged with a path ID of the form [Dst, ��� ��] where Dst is the

destination address, �� specifies the path service, and �� specifies the particular path within

that service. Our implementation of MPTCP uses this path ID format.

In our simulator, IP headers are augmented with a path ID field. This field is interpreted

by routers to determine where to forward a packet; the forwarding procedure is given in

Chapter 6. Whenever MPTCP sends a segment, it sets the segment’s path ID field, thereby

ensuring that the segment travels the specified path.

111

7.4.4 Limitations

The MPTCP protocol described in this chapter uses multiple, independent TCP connec-

tions. That is, the different TCP sub-connections operate independently and are unaware

of each other. The advantage of this approach is that the MPTCP protocol makes minimal

modification to TCP, which allows MPTCP to easily change and upgrade the underlying

TCP protocol. The disadvantage is that the different connections are not able to work

together. This section lists some of the limitations of MPTCP as well as some possible

improvements.

One limitation of non-cooperative sub-connections is that a sub-TCP connection cannot

reduce the retransmission duties of another connection. For example, consider an MPTCP

connection that opens three TCP sub-connections and that connection � has the highest

bandwidth path to the destination. Suppose that during data transmission, this connection’s

path becomes very congested and subsequently drops many of this connection’s packets. In

MPTCP, connection � is solely responsible for retransmitting all the lost segments; this may

be many segments depending on the congestion window size and the severity of the con-

gestion. In an ideal situation, however, MPTCP should be able to transmit connection �’s

lost segments on different connections in order to off load the connection’s retransmission

duties.

Notice that not off loading connection �’s unacknowledged segments to other con-

nection may not reduce the amount of segments the sender sends to the receiver because

MPTCP dynamically load balances between TCP connections. That is, MPTCP will not

give new data to TCP connections that are not ready to transmit new data. Despite dy-

namic load balancing, requiring a connection to retransmit a large number of segments

forces the MPTCP receiver to buffer more segments from other connections. This results

in higher receiver memory usage, increased MPTCP connection latency, and potentially

lower throughput.

Another example where cooperating TCP connections can improve performance is

where a connection’s forward path is underutilized but the reverse path is congested. In

this scenario, even though a TCP connection’s forward path can transmit more segments,

TCP will not send them because the ACKs are returning slowly or are being lost on the

reverse path. Ideally, in this case, different sub-TCP connections should cooperate such

that the receiver sends ACKs on the least congested reverse path. This way, the sender can

fully exploit the bandwidth of its forward paths. However, this optimization is not possible

in MPTCP because its sub-TCP connections are independent,

In short, designing a multipath transport protocol requires a tradeoff between the so-

112

phistication of the protocol and its performance. This section indicates that MPTCP can

obtain higher performance if its sub-connections cooperate. However, the potential increase

in performance comes at the cost of implementing cooperative mechanisms. In this thesis,

we make the tradeoff toward simplicity rather than performance. Simulations show that

the despite its simplicity, MPTCP is able to effectively exploit available network resources.

These simulation results are given next.

7.5 MPTCP Experiments

This section experimentally evaluates MPTCP performance. Because MPTCP increases

end-to-end throughput, the evaluation of MPTCP is in terms of effective throughput. In ad-

dition, fairness issues between MPTCP connections and other single path TCP connections

are also addressed here.

MPTCP throughput is evaluated here not only because throughput is a common network

performance metric, but also because many applications such as FTP will benefit from in-

creased network throughput. The experiments conducted in this section examine MPTCP

performance with varying network topologies and traffic patterns. The results show that

MPTCP effectively increases network throughput, even under high network utilization lev-

els.

Another issue this section addresses is the fairness of MPTCP. Since MPTCP uses more

paths and competes with other single path TCP connections, it seems that TCP performance

would significantly degrade when competing with other MPTCP connections. The exper-

iments in this section evaluate the performance of TCP connections versus MPTCP con-

nections with different congestion backoff percentages. The result of the simulations show

that congestion backoff slightly improves the throughput of competing TCP connections.

The experiments in this section are organized as follows. In Section 7.5.1, the per-

formance of MPTCP is simulated on a simple, 3 node network. Section 7.5.2 uses the

same network to evaluate MPTCP fairness with respect to TCP connections. Finally, Sec-

tion 7.5.3 verifies MPTCP performance and fairness in a more realistic network scenario

with an Internet-like network topology and traffic pattern. The conclusion of these experi-

ments is that MPTCP effectively utilizes available network resources and that its increased

performance has nominal effects on other TCP connections.

113

7.5.1 Aggregate Throughput

The experiment conducted in this section measures MPTCP throughput. This experiment

uses a basic three node network shown in Figure 7.1. The simple network is used to under-

stand basic MPTCP behaviors.

In the network depicted in Figure 7.1, all links are full- duplex and have equal capacity

and delay, 1000KB/s (kilobytes per second) and 10us respectively. In addition, each router

can buffer up to 50 packets for each of its out-going links. The multipath routing algorithm

provides two link disjoint paths between each node, the one- and two-hop paths. Each node

has two clients that send a burst of packets to a random client on another node, and the

interval between bursts are exponentially distributed. The average burst interval is varied

to change the network utilization level. The burst size is 1000 packets and each packet is

1500 bytes long.

0

50

100

150

200

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 L

in
k

T
hr

ou
gp

ut

Network Input Percentage

Non-Congestion Aware End-to-End Throughput

Multipath Striping
Single Path TCP

0

50

100

150

200

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 L

in
k

T
hr

ou
gp

ut

Network Input Percentage

Congestion Aware End-to-End Throughput

MPTCP CB 25%
MPTCP

Single Path TCP

Figure 7.3 : Non-congestion aware multipath protocol versus MPTCP on a triangle net-
work. The left figure shows the throughput percentage of a naive striping multipath pro-
tocol versus single path TCP. The right figure shows the performance of MPTCP versus
single path TCP.

The graphs in Figure 7.3 features four transport protocols: TCP, naive multipath striping

protocol, MPTCP without congestion backoff, and MPTCP with 25% congestion back-off

percentage. TCP and the two MPTCP protocols have been described earlier. The multipath

striping protocol works as follows: the multipath striping protocol clocks the sending of its

data at full link capacity and distributes the data by striping them along the two available

paths. That is, given N packets destined for destination D, the protocol sends packet
i on

the one-hop path and packet
i � � on the two-hop path to D, � � i � N�
. Although

the striping protocol does not perform congestion control, it does acknowledge received

packets and retransmit lost ones.

114

In Figure 7.3, the y-axis represents the average end-to-end client throughput as a per-

centage of link capacity, and the x-axis denotes the amount of traffic injected into the net-

work, normalized by network capacity. Thus, x � ���� denotes all nodes (there are 2

traffic generating clients in each node) simultaneously sending packets. The throughput

result of each protocol is represented by their respective labeled curve. In each experiment,

all clients are using the same protocol to transmit data to each other.

In both graphs, as the frequency of client transmission increases (marked by network in-

put percentage on the x-axis), the average effective performance decreases. This is because

as clients send more data, the amount network contention increases, resulting in lower end-

to-end average throughput. Notice that although average end-to-end throughput decreases

with increase network traffic, the aggregate network throughput increases because the net-

work is more fully utilized.

The left graph in Figure 7.3 compares the performance of the naive multipath striping

protocol versus TCP. This graph shows that when the network is relatively unused, the

striping protocol performs better than its single path counterpart. However, when clients

send data at greater than 60% of network capacity, the performance of the striping multipath

protocol quickly degenerates. The reason for the degradation is that the striping protocol

does not adapt to the shift in performance optimization.

As stated in Section 7.2, in order to maximize throughput in a multipath network, a pro-

tocol needs to alter its data transmission strategy in response to network traffic conditions.

At low network utilization (low traffic levels), using more network resources (in terms of

using more paths) increases effective throughput. However, at high network utilization,

the performance optimization point shifts so that conserving resource usage achieves better

performance. In the three node topology, the optimization point begins to favor conserving

resources when utilization reaches 60%. At this point, a strategy that conserves resources

achieves better performance. The inability to adapt to this optimization shift is indicated

by the degradation of the striping protocol’s performance curve.

The right graph in Figure 7.3 shows that MPTCP adapts to the optimization shift (both

with and without congestion backoff). The graph shows the average end-to-end perfor-

mance when the nodes are using MPTCP versus TCP. Notice that MPTCP performance is

consistently better then TCP, even when nodes are transmitting all the time. This demon-

strates that MPTCP is effective in shifting its transmission strategy as the performance

optimization point shifts. For example, at full network utilization, MPTCP’s performance

gracefully degrades to the TCP performance, which is the optimal point at full utilization.

This ability to gracefully degrade to TCP indicates the effectiveness of MPTCP’s conges-

115

tion control mechanism at exploiting available bandwidth without incurring performance

degradation due to network contention.

The right graph in Figure 7.3 also shows the performance difference of non-congestion

backoff MPTCP versus MPTCP with 25% congestion backoff percentage. As the perfor-

mance curves show, the congestion backoff percentage has nominal affects on competing

MPTCP performance.

Comparing the two graphs, the naive striping protocol performs better than MPTCP

only when the network is less than 20% utilized. The reason is that the MPTCP congestion

control mechanisms are conservative and thus take longer to fully utilize available path

bandwidth. However, the same conservative mechanisms allow MPTCP to significantly

outperform the naive protocol at high network utilization levels.

The result of this experiment is that MPTCP is able to effectively use multiple paths

to increase throughput, and that even during high levels of network contention, MPTCP

outperforms its single path counterpart.

7.5.2 MPTCP Congestion Backoff Percentage

The previous experiment shows that MPTCP outperforms TCP when all clients are using

the same protocol. As mentioned earlier, in a realistic multipath network, nodes using

MPTCP will be competing with nodes using TCP. This section examines the impact of

congestion backoff percentage on MPTCP performance and the performance of competing

TCP connections.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 M

ax
im

um
 T

C
P

 S
in

gl
e

X
P

ut

Congestion Backoff Percentage

SP Competing with MP On 3 Node Network

SP -1
SP -2
SP -3
SP -4

Figure 7.4 : Congestion backoff percentage on a three node network.

The impact of MPTCP congestion backoff percentages is shown in Figure 7.4. The

curves labeled SP-x denote the throughput obtained by a TCP connection while compet-

116

ing with x MPTCP secondary connections (x ranges from 1 to 4). The simulations were

conducted on the three node network in Figure 7.1. In this experiment, N1 establishes a

TCP connection and sends data to N3 while x MPTCP connections from N2 simultane-

ously transfer data to N3. Thus, N2’s the secondary MPTCP connections compete with

N1’s TCP connection on link (N1, N3).

In Figure 7.4, the y-axis denotes the TCP throughput as a percentage of TCP’s through-

put without any competing connections. The x-axis indicates the congestion backoff per-

centage of the MPTCP secondary connection(s). The throughput of the secondary connec-

tions is not shown in the figure.

As the graph shows, TCP is able to obtain higher throughput when secondary MPTCP

connections back-off more. However, the performance gain is not very much. For exam-

ple, consider the SP-1 curve which shows a single TCP connection competing with a single

MPTCP secondary connection (the top curve in Figure 7.4), at congestion backoff percent-

age of 25%, the TCP connection obtained 60% of the available TCP bandwidth. This is

only 10% more than competing with a secondary MPTCP connection at 50% congestion

backoff percentage.

Contrary to the experimental results, one expects that TCP performance would be more

or less inversely proportional to the MPTCP congestion backoff percentages. Detailed

analysis of TCP traces shows the cause of the observed behavior. As the congestion back-

off percentage decreases, MPTCP secondary connections retract their congestion windows

more whenever they sense congestion. This has the temporary effect of giving the TCP

connection more of the network bandwidth. However, as the MPTCP/TCP connections re-

sume and increase their sending rates, the network eventually drops packets. When packets

are dropped, the majority of dropped packets will be from the TCP connection because this

connection is sending the majority of packets on the congested link. These packet drops

reduce the TCP congestion window, decreasing its throughput.

Because the probability that a connection’s packets are dropped on a congested link is

proportional to the number of packets the connection sends on that link, the performance

gains TCP obtains from less aggressive secondary MPTCP connections are diminished.

Therefore, TCP performance does not significantly exceed the performance of MPTCP

secondary connections.

In spite of this phenomenon, decreasing congestion backoff percentage does give TCP

connections slightly more share of the network bandwidth. This motivated us to set the

MPTCP congestion backoff percentage at 25%.

117

7.5.3 Foreground and Background Traffic

The previous two sections evaluate the performance and fairness of MPTCP on a three node

network with simple traffic patterns. The purpose of this section is to determine whether

the MPTCP benefits observed in the three node network can be translated in a larger, more

realistic network and traffic model. In addition, fairness is also evaluated in this section

by measuring the effect of MPTCP on TCP performance. Specifically, whether MPTCP

performance improvements come at the expense of other TCP connections.

To better reflect the Internet topology, this experiment uses a cluster network topology.

The simulated network is composed of 195 links and 10 cluster networks, with 10 nodes

per cluster. Refer to Section 9.1 on the construction of cluster networks. Every node in the

network can send and receive data, and the capacity removal algorithm is used to compute

paths between nodes (Chapter 6). For a more realistic traffic pattern, a combination of

foreground and background traffic is used. A foreground traffic node transmits a large

stream of packets (5,000 packets) to a receiving node, which is randomly chosen with

the restriction that it must be in a different cluster than the sending node. A background

traffic node sends a stream of packets ranging from 100 – 2,000 packets to another network

node chosen at random without restrictions. After transmission, background nodes wait an

exponentially distributed amount of time (a Pareto distribution with average of 20 seconds)

and then proceed to transfer data to another destination node picked at random. Three of

the 100 nodes are randomly chosen to transmit foreground traffic. The remaining 97 nodes

generate background traffic. All nodes transmit using either MPTCP or TCP. The results

of the simulations are collected when all foreground nodes finish transferring.

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
K

B
/S

)

Background Traffic Stream

Foreground MPTCP Traffic (CapRemoval, 100N-195L)

MP3-MP3
MP3-SP

MP2-MP2
MP2-SP
SP-MP2

SP-SP

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
K

B
/S

)

Background Traffic Stream

Background MPTCP Traffic (CapRemoval, 100N-195L))

MP3-MP3
MP3-SP

MP2-MP2
MP2-SP
SP-MP2

SP-SP

Figure 7.5 : The foreground and background performance of MPTCP using the capacity
removal algorithm. The left graph shows the average foreground throughput and the right
graph shows the average background throughput.

118

The two graphs in Figure 7.5 show the MPTCP and TCP foreground and background

traffic throughput. In both graphs, the x-axis shows the burst sizes of the background

traffic, which range from 100 to 2,000 packets, and the y-axis shows effective throughput

in KB/s. Each curve is labeled to represent the transport protocol used by foreground and

background nodes. The first label denotes the foreground transmission style, and the second

denotes the background transmission style. SP stands for using TCP, and MP2 and MP3

stand for using MPTCP with 2 and 3 paths respectively.

For example, the curve with label MP3-SP denotes that the experiment was conducted

where the foreground nodes transmitted using 3-path MPTCP, and the background nodes

used TCP. The analysis of Figure 7.5 is divided into MPTCP performance and MPTCP’s

effect on TCP connections. These analyses are given below.

MPTCP Performance

The left graph in Figure 7.5 shows the foreground performance curves. The lowest two

curves show the foreground throughput of TCP connections. The two curves only differ

in their background transmission styles. Similarly, the middle two curves show 2-path

MPTCP performance, and the two highest curves denote the 3-path MPTCP foreground

performance.

Notice that as network utilization increases (marked by increasing background traffic

bursts), both 2- and 3-path MPTCP gracefully degrades its performance to reflect shift in

the performance optimization point. As in the three node network, this shows that MPTCP

is able to effectively increase performance even at high network utilization levels. In addi-

tion, this graphs confirms two important points: 1) the capacity removal algorithm effec-

tively offers throughput-service paths, and 2) MPTCP is able to increase throughput given

additional network resources.

The right graph in Figure 7.5 shows the background throughput performance. The

curves are labeled in the same manner as foreground performance graph. The bottom 3

coinciding curves denote the background TCP performance. The difference in these curves

is the foreground transmission style. The middle 2 curves (SP-MP2 and MP2-MP2) show

the background performance of 2-path MPTCP. These two curves are just below the MP3-

MP3 curve. Notice at low background burst sizes, the background traffic performance

does not achieve the same level of throughput as the foreground traffic. The reason is

that the small burst sizes were not large enough for the TCP algorithms to achieve steady

state. Thus, the background performance differences are not as evident as in the foreground

performance curves. Despite the smaller performance distinction, the higher performance

119

achieved by 2-path and 3-path background MPTCP connections again demonstrates the

protocol’s ability to increase throughput given more network resources.

In summary, the performance result in this subsection confirms that the MPTCP’s

throughput on the three node network translates to a larger and a more realistic network.

In addition, MPTCP’s ability to increase network performance when more paths are calcu-

lated demonstrates that the capacity removal algorithm successfully provides high through-

put paths.

MPTCP and TCP connections

The second issue this experiment reveals is the interaction between MPTCP and TCP con-

nections. Notice that for both the foreground and background graphs, the throughput curves

are grouped by transmission modes (i.e. SP, MP2, or MP3). These tight groupings show

that the performance obtained by foreground transmission mode is largely independent of

background transmission mode, and vice versa. This shows that the MPTCP performance

increase has nominal impact on the performance of TCP connections.

A good example is the SP-MP2 and SP-SP foreground performance curves. Here, the

two foreground TCP’s performance curves are almost identical while SP-MP2 background

performance is consistently better than SP-SP background performance. This shows that

the background MP2 and SP connections has roughly the same effect on the TCP fore-

ground connections. Similarly, the tight grouping of background performance curves be-

tween SP-SP, MP2-SP, and MP3-SP show that the 2- and 3-path MPTCP foreground con-

nections do not noticeably affect the performance of background TCP connections.

However, this result seems counter-intuitive. Intuitively, given that MPTCP uses more

network resources to increase its throughput, it seems that this performance increase should

come at the expense of the performances of other connections. The reason this intuition

is flawed is that it overlooks the fact that network traffic is bursty; therefore even under

heavy network usage, there are still underutilized network resources in the network. So if

MPTCP mainly uses these resources to increase its performance, it will not significantly

degrade the performance of other connections. The tight performance groupings in the

simulation results show that most of the performance gains obtained by MPTCP are due to

using otherwise underutilized resources.

The conclusion of this experiment is that 1) MPTCP successfully increases end-to-end

performance and 2) that the majority of performance increase obtained by MPTCP does

not come at the expense of other TCP connections.

120

7.5.4 Network Resources and Throughput

The previous experiments show that using capacity removal paths, MPTCP can increase

network performance over TCP; however, the experiments did not show the dependency

between the physical network connectivity and multipath routing’s performance potential.

This dependency is important because it indicates how much a given network can reap

the performance benefits offered by multipath routing. The purpose of this section is to

determine this dependency by evaluating the relationship between network connectivity

and MPTCP performance. To this end, the experiments in this section vary two parameters:

1) the network connectivity and 2) the number of paths calculated between nodes.

The experiment conducted in this section uses a 20 node network with the number of

links ranging from 40 to 120 (network connectivity from 2 to 6). The network topology is

randomly generated and all links have equal bandwidth and latency. The capacity removal

algorithm is used to compute paths between nodes. In the simulations, each node in the

network randomly selects another node and sends a burst 5,000 packets. The inter-burst

time is randomly and exponentially distributed using Pareto distribution with a 2 second

average. This experiment used a large burst size to obtain steady-state throughput and small

inter-burst times to keep the overall network traffic high. Figure 7.6 shows the simulation

results.

0

50

100

150

200

2 2.5 3 3.5 4 4.5 5 5.5 6

P
er

ce
nt

ag
e

of
 L

in
k

T
hr

ou
gp

ut

Network Connectivity

Link Xput for SP, MP2, and MP3, 1 second interburst delay

MP-3
MP-2

SP

Figure 7.6 : MPTCP throughput on a 20 node network with varying network connectivity.

The x-axis in Figure 7.6 denotes network connectivity, and the y-axis denotes through-

put of MPTCP and TCP connections normalized by link capacity. Each curve shows the

average throughput of all nodes using the transmission style denoted by the curve’s label.

This figure shows three noteworthy results. First, 3-path MPTCP achieves the highest

121

performance for all network connectivities, followed by 2-path MPTCP and TCP. This

confirms the performance MPTCP benefits observed in the previous experiments.

Second, the performance difference of using multiple paths increases as network con-

nectivity increases. This correlation between performance increase and connectivity shows

that the more connected a network, the more end-to-end path resources are available (as

calculated by the path calculation algorithm), resulting in higher MPTCP throughput. As a

consequence, this implies that the benefits of multipath routing are less in sparse topologies

and more in dense topologies.

The third observation is that single path routing severely underutilizes the resources

of a well connected network. Notice that the performance of TCP increased only slightly

as connectivity increased from 2 to 6. In contrast, 2-path and 3-path MPTCP effectively

utilize the available connectivity to increase throughput. Furthermore, the graph shows that

3-path MPTCP obtains higher performance gains than 2-path MPTCP.

These results show that the combination of the capacity removal path calculation algo-

rithm and the MPTCP protocol effectively utilizes available physical network resources to

increase end-to-end throughput.

7.6 MPTCP Summary

This chapter develops a transport protocol MPTCP that increases end-to-end throughput

using multiple paths. MPTCP provides a reliable bit-stream service and operates by estab-

lishing multiple independent single path TCP connections. Moreover, the MPTCP sender

dynamically load balances the different TCP connections by sending data on each connec-

tion according to the connection’s sending rate. The MPTCP receiver then reassembles the

data from its receiving TCP connections.

Extensive simulations were conducted in this chapter that demonstrate the effectiveness

of MPTCP. The simulations show that MPTCP is able to effectively increase end-to-end

throughput in large, Internet-like cluster networks and under both light and heavy network

utilization levels. In addition, the experiments demonstrate that the performance improve-

ments achieved by MPTCP do not necessarily come at the expense of other TCP connec-

tions, but rather, most of the performance improvements are obtained by using otherwise

underutilized network resources. The conclusion of this chapter is that MPTCP effectively

utilizes multiple paths to increase end-to-end throughput.

122

Chapter 8

Multipath Routing Algorithms

The previous three chapters presented components necessary to make multipath routing

viable: algorithms that compute multiple paths, an efficient multipath forwarding method,

and a multipath transport protocol that maximizes end-to-end throughput. This chapter

implements two multipath routing algorithms using the developed path calculation and

path forwarding components. The two multipath routing algorithms, MPDV and MPLS,

based on the Distance Vector and the Link State routing algorithms respectively.

Both routing algorithms developed here use the suffix matched forwarding method and

calculate capacity removal paths. Suffix matched forwarding was chosen for its efficiency,

and the capacity removal paths are calculated because this path calculation algorithm high-

lights some key differences between DV and LS path computation styles. Moreover, since

the next chapter evaluates the throughput offered by a multipath network, the capacity re-

moval routing algorithms described in this chapter can thus be directly applied to next

chapter’s experiments.

The description of MPDV and MPLS are given below. Section 8.1 presents MPDV, and

Section 8.2 the MPLS algorithm.

8.1 The MPDV Capacity Removal Algorithm

The Distance Vector (DV) routing algorithm is widely deployed in today’s networks. Rout-

ing protocols that use this algorithm include RIP [7], BGP [133], and EPG. For a basic

description of the algorithm, refer to Section 2.1. This section lists the extensions needed

to enable a multipath DV algorithm to calculate capacity removal paths.

The description of MPDV is divided into two parts: the additional data structures

needed to implement capacity removal MPDV and the actual path calculation algorithm.

8.1.1 Data Structure Costs

This subsection describes the additional data structures needed to convert single path DV

(SPDV) to calculate capacity removal paths and to use the suffix matched forwarding

123

method. Data structure changes are needed in MPDV forwarding tables and in MPDV Dis-

tance Vector packets (MPDVP’s). MPDVP’s are multipath versions of single path DVP’s,

and are exchanged by MPDV routers to compute paths between nodes.

MPDV Forwarding Tables

In the basic SPDV algorithm, each forwarding table entry consists of three elements: the

destination address, the next-hop neighbor on the known least-cost path to the destination,

and the cost of that path. Extending DV to use the suffix matched forwarding method

requires adding two local path IDs to each forwarding table entry, �� and �� (refer to

Section 6.2.2 for details).

However, adding �� and �� does not provide enough information for MPDV to calculate

capacity removal paths. To calculate these paths, MPDV needs to add, for each forwarding

table entry, a capacity-source route of the path that the entry advertises. A capacity-source

route lists a path’s links and the capacity of each link. Capacity-source routes are needed

for two reasons: first, the source route component is used to eliminate looping paths, and

second, the capacity of each link is used by the capacity removal algorithm to calculate

paths.

MPDVPs

These additional elements in a router’s forwarding table entries also increase the size of

MPDVP’s. In SPDV, a DVP contains a list of path entries where each entry consists of

two elements: a path’s destination address and the cost of the path. As given in Sec-

tion 6.2.2, the suffix matched MPDV extension requires adding a local path identifier �

to each MPDVP entry in order to ensure correct path forwarding. In addition to this lo-

cal path ID, the capacity removal MPDVP entry also needs to carry the capacity-source

route of the advertised path. This addition ensures that whenever a router receives a path

from a MPDVP, the router has the necessary path information to perform capacity removal

computation.

In summary, the additional data structure overhead of MPDV occurs in the routing for-

warding tables and MPDVP messages. For the forwarding table, the extra router memory

overhead is 1) capacity-source route and 2) two local path IDs for each path. To break down

this cost, each path ID takes 1 byte and each element in a capacity-source route is 5 bytes

(4 bytes for link specification and 1 for denoting link capacity). As for MPDV message

overheads, two extra elements are added per MPDVP entry: 1) capacity-source route and

124

2) one local path ID for each advertised path.

The way these data structure additions are used to compute capacity removal paths is

described next.

8.1.2 The MPDV Algorithm

Given the extra information in the MPDVP and forwarding table entries, each MPDV router

calculates capacity removal paths. The procedure to establish suffix-matched local path IDs

for path forwarding is not given here because it is described in Section 6.2.

The description of capacity removal MPDV starts with MPDVP construction. When a

router constructs a MPDVP, it adds a MPDVP entry for every path it wants to advertise.

A MPDVP entry consists of the path’s destination address, cost, local path ID, and the

path’s capacity-source route. This information is contained in the router’s forwarding table

entry for that path. On receiving a MPDVP, a router updates the costs of each advertised

path by adding the cost of the incoming link to the advertised paths; the incoming link

is the link on which the router receives the MPDVP. In addition, the router appends the

incoming link and the link’s capacity to each MPDVP entry’s capacity-source route. These

two updates ensure that every path advertised in the MPDVP correctly reflects the cost and

capacity-source route with respect to the receiving router.

After updating each advertised path, a router executes the capacity removal MPDV

algorithm as follows. First, the router discards any MPDVP paths that contain loops. A path

loops if it contains a link in its capacity-source route that appears more than once. After

discarding looping paths, the router combines, for each destination listed in the MPDVP,

the paths it already has to that destination (stored in its forwarding table) with the MPDVP

paths to that destination. Now that all available paths to a destination are grouped together,

the capacity removal algorithm proceeds to select, for each destination, the best K paths in

that group.

Selecting K paths to destination D starts by sorting all available paths to D by path

cost. We refer to Pi as the path with the ith smallest cost to D and Li as the set of links

in Pi. Notice that Li and its capacity are given in Pi’s capacity-source route. Next, for

each Pi, its capacity Cap�Pi� is calculated as MIN�Cap�l����l
 Li. If Cap�Pi� � a

preset minimum capacity threshold, then Piis discarded. Otherwise Pi is admissible. If Pi
is admissible, then �l
 Li��j � i��l�
 Lj , if l � l�, then Cap�l�� � Cap�l��� Cap�Pi�.

That is, if path Pi is admissible, then subtract the capacity of Pi from all links in Pi that

also appear in path Pj , j � i. This process starts from the least cost path to D, P�, and ends

when all paths in the group are processed or K admissible paths are found. Finally, the

125

router installs the selected paths into its forwarding table for destination D and discards the

remaining paths. This capacity removal process is repeated to find K best paths to every

destination. The pseudocode of the algorithm is shown in Figure 8.1.

For each destination, the complexity of the capacity removal MPDV algorithm, as given

in Figure 8.1, is linear in the number of advertised paths and the length of each path. Since

there are N destinations and each router receives at most K paths per destination, the

computational complexity of the MPDV algorithm is O�NKL�, where L is the average

path length. This is a factor of KL more than SPDV, whose complexity is O�N�.

Notice that the paths calculated by MPDV are slightly different from the centralized

capacity removal algorithm described Chapter 5. In the centralized algorithm, the ith path

to Dst is the ith shortest path to Dst with path capacity greater than the capacity threshold,

where path i’s capacity is calculated after subtracting path j’s link capacities, � � j � i.

In contrast, with MPDV, R’s ith path to Dst is the ith shortest path advertised by R’s

neighbors with path capacity greater than the capacity threshold (again, after subtracting

path j’s link capacities, � � j � i). Because the MPDV algorithm calculates paths based

on paths advertised by neighboring routers, the MPDV algorithm always calculates suffix

matched paths. In comparison, the centralized algorithm calculates its paths regardless of

the paths calculated by neighboring nodes, and as a result, the centralized algorithm does

not always calculate suffix matched paths. Chapter 9 shows that this slight difference in

path calculation has an impact on the number of calculated paths and on the amount of

offered performance.

8.1.3 MPDV Capacity Removal Example

Figure 8.2 shows an example of MPDV’s capacity removal computation process. For this

example, K is 3 and the minimum capacity threshold is 0. In the figure, boxes denote

routers and edges denote links, and all links have unit costs. The edges are labeled by two

characters: the first letter is the link’s name and the second denotes the link’s capacity. For

example, A-2 labels link A with 2 capacity units. The dotted lines in the figure show the

paths N	 receives from its neighbors to node N�.

The MPDV paths are propagated by MPDVP exchanges: initially, N� sends a MPDVP

to its neighbors that contains a path to itself. When N
 and N� receive this MPDVP,

they append the incoming link’s label and capacity to the MPDVP entry. Specifically, N

appends link A with capacity 2 to the capacity-source route to N�; therefore the capacity-

source route of the path is [A-2]. N� does the same and the capacity-source route to N�

126

Let ADst = set of advertised paths to Dst

Let FDst = set paths to Dst in router forwarding table

Let Pi = ith least cost path in TDst

TDst � ADst � FDst;

FDst � �;

i = 1;

while(j FDst j� K or TDst �� �)

TDst � TDst � Pi;

if (FDst �� �)

Max cost = Cost(Pi) * Cost BOUND;

if (Cost(Pi) > Max cost)

break;

if (Cap(Pi) � Capacity Threshold)

continue;

FDst = FDst � Pi;

i++;

�l � Pi� �Pj � TDst, if (l == l� � Pj)

Cap(l�) = Cap(l�) - Cap(Pi);

Figure 8.1 : The pseudocode for the MPDV capacity removal algorithm. The code shows
the calculation of K capacity removal paths to Dst.

127

[A-2, B-1, F-1]

[C-1, G-1]

[A-2, D-1, G-1]

[A-2, E-1]

N1
B-1

F-1
E-1

G-1

D-1

N5

C-1

A-2

N4

N2N3

Figure 8.2 : An example of the capacity removal MPDV algorithm. The dotted lines show
the paths to N� that N	 receives from its neighbors.

becomes [C-1].� N
 and N� then compute paths based on the new information given by

N�’s MPDVP and propagate the newly computed paths. This example shows that N	 has

received 4 paths to N�: (C,G), (A,E), (A,D,G), and (A,B,F). In Figure 8.2, the capacity-

source route of each path is given in “[]” next to the path.

After N	 receives MPDVPs from its neighbors advertising these paths to N�, N	

begins the capacity removal algorithm. First N	 sorts the paths by cost: (G,C), (E,A),

(G,D,A), (F,B,A). Next, N	 inspects each path in ascending order of path cost. The first

path, (G,C), is admissible because Cap�C�G� � � � �. Therefore the link capacities of C

and G are subtracted by Cap�C�G� � �. The path (E,A) is also admissible, and the capac-

ities of links E and A are also subtracted by 1. Next, N	 considers the path (G,D,A). Here,

Cap�G�D�A� � � because the capacity of link G is 0 (link G’s capacity was subtracted by

1 from path (G,C)). Since Cap�G�D�A� � �, this path is discarded. Finally, path (F,B,A)

is admissible with capacity 1. With K � �, N	 keeps paths (G,C), (E,A), and (F,B,A) in

its forwarding table. Now whenever N	 advertises paths to N�, it puts these three paths

into its MPDVP.

�Notice that because source routes are appended, the sequence of links in a capacity-source routes is the

reverse of the actual paths. This does not affect the correct functioning of the algorithms.

128

8.1.4 Capacity Removal MPDV Costs

Given the capacity removal MPDV algorithm, this subsection discusses the algorithm’s

costs. The MPDV costs are categorized by 1) per packet forwarding overhead, 2) router

CPU usage, 3) routing message, and 4) router memory overhead.

The first and the most performance critical overhead is the per packet path forwarding

overhead. This overhead consists of the additional per packet path ID cost (in the number of

bits) and additional router processing needed to interpret path IDs and to forward packets.

Because of the suffix matched forwarding method, MPDV’s per packet overhead of path

specification is constant and fixed-length. Moreover, the suffix matched path IDs are small

integers, thereby allowing efficient router forwarding table lookup which decreases the

per packet forwarding time [149, 160]. With low per packet forwarding overhead, MPDV

decreases the time to transmit and forward data packets.

The second and third MPDV cost categories are router CPU usage and routing mes-

sages. With respect to the message complexity, the previous section showed that each

MPDVP contains at most O�NK� entries where each entry is length O�L�. Thus the mes-

sage complexity of each MPDVP is O�NKL�, a factor of KL more than that of SPDV.

The message complexity of the entire MPDV algorithm is the product of the complexity

of individual MPDVP’s and the number of MPDVP’s sent. Although it has been shown that

the worse case number of messages for a Distance Vector style algorithm is O�
N � [25],

the average case complexity is ��NM��ln�M���� [23,157]; hereM is the average number

of neighboring routers. Therefore the average message complexity of the capacity removal

algorithm is ��NKL �NM��ln�M���� � ��N�M�KL�ln�M����. Again, this is a factor

of KL more than that of SPDV.

Moreover, because DV style algorithms exchange paths via messages, the computa-

tional complexity is the same as the message complexity. That is, the average MPDV

computational complexity is also ��N�M�KL�ln�M����.

With respect to MPDV’s router memory requirement, MPDV routers need memory pro-

portional to the number of paths calculated and their length, O�KNL�. This is compared to

SPDV where memory and message overheads are proportional only to the number of paths

calculated O�N�. However, it is worth noting that although MPDV requires KL additional

memory, this does not mean that the forwarding tables are KL times larger (for simplicity

in our previous discussion, we used the term “forwarding table overhead” synonymously

with “router memory overhead”). The reason is that the capacity-source routes are not

needed for packet forwarding; therefore these source routes can be stored elsewhere, say

in slower and cheaper router memory. Thus, although the MPDV message overhead is KL

129

more than SPDV, the performance critical forward table overhead is actually only a factor

of K .

In summary, capacity removal MPDV overheads in router memory, router CPU, and

routing messages are a factor KL more than SPDV. In addition, the performance critical

cost category, per packet forwarding overhead, is low because the suffix matched forward-

ing method uses small integer, fixed-length path IDs, allowing efficient packet transmission

and forwarding.

8.2 The MPLS Capacity Removal Algorithm

This section describes the implementation of an LS based multipath routing algorithm that

calculates capacity removal paths. The LS routing algorithm is the basis of many widely

used routing algorithms. Unlike DV, LS routers share topology information and each router

computes paths with the knowledge of the entire network graph. As the implementation

shows, this style of path computation has a large impact on the amount of resources LS

needs to compute multiple paths.

8.2.1 The MPLS Algorithm

Before describing the MPLS algorithm, we briefly review of the traditional single path LS

(SPLS) algorithm. In SPLS, each router periodically broadcasts its local topology in a

Link State Packet (LSP). This information consists of the router ID and the cost of each

of its out-going links. Routers gather these broadcasts, locally construct the entire network

graph, and perform a shortest path computation to all other nodes. For each router, the

result of the path computation is stored in its forwarding table.

To convert SPLS to MPLS that compute capacity removal paths is very straightforward.

First, the LSP is augmented with a capacity component: an LSP now consists of the sending

router’s ID plus the cost and capacity of each of the router’s out-going links. MPLS routers

periodically broadcast their LSPs as in the SPLS algorithm. After all routers broadcast

their LSPs, each router constructs the entire network graph knowing the cost and capacity

of each network link. After collecting this information, routers individually execute the

centralized capacity removal path calculation algorithm.

The centralized capacity removal algorithm is described in Section 5.2.2. To summa-

rize, the algorithm finds successive shortest paths to destinations using only links that are

above a capacity threshold. When the current shortest path is found to a destination, the

algorithm tests if it exceeds the cost bound. If so, path computation for that destination

130

ends. Otherwise, the path is stored in that destination’s forwarding table, and the path’s

capacity is subtracted from each link in that path. This process continues until K paths are

found or until no other admissible path exists. In this chapter’s implementation, the cost

bound is set at twice the cost of the shortest path, and the capacity threshold is zero.

The time complexity for the LS capacity removal algorithm to calculate K paths to a

destination is O�K � E � lg�E��, where E is the number of edges in the network.

8.2.2 Basic MPLS Forwarding

The previous subsection described the MPLS capacity removal computation, but it did not

describe the packet forwarding on the computed paths. Like MPDV, this implementation of

the capacity removal MPLS algorithm uses the suffix matched forwarding method. How-

ever, unlike MPDV where establishing local path IDs is straightforward, establishing path

IDs in MPLS may require additional computation and messages, depending on the type of

paths computed. The basic MPLS suffix matched forwarding method is given here, and

extensions to cover non-suffix matched paths are given in the next subsection.

The essence of the suffix matched forwarding method is the establishment of local path

IDs between nodes. These local path IDs guarantee forwarding of packets on their intended

paths. In MPLS, establishing local path IDs is a three-step process. In the first step, every

router labels the ith path to destination D with the path ID i, i � K . Second, for each path

�x�� � � � � xn� that x� computes, x� finds the path ID of the path �x�� � � � � xn� as calculated

by x�’s neighbor x�. That is, router x� finds x�’s jth path to xn such that the jth path is

�x�� � � � � xn�. This calculation is very simple because x� has the entire network topology

in its memory, and the path ID assignments are deterministic (i.e. x� and x� will both

calculate the path �x�� � � � � xn� as x�’s jth path to xn).

In the third step, x� matches the local path ID of the path �x�� � � � � xn� with x�’s path

ID of the path �x�� � � � � xn� and stores the two path IDs in the forwarding table entry for

path �x�� � � � � xn�. Now that the two path IDs are established on this path, suffix matched

path forwarding can be used. This process of calculating and matching path IDs is executed

by every router for every calculated path. For more details on the MPLS suffix matched

forwarding method, refer to Section 6.3.

8.2.3 Non-Suffix Matched Paths

The three step process described above correctly forwards packets if the path set is suffix

matched. Unfortunately, the centralized capacity removal algorithm does not always com-

131

pute suffix matched paths. This means that in step 2, when a router attempts to find the

a match for a non-suffix matched path, it will discover that the path’s next-hop neighbor

does not calculate the suffix of that path. Fortunately, there are techniques to resolve these

non-suffix matched paths; a list of techniques is provided in Section 6.3. The one used in

here is the explicit routing method. We choose this method because of its efficiency and

because we can explicitly measure its message and storage costs.

The explicit routing method operates as follows: during step 2 of path ID matching, if a

router fails to match the suffix of a path, the router stores the source route of this non-suffix

matched path. When a router receives a packet with a path ID specifying the non-suffix

matched path (indicated by the source route), the router source routes the packet to its

destination. Furthermore, explicit routing uses the label swapping optimization to establish

local path IDs after source routing the first packet [85]. Therefore, subsequent packets

traversing the same path will be forwarded using the conventional fixed-length path IDs.

This optimization significantly reduces the source routing cost because it is done only once

per non-suffix matched path. Although, these labels need to be re-established when paths

are recalculated (say due to link failures), the amortized cost of source routing packets on

non-suffix matched paths is small because path recomputation occurs much less frequently

compared to packet forwarding. An example of the explicit routing method is given in

Figure 8.3.

N1

N2

N3

Figure 8.3 : An example of the capacity removal MPLS non-suffix matched forwarding.
Here N1 computes 2 paths to N3 denoted by the dotted lines, and N2 computes the two solid
paths to N3. N1’s paths through N2 are not suffix matched because N2 did not compute a
path that is the suffix of N1’s path.

In this figure, both N1 and N2 compute two paths to N3, denoted by the dotted and solid

lines respectively. Notice N1’s path that passes through N2 is not suffix matched because

132

N2 did not compute the suffix of N1’s path. According to the explicit routing method, upon

receiving the first packet destined on this non-suffix matched path, N1 will source route

this packet on the dotted path through N2 to N3. In addition, this first packet will establish

local path IDs along routers on this path so that subsequent packets destined for this path

will not be source routed, but instead, use the path ID established by the source-routed

packet. Thus, subsequent packets on non-suffix matched paths will be forwarded in the

same manner as packets on suffix matched paths.

8.2.4 Capacity Removal MPLS Costs

For the most part, the implementation of the capacity removal MPLS algorithm is straight-

forward. This section summarizes the various costs incurred by the algorithm: 1) per packet

forwarding overhead, 2) router CPU usage, 3) routing message, and 4) router memory over-

head.

Like MPDV, the performance critical per packet forwarding overhead of MPLS is very

efficient: fixed-size per packet path ID which can be efficiently indexed in router forward-

ing tables. However, unlike MPDV where all paths are suffix matched, some paths in

capacity removal MPLS are not. For these paths, source routing is required. Since the

label swapping optimization is used, source routing is incurred only once per path, and

non-suffix paths need to be re-source routed only after path recomputation, which occurs

infrequently compared to data packet forwarding. Thus the cost of source routing does not

significantly contribute to packet forwarding complexity.

In the second cost category, router CPU overhead, the time complexity of the cen-

tralized capacity removal algorithm to compute all pairs K paths is O�KNE � lg�E��.

Since each router also needs to calculate paths for its neighbors, the time complexity is

O�KNEM � lg�E��, where M is the average number of neighboring routers. This is com-

pared to shortest path LS whose complexity isO�E�lg�E��. Although the CPU complexity

is a factor KNM more, we believe this computation overhead can be offset by leveraging

the technology curve (e.g. faster processors and larger memories) [11] and developing more

efficient capacity removal algorithms that use dynamic programming.

The routing message cost is divided into two categories: the extra cost in the LSPs

and the costs incurred by source routing packets on non-suffix matched paths. For the first

category, the cost overhead is nominal – one capacity specification per link in an LSP. In

this implementation, this adds only one additional byte per link in a LSP; thus the MPLS’s

LSP complexity is the same as single path LS, O�NE�. The second message cost category,

source routing cost, depends on the number of non-suffix matched paths and the length

133

of each path. However, the use of the label swapping optimization significantly decreases

the source routing cost. Given that the source routing message cost depends on the num-

ber of non-suffix matched paths and their length, this cost is experimentally quantified in

Section 9.4.

With respect to router memory, there are two types of router storage: general purpose

memory and forwarding table memory. As with MPDV storage, the memory requirement

for the general purpose memory is not as crucial as the forwarding memory, which is per-

formance critical.

A MPLS router’s general storage complexity is typically dominated by storing the en-

tire topology in memory: each router needs to store every other router’s LSPs, incurring

O�NM� memory costs. With non-suffix matched paths, an MPLS router also needs to store

the non-suffix matched source routes, requiring an additional O�NpL� storage, where p is

the average number of non-suffix matched paths to a destination passing through a router,

and L the average path length.

With respect to forwarding table storage, the MPLS cost is proportional to the number

of paths calculated. However, due to non-suffix matched paths, a router may store paths that

pass through the router but which the router itself does not compute. For example, router

N2 in Figure 8.3 will need to store three paths, even though it only calculated two. This

additional path entry comes from establishing a local path ID with N1 for N1’s non-suffix

matched path. Thus, the router forwarding table storage complexity for capacity removal

MPLS is O�KN �NpL�.

Because router storage costs depend on the number of non-suffix matched paths and

their length, this cost is experimentally quantified in the next chapter.

In general, the routing costs for the capacity removal MPLS routing algorithm are low,

and because MPLS has the entire network topology in memory, calculating multiple paths

is straightforward. However, there are costs in MPLS that cannot be analytically deter-

mined, specifically, the message cost of source routing packets and router storage costs.

For these costs that depend on non-suffix matched paths, the next chapter experimentally

measures their actual costs.

134

Chapter 9

Multipath Cost-Benefit Analysis

In this chapter, we experimentally evaluate the performance improvements obtained by

using capacity removal MPDV and MPLS algorithms, and then measure each routing al-

gorithm’s message, computation, and storage costs. The goal of these measurements is to

determine whether the cost incurred by a multipath routing algorithm justifies the end-to-

end performance gains obtained using the provided paths.

The performance is measured in terms of throughput, latency, and message drop proba-

bility (message delivery reliability). Throughput is measured using MPTCP. The higher the

MPTCP obtained throughput, the better throughput performance of the multipath network.

Latency and drop probability are measured using a multipath ping program. This program

uses multiple paths to measure round-trip delay and drop probabilities. To make the mea-

surements more realistic, the ping experiments are conducted using the background traffic

generated by the throughput experiments.

In addition to measuring the performance offered by a multipath network, this chapter

also measures the performance (or efficiency) of the routing algorithms that implement

multipath networks. The two algorithms, capacity removal MPLS and MPDV, are evaluated

in this chapter in terms their packet forwarding cost, router memory requirement, router

CPU usage, and routing message cost. Although many of the routing costs are analytically

evaluated, some routing costs depend on the network topology and the paths computed

between nodes. This chapter experimentally measures these network dependent costs, as

well as the constants of the analytically formulated costs.

The results of the experiments show that even in sparse topologies (a 100 node, Internet-

like cluster topologies with link to node ratio less than 2:1), the capacity removal MPDV

and MPLS are able to provide paths that allow both MPTCP and multipath ping to achieve

higher performance, compared to their single path counterparts. Moreover, the costs in-

curred by MPLS and MPDV are low enough such that we believe they can be feasibly

implemented in large-scale networks.

This chapter is organized as follows. The next subsection describes the experimental

environment. Section 9.2 presents MPTCP throughput, and Section 9.3 presents the latency

135

and drop probability performance. Finally, Section 9.4 presents the various routing costs

of the two routing algorithms. A summary of the experiments appears in Section 9.5.

9.1 Simulation Environment

The simulation environment consists of the network simulator and the network topology.

The network simulator used is based on the “xsim” package from the University of Arizona

[28], an execution-driven, packet-level network simulator. The simulator takes as input a

description of the network topology, including link characteristics such as bandwidth and

propagation delay, and a set of software modules that implement the various protocols

running on the routers and end-hosts in the network. Simulation time advances according

to the calculated transmission and propagation delay of packets in the network. In the

simulator, software processing in the routers and hosts is assumed to have zero time cost.

Software processing occurs in three places in our simulation: in end-host processing,

router path computation, and router packet forwarding. In each of these places, we be-

lieve this zero time cost assumption does not significantly affect our results. First, end-host

processing is usually several orders of magnitude faster than end-to-end network latency;

therefore accounting for their processing costs has little impact on end-to-end measured

performance. Second, since router path computation is not performance critical, occurs

infrequently compared to packet forwarding, and the computational complexity of our

MPDV and MPLS implementation are based on their single path counterparts, account-

ing their computational time should not significantly alter our performance measurement.

And third, with respect to the performance critical cost of router packet forwarding, our

multipath forwarding method adds only one additional hash lookup in the forwarding pro-

cess; therefore, the additional processing cost of forwarding is also very small and should

not have a large impact on our simulation results.

To make the performance and cost measurements more realistic, the experiments in

this chapter use an Internet-like clustered topology. Cluster topology is created by first

constructing a group (or cluster) of small flat topologies. Flat topologies are parameterized

by the number of nodes (N) and links (E). The construction process randomly picks two

nodes and connects them until all E links have been connected. The only restriction on

node connection is that no more than one link can exist between a node pair. After con-

necting E links, the network is inspected for connectedness. If the network is connected,

a flat topology is generated and returned. Otherwise, the network is discarded, and the flat

topology construction process is repeated.

136

A clustered network topology is build by inter-connecting a set of flat topologies. The

flat topologies are connected by randomly connecting nodes from different flat topologies

(clusters). Links connecting nodes within a cluster (intra-cluster links) have 1000 KB/s

bandwidth and unit cost, and links connecting clusters (inter-cluster links) have 2000 KB/s

bandwidth and two units of cost. All links have a 10us transmission delay. These parame-

ters where chosen to reflect the higher connectivity within clusters and the larger bandwidth

of inter-cluster links.

9.2 Throughput Performance

This section evaluates the throughput offered by the capacity removal MPDV and MPLS

routing algorithms. Throughput is measured by end-hosts transmitting packets using MPTCP

on networks running each routing algorithm. Recall Chapter 7 showed that the capacity re-

moval algorithm effectively computes paths with additional network resources, and that

the MPTCP protocol is able to translate the additional resources into increased throughput.

This section extends the results of Chapter 7 and investigates whether these throughput im-

provements can actually be obtained using the capacity removal MPLS and MPDV routing

algorithms.

9.2.1 Basic Throughput Performance

To determine whether MPTCP is able to achieve the same level of performance using

MPLS and MPDV, the first experiment conducted in this section uses the same experi-

mental parameters as the MPTCP experiment in Section 7.5.

In summary, the experimental network consists of 100 nodes organized in 10 node

clusters with 17 intra-cluster links and 25 inter-cluster links (a total of 195 links).� Traffic

is divided into two categories: foreground traffic and background traffic. A foreground

traffic node transmits 5,000 packets to a node in another cluster, and a background traffic

node sends a burst of packets ranging from 100 - 2,000 packets to a destination chosen at

random. The size of each packet is 1500 bytes. The inter-burst times of background nodes

are exponentially distributed (a Pareto distribution with average of 20 seconds). The three

�This network topology is particularly desirable because it is not too connected and not too sparse. The

network is not too connected so that the traffic generated will produce network contention in order to show

interesting properties of multipath routing, and the network is not too sparse so that meaningful multiple

paths can be calculated between nodes. In short, the 1:2 node to link ratio highlights performance differences

in single path and multipath routing.

137

foreground nodes are picked randomly and the rest are background nodes. The performance

results of MPTCP on both MPDV and MPLS are given in Figures 9.1 and 9.2.

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
K

B
/S

)

Background Traffic Stream

Foreground MPTCP Traffic (CapRemoval, 100N-195L)

MP3-MP3
MP3-SP

MP2-MP2
MP2-SP
SP-MP2

SP-SP

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
K

B
/S

)

Background Traffic Stream

Background MPTCP Traffic (CapRemoval, 100N-195L))

MP3-MP3
MP3-SP

MP2-MP2
MP2-SP
SP-MP2

SP-SP

Figure 9.1 : The foreground and background MPTCP performance using the MPLS capac-
ity removal algorithm (same as Figure 7.5).

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
K

B
/S

)

Background Traffic Stream

Foreground MPTCP Traffic (MPDV, CapRemoval, 100N-195L)

MP3-MP3
MP3-SP

MP2-MP2
MP2-SP
SP-MP2

SP-SP

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
K

B
/S

)

Background Traffic Stream

Background MPTCP Traffic (MPDV, CapRemoval, 100N-195L)

MP3-MP3
MP3-SP

MP2-MP2
MP2-SP
SP-MP2

SP-SP

Figure 9.2 : The foreground and background MPTCP performance using MPDV capacity
removal algorithm.

The graphs in Figures 9.1 and 9.2 show the MPTCP foreground and background per-

formance on MPLS and MPDV respectively. In both figures, the left graph shows the

foreground performance curves, and the right graph shows background performance. The

x-axis denotes background traffic burst sizes, ranging from 100 to 2,000 packets, and y-

axis denotes the effective throughput in KB/s for the respective foreground or background

traffic. Curves in each figure are labeled to represent the transport protocol used by fore-

ground and background nodes: the first label denotes the foreground transmission style and

the second the background transmission style. SP stands for using SPTCP, and MP2 and

138

MP3 stand for using MPTCP with 2 and 3 paths respectively. For example, the curve la-

beled MP3-SP represents the network performance when the foreground nodes used 3-path

MPTCP and the background nodes used SPTCP.

The graphs in Figures 9.1 and 9.2 show that foreground and background MPTCP per-

formances exhibit the same characteristics described in Chapter 7. Mainly, MPTCP is

effective in increasing network throughput even at high levels of network utilization, and

the performance gains of multipath MPTCP do not come at the expense of SPTCP connec-

tions. For detailed MPTCP analysis, refer to Section 7.5. In addition to MPTCP behavior,

two other important points are illustrated in the two figures.

First and foremost, both figures show that MPTCP obtains a high level of performance

with both MPLS and MPDV. Moreover, the graphs show that MPTCP foreground per-

formance is roughly proportional to the number of paths provided by each algorithm.

This demonstrates that MPLS and MPDV algorithms are able to provide paths with ad-

ditional resources, thereby allowing MPTCP to improve its throughput. The two figures

confirm that in a realistic network setting, the combination of MPTCP and capacity re-

moval MPDV/MPLS algorithms achieves higher network throughput than is achievable in

single path routing.

The second important result in Figures 9.1 and 9.2 is that MPTCP performance is higher

in MPLS than in MPDV. Performance using MPLS is the same as offered by the central-

ized capacity removal algorithm shown in Figure 7.5 because MPLS calculates paths using

the same centralized capacity removal algorithm. In contrast, MPTCP’s performance on

MPDV is worse than on MPLS. The performance difference is due to the differences in

MPLS and MPDV path calculation. Specifically, MPDV always calculates suffix matched

paths, and MPLS does not.

In the following three subsections, we investigate the MPLS and MPDV performance

disparity caused by their path calculation differences.

9.2.2 MPLS and MPDV Throughput Differences

To investigate the impact of MPLS and MPDV path computation differences, the same

simulation was rerun in a sparser topology to reduce the number of available physical paths,

thereby emphasizing the differences in path computation styles. This sparse network has

15 intra-cluster and 20 inter-cluster links (170 links), as compared to the original network

which has 17 intra-cluster and 25 inter-cluster links (195 links). Figure 9.3 shows the

MPTCP performance results in this simulation environment.

To highlight performance differences, the graph in Figure 9.3 shows only MPTCP fore-

139

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
K

B
/S

)

Background Traffic Burst Size

Foreground MPTCP Performance

MP3 - MPLS
MP3 - MPDV

SPTCP

Figure 9.3 : The foreground performance of MPTCP and SPTCP using the capacity re-
moval MPLS and MPDV algorithms on a sparse 100 node, 170 link network topology.

ground traffic performance in the sparse network. For each curve, the background nodes

use the same transmission style as the foreground nodes. The graph shows the MPTCP

performance using 3-path MPLS, 3-path MPDV, and SPTCP. Three-path MPTCP is fea-

tured because using more paths accentuates the performance differences between MPLS

and MPDV. The background performances are not shown because they exhibit the same

performance characteristics as in Figures 9.2 and 9.1.

As with the previous topology, Figure 9.3 shows that MPTCP is able to obtain multipath

performance benefits using MPDV and MPLS. This shows the generality and versatility of

MPTCP and MPLS/MPDV in increasing network throughput even in a topology where

the ratio of links to nodes is less than 2:1. In addition, the figure shows that MPTCP

foreground performance decreases as the amount of background traffic increases. This

is again consistent with our observation that as total network traffic increases, average

individual throughput decreases.

The notable feature illustrated by Figure 9.3 is the MPTCP performance difference

between MPDV and MPLS. MPTCP performs better under MPLS than under MPDV, es-

pecially in the region where network utilization is low. Analysis of the number of paths

calculated by each routing algorithm reveals the source of this performance disparity. Fig-

ure 9.4 shows the number of paths calculated by MPLS and MPDV in this network.

In Figure 9.4, the x-axis denotes rank, the maximum number of paths the routing algo-

rithm is allowed to calculate between a node pair, and the y-axis shows the total number

of paths actually calculated. At rank = 1 (K � �), both algorithms calculate the single

shortest paths. Since there are 100 nodes, the number of calculated path is ���� � ��� ���

140

10000

12000

14000

16000

18000

20000

22000

24000

1 1.5 2 2.5 3 3.5 4 4.5 5

T
ot

al
 P

at
hs

 C
al

cu
la

te
d

B
et

w
ee

n
N

od
es

Path Calculation Rank

Routing Algorithm: Number of Paths, 100N-170L

MPLS
MPDV

Figure 9.4 : The number of path calculated by each the MPDV and MPLS algorithms in
the 170 link sparse network topology.

paths.

As the figure shows, the difference between the paths calculated by MPLS and MPDV

increases with rank. Moreover, this increase is sub-linear because the number of possible

paths is limited by the physical connectivity of the network. The figure shows that at rank

3, MPDV calculates 18000 and MPLS calculates 22000 paths, a difference of 22%. These

extra MPLS paths allow MPTCP to achieve higher throughput.

9.2.3 MPLS and MPDV Path Calculation Process

MPLS calculates more paths than MPDV because MPLS can calculate paths that are not

suffix matched. In other words, MPDV is restricted in its path calculation because it always

calculates suffix matched paths. Figure 9.5 shows how this restriction influences the paths

that an algorithm can calculate.

N1
N2

B

CN3

A

Figure 9.5 : An example of the capacity removal path calculation to N�.

141

In Figure 9.5, the boxes denote routers and curves denote paths. Here, capacity removal

paths to N1 are being calculated. Assume that N2’s shortest path to N1 is the dotted path

labeled A, and that N3’s shortest path to N1 is the solid path C . Assume further that rank

= 2, and all links have equal capacity (i.e. calculating link disjoint paths). In the MPLS

algorithm, N3 will calculate two paths: the first path is C , and the second one passes

through N2 via the dotted curve and connects to path B. Using MPDV, however, N3 will

calculate only one path. This is because N2 will select and propagate only path A and

discard path B, since path B is inadmissible because it has common links with path A. So

when N3 receives N2’s advertised path A, N3 discards A because A is inadmissible due to

the links shared with path C .

The calculation of non-suffix matched paths is precisely the reason MPLS calculates

more paths than MPDV. Recall, a path set P is suffix matched if and only if �	
 P�	 �

�x�� � � � � xn�, then �xi� � � � � xn�
 P��i� � � i � n. Figure 9.6 shows the percentage of

non-suffix matched paths that MPLS calculates in this sparse topology. The percentage

of non-suffix matched path is the number of non-suffix matched paths divided by the total

number of paths calculated.

0

5

10

15

20

25

30

35

40

45

50

1 1.5 2 2.5 3 3.5 4 4.5 5

P
er

ce
nt

ag
e

of
 N

on
-S

uf
fix

 M
at

ch
ed

 P
at

hs

Paths Calculated Between Nodes

MPLS Percentage Non-Suffix Matched

Figure 9.6 : The percentage of non-suffix matched paths calculated by MPLS in a 100
node, 170 link cluster topology.

The Figure 9.6 shows that at rank = 3, approximately 35% of the paths calculated by

MPLS are non-suffix matched. Because of these paths, MPLS is able to calculate approxi-

mately 22% more paths than MPDV (Figure 9.4). These extra paths, in turn, contribute to

higher MPTCP performance.

142

9.2.4 MPLS and MPDV Throughput Summary

This section analyzed the throughput of MPLS and MPDV capacity removal routing al-

gorithms. The experiments show that even with relatively sparse topologies (100 nodes

with 195 links and 170 links), MPLS and MPDV were able to calculate paths that allow

end-hosts to increase their throughput. Our experiments demonstrate that the capacity re-

moval MPLS and MPDV algorithms, in conjunction with MPTCP, substantially increase

end-to-end throughput compared to TCP using single path routing.

Further examination of MPLS and MPDV shows that under certain circumstances,

MPDV does not compute as many paths as MPLS. The reason is that capacity removal

MPLS can calculate non-suffix matched paths, but capacity removal MPDV cannot. This

difference in path computation results in lower MPDV performance in scenarios where

calculating only suffix matched paths produces a significantly lower number of paths. The

performance impact of this disparity is reflected in MPTCP’s achievable throughput.

9.3 Latency and Message Drop Performance

The previous section showed that multipath routing can be of immediate benefit to today’s

applications by offering increased network throughput. The purpose of this section is to

show that multipath routing can also be used to reduce end-to-end network latency and

message drop probability (or increase likelihood of message delivery), two performance

metrics also of immediate benefit for today’s applications.

To measure these two performance metrics, this section uses a multipath ping program

that measures observed round-trip latency and message drops. Round trip latency is an

important performance metric for interactive applications such as telnet and web sessions,

and message drop probability is used for applications that want to increase the reliability

of their message transmission.

To provide a realistic traffic scenario, the multipath ping program is run in the presence

of the background traffic generated in the throughput experiments. Simulation results show

that under all traffic conditions, the multipath ping program achieves lower round-trip delay

and a lower number of message drops compared to a single path ping program. The con-

clusion of our experiments is that in addition to providing increased throughput, multipath

routing simultaneously allows decreased round-trip delays and message drop probabilities.

143

9.3.1 The Multipath Ping Program

The operation of a ping program is very simple: given a destination address, the program

sends a message to the destination, and upon receiving this message, the destination’s ping

program sends the message back to the sender. Round-trip latency is then calculated by

subtracting the time the sender sends the message by the time the sender receives the reply

message.

The single path ping program does exactly as described in the ping program specifica-

tion: the sender sends a ping message to its destination; the destination then echos a ping

upon receiving the ping message. However, because the multipath ping program can send

messages of more than one path, multipath ping can selectively choose the lowest delay

path to the destination, and similarly, the destination can choose the lowest delay path back

to the sender. The multipath ping program developed in this section uses the minimal delay

path to and from destinations.

The multipath ping program operates as follows. Given a destination address, the sender

duplicates the ping message on all available paths to that destination. Upon receiving the

first ping message, the destination immediately sends a reply message on all available paths

back to the original sender. The destination ignores subsequent ping messages that arrive on

different but slower paths. When the original sender receives a destination’s reply (the first

one), it calculates the round-trip time. The sender also ignores the subsequent destination

reply messages that arrive on slower paths. If the sender does not receive any ping message

replies, the message is counted as a dropped message.

Notice that in addition to minimizing delay, the multipath ping approach also reduces

the probability that a ping is dropped by duplicating messages on multiple paths. Although

this duplication approach may not be appropriate for many interactive applications (because

it sends more messages), there are applications that need to send urgent messages and want

these messages to have minimum transmission time and message drop probability.

For those applications that wish to lower communication delays without message du-

plication, they (or a low latency protocol) can periodically “ping” all available paths and

then solely use the path that provides the lowest measured delay. For example, a possible

low latency protocol could duplicate only retransmitted messages on multiple paths. This

approach not only urgently retransmits a dropped message, but also uses this retransmitted

message to find the current least delay path. The newly selected least delay path is then

solely used for subsequent message delivery, until the next message drop.

For the purpose of this experiment, the multipath ping protocol described above mea-

sures the appropriate performance metrics: the reductions in round-trip latency and mes-

144

sage drops that a multipath network can provide. The simulation results are presented next.

9.3.2 Round-trip Latency

Both the multipath and single path ping programs are implemented in our network sim-

ulator. The experimental configuration used to measure their performance is the same as

the one used in the first throughput experiment: the 100 router, 195 link cluster network

topology, MPTCP and SPTCP generated traffic, and the MPLS capacity removal routing

algorithm (the performance results capacity removal MPDV are similar and not shown

here).

In the latency experiment, each ping host sends a ping message to a randomly chosen

destination. The time between a host’s transmission of two consecutive pings is exponen-

tially distributed (a Pareto distribution with average of 5 seconds). The latency and the

percentage of dropped pings of single path ping (SP ping) and multipath ping (MP ping)

are given in Figures 9.7 and 9.8.

10

15

20

25

30

35

40

0 200 400 600 800 100012001400160018002000

M
ea

su
re

d
La

te
nc

y
(m

s)

Background Burst Size (in packets)

MPLS: Latency Measurements (100N-195L)

MP_ping
SP_ping

Figure 9.7 : The measured round-trip latency observed by the MP ping and SP ping pro-
grams. The experiment is conducted using a 100 node, 195 link cluster network.

The graph in Figure 9.7 shows two latency measurements: the latency of 3-path MP ping

on a multipath network where the background traffic uses 3-path MPTCP, and the latency

of SP ping where the background traffic uses SPTCP. In this figure, the x-axis denotes the

background traffic burst sizes, and the y-axis denotes the average latency observed by the

each ping program. Notice that the 3-path MPTCP generates more background traffic than

SPTCP. That is, for the same background burst size (x-axis), the multipath network pro-

vides higher overall throughput than the single path network. In addition to offering higher

145

throughput, this experiment shows that multipath routing also provides lower round-trip

latency and message drop probability.

The latency graph in Figure 9.7 shows that as the background traffic increases (indi-

cated by increasing the burst size), the round-trip latency increases correspondingly. This

is expected because higher network traffic increases router queuing, which in turn increases

network delay. In addition, the graph shows that as network traffic increases, the dispar-

ity in round-trip latency between MP ping and SP ping also increases. The reason is that

at low network traffic, all paths have relatively low queuing delays, so the delay difference

between the minimal delay path and the static metric shortest path is relatively small. How-

ever, at high network traffic, the delay differences among multiple paths increase; hence the

increase disparity in SP ping and MP ping round-trip latencies.

9.3.3 Message Drop Probability

The second performance metric measured message drop probability. Message drop proba-

bility is defined as the likelihood that a transmitted message is not received at its destination:

if a message is duplicated, then the message drop occurs when all duplicates are dropped

by the network and never reaches the intended destination.

The multipath ping program is used to measure message drops. Because ping messages

and their replies are sent on multiple paths, a message drop occurs only if every path to

or from the destination drops the ping or reply ping messages. That is, assuming equal

likelihood of packet drops, if the drop probability of one path is p, then drop probability

of SP ping is
 � p (a message has to travel to and from the destination), and the drop

probability of MP ping is
�pK , where K is the number of paths between nodes. The drop

measurements for SP ping and MP ping are given in Figure 9.8.

The graph in Figure 9.8 shows the percentage of dropped pings observed by SP ping

and MP ping. The x-axis shows background traffic burst sizes, and y-axis shows the per-

centage of dropped ping messages. The results shown in this figure are gather in the same

simulations that produced the latency measurements in Figure 9.7. The graph confirms

our analysis that the MP ping program incurs less message drops compared to SP ping.

At high network utilization levels (e.g. background burst sizes 	 600 packets), MP ping

incurs approximately half the drops compared to SP ping.

However, given that MP ping uses three paths, one expects the MP ping to drop mes-

sages more seldom than 50% of SP ping drops. One factor causing higher MP ping drop

rate is that MP ping’s background nodes (which use 3-path MPTCP) generate, according to

Figure 9.1, approximately two times more traffic than SP ping’s background nodes (which

146

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 100012001400160018002000

P
er

ce
nt

ag
e

of
 D

ro
pp

ed
 M

es
sa

ge
s

Background Burst Size (in packets)

MPLS: Dropped Messages (100N-195L)

MP_ping
SP_ping

Figure 9.8 : The measured ping drop percentages of MP ping and SP ping. The results
shown are collected in the same experiments that produced the latency measurements in
Figure 9.7.

use single path TCP). Because of the higher traffic rates, the probability, p, that a path will

drop a packet in a multipath environment is higher than in a single path environment.

The spikes and dips of message drop percentages in Figure 9.8 are a product of random

traffic generation. Because the initiation times of ping messages and background traffic

use a random distribution, the spikes are the result of a combination of an unusually high

traffic generation in the presence of ping measurements. Similarly, the dips are the result

of the opposite scenario. The two curves have similar shape because their traffic use the

same random distribution seed. However, since MPTCP nodes achieve higher throughput

(thereby reducing transmission times), the background traffic sending times slightly differ

between TCP and MPTCP sending nodes; thus the two curves do not have precisely the

same shape.

9.3.4 Latency and Drop Probability Summary

This section shows that in addition to increasing throughput, a multipath network can also

increase application performance through decreased round-trip latency and message drop

probability. To quantify these performance improvements, a multipath ping program is

developed that uses multiple paths to minimize round-trip latency and message drops.

Using a 100 node Internet-like cluster network and realistic MPTCP/TCP background

traffic, we measure the performance of the single path (SP ping) and multipath ping (MP ping)

programs. Simulation results show that not only do multipath networks increase through-

put compared to single path networks (Section 9.2), multipath networks simultaneously

147

allow the MP ping program to achieve lower round-trip delay and lower drop probability

compared to the SP ping program on a single path network.

The conclusion of our performance experiments is that the additional resources offered

by a multipath network can be effectively used to increase network performance, measured

in throughput, latency, and message drop probability.

9.4 Routing Costs

The previous sections show the improvements in throughput, latency, and message drops

offered by the capacity removal MPDV and MPLS routing algorithms. This section exam-

ines the overhead incurred by the two routing algorithms. The runtime cost of MPDV and

MPLS, as stated in Section 4.2.3, consists of three components.

1. Packet forwarding: overhead of per packet path specification and additional router

processing needed to deliver packets on multiple paths.

2. Router Storage: additional memory needed to store and support multiple paths.

3. Path computation: routing and algorithmic overhead of calculating multiple path.

This refers to number of routing messages and bytes exchanged between routers and

the amount of CPU needed to compute paths.

Of the three cost categories, the first is the most performance critical because packet for-

warding directly influences the speed in which packets are delivered through the network.

Packet forwarding consists of two components: path specification and router forwarding.

First, given that every packet must specify its path, path specification must be space effi-

cient to decrease the cost of transmitting and storing packets. Second, router’s processing

for each packet should be efficient in order to reduce packet forwarding time.

The second and third cost categories affect the feasibility of multipath routing. That

is, maintaining low router storage and computation overhead is important because if they

incur prohibitively high costs, multipath routing cannot be feasibly implemented in real

networks. However, these two costs do not directly affect network performance because

they do not directly influence packet forwarding speed.

The result of this section’s cost analysis shows that capacity removal MPLS and MPDV

efficiently implements packet forwarding. Because of the suffix matched forwarding method,

data packets in both routing algorithms specify their paths using small, fixed-length path

IDs. These IDs, in turn, allow fast path lookups which speed packet forwarding time. This

148

section also shows that both routing storage and route computation costs are reasonably low

such that we believe MPLS and MPDV can be feasibly implemented in current routers.

The remainder of this section presents the cost results for each category in the order

presented above. The next section addresses the per packet forwarding overhead, followed

by router storage and multipath computation overhead.

9.4.1 Per Packet Forwarding Overhead

This subsection examines the per packet forwarding overhead for the capacity removal

MPDV and MPLS algorithms. The per packet forwarding overhead refers to 1) the amount

of extra information (in bytes) that each packet needs in order to specify the path to its

destination, and 2) the additional router processing needed to forward these packets on

their specified paths. It is critical to minimize these two costs because they are incurred on

every data packet.

Path ID Specification

The suffix matched forwarding method is used in both MPLS and MPDV implementations.

This forwarding method guarantees fixed-length path IDs for suffix matched path sets.

In particular, the method guarantees the number of bits needed to specify Q paths to a

destination is dlog��Q�e bits. In MPDV, each router has at mostK paths to each destination,

where K is the rank. Therefore, the per packet forwarding overhead is dlog��K�e bits,

and the total cost of path specification is therefore the size of the destination address plus

dlog��K�e.

In MPLS, however, this analysis is not so straightforward. Because routers have to

forward packets on non-suffix matched paths, a router may have to specify more than K

paths to a destination. For a destination D, the actual number of paths a router has to

distinguish to D is number of paths the router calculates to D plus the number of non-

suffix matched paths to D that passes through the router (see Figure 8.3). That is, for a

destination D, given that a router calculates K� paths and that p� non-suffix matched paths

to D pass through the router, the path specification overhead is dlog��K
� � p��e bits.

This additional per packet forwarding overhead is the price MPLS pays for computing

more paths. Notice that the per packet overhead is still dlog��Q�e bits, where Q � K �� p�.

To make the number of MPLS paths more concrete, in the 170 link topology with

K � �, the percentage of non-suffix matched paths is 30%. Therefore on average, a router

needs to specify approximately
K paths to a destination (if non-suffix matched percentage

149

is 50%, then a router needs exactly
K .). In addition, because each non-suffix matched

path potentially needs a forwarding table entry on every router it traverses, the average

non-suffix matched path a router has to support is thus
KL, where L is the average path

length. In the 170 link topology, L is 6. It turns out that the actual number of paths a

MPLS router needs to specify to a destination is much less than this upper bound. The next

section, which focuses on router storage overheads, re-addresses this issue.

In both MPDV and MPLS implementations, 1 byte is used to specify the path ID. Thus

every MPLS router can support up to
��K non-suffix matched paths to each destination.

That is, given that K � �, and L � �, the number of non-suffix matched paths a router

needs to distinguish is 36 (according to the 2KL formula above), which is much less than

� �
	�. Indeed, in all our simulations, 1 byte was sufficient to uniquely identify all paths

to a specific destination.

In summary, the suffix matched forwarding method used in MPLS and MPDV provides

efficient guarantees on the size of per packet path IDs. The per packet overhead of path

specification for both MPLS and MPDV is fixed-size and small. In MPDV, because it

calculates suffix matched paths, the path ID size is precisely dlog��K�e, where K is the

rank. In MPLS, where routers calculate more paths to destinations (via non-suffix matched

paths), the cost is higher. However, in practice, a 1 byte path ID is sufficiently large enough

for MPLS routers to distinguish all paths to a destination.

Packet Forwarding

Using suffix matched forwarding, the packet forwarding process consists of receiving the

packet, looking up the packet’s destination address and path ID to find the next-hop address,

updating the packet’s path ID, and then forwarding the packet to next-hop router/network.

Like the per packet forwarding overhead, efficient packet forwarding is critical to network

performance because it directly affects the speed at which packets are delivered to their

destinations.

The packet forwarding overheads incurred by the suffix matched forwarding method are

1) the additional path ID lookup to find the next-hop address, and 2) updating the packet’s

path ID.

With respect to forwarding table lookup, the state-of-the art single-path IP forwarding

lookup methods hash on destination addresses to retrieve the next-hop address [48, 160].

In a multipath environment, an additional path ID lookup is required. Because of suffix

matched forwarding, the path ID is a small integer and therefore can be easily indexed (or

hashed) once the destination’s forwarding table entry is found. This requires one additional

150

lookup and thus nominally affects routing lookup time. Notice that because hashing is

used to determine next-hops, the number of extra paths calculated by a multipath routing

algorithm does not have a linear affect on routing lookup time. In addition to hashing

speeds, another issue is the size of the forwarding tables. The larger the forwarding table

size, the slower or more expensive the memory. The next section shows that MPDV and

MPLS forwarding tables are, on average, only a factor of K larger than in single path

routing.

The second forwarding overhead is updating a packet’s current path ID with the path ID

in the forwarding table. This updating process involves writing the new path ID (stored in

the router’s forwarding table) into the packet’s header. Since high speed network switches,

such as ones in ATM [130], also perform this procedure on every data unit, we believe

that the path ID update procedure can be efficiently implemented in routers as well. More-

over, there are proposed router architectures that explicitly use path ID updates to forward

packets [134]. Due to these advances, we believe updating path IDs can be efficiently im-

plemented in multipath routers and will not significantly degrade their packet forwarding

efficiency.

9.4.2 Router Storage Overhead

Router storage refers to the amount of memory a router needs in order to support a rout-

ing algorithm. In high speed routers, there are two types of router memory, fast memory

(e.g. SRAM) and general purpose memory (e.g. DRAM). Since packet forwarding is per-

formance critical, fast memory is typically used to store router forwarding tables, thereby

allowing fast forwarding table lookup [48]. General purpose memory is used to store all

other information that a routing algorithm uses.

With respect to fast memory, it is important to keep the size of forwarding tables small

because larger tables imply slower fast memory access times and/or more expensive (in

terms of Dollars) router costs. However, since information stored in the general purpose

memory is not performance critical and that the memory is inexpensive, the general storage

memory constraint is that it needs to be reasonably low so that multipath routing algorithms

can be feasibly implemented in routers.

The experiments measuring router storage overhead is thus divided into forwarding

table size and general router storage size. Their measurements are given below.

151

Forwarding Table Size

As proven in Chapter 6, the suffix matched forwarding method guarantees that a router’s

forwarding table size is proportional to the number of paths the router has to all destina-

tions. Given Q paths to each destination, a router would then need O�NQ� storage for

paths to all destinations. This analysis applies directly to capacity removal MPDV because

every MPDV router has at most K paths to any destination; thus the storage requirement

per MPDV router is O�KN�. This storage requirement is only a factorK more than single

path DV, which requires O�N� storage.

Capacity removal MPLS storage is not as simple to analyze because the centralized ca-

pacity removal algorithm can calculate non-suffix matched paths; therefore a MPLS router

may have to store non-suffix matched paths that it did not calculate. In MPLS, a router

needs to store, for each destination D, the paths it calculates to D plus the non-suffix

matched paths to D that pass through the router. Notice that this sum is also the number of

paths a MPLS router has to distinguish. From the analysis in the previous chapter, the per

MPLS router forwarding table size is O�KN � NpL�, where p is the average number of

non-suffix matched paths to a particular destination that pass through a router, and L is the

average non-suffix matched path length.

However, in reality, the number of additional forwarding table space is much less be-

cause many non-suffix matched paths do not need additional forwarding table entries. Fig-

ure 9.9 shows an example.

N2N1

N3 N4

N5 N6

Figure 9.9 : An example of a non-suffix matched path set. Here, N5 does not need to store
N1 and N3’s non-suffix matched paths.

In Figure 9.9, nodes N1 - N4 computes paths to N6 that passes through N5, but N5 does

not calculate the corresponding suffix of the path to N6. The figure shows that there are four

non-suffixed matched paths, shown in dotted lines. When router N1 and N3 attempts to find

a match for their paths to N6, they will find the correct match in N2 and N4 respectively;

therefore, as far as N1 and N3 are concerned, their paths to N6 is suffix matched. In this

152

example, N2 and N4 will fail to find matches in N5. Using the explicit routing method,

N5 will add two forwarding table entries (i.e. paths) to make N2 and N4’s paths suffix

matched. Notice that adding these two paths in N5 automatically makes N1 and N3’s paths

suffix matched as well.

Due to this property, the actual number of extra forwarding table entries are much

smaller than the worse case analysis. Figure 9.10 shows the actual forwarding table storage

of MPDV and MPLS routing algorithms on the 100 node, 170 link sparse topology. We

show the numbers for a sparse topology because for MPLS capacity removal paths, the

number of non-suffix matched paths increases as network connectivity decreases.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 1.5 2 2.5 3 3.5 4 4.5 5

F
or

w
ar

di
ng

 T
ab

le
 S

iz
e

(B
yt

es
)

Paths Calculated Between Nodes

Aggregate Forwarding Table Storage Requirement

MPLS
MPDV

Figure 9.10 : The aggregate forwarding table storage for MPLS and MPDV in a 100 node,
170 link cluster network.

In Figure 9.10, the y-axis shows the aggregate router MPLS and MPDV storage require-

ment, in bytes, and the x-axis shows the rank of the routing algorithm. Each forwarding

table entry is 12 bytes. Not surprisingly, the curves are heavily correlated with the number

of paths each algorithm calculates (Figure 9.4). Recall from Figure 9.4, MPLS calculates

22% more paths than MPDV at rank = 3. From Figure 9.10, the extra 22% paths (non-

suffix matched paths) that MPLS calculates translate into approximately two times more

forwarding table space. Thus,
NK � NK � NpL ��
K � K � pL �� pL � K .

That is, experimentally, pL is approximately K .

Since multipath routers compute K paths to every destination, one expects that router

forwarding tables need at least K times more storage than their single path counterparts.

Indeed, our results show that MPDV adheres to this lower bound while capacity removal

MPLS needs more forwarding table space for non-suffix matched paths. Our experiments

show that for 100 node 170 and 190 link Internet-like networks, the storage complexity is

153

roughly
NK .

To put these asymptotic complexities in perspective, according Figure 9.10, computing

3 paths between nodes requires, per router, approximately 4,500 bytes in MPLS and 2,000

bytes in MPDV (divide the y-axis by 100). Given that a 100 node routing domain is quite

large, the forwarding table sizes measured here are realistic and applicable to many routing

domains. Because the actual sizes of the forwarding tables are fairly small, we believe the

amount of fast memory needed to store multipath forwarding tables are not prohibitively

costly nor will the performance of the memory be significantly slow when compared to

current, single path routing requirements.

General Router Storage Requirement

The second router storage category is general router memory, which stores a routing al-

gorithm’s non-performance critical information. Although not performance critical, this

storage requirement nevertheless needs to be reasonably low so that multipath routing al-

gorithms can be feasibly implemented. This section experimentally measures the general

memory requirements of capacity removal MPDV and MPLS routing algorithms.

In general router memory, the information stored primarily includes the data needed for

a routing algorithm to perform path computation. Thus for MPDV, a router stores infor-

mation of every path it computes, which includes the path’s cost, next-hop, and capacity-

source route. In MPLS, a router stores the most recent LSPs the router has received from

other routers and the source routes of non-suffix matched paths. From the storage analysis

in Chapter 8, the per router storage complexity is O�NKL� and O�NM � NpL� for ca-

pacity removal MPDV and MPLS respectively. To place these complexities in perspective,

Figure 9.11 shows the router aggregate general storage cost for the 170 link network.

In Figure 9.11, the x-axis shows the rank of the labeled routing algorithm, and the y-

axis shows the aggregate general router storage (in Kbytes) that each algorithm requires.

Because the MPDV cost is proportional to the number of paths calculated and the aver-

age path length, the cost curve of MPDV has the same shape as Figure 9.4, which shows

the number of paths MPDV calculates. The general storage requirement for the 195 link

network has the same properties as shown in Figure 9.11.

For MPLS, the general storage cost consist of storing LSPs (O�NM�) and the source

routes for non-suffix matched paths. Since the number of non-suffix matched paths in-

creases with rank, the MPLS curve in Figure 9.11 increases as rank increases. Although

Link State based algorithms typically have to store other information such as the network

graph and different data structures used to compute paths, these costs are not shown in here

154

0

100

200

300

400

500

600

700

800

1 1.5 2 2.5 3 3.5 4 4.5 5

R
ou

te
r

D
at

a
S

to
ra

ge
 (

K
by

te
s)

Rank

Aggregate General Router Storage Requirement

MPDV
MPLS

Figure 9.11 : The total general storage cost for MPLS and MPDV in the 100 node, 170 link
cluster network.

because they are heavily dependent on specific implementations of the path calculation

algorithm.

To put these storage requirements in perspective, Figure 9.4 shows that each router

needs approximately 6 and 7.3 Kbytes of general memory to store the information needed

by MPDV and MPLS to calculate � paths per destination. Notice that these memories only

measure the information needed by the routing algorithm. In practice, a routing protocol,

which implements routing algorithm, would require additional memory for its internal data

structures. However, since protocol costs are need for both single path and multipath rout-

ing, these costs do not affect the additional costs incurred by a multipath routing algorithm.

Given that the additional per router general storage requirement of MPDV and MPLS

are relatively small (on the order of Kilobytes) in comparison to the amount memory in

routers (on the order of Megabytes), we believe that current router’s memory capacity can

satisfy the additional storage requirements needed by a multipath routing algorithm.

9.4.3 CPU Usage in Path Computation

Router computation cost refers to the CPU cycles needed to compute multiple paths. This

cost is not performance critical because path computation is typically performed on a sepa-

rate processor than ones that forward packets [92]; furthermore, path computations are rel-

atively infrequent compared to packet forwarding. Nevertheless, this cost needs to be low

so that path computations can be performed in reasonable time. This subsection analyzes

the computational complexities of the MPDV and MPLS capacity removal algorithms.

For the capacity removal MPLS algorithm, the computation analysis is straightfor-

155

ward. The algorithmic complexity of the centralized, naive capacity removal algorithm

is O�KNE � lg�E��. In addition, since MPLS uses the suffix matched forwarding method,

a MPLS router needs to compute, for each destination, paths to that destination from itself

as well as from all of the router’s neighbors; therefore, the naive computation complexity

is O�MKNE � lg�E���, where M is the average number of neighboring routers.

In MPDV, the amount of computation depends on the number of paths each router

has to examine and the length of those paths. This is more than the complexity of single

path DV which depends only on the number of paths calculated. The reason is that the

capacity removal algorithm requires examination of each link in a path. Given that MPDV

computes K times more paths and average path length is L, the computation complexity

is O�KL� more than SPDV. Given that the average computational complexity of SPDV is

��N�M��ln�M���� (Section 8.1), the average complexity of the capacity removal MPDV

algorithm is thus ��KL �N�M��ln�M����.

We believe optimization such as dynamic programming for MPLS and efficient path

encoding for MPDV can reduce the CPU overhead of capacity removal path computation.

However, despite the lack of these optimizations, the complexities of the two algorithms

are reasonably low; therefore, we believe that they can be feasibly implemented in current

routers.

9.4.4 Routing Message Cost

Routing message cost refers to the number of messages needed to propagate information

in order to perform route computations. Because our multipath implementations use static

metrics, routing message cost is incurred only during topology changes, which occurs rel-

atively infrequently compared to data forwarding. Nevertheless, this cost cannot be pro-

hibitively high because it may affect data forwarding speed (Chapter 3). This subsection

analyzes the message cost of MPLS and MPDV algorithms.

As stated in Section 8.1, the average message complexity of capacity removal MPDV

is ��N�M�KL�ln�M����; a factor KL more than the SPDV. This complexity is derived

from the product of the size of each MPDVP and the number of MPDVP’s transmitted: the

size of each MPDVP is O�NKL�, and the average number of MPDVP’s transmissions is

��NM��ln�M����.

For MPLS, the routing message overhead comes in two categories. The first category

is the messages needed to disseminate topology information. The requirement is the same

as the single path LS algorithm, which is O�NE�. Notice that compared to SPLS, the

MPLS topology messages require an additional capacity specification per link (1 byte);

156

this additional cost does not affect the MPLS message complexity.

The second MPLS message overhead is the cost needed to support non-suffix matched

paths. Our implementation of MPLS uses the explicit routing method that source routes

non-suffix matched paths. This method does not require any additional computation, but in-

curs message cost proportional to the number of non-suffix matched paths and their lengths.

Thus, the explicit routing message overhead is O�NpL�.

However, since the number of suffix matched paths is topology dependent and not all

non-suffix matched path need to be source routed (illustrated in Figure 9.9), the analytical

bound does not provide a concrete bound. Therefore, we experimentally quantified this

cost. Given that message costs increase as network connectivity increases (refer to message

complexity analysis), Figure 9.12 shows the routing message cost for MPLS and MPDV

in the 195 link topology. The message costs for the 170 link topology exhibit similar

characteristics and are not shown here.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r

of
 R

ou
tin

g
B

yt
es

Paths Calculated Between Nodes

Routing Message Costs

MPDV
MPLS

Figure 9.12 : The routing message cost for capacity removal MPLS and MPDV algorithms.
The message costs shown are the total number of bytes each routing algorithm transmits for
path computation. MPLS uses the explicit routing technique to resolve non-suffix matched
paths.

The x-axis in Figure 9.12 denotes the rank of each algorithm, and the y-axis shows the

routing message cost (in bytes) needed to compute paths between nodes.

As Figure 9.12 shows, the MPLS message costs increase slightly with the number of

paths calculated between nodes. At rank = 1, the MPLS curve shows the cost of LSP

broadcasts, which is constant regardless of the rank value. Notice that the MPLS message

cost increases slightly with rank. This increase is attributed to the message cost of explicit

routing of non-suffix matched paths. The graph shows that the maximum message overhead

157

incurred by source routing (at rank = 5) is approximately 10% of the cost to broadcast LSPs.

This means the explicit routing message cost O�NpL� is approximately 10% of the LSP

broadcast cost.

For MPDV, notice that the message cost of computing 2 paths per node is approximately

the 2 times more than computing one path; however, the cost of computing 3, 4, and 5

paths are only slightly more than computing 2 paths. The reason is that the message cost

of MPDV is proportional to the number of paths actually computed. Notice that the curve

in Figure 9.4, which shows the number paths MPDV calculates, has the same shape as

the MPDV message cost curve in Figure 9.12. This confirms the analysis that MPDV’s

messaging cost is proportional to the number of paths computed.

In addition to measuring message costs to compute all-pairs paths, another way to gauge

message cost is to measure the number of messages needed by a routing algorithm to react

to a single topology change (e.g. link failure or recovery). This measure of message cost is

given in Figure 9.13. This figure shows the message cost incurred by each routing algorithm

to recompute paths when a random link fails and subsequently recovers (i.e. two topology

changes).

0

100000

200000

300000

400000

500000

600000

1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r

of
 R

ou
tin

g
B

yt
es

Paths Calculated Between Nodes

Routing Message Cost with Topology Changes

MPDV
MPLS

Figure 9.13 : The routing cost of MPDV and MPLS for a single link failure and recovery.
The costs show the total number of bytes each routing algorithm transmits to adapt to one
link failure and recovery.

In Figure 9.13, the x-axis denotes the rank, and y-axis shows the routing message cost

when a link fails and subsequently recovers. The MPDV cost curve shows that routing

message cost for an isolated topology change has the same general shape as the cost curve

in Figure 9.12. However, the proportion of cost difference between 1-rank MPDV and 2-

rank MPDV is higher. This is because the 2-rank MPDV has twice the amount of affected

158

paths per topology change, resulting in twice the MPDV message size and two times the

amount of updates

The MPLS cost includes topology broadcasts and source routes to establish non-suffix

matched path IDs. Again, MPLS costs increase as rank increases. The cost curve in Fig-

ure 9.13 shows that the maximum source routing cost (at rank = 5) is approximately the

same as the cost for a single MPLS failure and recovery broadcast.

The experiments in this section show that the message costs of both complete and incre-

mental path computations are relatively low. Figures 9.12 and 9.13 show that MPDV costs

are proportional to the number of calculated paths and that capacity-source routes con-

tribute approximately L times more routing message cost compared to SPDV. For MPLS,

our experiments show that the additional cost of source routing non-suffix matched paths

are comparable to the message cost of broadcasting topology changes.

Given that current link speeds are on the order of Megabits to Gigabits per second and

that multiple paths are recomputed only when topology changes, the additional multipath

message costs, as shown in Figures 9.12 and 9.13, consume a negligible proportion of

link bandwidth. Therefore, with the combination of low message overhead, infrequency of

route recomputations, and high link bandwidth, we believe the extra messages incurred by

MPDV and MPLS will consume a negligible amount of link bandwidth.

9.4.5 Routing Cost Summary

The various costs of executing MPDV and MPLS routing algorithms can be divided into

the following five elements: 1) per packet path specification, 2) per packet forwarding time

(which depends on forwarding table storage), 3) router general storage requirement, 4)

router CPU usage, and 5) routing messages. The first two cost elements are performance

critical because they are incurred on every packet and directly affect packet delivery times.

The last three categories, although not performance critical, need to be low in order to

make the implementation of multipath routing feasible in large-scale networks. The five

cost categories are summarized below.

Using the suffix matched forwarding method, the per packet overhead of specifying

suffix matched paths is O�dlg�K�e�, where K is the number of paths provided a between

node pair. This bound holds for all MPDV based algorithms and for MPLS algorithms that

compute suffix matched paths. For MPLS that uses non-suffix matched path calculation

algorithms, the per packet overhead to specify paths to a destination D is O�dlg�K � p�e�,

where p is the average number of non-suffix matched paths to D that passes through a

router. In our experiments p is very small, p � 	.

159

The second cost category, per packet forwarding cost, is also low when using suffix

matched forwarding. Because the path IDs are small integers, forwarding packets on mul-

tiple path requires only one additional hash lookup, which has minimal impact on router

forwarding speed [48,149,160]. In addition, the suffix matched forwarding allows compact

storage of paths in forwarding tables: the MPDV forwarding table complexity is O�NK�,

K times more than single path DV. For non-suffix matched MPLS (e.g. capacity removal

MPLS), a router’s forwarding table complexity is O�NK � NpL��. In our experiments,

the MPLS storage complexity no more than
NK . Thus the suffix matched forwarding

method’s small, fixed-length integer path IDs not only have low per packet overhead but

also allow efficient packet forwarding.

The third cost category, general router storage, is also low. General router storage is not

performance critical because the information stored in these memories do not directly affect

packet forwarding efficiency. In our implementations, the per router storage for MPDV is

O�NKL�, KL times more than single path DV, and O�NM � NpL�� for MPLS routers.

From our measurements, we believe the memory requirements for both MPDV and MPLS

can be satisfied by today’s routers.

Router CPU usage is the fourth cost category. Because more paths are calculated be-

tween nodes, the CPU complexities are higher for multipath routing algorithms, compared

to their single path counterparts. In MPDV, the CPU complexity usage is proportional

to the number of paths examined and their path length (��N�M�KL�ln�M����). This

is a factor KL more than SPDV. For SPLS, the computation complexity of calculating

shortest paths is O�E � lg�E��, whereas for MPLS, it is O�MW �. Here W is the complex-

ity the multipath calculation algorithm. With the centralized capacity removal algorithm,

W � O�NKE � lg�E��. Although the actual path computation algorithm has higher

complexity, we believe that with the low frequency of path computation, better algorithm

design, and advance processor technology, the computation complexity of MPLS will not

be a performance bottleneck.

The last cost category is routing message overhead. A routing algorithm’s message

overhead depends on its path calculation process. For LS based algorithms, message costs

are largely independent in the number and type of the paths calculated. This is because

LS messages broadcast topology information and are thus independent of path calculation.

However, because our capacity removal MPLS implementation source routes non-suffix

matched paths, its message complexity is O�NE � NpL�. This is compared to SPLS

whose message complexity is O�NE�. In our simulations, NE �NpL �
NE, for both

computing all-pairs paths and for computing paths after a single link failure or recovery.

160

Routing Alg. Per Pkt Cost Forwarding Tab. CPU Usage Rout. Msgs Exp. Msgs

SPDV O��	 O�N	
�N�M��ln�M		�	
�N�M��ln�M		�	 0.72MB

MPDV O�lg�K		 O�KNL	
�N�M�KL�ln�M		�	
�N�M�KL�ln�M		�	 5.6MB

SPLS O��	 O�N	 O�Elg�E		 O�NE	 2.1MB

MPLS-SM O�lg�K		 O�NK	 O�MW 	 O�NE	 2.1MB

MPLS-NSM O�lg�K � p		 O�N�K� p		 O�MW 	 O�NE �NpL	 2.2MB

Table 9.1 : A summary of the routing costs incurred by different routing algorithms. This
table shows the different routing cost categories for the single shortest path DV (SPDV),
capacity removal MPDV (MPDV), shortest path Link State (SPLS), suffix matched MPLS
(MPLS-SM), and non-suffix matched, capacity removal MPLS (MPLS-NSM) routing al-
gorithms. The last column shows the actual message cost measured for each algorithm on
the 100 node 195 link network (for the multipath algorithms, the costs shown are for com-
puting 3 paths). The variables in the table represent the following: N the number of nodes,
E the number of network edges, K number of paths calculated between a node pair, p the
average number of non-suffix matched paths to a destination that passes through a router,
L the average path length, and W the centralized algorithmic complexity of calculating K
paths between nodes.

Unlike LS based algorithms, the message costs of DV based algorithms are closely tied

with path calculation because paths are computed through message exchanges. In SPDV,

the message overhead is ��N�M��ln�M����, and in MPDV, the message overhead is KL

more, ��N�M�KL�ln�M����. MPDV uses a factor of KL more because the capacity

removal algorithm needs to examine each path’s links, and there are K more paths to ex-

amine.

Again, we believe that given current network link speeds and the relative infrequency

of path computations, the extra message costs incurred by MPDV and MPLS will consume

negligible network bandwidth.

Table 9.1 summarizes the different cost categories. The processing cost for packet

forwarding is omitted in the table because it is the same for all five algorithms.

9.5 Experimental Conclusions

This section presents the cost and performance of the capacity removal MPLS and MPDV

routing algorithms. The experiments were conducted on two relatively sparse Internet-like,

cluster topologies (100 nodes with 195 and 170 links). The results of these experiments

show that the implementations of capacity removal MPDV and MPLS routing algorithms

provide additional network resources to end-hosts at low routing costs and that end-hosts

can effectively use these additional resources to increase their performance.

161

Network performance is measured in terms of throughput, round-trip latency, and mes-

sage drop probability. MPTCP is used to measure throughput, and a multipath ping pro-

gram is used to measure latency and drop probability. With respect to throughput, our

simulations show that MPTCP fully utilizes the paths provided by MPDV and MPLS. This

observation confirms two important properties of our multipath architecture. First, both

capacity removal MPDV and MPLS algorithms compute paths that provide more network

resources. Second, MPTCP effectively uses these resources to increase network through-

put.

In addition to throughput, our simulations show that multipath networks also allow

end-hosts to successfully increase their performance in terms of lower latency and reduced

message drop probability. A multipath ping program is used to measure these two perfor-

mance metrics. Compared to a single path ping program, the simulations show that the

multipath ping program achieves 15% lower round-trip delay and incurs approximately

50% less message drops.

The performance sections in this chapter show that multipath networks can provide

quality paths and that these paths can be efficiently utilized to increase end-to-end perfor-

mance.

The second focus of this experimental section is the runtime cost of multipath routing

algorithms. The five cost categories are 1) per packet path specification, 2) packet forward-

ing, 3) router storage, 4) path computation, and 5) routing messages. Of the five costs,

the first two are performance critical because they directly influence the speed of packet

delivery. Given that MPDV and MPLS both use the suffix matched forwarding method,

these two costs are kept at a minimal: fixed-length per packet path IDs, one additional path

ID lookup per packet, and small forwarding tables. For the other three cost categories, our

experiments show that their overheads are reasonably low, thereby making the implemen-

tation of multipath routing possible for large-scale data networks.

The conclusion of this chapter is that multipath routing can provide substantial end-to-

end performance improvement, and we believe that the costs incurred by multipath routing

algorithms can be satisfied in modern networks.

162

Chapter 10

Related Work

The research presented in this thesis builds on a large body of work. The purpose of this

section is to compare and present other work relating to dynamic metric and multipath

routing models. Section 10.1 presents related research in dynamic metric routing, and

Section 10.2 multipath routing.

10.1 Dynamic Metric Routing

Dynamic Metric Routing Algorithms

The ARPANET was one of the earliest testbeds for dynamic metric routing. Dynamic met-

ric routing was implemented in the early 1980’s and used the Link State routing algorithm.

This traditionally static metric routing algorithm was modified to compute dynamic metric

paths in the following manner: every router continually monitors the costs of its outgoing

links. Whenever the difference between a link’s current cost and its last advertised cost ex-

ceeds a preset threshold, the router then broadcasts an LSP to reflect this cost change. The

LSP broadcast initiates a global path recomputation that incorporates the new link cost. A

dynamic metric Distance Vector algorithm can be implemented in a similar fashion.

As discussed in Chapter 3, two primary disadvantages of this type of routing algorithms

were observed and documented by Khanna and Zinky [94]. First, dynamic metric LS/DV

algorithms have the tendency to oscillate traffic from one area of congestion to another.

These routing oscillations underutilize network resources and exacerbate network conges-

tion. Second, the amount of routing resources used by both algorithms is unpredictable and

hard to control. This problem is worsened because dynamic metric LS/DV’s resource con-

sumption increases as network traffic increases, thereby competing for network resources at

a time when they are most scarce. These two disadvantages limit the wide use of dynamic

metric routing in today’s Internet.

The hybrid-Scout routing algorithm, to a large extent, overcomes these two limitations

(see Chapter 3). Hybrid-Scout reduces route oscillation by independently calculating dy-

namic metric paths to a selected set of destinations, and its routing costs are easily con-

163

trolled by Scout generating destinations. The key idea behind the hybrid algorithm is that

calculating dynamic metric paths to a selected set of “hot” destinations is sufficient in re-

ducing network congestion, and that such selective calculations can be done efficiently.

This idea is made feasible by the high degree of destination locality observed in network

traffic today.

Other Measures Of Dynamic Metrics

This thesis develops routing algorithms targeted for large-scale, packet switched wired

networks. In these networks, dynamic link metrics are typically used to measure the amount

of traffic experienced on a particular link. In other types of networks, however, dynamic

link metrics can be used to measure link properties other than traffic.

One such application of dynamic metrics have been applied to wireless, ad hoc mobile

networks. In these networks, computers are not physically connected but communicate

using wireless channels. The reliability of a connection between neighboring computers

depends on factors including distance, the number of interfering signals, etc. Because

not all wireless “links” have the same signal strength, Dube et al. in [56] use dynamic

link metrics to measure the strength of a wireless connection (measured in terms of signal

strength). This link measure is dynamic because a wireless connection’s signal strength

changes as computers move.

In this context, the routing algorithm provides paths between nodes based not only on

path length, but also on the signal strength of each link on that path. In their implemen-

tation, packets are routed on paths that use stronger signal links over paths that do not.

The routing algorithm used in [56] is a variation of the dynamic metric Distance Vector

algorithm where route recomputations are triggered by link cost changes (Chapter 3).

We believe that the Hybrid-Scout algorithm can be applied in this network environment

to efficiently calculate strong signal paths. Like wired networks, effectiveness of hybrid-

Scout depends on the amount of destination locality in ad hoc networks. However, unlike

wired networks which may consist of tens of thousands of nodes, ad hoc networks are

typically small, on the order of less than fifty nodes. Given their size, the reduction in

routing cost of hybrid-Scout, compared to dynamic metric LS/DV algorithms, will not be

as significant as observed in large networks.

164

Quality of Service Routing

The current Internet provides a best-effort service model: packets are delivered to their

destinations without guarantees on the success of packet delivery nor on delivery times.

However, with the emergence of applications such as IP telephony and video conferenc-

ing, many advocate that traditional best-effort networks should support mechanisms that

provide delivery guarantees [17,29,40,86,162].

These delivery guarantees are generally refer to as Quality of Service (QoS) [34, 91,

162,169]. The QoS of a path is typically specified as a combination the path’s delay bound

(i.e., packets sent on this path will reach the destination in time less than t) and the path’s

available bandwidth (i.e., X amount of throughput can be obtained on this path before

packet drops). Before transmitting data, an application that requires QoS needs to specify

its QoS requirement and make reservations on the path to its destination (i.e. on every

router in the path). Once the reservation is made, the application is assured to receive the

requested QoS.

Notice, at any given time, the QoS requirement that a router can satisfy depends on the

QoS requests the router is currently supporting. That is, the probability a router can satisfy

a certain QoS request is dynamic and depends on traffic. Thus, a dynamic link metric can

be formed to expresses the probability that a QoS request can be satisfied, and paths can be

computed to optimize this metric.

Indeed, there are several proposals to compute paths that consider QoS metrics [9, 11,

72]. Currently, there are two general approaches to implement QoS routing. The first is to

use dynamic metric versions of the Link State or Distance Vector algorithms [9, 72] (refer

to Chapter 2 for their implementation). The triggering mechanisms allow the two routing

algorithms to calculate paths that maximize the probability of satisfying QoS requests.

Recall that in datagram networks, routing instabilities tend to occur in dynamic metric

routing because path recomputations can potentially shift a large amount of data from one

congested area to another. However, this large traffic shift does not occur in QoS routing

because once a QoS path is reserved, packets traveling the path are not re-routed, even

though the current path between the source and destination may have been recomputed to

use a different path. That is, reserved QoS paths are pinned and packets traversing these

paths are not affected by subsequent path computations, thereby reducing large traffic shifts

and routing instabilities.

We believe the hybrid Scout algorithm be successfully applied to compute QoS paths.

However, because routing instabilities and costs are reduced in QoS based LS and DV

algorithms, we believe that the cost-performance benefits of hybrid Scout benefits will be

165

less compared to ones observed in congestion-oriented dynamic metric routing.

The second approach to QoS routing is to dynamically calculate a QoS path given a QoS

request [10]. In this approach, whenever a router receives a QoS request from a host, the

router dynamically computes a path with the highest probability of satisfying the request.

Once the path is calculated, the router then forwards the QoS request on that path. To make

this approach feasible, the challenge is to reduce the amount of router processing needed

for dynamic path computation.

In addition to explicitly considering QoS constraints in the actual routing algorithm,

researchers have studied other methods to increase network QoS. One such approach to ex-

amine the impact of multipath networks. That is, given a network that offers multiple paths

between nodes, how can end-hosts best utilize these paths to better ensure their network

QoS to their destinations.

Roa and Batsell in [131] proposed a method which guarantees that end-hosts can trans-

mit their messages with minimal delay, given an accurate view of the network (e.g. up-to-

date information of router queues and traffic patterns). Cidon and Rom developed end-host

reservation algorithms to increase the probability of reserving QoS request on a multipath

network [39]. The different algorithms they developed make different tradeoffs between

the probability of satisfying a QoS request with the amount of network resources and time

needed to satisfy the request.

Algorithms for Highly Dynamic Networks

Another network environment which requires routing techniques similar to dynamic metric

routing is in highly dynamic networks. Highly dynamic networks are characterized by fre-

quent changes in network topology. These networks are typically wireless and highly mo-

bile. Abstractly, dynamic networks can be modeled as a dynamic metric networks where a

connected link has cost 1 and a unconnected link has cost infinity, and a link’s cost changes

between these two values to indicate the link’s connectedness (value 1) or disconnectedness

(value infinity).

Johnson and Maltz proposed a host-initiated routing algorithm for such networks [87]

called Dynamic Source Routing (DSR), which is similar to Scout [33]. The assumption

of their work is that the network topology changes so rapidly such that maintaining valid

routes to all destinations is infeasible. Thus DSR calculates paths on demand: whenever a

node wishes to transfer data to another node, the sending node initiates a path computation

to that node. DSR is similar to Scout in that small messages are flooded to calculate paths.

However, they differ in several key aspects. First hybrid-Scout maintains paths between

166

all nodes; in an environment such as the Internet, DSR’s on-demand path calculation is

prohibitively expensive. Second, DSR initiates path calculation from the source, as oppose

to the destination. Third, Scout is guaranteed to converge on the shortest path, DSR simply

computes a feasible path. Fourth, DSR uses source routing, whereas hybrid-Scout uses

hop-by-hop forwarding.

Perkins in [127] proposed a modification to DSR called the Ad Hoc On-Demand Dis-

tance Vector (AODV). This routing algorithm is a hybrid of DSR and DV for ad hoc net-

works. AODV uses DSR for on-demand route discovery of hop-by-hop routes and uses

the DV mechanism for invalidating the on-demand paths when link failures are detected.

Like the hybrid-Scout algorithm, AODV is an hybrid algorithm. However, unlike hybrid-

Scout where both the DV/LS and the Scout component compute routes, the DV component

in AODV is used only to invalidate routes discovered by DSR (in a similar way the DV

component in hybrid-Scout invalidates Scout paths). Again, the AODV algorithm cannot

be directly applied to large-scale datagram networks because on-demand route discovery is

too expensive.

10.2 Multipath Routing

This section surveys related work on multipath routing. The discussion is organized as

follows: the first section describes other designs and/or implementations of multipath net-

works in comparison with the one proposed in this thesis. Section 10.2.2 discusses other

work specifically related to algorithms that calculate multiple paths, and the last section

surveys different proposed path forwarding methods.

10.2.1 Multipath Networks and Architectures

IBM SNA

The IBM Systems Network Architecture (SNA) network is a wide area network first de-

ployed in 1974 [70]. This network provides multiple paths between nodes because its

designers thought that the traffic generated by routing algorithms that adapt to network

failures/recoveries would incur prohibitively high routing costs� [6]. Therefore to account

for network failures, multiple paths between nodes are centrally pre-computed so that if one

path fails, other paths would still be operational. SNA also has a notion of multi-service

�This is known to be untrue today.

167

and multi-option paths: the service type are interactive and batch which are used to dictate

packet priority.

Conceptually, the SNA multipath model is very different from the one developed in this

thesis. First, the purpose of SNA’s multiple paths is to provide fault-tolerance without using

adaptive routing; whereas in our model, fault-tolerance is provided by the adaptiveness of

the routing algorithm, and multiple paths are used solely to increase network performance

and services. Second, path services in SNA are predefined. In contrast, the proposed mul-

tipath model is designed to accommodate future path services that have yet to be defined.

In practice, SNA also differs significantly from our proposed multipath network. First,

SNA’s multiple paths are predefined and centrally pre-computed. That is, path computa-

tion is done centrally off-line where routing tables are distributed after this computation is

complete. Since SNA routing is not distributed and not adaptive, it cannot be practically

deployed in wide-area networks of today’s scale. Secondly, the SNA network restricts an

application to use only one path at a time, and the path is specified at connection time. On

the other hand, our multipath routing model allows full application freedom on the usage

of multiple paths.

Scalable Routing Architecture

Estrin et al. proposed a more recent multipath routing model targeted for today’s large-scale

Internet environment called the Scalable Inter-domain Routing Architecture (SRA) [59].

This proposed multipath routing scheme supports two types of paths. The first is the static

metric single shortest paths calculated by a traditional DV routing algorithm. Packets trav-

eling on these paths are hop-by-hop forwarded as in the current Internet. These “generic”

paths are calculated by routers, and it is expected that the majority of network packets will

use these generic paths. The second type of path called Type Of Service (TOS) path, is cal-

culated by end-hosts. Packets sent on TOS paths are forwarding using IP loose source rout-

ing [57]. Calculation of these paths requires end-hosts to first collect the network topology

information from routers and then individually calculate the desired path(s). Since there

are no restrictions on path calculation, applications in SRA can send packets on arbitrary

paths.

Although SRA and the multipath model considered in this thesis are targeted for the

same network environment, they are fundamentally very different. In SRA, packets trav-

eling on non-shortest paths (i.e. on TOS paths) are expected to be few in comparison to

packets on generic paths. This assumption is reflected in the difficulty in which TOS paths

are calculated and the inefficiency of the packet forwarding method. Whereas, in the mul-

168

tipath model proposed, all paths are calculated with the same efficiency and packets are

forwarded the same way irrespective of the path they travel. In short, our multipath model

views packets traveling non-generic paths as the general case, whereas in SRA, they are

viewed as the exception. This perspective difference is evident in each model’s path calcu-

lation and packet forwarding methods.

Detour

As mentioned in Chapter 2, Internet routing is decomposed into routing domains for scala-

bility reasons. Routing domains are typically divided by domain ownership, as opposed to

domain geographies. This causes routing inefficiency because the path between two geo-

graphically close nodes may actually traverse domains that are geographically very far from

the source and destination domains. In addition, inter-domain routing algorithms calculate

paths based on minimizing the number of domains traversed. This policy also gives rise

to sub-optimal routing because the time needed for a packet to traverse a domain depends

on the size of the domain, which is highly variable. The result of domain decompositions

and inter-domain routing policy frequently causes routing anomalies because minimizing

the number of domains in a path does not necessarily minimize path delay. For example,

sending a packet “directly” from domain A to B may take longer than sending the packet

“indirectly” from A to C and then to B.

The Detour project aims to overcome such routing efficiencies caused by these two

factors [8,136]. Detour’s approach is to establish a set of “smart” routers that communicate

with each other to setup a virtual network. The nodes of the virtual network are Detour

routers, and a virtual link connecting two Detour routers is the path in the physical network

that connects the two routers. Packets sent by one Detour router are tunneled [134] to its

neighboring router. The cost of each virtual link is computed dynamically by sampling

the link’s delay. In the previous example, Detour hopes that its routers will automatically

reroute packets sent from A to B through C using this virtual network.

Detour also plans to support “multipath routing”: if Detour routers detect that there are

multiple, virtual paths to a destination, the routers will distribute data among the multiple

paths. Notice that this type of multipath routing differs from the model proposed in this

thesis because end-hosts in Detour do not have control over which path to use. As stated

in Chapter 4, the absence of end-host control limits the performance gains of multipath

networks.

In short, Detour aims to address inter-domain routing inefficiencies by establishing a

virtual network that delivers packets based on actual observed path latencies (i.e. not based

169

on the number of domains traversed). Detour also plans to support a form of multipath

routing where end-hosts do not have control over which path to send their packets.

We believe the Detour architecture may be used to incrementally deploy the multipath

routing model described in this thesis. Using the virtual network, Detour-like routers can

implement end-host controlled multipath routing. Details of this approach are given in

Chapter 11.

Specialized Networks

Another network environment where using multiple paths have been proposed and imple-

mented is in short-hauled networks [50,106,166]. Short-hauled networks are characterized

by tightly coupled network elements and are usually implemented in multiprocessor net-

works or switches. Examples of short-hauled networks are Banyan networks [140], Omega

networks, mesh topology networks [143], cube topology networks [37, 55, 105, 143], gen-

eral multistage networks [49,104], and internal ATM switching elements [76,88,145,155,

164].

The goals for providing multiple paths in a short-hauled network are to decrease switch

blocking probability (e.g. switch overloading) and to increase fault tolerance [132, 161].

In addition to scale, the main conceptual difference between a short-hauled network and a

wide area network is that paths between nodes within short-hauled networks are hardwired.

That is, paths between nodes are determined at network design/construction time, as oppose

to one that is dynamically determined and adapts to component failures.

Hardwiring paths is possible in short-hauled networks because node addresses are cho-

sen so that the network can determine the path to a node by inspecting the node’s address.

In this well defined environment, short-hauled network designers are able to assign, a pri-

ori, multiple paths between nodes.

Unfortunately, the methods employed in these networks are not directly applicable to

wide area networks. The three main reasons are 1) wide area networks are not tightly

coupled, 2) the wide area network environment is dynamic (i.e. node and links may fail),

and 3) it is not possible to pre-assign paths to nodes based on node address.

10.2.2 Multipath Calculation Algorithms

This section presents related work on multipath calculation algorithms. Unlike the mul-

tipath networks presented in the last section, the algorithms described here are concerned

with path computation and are generally not designed for a distributed network environ-

170

ment. Nevertheless, these algorithms are important because they provide the basis on which

to build distributed multipath calculation algorithms.

Introductory algorithm text books such as [19,42,108] provide basic path computation

algorithms. For more advanced graph algorithms, refer to [5].

Disjoint Paths

The most obvious multipath calculation criteria is to calculate multiple disjoint paths. There

are two types of path disjointness, node and link disjointness. A set of paths between two

nodes is node (link) disjoint if and only if all paths in the set do not have any node (link) in

common [152]. Several algorithms are surveyed below.

The algorithm presented in [118] computes pair disjoint paths between nodes such that

the total costs of the paths are minimal. Later work by [36] extended the algorithm to

compute K disjoint paths with guaranteed total minimal path cost. Notice that both of

these algorithms do not guarantee that the least cost path is in the computed set.

Sidhu et al. developed a distributed multipath calculation algorithm that calculates node

disjoint path and guarantees that the shortest path is in the calculated set [146]. This algo-

rithm calculates path from node X to Y by considering the relative position of Y on the

shortest path tree rooted at X . Alternate paths are calculated by finding cross edges that

connect Y to X . The two major drawbacks of this algorithm are that 1) the algorithm may

diverge if the network topology changes during path computation, and 2) the worst case

message complexity is exponential.

A variant of disjoint paths is initial link disjoint paths. Initial link disjoint paths, de-

scribed in [156], is a centralized, dynamic programming algorithm that calculates K paths

to every node such that the paths to a particular node has distinct initial links. The algorithm

is based on Dijkstra’s shortest path algorithm [54].

Shortest K Paths

Another criteria for calculating multiple paths is to calculate unconstrained K shortest

paths. The objective of this criteria is to find K distinct paths between two nodes such

that they have the minimum sum compared to all other K possible distinct paths. Many

algorithms have been developed to compute these paths; refer to [103,141,165] for different

approaches. The computational lower bound for computing unconstrained K shortest path

is O�m � n log�n� � kn�, where m is the number of edges, n number of nodes, and k the

number of path to calculate between nodes [58].

171

Multi-commodity Flows

Perhaps the most well study of all multipath calculation algorithms are ones that compute

multi-commodity flow paths. The constraint of a multi-commodity flow problem is to

minimize the total cost of transmitting multiple resources to and from different nodes. This

optimization is constrained by the capacities of each link for each resource and the costs of

using a link [5,63]. For more references on this subject, refer to [13,14,89].

A variant of multi-commodity is maximum flow. A maximum flow algorithm com-

putes paths between two nodes such that the aggregate capacity of the calculated paths is

maximized between the two nodes. These paths can be calculated efficiently and are ap-

plicable to routing algorithms that wish to provide high capacity paths between nodes [5].

The capacity removal algorithm presented Chapter 5 also computes paths to increase ca-

pacity. But unlike maximum flow algorithms, the capacity removal algorithm considers

path length and the number of paths calculated.

10.2.3 Multipath Forwarding Methods

As Chapter 4 showed, forwarding messages on multiple paths is significantly harder than on

single shortest paths because paths in a multipath network are not guaranteed to be suffix

matched. For paths that are suffix matched, Chapter 6 presented an efficient forwarding

method that require fixed-length per packet path ID and router storage linear to the number

of paths provided. This section surveys other path forwarding methods.

Source Routing

Source routing is a forwarding technique in which the sender of a message determines the

path a message is to travel and tags the message with that path. That is, a message contains

an explicit list of nodes the packet is to traverse. Upon receiving such a message, a router

simply forwards the message to the neighbor specified in the message’s source route.

This method is very flexible because messages can be forwarding on arbitrarily paths.

However, source routing has two major drawbacks. First, with each message carrying

an explicit path, source routing’s message overhead is variable length and high for large

networks and long paths. Second, for each router, the storage requirement for each path is

O�LP �, where L is the average path length, and P is the size to encode each element in a

path. This requirement is compared to O��� in conventional single path routing algorithms

and the proposed suffix matched forwarding method.

172

Label Swapping

Label swapping performs path forwarding by using local path identifiers [139]. In label

swapping, a path X � �x�� � � � � xn� is implemented by nodes xi and xi�� sharing a local

path identifier (LPID) such that whenever xi receives a message with lpidi��, it forwards

the message to xi��, replacing the LPID with lpidi, � � i � n. Examples of label swapping

are the suffix matched forwarding and ATM’s virtual circuit forwarding methods.

The advantage of label swapping is that the message overhead and the per path router

memory overhead are constant. However, the difficulty in label swapping is the estab-

lishment of LPIDs such that they globally compose the calculated paths. For example,

ATM requires a special pre-connection packet that traverses the intended path to establish

LPIDs. Notice that in the suffix matched forwarding method, however, LPIDs are implic-

itly made consistent by exploiting the suffix matched property and therefore do not need

pre-connection packets.

The label swapping technique has also been applied to make source routing more effi-

cient [85]. For example, the solution adopted in Chapter 6 uses source routing with label

swapping to establish LPIDs for non-suffix matched paths. Using this optimization, a path

is source routed only once, and label swapping is used subsequently. This optimization

greatly amortizes the initial source routing overhead.

Compact Addressing

Source routing lists nodes on a path where nodes are identified by a node identifier, which

can be very large (in number of bits). For example, a node on the Internet has an ID

that is 32 bits long [30] and will increase to 128 bits with IPv6 [26]. Compact addressing

reduces the amount of bits needed to enumerate a path by observing that nodes only forward

messages to their neighbors. Therefore, if a node has a local name for each neighbor,

say w�� � � � � wM for neighbors � to M , then a node only needs dlog�M�e bits to forward

messages to its correct neighbor [67]. Assume that a node has at most M neighbors, then to

encode a source route of length l takes l�dlog�M�e bits. SinceM is typically not very large

(�
�), this optimization can substantially reduce the overhead of source routing packets.

173

Chapter 11

Conclusions and Future Directions

The contributions of this dissertation are the methods developed to implement dynamic

metric and multipath routing models, and the experimental analysis which demonstrates

that the two models can be implemented efficiently and significant performance gains ob-

tained. The two routing models, compared to the current Internet’s static metric single path

model, better utilize network resources to provide higher network performance.

For the dynamic metric routing model, this thesis develops a novel routing algorithm,

hybrid-Scout, that increases network performance by exploiting the destination locality

observed in network traffic. For multipath routing, this thesis develops not only efficient

multipath routing algorithms, but also a transport protocol that effectively uses multiple

paths.

This chapter concludes the research presented in this dissertation and outlines potential

future research directions.

11.1 Conclusions

Dynamic Metric Routing

This dissertation began with the development of a dynamic metric single path routing algo-

rithm, the hybrid-Scout. Traditional dynamic metric routing algorithms based on Link State

and Distance Vector suffer two primary drawbacks: the tendencies for routing oscillations

and uncontrolled routing costs. The hybrid-Scout algorithm addresses these two problems

through selective, time staggered path computations that are controlled by destinations.

The algorithm is selective because it calculates dynamic metric paths only to certain

“hot” destinations – analysis of Internet traffic locality indicates that a few destinations

receive the majority of network traffic (the top 1% destinations receive 60% of network

traffic); thus calculating dynamic metric paths to these destinations significantly impacts

the performance of the entire network. Moreover, the dynamic metric paths are calculated

in a time staggered manner. These two properties of the hybrid-Scout algorithm, selective

and time staggered route computation, reduce route oscillations because not all paths are

174

calculated at the same time.

In addition to increasing route stability, the routing costs incurred by hybrid-Scout are

also predictable. In traditional dynamic metric routing algorithms, routing traffic are trig-

gered by network traffic, making them unpredictable and traffic dependent. In hybrid-

Scout, however, routing traffic are controlled by the destinations whose paths are dynam-

ically calculated. Therefore, routing costs are easily controlled by bounding the routing

costs of these destination.

To validate the hybrid-Scout algorithm, extensive simulations were conducted to mea-

sure its effectiveness and efficiency and to determine the conditions under which hybrid-

Scout is better than dynamic metric LS and DV. Simulation results show that, for an

Internet-like topology, 1) hybrid-Scout is effective at rerouting network congestion, under

the condition that at least 50% traffic are destined to selected destinations, and 2) hybrid-

Scout is more efficient (by 1 to 2 orders of magnitude in routing cost) than both dynamic

metric LS and DV if less than 10% of nodes generate Scouts. Since these conditions are

present in today’s Internet, we conclude that hybrid-Scout, if implemented, can improve

Internet performance.

Multipath Routing

The second main contribution of this dissertation is the development of methods that im-

plement and utilize multipath networks. Multipath networks are networks that provide

multiple paths between nodes at the same time, and transmitting nodes can select which

path(s) to use. With respect to multipath routing, the contributions of this dissertation are

the design and evaluation of algorithms that make multipath routing feasible for large scale

data networks.

To this end, solutions to solve two main multipath problems are developed: 1) rout-

ing algorithms that efficiently support multiple paths between nodes, and 2) an end-host

protocol that effectively uses multiple paths to actually increase throughput performance.

The first problem, supporting multiple paths efficiently, is primarily concerned with the

cost of specifying and forwarding packets on their intended paths. While trivial in single

path routing, this process is difficult in a multipath context because there are more than one

path to a destination. To solve this problem, this dissertation develops a novel forwarding

method, the suffix-matched forwarding method, that uses fixed-length per packet path IDs

and requires router storage linear to the number of paths calculated. The method’s low over-

head is achieved by exploiting path sets with the suffix matched property. To demonstrate

the applicability of suffix matched forwarding, this thesis extends the method to multipath

175

versions of the LS and DV routing algorithms.

The second multipath contribution of this thesis is the development of an end-host pro-

tocol that effectively uses multiple paths to increase end-to-end and network throughput.

This thesis develops a multipath transport protocol, MPTCP, that provides a reliable bit-

stream service and effectively uses multiple paths to maximize throughput. Extensive

simulations show that MPTCP is able to increase throughput proportional to the amount

of available network resources. Furthermore, MPTCP sustains high network performance

even during very high levels of network utilization.

In addition to performance, this thesis also measured the costs incurred by two multi-

path routing algorithms, MPDV and MPLS, based on DV and LS routing algorithms respec-

tively. Because both algorithms use suffix matched forwarding, the performance critical

operation of packet forwarding uses fixed-sized, per packet path IDs and adds only one ad-

ditional lookup in router’s packet forwarding procedure. With respect to non-performance

critical costs, simulations show that the overhead of router CPU usage, router message

cost, and router storage requirements are reasonably low so that we believe the two routing

algorithms can be feasibly implemented in today’s network routers.

11.2 Future Directions

Two general directions of research can follow from the work presented in this dissertation.

The first is the improvement of the hybrid-Scout dynamic metric routing algorithm, and the

second is the further development of the multipath routing model.

11.2.1 Hybrid-Scout

The efficiency of the hybrid-Scout algorithm depends on a network’s destination locality:

experiments show that if at most 10% of the destinations (hot destinations) generate at

least 50% of the network traffic, hybrid-Scout is more efficient and effective than traditional

dynamic metric routing algorithms. This thesis assumes that the hot destinations are known

and that each destination generates Scouts at a rate appropriate for the destination’s received

traffic. A future research direction for the hybrid-Scout algorithm is to remove the two

assumptions: develop a mechanism that determines the set of hot destinations and the Scout

generation rate for each hot destination.

To accomplish this, a distributed traffic monitoring protocol can be installed in network

routers. The protocol gathers traffic statistics to determine which destination networks are

“hot”. Once this determination is made, routers directly connected to these destinations can

176

then generate Scouts on each of those destination’s behalf. In addition, since routers have

traffic statistics of all hot destinations, the appropriate Scout generation rate can be derived

for each destination.

The development of mechanisms to determine hot destinations and their Scout gener-

ation rate will make hybrid-Scout easier to deploy. With these mechanisms, hybrid-Scout

will not require manual configuration of Scout generating destinations and their rates.

11.2.2 Multipath Routing

This dissertation laid the ground work for supporting multipath routing in large-scale net-

works. Because applications of multipath routing have largely been unexplored, there are

many open research issues. Among others, a list of avenues worth pursuing are 1) the

support for different path services 2) the investigation of cooperative multipath transport

protocols, and 3) the incremental deployment of multipath routing in an Internet-like net-

work. Each of these possibilities are described in detail below.

Supporting Different Path Services

This dissertation examines two path services, low delay and high throughput services.

These two services are chosen because of their prevalent use. However, with increasing

diversity of network applications and demands, the need for paths with other services has

increased. Examples of these new services are QoS, security, real-time, and network pric-

ing. Possible research directions are to develop multipath methods to efficiently support

these path services. To give an example of the issues involved in supporting each of the

mentioned services, an outline of some of the problems involved in supporting the QoS

path service is given below.

To provide QoS path services, routers need to enforce queuing disciplines to provide

different types of delivery guarantees [95]. Example QoS services are guaranteed, priority,

and bounded services [11, 43]. Current proposals to support QoS have been primarily

focused on the single path routing model. In a multipath setting, if an end-host has can

make QoS requests on multiple paths to a destination, one expects that QoS requests can

be more easily satisfied. Doing this raises two research issues: how should multiple paths

be calculated in order to consider router QoS guarantees? And how end-host applications

should best use these paths to most efficiently obtain their QoS requirements?

The first issue is concerned with path calculation: designing path calculation algorithms

such that the paths calculated between nodes provide the maximum likelihood of satisfy-

177

ing end-host QoS requests. As stated in Chapter 5, end-hosts can benefit from a multipath

network only if the paths provided offers higher performance than in a single path en-

vironment. The second issue relates to designing protocols that efficiently use network

resources to provide QoS guarantees. For example, a QoS protocol should have the ability

to combine QoS guarantees of individual paths to provide an overall QoS for an applica-

tion. Protocols to accomplish this task need more sophisticated path management strategies

than the scheme MPTCP uses for dynamic load balancing.

Transport Protocols

Another possible area of research is to design a multipath transport protocol that uses mul-

tiple paths in a cooperative manner. Recall that MPTCP uses separate TCP connections on

each available path, and each path is solely responsible for transmitting its own packets.

In a cooperative protocol, a more flexible form of load balancing can be used and many

redundancies may be reduced.

For example, a cooperative protocol can load balance lost segments from one connec-

tion to another. As mentioned in Chapter 7, this reduces receiver buffering which can

increase protocol throughput. A cooperative protocol can also reduce redundancies. For

example, receivers can send one ACK to acknowledge data received on several connections,

and the combined ACK should travel the fastest path back to the sender.

Multipath Incremental Deployment

The algorithms and techniques developed in this dissertation are designed and evaluated

under realistic network assumptions. Thus, the natural research question is how to deployed

the proposed method in an actual large-scale, wide area network.

In practice, deploying algorithms in wide area networks is done in an incremental fash-

ion. The incremental process is necessary because of the network sizes and because differ-

ent parts of these networks are often under different administrative controls. These two fac-

tors make simultaneous routing algorithm updates of every router in a large-scale network

impractical. Thus, a practical research subject is developing a method to incrementally

deploy the multipath routing algorithms developed here.

As mentioned in Section 10.2.1, a Detour-like architecture can be used to incrementally

deploy the proposed multipath model [47,115,136]. Using this approach, a router with mul-

tipath capabilities establishes a virtual multipath network with other multipath-routers. In

this virtual network, the nodes are multipath-routers, and the links are established between

178

these routers using IP tunneling [134]. With this architecture, only end-hosts whose local

router is a multipath router can use the multipath network because the local router is re-

sponsible for translating host multipath IDs into suffix matched path IDs. In incremental

deployment, the connectivity of the virtual network increases as more multipath routers are

placed in the network, resulting in higher performance of the multipath network.

179

Appendix A

The Scout Routing Algorithm

This chapter describes the Scout routing algorithm. Scout is a destination initiated, selective

shortest-path computation algorithm. The key idea underlying Scout is that a destination

periodically floods small, fixed-sized messages through the network which explore avail-

able paths back to the destination�. These exploratory messages, called Scouts, are of a

fixed, small size and can be readily piggy-backed onto data packets on a hop-by-hop basis,

which largely defrays their cost to the network.

The remainder of this chapter is organized as follows. The next section describes the

Scout routing algorithm, followed by Section A.2 which proves its correctness. Concluding

remarks are given in Section A.3.

A.1 Flood Based Route Discovery

To facilitate the presentation, the Scout algorithm is presented by initially assuming ideal-

ized network characteristics. These assumptions are then progressively removed and addi-

tions provided to deal with the relaxed assumptions.

Ideal Network: To feature the basic concepts of the algorithm, assume

� Static network topology where all links have unit cost.

� Message delay along each link is equal.

We define the shortest-path tree rooted at node R as a tree which connects all reachable

nodes to R with the least cost.

The basic mechanism of route discovery is through message flooding. In the Scout al-

gorithm, each node in the network periodically sends a Scout message to all its neighboring

nodes. Let R be the node initiating the Scout message. The period between two consec-

utive floodings of Scout messages from R is called the broadcast interval (BI). A Scout

[R, CR] contains the originating node’s address, R, and the cost to reach R, CR. Initially

�In general a destination could represent a single host, a subnetwork, or an entire routing domain.

180

CR is zero. When a node P receives a Scout message [R, CR] from its neighbor Q, P

first modifies the Scout’s cost CR to include the cost of sending a message from P to Q,

C �
R � CR � Cost�P � Q�. C �

R represents the cost a message will take if it is sent by P

via Q to R. Under the two assumptions above, if P has already seen a Scout from R in the

current broadcast interval, P already has a route to R with cost at least C�
R. In this case, P

remembers this alternate path but does not forward the Scout. Otherwise [R,CR] is the first

Scout P has seen in this broadcast interval, then P forwards [R, C�
R] to all its neighbors

except Q. Since nodes only forward R’s Scout at most once in each BI, the flooding of

Scout messages terminates after every node has forwarded a Scout message of the form

[R, CR]. This means the total number of Scouts exchanged in each broadcast interval for a

single node is O�L�, where L is the number of links in the network.

After the termination of R’s BI, every node in the network knows the minimum path to

R. This knowledge is represented in the form of a next-hop address: node P the minimal

path to R if P knows the minimal cost to R and which of its adjacent nodes is on the

minimal path. In the Scout algorithm, node P knows the shortest cost to R and the shortest

next-hop to R when P receives the first Scout message in a BI. Nodes decide the shortest

next-hop to R as the neighbor from whom they received the least cost Scout in the current

BI. The forwarding tree constructed is a sink tree rooted atR. Since nodes only advertise (or

forward) the least cost route to R, the Scout algorithm guarantees that all nodes will know

the minimum path to R when flooding terminates. All pairs shortest path is computed once

every node in the network floods its Scout message; thus the worst case time complexity of

the Scout algorithm is O�NL� messages, where N is the number of nodes in the network.

To disambiguate Scout messages from one broadcast interval with another, assume for

the time being that beforeR floods, all messages ofR’s previous flood are terminated. This

requires the BI to be at least the time it takes for a message to traverse the longest path in

the network. This assumption is removed in the general algorithm.

N10

N9N4

N1

N2

N3

N5

N7

N6

N8

T
im

e

N1: [N1, 0]

N7: [N1, 3]

N7: [N1, 2]N6: [N1, 2]N6: [N1, 2] N5: [N1, 2]

N4: [N1, 1]N3: [N1, 1]

N9: [N1, 4] N10: [N1, 4] N8: [N1, 4]

N9: [N1, 3]N5: [N1, 3]N8: [N1, 3]

N8: [N1, 4]

N3: [N1, 3]N10: [N1, 3]

N2: [N1, 1]

Figure A.1 : Example network topology and the first round broadcast tree from N1. All
link costs in the network are 1.

181

Figure A.1 shows the broadcast tree for Scout message flooding initiated by N1 in

the above network under our idealized assumptions. A broadcast tree represents an event

ordering of sending and receiving messages.

The figure illustrates a sequence of events in which Scouts are sent and received after

N1 initiates a broadcast interval. A node Ni: [Nx, k] in the tree represents an event in

which node Ni receives a Scout [Nx, C�

Nx
] . Edges show Scout message transmissions

and time flows downward in the figure. For events on the same level of the tree, we adopt

the convention that events on the left happen earlier than events on the right. For example,

event N6: [N1,2], the child of N2: [N1,1] happens before N6: [N1,2], the child of N3:

[N1,1]. That is, node N6 receives a Scout from N2 before receiving one from N3, therefore

as the figure shows, N6: [N1,2] child of N2: [N1,1] forwards the Scout while the other

does not. Leafs of the tree correspond to events which occurred on nodes who have already

received a Scout from N1. As Figure A.1 shows, the shortest path is computed when

flooding terminates.

Non-uniform link cost and delay: The Scout algorithm described above relies heavily

on the assumption that the first Scout message of a BI is the one with minimal cost. Next,

this assumption is removed by allowing non-unit link costs and non-uniform (but bounded)

link delays. For now, the assumption that all Scouts of R are terminated before R’s next

flood and that the network topology is static is preserved.

We define two terms. Node P ’s designated neighbor to R in the broadcast interval i is

defined as the neighbor that gave P the least cost Scout to R in broadcast interval i � �.

P ’s upstream node to R in broadcast interval i is the neighbor which provided the Scout

that P forwarded to its neighbors (after modifying its cost).

As with the previous algorithm, every node R periodically floods its Scout message

[R, CR]. Upon receiving [R, CR] from a neighbor, P computes C �
R as before. In the

first broadcast interval, immediately after receiving the first Scout message from R, node

P forwards [R,C �
R] to all neighbors except R. Node P might receive more of R’s Scouts

in the same BI, indicating different paths and path costs to R. P remembers these Scouts

and adjusts its data forwarding table to reflect the new paths, but P does not forward the

Scout messages. In the next broadcast interval, P waits to receive a Scout message from

its designated neighbor before flooding. When P receives the Scout from this designated

neighbor, P computes C �
R and examines all other Scout messages it has received in the

current BI (including the one from its designated neighbor), to find the Scout with the least

182

cost C ��
R to Ry. P forwards [R, C ��

R] to all neighbors except the neighbor from which it

received the Scout with the least cost. This neighbor is now P ’s upstream node for this BI.

As an example, consider the network in Figure A.1 with the cost of edge (N1, N2) and

(N1, N3) set to 5 and all other edge weights being 1. In the first broadcast interval of N1,

the broadcast tree is exactly the same as in Figure A.1, except the cost of the N2 and N3

subtree is increased by 4. Figure A.2 shows the broadcast tree for the second broadcast

interval of N1.

for N7 in the next
N3, N8, N9 will wait

broadcast interval

N2: [N1, 5]

N7: [N1, 9] N9: [N1, 9]

N4: [N1, 1]

N5: [N1, 2]

N7: [N1, 3]

N9: [N1, 4]

N8: [N1, 5]

N1: [N1, 0]

N3: [N1, 5]

N6: [N1, 6] N7: [N1, 6]

N7 waits for N5N10: [N1, 7] N3: [N1, 7]

N6: [N1, 6]

N8: [N1, 8] N8: [N1, 4]N3: [N1, 4]

Figure A.2 : Broadcast tree after the second round of flooding from N1 in the network of
Figure 1 with unequal link costs.

Notice in Figure A.2, N7 does not forward the first Scout it receives (one from N3) but

waits for N5 (its designated neighbor) and then forwards the Scout with the least cost. The

shortest-path tree is computed in the third broadcast interval when N3, N8 and N9 wait for

N7 and forward the least cost Scouts to N6 and N10.

Under these network assumptions, the shortest path computation to any node R is

bounded by K broadcast intervals, where K is the depth of the shortest-path tree rooted

at R. In the example above, the depth of the shortest-path tree is 5 and the Scout algorithm

converged in 3 broadcast intervals. It is worth mentioning that although the shortest-path

computation is bounded by K broadcast intervals, all nodes know a path to R afterR’s first

broadcast interval. The quality of the path progressively improves with additional broadcast

intervals.

yIn general, with a dynamic network, the least cost Scout may not come from the designated neighbor,

since link costs may change between broadcast intervals.

183

Unrestricted Network: This is the generalized network where nodes/links can fail and

recover and link costs can change.z. The static network assumption guarantees that if node

P receives a Scout message in the previous broadcast interval from neighborQ, P will also

receive a Scout message from Q in the current broadcast interval. If links are allowed to

fail and recover, P might never receive another message from Q. To resolve this problem,

Scout is modified by requiring P to flood the first Scout message from R if P did not flood

any of R’s Scout messages in the previous BI. In other words, if P waited for a Scout from

its designated neighbor Q in the previous BI but never received a Scout, instead of waiting

for Q, or any other neighbor in the current round, P immediately floods the first Scout it

sees in the current broadcast interval and recalculates its designated neighbor.

P is not allowed to wait for a neighbor in the current BI, in particular, the designated

neighbor, because if there are multiple failures, waiting for the best information might

cause cascading waits. This decision was motivated by the observation that propagating

more recent, perhaps sub-optimal, information is more useful than trying to wait for the

best information which entails the risk of not propagating any information at all.

To handle overlapping broadcast intervals from the same source, Scout messages are

simply tagged with a sequence number indicating the current broadcasting interval. The

sequence number ensures that the algorithm only makes routing decisions based on the

information from the most recent broadcasting interval. Figure A.3 summarizes the general

Scout algorithm.

the Scout sequence number is not current
2. On receiving a Scout, the router discards the Scout if

A. If the router has not forwarded a Scout (from the same source)
in the last BI, flood the Scout.

B. Else if Scout is from the designated neighbor, forward the least cost
Scout (from the same source) received in the current BI.

C. Else store the Scout.

4. Update forwarding table to reflect the shortest path.

3. The router adds the cost of the incoming link to the cost of the Scout and

1. Destinations periodically generate a Scout with an increasing sequence number.

OR the Scout advertises a path to the current node.

Figure A.3 : Scout Algorithm Summary for Unrestricted Networks.

Scout and Distance Vector Routing Algorithms

zNotice that convergence of a shortest path computation applies only when the network is not changing

for some period.

184

Both the Scout and the Distance Vector routing algorithms compute shortest paths between

nodes by exchanging messages that convey path cost information. In Scout, if a router

receives a Scout message from neighbor Q originated from node A with cost C , the router

knows that it can reach A via Q with cost C . Similarly, in DV, if a router receives a DV

packet from neighbor Q containing an entry to A with cost C , the router knows that it can

reach A via Q with cost C .

However, the method in which each algorithm initiate path computation and propagate

routing messages are very different. In Scout, path computation to node A is always initi-

ated by A, via flooding Scout messages. However, in DV, path computation to a node can

be initiated by any router. For example, in the event of a link failure, routers connected

to the failed link will initiate a path computation to every node whose path used the failed

link.

In addition to the differences in initiating path computations, the two algorithms also

differ in how routing messages are propagated. In Scout, a Scout message contains path

information only to the initiating node. Whereas in DV, a DV packet may contain path in-

formation to many nodes. The combination of path aggregation and computation initiation

allows DV to efficiently compute all-pairs shortest path. As noted in Chapter 3, computing

all-pairs shortest path is not as efficient using Scout.

A.2 Scout Proof of Correctness

The proof of Scout shortest-path convergence for the unrestricted Scout algorithm proceeds

by showing that sink trees rooted at R are iteratively transformed into shortest-path trees

rooted at R in a number of rounds bounded by the structure of the network. Intuitively this

follows because every node eventually receives a Scout from the neighbor with the lowest

cost to R, and therefore every node eventually knows the shortest path to R. As stated in

Chapter 2, the Scout convergence and its proof apply only in situations where the network

state (e.g. topology) changes at a slower rate than Scout’s convergence time.

We define SPT as the shortest-path tree rooted at R. SPT has depth K , and SPTi

as the subtree of SPT , also rooted at R, such the depth of SPTi is i. Ti is the sink tree

built from R’s broadcast tree built by the Scout algorithm in broadcast interval i. Tree A

contains tree B iff B is a subtree of A and A and B share the same root. We prove that

�i
 ��� � � � �K�, Ti contains SPTi.

Lemma 1: Assuming Ti contains SPTi, then for all nodes P
 Ti
 SPTi, P will not

change its forwarding tables in subsequent trees Tj� j � i.

185

Proof: Since node P
 SPTi, P already has the shortest path (in cost and next-hop)

to the sink R. Thus in subsequent broadcast rounds of R, P cannot receive a Scout with

a lower cost, in fact, P will always receive the same lowest cost from the same neighbor

(its designated neighbor). Therefore P will not alter its forwarding table (both cost and

next-hop) in subsequent broadcast rounds.

This implies nodes of distance i or less from the root R in Ti will stay in the same

position in Ti��.

Theorem 1: Broadcast tree containment: �i
 ��� � � � �K�, SPTi is contained in Ti.

Proof: by induction on the depth of the broadcast tree Ti.

Base: i � �. SPT� � R, and the root of T� is R by definition of sink trees, therefore

T� contains SPT�.

Induction: Assume �w � z � K�Tw contains SPTw, proof that Tz�� also contains

SPTz��.

Let the set mz � leaf nodes of(SPTi). By the induction hypothesis and the algorithm

structure, the set of nodes mz know that in round z � �, they should wait for their parent

node in Tz, who will offer them the shortest cost to R. Thus in broadcast interval z � �,

nodes in mz forward only R’s least cost Scout to their neighbors. This implies neighbors

of node n
 mz are guaranteed to receive n’s shortest path to R. In particular, leaf nodes

L � leaf nodes of(SPTz��) will receive the minimal path cost from nodes in mz . After the

broadcast interval z � �, nodes l
 L deduces the minimal path to R is through its parent

node in mz (by the definition of SPTz��). So the leaf nodes of Tz�� are attached in to

the same nodes in SPTz��. And from lemma 1, interior nodes in Tz�� preserve the same

connections as nodes in Tz; Therefore, Tz�� contains SPTz��.

From the induction when z � K � �, TK will contains SPTK , and SPTK � SPT .

Since SPT contains all nodes in the network, by the tree containment definition, TK must

equal SPT . Thus after K broadcast rounds of R, the Scout algorithm is guaranteed to have

computed the shortest path to R. When z � K , Tz obviously contains SPT from lemma 1.

Intuitively, non-uniform link costs and link delays cause the Scout algorithm more

broadcast intervals to convergence because a link can advertise a high cost in the reverse

direction (to R) but have very fast forward propagation (away from R). When this occurs,

node P will initially flood the costly Scout. The extra number of broadcast intervals needed

to send the minimal cost Scout to P is exactly the shortest distance (in links) from P to an

ancestor of P on the shortest-path tree who currently knows the minimal cost to R, which

is always bounded by K .

Theorem 2: Shortest Path Convergence. The unrestricted Scout algorithm in Fig-

186

ure A.3 computes the single shortest path between every pair of nodes in the network.

Proof: This follows directly from Theorem 1. We proved that the broadcast tree even-

tually contains the shortest path tree for any given node sending Scouts. Thus when every

node in the network generates Scouts, then in a bounded number of rounds, every node will

know the shortest path to every other node.

Theorem 3: Scout message bound on convergence. The unrestricted Scout algorithm

in Figure A.3 converges to the single shortest path on O�K� BI’s, with no more than O�L�

messages per round per node. Where L is the number of links in the network.

Proof: The first bound on the number of BI’s for shortest path convergence is proven

above. The second follows directly from the algorithm. Since every nodes can only forward

one Scout per round, at most O�L� Scouts can be forwarded per round per node.

A.3 Scout Summary

This chapter presented and proved the correctness of Scout, a destination initiated, selective

shortest path routing algorithm. A destination initiates Scout path computation to itself by

flooding Scout messages, which discovers path back to the initiating destination. Further-

more, Scout messages are small, fixed-sized and therefore can be hop-by-hop piggybacked

onto data packets, largely defraying their costs to the network.

The main features of the Scout routing algorithm are

1. Independent and uncorrelated path computation

2. Destination controlled and initiated Scout messages

Scout is independent because Scout messages initiated by a destination calculate paths

ONLY to that destination and is uncorrelated because the time in which a destination ini-

tiates its Scouts is determined only by the destination. Thus, Scout path computations to

different destinations will occur at different times. This is in contrast to traditional LS and

DV routing algorithms where all-pairs path computation occur at the same time.

Because Scout is destination initiated, the amount of Scouts injected into the network

is determined by destinations. On the other hand, LS and DV’s routing traffic is triggered

by network changes. The advantage of this triggering property is that in a relatively static

network environment, very little routing overhead is incurred. The disadvantage is that

during high rates of network changes, the LS and DV routing overhead are hard to predict

and control. With Scout, the amount of routing messages are not triggered and thus do not

depend on network changes. This non-triggering in Scout implies that during low rates of

187

network change, many Scout messages are sent unnecessarily (because the shortest paths

did not change); On the other hand, it also means that during high rates of change, Scout

messages are predictable and can be easily controlled.

The principal disadvantage of the Scout algorithm is that individual Scout messages

do not aggregate path computation; thus computing all-pairs shortest paths in a relatively

network static environment (such as the Internet) requires more routing message overhead

than LS or DV routing algorithms. Again, the reason LS and DV performs better in this

scenario is that 1) path computation is aggregated (the two algorithms always computes all-

pairs shortest path) and 2) path computation are triggered by network changes (a relative

static network has infrequent network changes).

188

Bibliography

[1] Intermediate System to Intermediate System intra-domain routing exchange proto-

col for use in conjunction with the protocol for providing the connectionless-mode

network service, ISO 8473. ISO DP 10589, February 1990.

[2] Internet traffic archive traces. http://ita.ee.lbl.gov/html/traces.html.

[3] PNNI draft specification. ATM Forum 94-0471R13, 1994.

[4] B. Acevedo, L. Bahler, E. N. Elnozahy, V. Ratan, and M. E. Segal. Highly available

directory services in DCE. In In Proceedings of the Twenty-Sixth Annual Interna-

tional Symposium on Fault-Tolerant Computing (FTCS-26), pages 387–391, June

1996.

[5] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows.

Prentice-Hall Inc., Englewood Cliffs, NJ, 1993.

[6] V. Ahuja. Routing and flow control in systems network architecture. IBM Systems

Journal, 18(2):298–314, 1979.

[7] G. Alkin and F. Baker. RIP version 2 MIB extension. RFC 1724, Xylogics, Inc.,

Cisco Systems, November 1994.

[8] Tom Anderson and John Zahorjan. Detour research homepage, 1999.

http://www.cs.washington.edu/research/networking/detour/.

[9] G. Apostolopoulos, R. Guerin, and S. Kamat. Implementation and performance

measurements of QoS routing extensions to OSPF. In Proceedings of IEEE INFO-

COM, April 1999.

[10] G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi. On reducing the pro-

cessing cost of on-demand QoS path computation. Journal of High Speed Networks,

7(2):77–98, 1998.

189

[11] George Apostolopoulos, Roch Guerin, Sanjay Kamat, and Satish K Tripathi. Quality

of Service routing: A performance perspective. In Proceedings of ACM SIGCOMM,

pages 17–28, September 1998.

[12] Mohit Aron. Analysis of TCP Performance over ATM Networks. Master’s thesis,

Rice University, December 1997. http://www.cs.rice.edu/˜aron/papers/ms-thesis.ps.

[13] A. A. Assad. Models for rail transportation. In Transportation Research, pages

205–220, 1980.

[14] A. A. Assad. Solving linear multicommodity flow problems. In Proceedings IEEE

International Conference on Circuits and Computers, pages 157–161, 1980.

[15] S. C. Baade. SNA route generation using traffic pattern. IBM Systems Journal,

30(3):250–258, 1991.

[16] Saewoong Bahk and Magda El Zarki. Dynamic multi-path routing and how it com-

pares with other dynamic routing algorithms for high speed wide area networks. In

Proceedings of ACM SIGCOMM, pages 53–64, 1992.

[17] Sandeep Bajaj, Lee Breslau, and Scott Shenker. Uniform versus priority dropping

in layered video. In Proceedings of ACM SIGCOMM, pages 131–143, September

1998.

[18] Hari Balakrishnan, Venkata N. Padmanabhan, and Randy H. Katz. The Effects of

Asymmetry on TCP Performance. In Proceedings of 3rd ACM Conference on Mo-

bile Computing and Networking, September 1997.

[19] Sara Basse. Computer Algorithms. Addison-Wesley Publishing Company, Reading,

Mass., 1988.

[20] R. Beckers, J. L. Deneuborg, and S. Goss. Trails and U turns in the selection of a

path by the ant lasius niger. Journal of Theoretical Biology, 159:397–415, 1992.

[21] Jochen Behrens and J. J. Garcia-Luna-Aceves. Distributed, scalable routing based

on Link-State vectors. In Proceedings of ACM SIGCOMM, pages 136–147, 1994.

[22] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, N.J.,

1957.

190

[23] Dimitri Berksekas and Robert Gallager. Data Networks, Second Edition. Prentice-

Hall, Englewood Cliffs, N.J., 1992.

[24] D. Bertsekas and R. Gallagher. Data Networks. Prentice-Hall, Englewood Cliffs,

CA., 1987.

[25] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: Numerical

methods. Prentice-Hall, Englewood Cliffs, N.J., 1989.

[26] S. Bradner and A. Mankin. The recommendation for the next generation IP, January

1995. Internet Request for Comments (RFC) 1752.

[27] Lawrence Brakmo and Larry Peterson. TCP Vegas: End-to-end congestion avoid-

ance on a global Internet. IEEE Journal on Selected Areas in Communications,

13(8):1465–1480, October 1995.

[28] Lawrence S. Brakmo, Andrew C. Bavier, and Larry L. Peterson. x-Sim user’s man-

ual, 1996. http://www.cs.arizona.edu/classes/cs525/xsim/xsim.html.

[29] Lee Breslau and Scott Shenker. Best-effort versus reservation: A simple comparative

analysis. In Proceedings of ACM SIGCOMM, pages 3–16, September 1998.

[30] V. Cerf and R. Kahn. A protocol for packet network intercommunication. IEEE

Transactions on Communications, 22(5):637–648, May 1974.

[31] Chi-Tsong Chen. Linear System Theory and Design. The Dryden Press, Saunders

College Publishing, 1984.

[32] Johnny Chen, Peter Druschel, and Devika Subramanian. A new approach to routing

with dynamic metrics. Technical report, Rice University. CS-TR 98-321, 1998.

[33] Johnny Chen, Peter Druschel, and Devika Subramanian. A simple, practical dis-

tributed multi-path routing algorithm. Technical report, Rice University. CS-TR

98-320, 1998.

[34] S. Chen and K. Nahrsted. An overview of Quality of Service Routing for next-

generation high-speed networks: problems and solutions. IEEE Networks, pages

64–79, November/December 1998.

[35] C. Cheng. A loop-free extended Bellman-Ford routing protocol without bouncing

effect. ACM Computer Communication Review, 19(4):224–236, 1989.

191

[36] C. Cheng, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves. A distributed algorithm

for finding K disjoint paths of minimum total length. In In Proceedings of the 28th

Annual Allerton Conference on Communication, Control, and Computing, Urbana,

Illinois, Oct. 1990.

[37] A. A. Chien and J. H. Kim. Planar-adaptive routing : low-cost adaptive networks for

multiprocessors. Journal of the Association of Computing Machinery, 42(1):91–123,

Jan 1995.

[38] B. Chinoy. Dynamics of Internet Routing Information. In Proceedings of ACM

SIGCOMM, pages 45–52, September 1993.

[39] Isreal Cidon and Raphael Rom. Multi-path routing combined with resource reserva-

tion. In Proceedings of IEEE INFOCOM, pages 92–100, 1997.

[40] David D. Clark, Scott Shenker, and Lixia Zhang. Supporting real-time applications

in an integrated services packet network. In Proceedings of ACM SIGCOMM, pages

14–26, August 1992.

[41] R. Coltun. OSPF: An Internet routing protocol. ConneXions, 3(8):19–25, 1989.

[42] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The

MIT Press, Cambridge, Mass., 1991.

[43] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. A framework for QoS-based

routing in the Internet. Internet Draft, QoS Routing Working Group, Internet Engi-

neering Task Force, expires October 1998.

[44] J. D. Day. The (un)revised OSI reference model. Computer Communication Review,

25:39–55, Oct. 1995.

[45] Jose Augusto de Azevedo, Joaquim Joao E. R. Silvestre, Madeira Ernesto Q. Vieira

Martins, and Filipe Manuel A. Pires. A computational improvement for a shortest

paths ranking algorithm. European Journal of Operational Research, 73:188–191,

1994.

[46] Stephen E. Deering. IP multicast and the MBone: Enabling live, multiparty, multi-

media communication on the Internet. Internet-Draft, draft-ietf-manet-aodv-00.txt,

November 1997. Work in progress.

192

[47] Stephen E. Deering. Multicast routing in internetworks and extended LANs. In

Proceedings of ACM SIGCOMM, pages 89–101, 1988.

[48] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink. Small

forwarding tables for fast routing lookups. In Proceedings of ACM SIGCOMM,

pages 3–14, September 1997.

[49] A. DeHon, T. Knight, and H. Minsky. Fault-tolerant design for multistage routing

networks. In Proceedings of the International Symposium on Shared Memory Mul-

tiprocessing, pages 60–71, 1991.

[50] Andrer DeHon, Frederic Chong, Matthew Becker, Eran Egozy, Henry Minsky,

Samuel Peretz, and Tomas Knight Jr. METRO: A router architecture for high-

performance, short-haul routing networks. Proceedings the 21st Annual Interna-

tional Symposium on Computer Architecture, pages 266–77, 1994.

[51] M. DeMarco and A. Pattavina. Distributed routing protocols for ATM extended

banyan networks. IEEE Journal on Selected Areas in Communications, 15(5):925–

37, June 1997.

[52] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queuing

algorithm. In Proceedings of ACM SIGCOMM, pages 1–12, 1989.

[53] Roy C. Dixon and Daniel A. Pitt. Addressing, bridging and source routing. IEEE

Networks, 2(1):25–32, Jan 1988.

[54] E. W. Djikstra. A note on two problems in connection with graphs. Numerische

Mathematik, 1, 1959.

[55] J. T. Draper and J. Ghosh. Multipath E-cube algorithms (MECA) for adaptive worm-

hole routing and broadcasting in K-ary N-cubes. In Sixth International Parallel Pro-

cessing Symposium, pages 470–10, 1992.

[56] Rohit Dube, Cynthia D. Rais, Kuang-Yeh Wang, and Satish K. Tripathi. Signal

stability based adaptive routing (SSA) for ad-hoc mobile networks. IEEE Personal

Communications, February 1997.

[57] J. B. Postel (editor). Internet Protocol. Internet Request For Comments (RFC) 729,

September 1981.

193

[58] David Eppstein. Finding the k shortest paths. In Proc. 35th Symp. Foundations

of Computer Science, pages 154–165. Inst. of Electrical & Electronics Engineers,

November 1994.

[59] Deborah Estrin, Yakov Rekhter, and Steven Hotz. Scalable inter-domain routing

architecture. In Proceedings of ACM SIGCOMM, pages 40–52, 1992.

[60] Michalis Faloutsos, Anindo Banerjea, and Rajesh Pankaj. QoSMIC: Quality of Ser-

vice Sensitive Multicast Internet ProtoCol. In Proceedings of ACM SIGCOMM,

pages 144–153, September 1998.

[61] Domenico Ferrari, Anindo Banerjea, and Hui Zhang. Network support of multime-

dia: A discussion of the tenet approach. Computer Networks and ISDV Systems,

10:1267–1280, July 1994.

[62] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,

Princeton, N.J., 1962.

[63] L. Fratta, M. Garla, and L. Kleinrock. The flow deviation method: An approach

to store-and-forward communication network design. IEEE Networks, 3(2):97–133,

1973.

[64] L. Fratta, M. Gerla, and L. Kleinrock. Computer communication network design -

experience with theory and practice, 1972. AFIPS conference proceedings SJCC,

Atlantic City, New Jersey.

[65] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless interdomain routing (CIDR): An

address assignment and aggregation strategy. RFC 1519, September 1993.

[66] J. J. Garcia-Luna-Aceves. A unified approach for loop-free routing using link states

or distance vectors. ACM Computer Communication Review, 19(4):212–223, 1989.

[67] Marianne L. Gardner, Ina S. Loobeek, and Stephen N. Cohn. Type of service routing

with loadsharing. In IEEE/IECE Global Telecommunications Conference, pages

1144–50, 1987.

[68] P. Georgatsos and D. Griffin. A management system for load balancing through

adaptive routing in multiservice ATM networks. In Proceedings of IEEE INFO-

COM, pages 863–870, 1996.

194

[69] R. Govindan and A. Reddy. An analysis of interdomain topology and route stability.

In Proceedings of IEEE INFOCOM, April 1997.

[70] J. P. Gray and T. B. McNeill. SNA multiple-system networking. IBM Systems

Journal, 18(2):263–297, 1979.

[71] R. Guerin, S. Kamat, V. Peris, and R. Rajan. Scalable QoS provision through buffer

management. In Proceedings of ACM SIGCOMM, pages 29–40, September 1998.

[72] R. Guerin, A. Orda, and D. Williams. QoS routing mechanisms and OSPF exten-

sions. In Proceedings of the IEEE GLOBECOM, November 1997.

[73] R. Guerin, D. Williams, and A. Orda. QoS routing mechanisms and QSPF exten-

sions. In Proceedings of the IEEE GLOBECOMM, November 1997.

[74] C. Hedrick. Routing information protocol, 1988. Internet Request for Comments

(RFC) 1058.

[75] C. Hedrick. Use of OSI IS-IS for routing in TCP/IP and dual environments, 1988.

Internet Request for Comments (RFC) 1195.

[76] M. A. Henrion, G. J. Eilenberger, G. H. Petit, and P. H. Parmentier. A multipath

self-routing switch. IEEE-Communications Magazine, 31(4):46–52, April 1993.

[77] W. C. Lee M. G. Hluchyj and P. A. Humblet. Routing subject to Quality of Service

constraints in integrated communications networks. IEEE Networks, pages 46–55,

July 1995.

[78] Janey C. Hoe. Improving the start-up behaviour of a congestion control scheme for

TCP. In Proceedings of ACM SIGCOMM, 1996.

[79] B. Holldobler and E. O. Wilson. Journey to the Ants. Bellknap Press/Harvard Uni-

versity Press, 1994.

[80] International Standards Organization. Intra-domain IS-IS routing protocol. ISO/ICE

JTC1/SC6 WG2 N323, Sept, 1989.

[81] K. Ishida, Y. Kakuda, and T. Kikuno. A routing protocol for finding two node-

disjoint paths in computer networks. In Internation Conference on Network Proto-

cols, pages 340–347, Nov. 1992.

195

[82] A. Itah and M. Rodeh. The multi-tree approach to reliability in distributed networks.

In Proceedings of the 25th Symposium on FOCS, 1984.

[83] Van Jacobson. Congestion avoidance and control. In Proceedings of ACM SIG-

COMM, pages 314–32, August 1988.

[84] Van Jacobson. Berkeley TCP evolution from 4.3-Tahoe to 4.3-Reno. In Proceedings

of the Eighteenth Internet Engineering Task Force, August 1990.

[85] J. M. Jaffe, F. H. Moss, and R. A. Weingarten. SNA routing: Past, present, and

possible future. IBM Systems Journal, 22(4):417–434, 1983.

[86] Sugih Jamin, Peter Danzig, Scott Shenker, and Lixia Zhang. A measurement-based

admission control algorithm for integrated services packet networks. IEEE/ACM

Transactions on Networking, 5(1):56–70, February 1997.

[87] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless

networks. In Mobile Computing, edited by Tomasz Imielinski and Hank Korth,

Chapter 5, pages 153-181, Kluwer Academic Publishers, 1996.

[88] Youn Chan Jung and Chong Kwan Un. Banyan multipath self-routing ATM switches

with shared buffer type switch elements. IEEE-Transactions on Communications,

43(11):2847–57, Nov 1995.

[89] J. L. Kennington and R. V. Helgason. Algorithms for Network Programming. Wiley-

Interscience, New York, 1980.

[90] S. Keshav and R. Sharma. On the efficient implementation of fair queuing. Journal

of Internetworking: Research and Experience, 2(3), September 1991.

[91] S. Keshav and R. Sharma. Achieving quality of service through network perfor-

mance management. In Proceedings of NOSSDAV, July 1998.

[92] S. Keshav and R. Sharma. Issues and trends in router design. IEEE-Communications

Magazine, May 1998.

[93] Srinivasan Keshav. An Engineering Approach to Computer Networking. Addison-

Wesley Publishing Company, Reading, Mass., 1997.

[94] Atul Khanna and John Zinky. The revised ARPANET routing metric. In Proceedings

of ACM SIGCOMM, pages 45–56, September 1989.

196

[95] E. Knightly and H. Zhang. D-BIND: an accurate traffic model for providing QoS

guarantees to VBR traffic. IEEE/ACM Transactions on Networking, 5(2):219–231,

April 1997.

[96] Ram Krishnan and John A. Silvester. Choice of allocation granularity in multipath

source routing schemes. In Proceedings of IEEE INFOCOM, pages 322–329, 1993.

[97] Satish Kumar, Pavlin Radoslavov, David Thaler, Cengiz Alaettinoglu, Deborah Es-

trin, and Mark Handley. The MASC/BGMP architecture of Inter-domain multicast

routing. In Proceedings of ACM SIGCOMM, pages 94–104, September 1998.

[98] Craig Labovitz, G Robert Malan, and Farnam Jahanian. Internet routing instability.

Technical report, University of Mechigan. CSE Technical Report 322-97, 1997.

[99] Craig Labovitz, G. Robert Malan, and Farnam Jahanian. Internet routing instability.

In Proceedings of ACM SIGCOMM, pages 53–64, 1997.

[100] W. S. Lai. Bifurcated routing in computer networks. Computer Communication

Review, 15(3):28–49, 1986.

[101] T. V. Lakshman and D. Stiliadis. High speed policy-based packet forwarding using

efficient multi-dimensional range matching. In Proceedings of ACM SIGCOMM,

pages 203–214, September 1998.

[102] E. J. Lawler. Combinatorial optimization: networks and matroids. Holt, Rinehart

and Winston, 1976.

[103] E. L. Lawler. A procedure for computing the K best solutions to discrete opti-

mization problems and its applications to the shortest path problem. Management

Science, 18:401–405, 1972.

[104] Eun Seol Lee and Chae Tak Lim. A study on the DRF multipath multistage inter-

connection network. Journal of the Korea Institute of Telematics and Electronics,

27(10):1605–12, Oct 1990.

[105] F. C. Lin and F. H. Wang. Message pattern routing in hypercubes: a distributed-

concentrate approach. Journal of Parallel and Distributed Computing, 29(1):27–42,

Aug 1995.

[106] Neng Pin Lu and Chung Ping Chung. A fault-tolerant multistage combining net-

work. Journal of Parallel and Distributed Computing, 34(1):14–28, April 1996.

197

[107] Q. Ma and P. Steenkiste. On path selection for traffic with bandwidth guarantees.

In Proceedings of IEEE International Conference on Network Protocols, October

1997.

[108] Udi Manber. Introduction to Algorithms. Addison-Wesley Publishing Company,

Reading, Mass., 1989.

[109] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. Request for comments (RFC)

2018: TCP selective acknowledgment options, October 1996.

[110] J. M. McQuillan, I. Richer, and E. C. Rosen. The new routing algorithm for the

ARPANET. IEEE Transactions on Communications, COM-28(5):711–719, 1980.

[111] J. M. McQuillan and D. C. Walden. The ARPANET design decisions. Computer

Networks, 1, 1977.

[112] D. Mills. Exterior Gateway Protocol formal specification. Request for Comments

(RFC) 904, April, 1984.

[113] S. P. Morgan. Queuing disciplines and passive congestion control in byte-stream

networks. IEEE Transactions on Communications, 39(7):1097–1106, 1991.

[114] J. Moy. The OSPF specification. RFC 1131, October 1989.

[115] J. Moy. Multicast routing extensions for OSPF. Communications of the ACM,

37(8):61–66, August 1994.

[116] Andrew Myles, David B. Johnson, and Charles Perkins. A mobile host protocol

supporting route optimization and authentication. IEEE Journal on Selected Areas

in Communications, special issue on “Mobile and Wireless Computing Networks”,

13(5):839–849, June 1995.

[117] Paul Newman and G. Karlsson. IP switching and gigabit networks. IEEE-

Communications Magazine, January 1997.

[118] R. Ogier and N. Shacham. A distributed algorithm for finding shortest pairs of

disjoint paths. In Proceedings of IEEE INFOCOM, 1989.

[119] Teunis J. Ott and Neil Aggarwal. TCP over ATM: ABR or UBR? In Proceedings of

the ACM SIGMETRICS, Seattle, WA, June 1997.

198

[120] Venkata N. Padmanabhan and Randy H. Katz. TCP Fast Start: A Technique For

Speeding Up Web Transfers. In Proceedings of the IEEE GLOBECOM, November

1998.

[121] C. Parris, S. Keshav, and D. Ferrari. A framework for the study of pricing in inte-

grated networks. ICSI Technical Report TR-92-016 and AT&T Bell Labs Technical

Memorandum TM-920105-03, January 1992.

[122] Vern Paxson. Growth trends in wide area TCP connections. IEEE Networks, 8(4):8–

17, 1994.

[123] Vern Paxson. End-to-end Internet packet dynamics. In Proceedings of ACM SIG-

COMM, pages 139–152, September 1997.

[124] Vern Paxson. Measurements and analysis of end-to-end Internet dynamics, April

1997. Ph.D. dissertation, University of California, Berkeley.

[125] Vern Paxson. End-to-End routing behavior in the Internet. IEEE/ACM Transactions

on Networking, 5(5):43–51, 1998.

[126] Vern Paxson and Sally Floyd. Wide-area traffic: the failure of poisson modeling. In

Proceedings of ACM SIGCOMM, pages 257–268, August 1994.

[127] Charles Perkins. Ad Hoc On Demand Distance Vector (AODV) routing. Internet-

Draft, draft-ietf-manet-aodv-00.txt, November 1997. Work in progress.

[128] Michael Perloff and Kurt Reiss. Improvements to TCP Performance in High-Speed

ATM Networks. Communications of the ACM, 38(2):90–100, February 1995.

[129] Larry L. Peterson and Bruce S. Davie. Computer Networks: a Systems Approach.

Morgan Kaufmann Publishers, Inc., San Francisco, CA., 1996.

[130] M. De Prycker. Asynchronous Transfer Mode: solution for broadband ISDN. Ellis

Horwood, Chichester, England, 1991.

[131] N. S. V. Rao and S. G. Batsell. QoS routing via multiple paths using bandwidth

reservation. In Proceedings of IEEE INFOCOM, pages 11–18, 1998.

[132] S. M. Reddy and V. P. Kumar. On multipath multistage interconnection networks. In

Proceedings of the 5th International Conference on Distributed Computing Systems,

pages 210–17, 1985.

199

[133] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 1771, T.J. Watson

Research Center, IBM Corp., Cisco Systems, March 1995.

[134] E. C. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching archi-

tecture. draft-itef-mpls-arch-04.txt Internet Draft, February 1999, work in progress.

[135] H. Saran, S. Keshav, and C. R. Kalmanek. A scheduling discipline and admission

control policy for Xunet 2. In Proceedings of NOSSDAV, November 1993.

[136] Stefan Savage, Tom Anderson, Amit Aggarwal, David Becker, Neal Cardwell, Andy

Collins, Eric Hoffman, John Snell, Amin Vahdat, Geoff Voelker, and John Zahorjan.

Detour: a case for informed Internet routing and transport. Technical report, Uni-

versity of Washington. CS Technical Report UW-CSE-98-10-05, 1998.

[137] M. Schwartz. Telecommunication Networks, Protocols, Modeling and Analysis.

Addison-Wesley, Reading, Mass., 1987.

[138] Mischa Schwartz and Thomas E. Stern. Routing techniques used in computer

communication networks. IEEE Transactions on Communications, 28(4):539–552,

1980.

[139] A. Segall and J. M. Jaffe. A reliable distributed route set-up procedure. In

IEEE/IECE Global Telecommunications Conference, 1983.

[140] Seung Woo Seo and Tse Yun Feng. The composite banyan network. IEEE-

Transactions on parallel and distributed systems, 6(10):1043–1054, Oct 1995.

[141] D. R. Shier. On algorithms for finding the k sortest paths in a network. Networks,

9:195–214, 1979.

[142] R. Siamwalla, R. Sharma, and S. Keshav. Discovering Internet topology. Technical

report, Cornell University. submitted to Infocom, 1999.

[143] F. Sibai and S. Kulkarni. Performance of multicast wormhole routing algorithms

in fault-tolerant 2D meshes. Seventh International Conference on Parallel and Dis-

tributed Computing Systems, pages 610–613, 1994.

[144] F. N. Sibai and A. A. Abonamah. Parallel path assignment of multicast connections

in multi-path networks. In IEEE Fifteenth Annual International Phoenix Conference

on Computers and Communications, 1994.

200

[145] F. N. Sibai, N. K. Sharma, and A. A. Abonamah. A simulation study of four re-

configuration algorithms for a multi-path cube-based network. Transactions of the

Society for Computer Simulation, 10(1):1–21, March 1993.

[146] Deepinder Sidhu, Raj Nair, and Shukri Abdallah. Finding disjoint paths in networks.

In Proceedings of ACM SIGCOMM, pages 43–51, 1991.

[147] Josep Soel-Pareta, Debapriya Sarkar, Jorg Liebeherr, and Ian F Akyildiz. Adaptive

multipath routing of connectionless traffic in an ATM network. In Proceedings of

IEEE INFOCOM, pages 1626–1630, 1995.

[148] J. Sole-Pareta, D. Sarkar, J. Liebeherr, and I. F. Akyildiz. Adaptive multipath rout-

ing of connectionless traffic in an ATM network. Journal of Network and Systems

Management, 3(4):355–370, 1995.

[149] V. Srinivasan, George Varghese, Subash Suri, and Marcel Valdvogel. Fast scalable

level four switching. In Proceedings of ACM SIGCOMM, pages 191–202, Septem-

ber 1998.

[150] Martha Steenstrup. Routing in communications networks. Prentice-Hall, Fort

Collins, CO., 1995.

[151] Ion Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair queuing: A scalable

architecture to approximate fair bandwidth allocations in high speed networks. In

Proceedings of ACM SIGCOMM, pages 118–130, September 1998.

[152] J. W. Surballe and R. E. Tarjan. A quick method of finding shortest pairs of disjoint

paths. Networks, 4:43–51, 1984.

[153] Hiroshi Suzuki and Fouad A. Tobagi. Fast bandwidth reservation scheme with multi-

link & mult-ipath routing in ATM networks. In Proceedings of IEEE INFOCOM,

pages 2233–2240, 1992.

[154] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Englewood Cliffs, NJ.,

1981.

[155] S. Tiarawut, T. Saito, and H. Aida. A connection-level design of multistage

nonblocking ATM switches. IEICE-Transactions on Communications, E77-

B(10):1203–8, Oct 1994.

201

[156] D. M. Topkis. A k shortest path algorithm for adaptive routing in communications

networks. IEEE Transactions on Communications, 36, 1988.

[157] J. N. Tsitsiklis and G. D. Stamoulis. On the average communication complexity of

asynchronous distributed algorithms. MIT LIDS-report LIDS-P-2238, May 1986.

[158] K. Varadhan, R. Govindan, and D. Estrin. Persistent routing oscillations in Inter-

domain routing. USC/ISI, Available at Routing Arbiter project’s home page.

[159] C. Villamizer, R. Chandra, and R. Govindan. draft-IETF-idr-route-dampen-00-

preview, 1996. Internet Engineering Task Force Draft, July 21, 1995.

[160] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner. Scalable

high speed IP routing lookups. In Proceedings of ACM SIGCOMM, pages 25–36,

September 1997.

[161] Mu Cheng Wang, H. J. Siegel, M. A. Nichols, and S. Abraham. Using a multipath

network for reducing the effects of hot spots. IEEE-Transactions on Parallel and

Distributed Systems, 6(3):252–68, March 1995.

[162] Z. Wang and J. Crowcroft. Quality of Service routing for supporting multimedia

applications. IEEE Jounal Selected Areas in Communications, 14(7):1228–1234,

1996.

[163] Zheng Wang and Jon Crowcroft. Analysis of shortest-path routing algorithms in

a dynamic network environment. In ACM SIGCOMM Computer Communication

Review, pages 63–71, 1992.

[164] I. Widjaja and Leon Garcia. The helical switch: a multipath ATM switch which

perserves cell sequence. IEEE-Transactions on Communications, 42(8):2618–29,

Aug 1994.

[165] J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science,

17:712–716, 1971.

[166] Zhou Yigquan and Min Yinghua. A kind of multistage interconnection networks

with multiple paths. Journal of Computer Science and Technology, 11(4):395–404,

July 1996.

202

[167] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala.

RSVP: A new resource reservation protocl. IEEE Network Magazine, 7(5):8–18,

September 1993.

[168] Lixia Zhang, Scott Shenker, and David D. Clark. Observations on the Dynamics of

a Congestion Control Algorithm: The Effects of Two-Way Traffic. In Proceedings

of ACM SIGCOMM, pages 133–148, 1991.

[169] Z. Zheng and J. Crowcroft. QoS Routing for supporting resource reservation. In

IEEE JSAC, September 1996.

