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Abstract

This thesis develops new routing methods for large-scale, packet-switched data networks
such asthe Internet. The methods developed increase network performance by considering
routing approaches that take advantage of more available network resources than do current
methods. Two approaches are explored: dynamic metric and multipath routing. Dynamic
metric routing provides paths that change dynamically in response to network traffic and
congestion, thereby increasing network performance because data travel less congested
paths. The second approach, multipath routing, provides multiple paths between nodes and
allows nodes to use these paths to best increase their network performance. Nodes in this
environment achieve increased performance through aggregating the resources of multiple
paths.

This thesis implements and analyzes algorithms for these two routing approaches. The
first approach devel ops hybrid-Scout, a dynamic metric routing algorithmthat calculatesin-
dependent and selective dynamic metric paths. These two calculation properties are key to
reducing routing costs and avoiding routing instabilities, two difficulties commonly expe-
rienced in traditional dynamic metric routing. For the second approach, multipath routing,
this thesis devel ops a complete multipath network that includes the following components:
routing algorithms that compute multiple paths, a multipath forwarding method to ensure
that datatravel their specified paths, and an end-host protocol that effectively uses multiple
paths.

Simulations of these two routing approaches and their components demonstrate signif-
icant improvement over traditional routing strategies. The hybrid-Scout algorithm requires
3-4 times to 1-2 orders of magnitude less routing cost compared to traditional dynamic
metric routing agorithms while delivering comparable network performance. For multi-
path routing, nodes using the multipath protocol fully exploit the offered paths and increase
performance linearly in the additional resources provided by the multipath network. The



performance improvements validate the multipath routing algorithms and the effectiveness
of the proposed end-host protocol. Furthermore, this new multipath forwarding method
allows multipath networks to be supported at low routing costs. This thesis demonstrates
that the proposed methods to implement dynamic metric and multipath routing are efficient
and deliver significant performance improvements.
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Chapter 1

| ntroduction

Large-scale, wide area data networks are a part of today’s global communication infras-
tructure. Networks such as the Internet have become an integral medium of information
transfer, ranging from personal communication to el ectronic commerce and entertainment.
The importance of such networkswill only increase as the electronic world becomes more
prevalent.

The basic function of a data network is very simple: delivering data from one net-
work node to another. Achieving this goal requires many network components, including
physical computers and links, signaling protocols between computers, and data packaging
protocols. This thesis addresses one such component, routing, the process that logically
connects network nodes by calculating paths between nodes so that data sent by one node
traverses the calculated path to its destination.

Although many algorithms in graph and operational research literature calculate paths
between nodes, the challenge in developing network routing algorithmsisin dealing with
the scale and distribution of the physical network. Because typical wide area networks
have nodes on the order of tens of thousands, routing algorithms must be scalable. In
addition, routing algorithms must be able to calculate paths in a distributed manner due to
the global and distributive nature of physical networks. Moreover, because of the actual
physical network, routing algorithms need to cope with events such as physical component
failures and recal cul ate paths whenever such events occur. Finally, routing algorithms need
to calculate paths to allow nodes to achieve high network performance.

In general, routing algorithms view anetwork as aweighted graph, where network links
are represented as graph edges and network routers as graph vertices. Network routers are
network nodes that execute routing algorithms and ensure that data travel the calculated
paths. In the weighted graph, the assignment of edge weights depends on the specific rout-
ing algorithm; typically, the assignment reflects the latency and bandwidth of the link [94].
After a routing algorithm makes these link cost assignments, it then computes paths be-
tween nodes. Thus, the specific routing algorithm that routers execute determines the paths
that data will travel in the network.



Routing algorithms in today’s Internet base their implementations on the static metric
single shortest path routing model. Single shortest path means that routing algorithms
provide, at any given time, the least-cost path between nodes. Static metric refers to link
cost assignments which are based on static properties of a link, such as its bandwidth or
latency. Asshown later, the main drawback of thismodel isthat static metric shortest paths
do not always provide good network performance.

Although Internet routing algorithms use static metrics, this does not imply that the
paths themselves are static. On the contrary, current Internet routing algorithms are adap-
tive, meaning they are able to recompute paths and reroute packets when network compo-
nents (nodes or links) fail or recover. Therefore, even if routers or links fail, aslong as a
path exists between anode pair, Internet routing a gorithms ensure that these two nodes can
communicate with each other. Figure 1.1 shows the conceptual Internet routing model.

Src

Dst

Figure 1.1 : The static metric single shortest path routing model. The solid line denotes the
single path provided between Sre and Dst.

The solid line in Figure 1.1 shows the shortest path calculated between Src and Dst.
The shaded area denotes the network resources (network links and routers) that are not
allocated for this communication channel. In this figure, messages sent by Src to Dst
travel the solid path. Since the shortest path is calculated between nodes, packets travel
to their destinations using paths that minimize the statically assigned cost. If link costs
are uniform, then the shortest path minimizes the number of links and routerstraversed. In
general, alink’s cost describes some notion of performance, usually given as acombination
of the link’s delay and bandwidth. For example, in the Internet, a link has a lower cost
compared to the cost of another link with higher delay and lower bandwidth. Here, a



link’s cost reflects a notion of performance in terms of the amount of time expected for
packets to traverse the link. With this cost assignment (expressed in terms of path delay
and bandwidth), the shortest path minimizes the “expected time” for packets to reach their
destinations.

However, performance measures based on the time a packet reaches its destination
depend not only on the static properties of the links the packet traverses, but also on those
links' utilization levels. For example, it takesless time for a packet to traverse a path when
the path’s links are idle than when the links are congested*. In fact, work by Khanna and
Zinky [94] showed that computing paths that factor the dynamics of link utilization has a
large impact on network performance.

To provide better network performance, methods developed in this thesis implement
two routing models that deviate from the static metric single shortest path routing mode!.
These two models are dynamic metric single path routing and static metric multipath rout-
ing. The methods developed improve upon previous methods that implement the two
routing models. Conceptually, the two routing models increase network performance by
effectively utilizing currently unallocated network resources (links and routers). These un-
allocated resources are represented by the shaded region in Figure 1.1.

The first model, dynamic metric single path routing, provides one path between node
pairs, where the path computed considers network traffic and congestion. Dynamic metrics
are defined as link cost metrics that change dynamically. In the context of this thesis, a
link’s dynamic cost is based on the link’s utilization. With this type of metric, a link’s
cost is higher when it is experiencing congestion than when it is idle. In the dynamic
metric routing model, routers recompute least-cost paths between nodes in response to
dynamic changes in link costs. Because dynamically least-cost paths consider network
traffic, dynamic metric routing offers the ability to provide nodes with higher performance
paths (in terms of lower delay and/or higher throughput). Figure 1.2 shows a conceptual
diagram of the dynamic metric single path routing model.

In this figure, the solid line represents the current path a dynamic metric routing algo-
rithm provides between Src and Dst, and the three dotted lines denote potential paths Src¢
hasto Dst, depending on different traffic conditions. In a dynamic metric single path rout-
ing model, Src has available, at any onetime, only one path to Dst. This path is chosen by
the routing algorithm to carry data between Src and Dst. Because the routing algorithm

*A link isin a congested state when too many messages are contending for the link’s resources (e.g. link
bandwidth and allocated router buffer space for the link). In this scenario, the router buffering this link’s
out-going data may be forced to drop messages out-going on the link.



Src

Dst

Figure 1.2 : A conceptua diagram of the dynamic metric routing model. The solid line
denotes the current least-cost path between Src and Dst, and the dotted lines represent
potential |east-cost paths depending on dynamic link costs.

continually recomputes the least-cost dynamic metric paths, the chosen path between nodes
reflects the current least-cost path. Notice that the path Src hasto D st depends on network
traffic and the routing algorithm’s recomputation speed.

The second routing model considered in this thesis, the static metric multipath routing
model, deviatesfrom static metric single shortest path by providing multiple paths between
nodes. Routing agorithmsin this model provide potentially multiple paths between nodes
concurrently, thereby increasing a node's available resources and allowing the node to use
the multiple paths in ways that best increase its performance. Figure 1.3 shows the concep-
tual diagram of this routing mode!.

In Figure 1.3, the solid lines represent the available paths Src has to Dst. In this
example, a multipath routing algorithm provides three paths between Src and Dst. Ad-
ditionally, the model allows Src to decide how to send data on these paths. For example,
Sre can send datato Dst on al three paths simultaneously, one path at atime, or any com-
bination it chooses. This model allows higher performance because Src can dynamically
detect and use path(s) that best maximize Sr¢’s performance.

The ability to choose which path to use differentiatesthe solid linesin multipath routing
and the dotted lines in dynamic metric routing (for convenience, we use “dynamic metric
routing” instead of “dynamic metric single path routing” and “multipath routing” instead
of “static metric multipath routing”, unless otherwise specified). In multipath routing, the
decision of which path to use is delegated to the sending nodes (end-hosts or the applica-
tions running on the hosts). That is, multipath routing algorithms calculate multiple paths



Src

Dst

Figure 1.3 : A conceptual diagram of the static metric multiple path routing model. The
three solid lines denote the paths that a multipath network provides between Src and Dst.
Here Src can send datato Dst using any of the three paths.

between nodes, and the end-hosts choose which path(s) to use. In contrast, dynamic metric
routing algorithms provide, at any give time, the only one path between node pairs. Thus,
end-hostsin this environment do not have the option to choose among the paths the routing
algorithm might calculate.

Although the general multipath routing model can also use dynamic metrics (the dy-
namic metric multipath model provides multiple paths between nodes that consider traffic
patterns), this thesis primarily focuses on the static metric multipath routing model. The
reason isthat if a static metric multipath routing algorithm cal cul ates the appropriate paths
and if end-hosts manage these paths effectively, then the situations where dynamic metrics
can benefit are significantly reduced. For example, assume that in Figure 1.2, a multi-
path routing algorithm provides all four paths (both dotted and solid paths) between Src
and Dst. In this case, even if the multipath routing algorithm uses dynamic metrics, the
opportunity to recalculate paths are much reduced because the possible dynamic metric
candidate paths are already provided. Moreover, if end-hosts effectively use multiple paths
to avoid congestion, then link congestion isless likely to occur which, in turn, reduces path
recomputations. Thisissueis discussed in detail in Section 4.2.5.

Notice that the two routing models described are still adaptive to network changes. That
is, both dynamic metric and multipath routing models recal cul ate paths upon detection of
network component failures or recoveries. Therefore, methods proposed in this thesis are
adaptive in that they offer the same connectivity guarantees as the current Internet routing
model, but they promise higher achievable network performance.



1.1 Contributions

The contributions of this thesis stem from the devel opment of methods that implement the
dynamic metric and multipath routing models. For dynamic metric routing, a novel algo-
rithm is developed which outperforms previous dynamic metric algorithms and requires
lower routing costs. For multipath routing, the major contributions are an efficient path for-
warding method and a multipath transport protocol that maximizes end-to-end throughpui.
The contributions of this thesis are summarized below.

Contribution 1: A novel dynamic metric routingalgorithm that outperformsprevious
dynamic metric routing methods.

Dynamic metric routing has been implemented in the past; however, previous imple-
mentations suffer two problems: routing instability and high routing overheads [94]. Rout-
ing instability occurs when paths are constantly being recomputed and do not stabilize.
This instability degrades network performance and increases the probability of network
congestion and failures. The second problem is high routing overheads. The overheads are
in terms of the CPU cycles and messages required for path recomputation. Because rout-
ing overheads in traditional dynamic metric algorithms depend on network traffic patterns,
mechanisms such as thresholding and hold-downs [74] are needed to limit the amount of
routing overhead; however, the effects on route quality of these two mechanisms are un-
certain because routers often compute paths based on out-dated information of the network
state.

The new dynamic metric routing algorithm developed in this thesis reduces the above
problems. The agorithm, hybrid-Scout, reduces routing instabilities by using two tech-
nigues. time staggered and selective dynamic metric path computation. Simulations show
that hybrid-Scout reduces the amount of routing cost by as much as an order of mag-
nitude while maintaining performance comparable to traditional dynamic metric routing
algorithms. This new algorithm promises to provide the benefits of dynamic metric routing
without the undesirable side-effects.

Contribution 2: An efficient multipath forwarding method.

One of the main challenges of multipath routing is the forwarding of data on their
intended paths. Multipath forwarding is difficult because each node has potentially multiple
paths to a destination; therefore nodes have to label data packets to indicate which path a
packet should travel. The path forwarding problemis defined as how to specify a packet’s
path and forward the packet along the specified path.

This thesis presents a novel multipath forwarding method to solve the path forwarding
problem by using small, fixed-length path identifiers (IDs). This method guarantees path



forwarding by chaining path ID agreements along paths [3,85]. To do this with minimal
computation and message overhead, the method requiresthat the calculated path set satisfy
a specific property, called the suffix matched property. For path sets that do not satisfy this
property, efficient closure operators are devel oped to convert them into suffix matched sets.

The novel forwarding method uses a fixed-length per packet path ID and requires ad-
ditional router storage proportional to the number of paths calculated. Thisisa significant
improvement over the traditional source routing technique that requires variable length per
packet path IDs, and routing storage overhead proportional to the number of paths cal-
culated and their path length. The proposed forwarding method is a key component for
efficient implementations of multipath routing.

Contribution 3: MPTCP, amultipath transport protocol that effectively utilizes avail-
able bandwidth on multiple paths.

The performance gains of using multiple paths depend on how effective end-hosts use
the paths to increase their performance. The appropriate usage of these paths varies as
applications vary. For example, an FTP application needs to use multiple paths to increase
throughput, whereas a telnet application needs to use paths to decrease delay. The final
contribution of thisthesisis the devel opment of a transport protocol, called MPTCP, which
uses multiple paths to increase end-to-end throughpui.

MPTCP stands for multipath TCP and is derived from the single path Transfer Control
Protocol (TCP) [83]. MPTCP provides a reliable bit stream service and relieves applica-
tions of the burden of managing multiple paths. MPTCP operates by opening TCP con-
nections on different paths and multiplexing data among them. The receiving MPTCP pro-
tocol coalesces data from the different connections to restore the original message stream.
MPTCP performs congestion and flow control, both critical for MPTCP's high perfor-
mance.

Simulation results show that MPTCP is able to effectively use the additional resources
offered by multiple paths, even under heavy network utilization levels. This protocol
demonstrates that immediate end-to-end performance gains can be obtained from multi-
path networks.

1.2 Dissertation Overview

The rest of the dissertation is organized as follows. Chapter 2 presents the routing back-
ground necessary for the remainder of the thesis and discusses the differences between
the dynamic metric and multipath routing models. Chapter 3 describes the hybrid-Scout



routing algorithm, presents simulation results, and specifies the conditions under which
hybrid-Scout outperforms traditional dynamic metric algorithms.

Chapters 4 through 9 address issues in the multipath routing model. Chapter 4 pro-
vides aformal introduction to multipath routing and presents the cost and benefit tradeoffs
of multipath networks. Chapters 5 — 7 develop the components necessary for multipath
routing to succeed. Chapter 5 devel ops appropriate path calculation algorithms that calcu-
late quality paths between nodes. These paths are supported by the multipath forwarding
methods given in Chapter 6. Finally, Chapter 7 describes atransport protocol, MPTCR, that
effectively uses the multiple paths to maximize throughpui.

Chapter 8 describes the implementation of two multipath routing algorithms. These two
algorithms are then tested in Chapter 9. Through simulation, Chapter 9 evaluates the entire
multipath routing model, from the performance of user protocols to the costs incurred by
the two routing algorithms. The results conclude that multipath routing can be implemented
efficiently and sufficient benefits obtained.

Finally, Chapter 10 describes the related work, and Chapter 11 summarizesthe research
contributions of this thesis and discusses future research directions.



Chapter 2

Background

This chapter provides the necessary background for this thesis by describing the basic In-
ternet routing model and its current routing algorithms. The deficienciesin Internet routing
motivate the need for dynamic metric and multipath routing in large-scale data networks.

The chapter begins by describing the two predominant routing algorithms, the Distance
Vector and Link State routing algorithms, which are the basis of many Internet routing
protocols. Moreover, many of the routing algorithms developed in this thesis are based on
these two algorithms. Sections 2.1 and 2.2 describe the Distance Vector and Link State
algorithms respectively. To place these algorithms in context, a brief description of the
Internet is given in Section 2.3.

Section 2.4 then comparesthe Internet’s static metric single path routing model with the
dynamic metric single path and static metric multipath routing models. This comparison
highlights the advantages and disadvantages of each model and reveal s performancecritical
issues in dynamic metric and multipath routing models.

2.1 TheDistance Vector Routing Algorithm

The first routing algorithm described is the Distance Vector routing algorithm (DV), adis-
tributed, adaptive routing algorithm that computes shortest paths between all node pairs.
Based on a centralized method known as the Bellman-Ford algorithm [22, 62], DV is the
basis of many practical routing algorithms currently in use [7,111,133].

Basic Distance Vector Algorithm

A DV router computesaforwardingtable whichisused to forward packets on the best know
path to their destination. Each entry in a DV forwarding table contains three elements: the
destination address, the next-hop neighbor on the known shortest path to that destination,
and the cost of the known path. Each router’s forwarding table is continually updated by
the distributed DV algorithm to indicate, via the next-hop entry, the shortest path between
nodes. Routers update their forwarding tables by exchanging path information with their



10

neighbors via distance vector packets (DVP). A DVP carries the identity of the originating
router and alist of distance vectors of the form (dst_addr, cost), which are taken from the
router’sforwardingtable. AnDVPentry (d, «) sent by arouter R indicatesthat i canreach
destination d, and the cost of the pathis «.

The description of the DV computation uses the following notation. Let C7 be the
cost of the known least-cost path to destination d in r’s forwarding table, NV the next-hop
neighbor on the path to d recorded in r’s forwarding table, and ¢, ; the cost of the link from
r t0 s. DV assumes that the path cost is additive and the cost of each link is positive. That
is, thecost C of apath (z1,... ,2,)ISC = ¢oyay + Copas + - + Copp_yo,, A i, > 0,
V1 < < n. Theforwarding table in each router r isinitialized as follows:

Cr=0;Vs:s#r (), =oc.

When arouter r receivesaDVP ((d, C3%), ... ) fromaneighbor s,  updatesits forward-
ing table as follows: for al destinations d in s’s DVP,

if (CF+¢s <Chor Nj=s)then (C] =C]+¢,s and N = s).

Noticethat the cost added to 7 isc,, the cost fromr to s. This addition correctly computes
the path cost from r to d through s. Router r locally computes ¢, by observing its link
status to neighbor s.

Routers exchange DV Ps with their neighbors periodically or in response to link/node
failures or recoveries. It can be proved that after a bounded number of DVP exchanges
following a topology or link cost change, all routers’ forwarding tables will contain values
reflecting the shortest pathsto all destinations[22, 157].

After DV forwarding tables converge, routerswill then forward packetsto their destina-
tions on the calculated shortest paths. Because DV computes all pairs single shortest paths,
tagging a packet with its destination address uniquely identifies the packet’s path through
the network. Data packetsin DV are delivered to their destinations as follows. whenever a
router receives a packet, it finds the forwarding table entry for the packet’s destination and
forwards the packet to the next-hop router listed in the table entry. This process of looking
up the next-hop address and forwarding a packet to the proper neighbor continues until the
packet reaches its destination.
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Dynamic Metric Distance Vector

To calculate dynamic metric paths, a DV router continually updates the cost of each of
its out-going links. When a router observes that the difference between a link’s current
cost and its last advertised cost exceeds a certain threshold, the router initiates (or trig-
gers) aDistance Vector route computation. Because link costs may change very frequently,
thresholding is used to dampen the number of path recomputations. Another mechanism
often used to further dampen the rate of recomputationsis to use hold-downs[74]. A hold-
down limits the number of route computations a router can trigger within a certain time
interval.

Given that the cost changein link [ causes router R to initiate a route computation, the
steps of recomputation are as follows:

1. In R’s forwarding table, for every path p with [ as its out-going link, R updates p’'s
cost to reflect I’s new link cost.

2. For each path updated, i sends a DV P containing these paths (and their new costs)
to all out-going links but /.

3. Upon receiving a DVP update, router P performs the usual path updates. After up-
dating itsforwarding table, P sends DV Ps containing path p if 1) p isnewly acquired
(asinthestatic metric case) or 2) the new cost of p exceeds p’s old cost by athreshold.

After the DV P exchanges, the paths calculated between nodes will reflect I’s new cost.
Furthermore, the amount of dynamic metric computation is reduced by the use of different
thresholds in the computation.

2.2 ThelLink State Routing Algorithm

The Link State (LS) algorithm is another routing algorithm on which many protocols are
based. Example of these protocols are found in the Internet and in ATM networks [3, 110,
114].

TheBasic Link State Algorithm

In the LS routing algorithm, every router periodically broadcasts (via flooding) its local
connectivity. This information is flooded in a Link State packet (L SP) which consists of
the router’s ID, alist of its neighbors IDs, and the cost of each connecting link. After
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all routers broadcast their LSP, every router knows the entire network topology. A router
then performs a shortest-path spanning tree computation rooted at itself [54]. From the
computation of this tree, the shortest paths to all destinations in the network are known.
This information is then encoded in the router’s forwarding table. A LS forwarding table
is alist of tuples of the form (dst_addr, next-hop), where dst_addr is the address of the
destination, and next-hop is the neighboring router on the shortest path to that destination.

Since the LS algorithm also computes single shortest paths between nodes, the usage
of LS forwarding tables to deliver packets to their destinationsis the same as DV.

Dynamic Metric Link State

Like DV, path recomputationsin dynamic metric LS are also triggered by link cost changes.
Dynamic metric L Srouters continually update the link costs of their outgoing links and trig-
ger path recomputation when the difference between the current and previously advertised
link costs exceeds athreshold. Again, similar to DV, cost thresholding and hold-downs are
used to limit the number LS path computations.

Upon detecting such link cost changes, an LS router broadcasts an L SP that contains
the new link cost. When arouter receives an LSP, it performsits usual shortest-path span-
ning tree computation that incorporates the new LSP information. Thus, after every router
receives adynamically triggered L SP and recomputes shortest paths, the paths provided by
adynamic metric LS routing algorithm will reflect the new cost change.

2.3 Thelnternet

The Internet is a global data network, and as of 1999, it consists of approximately 40 mil-
lion hosts and 20,000 routers [136, 142]. The Internet is a best effort datagram network:
units of data transmission are packetized, and each packet is individually and indepen-
dently delivered (hop-by-hop) to its destination without any guarantees of success. That is,
packets can be dropped in transit. In this section, we describe the current Internet routing
architecture and show how LS and DV routing algorithms operate in and scale to large data
networks.

In order for a node to send packets to another node, the sending node must specify the
destination node. In the Internet today, every node is uniquely identified by an 32 bit IP
address*. Thus for node A to send a packet to node B, A must designate the | P address of

*In the next version of IB, called IPv6, nodes will be identified by an 128 bit address [26].
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B as the packet’s destination. This universal naming allows every node in the Internet to
uniquely identify every other node.

Physically, the Internet is a collection of smaller inter-networks called routing domains
(or autonomous systems). Each routing domain is responsible for routing packets within
itself. That is, packets destined to hosts in a routing domain are routed by the domain’'s
routing algorithm. An intra-domain routing algorithm refers to a routing algorithm that
routes packets within a domain, and an inter-domain routing algorithm is responsible for
routing packets between domains. Using this organization, packets sent from one domain
to another are first routed out of the sending domain, then to the destination domain, and
finally to the destination host by the destination domain’s routing algorithm. Thus, logi-
cal Internet connectivity is ensured by the cooperation of inter- and intra-domain routing
algorithms.

Because of the size of the Internet, two methods are used to make the network scalable:
subnetting and hierarchical routing domains. Subnetting uses the IP addressing structure
so that routers can route packets based on a set of hosts instead of individual hosts, and
hierarchical routing domains reduce the size of routing domains. Both of these methods
are described below.

Subnetting

Internet addresses are divided into subnets. A subnet is identified by some IP address
prefix. Whenever an organization wants to connect to the Internet, it needs to obtain a
unique subnet address or a set of unique subnet addresses. Furthermore, every host owned
by the organization that connects to the Internet needs to have an IP address such that the
IP prefix of the host address is the same as one of the subnet addresses obtained by the
organization. The number of bitsin the IP prefix is variable length [65, 129, 133], and the
exact number of bitsis not directly relevant to our discussion.

With subnet addressing, routers outside a subnet need to know and maintain only a
single route (i.e. state) for all the hosts in the subnet. That is, routers outside a particular
subnet do not need to maintain a route for every hosts in that subnet, but rather, these
routers only need to maintain one route to the subnet; this route is used to forward packets
to every host in that subnet. Because several thousand hosts can have the same subnet
address, subnetting allows substantial space savings in routers, making routing over the
Internet more scalable.

However, subnetting alone is not enough to provide scalability because there are hun-
dreds of thousands of subnet addresses in the Internet. To further reduce the amount of



14
information that routers have to process and store, hierarchical routing domains are used.

Hierarchical Routing

Hierarchical routing allows a routing domain to contain subnet addresses as well as other
routing domains (represented by a set of subnet addresses). Conceptually, routing is hi-
erarchically structured such that at the lowest level, a routing algorithm routes packets to
hosts with the same subnet address. At the second level, arouting algorithm routes packets
among second-level routing domains using the subnet addresses the routing domains en-
compass. Similarly, at level ¢, arouting algorithm routes packets to the appropriate level
routing domain that contains the packet’s destination subnet address. Because of theinclu-
sive property of routing domains, a packet is routed to level « + 1 if the packet is destined
for a subnet address that is not in level ;. Eventualy, routers in the highest level of the
hierarchy, say level I, know about every subnet address and the level . routing domain
that contains the address.

Thus a packet destined for a different subnet first travels up the domain hierarchy, until
it reaches the routing domain that is the first common ancestor of both the source and
destination routing domains. From this ancestor domain, the packet then travels down
the hierarchy until it reaches the destination domain. The destination domain’s routing
algorithm then ensures the packet reaches its destination.

This hierarchical organization achieves scalability because a routing algorithm operat-
ingin alevel : routing domain only needs to compute paths to nodes at that level. A node
at level « could beahost (if : = 1) or alevel : — 1 routing domain. If anode is arouting
domain, then the node advertises the subnet addresses that it encompasses. With this hi-
erarchical structure, a routing algorithm at a particular level only has to compute paths to
nodes at that level, thereby reducing the size of path recomputations that routers need to
perform.

Conceptualy, the Internet routing hierarchy can have many levels. However, in prac-
tice, the Internet routing is divided into only two levels, intraedomain (lower level) and
inter-domain (higher level) routing levels.

Although the size of host addresses is different from domain addresses, arouter’'sbasic
mechanisms for computing paths and forwarding packets are the same. Thus, the routing
algorithms described in this thesis are applicable for all the levels of the routing hierarchy.

More information on Internet routing is available in standard network text books such
as[93,129,154].
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2.4 Comparison of Routing M odels

As stated in Chapter 1, dynamic metric single path and static metric multipath routing mod-
els can offer higher network performance compared to current Internet routing algorithms
that implement the static metric single path routing model. This section compares the three
routing models and examines how their differencesinfluence network performance.

Our comparison begins by examining routing algorithms under dynamic environments.
This discussion applies to both single path and multipath routing models. Next, Sec-
tions 2.4.2 and 2.4.3 compare the performance differences among the three different rout-
ing models: Section 2.4.2 presents how network performanceisinfluenced by each model’s
resource usage, and Section 2.4.3 compares the operation granularity of multipath and dy-
namic metric routing models. Operation granularity refers to the scale in which a routing
algorithm computes its paths.

24.1 Staticand Dynamic Metrics

A distributed routing algorithm (both single path and multipath) needs time ¢ in order to
converge on the computation of its paths. This convergence time depends on factors such
asthe actual routing algorithm, network topology, link transmission speed, and router com-
putation speed. For example, in the LS algorithm, convergence time depends on the time
needed to detect topology changes, to broadcast topology information, and to recompute
shortest paths.

When the network state changes, one expects that after time ¢, a routing algorithm will
converge and cal cul ate the appropriate paths based on the new network state. For example,
assume that the convergence time for an LS algorithm is 5 seconds. Then 5 seconds after
alink failure, the LS algorithm will recompute shortest paths such that the new paths do
not use the failed link. In this case, the LS algorithm is correct because it calculates the
expected paths (the shortest path between nodes) and does so within 5 seconds. However,
the notion of correctness and convergence is less clear in scenarios where the network
state changes faster than a routing algorithm'’s convergence time. This type of network
scenario typicaly occurs in dynamic metric routing because link costs can change much
more frequently than a routing algorithm’s convergence time."

In the previous example, assume that the network topology (or link costs) changes every
second, then the LS algorithm can never catch up to the network changes and can never

T Although frequent network changes can also occur in static metric networks, these are usually networks
under specia conditionssuch as highly mobile, wireless networks[87,127].
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compute paths that reflect the actual shortest path in the current network. Rather, the paths
that the LS algorithm computes will reflect the shortest paths in an out-dated network state,
where the degree of out-datedness depends on the algorithm’s convergence time. In other
words, as the network changes, LS tracks the changes and computes paths according to its
most up-to-date view of the network, which may be the actual network state sometime in
the past. Notethat system A tracks system B if whenever B changesto B, A also changes
(say to A”) such that the difference between the output of A’ and B’ isless than or equal to
the difference between the output of A and B’ [31]. Thus, arouting algorithm that tracks
network changeswill recomputeits paths such that the newly computed paths better reflect
the current shortest paths, compared to the previously computed paths.

In network scenarios where a routing algorithm does not have an up-to-date view of the
current network statef, one can still reason about the correctness of a routing algorithm.
Recall in networks where rates of change are slower than convergence time, a routing
algorithm is correct if it computes the expected path within its convergence time. Since a
routing algorithm computes paths based on its current view of the network, such algorithms
are correct if 1) their view of the network is consistent with the actual network and 2) the
expected paths are computed based on that view. A router has a consistent view of the
network if the router's knowledge of the current network state is the same as the actual
state of the physical network.

In situations where arouting algorithm’s network view is not consistent with the current
network, a correctness criterion must ensure that the routing algorithm does not divergein
its shortest path computation. That is, the paths that a routing algorithm actually calculates
should track the paths that the routing algorithm would calculate given it has the instanta-
neous network state. This property can be ensured by two criteria: 1) the algorithm’s view
of the network must track the actual state of the network. That is, the differencein the view
of the network at time X and X + § should reflect the actual network changes observed
in the elapsed time 4. Of course, the amount of network updates during the elapsed time
depends on the actual parameters of the routing algorithm (e.g. threshold and hold-down
values). 2) Correct paths are calculated based on the algorithm’s view of the network state.
In the LS example, this means that given LS's view of the network, the shortest paths are
calculated between nodes.

A routing algorithm might not have an up-to-date network view either because the network state changes
too frequently or because the algorithm does not attempt to obtain the exact, moment-to-moment state of the
network due to efficiency issues. Mechanisms such as thresholding and hold-downsallow routing a gorithms
to reduce routing cost at the expense of |ess accurate network view.
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Assuming that dynamic metric versions of DV and LS are not guaranteed to have an
up-to-date view of the network state, both algorithmsare still correct according to the crite-
riagiven above. In both algorithms, shortest paths are computed based on each algorithm’s
current view of the network, and network views are continuely updated via triggered path
recomputations. In LS, the network view is updated by topology broadcasts, and each
broadcast partially updates the network view. Similarly in DV, the network view is up-
dated by messages received from neighboring routers that contain path information that
use current network link costs.

In practice, thisimplies that the accuracy with which a dynamic metric routing ago-
rithm tracks physical link costs directly affects the quality of the paths calculated. The
closer the tracking, the closer the calculated paths reflect the current state of the network;
however the cost of tracking the network state comes at a cost. Chapter 3 addresses this
issue and shows that achieving good network performance involves atradeoff between the
cost of tracking the physical network and the quality of the paths cal cul ated.

2.4.2 Resource Usage

This section compares the three routing models in terms of network resource consump-
tion and shows how their differences affect network performance. To understand these
issues, one needs to determine 1) what network resources are, 2) how these resources are
consumed, and 3) how network performanceis defined. These terms are defined bel ow.
First, there are two types of network resources, router and link resources. router re-
sources refer to router CPU cycles and memory, and link resources refer to link bandwidth.
Second, these network resources are consumed by two types of messages: data messages
and routing messages. Routing messages are sent by routers to compute and provide paths
between nodes, and data messages are sent by applications to other applications. Both
types of messages consume link resources as they traverse the network and router resources
because routers receiving these messages have to process and/or forward them. Third, net-
work performance is determined by application network demands. Examples of different
network demands are high throughput, low delay, and high probability of satisfying QoS
requests’. Although network performance is application specific, in general, performance
can be characterized by the speed in which datamessages are delivered to their destinations:

§Quality of Service (QoS) specifies a level of network service, typically expressed as a combination of
delay bounds and capacity requirements [9, 43, 60, 71, 95]. For example, a video conferencing application
that transmit real-time video and audio may need paths with 1Mb/s bandwidth and a delay bound of 10ms.
In this scenario, the video conferencing application needs to reserve this QoS specification on the path to its
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the faster data messages are delivered from their sources to their destinations, the higher
the network performance. We shall use this general measure of network performance for
the remainder of the discussion.

Given these definitions, the following subsections analyze how the three routing mod-
els trade off between network performance and resource consumption of data and routing

messages.

Data M essages

This subsection examines how data messages use network resources as they travel to their
destinations. In static metric single path routing, the network resources used by data mes-
sages between a node pair are fixed given a particular topology: the paths provided are
based on static link costs and do not change with traffic conditions. The drawback of this
routing model is that network performance is dependent on traffic; therefore depending on
traffic patterns, the static metric shortest path might not provide good network performance.

In dynamic metric routing, the cost of a link considers the traffic on the link. In this
model, alink’s cost changes dynamically —alink’s cost increasesif the amount of traffic on
the link increases. Thus, in dynamic metric routing, the network resources used between
anode pair change (via path recomputation) in order to minimize dynamic path costs and
to increase performance. In essence, with dynamic metric routing, data messages travel
different paths (i.e. use different network resources) depending on network traffic patterns.

In the multipath routing model, the routing algorithm provides multiple paths between
nodes and allows the sending nodes to choose how to send data using the provided paths.
With respect to network resource usage, the resources a message uses to its destination
depend on the paths calculated by the routing algorithm and on the end-host sending the
message. The paths that data messages can travel depend on the paths calculated by the
multipath routing algorithm. However, the path that data packets actual travel depends on
the end-host sending the packets. Thus, in multipath routing, end-hosts can increase their
performance given that they are able to gauge the performance of their available paths and
send data on paths that best maximize their performance.

In summary, both dynamic metric and multipath models offer higher performance than
static metric shortest routing by delivering data on paths which consider observed net-
work traffic. In dynamic metric routing, the routing algorithm observes network traffic and

destination. Notice that this request may be rejected by the network due to resource availability. However,
once reserved, the network is expected to provide the requested path performance to the application.
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recomputes its paths to optimize a given performance metric. The data messages then au-
tomatically traverse the recomputed paths. With multipath routing, the multipath routing
algorithm simply computes multiple paths between nodes. It is the responsibility of the
end-hosts to observe the performance of the computed paths and send data on paths that
best increasestheir performance. Thisdifferencein dataresource usage affect the two mod-
els cost-performance tradeoff. The tradeoff difference is discussed further in subsequent
sections.

Routing M essages

Routing messages are the other type of message that consume network resources. This sec-
tion considers the tradeoff between their resource consumption and network performance.

With respect to this tradeoff, the static metric single shortest path routing is at one
end of the spectrum that minimizes routing resources. This model uses the least amount
of resources among the three models because it computes only one path between a node
pair, and these paths do not change unless the network topology changes. In contrast,
dynamic metric and multipath models use more routing costs in the attempt to provide
higher network performance.

In the dynamic metric routing model, routing messages are used to track the network
state (e.g. link costs). Thus, if an agorithm uses more routing messages, it has a more ac-
curate view of the physical network, resulting in higher path quality because the computed
least-cost paths more closely reflect the actual least-cost paths in the physical network.
This higher path quality, in turn, increases performance because better paths increase the
speed that data messages reach their destinations (given that link metrics reflect packet
transmission time). However, because routing messages also consume network resources,
which affects network performance, dynamic metric algorithms must balance between the
accuracy of their network state information and the potential performance degradation of
obtaining the information.

Multipath routing algorithms also incur extra routing overhead in exchange for poten-
tially higher network performance. Extra overhead is incurred through calculating and
maintaining multiple paths between nodes. Thus, multipath routing algorithms must bal-
ance between the resources needed to compute and maintain paths versus their potential
performance gains.

To summarize, compared to static metric single shortest path routing, both dynamic
metric and multipath routing require more routing message resources. These extra re-
sources allow both models to obtain higher network performance. However, there is a
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fundamental difference between dynamic metric and multipath cost-performance trade-
off. In dynamic metric routing, the current least-cost paths between nodes are determined
by the routing algorithm. Therefore, changing paths between two nodes requires routing
intervention, which entails routing costs. In multipath routing, however, the cost of cal-
culating multiple paths is incurred once for a particular network topology, and subsequent
path changes to avoid congestion are done by end-hosts and thus do not require routing
intervention or routing overhead. For this reason, the multipath routing model is inher-
ently more efficient than dynamic metric routing at making the routing cost versus network
performance tradeoff. We address this issue in more detail next.

24.3 Granularity

As shown in the previous section, both multipath and dynamic metric routing increase
network performance by using network resources that consider network traffic. However,
the difference between the two modelsis that end-hosts in multipath routing choose which
paths to use, whereas nodes in dynamic metric routing do not. This section explains how
this difference serves to distinguish the two routing models.

At avery abstract level, one can imagine that a dynamic metric routing algorithm can
“simulate” a multipath routing algorithm by allowing nodes to specify the desired path
before sending a packet and then compute the path fast enough that the routing algorithm
provides an illusion that there are multiple paths between nodes. This section shows that
this cannot be realized in practice. The reason pointsto the fundamental difference between
the two models — the granularity in which the two models operate. The difference can be
categorized into time and path granularities.

Time granularity refers to the time scale in which nodes can send data on different
paths. In a multipath model, nodes have the freedom to send data on any of their avail-
able paths. For example, a node can send consecutive messages on different paths in a
round-robin fashion. That is, the time granularity of path switching is on the message
level (or on the order of microseconds). However, in dynamic metric routing, switching
paths between nodes requires global path recomputation which is on a much larger time
granularity, typically on the order of seconds. The reason for the larger time granularity
is due to efficiency: computing paths on the microsecond granularity would consume a
prohibitively high amount of network resources, which can significantly reduce network
performance. Notice that in multipath routing, switching between paths does not incur any
routing overhead.

Path granularity refers to the scale of switching paths. In a multipath setting, when a
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node decides to send data on different paths, the decision is made by the sending node alone
and affects only that node’s performance. That is, path switching is on an end-to-end gran-
ularity. In dynamic metric routing, however, path recalculation is done on a network gran-
ularity because path recomputation entails global calculation. This computation involves
potentially every router in the network and potentially affects paths of other connections.
Because of this global granularity, it is thus infeasible to allow nodes in a dynamic met-
ric environment to arbitrarily switch paths and request global path computations. Notice
that the end-to-end path granularity in the multipath model naturally allows nodesto freely
switch paths.

Because multipath and dynamic metric models offer different operating granularities,
in practice, the two models are very different and require different routing algorithms to
implement each mode!.

244 Routing Model Summary

In summary, both dynamic metric single path and static metric multipath models trade off
resource consumption for increased network performance by delivering data on paths that
consider the dynamics of network traffic. In the dynamic metric shortest path model, re-
sources are used to more accurately track the network state, resulting in better calculated
paths. Multipath routing, on the other hand, uses additional resourcesto compute and main-
tain multiple paths, thereby allowing end-hosts to achieve higher network performance.

Analysis of this cost—performance tradeoff reveal s that multipath routingisintrinsicaly
more efficient than dynamic metric routing. This is derived from the observation that to
provideincreased end-to-end performance, a multipath routing al gorithm needs to compute
its paths only once (until the network topology changes), while adynamic metric algorithm
needs to continually recompute paths to maintain path quality.

Although dynamic metric algorithms make this tradeoff less efficiently, an advantage
of this model is that it only requires changes in router software and minimal end-host
changes. Since dynamic metric routing provides one path between a node pair, current
end-host protocols and softwares need little change, if any, to obtain performance benefits.
In contrast, multipath routing requires updates to both router and host softwarein order to
reap multipath performance benefits.

As this section shows, the decision of which routing model to implement requires eval-
uating tradeoffs at various levels. Analysis of such tradeoffs continues throughout the re-
mainder of this thesis. The following chapters carefully consider the cost—performance
tradeoffs when devel oping algorithms that implement dynamic metric and multipath rout-
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Chapter 3

Dynamic Metric Routing

This chapter presents a novel routing algorithm that implements the dynamic metric short-
est path routing model. Dynamic metric routing has been implemented on the ARPANET
(the precursor of the Internet) and substantial improvements in network performance were
observed: Khanna and Zinky [94] showed that dynamic metric routing has a significant
impact on the ARPANET’s performance, where performance is measured in packet drops.
This dynamic cost metric, called the revised ARPANET routing metric, also reduced rout-
ing instabilities and oscillations compared to the previous dynamic metric based purely on
link delays. Despite their positive results, dynamic metrics are not widely used in today’s
Internet. The technical reasons are that 1) the amount of routing updates with dynamic met-
rics are hard to control a priori because routing updates are dependent on network traffic,
and 2) routing using dynamic metrics can cause routing oscillations, though Khanna and
Zinky’s dynamic metric lessens the problem.

The dynamic metric routing algorithm presented in this chapter to alarge extent, over-
comes the limitations cited above. The algorithm uses Scout, a destination-initiated shortest
path computation technique. A destination node using the Scout algorithm initiates a path
computation from every node in the network to itself at periodic intervals. The period be-
tween route recomputations is controlled by the initiating node. The routing overhead of
the algorithm is a function of this period and is independent of the dynamic conditionsin
the network. Therefore, Scout has the property that its routing overhead is predictable and
under the control of the initiating nodes.

Since each initiating node takes charge of its route recomputations, the updating of
routes to each initiating node is uncorrelated. In contrast, traditional dynamic metric al-
gorithms based on Link State (LS) and Distance Vector (DV) recompute paths between
all nodes quasi-simultaneously. This quasi-simultaneous computation has the unfortunate
tendency of shifting congestion causing traffic from a currently congested area to a cur-
rently uncongested one which then becomes the next congested area, triggering route re-
computations over again [163]. Because route recomputations in Scout are independently
controlled by the destinations, route updates to different destinations are uncorrelated and
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usually staggered in time, thus allowing congested traffic to be split, significantly reducing
route oscillations caused by shifting all traffic in a congested zone at the same time.

However, this flexibility and autonomy in route recomputation comes at a price. Scout
is not as efficient as algorithms such as DV in computing all-pairs shortest paths. Thisis
because Scout destinations independently compute paths to themselves and do not share
path computations with other nodes; thus, using Scout to compute dynamic metric paths to
al nodesis inefficient.

To obtain the benefits of dynamic metric Scout while maintaining low routing costs,
Scout is integrated with the traditional LS and DV agorithms. In this hybrid agorithm,
the LS or DV component operates as usual and cal cul ates static metric shortest paths. This
provides good baseline paths between nodes. The Scout component then computes dy-
namic metric paths to a small, selected number of “hot” destinations. Analysis of Internet
packet traces show that a high percentage of Internet traffic is destined to a small percent-
age of “hot” destination networks (see Figure 3.1). The main idea behind the hybrid is
that if a small number of destinations receive the majority of the traffic, then making sure
that their traffic do not experience congestion (by cal culating dynamic metric paths to these
destinations) will reduce the probability that the remaining traffic experiences congestion.

By using Scout with dynamic metrics to improve path quality to hot destinations and
relying on traditional static metric algorithms to maintain paths to other nodes, the hybrid
algorithm reaps the benefits of dynamic metric routing without paying ahigh, unpredictable
routing overhead and without incurring significant routing instabilities. Moreover, since
static metric DV and LS algorithms efficiently calculate all-pairs shortest paths and Scout
efficiently calculates paths selectively, the hybrid algorithm combines the strength of the
different algorithms.

The rest of this chapter is organized as follows. Section 3.1 presents the hybrid ap-
proach. The section first describes Scout, a selective route recomputation algorithm that
takes advantage of network traffic locality. Scout description is followed by two sections
that describe Scout integration with DV and LS routing algorithms. Section 3.2 presents
experimental data showing the behavior of the different dynamic metric algorithms. The
results of the simulation show that hybrid Scout outperformstraditional dynamic metric al-
gorithmsusing significantly lower routing costs. Finally, Section 3.3 concludesthis chapter.
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Figure 3.1 : Traffic  locality in dec-pkt-4 TCP packet traces from

http://ita.ee.lbl.gov/html/contrib/.  The graph shows the cumulative distribution of
network traffic to destinations. The trace contained an hour’s worth of wide-area traffic
from DEC's corporate intra-net to the rest of the Internet. The x-axis shows the destination
percentage sorted by traffic frequency, and the y-axis shows the cumulative distribution.
The left graph shows the cumulative distribution of traffic to all destinations, and the
right graph shows distribution to the top 10% of destinations that receive traffic. The
distributions of traffic to sources exhibit the same distributions. The locality shown in this
traceistypical of other traces analyzed.

3.1 TheHybrid Approach

One of the key ideas of the hybrid approach is that routes based on dynamic metrics are
computed only for a minority of destinations, namely destinations that receive a majority
of the traffic. Due to the high destination locality observed in network traffic, being able
to calculate dynamic metric paths to these hot destinations has several advantages. First,
one hopes that calculating paths to a few destinations is cheaper than calculating paths to
all destinations. Second, not calculating shortest paths to all destinations simultaneously
reduces the route heredity problem [94] and therefore reduces route oscillation. 1n addition,
because these destinations receive a high percentage of routing traffic (say 50+%), rerouting
these paths enables the algorithm to shift enough traffic to alleviate areas of congestion.

The solution presented here for dynamic metric routing is based on two key concepts.
Thefirst is the Scout routing algorithm that is able to selectively update paths to individual
destinations. The second key ideais to integrate Scout with traditional DV and LS algo-
rithms. This hybrid provides base static routes to a mgjority of destinations using DV/LS
and provides dynamic metric routes to selected destinations using Scout.
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Scout is a host-initiated, selective route calculation algorithm that cal cul ates |east-cost
paths to individual nodes (or networks). Host-initiated means that the path calculation
process to a node (or network) isinitiated by that node (or gateway router to the network).
Scout is selective because only paths to that destination are affected, and it is efficient
at computing routes to individual destinations. However, Scout does not aggregate path
computation, and therefore is not as efficient as LS and DV when computing paths to all
nodes. This deficiency motivated the integration of Scout with LS and DV.

The hybrid of Scout with DV and LS routing algorithms uses the traditional routing
algorithm to calculate paths between nodes using static metrics, while Scout continually
refines paths to selected nodes using dynamic metrics.

The remainder of this section is dedicated to describing the hybrid Scout algorithm.
The next section presents a brief description of the basic Scout algorithm and shows how it
computes | east-cost paths between nodes. Theintegration of Scout with LSand DV follows
in Sections 3.1.3 and 3.1.4. Finally, Section 3.1.5 summarizes the hybrid-Scout LS and DV
algorithms.

3.1.1 The Scout Algorithm

This subsection briefly describes the Scout routing algorithm. Appendix A contains a full
description of Scout, including a proof of its correctness and convergence. The Scout
algorithm is described in a static metric network environment; Section 3.1.2 discusses the
algorithmic implications of using dynamic metrics.

In the Scout routing algorithm, each router maintains a forwarding table indicating for
each destination, the next-hop neighbor on the known least-cost path to that destination.
The forwarding tables are updated by Scout and are used in the same way asin LS and DV.

Scout’s basic mechanism of route computation is message flooding*. With Scout, desti-
nations periodically flood a Scout message throughout the network. Let £ bethe nodeiniti-
ating the Scout message. The period between two consecutive floodings of Scout messages
from R is called the broadcast interval (Bl). A Scout [ R, Cr, =] contains the originating
node’s address, R, and the cost C', to reach R, initially zero, and an increasing sequence
number . When a node P receives a Scout message [ R, Cr, «] from its neighbor ¢}, P

*Fooding is a standard method of broadcasting information in a point-to-point network. The flooding
method operates as follows: whenever a node receives a flood message, it remembers the message and sends
the message to all neighborsexcept the neighbor that it received the message from. If anode receives a flood
message it has seen, the message is discarded. Thus, aflood message terminates after every node receives the
message.
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first checks whether the sequence number = is valid. If not, the Scout is discarded. Other-
wise, P modifies the Scout’s cost Cx to include the cost of sending a message from P to
Q,C'r =Cr+ Cost(P — Q). C'r represents the cost a message will takeif it is sent by
PviaQ to R.

In the first broadcast interval (i.e. when P has no record of receiving a Scout from
R), P forwardsthe Scout [ R, C’g, 2] immediately after receiving the first Scout message,
initiated by R, to all neighbors except ), the neighbor which sent P the Scout. Node P
might receive more of R’'s Scouts in the same B, indicating different paths and path costs
to k. P remembersonly the least-cost Scout to R and adjustsits forwarding table to reflect
the best known path, but P does not forward these Scout messages. For each node, the
next-hop to R isawaysthe neighbor that provided the least-cost Scout in the current BI. In
the next and subsequent broadcast intervals of R, P waitsto receive a Scout message from
its designated neighbor before flooding. We define node P’s designated neighbor to node
R as the neighbor of P that provided the least-cost Scout to R in the previous broadcast
interval. When P receives the Scout from this designated neighbor, P forwards the least-
cost Scout received in the current Bl (i.e. with the current sequence number) to R to all
neighbors except the one from which the |east-cost Scout was received.

In the presence of node or link failures, a node P might never receive a Scout from its
designated neighbor because the designated neighbor may no longer be connected. Thisis
taken into account by requiring P to flood thefirst Scout message from R if P did not flood
any of R’s Scout messages in the previous Bl. In other words, if P waited for a Scout from
its designated neighbor () in the previous Bl but never received a Scout, instead of waiting
for ¢}, or any other neighbor in the current round, P immediately floods the first Scout it
sees in the current broadcast interval.

In this case, Pis not allowed to wait for a neighbor in the current B, in particular, the
designated neighbor, because if there are multiple failures, waiting for the best information
might cause cascading waits. Our decision was motivated by the observation that propa-
gating more recent, perhaps sub-optimal, information is more useful than trying to wait for
the best information which entails the risk of not propagating any information at all.

As an example, consider node A sending Scoutsin itsfirst broadcast interval (sequence
number 0). A trace of how Scouts propagate through the network is shown in Figure 3.2.
Node A sends a Scout of theform [ A, 0, 0], denoting the Scout originatesfrom A, with cost
0, sequence number 0.

In thisexample, node A’s Scout forwarded by B reaches DD before the one forwarded by
C'. Since D has no previousinformation of A’s Scout, D sends the Scout [ A, 5, 0] to all its
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Figure 3.2 : A Scout Example. Node A Sends Scouts for the first time. In this network,
boxes denote routers and edges links. The number beside each link represents the cost of
that link.

neighbors, after adjusting the Scout cost. Noticethat 1 learns the optimal path to A when
it receives the Scout [ A, 1, 0] from C'. However, D does not propagate this information in
the current BI. Instead, C' becomes D’s designated neighbor (and next hop to A). In the
first Bl, the only node that did not get the optimal cost to A is node £, even though it has
the optimal route. That is, because of hop-by-hop forwarding, Fs packets destined to A
will traverse the path (F, D, C', A) with cost 3 even though ' thinks it’s optimal path cost
iS6.

In the next BI, D will wait for C"s Scout before sending its Scouts. Thetraceisgivenin
Figure 3.3. Notice that 1 sends the Scout from C'. The agorithm converges in two rounds
and every node has the least-cost path to A.

Figure 3.3 : A Scout Example. A sends Scout in the second Bl

There are five distinctive features of the Scout routing algorithm. First, the number of
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Scouts forwarded in one Bl is O( L), where L is the number of linksf. Second, in a steady
state network, the worst-case number of BI’s needed for Scout to convergeis proportional to
the longest calculated cost path (with respect to the originating node). However, this worst
case requires pathological conditions. In practice, Scout’s convergence is much better.
Simulations were conducted on networks with more than 100 nodes which showed that
Scout always converged in no more than three BI's. Moreover, after a link failure, an
aternate (not necessarily least-cost) path is guaranteed to be computed after at most two
Bl's, if one exists.

Third, Scouts are small and fixed size and can therefore be piggybacked on a hop-by-
hop basis onto data packets, largely defraying their cost to the network. Fourth, Scout’s
route updates are completely controlled by the Scout generating node and not by network
changes; therefore Scout routing costs are easily controlled. Fifth, Scoutsrequirevery little
router computation. Thisisin contrast to LS and DV where a routing update may affect
entire forwarding tables.

3.1.2 Dynamic Metric Scout

The Scout routing algorithm can aso compute paths using dynamic metrics. That is, Scout
can calculate paths to destinations when link costs change dynamically. The implementa-
tion of dynamic metric Scout is straightforward. Routers maintain each out-going link’s
dynamic cost asin dynamic metric LS and DV, and upon receiving a Scout from link /, the
router adds s current dynamic cost to the Scout cost and proceeds according to the usual
Scout algorithm.

Given that the number of BI’s for Scout to converge is proportiona the longest cal-
culated path, it may be that the rate of link cost changes in a dynamic metric network is
higher than the Scout convergence rate. In this case, Scout might never converge to the ac-
tual dynamic metric shortest path to a particular destination. As stated in Section 2.4.1, the
correctness of dynamic metric Scout in this scenario depends on 1) whether Scout’s view
of the network tracks the physical network and 2) whether paths are correctly calculated
according to Scout’s current view.

Similar to DV, a Scout router updates its view of the network by receiving Scout mes-
sages from its neighbors. Scout messages update the network view because whenever a

tItisnot exactly L because it may happen that two neighboring nodes send Scouts to each other simulta-
neously. The number of Scoutsisbetween I and 21..



30

router forwards a Scout, the most up-to-date link costs are added to the Scout. Thus, the
network view to adestination is tracked as the destination sends Scouts on every BI.

With respect to the second condition, the dynamic metric Scout algorithm also calcu-
lates the appropriate path given its current network view: a router aways stores current
Bl's least-cost Scout in its forwarding table, and routers always forward the current Bl's
least-cost Scout as dictated by the Scout algorithm. Because Scout is an iterative algo-
rithm, Scout might not calculate the shortest path to a destination after one Scout broad-
cast. Therefore, athough a Scout broadcast from destination ¢ does not guarantee that
every router after the broadcast will have the shortest path to d, the calculation processis
still correct because Scout update and forwarding procedures guarantee reductions in path
costs and produce shortest paths in a steady state network.

Like dynamic metric LS and DV, the dynamic metric Scout algorithm trades off be-
tween routing costs and the accuracy that the calculated paths approximate actual |east-
cost paths. For example, in dynamic metric LS and DV, the smaller the threshold and
hold-downs, the more closely the calculated path track actual least-cost paths. Smaller
thresholds and hold-down values alow more frequent routing updates; thus the routing
algorithm’s view of the network more closely tracks the actual network. Similarly, the
smaller the Scout BI’s, the better Scout paths track |east-cost paths because smaller elapsed
time between consecutive Bl’s reduces the difference between Scout’s view of link costs
and the actua costs.

The cost and performance of a dynamic metric routing algorithm can be measured by
how much routing resources (in terms of routing messages, router CPU, etc.) the algorithm
usesin order to provide acertain level of path quality. In our experiments, the cost of alink
is a function of the link’s queue length, which directly reflects link delay. Using this link
metric, path quality is measured by the time a packet reaches its destination. Therefore, an
algorithm that provides a lower overall network packet delay provides better performance
(or tracks network changes more closely) than agorithms that provide higher delays. An
ideal dynamic metric routing algorithm would provide minimum overall network packet
delay. Comparisons of routing cost and performance (in terms of packet delay) for hybrid
Scout and dynamic metric LS/DV agorithms are given in Section 3.2.

3.1.3 Scout-DV Hybrid

The Scout-DV hybrid algorithm combinesthe Distance Vector (DV) routing algorithm with
Scout. This section describes the integration of the two algorithms and justifies the behavior
of the resulting hybrid routing algorithm.
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Scout-DV Algorithm

Scout-DV agorithm has a DV component and a Scout component. The DV component is
responsible for computing the least-cost paths using static link costs and propagates link
failures and recoveries in the usual way. The Scout algorithm is integrated with only afew
small changes described below. The Scout component directly modifiesthe DV forwarding
tables (the next-hop and cost fields) and uses dynamic link metrics.

Because the DV component of the hybrid algorithm computes static shortest paths be-
tween all destinations, the Scout component of the algorithm can take advantage of this.
The only modification to Scout is the following:

e If the Scout algorithm does not have any information on the designated neighbor,
the default is to use the next-hop neighbor computed by the DV algorithm as the
designated neighbor.

This featureis used in two places. 1) when a node generates its first Scout message and 2)
during the first Scout broadcast after a link failure/recovery (see below).
The two modifications to the DV agorithm are:

e When a router detects a link/node recovery, it exchanges forwarding tables with
neighboring routersin the usual DV manner, propagating the Scout paths as if they
were computed by DV. The receiving router performs the standard operations on the
received DV P and recomputes the shortest paths for both Scout and non-Scout send-
ing destinations.

e When arouter detects a link/node failure, it follows the standard DV procedure and
sends to all its neighbors a DV P containing infinity cost for all destinations that use
the failed link (including Scout sending destinations). This process nullifies al DV
and Scout pathsthat use thefailed link. Again, the standard DV recomputation mech-
anism will compute static metric shortest paths (if they exist) to all affected destina-
tions.

To ensure that a straggling Scout message from the previous Bl does not re-advertise
a path through the failed link, the Scout-DV hybrid algorithm increments the Scout
sequence counter for Scout cal culating destinations that were affected by the failure.
Notice this does not alter the Scout algorithm behavior in the next Bl because the
sequence number will then be current.

The above modificationsto Scout and DV algorithms serve to better Scout’s approxima-
tion of theleast-cost path. The Scout modification provides an educated guess for a default
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designated neighbor: lacking any dynamic metric path information, the static metric short-
est path is the most likely the shortest dynamic metric path. The DV modifications, on the
other hand, ensure that the Scout paths affected by a component failure/recovery become
valid in at least the same speed as affected DV paths. A valid path is defined as a path that
connects the source of the path to the destination. In a distributive routing environment,
this means that the forwarding table of every intermediate router on avalid path has, asits
next-hop field to the path’s destination, the next router on the path and that every link/router
along the path is operational. In other words, packets are forwarded to their destinations
only along valid paths.

Notice in the hybrid algorithm, the speed of convergence for paths to non-selected
destinations are the same as those in traditional DV algorithms (static metric DV). Thisis
because only the DV component of the hybrid algorithm calculates paths to non-selected
destinations. Therefore, paths to these destinations are updated by the DV component
in exactly the same manner as ones updated by traditional DV agorithms; thus paths to
non-selected destinations in hybrid-Scout must have the same convergence guarantees as
destinations in traditional DV algorithms.

The next section shows that the modifications to the DV component in the presence of
component failures/recoveries provide connectivity to Scout generating nodes.

Scout-DV Interactions

In the hybrid Scout-DV algorithm, the DV and Scout components interact in order to speed
Scout’s least-cost path computation and to speed the establishment of valid paths after
link/node failures. The purpose of this section is to show that the DV-Scout interactions
described above result in valid paths. Notice that the hybrid algorithm is still correct even
if the two components are completely decoupled: both DV and Scout are capable of calcu-
lating shortest paths without help from the other.

To show that valid paths are computed as aresult of Scout-DV interactions, adistinction
is made between destinations that generate Scouts and destinations that do not. For those
that do not, their paths are updated only by the DV component, and therefore the validity
of their paths is the same as in the pure DV algorithm. The correctness of DV has been
proven in [22,62].

With respect to destinations updated by Scout, their paths are also updated by the DV
component. Only for these destinations do we need to verify that valid paths are computed.
Because the Scout and DV components interact only during certain events, we need to
ensure that after those events (or after the interactions), valid paths are provided by the
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hybrid algorithm. The list below enumerates the points of Scout-DV interactions and the
conditions that ensure the calculation of valid paths.

1. When Scout does not have a designated neighbor, Scout’s usage of DV's next-hop
neighbor as the default designated neighbor does not cause Scout to diverge in its
path computation.

2. After alink failure, the DV component nullifies all Scout calculated paths that tra-
verse the failed link. Moreover, DV calculates alternate paths and these paths are
valid.

3. After link recovery, the DV component calculates valid paths.

Justification of 1: Inthe pure Scout algorithm, if arouter receives a Scout which it does
not have any previousinformation, the router will treat the neighbor that sent the first Scout
as its designated neighbor. With the DV optimization, the hybrid Scout will use the DV'’s
next-hop neighbor as its designated neighbor. Notice that in the subsequent BI, the Scout
component will use the designated neighbor it computed from its previous Bl. Thus this
optimization can only affect Scout behavior for the first Bl; therefore the optimization does
not affect Scout correctness (i.e. its approximation of the least-cost path) in calculating
shortest paths to Scout generating nodes.

Justification of 2 and 3: In DV, whenever a router detects that a link has failed, it
nullifies forwarding table entries to destinations whose next-hop is through the failed link.
In addition, the router sends aDV P to all its neighborsindicating that it can no longer reach
the list of nullified destinations. The sending of DVP's then initiates a network wide path
cancellation and recal culation process.

The complication with Scout-DV is that the DV component nullifies Scout calcul ated
paths and later recomputes these paths. The concern is whether this interaction causes the
calculation of invalid paths to Scout destinations.

To show that valid paths are computed as aresult of interactions 2 and 3, we must show
that after the DV recalculation process, the collective Scout-DV forwarding tables reflect,
for every Scout destination affected by the topology change, a sequence of valid next-hops
that leads to the destination.

The crux of thisjustification is that Scout paths have exactly the same properties as DV
paths. Therefore, when Scout paths are nullified and recomputed by the DV component,
these paths will have the same resulting properties as paths calculated by DV. Thus the
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validity of Scout pathsthat are (re)cal culated by the DV component is reduced to the valid-
ity of DV paths. Given that the correctness of DV has already been established, reducing
Scout paths to DV paths shows that interactions 2 and 3 will produce valid paths to Scout
generating nodes.

Thejustification of interactions 2 and 3 proceeds asfollows: first, we state the necessary
and sufficient conditions of DV paths. Second, we show that Scout paths have the same
properties as DV paths. The validity of DV-modified Scout paths then directly follows.

From the Bellman equations [22], the three necessary and sufficient conditions of apath
(zo,...,x,) caculated by DV arethe following:

1. Node z;’s forwarding table entry has «,,; asitsnext-hopto z,, 0 < i < n.
2. Thecost x;,; hasto z,, islessthan x;’scostto «,,, 0 < i < n.
3. Theinformation of this path flowed from «,, to = viathe reverse path (z,,, .. . , xo).

The Scout calculated paths also have these three properties. 1) if «; calculates the |east-
cost path to =, as (x,...,x,), then z;’s forwarding table entry for =, has z;; as its
next-hop. Thisis from the basic Scout update rule. 2) Scout’s costs are additive, satisfying
the second property. 3) Like DV, Scout’s path information flows from the destination in the
reverse direction of the calculated path. This follows from the Scout flooding mechanism.

Because Scout’s paths look exactly like DV computed paths, whenever the DV compo-
nent updates router forwarding tables, it cannot distinguish the paths calculated by Scout
from the ones calculated by the DV component itself. Thus Scout calculated paths will be
altered in the same way as DV calculated paths and will have the same DV path properties
after link/node failure or recovery. That is, the DV component is guaranteed to nullify all
invalid Scout paths after a link failure and recompute valid paths to Scout destinations on
link recoveries. QFE D.

Figure 3.4 shows an example of a Scout path invalidated by a link failure and subse-
guently recomputed by the DV component. In thisfigure, the dotted curve between nodes
X and Y denotesthe path node Y hasto node X'. Here, X isa Scout generating node. For
this example, assume the link between i and P fails and that the DV component detects
the failure before X generates another Scout*. According to the hybrid algorithm, the DV
component will use static metrics to recompute the failed paths to X. Notice that DV will

H1f X broadcasts Scouts before DV’s link failure detection and that the Scouts cal culate valid pathsto X,
then DV will not nullify the newly calculated Scout path because the path would appear to be a valid DV
path.
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Figure 3.4 : An example of a path that the DV component cal culates to a Scout generating
destination after the failure of link (R, P).

invalidate all Scout paths that used link (P, ) but leave the valid paths untouched. In par-
ticular, the dotted curve from R to X remains valid while the curve from Y to P isinvalid
due to thelink failure.

In this example, the path that the DV component calculates from Y to X extends a
valid Scout path. The newly calculated path is denoted by the solid line from Y to S and
the dotted line from S to X. Furthermore, because DV calculates static metric shortest
path, the solid path from S to Y isthe shortest, static metric path that connects Y to avalid
Scout pathto X.

3.1.4 Scout-LSHybrid

This section describes the Scout-L S hybrid algorithm. LS, like DV, is a widely used and
well understood routing algorithm. However, unlike DV, it computes pathsin a centralized
manner: atopology broadcast mechanism ensures that each router knows the current state
of the entire network (i.e. topology and link cost), and paths are calculated by each router
knowing the entire network topology. This centralized path calculation method posses
slight problems to the hybrid algorithm when component failures occur. The basic hybrid
algorithm is described below, and solutions to address component failures follow.

Scout-L SAlgorithm

The Scout-L S hybrid, like the Scout-DV hybrid, requires very little modification to either
algorithm. The LS component maintains its forwarding table, computes paths using the
static link metrics, and recomputes routes on detection of link/node failures/recoveriesin
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the usual manner to non-Scout generating destinations; LS processing of Scout paths is
discussed below. For Scout generating destinations, Scout messages directly modify LS
forwarding tables and compute dynamic metric paths to their initiating destinations. Like
the Scout-DV, Scout is modified such that a destination’s default designated neighbor is
LS's next-hop neighbor to that destination. As proven earlier, this modification does not
affect the validity of Scout paths.

The following subsections describes the LS integration with Scout. The main area of
concern isthe handling of Scout paths when the L S component detects network component
faillures. This problem and its solution are described below.

Component Failures

L S routers exchange topology information to compute shortest paths. Whenever a network
failure occurs, the LS routers that detect the failure will broadcast this failure information,
which then triggers a network wide path recomputation. Because Scout paths do not carry
information as to the nodes/links they traverse, this means that whenever a Scout-L S router
receives a topology broadcast indicating a node/link failure, it cannot determine whether
a Scout path traverses the failed node/link. Thus if the LS component does not correct
Scout paths invalidated by the failure, these paths will remain invalid in the number of
Scout BI’'s needed to correct these paths. To speed the validation of Scout calculated paths,
a mechanism is needed to correct invalid Scout paths. As in Scout-DV interactions, this
Scout-L S interaction is an optimization because the Scout component will correct its paths
in the following BI's.

Unlike failures, component recoveries do not pose similar problems because Scout
paths affected by arecovery are still valid; therefore packets sent on these paths will reach
their destinations. Thus, ensuring that Scout paths are aware of component recoveries is
not as critical as in component failures. Because it is less critical and that relating Scout
paths to LS paths is difficult, the Scout-LS's LS component does not alter Scout paths af-
ter node/link recoveries. Recall in Scout-DV, the DV component does “optimize’ Scout
paths after component recovery. This optimize was performed because the DV and Scout
path computation mechanisms are very similar, allowing a natural implementation of this
optimization.

For Scout-L S, the different possible approaches to cope with component failures are
given below.

1. Do not update Scout paths. This means a Scout path could potentialy be invalid for
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two Scout Bl's. This is a reasonable solution in networks where the time to detect
link/node failures are on the order of the Scout Bl’s.

2. Update all Scout paths to static metric LS shortest paths. This approach replaces
all Scout paths whenever LS recomputes paths due to a component failure. The
disadvantage of this method is that it changes all Scout paths, even those that do not
traverse the failed component(s).

3. Implement aDV style invalidation procedure. This approach implements a DV-like
procedure to nullify Scout paths after component failures. In this method, when a
failureis detected, Scout-L S routers that detect the failure will initiate the procedure
to nullify al Scout paths invalidated by the failure. This DV-like procedureis proven
to nullify all invalid Scout paths (Section 3.1.3). Notice that the procedure does
not need to recompute the nullified Scout paths because the LS component already
knows the static metric shortest pathsto all destinations.

4. Attach source routes to Scouts. In this approach, Scouts maintain a source route of
the path they advertise. Thus, whenever a component failure occurs, routers ssmply
check if thelink/nodethat failed is traversed by a Scout path; if so, the pathis updated
to the LS calculated static metric shortest path. However, the disadvantage of this
approach isthat it significantly increases the size of Scouts.

The four approaches listed above address link/node failures in different ways. The
first approach simply alows the Scout mechanisms to recalculate aternate paths. The
advantage of this approach is its simplicity and that it requires no changes to the Scout-
LS algorithm. The principal disadvantage is that the paths to selected destinations may be
invalid for 2 BI's. Thisis undesirable because traffic to selected destinations are assumed
to be important, and therefore connectivity (i.e. valid paths) to these destinations should be
established as soon as possible.

The second approach indiscriminately invalidates all Scout calculated paths. This ap-
proach is simple to implement and immediately establishes connectivity to the selected
destinations. The drawback is that the invalidation causes a majority of Scout paths to un-
necessarily revert to the static shortest path (assuming a mgority of the Scout paths are
not affected by the failure). This sudden change in routing behavior may have a negative
performance effect if the number of Scout paths are high [84].

The fina two approaches accurately invalidate only the affected paths. The first ap-
proach uses the Scout-DV invalidation mechanism to delete Scout paths. This approach has
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the disadvantage that it requires significant additions to the Scout-L S algorithm. The fourth
approach simplifies the path invalidation procedure but complicates the Scout component.
This approach attaches a source route to every Scout. With a source route, determining
whether a path traverses alink is trivial; however, the disadvantage is that Scout messages
are no longer fixed size, significantly decreasing their efficiency.

The solution adopted in this thesis is to modify the fourth approach such that Scout
paths are selectively and conservatively deleted while maintaining a fixed Scout size. The
solution is as follows: a 64-bit field is added to hybrid-L S Scout (initially zeros) and each
router is required to identify itself with a 64-bit ID. These router IDs do not have to be
unique. Every time arouter forwards a Scout, the Scout’s 64-bit field is bit-ORed with the
router ID. A router stores a Scout’s 64-bit field if it uses the path advertised by the Scout.
Whenever a link or node fails, the attached routers broadcast the failure along with their
64-bit ID. Upon receiving this LS broadcast, routers recompute their paths as usual, and
for each Scout path, the path is invalidated if the broadcasting router’s ID is contained in
the 64-bit Scout field. This containment test isasimple bit-AND operation.

For example, consider a Scout passing through three routers with the following 8 bit
IDs: 00110000, 01001000, 00010001. The Scout’s bit field will be 01111001, the
bit-OR of all the three routers. If alink attached to the second router fails, the router will
broadcast an LSP that indicates the failure and that contains the router ID, 01001000.
Routers using the this Scout path will invalidate this path because the ID in this LSP is
contained in the Scout’s bit field. Using this method, all Scout paths that traverse afailed
component is guaranteed to be detected. However, if arouter with ID 01100000, which
isNOT on the Scout path, broadcasts a component failure, then this Scout path will also be
invalidated. These false invalidations are called false positives.

Because this method is conservative, it may delete Scout paths that do not traverse the
failed component, as the previous example shows. Simulations show that if arouter selects
its1D by randomly marking two bitsin the 64 bit field and if Scout paths are 15 hopslong on
average, then the number of false positivesis around 15%. With the low false positive rate,
this approach provides a good tradeoff between Scout efficiency and invalidation accuracy.

3.1.5 Algorithm Comparisons

One of the main differences between hybrid-Scout (i.e. Scout-DV or Scout-LS) and dy-
namic metric LS and DV algorithms is that the efficiency and effectiveness of Scout de-
pends on the number of Scout generating destinations, Scout generation rate, and how
much traffic those destinations receive. In contrast, with dynamic metric LS and DV, rout-
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ing costs depend on the degree of congestion experienced in the network.

As stated earlier, in order for hybrid-Scout to effectively reroute congestion, the amount
of traffic received by the Scout generating nodes must be “significant”. In addition, in order
for Scout to be efficient, the number of hot destinations must be“small”. We experimentally
quantify these two conditions in Section 3.2 and show that these conditions are typical of
real networks.

In summary, the main features of the hybrid-Scout algorithms are:

1. Hybrid-Scout can selectively upgrade paths to a destination to use dynamic metrics.
Thisis done by simply having the destination generate Scout messages.

2. Hybrid-Scout reduces route oscillation when compared to LS/DV with dynamic met-
rics. Thisis accomplished by computing dynamic metric paths to only selected des-
tinationsin a time staggered manner.

3. Inhybrid-Scout, the desired route quality to adestination can be determined indepen-
dently on adestination by destination basis. That is, hybrid-Scout can easily provide
different path qualities to different destinations, depending on their importance and
traffic usage. This adjustment is done solely on the part of the Scout generating node
by changing its Scout BI.

4. Hybrid-Scout’s routing traffic is independent of network traffic. Therefore, Scout
routing traffic can be easily controlled by limiting the number of Scout generating
nodes and their BI’s. LS and DV routing costs must be bounded using trigger thresh-
olds and hold-downs.

For this thesis, we assume that the set of “hot” destinations is statically known and
configured to send Scouts. In the Internet, for instance, 1SPs and popular Web sites are
likely candidates. Should static configuration prove too inflexible, traffic monitoring can
be used to maintain the set of hot destinations dynamically (see Chapter 11.2).

3.2 Simulation Results

This section presents extensive simulation results to evaluate the proposed hybrid Scout
algorithms and to compare their behavior with dynamic metric DV and LS routing algo-
rithms. The purpose of these experiments is to determine whether the hybrid-Scout algo-
rithms deliver better overall network performance at lower costs. While network topol-
ogy is a key parameter determining the performance of all four algorithms, a single class
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of topologies were chosen to study scaling effects. viz., Internet-like topologies. These
topologies are characterized by a highly connected backbone network, to which multiple
tree-like subnetworks are attached. The decision was made not only to simplify the exper-
imental analysis but also to make the results relevant to present-day networks.

Since hybrid-Scout recal culates routes based on dynamic metrics only to a set of “hot”
destinations (Scout generating nodes), a natural question that arises is how the routing
cost varies as the number of hot destinations changes? And as the skew in the traffic
distribution to these destinationsis increased, is the improvement in route quality worth the
extra routing cost? Answers to these questions are obtained by studying the performance
of the considered algorithms under varying traffic distributions; in particular the number
of hot destinations and the percentage of traffic directed to them. A related question is
whether the improvement in route quality to hot destinations comes at the expense of those
to non-Scout generating destinations. This section presents an experiment which addresses
this question by measuring non-hot destination network performance. For smplicity, traffic
destined for Scout generating nodes (hot destinations) is called foreground traffic and traffic
destined for other nodes background traffic.

The experimental analysis consists of studying the effects of (1) network size, (2) fore-
ground traffic distribution, and (3) background traffic quantity on routing cost and overall
route quality delivered by the different algorithms. To evaluate the algorithms according
to these three parameters, different algorithms were tested on an Internet like topology
to show the different dynamic behaviors of each algorithm and their relative performance
and cost. Subsequently, background traffic is introduced to examine the behavior of these
algorithms with varying traffic distributions.

3.2.1 Simulation Environment

The simulation environment is based on the “x-netsm” package from the University of
Arizona [28], an execution-driven, packet-level network ssimulator. The simulator takes as
input a description of the network topology, including link characteristics such as band-
width and propagation delay, and a set of software modules that implement the various
protocols running on the routers and hosts of the network. Simulation time advances ac-
cording to the calculated transmission and propagation delay of packets in the network.
Software processing in the routers and hosts are assumed to have zero cost.

The four routing protocols are implemented in the simulation testbed: the two hybrid
Scout routing algorithms, a Distance Vector protocol similar to the Internet RIP proto-
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col [74]® and aLink State protocol similar to the Internet OSPF [41] routing protocol. In
these experiments, only results for the hybrid DV-Scout algorithm are presented because
the behavior of the two hybrid algorithms using dynamic metrics are exactly the same. The
only differenceis that the hybrid L S-Scout messages are 8 bytes larger than those used in
hybrid DV-Scout.

Dynamic metric LS and DV were implemented using trigger thresholds. As a router
continually updates its out-going link’s costs, it observes whether the difference between
any of itslink’s current cost and the link’s cost that was last advertised exceeds the thresh-
old. If so, therouter initiates a network wide shortest path recomputation. Trigger thresh-
olds are expressed as trigger percentages. A trigger percentage of 50% means that alink’s
cost has to increase/decrease at least 50% of its dynamic rangein order to trigger arouting
update. The lower the trigger percentage, the more sensitive the algorithm is to link cost
changes, the higher the path quality, but aso the higher the routing cost (traffic). Refer to
Sections 2.1 and 2.2 for more details on the dynamic metric DV and L S algorithm.

The LS and DV protocols are optimized such that route changes are propagated only
in response to a triggered update. In the hybrid-Scout algorithm, the DV/LS component
only calculates routes based on static metrics (i.e. it does not trigger on dynamic link cost
changes) and only the Scout component computes paths using dynamic metrics. Because
static metric paths are cal culated once at the beginning of asimulation, the cost of theinitial
static route calculation are removed for all algorithms. Thus, routing costs presented are
the direct result of changesin dynamic metrics.

The performance of the different routing algorithms is measured by average packet
delay. Packet delay is the elapsed time between the sending of the packet and its reception.
Each experiment is constructed such that packet drops do not occur; therefore, the average
packet delay reflects the amount of queuing that packets experience.

Not only is packet delay a good end-to-end measure of path quality, it aso reflects the
precision in which arouting algorithm tracks network link costs. Given that link costs are
based on queue lengths (described below) and queue lengths directly affect packet delay,
an algorithm that minimizes a packet’s delay minimizes the cost of the path that the packet
traveled. Thus, the degree in which an algorithm tracks the network link cost changes is
reflected in the observed average packet delay.

The queue size for each router’s outgoing link is 100 packets long. A router samples
the length of its queues every 10ms. A link’s current average queue length is calculated

§ Our implementation includes the “ split horizon” and “poison reverse” heuristics.
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from the average of its instantaneous queue length with the previous running average. The
dynamic metric cost function islinear from the static cost (average queue length of 0%) to
3 times the static cost (average queue length of 100%). All links have the same static link
cost, and all three algorithms use the same static link cost, dynamic link-cost calculation
mechanism, and link-cost function.

3.22 A Forest Topology

The purpose of the first experiment is to show the basic behavior and scalability of each
algorithm. To make the experiment more relevant to today’s networks, the DV, LS, and
hybrid Scout-DV agorithms were simulated on the topology shown in Figure 3.5. The
picture on the left shows a backbone topology consisting of 6 highly connected nodes.
Three of the backbone routers are attached to atree-like topol ogy, shown on theright. The
connections are denoted by a dotted triangle attached to a backbone router. The backbone
links have three times the capacity of tree links and all links have equal static costs. There
are also cross links between an interior router in each tree and the corresponding router in
the neighboring tree, which is not shown in the figure. Four hosts are attached to each tree
router and one host is attached to each backbone router. The network has a total of 111
hosts. For the purpose of the routing protocols, each host represents a separate destination.
Leaf nodes transmit a stream of 10,000 packets to a host attached to a backbone router
at 75% link capacity. Backbone routers with attached hosts that receive packets generate
Scouts (i.e. they are initiate dynamic metric path computation to themselves).

Backbone Network Tree-like Topology

i
A
A
\

Figure 3.5 : The forest topology used in our experiments. The left-hand figure shows the
backbone network, and the right-hand figure shows a tree network. The three backbone
routers with a dotted triangle indicates that they have a tree network attached. Boxes rep-
resent routers and edges represent links between routers.
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Routing Behavior

Before examining the ssmulation results for the complete topology, we use one “tree” of
the forest topology to demonstrate the routing behavior of each algorithm. For illustrative
purposes, assume that R1 is the hot destination.

In thisexample, astheleaf nodes send their packetsto R1, the queuesfor links (R2, R1)
and (R4, R1) will begin to fill up. Asthey accumulate, the costs for those links increase.
Once the cost of those links exceeds twice the link’s base value, the shortest path from R7
and RS to R1 shiftsto the alternate path via k3, while R6 and R9's packets still travel their
primary path. After awhile, the queue on R5 will also start to accumulate, and the traffic
will shift back to the primary path. This shifting process continues until the transfers end.

The speed at which this path recal culation occurs depends on the sensitivity and gran-
ularity at which each algorithm is calculating the shortest path to £1. For LS and DV, this
is parameterized by their trigger percentages: the lower the percentage, the faster the al-
gorithm will trigger update messages upon link cost changes, and the faster it responds to
congestion. For hybrid-Scout, it is controlled by its broadcast interval Bl: the lower the BI,
the better the calculated paths reflect the current link costs.

Routing Perfor mance Ver sus Cost

Simulation results for the topology shown in Figure 3.5 is presented here. In this experi-
ment, the number of hot destinations is varied by having leaf nodestransfer datato varying
numbers of hosts attached to backbone routers. The traffic is uniformly distributed among
these “hot” destinations. There are potentially two levels where routing based on dynamic
metric can increase performance. The first is within each “tree” (asillustrated above), the
second is in the backbone network, where multiple alternate paths exist.

The performance and cost results are shown in Figures 3.6 and 3.7. In the performance
graphsin Figure 3.6, theleft graph shows average packet delay of DV and L Swith dynamic
metrics as a function of the trigger percentage, and the right graph shows hybrid-Scout’s
performance as a function of the broadcast interval. The routing costs incurred by each
algorithm are given in Figure 3.7. The label x-node denotes the number of distinct destina-
tions to which the leaf nodes are sending packets. The amount of traffic injected into the
network for the various number of destinations is fixed; only the distribution of the traffic
differs.

The two figures show the effectiveness and efficiency of the hybrid-Scout algorithm on
this topology. The performance and cost graphs show that hybrid-Scout achieves perfor-
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Figure 3.6 : The performance graphs for dynamic metric DV, LS and hybrid Scout algo-
rithms. In the DV/LS graph, the top cluster of curves represent DV performance and the
lower LS performance.

mance comparableto LS and DV at much lower routing cost. For example, the performance
of LSDV at 50% trigger percentage is comparable to hybrid-Scout’s performance at a Bl
of 100ms and one hot destination. However, the routing cost of hybrid-Scout compared
to LS and DV is approximately 15 and 40 times less, respectively. At five host destina-
tions, hybrid-Scout, DV and L S achieve comparabl e performance at 100ms, 25%, and 50%
trigger percentage; in this scenario, hybrid-Scout uses approximately 3 and 15 times less
routing resources than LS and DV, respectively.

To highlight this cost-performance tradeoff, Figure 3.8 shows the routing performance
versus routing cost of each algorithmwith 1 and with 5 hot destinations. The x-axis denotes
the routing cost, and y-axis the performance at that cost. Results are better the closer they
areto theorigin, indicating good performanceat low cost. Compared to LS and DV, hybrid-
Scout consistently achieves better performance at lower costs.

As seen from the | eft graph showing one hot destination, hybrid Scout significantly out-
performs both DV and LS on this topology. The graph clearly shows that for the same per-
formance, hybrid Scout uses significantly less network resources than both LS and DV. For
example, at a packet delay of 105000us, hybrid Scout requires approximately 100K bytes
of routing traffic while LS and DV require approximately 1224Kbytes and 4004K bytes,
respectively. The right graph confirms that hybrid Scout also outperforms LS and DV with
5 hot destinations.
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Figure 3.7 : The cost graphs for dynamic metric DV, LS and hybrid Scout algorithms. In
the DV/LS graph, the top cluster of curves represent DV costs and the lower LS costs.

Routing Cost Versus Network Size

The routing cost for hybrid-Scout and LS algorithmsare both O( L), where L isthe number
of links. The size of each Scout packet is constant (8 bytes for DV-Scout, 16 for L S-Scout)
whereas the size of LS packets is proportional to the number of outgoing links per router.
In addition, one hybrid-Scout broadcast (O( L)) recalculates all the current |east-cost paths
to a Scout originating node. In LS, however, if there are several points of congestion (say
m points), every router at those points of congestion needs to perform a routing flood to
recal cul ate the least-cost path (O(m L)).

DV is less scalable than either hybrid-Scout or LS on this type of topology because
the size of each routing update is proportional to the number of destinations. The more
destinations a network has, the higher the routing cost. With the network used in the ex-
periment, the size of each DV packet is approximately 600bytes, compared to 32bytes for
a LS packet.

In addition, since LS and DV compute shortest paths to all destinations simultaneously,
they are more likely to cause massive route shifts (many paths simultaneously rerouted to
a common set of links). This shifting of many routes may result in congestion, causing
additional triggered updates. In hybrid-Scout, the shifting isless severe, because 1) hybrid-
Scout does not recal cul ate dynamic metric pathsto all destinations and 2) paths cal cul ations
for different destinations are independent and staggered in time.

Table 3.1 experimentally shows each algorithm’s scalability in routing cost with net-
work size. For LS and DV, the trigger percentage was 15% and for hybrid Scout, there was
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Figure 3.8 : Comparative performance of hybrid Scout, LS and DV for 1 and 5 hot desti-
nations. The curves in these graphs are taken from graphsin Figures 3.6 and 3.7.

1 hot destination with Bl of 25ms. The tree topology is the same as the one in Figure 3.5
and the different numbers of trees are configured as shown in Figure 3.5.

Tree Size | Hybrid-DV-Scout | Distance Vector | Link State # of hosts | # of links
1-tree 52 Kbytes 35 Khbytes 60 Kbytes 9 10
2-trees 175 Kbytes 1,785 Kbytes 745 Kbytes | 68 22
3-trees 385 Kbytes 10,120 Kbytes | 2,550 Kbytes | 111 45

Table 3.1 : The scalability characteristics of hybrid-Scout, Distance Vector, and Link State
routing algorithms.

As the table shows, the scaling characteristics of routing cost for hybrid Scout and LS
are relatively linear with the network size. LS is higher because the number of congestive
points also increases with the increase in network size. The number of hosts attached to
each router increased from 1 to 4 between the 1-tree and 2-treestopology. Thus the routing
cost for DV increased significantly between the two topologies. This table confirms the
above cost analysis.

Sensitivity to Traffic Distribution

For the hybrid Scout algorithm, the number of Scout generating destinations and the amount
of traffic destined to them have alarge impact on the algorithm’s performance. To examine
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hybrid Scout’s sensitivity to these two parameters, this experiment variesthe number of hot
destinations from 1 to 5 (approx. 1% to 5% of hosts) and the percentage of traffic destined
for these destinations.

With respect to performance, Figure 3.6 shows that hybrid-Scout actually performs
better when there are multiple “hot” destinations. This is because Scout calcul ates |east-
cost paths to different hot destinations at uncorrelated times, which allows hybrid-Scout to
split traffic: pathsto destinations that would have shared the same set of linksif calculated
simultaneously may not, because later route calculations take into account the effect of
earlier route changes on network load.

The amount of traffic splitting that hybrid-Scout can achieve depends on the difference
in path calculation times. If paths to two neighboring destinations are calculated simulta-
neously (and thus based on the same link costs), the likelihood that their paths will have
common linksis high. On the other hand, if their paths are calcul ated at different times and
some link costs change in the mean time due to previous route changes, then their paths
will have less links in common. This fact explains why hybrid-Scout’s traffic splitting is
more prominent at higher BI's. At higher BI's, the mean time between calculations to dif-
ferent nodes are higher; therefore link costs are morelikely to reflect the effects of previous
route changes. Asaresult, congestion causing trafficis morelikely to be split and network
performanceis improved.

Hybrid-Scout’s routing cost is proportional to the number of Scout generating destina-
tions. As seenin Figure 3.7, the routing cost for five Scout generating nodes (approx. 5%
of the destinations) is exactly five times the cost with one Scout generating node.

The performance and cost of LS and DV are largely insensitive to the number of hot
destinations', since these algorithms cal cul ate shortest pathsto all destinations. The cost of
updating paths to one hot destination is the same as updating paths to all destinations. This
property manifestsitself as coinciding linesin the LS/DV cost graph in Figure 3.6. LS and
DV are able to split traffic to alesser degree because they compute all pairs shortest paths
simultaneously, as indicated by the relatively close performance curvesin Figure 3.6.

To see the cost-performance ratios of each algorithm, the right graph in Figure 3.8
shows the relative ratios for 5 hot destinations. Again, one sees that hybrid Scout is able
to provide better performance at lower costs than LS and DV, and that LS is more efficient
than DV.

1 The performance and cost vary slightly because the traffic and congestion pattern change with the number
of destinations.
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3.2.3 Background Traffic

The purpose of this next experiment is to test 1) whether the benefits of hybrid-Scout ob-
served in the previous section are maintained in the presence of background traffic, and 2)
whether the performance of background traffic suffers with the hybrid-Scout algorithm.

The same network topology is used as in the previous section. In this experiment,
the number of hot destinations is fixed at three (i.e. roughly 3% of the destinations are
sending Scouts), and the foreground traffic is fixed at 50% tree-link capacity. At this rate,
the foreground traffic by itself does not cause any network congestion; any congestion and
subsequent rerouting in the network is caused by the additional background traffic.

To add background traffic, each host in the network repeatedly chooses a node at ran-
dom and sends 100 packets to that node at 25% tree-link capacity. The amount of back-
ground traffic is controlled through the frequency of these transmissions. Increasing the
background traffic increases the total amount of traffic injected into the network. Back-
ground traffic percentage is defined as the ratio between the amount of background traffic
versus the total network traffic.

The experiment uses a trigger percentage of 15% for DV and LS and a Bl of 25ms for
hybrid-Scout. These parameters were chosen based on their comparable performance. The
average packet delay for the foreground and background traffic are shown in Figure 3.9.

Foreground Traffic Performance Background Traffic Performance
80 ‘ ‘ ‘ ‘ ‘ ‘ 38

Scout-DV —%— o

36 | Scout-DV —»— =8
75 ’

34

70’ 32,

65 | 30 |

vy 28 | kS
60 |

26

Foreground Packet Delay (ms)
Background Packet Delay (ms)

L L L L L L 24 L L L L L L
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Percentage of Background Traffic Percentage of Background Traffic

55

Figure 3.9 : The foreground and background performance in the large network. The per-
centage of background traffic is the percentage of traffic in the network that is destined for
non-hot destinations.

The left graph in Figure 3.9 shows the packet delay experienced by foreground traffic.
As the overall network traffic increases (marked by the increase in background traffic),
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packet delay also increases. The results also show that hybrid-Scout’s ability to reroute
and split traffic allows it to achieve lower packet delay than LS and DV. We conclude
that the performance benefits achieved by hybrid-Scout are maintained in the presence of
background traffic.

The right graph shows packet delay experienced by the background traffic in the same
simulations. The packet delay for the background traffic is less than the foreground traffic
delay because most of the traffic do not encounter congested links. The fact that the back-
ground traffic performance of hybrid-Scout is comparable to DV and LS shows that the
increase in route performance for selected destinations obtained by hybrid-Scout does not
come at the expense of non-selected destinations. The intuition is that by shifting traffic
that contributes most to congestion (foreground traffic), the remaining traffic on those con-
gested links are not likely to continue causing congestion. Hence, the network performance
increases for non-selected destinations as well. The benefits obtained by hybrid-Scout for
foreground traffic also indirectly benefit background traffic, as long as there is “enough”
foreground traffic. The question of what is enough traffic is addressed in the next experi-
ment.

An interesting feature in the background traffic delay graph is the dip near 12% back-
ground traffic. At lessthan 12%, the background traffic that traverse congested pointsis not
enough to cause much rerouting; thus, packets experience queuing. Above 12%, enough
congestion accumulates to cause rerouting, hence the packet delay is decreased because
congestion isrelieved. Of course, the packet delay again increases with background traffic,
because the benefits of rerouting are offset by the increase in traffic. The dip at 12% is not
observed in the foreground graph because the congestion that causes rerouting degrades the
foreground performance such that there is a net increase in delay as a result of rerouting.
The background traffic, on the other hand, always encounters congestion; therefore it can
only stand to benefit from rerouting.

Figure 3.10 shows the cost of each routing algorithm in this experiment. The hybrid-
Scout algorithm exhibits a constant routing cost with different levels of network traffic. LS
and DV'’s costs increase with the amount of traffic, with DV increasing most rapidly.

The cost graph shows an important characteristic of the LS and DV triggering mech-
anism: as the network utilization increases (marked by the increase in background traffic
percentage), the LS and DV triggered updates also increase. This is undesirable because
these updates compete with data packets for link bandwidth and router CPU at a time when
links are already heavily utilized and routers are busy forwarding packets. This additional
network load increases the probability of severe congestion and packet |oss.
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Figure 3.10 : Routing costs for the experiment in Figure 3.9.

The cost graph also shows that LS and DV use | ess routing resources than hybrid-Scout
at low network utilization. Here, only afew links are getting congested, resulting in few
triggered updates. However, the advantages of this behavior under low network utilization
are not as important as the disadvantages under high utilization levels. Since most links
and routers are underutilized at low network utilization, the presence of additional routing
traffic does not have a significant adverse impact on network performance.

3.24 Foreground Traffic

One of the premises of the hybrid-Scout algorithm is that the amount of traffic received
by hot destinations must be “ significant enough” for hybrid-Scout to be able to effectively
reroute congestion, and that the number of selected hot destination must be “low enough”
for hybrid-Scout to be efficient. The following experiment quantifies these conditions.

In this simulation, the same experimental setup as in the previous experiment (3 hot
destinations) are used. However, the total amount of traffic in the network is kept constant
while varying the distribution of foreground and background traffic. The performance and
cost are shown in Figure 3.11. Foreground traffic percentage is the ratio of foreground
traffic to total network traffic.

The performance graph (left graph) in Figure 3.11 shows the average packet delay of
both the foreground and background traffic. Asthe foreground traffic percentage increases,
moretrafficis directed to fewer destinations, causing more packet queuing and higher aver-
age packet delay for al destinations. The performance graph aso shows that hybrid-Scout
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Figure 3.11 : Network performance and routing cost. The amount of traffic injected is held
constant while foreground and background traffic percentages vary.

is able to achieve performance comparable to LS and DV whenever the foreground traffic
accounts for greater than 50% of the network traffic. Notice that hybrid-Scout’s perfor-
mance is significantly worse than LS and DV at 45% foreground traffic. This is because
Hybrid-Scout can only reroute paths to hot destinations; therefore it cannot eliminate con-
gestion when these destinations only account for a minority of the traffic.

The cost graph (right graph) in this experiment shows that in the simulated network,
where 3% of the hot destinations are transmitting Scouts, the routing costs of hybrid-Scout
are around 3 to 4 times less than LS and an order of magnitude less than DV.

The routing costs for LS and DV actually increase at 45% and 50% foreground traffic.
The reason is that the background traffic is causing minor congestion at many points in
the network (as opposed to mainly on paths to the hot destinations when foreground traffic
dominates), thus triggering more LS and DV updates.

With the results of this experiment, the two questions posed earlier in this section can
be answered:

1. What fraction of total traffic do hot destinations have to receive in order for hybrid-
Scout to adequately reroute congestion?

From our experiments, the answer is at least 50%. The intuition is that if the dy-
namic routing algorithm is able to control 50% of the traffic, the likelihood that the
remaining 50% continues to cause serious congestion is low.

2. How many destinations can generate Scouts for the hybrid-Scout agorithm to be
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efficient?

In our topology, if 10% of the nodes generate Scouts (in a highly utilized network),
the cost of hybrid-Scout iscomparableto LS. That is, hybrid-Scout is cost effective as
long as the number of “hot” destinations is below 10% of the total number of nodes
in the network. Note that hybrid-Scout’s efficiency aso depends on the network
utilization. As shown in the previous experiment, at low utilization LS/DV tend
to be more efficient, and hybrid-Scout is better at higher utilization levels. However,
efficiency at low utilizationisnot as critical asthe efficiency at high utilization levels.

Recall that in our study of Internet traffic locality, 1% of the destinations account for
over 50% of the network traffic. Thisindicates that in the Internet, having the hottest 1% of
the destinations generate Scouts will be as effective as LS or DV with dynamic metricsin
increasing network performance. However, the cost of hybrid-Scout under these conditions
should be approximately an order of magnitude less than LS and 2 orders of magnitude less
than DV.

3.25 Path Approximations

As stated in Chapter 2, dynamic metric routing algorithms may not converge in scenarios
where rate of link metric change is faster than the algorithm’s convergence time. In these
scenarios, an algorithm is correct if it tracks the network state and computes the intended
paths over the algorithm’s current network view of the network. As shown in Section 3.1.2
and Chapter 2, dynamic metric DV, LS, and Scout algorithms are correct in this sense.

The Scout algorithm (and thus the hybrid-Scout algorithm) convergesto | east-cost paths
in at most [ broadcast intervals after link metric changes, where [ is the number of hops on
the longest calculated path. This is a loose upper bound: in our simulations, the Scout
always converges in at most three Bl's. Thus, in practice, if the frequency of link cost
changes is less than 2-3 BI’s, then the dynamic metric Scout algorithm will converge to
the least-cost paths. Unfortunately, link cost changes in most dynamic metric networks are
much more frequent than Scout BI’s.

In comparison to dynamic metric LS and DV, the converge of hybrid-Scout may take
longer for sufficiently large BI's. However, it isimportant to note that unlike Scout, LS and
DV must use trigger thresholds and hold-downs to limit the frequency of metric changes
and maintain stability. Therefore, even if LS and DV technically converge while Scout
does not in a given scenario, the calculated paths are, in both cases, approximations of
the actual shortest paths because the cost metrics used in LS/DV calculations are not the
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actual instantaneous link costs. In addition, note that the metrics used in our simulations
to determine routing cost and performance take into account effects of route accuracy and
stability.

To see hold-down'’s effect on route quality, Figure 3.12 compares the cost and per-
formance of LS and DV using hold-downs. This experiment uses the same experimental
configuration that produced Figures 3.9 and 3.10. Here, the hold-downsfor DV and LS are
set to 10-12 and 4-5 triggers per second respectively, and the hybrid Scout parameters are
unchanged.
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Figure 3.12 : Routing performance and cost using hold-downs. The graphs represent the
performance and cost of LS/DV algorithms with hold-downs compared to hybrid-Scoui.
The experiments used the same configuration as ones used in Figures 3.9 and 3.10.

The right-hand graph in Figure 3.12 shows the cost incurred by each algorithm. No-
tice that, compared to Figure 3.10, the routing cost of LS and DV are much lower at high
network utilization. This is because the hold-downs prevent excessive routing triggers.
However, the reduction in routing cost of using hold-downs comes at the expense of rout-
ing performance. The left-hand graph shows that the performance of both LS and DV is
dramatically worse using hold-downs. This confirms the argument that by delaying path
computation, hold-downs force LS and DV to more coarsely approximate dynamic met-
ric least-cost paths (i.e. more coarsely track the network state), thereby degrading network
performance.

3.3 Hybrid-Algorithm Summary

Dynamic metric routing has been shown to increase network performancein real networks.
However, they are currently not in wide use due to the dangers of routing instability and
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high routing costs. This chapter presents a new approach to routing using dynamic metrics
that promises to overcomes the above limitations. The approach is based on the observation
that real network traffic exhibit a high degree of destination locality. Analysis of Internet
traffic traces shows that 1% of the hot destinations receive over 50% of the network traffic.

The proposed algorithm, hybrid-Scout, is able to cal culate paths based on dynamic link
metrics to selected destinations, while paths to other destinations are calculated by tradi-
tional routing algorithms using static link costs. Extensive simulations were performed to
determine the effectiveness and efficiency of hybrid-Scout in rerouting congestion com-
pared to dynamic metric LS and DV algorithms, and under what conditions. Through sim-
ulations, these questions are answered using an Internet-like topology consisting of over
100 host networks and 30 routers. In summary, our simulations show that:

1. Hybrid-Scout is effective at rerouting congestion if at least 50% of the network traffic
is destined to hot destinations (i.e. hybrid-Scout generating destinations). Hybrid-
Scout is more efficient than both dynamic metric LS and DV if no more than 10% of
the network nodes are generating Scoults.

2. Hybrid-Scout ismore scalable than LS and DV with dynamic metrics. While achiev-
ing comparable network performance (measured in packet delay), hybrid-Scout has
substantially less routing cost (in routing message bytes), from 4-5 times to 1-2 or-
ders of magnitude.

3. The selective update mechanisms of hybrid-Scout better splits congestion-causing
traffic, which reduces route oscillations. This splitting is achieved by 1) only rerout-
ing selected destinations based on dynamic link metrics and 2) by calculating new
routes for those selected destinations in a time staggered manner.

4. Hybrid-Scout’s routing costs are stable even under high network utilization levels.
This ensuresthat hybrid-Scout does not exacerbate network |oad during high network
utilization. Thisisin contrast to dynamic metric LS and DV algorithms that tend to
increase routing traffic at high network utilization levels.



55

Chapter 4

Multipath Routing

The second main contribution of this thesis is the devel opment of a complete static metric
multipath routing model: from cal culating multiple paths between nodes to end-host meth-
ods that utilize multiple paths to increase performance. Like dynamic metric single path
routing, multipath routing offers potential performance increase over single path routing by
better utilizing network resources. This introductory chapter presents the multipath routing
model* and describes the various components needed for its implementation.

The chapter begins with multipath routing definitions to facilitate later discussions.
Section 4.2 uses these definitions to discuss the advantages and disadvantages of multipath
routing. Finally, Section 4.3 summarizes the necessary multipath routing components for
increased network performance. These components areindividually addressed in following
chapters.

4.1 Multipath Routing Definitions

A glossary of terms to describe multipath routing models is presented in this section. The
terms are structured to reflect the key parameters that define multipath networks and influ-
ence their performance. These parametersinclude

1. Basic definitions. The basic terms that describe a multipath routing model.

2. Path specification and calculation. Path specification describes the properties of the
paths to be calculated between nodes. Example specifications are to calculate node
digoint paths, shortest &A™ paths, and maximum flow paths between nodes. Path cal-
culation is the actual algorithm that cal cul ates the specified paths.

3. Multipath types. This parameter describes the paths a multipath routing algorithm
provides between nodes. The two multipath types are multi-service paths where

*For convenience, the term “multipath routing” is used to denote static metric multipath routing, unless
otherwise specified.
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the routing algorithm provides different paths with different characteristics (exam-
ple characteristics are high throughput and low delay) and multi-option paths where
an algorithm provides multiple paths with the same characteristic. A routing algo-
rithm that provides either or both multipath types is considered multipath routing
algorithm.

4. Usage layer. The software layer responsible for using multiple paths to a given des-
tination. This layer manages multiple paths by dictating which data packet should be
sent on which path and when. Example layersin today’s Internet protocol stack are
the network, transport, and application layers.

5. Multipath usage. The way an end-host (or the usage layer of the end-host) uses
multiple paths to transmit data.

Basic Definitions

The basic definitions of multipath routing are given here. First, amultipath routing model is
defined as a routing model where the routing algorithms provide potentially multiple paths
between node pairs and allows the end-hosts (or applications) to choose how to use these
paths. We require that end-hosts have control over which path to use because this control
offersthe most flexibility in using multiple paths. Thisflexibility allows applicationsto use
multiple paths in ways to best maximize their performance.

Using this definition, dynamic metric, single path routing algorithms do not implement
the multipath routing model; although these algorithms may route packets between a node
pair on different paths, end-hosts do not control the path a particular packet will travel. For
the same reason, networks with backup paths, such as telephone networks [150], do not
implement the multipath routing model.

A multipath routing algorithm refersto arouting algorithm that provides multiple paths
between nodes so that data sent on a path travels that path through the network. A path
set refers to the set of paths that a routing algorithm calculates for a particular network
topology, and multipath networ ks are networkswith routers that execute a multipath routing
algorithm. That is, multipath networks are networksthat offer multiple paths between node
pairs.
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Path Specification and Calculation

In order to calculate paths between nodes, one must first specify the characteristics of the
paths to calculate. The different path characteristics depend on the intended use of the
paths. For example, paths intended to maximize end-to-end throughput should be specified
such that, for any node pair, the aggregate throughput obtain on multiple paths is maxi-
mized. In contrast, pathsintended to minimize transmission delay should be specified such
that, at any given time, there exist at least one low delay path between node pairs. Path
specification specifies the characteristics a particular path set.

A path calculation algorithmis the algorithm that actually cal cul ates the paths specified
by path specification. A practical path calculation algorithm takes into account the oper-
ating resources and environmental constraints such as the distributed nature of a network.
Examples of path calculation algorithms are Dijkstra’s shortest path agorithm [54], Top-
kiss initial link digoint paths algorithm [156], and the Bellman-Ford distributed shortest
path algorithm [22, 35].

Multipath Types

Path type specifies the relationship among the paths a routing algorithm provides between
node pairs. There are two path types: multi-service and multi-option. The first path type,
multi-service paths, denotes paths between nodes that have different characteristics (i.e.
different path specifications). Example services that a network could provide are low delay
and high bandwidth path services. Since applications may have different demands on the
network, providing paths with different characteristics alows applications to choose paths
that best fit their communication demands.

The second path type, multi-option paths, denotes the scenario where a routing algo-
rithm provides multiple paths with the same path service. For example, an agorithm might
provide four multi-option paths for the high bandwidth path service. That is, each end-host
has, to each destination, four paths that can provide high bandwidth to a destination.

Networksthat support multi-service and/or multi-option paths are called multipath net-
works. For example, a multipath network can be one that provides multiple service paths
with only one path in each service (multi-service, single option), or one that provides only
one path service with many paths within that service (single service, multi-option).

This thesis considers the general multipath routing model where networks provide mul-
tiple services each with multiple paths.
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Usage L ayer

Usage layer refers to the highest protocol layer responsible for managing multiple paths.
The levels applicable in today’s Internet protocol stack are the network, transport, and
user/application layers. If the usage layer is the network layer, then it is the responsibility
of this layer to decide which path a packet should travel and to do this transparently to the
protocol layers above. Similarly, if the multipath usage layer is the transport layer, this
means the transport layer has the freedom to send data on multiple paths.

The protocol layer that manages multiple paths needs to effectively use these paths
to increase performance. The choice of usage layer depends on the tradeoffs between
flexibility, performance, and the software engineering issues of implementing multipath
management at a particular protocol layer. Chapter 7 discusses usage layersin more detail.

Multipath Usage

Usage mode characterizes how multiple paths are used. There are two prototypical mul-
tipath usage modes: using paths concurrently or one at atime. The choice of which us-
age mode is application specific. For example, for applications interested in maximizing
throughput, such as FTP, the right usage mode isto use al paths concurrently to obtain the
aggregate bandwidth of all available paths. On the other hand, the appropriate usage mode
for delay-sensitive applications, such as Telnet, is to use one path at atime, preferably the
path with the lowest delay. Another application is one that needs to send urgent messages;
here, the appropriate mode may be to send urgent messages on multiple paths concurrently,
minimizing the message delivery time to the minimum time of all the paths used.

In general, usage mode varies with application needs. In the foreseeable future, appli-
cations might require paths from different path services at the same time, thereby requiring
different usage modes. For example, a Web session may have concurrent largefile transfers
and time-critical user interactions. In this scenario, the appropriate usage mode may beto
use paths from different services and multiplex data among these paths according to the
type of the data.

One expects that as network applications become more sophisticated, their usage modes
will increase in complexity as well. The multipath routing model is able to accommodate
these complex applications because it does not place restrictions on usage modes. Thus,
nodes are allowed to use the offered paths in ways that best fit their communication needs.
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4.2 Multipath Routing Overview

This section presents a conceptual overview of the multipath routing model in order to
describe the potential benefits and costs of providing multiple paths and to highlight the
components needed to make multipath routing viable.

This section is organized as follows. The first two subsections present the advantages
and disadvantages of the multipath routing model and argue that the flexibility of the model
offers significant network performance gains that outweigh the potential disadvantages.
The latter two subsections, 4.2.3 and 4.2.4, present the key multipath implementation is-
sues. Solutions to resolve these issues are addressed in succeeding chapters.

421 Multipath Advantages

The multipath routing model offers applications the ability to increase their network per-
formance. Because of its multi-service paths, multi-option paths, and end-hosts' freedom
to use these paths, the model provides aflexible interface to network resources that enables
applications with varying network demands to increase their performance.

In general, multipath performanceimprovementsare obtained in two ways. First, multi-
service paths alow an application to use paths within a service that best suit the applica-
tion’s communication needs. Second, multi-option paths provide more network resources
per path service, allowing applicationsto aggregate these path resources. These two general
approaches are discussed bel ow.

Providing the Right Paths

A multipath network with multi-service paths improves network performance because it
allows applications to choose the paths that best suit their communication style. For exam-
ple, an application such as FTP can improve its performance, measured in throughput, if it
uses high-bandwidth service paths. Similarly, aninteractive application, such as Telnet, can
increase its performance, measured in responsetime, if it uses low-delay service paths. Be-
cause network performance depends on application demands, networks that provide paths
with characteristics that fit these demands will be able to increase application network per-
formance. Since network demands vary with applications, the generality of amulti-service
paths alows a multipath network to satisfy the needs of different applications.

Providing the appropriate paths to increase performance will become more significant
as the diversity of network applications increases. For example, in the foreseeable future,
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network applications such as I P telephony, real-time medical imaging, and video confer-
encing will become more prevalent. These applications need paths with very different
characteristicsfrom those of traditional applications. Specifically, many of these new appli-
cations need paths with QoS and real-time guarantees. In this environment, amulti-service
network might provide paths with different delivery guarantees, alowing applications to
select the paths that best suit their needs.

Notice that in asingle path routing model, it isin general not possible to customize the
one path between a node pair with characteristics suitable for all applications. In practice,
single path routing algorithms calculate paths that compromise between throughput and
delay [94]. Although the paths generated by this single path compromise are sufficient
for today’s applications, it seems unlikely that these paths can effectively support future
applications that need paths with radically different characteristics.

Aggregating Multiple Paths

Multi-option paths increase application performance by giving applications the freedom to
use multiple paths within the same path service. Performance improvement is obtained in
two prototypical ways. 1) aggregating resources of multiple paths and 2) selectively using
the best available path. The descriptions of these two methods are given bel ow.

3 D 3 H
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Figure 4.1 : An example network topology. Boxes represent network nodes and edges
represent links. The number above each link shows the link’s capacity, and all links have
uniform delay.

Using multiple paths, the simplest method to increase performanceis to aggregate path
resources. For example, consider node B maximizing its throughput to node D in Fig-
ure 4.1. In this figure, boxes denote nodes and the number above each link denotes the
link’s capacity. In asingle, shortest path network, the maximum bandwidth between B and
D is 2 units: either the path (B, A, D) or (B, C, D), but not both. However, a multipath
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network can provide both pathsto B, allowing B to send datato D at 4 units of bandwidth.
Similarly, an QoS application can increase the probability that the network satisfy its QoS
request by combining the QoS reservationsit makes on multiple paths. In general, thisstyle
of resource aggregation can benefit any application that can use multiple pathsin parallel.

End-hosts can also use multi-option paths to increase performance by selectively using
the available paths. For example, consider an application interested inlow delay. Inasingle
path model, the application has no choice but to incur the delay of the one path provided
by the network to its destination. On the other hand, an application in a multipath network
can attain lower communication delays by probing the delays among the available paths to
the destination and then choosing the minimum delay path. Moreover, if low latency isone
of the multi-service paths, a node can choose among the paths in that service category.

In summary, end-to-end performanceis measured with respect to application demands;
thus, different applications maximize their performance differently. These differences are
accommodated by multipath routing model’s multi-service and multi-option paths. This
model offers aflexible interface to network resources that allows different applications to
increase end-to-end performance compared to single path routing models.

4.2.2 Multipath Disadvantages

Routing agorithms play a major role in end-host resource usage because they allocate net-
work resources (in terms of paths) between nodes. By construction, multipath routing al-
gorithms offer more network resources to end-hosts than do single path routing algorithms,
both to specific destinations and to sets of destinations. The previous section showed that
the advantage of multipath routing is that these additional resources can be used to increase
end-host performance; however, a potential disadvantage is that these same resources can
also be used by a greedy or malicious user to deny other users their fair share of network
resources. This section argues that although multipath routing may exacerbate resource
denial, the problem is actually orthogonal to single or multipath routing.

For example, consider a FIFO datagram network that does not place any restrictions
on how much data end-hosts can send. In this network, excessive resource consumption
and denial of services cannot be prevented [52]. In today’s Internet (a single path, FIFO
datagram network), nodes can blast packets to random network destinations, consuming a
significant amount of resources and drastically degrading overall network performance. Al-
though malicious users in a FIFO multipath datagram network could deny more resources
than in a FIFO single path data network, the fact remains that FIFO datagram networks
do not have mechanisms to prevent resource abuses, whether single or multiple paths are
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provided.

In general, two approaches can prevent or reduce excessive resource denial: cooper-
ative network communities and enforced network policies. In the cooperative approach,
network users/applications agree not to consume excessive resources. The Internet uses
this approach via congestion sensitive transport protocols (e.g. TCP [83]). These proto-
cols attempt to share resources fairly by regulating their sending rates in response to the
available bandwidth of the path they are using. Internet resource abuses are low because
these protocols are used by most users [124]. The advantage of the cooperative commu-
nity approach is that it does not require any network support — Internet routers do not need
any additional mechanisms to prevent resource abuse because end-hosts voluntarily do not
abuse resources. However, the disadvantage of this approach is that users (e.g. malicious
ones) may not abide by the convention and thus can consume excessive resources. In or-
der to control these users, a network needs mechanisms for admission and traffic control
(described below). The important point is that the success or failure of the cooperative
approach is independent of whether single or multiple paths are provided between nodes:
if al hosts cooperate, excessive resource consumption will not occur in either single or
multiple path networks. Similarly, if hosts do not cooperate, resource abuse can occur in
both types of networks.

The second method to prevent/reduce resource abuse is for the network itself to enforce
admission and traffic control policies [86, 135]. These networks enforce end-host resource
usage by regulating the number of senders and/or the amount of data each sender sends.
Regulating network traffic requires specific mechanismsin the network (e.g. in routers) to
monitor and enforce end-host sending policies. For example, a pricing network implicitly
discourages resource abuse by charging users for packets they transmit [121]. Usersin
these networks are unlikely to maliciously consume excessive resources because they have
to pay for the resources they use.

Again, noticethat the enforceability of traffic control in pricing networksisindependent
of whether single or multiple paths are provided between nodes. Usersin a pricing network
pay for packet transmission, regardless of whether they send their packets on different paths
or on the same path. Other networks with mechanisms and policies to discourage/prevent
excessive resource consumption can be foundin[91,92,113,121,135]. Although the actual
implementation of the admission and traffic control mechanisms may differ, the enforce-
ability and effectiveness of admission and traffic control policies are orthogonal to the
routing model.

The advantage of the network enforcement approach is that it does not rely on the
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cooperation of end-hosts; thus, it is much more robust and can prevent malicious usersfrom
abusing the network. The primary disadvantage is that it requires network mechanisms to
regul ate traffic and prevent abuse. These monitoring and enforcement mechanismsincrease
network cost and may decrease performance because of additional packet processing.

In summary, although multipath routing can exacerbate resource abuse in certain types
of networks, the core issues of resource abuse are orthogonal to both single and multipath
routing. That is, thefact that anetwork is proneto resource abuse is independent of whether
it provides single or multiple paths between nodes. Because of this independence, the
remainder of the thesis assumes that users are greedy but not malicious. That is, end-users
greedily maximize their resource usage but attempt to avoid network congestion. Thisis
the same end-user assumption used in today’s Internet.

4.2.3 Multipath Implementation Cost

The advantages of multipath routing come at a cost. Recall that routing is a two-step
process. 1) calculating paths and 2) forwarding data on those paths. Implementing these
two routing tasks incurs the following three cost categories:

1. The cost of computing multiple paths
2. Per packet path specification overhead in bytes
3. Router overhead of processing and forwarding data packets.

Thefirst category corresponds to the cost of path computation, and the latter two to the cost
of forwarding data on the computed paths. The three costs are described bel ow.

Computing Multiple Paths

Thefirst cost category, computing multiple paths, is measured in terms of routing messages
(in bytes) needed to propagate routing information and the router CPU time needed to
compute multiple paths. The number of messages and the amount of CPU usage depends
on the path calculation algorithm and the base routing a gorithm.

For example, the number of routing messages needed to compute multiple paths heav-
ily depends on whether the routing algorithmis based on LS or DV. In an LS environment,
routing message overhead is generally low because path computations are done with the
knowledge of the network topology. Thus, the number of messages needed to disseminate
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topology information is the same independent of whether multiple or single paths are cal-
culated. In contrast, DV based agorithms use routing messages (in the form of Distance
Vector packets) as the mechanism to propagate paths; therefore, computing multiple paths
generally requires more DV messages than computing single paths.

The amount of router CPU time to compute multiple paths has similar dependencies. In
L S, because path computations are centralized, standard complexity analysis of centralized
algorithms suffice to measure L S router CPU usage. As examples, calculating multiple A
initial link digoint paths takes O( K + E + lg(F)) and calculating the shortest A loop free
pathstakes O(nE * lg(F)) [58,141,156], where n isthe number of nodes (or routers), and
F is the number of network edges. In DV, the analysis is not so straightforward because
path computations are distributed. In the worse case, the message and CPU complexi-
ties are exponential [25]. However, it has been shown that the average message and CPU
complexitiesis O(nM?>(In(M))?) [23,157], where M is the average number of neighbor-
ing routers. Efficient multipath calculation algorithms based on DV and LS are given in
Chapters 5 and 6.

Specifying M ultiple Paths

Because there are multiple paths between nodes, every packet needs to specify not only
its destination, but also a particular path to that destination. Thisis in contrast to single
path networks where a destination address uniquely specifies a packet’s path. The second
multipath cost category refers to this additional per packet cost of path specification. The
specification cost is measured in the number of bytes needed in order to ensure that a packet
travels its specified path. It is critical to minimize this cost because it is incurred on every
data packet. Chapter 6 describes an efficient method for packets to specify aparticular path
to a destination.

Forwarding Multiple Paths

Finally, the per packet path specification implies that more router processing is needed to
forward each packet. The additional processing is needed for a router to decide, given
the packet’s destination address and path specifier, which outgoing link the router should
forward the packet to. This additional processing may slow router forwarding speed and
decrease network performance; thusit is critical to minimize this processing time. The cost
of this additional processing is called the router forwarding overhead. Not surprisingly,
this overhead is closely tied to how paths are specified in data packets. The efficient path
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encoding method presented in Chapter 6 has low forwarding overhead.

4.2.4 Multipath Benefits

The previous subsections list the potential advantages, disadvantages, and costs of a mul-
tipath network; this subsection concludes the multipath discussion by addressing how the
benefits of a multipath network can be obtained. To obtain multipath benefits, 1) multipath
networks need to calcul ate appropriate paths, and 2) end-hosts need to effectively use these
paths. These two properties are described below.

Path Calculation

The extent of performance improvement users can obtain from a multipath network de-
pends on the quality of the calculated paths. For example, an application can obtain higher
throughput only if the multiple paths calculated actually provide greater combined band-
width than the one provided by a single path routing algorithm. Similarly, an application
can increase its probability of establishing a QoS connection only if the calculated paths
have, either individually or combined, a higher probability of satisfying QoS requests com-
pared to the probability of a single path.

For example, consider thethreepaths (A, D, H, 1), (A,C, D, H,I),and (A,C, D, F, H,I)
from node A to node 7 in Figure 4.1. These three paths are not well chosen if A wishesto
increase its network throughput to node / because all three paths traverse the same bottle-
neck link ( H, 1) with capacity 2. On the other hand, if a multipath network provides paths
(A,D,H,I), (A, B,C,E,G,I),and (A, D, F, E,G, I), then node A has 4 capacity units
to node /.

As the example shows, a multipath network must provide the “right” pathsin order for
nodes to obtain higher performance gains, where the right paths depend on the applications
that use the paths. In general, providing quality pathsis atwo-step process. First, determine
the type of path services to calculate (path specification), then devel op efficient algorithms
to calculate them (path cal culation algorithm).

Two agorithms are developed in this thesis, one that calculates paths to maximize
throughput and the other to minimize latency. The complexities of both algorithms are
linear in the number of paths calculated compared to computing single shortest paths. The
algorithms are described in Chapter 5.
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Path Usage

The second component necessary for end-hosts to obtain increased performance in mul-
tipath networks is effective end-host usage of multiple paths. The fact that a network
provides quality paths between nodes does not necessarily imply that nodes are able to
effectively use these paths to maximize performance. This subsection shows the impor-
tance of effective multipath usage and itsimpact on network performance.

N1 N3

Figure 4.2 : A simple three node network with full-duplex links. All links have equal
bandwidth and latency.

Consider the simple network in Figure 4.2 where all links have equal capacity and
delay. Here, the multipath routing algorithm cal cul ates two link digjoint paths (the one link
and two link paths) between every node pair. Notice that the calculated paths provide the
optimal paths for maximizing throughput. In this setting, the two paths calculated provide
twice the capacity between nodes compared to single path routing; however, the effective
throughput between nodes depends on how each node uses its paths.

To show the potential harm of naively using multiple paths, this three node network
was simulated using TCP and a non-congestion aware, multipath striping protocol. The
multipath striping protocol clocks the sending of itsdataat full link capacity and distributes
the data by striping them along the two available paths. That is, given N packets destined
for destination D, the protocol sends packet 2: on the one-hop path and packet 2: + 1 onthe
two-hop pathto D, 0 < ¢ < N/2. The single path TCP protocol sends al packets along the
shortest path. In this experiment, nodes randomly select a neighbor and then send a burst
of packets to that neighbor. The times between each burst are exponentially distributed.
Figure 4.3 shows TCP throughput versus the striping protocol’s throughput when all three
nodes are sending data.

In Figure 4.3, the y-axis represents the average end-to-end throughput of all nodes as a
percentage of link capacity, and the x-axis represents the aggregate sending rate normalized
by the total network capacity.
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Figure 4.3 : Simulation result using the network in Figure 4.2. The graph shows the perfor-
mance of single path TCP versus a multipath striping protocol without congestion control.

First, the graph shows that TCP performanceis very stable despite the increase in traf-
fic. TCP does not achieve the maximum link bandwidth because its congestion and flow
control mechanisms cautiously probes the network for available bandwidth and reduces its
sending rate upon detection of congestion. On the other hand, the non-congestion aware
multipath striping protocol achieves very high throughput at low network utilization levels.
Thereasonisthat at low network |oads, the amount of contention from other connectionsis
low; therefore, multiplexing data between the one link and two link paths allows effective
aggregation of path resources, resulting in higher throughput than the single path strategy.

However, the relative performance of these two strategies changes at higher network
loads (> 60%): here, the TCP's transmission strategy proves superior because at these
utilization levels, packets in the multipath striping protocol experience enough contention
from other connections to cause significant performance degradation (due to packet queu-
ing in router buffers). This contention is due to packets traveling on the two link paths
competing with packets from other connections. Furthermore, the contention increases as
more packets are injected into the network, resulting in degradation of both aggregate and
individual throughput.

To address this problem, this thesis develops a congestion-aware multipath transport
protocol, MPTCP. Details of the MPTCP protocol are givenin Chapter 7. The effectiveness
of MPTCP is again compared against a single path TCP protocol on the same three node
network. The results are shown in Figure 4.4.

The x-axis and y-axis have the same representation as the previousfigure. Asthisfigure
shows, MPTCP outperforms the single path protocol at al levels of network utilization.
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Figure 4.4 : Simulation result using the network in Figure 4.2. The graph shows the per-
formance of single path TCP versus MPTCP.,

This demonstrates MPTCP's ability to adapt to network conditions in order to increase
throughpui.

Compared to the multipath striping protocol, MPTCP does not achieve the same level
of end-to-end throughput at low network utilization. Thisis because MPTCP is congestion
aware and incrementally tests the network for available bandwidth. This cautious approach
results in lower performance when the network is underutilized because it takes time for
MPTCP to fully exploit available path bandwidth. However, the same cautious approach
allows MPTCP to significantly outperform the striping protocol at high utilization levels.

The conclusion of this section is that in order for end users to benefit from a multipath
network, the network needs to provide not only the right paths, but the end-hosts also need
to be able to take advantage of the additional paths. As shown by a naive multipath strip-
ing approach (Figure 4.3), wrongly using multiple paths can degrade not only end-to-end
performance, but also the performance of other connections. This section also shows that
correctly using multiple paths can increase network performance and avoid performance
degradations.

4.25 Staticand Dynamic Metric Multipath Routing

Like single path routing, multipath routing algorithms can use either dynamic or static
metrics. In dynamic metric multipath routing, routing algorithms monitor link costs and
recompute paths upon detection of link cost changes. This thesis does not specifically
address the dynamic metric multipath routing model because we believe this model can
be implemented by traditional dynamic metric triggering mechanisms; thus the methods
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presented in this thesis for static metric multipath routing are also applicable to dynamic
metric multipath routing.

As stated in Chapter 2, thefundamental difference between multipath routing and single
path dynamic metric routing is that end-hosts in multipath networks control the use of its
paths on a much finer time and path granularity. Thus, given appropriate paths and end-
host protocols, multipath end-hosts can dynamically detect poor path performance, and
then switch and use other paths that provide better performance.

For example, consider an application that wishes to minimize its communication delay
to its destination, and the multipath routing agorithm calculates link digoint paths. In
single path dynamic metric routing, if the path to the destination is congested, then the
application will incur the delay caused by the congestion, unless the routing algorithm
recompute a better path. In multipath routing, however, the application can dynamically
switch and use other paths to avoid the congestion without any router intervention. Thus, on
small time scales, the ability to control path usage allows end-hosts in multipath networks
to dynamically adjust to transient traffic patterns.

Because end-hosts can adapt to small time-scale traffic patterns, a dynamic metric mul-
tipath routing algorithm does not need to recompute paths in fine time granularities. Con-
sequently, these routing algorithms should recompute paths that consider large time-scale
traffic patterns. For example, a dynamic metric multipath routing algorithm might monitor
traffic patterns for weeks and then recompute paths based on the gathered statistics. This
approach to path recomputation provides better paths by considering traffic trends rather
than transient traffic bursts (which are addressed by end-host multipath protocols). On this
time scale, problems such as route oscillations and excessive routing costs do not occur.
Thus, the traditional LS and DV triggering mechanisms are sufficient to implement the dy-
namic multipath routing model. The multipath routing algorithms developed in this thesis
arebased on DV and LS.

4.3 Multipath Routing Summary

Whileit isclear that the static metric multipath routing model offers many advantages over
single path routing models, it is unclear whether enough benefits could be extracted to
offset the cost of their implementation. In short, in order to make multipath routing viable,
the following questions need to be resolved:

TThis conclusion assumes that the multipath routing algorithm provides quality paths between nodes
(Chapter 5) and that end-hosts effectively use these paths to increase their performance (Chapter 7).
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1. What paths should be calculated between nodes and how?

2. How should routers efficiently provide multiple paths in a distributed routing envi-
ronment?

3. How should end-hosts use multiple paths to gain higher performance?

The first question deals with the potential gains of a multipath network. Asillustrated
in Section 4.2.4, one of the necessary criteriafor multipath networksto increase end-to-end
performance is to calculate the right paths. To address this issue, Chapter 5 surveys dif-
ferent multipath calculation algorithms. We then develop two algorithms, one maximizing
throughput and the other minimizing delay. The two agorithms appear in Chapter 5.

The second question deals with the cost of providing multiple paths between nodes. The
main cost of implementing multipath routing is solving the packet forwarding problem:
how to efficiently forward packets to the same destination but on different paths? The
novel solution developed in this thesis uses routing overhead linear in the number of paths
between nodes and has constant per packet path specification overhead. This low overhead
is achieved by requiring that paths calculated by a multipath routing algorithm satisfy the
suffix matched property. Complete details of this forwarding method and its requirements
are given in Chapter 6.

The last question is how end-hosts should best use a multipath network in order to
increase their performance. As demonstrated in the previous section, the way in which
multiple paths are used has a dramatic impact on individual and aggregate performance. A
congestion aware multipath transport protocol, MPTCP, is developed that effectively uses
multiple paths to increase throughput. The details of the protocol and its strategies are
provided in Chapter 7.

The algorithms and methods devel oped in Chapters 5 — 7 are combined to implement a
multipath network. Two multipath routing algorithms are implemented: one based on LS
and the other on DV. Details of their implementation are given in Chapter 8. Finally, Chap-
ter 9 presents simulation results that measure multipath routing’s obtained performance and
incurred costs.



71

Chapter 5

Path Calculation Algorithms

To provide multiple paths between nodes, amultipath routing algorithm first needsto calcu-
late the paths it wishes to provide. A multipath calculation algorithmrefersto an algorithm
that calculates multiple paths between node pairs. The paths calculated between nodes di-
rectly affects the performance gains a node pair can obtain. For example, a throughput
application can only increase its throughput if the paths provided has a larger aggregate
bandwidth than the path provided by a single path routing algorithm.

To this end, this chapter surveys different path cal culation algorithms and devel ops two
multipath calculation algorithms, one that computes low delay paths and the other high
bandwidth paths. Both algorithms are based on Dijkstra’s shortest path a gorithm.

Before presenting the two algorithms, we first specify two path characteristics that al-
low end-hosts to benefit from using multiple paths. Section 5.1 presents these two path
characteristics. Then in the succeeding sections, we use these characteristics to guide the
development of multipath cal culation algorithmsthat cal cul ate pathsfor low delay and high
bandwidth path services.

5.1 Path Characteristics

The quality of a path set depends on the intended use of the pathsin the set. For example,
a path set that provides high throughput may be very different from one that provides
low delay. Although path set quality (measured in potential performance improvements)
depends on the intended use of the path set, in general, there are some path characteristics
that allow applications to increase their performance.

In this section, we describe two such path characteristics, path quantity and path inde-
pendence. Path quantity refers to the number of paths calculated between nodes, and path
independence refers to the dig ointedness of the calculated paths. These two characteristics
are based on the basic advantage of multipath routing — the increase of end-to-end perfor-
mance by providing multiple paths between nodes. In general, thisincrease in performance
is obtained through 1) aggregating path resources and 2) choosing the best path(s) among
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the available paths. We describe the two path characteristics below.

Path Quantity

The fundamental difference between a multipath network and a single path network is the
number of paths provided between nodes. With more paths, nodes have more options to
interact with other nodes, potentially increasing their performance. Thus, the higher the
number of paths calculated between nodes, the higher potential a path set can improve
end-to-end performance.

There are many ways to describe path quantity. One method is to consider the total
number of paths calculated in a path set; the larger the number, the better the path set.
While this is straightforward, it does not capture the distribution of paths between node
pairs. For example, assuming uniform traffic distribution, a path set that provides every
node pair with 3 paths should be better than one that provides half the node pairs with 1
path and the other half with 5. That is, path sets with the same averages but higher variance
areless desirable because it means that some nodes have few paths while others have many.

Although there are subtleties in the precise description of path quantity, in general, a
multipath calculation algorithm that calculates more pathsis better than one that calculates
less. However, path quantity only characterizes one aspect of a multipath set. Another
characterization is the independence among paths cal culated between a node pair. Thisis
described next.

Path Independence

The second path characteristic, path independence, describes the dig ointedness of the paths
provided between nodes. This property is important because the more independent a path
set, the more aggregate physical resources the set offers between a node pair (because
those resources are not shared), and the less likely the performance of one path affects
performances of other paths.

To illustrate the importance of path independence, consider the network in Figure 5.1.
Assume that a path set that has two pathsfrom Ato 7 as (A, D, H,I)and (A,C, D, H, )
and another path set with paths (A, D, H, ) and (A, C, E, G, I). Intuitively, paths in the
second set are more independent than the ones in the first set because paths in the second
set do not share links. The higher independence of the second set gives node A more
aggregate capacity to /. In addition, suppose a link on A’s shorter path is congested, then
the probability that A’sother path to / isalso congested isless likely in the second path set.
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E G

Figure5.1 : An Example Network Topology. All links have uniform capacity and delay.

This is because with the second set, at least one link in each paths must to be congested in
order for A to suffer congestion; whereasin the first set, A would suffer congestion affects
if either link (D, H) or (H, I) is congested.

In addition to increasing performance, path independence also allows end-hosts to
achieve higher network availability. Assume that a network link has failed and that end-
hosts can detect that a path is not delivering data“ faster than the routing algorithm. In this
case, an end-host has a higher probability of reestablishing connectivity on a different path
if the paths provided areindependent. In contrast, in asingle path environment, wherethere
is no path independence (because there is only one path between nodes), an end-host must
wait for the routing algorithm to detect the failure and recompute the appropriate paths in
order for the end-host to reestablish connectivity.

In summary, we described two desirable multipath characteristics, path quantity and
path independence. Multipath sets with these characteristics better alow end-hosts to in-
crease their performance, compared with path sets that do not.

5.2 Path Calculation Algorithms

This section uses path quantity and independence to guide the development of multipath
calculation algorithmsfor high throughput and low delay path services. These two services
are chosen because their paths can provide immediate benefits to current network applica-
tions. The efficiency requirement of the considered algorithms is that their message and
CPU usage are within alinear factor in the number of paths calculated, compared to com-

*End-hosts can detect failed links in a path by observing that the path is not delivering data to the desti-
nation.
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puting single shortest paths. This complexity bound isimposed to make the implementation
of these algorithms feasible in real networks.

In both low delay and high throughput paths, the performance of these paths depends on
the dynamics of network traffic. Asstated in Chapter 4, amultipath routing algorithm (both
static and dynamic metrics) should compute paths that allow end-hosts to adapt to transient
(finetime-scale) traffic dynamics. That is, the paths provided between nodes should be such
that they preserve their intended performance benefits under varying traffic conditions.

We use the two path characteristics given in the previous section to guide the develop-
ment of path calculation algorithms that compute paths which preserve their performance
benefits under different traffic conditions. Section 5.2.1 presents an algorithm that com-
putes paths to decrease transmission delay, and Section 5.2.2 presents an algorithm that
increases throughpui.

521 Minimizing Delay

One of the ways end-hosts can benefit from a multipath network is to lower their communi-
cation delays (or increase responsiveness) to other nodes. This can be done by monitoring
the round trip delay of available paths to the desired destination and dynamically choosing
the one with the least delay’. Sincetheminimal delay that an end-host can achieve depends
on the delay of the paths it hasto its destination, end-host delay performanceis closely tied
with the paths calculated. This section develops a path calculation algorithm that provides
the low delay path service.

In order to calculate paths that minimize delay, a path calculation algorithm needs to
gauge the expected delay of alink. For the following discussion, we assume that link delays
are given by a cost function; the higher alink’s cost, the higher the expected latency of the
link. Inaddition, for ease of explanation, we assume uniform link costs; therefore, a path’'s
delay is determined by the number of hops.

For the low delay path service, the objective is to calculate paths so that the smallest
delay path between a node pair is minimized. Given that a path’s actual delay is traffic
dependent, a multipath cal culation algorithm needs to cal culate paths so that low delay can
be obtained under different traffic patterns. Below, we present several potential algorithms
and highlight their advantages and disadvantages.

TPath symmetry is not needed here. Path symmetry refers to the property that the path from A to B must
be identical to the reverse of the path from B to A. Symmetry is not necessary in real networks because
network traffic in one direction has no correlation with traffic behavior in the reverse. Thus, path symmetry
isnot required for the correct functioning of data transport protocols.
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Shortest K Paths

The most natural algorithm for minimizing delay is onethat cal cul ates paths with the short-
est total delay. A family of algorithms, called the shortest A algorithms, compute A™ paths
such that the total cost of the paths is minimized. Moreover, there are efficient solutions to
implement these algorithms[45, 58, 165].

Given that the link costs reflect delay, these algorithms provide path sets with the min-
imum total delay. However, the problem with these sets is that they do not consider path
independence. For example, consider the network in Figure 5.1 where three paths are
computed from node A to H. A shortest A algorithm will compute the paths (A, D, H),
(A,C,D,H),and (A, D, F, H). Although this path set the three smallest hop paths (8 hops
total), it is clearly not a desirable set because of the high degree of link sharing (i.e. lack
of path independence). For example, in this path set, if the links on the shortest path are
congested (i.e. links (A, D) and (D, H)), then the other two paths will be congested as
well because these two links are also part of those paths. Thislack of independence limits
the amount of benefits end-hosts can obtain under different traffic conditions.

In general, with shortest K algorithms, paths between node pairs will tend to share
many links, which reduces the effectiveness of providing multiple paths.

Link Digoint Paths

Algorithms that overcome the problem of path independence are ones that calculate link
digoint paths between nodes. Link digoint paths are paths that do not have any links in
common. Like the shortest & algorithm, there are many agorithmsto efficiently calculate
these path sets [36, 118, 146, 152].

However, thelink disjoint algorithm achieves high path independence at the expense of
path quantity and path delay. For example, consider the paths calculated by a link digoint
algorithm from A to H in Figure 5.1. One possible path setis (A, D, H), (A,C, E, F, H),
and (A, B,C, E, G, 1, H). Here, the paths are disoint, but the combined Iength of the path
set is 12 hops. Thisis 50% longer than the path set calculated by shortest K algorithm.

Because different paths between a node pair cannot share links, this may be too restric-
tive, resulting in paths of excessive delay or a small number of calculated paths. Both of
these consequences |owers the probability that end-hosts can obtain low delay pathsto their
destinations.
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Discount shortest path

In considering path quantity and path independence, we developed a path calculation al-
gorithm called the discount shortest path algorithm. The idea of the algorithm is to add a
uniform cost to all links on the previously calculated paths. Therefore the paths calculated
are compromises between the paths calculated by the shortest A and link digoint algo-
rithms: the link digoint algorithm is one that adds an infinite cost to used links, while the
shortest A" algorithm selectively adds the minimum cost to the used links so that the next
shortest path calculated is distinct from the computed paths. The basic discount shortest
path algorithm is a variation of Dijkstra's shortest path algorithm. Similar variations have
been published in the literature [156].

The discount shortest path algorithm assumes that for paths between any two nodes,
there is an upper bound on the cost of the longest path. This is reasonable since most
path calculation algorithms do not wish to calculate arbitrarily long paths. C,,,.. isused to
denote the maximum admissible path cost between a node pair. An example of C,,,,... iS3
times the cost of the shortest path [94, 129].

The discount shortest path algorithm calculates paths with the following properties:
from node « to b, the :** path is the least-cost path from « to b such that the path’s cost
isless than (... The cost of path ¢ is calculated after adding cost increments to each
link in path j froma to b, 1 < j < ¢, where the cost increment of a path P is (C,.. —
Cost(P))/Length(P).

To calculate discount shortest paths from node « to b, the algorithm first calcul ates the
shortest path P with cost C, from « to b. C,,,, is then calculated as Cost _-BOUND«C),
(in our implementation, Cost -BOUND is set to 3). Next, the cost increment for this path
is calculated as P, = (Cpap + 1) — Cp. That is, a path’s cost is incremented by the
smallest amount so that the path exceeds the (.. and therefore will not be admissible in
subsequent computations. This cost increment is then added uniformly to the cost of al
links on path P. That is, for every link in P, the cost isincremented by F,.../length(P).

To get the next path from « to b, this process is repeated using the newly incremented
link costs. The algorithm stops when either K paths are computed or there does not exist
paths from « to b with cost less than C',,... After computing the paths from « to b, the link
costs are restored to their original costs, and the discount shortest path computation begins
for another node pair. The pseudocode for the discount shortest path algorithm isgivenin
Figure 5.2.

To calculate K paths from node « to b, the discount shortest path algorithm iterates
Figure5.2’smainloop A times. In each iteration, the function Get _Shor t est _Pat h()
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nunPat hs = 0;
whi | e(nunPat hs < K)
{
newPat h = Get _Shortest _Pat h(.Src, Dst);
if (newPath == NULL)
br eak;
if (nunPath == 0)
Max_cost = Cost(newPath) * Cost _BOUND,
if (Cost(newPath) > Max_cost)
br eak;
nunPat hs++;
St orePat h( Sre, Dst, newPat h);
Cost di ff = Max_cost - Cost(newPath) +1;
Cost .incr = Cost diff / Length(newPath);
forall links [ € newPath
l.cost = [.cost + Cost.incr;

}

Restore all link cost additions

Figure 5.2 : The pseudocode for the discount shortest path algorithm. The code shows the
calculation of K discount shortest paths between Src and Dst.
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is called. Given E edges and » nodes, the function which takes O( £ * lg( £')). In addition,
on each iteration, each link in the newly calculated path is traversed, which takes O(n). At
the end of the loop, the added link costs are restored (O(K * n)). Thus, the complexity
of the discount shortest path algorithm in computing A paths from a to b is O(K * (E *
lg(E)+n)+ K*n) — O(K « Exlg(F)). Notice that thisis K™ times the complexity of
calculating the single shortest path between two nodes.

5.2.2 Maximizing Throughput

This subsection describes a path cal culation algorithm for another path service, the through-
put path service. Throughput oriented applications such as FTP benefit from this path ser-
vice because multiple paths can increase their effective throughput. Again, the amount of
throughput an application obtains depends not only on the paths calculated, but also on
network traffic patterns. Thus, the paths calculated should be robust in the sense that they
provide high throughput under a variety of traffic conditions.

Again, without loss of generality, we assume that expected link bandwidth can be char-
acterized by a link capacity metric; the higher the link capacity, the higher the expected
available bandwidth of thelink.

Maximum Flow Paths

The most straightforward algorithmsto cal cul ate throughput paths are maximum flow algo-
rithms. Calculating a set of links that provides the maximum flow between two nodes can
be done using conventional flow algorithms [5,42]. However, applying these algorithms
directly has two main drawbacks.

First, the maximum flow algorithms do not produce a set of end-to-end paths; that is, a
maximum flow algorithm producesa set of links and capacities so that sending the specified
amount of data on each of those links provides the maximum flow. Thus, to calculate paths
requires an additional level of processing to convert the set of links into a set of paths. In
addition, since routing algorithms typically bound the number of paths it calculates (say
K’) between a node pair, an algorithm needs to select A paths that maximizes flow from
the set of links. Selecting these K™ pathsis not trivial because it depends on how the paths
are initially chosen from the maximum flow link set.

The second drawback of directly apply maximum flow algorithms is that these ago-
rithms do not consider path length (or path costs). Given that routing algorithms typically
want to control the length of the paths they calculate, the paths derived from a maximum
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flow calculation may not provide a good path set given a length threshold.

Capacity Removal Algorithm

Due to the drawbacks of strictly applying maximum flow algorithms, we have developed
an algorithm called the capacity removal agorithm based on Dijkstra's shortest path algo-
rithm. Similar to maximum flow, this algorithm calculates paths that aim to increase the
flow between node pairs. Moreover, the capacity removal algorithm explicitly considers
the number of paths to calculate and path length.

As in the discount shortest path algorithm, the capacity removal algorithm calculates
successive shortest paths; after calculating a path, the algorithm subtracts the path capacity
from every link along that path. The capacity of a path is the minimal capacity of al
links on the path. A link capacity threshold is used so that links with capacities below
the threshold are eliminated from subsequent path computations. The pseudocode for the
capacity removal algorithm isgivenin Figure5.3.

The description of capacity removal paths can be summarized as follows: from node
a 10 b, the i** path is the least-cost path from « to b with cost less than C,,,... and capacity
greater than the capacity threshold, where path :’s capacity is calculated after subtracting
the path ;'s capacity fromevery link inpath j, 1 < 5 < 1.

The complexity analysis of the capacity removal algorithm is very similar to the dis-
count shortest path algorithm. To calculate K paths from node « to b, the capacity re-
moval algorithm iterates Figure 5.3's main loop A" times. In each iteration, the function
Get _Short est _Pat h_-CapThresh() is caled which takes O(E * [g(£)), and each
link in the newly calculated path is traversed O(n) times. At the end of the loop, link ca-
pacitiesarerestored (O( K n)). Thus, the complexity of the capacity removal algorithmto
calculate K" pathsbetweenanodepair isO( K «( Exlg(E)+n)+ K+n) — O(K*xFExlg(F)).
Again, like discount shortest path, the complexity of the capacity removal algorithmto cal-
culate K pathsis K times the complexity of calculating the single shortest path between
two nodes.

5.3 Path Calculation Summary

This chapter presents two path calculation agorithms, one computing paths for low delay
path service and the other for high throughput path service. The two algorithms devel oped,
discount shortest path and capacity removal, are both shortest path based algorithms, and
their complexities are linear in the number of paths calculated compared to computing
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nunPat hs = 0;
whi | e(nunPat hs < K)
{
newPat h = Cet _Short est _Pat h_-CapThresh(Sre, Dst,

_ Capaci ty_Threshol d) ;
if (newPath == NULL)

br eak;
if (nunPath == 0)
Max_cost = Cost(newPath) * Cost _BOUND;
if (Cost(newPath) > Max_cost)
br eak;
nunPat hs++;
St orePat h( Sre, Dst, newPat h);
Pat h.cap = Capacity(newPat h);
forall links [ € newPath
[.capacity = [.capacity - Path_cap;

}

Restore all link capacity subtractions

Figure 5.3 : The pseudocode for the capacity remova algorithm. The code shows
the calculation of A" capacity removal paths between Src and Dst. The function
CGet _Short est Pat h . CapThresh(Src, Dst, Cap_t hresh) returnstheshortest
path from Sr ¢ to Dst such that all links in the path have capacity above Cap_t hr esh.
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single shortest paths.

The quality of capacity removal paths, measured in achievable throughput, is evaluated
in Chapters 7 and 9. Simulation results show that the capacity removal algorithm effectively
provides paths that allow end-hosts to increase their throughput.
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Chapter 6

Multipath Forwarding

Network routing is a two-step process. the first step is computing the desired paths, and
the second is forwarding data on those paths. 1n a multipath network, the cost required to
support these two steps is higher than in single path routing. A summary of the multipath
overheads are

1. Algorithmic cost: router CPU and memory required to calculate multiple paths
2. Routing costs: extraforwarding table entries, CPU cycles, and routing messages
3. Per packet path specification costs. number of bits required to specify a packet’s path

4. Per packet forwarding time

For al but the agorithmic cost (addressed in Chapter 5), the costs listed above are
directly related to how paths are encoded and forwarded in anetwork. This chapter presents
solutions that efficiently accomplishes this forwarding task.

In multipath networks, packets need to specify not only their destinations, but a specific
path to their destinations. This means that routers need to recognize path specifications (or
encodings) in order to forward packets correctly. The problem of encoding and forwarding
packets along their intended path is called the path forwarding problem.

Methods of solving the path forwarding problem depend on whether packets are for-
warded on paths within the same path service (multi-option paths) or on paths from differ-
ent path services (multi-service paths). This differentiation is important because it affects
the implementation of the packet forwarding method. Path forwarding on different service
paths can be implemented in a straightforward manner using a service identifier; however,
this encoding scheme is not sufficient for multi-option path forwarding. Because multi-
service forwardingis relatively straightforward, this chapter briefly discusses multi-service
forwarding but primarily focuses on multi-option forwarding.

This chapter develops an efficient solution for the multi-option forwarding problem.
A forwarding method is efficient if the per packet path specification cost is small (in the
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number of bits) and the path specification allows fast router packet forwarding. The solu-
tion developed uses 1) a per packet overhead of a small, fixed-length path identifier, and
2) router space overhead linear in K, the number of paths calculated between nodes. To
achieve these efficient bounds, the forwarding method requires that multi-option path sets
satisfy the suffix matched property.

The remainder of this chapter is organized as follows. The following section formally
defines the multipath forwarding problem, both multi-service and multi-option. The sec-
tion describes multi-service forwarding and develops the basis the proposed multi-option
forwarding method. In Sections 6.2 and 6.3, the multi-option forwarding method is applied
to Distance Vector and Link State routing algorithms. In addition, this chapter contains
proofs that 1) Distance Vector based agorithms compute suffix matched multipath sets,
and 2) Link State based algorithms yield suffix matched multipath sets for the criterion of
ranked k-shortest paths. Section 6.4 provides an example to demonstrate the forwarding
method in the context of a multi-service multi-option network. Finally, a summary of the
path forwarding method appearsin Section 6.5.

6.1 TheMultipath Forwarding Problem

A network can be represented as agraph ¢ = (V, E'), where V' isthe set of network nodes
and F isthe set of links or edges. Each link (z;, ;) € E has an associated positive cost
Cz,z;- A path pin Gisalist of nodes (zy, ... ,z,) suchthat Vi, 1 <i < n, (z;,2:41) € E.
Path p has cost E?:‘f ¢z, - NO Node appears more than once in a simple or loop-free
path.

Abstractly, to route packets amongst nodesin a network, each node = € V' implements
two functions:

hy : V= A

G A=V

The path selection function /,. chooses a path identifier ¢» (on a per-packet or per-
connection basis) for a given destination node d € V from the set A. Path identifiers
encode distinct paths from « to d. The forwarding function G,. takesapath identifier > € A
and provides the next-hop neighbor on path ¢». As an example, if node = wishes to send a
packet to node d on path ¢, it adds the label > to the packet, and forwardsit to G,.(¢): the
next-hop on path > from « to d.
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Single shortest path routing is a special case where there is no need to have a path
identifier set A. In this path setting, the path selection function is the identity function:
h,(d) = d, d € V. Thisisbecause exactly one path p from « to d isused at any given time
— thereis no choice of paths.* By the Bellman optimality principle, the shortest path from
any intermediate node » in p to node d is the subpath of p from » to d; thus from any node,
the path to a destination ¢ can uniquely identify by d's address.

One can replace the path identifier argument by the destination and simplify the for-
warding function in a single shortest path setting to be G, : V' — V which identifies the
next-hop for a given destination. Router = implements G, by looking up its forwarding
table.

In amultipath setting, an originating node = has a choice of several paths to a particular
destination at any given time (i.e, the range of the function %, isaset of size > 1). The
particular path (identified by /..(d) = ¢ chosen by « for adestination d is afunction of the
sending host’s objectives (refer to Section 5.2).

The forwarding functions G,., for each = € V' need to respect the following constraint:

Vi € A such that ¢ identifiespath = (z4,...2,),
G, (V) = 2i41,1 <i < n.

Efficiently enforcing the above constraint on the G,. functions forms the crux of the
multipath forwarding problem.

In the proposed multipath routing model, the forwarding problem can be divided into
two parts, forwarding on different path services and forwarding within the same service.
This division is possible because the way a packet specifies its path service is independent
of how it specifies a path within that service. Thus, > can be represented by a fixed-length
triple (Dst, 11, 1,) where Dst isthe destination address, «»; specifies the path service, and
1, Specifies the particular path within the path service. Thisthesis uses this path identifier
representation to uniquely identifies a particular path in a multipath network.

The following subsections use this three tuple ¢ representation to address the multipath
forwarding problem. The next subsection describes path forwarding on different path ser-
vices (specifying 1), and subsection 6.1.2 focuses on path forwarding among paths within
the same service (specifying ¢»;).

*The actua identity of the shortest path between two nodes in the network may change as the network
changes, but at any given time a node can route to a destination along exactly one path.
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6.1.1 Multi-ServicePath Forwarding

Forwarding packets on different path services can be accomplished by tagging each packet
with a path service identifier. A service ID is aninteger that distinguishes one path service
from another. Because this identifier disambiguates packets from different services, the
forwarding function G can be implemented by switching on service identifiers. That is,
upon receiving a packet, a router forwards the packet using the forwarding function G
specified by the packet’s service ID.

For example, in a multi-service single-option network, the forwarding function G for
each service is the same as a single, shortest path forwarding function'. In this scenario,
upon receiving a packet, a router smply forwards the packet to the next-hop returned by
applying the function G specified by the path service.

A’sforwarding tableto F B’sforwarding Tableto F E’sforwarding tableto F
service type next-hop servicetype  next-hop servicetype next-hop
1 B 1 F 1 F
2 B 2 E 2 F

Figure 6.1 : A forwarding example in a multi-service single-option multipath network.

Figure 6.1 shows selected forwarding tables of a multi-service single-option network.
Here, the forwarding tables of routers A, B, and £ show that each router computes two
service pathsto . The dashed lines show A’stwo pathsto F'; the number above the lines
show their path service number. In this setting, the forwarding function guaranteesthat if A
sends a packet to /' and tags the packet with the intended path service number, the packet
will travel the intended path to F'.

For example, assume that A sends a packet on path service 2 to F'. This packet is than
tagged with the path identifier [ £, 2] and forwarded, according to A’s forwarding table,
to node B (for simplicity, the multi-option identifier «>, is omitted because there is only
one path per service). Upon receiving this packet, B looks up its forwarding table for

TThis example uses single-option paths because we established earlier that the single shortest path for-
warding function G correctly forwards packets because the paths satisfy the Bellman optimality principle.
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destination /' with service 2 and forwards the packet to node £. FE performs the same
lookup function and forwards the packet to £'.

Path forwarding in this scenario is guaranteed because 1) the packet’s service identifier
ensures that every router uses the right forwarding function (e.g. looks up the appropriate
forwarding table entry), and 2) because one path is calculated between nodes within each
service, the single path forwarding function corresponding to each service guarantees that
packets are forwarded on their specified paths.

As this example shows, multi-service paths can be distinguished using a simple path
serviceidentifier. The next section shows that a similar straight-forward multi-option iden-
tifier is not sufficient to guarantee that packets are correctly forwarded on multi-option
paths.

6.1.2 Multi-Option Path Forwarding

With multi-option paths, a router calculates multiple paths for the same path service. For
the purpose of discussion, we assume that each multi-option path is ranked. That is, when
a router computes multi-option paths to a destination, it locally assigns a unique number
: to each multi-option path, indicating that the path is the :** path to that destination for a
particular path service. For example, the ranking of paths could reflect the :** best path the
router calculates within a path service.

Unlike multi-service forwarding, path forwarding for multi-option paths cannot be
solved by simply tagging packets with the path’s rank number. Because multi-service IDs
are consistent and understood by all routers to denote a specific path service, tagging pack-
ets with aservice ID unambiguously identifies a unique path service. In contrast, tagging a
packet with the rank of a multi-option path, in general, does not guarantee that the packet
will be forwarded on the specified path because multi-option ranks are not necessarily con-
sistent in al routers.* For example, assume that the path (o, ... ,z,) isthe 2*¢ best path
from x, to z,,. It is not guaranteed that V;,0 < 7 < n, z;'s 2" best pathis (z;, ... , ,).
Figure 6.2 illustrates this property.

In Figure 6.2, routers compute one path service with two multi-option paths, where the
first path denotes the shortest path and the second denotes the second shortest path. The

t1f the multi-option IDs are consistent in all routers, then tagging packets with these 1Ds ensures correct
path forwarding. However, making multi-option IDs consistent for a particular path calculation algorithm
requires routers to know the paths computed by other routers, which increases both router computation and
storage overheads. The Compute All method described in Section 6.1.3 is one such approach.
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A’sforwarding tableto F B’sforwarding Tableto F E’sforwarding tableto F
path number next-hop path number  next-hop path number next-hop
1 B 1 F 1 F
2 B 2 E 2 B

Figure 6.2 : A forwarding examplein a single-service multi-option multipath network.

dashed lines show A and £’s paths to node . The figure demonstrates that a path number
(or multi-option rank number) is not sufficient to ensure path forwarding. For example, if
A wishes to send a packet on its second path to /' and tags the packet with only the path
number (i.e. path ID [F) 2]), the packet will not travel the intended path. To see this, after
A sends the packet to B tagged with [ F, 2], B receives this packet and will forward the
packet to B’s second path’s next-hop, £. FE then forwards the packet on its second path,
which has B as the next-hop. Notice that £ should forward the packet on its first path (to
node F'). Following the example, B will then forward the packet back to £ because F' is
the next-hop of B’s second path. This results in the packet bouncing between £ and B.
This example shows that because multi-option path ranks are not necessarily consistent
in al routers, multi-option forwarding is not always guaranteed by simply tagging and
forwarding packets based on rank numbers. To address this problem, the remainder of this
chapter develops an efficient method to forward packets on multi-option paths. The next
subsection describes suffix matched path sets, a crucial piece of the proposed method.

6.1.3 Suffix Matched Path Sets

This subsection presents an important class of path sets on which efficient multi-option
forwarding can be performed. However, before defining this set, we first survey some
existing multipath forwarding methods.

To implement the G functions in a multi-option environment, one needs a scheme for
constructing path identifiers that unambiguously identify paths between nodes. One com-
mon approach, called source routing, is to use the path description itself astheidentifier. In
this method, path identifiers are of variable length; therefore the overhead of tagging indi-
vidual packets with these path I1Ds increases as the size of the network grows and the path
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length between nodes increases. The implementation of the G functions at each node «; for
path (z1,...,2,), 1 <1 < n, requires reading the received packet’'s path ID [, ... ,z,]

and then computing G, ([#1, ... ,x,]) to be 2;.;. No state information (e.g. forwarding
table) is needed at intermediate nodes; however complete path information is needed at the
sending nodes.

Although source routing is a general and flexible forwarding method, it is inefficient
because of its variable length, per packet path ID: the variable length path 1D increases
the per packet path specification overhead, which decreases router forwarding efficiency
because routers have to examine a larger packet header to determine the next-hop. In
addition, source routing requires that sending nodes know the source routes of every path
they wish to use, thereby increases router storage requirements. This chapter focuses on
efficient path forwarding methods that use fixed-length path | Ds and do not require sending
nodes to know path source routes.

Another approach to multi-option forwarding is to establish a consistent set of multi-
option IDs. The Compute All method is one such approach. With thisapproach, if A" multi-
option paths are maintained between source and destination pairs in an N node network,
Compute All uniquely identifies a path by the triple (s,d, ), where s,d, € V' denoting
source and destination, and ¢ is an integer, 1 < : < K. To obtain these consistent IDs,
each router computes, for each destination, not only its A" paths, but every other router’'s K’
paths as well.

The aggregate forwarding table requirement for the Compute All method is O( K’ N
N) = O(K N?), which is the size of the mapping from each path identifier to the next-
hop (there are K N? paths) and is maintained by each node (there are N nodes). This
requirement can be reduced by observing that a node only needs to maintain paths that
pass through it. Let . be the average path length, then each path passes through 7. nodes
on average. Therefore it suffices that each node maintains only AN L path identifiers
on average, reducing the total space requirements on forwarding tables to O( K’ N*L). In
contrast, single shortest path routing only require an aggregating forwarding tables space
complexity of O(N?).

Is it possible to efficiently forward packets on multi-option paths where packets are
annotated by short fixed-length path identifiers with space overhead for forwarding tables
no more than O( K N?), which is K times the cost for forwarding in single shortest path
systems? This question is answered in the affirmative for a interesting class of multipath
sets called suffix matched path sets.

Suffix matched path sets: A path set P issuffix matched iff for all paths (x4, ... ,z,) € P,
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thenvi, 1 <i<mn, (z;...,x,)isdsoin P.

Consider the path set P consisting of the single shortest paths between every pair of
nodes in a network. The Bellman optimality principle ensures that P is suffix matched. If
the shortest path p from node ; to x,, is (x4, ... ,z,), thenfor 1 < ¢ < n, the shortest path
from z; to «,, isthe subpath («;,... ,z,) of p.

Proposition: Packetsin an N node network with a suffix matched multipath set P can be
forwarded correctly with forwarding table space O( K’ N?) where no morethan i paths are
maintained between any pair of nodes.

Proof: Let the path identifier for path p = (z4,... ,2,) from z; to z,, in a suffix matched
multipath set P be f,, («,). Let the path identifier for the suffix paths p; = (x;,...,2,)
for1 < i <n be f,(z,). Recal that all suffixes of p arein P by the definition of suffix
matched multipath sets.

To implement path forwarding correctly, one needsto ensure node x; knows the suffix of
itspath f,.(z,) (thepath (z,41,... ,x,)) aitsneighbor z;, iscaled f,,  (z,). Therefore
one needs an identifier translation or swapping function F,. : A — A at each node that
maps the path identifier f,,(x,.) of suffix path p; to the path identifier f,,,, (z,) for1 <i <
n. Thatis

Lit1 = Gl’z(fl’z(xn))

In other words, when node «; receives a packet with identifier f,, (x,) fromits neighbor
x;_1, it forwardsit to node z; 11 = G,,(fs, (x,)) aong with the new identifier f,1(x,) =
Fu.(fe(2n)). Each a; , i < j < n, performs the same two operations until the packet
reaches z,,.

Notice that the definition of a suffix matched path set in a distributed environment
impliesthat if router x, computes the path (o, . .. , z,), then router =; must also compute
thepath (x;,... ,x,), Vi,0 < ¢ < n. Thisensuresthat there existsa F,., implemented by x;
that is guaranteed to trandlate a path identifier of «; to =;,;’s corresponding path identifier.

The space requirements for the implementation of the mapping F is proportional to the
total number of pathsin the network, i.e. O( K N?). This is because each path is matched
with at most one other path (there are O( K’ N*) paths), therefore the matching table is
at most O(2K N*?). In addition, the space requirement for the mapping G is ssimply the
number of paths O( K’ N*). Therefore multipath forwarding of suffix matched paths can be
implemented with an aggregate space requirement of O( K’ N*) QE D.

In the transient state when suffix matched path sets are in the process of being computed
at each router, correct path forwarding is not guaranteed because transient path sets are not
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guaranteed to be suffix matched. Infact, this absence of forwarding guarantees during route
transitions affects most distributed routing algorithms, including Distance Vector and Link
State based algorithms.

6.2 Distance Vector Extension

This section describes a multi-option extension to a Distance Vector (DV) based routing
algorithm. Multiple services are not specifically addressed here because path forwarding
between services can be accomplished with a ssmple path service ID. The description of
the basic DV algorithmisgivenin Section 2.1. The next section extends the basic DV algo-
rithm to compute multi-option paths. We then prove that the new multipath DV algorithm
computes suffix matched paths sets. The proposed forwarding method is applied to the
extended DV algorithm in Section 6.2.2. The computation and space complexities are also
given in this section. Finally, an example of the DV suffix matched forwarding method is
presented in Section 6.2.3

6.2.1 Methodsof Calculating Multiple Pathsin DV

The single shortest path DV agorithm can be extended to allow the calculation of multiple
paths between each pair of nodes. For instance, to calculate the ranked % shortest paths to
each destination, each router maintainsin its forwarding table (and advertisesin its DV Ps)
k entries for each destination. Upon receiving DVPs from its m neighbors, the router
computes its own £ best paths from possible m * & paths received from its neighbors.

Path selection criteriaother than & ranked paths, such aslink or node disjoint paths, can
also be implemented in aDV environment. We show that any DV-based multipath routing
algorithm that satisfies the following conditions cal cul ates suffix matched path sets.

1. A router » may install a forwarding table entry with V] = s only upon receiving a
corresponding distance vector for destination d from its neighbor s.

2. A router r never advertises a distance vector for destination ¢ unless it has a corre-
sponding forwarding table entry for d.

Proposition: The path set P calculated by a multipath DV routing algorithm that satisfies
conditions 1 and 2 are suffix matched.

Proof: Assume thealgorithm calculatesapath (o, ... ,x,) € P thatisnot suffix matched.
Thentheremust exist arouter x;, 0 < 7 < nsuchthat (z;_y,... ,z,) € P,but(z,,... ,2,) &
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P. That is, x,_; has a forwarding table entry with N;*~" = x;, but =; does not have a for-
warding table entry with N;* = x,,,. Thus, either x;,_; hasinstalled the forwarding table
entry without receiving a corresponding distance vector from x;, or x; has advertised adis-
tance vector without having a corresponding forwarding table entry. But, these possibilities
are ruled out by conditionsland2 Q E D.

6.2.2 Multipath DV Extensions

In this section, we show how the proposed multipath forwarding method presented in Sec-
tion 6.1 can be applied to any DV based multipath algorithmsthat satisfies conditions 1 and
2, and thus cal cul ates suffix matched path sets.

The implementation of functionsF and G, defined in Section 6.1, in aDV environment
is defined as follows. Each router assigns an identifier ¢ for each of its paths to a given
destination. Let ¢}, be the ID router r assignsits &' path to destination d. Then, the path
ID used by router r in the MPDV algorithmis pid = [d, ¢ ;]°. Adding ¢ and evaluating F
and G during the packet forwarding process requires the following additions to the DV data
structures.

¢ Forwarding table entries have two additional elements, ¢; and ¢,. An entry in router
r's forwarding table for the path (r, s, ... ,d) isnow afivetuple (d, 7 ,, s, ¢1, ¢2).
¢1 isr'sidentifier for the path (r, s, ... ,d) and ¢, is neighbor s’s identifier for the
corresponding suffix path (s, ... , d). Notethat N = s. (7 , isthe cost of r’s ¢ path
to d.

e DVPentrieshave one additional element, ¢». A DV P originating from router r that ad-
vertises r’s path to destination d with identifier ¢, isnow athreetuple (d, C7 , , é1).

Let D be the set of destinations and @/, be r’s set of path identifiers to destination d.
In its DVP, each router » advertises a distance vector (d, (7, , ¢1) corresponding to its
forwarding table entry (d,C7 4 , s, ¢1,¢2), foreachd € D and for each ¢, € 7.

To ingtall aroute in its forwarding table upon receiving a distance vector (d, Cj ,, ®)
from s, router r adds the entry (d, (7, , s, ¢1,¢), Where ¢, is chosen by r to be unique
in ®7; i.e. unique in its set of path identifiers to destination d. For instance, in the DV
multipath algorithm for % ranked paths, »’s identifier for the :'* path to destination d can

§To simplify the explanation, the path service identifier «; is omitted here. An example later in the chapter
incorporates both path specifiers.
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be chosen as:. (7 ; , the cost of this path from s to d, is caculated in the usua manner as
Cig T Crse

The functions F and G can now be implemented directly via lookup of the forwarding
table. For path ID [d, ], node r evaluates F,([d, «]) as [d, 3] vialookup of the forward-
ing table entry for destination d and local identifier ¢; = «, with 3 = ¢,. Similarly, r
evauates G, ([d,a]) as N}, vialookup of the same forwarding table entry. A matching
forwarding entry is guaranteed to exist when evaluating F and G because the path sets are
suffix matched.

The additional storage required for the MPDV forwarding method is two path identifier
fields in each forwarding table entry and one in each DVP entry. Let K be the maximal
number of paths calculated to each destination, then the storage required for path identifiers
is [(log,(K'))] bits. The additional entries in the forwarding tables and DVP for MPDV
correspond to the number of aternate paths being calculated. That is, the storage over-
head is a factor of O( K") more than single shortest path DV. The aggregate router storage
complexity of MPDV istherefore O( K N?).

6.2.3 MPDV Example

The graph in Figure 6.3 represents a network and the number above each link representsthe
cost of that link¥. In table below are forwarding tables of selected routersto node /. The
forwarding tables are computed using the Distance Vector multipath extension algorithm.
For illustrative purposes, the path calculation agorithm calculates all paths with cost less
than 10. Noticethat this path calculation criteriadoes not exclude paths that traverse anode
more than once. The number of paths to any destination is a most 4, ie. K = 4. ThisDV
version is assumed to implement split-horizon. Below, we describe the operation of this
MPDV agorithmin two phases: path cal cul ation/forwarding table construction and packet
forwarding.

Forwar ding table construction. The process of calculating paths to node F' begins by
F sending aDVPto its neighbors (£ and B). The DVP contains the path (£, 0, 1), where
I" is the destination address, 0 is the cost for /” to reach I, and 1 = ¢} .. When neighbor
F receives this DVP, E adds the cost Crr = 2 to every element in £’s DVP. Since the
path to " hascost 2 = 0 + 2, it satisfies the path calculation criteria. £ keeps this path and
augmentsits forwarding table with theentry (£, 2, 1, 1, F'): F' isthe destination address, 2

TFor simplicity, this example assumes that link costs are symmetric. MPDV functions correctly with
non-symmetric link costs as well.
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E’sforwarding tableto F D’sforwarding Tableto F C'sforwarding tableto F

cost @ @ next-hop cost P ®, next-hop cost @ @ next-hop
2 1 1 F 3 1 1 E 5 1 1 E
10 2 1 B 6 2 2 C 4 2 1 D
7 3 2 D 8 3 4 E 10 3 3 E
7 4 2 C 9 4 3 D

Figure 6.3 : Example of MPDV.

is the cost of this path to /7, thefirst 1 = ¢, - (I’s name for this path to I7), the second 1
= ¢ (node I’s name for this path taken from /s DVP), and I = NPQ%F is this path’s
next-hop neighbor.

Next time £ sends out its DVP, it will contain the path entry (#, 2, 1) advertising a
path to /" with cost 2 and ¢j; ;- of 1. When neighbor C' receives this DVP containing this
path to £, C' augments its forwarding table with the path (F, 5, 1, 1, ) because this path
is admissible under the path calculation criteria. In this example, €' also chose the name
of this path to be ¢ = 1. This process of path computation continues until all routers have
admissible paths to al other routers. Asin the single path DV agorithm, the convergence
time of MPDV is proportional to the longest path calculated between any two nodes. The
complete forwarding tablesto F' for routers £, D, and C' are shown in Figure 6.3.

Packet forwar ding. Suppose node D wishesto send apacket to node /' and D decides
to send on its third best path, the one with cost 8. According to the algorithm, D tags
the packet with the path ID [F, 4], where F' is the destination address and 4 = ¢, in the
forwarding entry, and forwards the packet to the next-hop neighbor £. On receiving this
packet, £ looks up its forwarding table and matches /' and ¢; with the packet’s path ID.
The matching entry is the last entry in £’s forwarding table. Once found, F replaces the
packet’s path ID with [F, 2] (£’s ¢, for thispath is 2) and forwardsthe packetto C'. That is
Fr([F,4]) = [F,2] and Gg([F,4]) = C. C does the same lookup and forwards the packet
back to D with path ID [F 1] (here Fo([F,2]) = [F,1] and G¢([F,2]) = D). Following
the algorithm, D again performs the lookup and forwards the packet to £ with the path ID
[F, 1]. On receiving this packet, £ finally forwards the packet to /' with the ID [F, 1].

For simplicity, the MPDV path cal culation algorithm presented in this example did not
eliminate finite looping paths. Since this path forwarding method ensures forwarding on
all calculated paths, the algorithm will forward packets on finite-looping paths (e.g. path
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(D,E,C,D, E, F)) aswel as non-looping paths (e.q. (D, F, F)). There are well known
methods of ensuring loop-free path calculation in distance vector; refer to [93] for details.

6.3 Link State Extension

This section extends Link State (LS) based routing algorithms to use the proposed multi-
option forwarding method. The LS algorithm, like DV, iswidely used and well understood.
However, unlike DV, it relies on a centralized route calculation algorithm. A topology
broadcast mechanism ensures that each router knows the current state of the entire net-
work (i.e. topology and link cost), and routes are calculated in a centralized manner in
each router. For a description of the LS algorithm, refer to Section 2.2. The next section
discusses multipath extensions to the LS algorithm to compute multi-option paths, and the
section following shows how the proposed forwarding method is applied.

6.3.1 Multipath LS Extensions

This section demonstrates how the proposed forwarding method appliesto link state multi-
path algorithmsthat cal cul ate suffix matched paths. Sinceroutersin thelink state algorithm
have access to the entire network topology, any centralized graph algorithm for computing
multiple, suffix matched paths can be used. As this section will show, the & ranked paths
algorithm [45], and the initia link digoint k paths algorithm [156] are in this class. For
such algorithms, our multipath forwarding agorithm can be directly applied.

Asin MPDV, let qbf’d be the identifier that router » assigns its k' path to destination
d. The path ID used by router r is of the form pid = [d, ¢%]. Forwarding table entries
have two additional elements, ¢, and ¢,. An entry in router » for the path (r, s,... ,d) isa
quadruple (d, s, é1, ¢2). ¢1 iSr’sidentifier for the path (r, s, ... ,d) and ¢, isneighbor s’s
identifier for the corresponding suffix path (s, ... ,d). Notethat N , = s.

Forwarding entries are installed by the centralized link-state path calculation process.
Asin MPDV, ¢, is chosen to be uniquein r’s set of paths identifiersfor destination d (i.e.
7). To determine ¢, router r calculates the next-hop neighbor router s’'s paths set for
destination d. Since the path sets are assumed to be suffix matched, s’s path set to d is
guaranteed to include the suffix path (s, ... ,d). Then, r sets ¢, equal to s’s identifier ¢,
for that suffix path.

Asin MPDV, thefunctions F and GG can now be implemented directly vialookup of the
forwarding table. Node r evaluates F..([d, «]) as [d, 3] vialookup of the forwarding table
entry for d and local identifier ¢, = o, with 3 = ¢,. Similarly, - evaluates G,([d, o]) as
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N, vialookup of the same forwarding table entry.

The number of messages exchanged by MPL Sroutersis exactly thesame asin thetradi-
tional LS algorithm. The storage overhead per router is O( N K') for the forwarding tables,
where N is the number of destinations and A is the number of paths to each destination.
However, our multipath forwarding method requires each router to calculate each of their
neighbor’'s K" paths aswell. Therefore, the suffix matched forwarding method increases the
computational complexity of the multipath route cal culation used in the routers by a factor
m, where m is the number of neighbors.

6.3.2 Exampleof LS Extension

A’sforwarding Tableto F C'sforwarding tableto F E’'sforwarding tableto F
Dst next-hop ®; @, Dst next-hop ®; @, Dst next-hop ®; @,
F B 1 1 F A 1 1 F F 1 1
F C 2 2 F D 2 1 F C 2 2
F C 3 3 F E 3 1 F D 3 1

Figure 6.4 : Example of the multipath Link State Algorithm.

Consider the network shown in Figure 6.4. The path calculation algorithm calcul ated
three paths fromrouter Ato F: (A, B, F), (A,C, D, E. F), (A, C, E, F), with costs 3, 5,
6 and names ¢y » = 1, ¢% » = 2, ¢, = 3 respectively. Suppose A sends a packet to
F using its third best path. Following our algorithm, A tags the packet with the ID [ F',3],
where F' is the destination address and 3 is the ¢, for that forwarding table entry. A then
forwards the packet to (', the next-hop node for this path. When C' receives this packet, it
searches its forwarding table to find an entry with the destination addressand ¢; = 3. C’s
third forwarding entry matches this path ID. ' then replaces the packet’s old path ID with
[ #',1] and forwards the message to F, the next-hop element of the matching entry. That is,
Fo([F,3]) = [F,1] and G¢([F, 3]) = E. Similarly, £ matchesthe ID [F',1] and forwards
the packet withthe ID [F,1] to F'.
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6.3.3 Suffix Matched Multipath Routing Algorithms

The previous section presented an efficient forwarding method for link state based muilti-
path calculation algorithms that cal culate suffix matching path sets. Several existing mul-
tipath algorithms generate suffix matched paths. Here we show that the & ranked path
algorithm [45,58, 141, 165] produces suffix matched paths.
Proposition: The unconstrained 4 shortest (ranked) simple paths algorithm [58] produces
suffix matched path sets.
Proof: The unconstrained 4 shortest path algorithm uses the following invariant for com-
puting multiple paths between al pairs of nodes in the network. A path of rank & between
node x; and «,, iscomposed of subpaths all of whose ranksare < k. Since each node main-
tains & paths between itself and every other node, all subpaths of a £ ranked path between
x; and z,, are guaranteed to exist in the multipath set computed by the algorithm. Q £ D.
The % initial link digjoint paths algorithms proposed by Topkis [156] also produces suf-
fix matched path sets. In addition, we have already shown in Section 6.2 that any DV based
multipath algorithm that satisfies two straightforward conditions produces suffix matched
paths.

6.3.4 Non-Suffix Matching Pathsin LS

The previous section shows that several important multipath calculation algorithms pro-
duce suffix matched paths and therefore can directly use the suffix matched forwarding
method. However, there are many other path calculation algorithms, including algorithms
that maximize flow between nodes, that are not guaranteed to produce suffix matched paths.
Unfortunately, for these algorithms, the suffix matched forwarding presented cannot be di-
rectly applied.

To use the suffix matched forwarding method for algorithms that do not calculated
suffix matched paths, one needs to convert the non-suffix matched path set into a suffix
matched one. We call the conversion of a path set P into a suffixed match set as “forming a
suffix matched closure over path set P”. In general, suffix matched closures can be formed
by 1) deleting paths that are not suffix matched or 2) adding paths which are suffixes of
non-suffix matched paths. The solutions proposed in this section uses the latter approach.
The former approach is not mentioned here because deleting paths reduces the benefits of
multipath routing and does not increase the efficiency of forming suffix matched closures.
The following lists possible methods to forward packets along non-suffix matched paths.

1. Lazy Compute: this method forms suffix matched closures by dynamically comput-
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ing non-suffix matched paths. The algorithm works as follows: upon receiving a
packet with apath ID that is not suffix matched (thisis easily detected by afailurein
the path 1D match), a router dynamically recompute the path and forward the packet
to the right next-hop. The newly computed path ID is then inserted into the forward-
ing table so that subsequent packet with the same ID do not need to be computed.

The disadvantage of thismethod isthe potentia slow downin packet forwardingtime
for these paths because some packets require dynamic path computation. However,
this disadvantage is reduced because the lazy computation occurs once per path, not
once per packet on that path. The computational complexity of the lazy compute
method isO(W +pL), where O(W) isthe time needed to compute all pairs iK™ paths,
p isthe number of non-suffix matched paths, L isthe average path length (notice that
every routers on a non-suffix matched path need to dynamically compute the path).
The forwarding table storage costs of this method is O(K'N + pL).

. Explicit Routing: this method is similar to lazy compute except that computation
is exchanged with communication and that path 1Ds are of their original form (i.e.
[Dst, ¢]). Inthis method, when a router receives a path ID that it cannot match (i.e.
it is a non-suffix matched path), the router source routes the packet (notice that the
router has already computed the path during its path computation phase). As the
packet is source routed through the network, it establishes |abels along the specified
non-suffix matching path. Once the labels are established, subsequent packets that
are destined on the same path are forwarded as if the path was suffix matched.

The advantage of this solution is that it requires no extra router computation. The
disadvantage is that packet header sizes need to accommodate source routes, which
may complicate packet forwarding procedures. However, like lazy compute, this
disadvantageis reduced by the optimization that packets on non-suffix matched paths
are source routed only once per path.

. Common Naming: the idea behind this method is for each router to first calculate a
base suffix matched path set that establishes common path ID naming, and a desire
set of paths are then chosen from the paths in this base set.

This method works as follows:. first, every router computes M shortest 1oop-free
paths to all other nodes, M > K [58, 103, 141, 165]. We call this set C'M (the
common naming set). This base set is guaranteed to be suffix matching. Each router
then picks K" pathsfrom C' M —these K paths are the ones computed by a non-suffix
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matched path calculation algorithm. Let the :'" pathin K, denoted as K’;, match path
7' pathin C' M, denoted as C' M;. Now when a router forwards a packet on its path
K, it will use the path ID C'M;. The next-hop router is guarantee to match €' M;
because the set C'M is suffix matched.

The advantage of this method is that no extra routing messages are required, and
nominal additional router computation are needed to establish the common naming.
Moreover, unlike the lazy compute method, the path IDs can be computed a priori.
The main disadvantage of this method is that routersneed M forwardingtable entries
for each destination instead of A'. That is, the per router space complexity of this
method is O(M N) instead of O(K'N).

The choice of methods to account for non-suffix matched paths depends on the net-
work environment and the efficiency of different path calculation algorithms. The three
different methods make different tradeoffs between router computation, routing messages,
router storage, and packet overhead. Lazy compute and explicit routing are best suited for
large networks where the percentage of non-suffix matching paths are low. Common nam-
ing imposes a constant CPU overhead (to calculate M shortest paths) and its efficiency is
independent of the percentage of non-suffix matching paths, however, the method requires
more forwarding table space.

6.4 A Multipath Forwarding Example

This section demonstrates the usage of the suffix matched forwarding method in a general
multi-service multi-option network. Recall that a path identifier ¢» isatriple (Dst, 11, 12)
consisting of the destination address, a service identifier ¢, and an identifier specifying a
path within that service ¢»,. Section 6.1.1 showed that encoding v, requiresasimpleservice
identifier to uniquely identify different path services, and the previous two sections showed
that using suffix matched forwarding, >, can be encoded as a fixed-sized integer. Notice
that both «»; and ¢, has a fixed-sized per packet overhead and requires router memory
overhead proportional to the number of services and paths within each service. Therefore
the path identifier [ Dst, 1,1,] is aso fixed-sized and requires router storage overhead
proportional to the number of paths.

Figure 6.5 shows a six node network with link cost shown above the network edges. In
this example, the network provides two path services, numbered 1 and 2. The multi-service
and multi-option paths can be seen in the router forwarding tables givenin Figure 6.5. The
forwarding tables for A, ', and £ show that the first path service (denoted by P_serv)
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A’sforwarding Tableto F C'sforwarding tableto F E'sforwarding tableto F
P_serv next-hop @, ®, P_serv next-hop @, ®, P_serv next-hop @, ®,
1 B 1 1 1 A 1 1 1 F 1 1
1 C 2 2 1 D 2 1 1 C 2 2
2 B 1 1 2 E 1 1 2 F 1 1

Figure 6.5 : Example forwarding tables in a network with multi-service and multi-option
paths.

contains two paths (denoted by the ¢, column), and the second service has one path. The
tables show only the forwarding entries to node F'.

In this example, assume A wishes to send a packet to /' on the first service's second
path, which is the path (A, C, D, F, F'). To do this, A tags the packet with the path ID
[F,1,2] and send it to C' according to its forwarding table. On receiving this packet, C
matches the destination address, path service number, and ¢, to find that the next-hop for
this path is D. According to the suffix matched forwarding method, C' sends the packet
to D with the path ID [F| 1,1]. After D processes this packet, it sends the packet to £
withthelD [F, 1, 1]. F then forwardsthe packet to /', thereby successfully forwarding A’s
packet on path (A, C, D, E, F').

Forwarding a packet on A’s second service path is accomplished in the same way. The
second service path from A to F'is (A, B, E, F). Although the ¢; and ¢, entries are
not necessary for single-option paths, it is shown in the Figure 6.5 to demonstrate that
single-option forwarding is a special case of multi-option suffix matched forwarding. In
this example, A sends a packet to B with the path ID [F, 2, 1]. B receives this packet and
forwards to £ with the ID [F', 2, 1]. Upon receiving this packet, £ looks up its forward-
ing table for destination F' and path service 2. According to the result of this lookup, £
forwards this packet to node F with path ID [ F, 2, 1].

6.5 Multipath Forwarding Summary

One of the main challenges of implementing a multipath network is solving the path for-
warding problem, defined as delivering packets on their intended paths. Because each
router individually decides where to forward packets, ensuring that a packet travelsits cho-
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sen path requires an agreement among all routers in the network. This path agreement is
encoded in the form of a path ID. This chapter develops a packet encoding and forwarding
method for multipath networks that uses a fixed-sized path 1D and requires routing storage
proportional to the number of paths cal cul ated.

The forwarding problem is solved differently depending on whether packets are for-
warded on multi-service or multi-option paths. This chapter addresses the two cases in-
dividually and combines the solution to solve the general multi-service, multi-option for-
warding problem. Because paths in different services can be consistently distinguished,
tagging packets with a path service identifier sufficiently distinguishes packets traveling
on different services. However, specifying multi-option paths is not so straightforward be-
cause multi-option path numbers do not necessarily denote consistent paths on different
routers.

To addressthisissue, chapter presents anovel multi-option forwarding method that uses
small, fixed-length path identifiers and requires router storage proportional to the number
of paths calculated. When compared to the general method for multi-option forwarding
with fixed-length identifiers, the proposed method reduces the router state space needed
for packet forwarding by afactor of L, where L is the average path length in the network.
This chapter defines the suffix matched property for multipath sets and shows that many
important multipath cal culation algorithms produce path sets with this property. The suffix
matched forwarding method presented in this chapter exploits this property.

This chapter aso applies the method to two well known classes of routing algorithms—
the distributed DV and the decentralized LS algorithms. For multipath extensions of DV,
the storage and message overhead required is proportional to the number of extra paths cal-
culated. In the LS multipath extension, no additional messages are needed. The additional
Link State computation and storage cost for suffix matched paths are also proportional to
the extra number of paths calculated. For paths calculated by non-suffix matched calcula-
tion algorithms, efficient methods to forward packets on these paths are also presented in
this chapter.
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Chapter 7

Multipath Transport Protocol

The three elements necessary to make multipath networks viable are 1) appropriate paths
calculated between nodes, 2) efficient packet forwarding on calculated paths, and 3) effec-
tive end-host usage of multiple paths. Chapter 5 addresses the first issue by developing
path calculation algorithms that provide quality paths between nodes. Chapter 6 addresses
the second issue with an efficient multipath forwarding method. This chapter addresses
the third issue by developing an end-host protocol that effectively uses multiple paths to
increase end-to-end throughput.

A node's method of transmitting data has a large impact on network and end-to-end
performance. In the current Internet, TCP is the predominant end-host transport protocol
that manages the transmission of data [124]. Studies have shown that the transmission
mechanisms of TCP have dramatic performance impacts on both end-to-end performance
and the performance of other connections[18,27,83,119,120,123]. In amultipath scenario,
the way in which nodes transmit data has an even greater performance impact because
nodes not only have to decide how much data to send on each path (as in the single path
environment), they also have to decide how to distribute the data over multiple paths. As
Section 4.2.4 showed, the way in which multiple paths are used can result in significant
performance enhancement or degradation.

This chapter devel ops the MPTCP transport protocol that effectively manages multiple
paths to increase end-to-end throughput. MPTCP demonstrates that applications can im-
mediately reap the benefits of multipath networks without any application modifications.

The remainder of this chapter is organized as follows. The next section addresses the
issue of usage layer and presents arguments in favor of developing MPTCP. Section 7.2
describes how multiple paths should be used in order to increase throughput. Section 7.3
describes the single path TCP protocol. Then in Section 7.4, the MPTCP agorithm is
presented. Simulation results that show the effectiveness of MPTCP are provided in Sec-
tion 7.5. The conclusion of this chapter is that MPTCP is able to effectively use multiple
paths to improve end-to-end and network-wide throughput.
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7.1 Usagel ayer

The multipath usage layer is the protocol layer responsible for distributing data over mul-
tiple paths. The choice of which layer should manage multiple paths depends on per-
formance issues as well as software engineering concerns such as system compatibility,
maintainability, and clean layering abstractions. There are three possible usage layersin
the current TCP/IP protocol stack: network, transport, and user/application. A description
of the different usage layers and our motivation for choosing the transport layer are given
below.

The lowest usage layer is the network usage layer. Implementing multipath routing at
this level means the decision of which packet should travel which path is made in the net-
work protocol layer. In the current Internet, thisimplies that the IP layer must be modified
to multiplex data among multiple paths. The advantage of this usage layer is that protocol
layers above the network layer do not need modificationsin order to use the multiple paths.
However, this usage layer has two severe limitations. First, because the network layer is
unaware of the demands of the user/application, the IP layer does not have the necessary
information to properly distribute data onto paths that best improves application perfor-
mance. Second, because higher level protocols are unaware of the multipath capabilities
of the network layer, events such as out of order delivery and large delay variances may
adversely affect the performance of these protocols[83].

The second possible usage layer isthetransport usagelayer. Thisusage layer shiftsthe
responsibility of multipath management one level up in the protocol stack to the transport
layer. The principal disadvantage of this usage layer is the required modifications to the
transport and network protocols. Network protocol s need to be modified to understand mul-
tiple paths to the same destination, and transport protocols need modifications to manage
these paths.

The transport usage layer has three principal advantages. 1) the transport layer has
the proper information to efficiently use multiple paths because it is already responsible
for connection based congestion and flow control. 2) Unlike the network usage layer, the
transport protocol performancewill not be degraded by side-effects of using multiple paths
(e.g. out-of-order deliveries and large delay variances) because the protocol itself knows
that it is transmitting on different paths. 3) Since the transport layer is responsible for
packet fragmentation and reassembly, it is able to use multiple paths with great flexibility.

The third possible usage layer is the application usage layer. This layer offers the
greatest flexibility and information to achieve high performance, but requires that applica-
tion developers have expert knowledge in path management such as congestion and flow
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control. Although there may be few specialized applications that can use this usage layer,
expecting general application developers to have sufficient knowledge to effectively use
multiple paths is unrealistic. As an example, one cannot assume that most application
developerstoday can manage datatransfer on a single path as good or better than TCP.

After considering the possible usage layers, we chose to develop a multipath protocol
in the transport usage layer. The transport layer was chosen because it provides a smple
mechanism that allows general users to obtain performance benefits from multipath net-
works. The protocol developed, MPTCP, maximizes end-to-end throughput. Maximizing
throughput was chosen because it isageneral service that can be used by many applications
and is a standard measurement of network performance.

The purpose of developing the MPTCP protocol is to demonstrate that applications
(end-users) can benefit from a multipath network without application changes. We envi-
sion that when multipath networks become prevalent, different transport protocols will be
developed that cater to different application needs. For example, applications with QoS
requirements will use a QoS transport protocol. Similarly, a transport protocol may be
developed in apricing network that minimizes the monetary cost of sending messages. No-
tice that because this chapter devel ops a multipath transport protocol, this does not preclude
specialized applications from developing their own transfer protocols. In fact, we believe
applications such as Web browsers may do exactly thisto increase their performance.

7.2 Throughput Optimization

One of the benefits of multipath routing is that end-hosts can aggregate the resources of
multiple path to increase performance. In maximizing throughput, the appropriate strategy
isto use multiple paths concurrently. However, the amount of data that should be transmit-
ted on different paths depends on the current availability of network resources.

N1 N3
Figure 7.1 : A ssimple three node network. All links have equal bandwidth and latency.

For the purpose of explanation, consider a ssimple three node network shown in Fig-
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ure 7.1 where all links have uniform bandwidth and delay and that the routing algorithm
calculates two link digoint paths between every node pair.

In this network, assume that N1 wishes to maximize its data transmission to N3. If N1
is the only node using the network, then N1 can obtain twice the throughput if it uses two
paths (paths (N1, N3) and (N1, N2, N3)) than if N1 only uses the shortest path (N1,N3).
Because N1 is the only node using the two paths, there is no contention for network link
bandwidth, allowing N1 to fully utilize both paths.

Now consider the scenario where both N1 and N2 are maximizing their throughput to
N3. Assuming that both nodes use their two pathsto N3 and that the nodes share contended
link bandwidth equally, then each node's individual throughput will be the same asif the
nodes only used one path. The reason is that the link (N2, N3) is being used by both
connections, asis link (N1, N3). Because of this contention, each node only obtains half
the link bandwidth from each path.

When three nodes transmitting at the same time, one can see that if all three nodes
use their two paths equally to maximize their throughput, then each node will only get
1/3 of the bandwidth from each path. Given that each node uses two paths, this means
each node obtains 2/3 the throughput of a single path. Notice that if all three nodes smply
use the shortest path, their effective throughput will actually be higher. The consequence of
naively using multiple pathsis confirmed both in Figure 4.3 in Chapter 4 and in experiments
presented later in this chapter.

This simple example shows that optimizing performance is a balance between con-
serving network resources (e.g. using only the shortest path) and employing additional
resources (e.g. using multiple paths) to surpass single path performance. First, at low lev-
els of network utilization, the optimization point favors using multiple paths because there
are plenty of underutilized network resources; thus using them allows increased throughput
and does not noticeably affect other connections. However, as network utilization increases
and the amount of underutilized resources decreases, the performance optimization point
shifts. After this point, a strategy that conserves resources achieves better performance
because the amount of additional resources used to deliver packets on non-shortest paths
causes enough contention to noticeably degrade performance of other connections, while
at the same time, offering little throughput gains for the transmitting node.

Thus one of the goals in designing a throughput based multipath protocol is to ensure
that the protocol can adapt to this shift in optimization point. The MPTCP protocol devel-
oped in this chapter has this adaptive ability. The description of the protocol is given in
succeeding sections.
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73 TCP

Before presenting the MPTCP protocol, this section first describes the single path trans-
port protocol, TCP, on which MPTCP is based. Transmission Control Protocol (TCP) is
an end-to-end protocol that provides areliable bit stream service between application pro-
grams[83]. That is, it ensures that the destination application receives the same data stream
sent by the sending application. Furthermore, TCP aimsto fully utilize the available band-
width of the path it uses. In other words, TCP aims to maximize a connection’s throughput
while avoiding path congestion. Due to its efficiency and application interface, TCP has
become the predominant transport protocol in today’s Internet [122]. A brief description of
TCP's data transfer mechanisms are given below.

In TCP, the TCP sender sends datato a TCP receiver using variable sized packets called
segments. For every segment sent by TCP, a sequence number is assigned to the segment.
These sequence numbers are used by the receiver to reassemble segmentsinto their original
order and to acknowledge the reception of each segment. If the receiver does not acknowl-
edge a segment, the TCP sender will retransmit the unacknowledged segment. This ac-
knowledgment and retransmission scheme ensures that all data transmitted are eventually
received.

In addition to reliably transmitting data, TCP also provides flow control and congestion
control. Flow control ensures that the sender only sends as much data as the receiver
can buffer, and congestion control ensures a TCP connection never overloads a path with
data. That is, congestion control ensures that the path a TCP connection is using never
remains in a state of congestion. Congestion and flow control is achieved by the use of a
dliding window called the congestion window. The size of the window varies to indicate
the amount of unacknowledged data a sender is allowed to send without overloading the
path or the receiver.

Congestion control in TCP consists of three algorithms: slow start, congestion avoid-
ance, and fast retransmit and fast recovery. The slow start algorithm is active when the
congestion window is below a certain threshold called ssthresh. The sender in slow start
increases its congestion window by one segment each time an acknowledgment (ACK) is
received. Thusin slow start, every ACK causes the sender to send two new segments:. the
first segment is sent to fill the congestion window made available by the ACK and the sec-
ond segment by slow start’s increase of the congestion window. In slow start, the size of
the congestion window is doubled each round trip time (RTT). The motivation for the slow
start algorithm is to quickly probe the amount of available path bandwidth.

The congestion avoidance algorithm is active when the congestion window increases
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beyond ssthresh. In congestion avoidance, the sender increases its congestion window
by one segment every RTT. In this mode, the sender sends one new segment for every
acknowledged segment, and after n segments have been received where n is the current
congestion window size, the sender sends one additional segment. The goal of congestion
avoidance isto slowly probe the path for additional bandwidth.

The third TCP congestion control algorithm is the fast retransmit and fast recovery
mechanisms which deal with TCP's response to lost segments. In TCP, a lost segments
is detected when the sender does not receive an ACK for the segment. A timeout mecha-
nism is used to trigger the sender to send unacknowledged segments; however, the timeout
mechanism typically takes a long time and thus reduces TCP performance. The fast re-
transmit mechanism speeds this process by retransmitting a“lost” segment after receiving
three duplicate ACKs. A TCP receiver sends a duplicate ACK whenever it receives a seg-
ment that is not the next segment in the sequence number. Using fast retransmit, the TCP
sender assumes that receiving three duplicate ACKs indicates that the oldest unacknowl-
edged segment never reached the receiver.

The fast recovery mechanism further optimizes fast retransmit by adjusting the con-
gestion window such that after a fast retransmit, the TCP sender is allowed to send half a
congestion window’s worth of new data. This optimization avoids stalling the sender while
waiting for the lost segment’s ACK. When the lost segment’s ACK is received , the fast
recovery algorithm terminates and reduces the TCP congestion window by half. After the
termination of fast retransmit and fast recovery, the TCP connection continues transmission
in congestion avoidance mode.

For more information about the TCP protocol, refer to [12,27,78,83,84,119,128,168].

74 MPTCP

This section describes the implementation of a reliable bit stream multipath transport pro-
tocol. The protocol, called MPTCP, aims to maximizes end-to-end throughput. MPTCP
requirements are that it

1. Performs congestion and flow control among multiple paths
2. Providesareliable bit stream service (same as single path TCP)

The first requirement states that MPTCP must be sensitive to network congestion and
not overrun the receiver. Congestion control allows high effective throughput even at high
levels of network utilization. The second requirement states that an MPTCP receiver must
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receive the same bit stream sent by the MPTCP sender. In using multiple path, thisimplies
that MPTCP need to fragment a sender’s data stream, send data on multiple paths, and
reconstruct the original data stream at the receiver.

The approach taken to implement MPTCP is to modify the single path TCP to use mul-
tiple paths. This approach has two main advantages. First, by extending TCP, oneisableto
leverage the algorithmic advancements made in TCP; thus the performance improvements
made in TCP over the past decade can be directly translated into MPTCP performance.
The second advantage is that it allows MPTCP to readily take advantage of future TCP
improvements because MPTCP can easily upgrade whenever TCP upgrades.

741 TheMPTCP Algorithm

This section describes the MPTCP agorithm. The base TCP algorithm used in MPTCP
is TCP New-Reno [84]. New-Reno was chosen because of its wide use and advanced
congestion control mechanisms. These mechanismswere described in the previous section.

MPTCP extends TCP very naturaly. When a sender opens an MPTCP connection to
a destination, MPTCP opens A" concurrent and independent TCP connections to the same
destination, where K" is the number of paths the network provides between the sender and
receiver. In MPTCP, the TCP connection establishment procedure is unaltered (e.g. a
TCP three-way handshake is performed on each connection). Whenever the sender wishes
to send a data stream, it passes it to MPTCP. MPTCP then divides this data stream into
MPTCP segments and sequence numbers each segment*. The size of an MPTCP segment
issuchthat it is no larger than the size of the underlying TCP segment size (i.e. TCP's min-
imum transmission unit) minus the length of MPTCP control information such as MPTCP
sequence number and MPTCP segment size. Because the MPTCP segment size does not
exceed TCP segment size, this ensures that TCP does not fragment an MPTCP segment
in order to send the data, increasing MPTCP's overal efficiency. Notice that MPTCP's
different sub-TCP connections may have different segment sizes; therefore the size of an
MPTCP segment size varies depending on the TCP connection it is sent on.

When a destination TCP connection receives segments from its TCP sending peer, it
reconstructsthe received messages in the usual manner. The MPTCP receiver then readsthe
TCP data stream to recover MPTCP control data. Using the control data, MPTCP receiver
then reconstructs the original MPTCP data stream from all its sub-TCP connections. This

*Notice there are two levels of sequence numbers, one for MPTCP and the other for TCP. The two se-
guence numbers are independent.
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data stream is then returned to the receiving application. Notice that MPTCP does not
need to explicitly acknowledge segments because the underlying TCP connections ensure
reliable data delivery.

To make maximum use of each TCP connection, MPTCP sends on each of its TCP con-
nection the number of segments allowed by the connection’s congestion and flow control
mechanisms. To do this, MPTCP provides the next MPTCP segment to a TCP connec-
tion only when the connection is ready to send a new segment of data. This dynamic load
balancing allows MPTCP to fully utilize each TCP connection.

Because MPTCP uses TCP to transmit data, it inherits TCP's congestion and flow con-
trol mechanisms. For example, when an MPTCP's sub-TCP connection detects conges-
tion, the sub-connection will decrease its sending rate in the same manner asanormal TCP
connection. Thus, MPTCP's congestion control is as good as TCP's congestion control.
MPTCP performs flow control in the same way. Figure 7.2 shows an example MPTCP
connection.

A/BIC|IDE A
[4]D] -
Srcl =8 Dst

N \ N

Figure 7.2 : This example shows an MPTCP connection using three paths. The original
message is disassembled and sent on the three available paths using TCP. The destination
node reassembl es the original message using MPTCP sequence numbers.

In Figure 7.2, Src uses MPTCP to send a data stream to Dst. The figure shows that
the Src MPTCP opens a TCP connection on each of the three paths provided by the net-
work. The TCP connections are represented by the horizontal lines in the figure. The
sender passes a message stream to MPTCP which are divided into five segments, labeled
A through £. MPTCP sequence numbers each segment and sends them onto the different
TCP connections. The boxes above each TCP connection in Figure 7.2 denote TCP frames
being transmitted by that connection. The number in the box denotes the M PTCP sequence
number, and the letter denotes the data segment. In this example, the MPTCP receiver has
already received segment A.
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742 MPTCP Fairness

In arealistic multipath network, nodes using MPTCP will compete with nodes using other
protocols such as single path TCP. This scenario rai ses the concern that nodes using MPTCP
have an unfair advantage over TCP nodes because MPTCP not only uses multiple paths but
also competes for bandwidth equally with other TCP connections. This section extends the
MPTCP algorithm to address this fairness concern.

Before addressing MPTCP and TCP fairness, it is worth noting that TCP itself does
not provide fairness among competing TCP connections [168]. For example, in all current
implementations of TCP, if two connections share a link, then the connection with a lower
bandwidth-delay product will consume more bandwidth on that link. Furthermore, many
researchers such as Keshav and Kalmanek advocate that in order to enforce bandwidth
fairness, routers must support more intelligent queuing disciplines than Internet’s current
FIFO queuing [90, 113, 135]. This implies that MPTCP and TCP fairness is difficult to
achieve because the underlying network and TCP implementations do not have fairness
mechanisms.

In light of these factors, this section addresses the fairness concern by making MPTCP
secondary connections less aggressive in competing for bandwidth. A MPTCP secondary
connection isaconnection that is not using thefirst path (primary path) in apath set. Details
of our solution are given below.

Congestion Backoff Percentage

To make an MPTCP’s sub-TCP connection less aggressive, we alter the TCP's congestion
backoff strategy. Recall that in normal TCP, whenever the protocol senses network conges-
tion (e.g. via unacknowledged packets), TCP reduces its congestion window by 1/2, or a
backoff percentage of 50%. To make secondary connections less aggressive, the proposal
sets secondary connection’s congestion backoff percentage to X%, where X < 50. The
primary MPTCP connection is unaltered (i.e. its congestion backoff percentage is 50%).
The congestion backoff percentage also sets the connection’s ssthresh to same value as the
reduced congestion window size.

Notice that this method should affect a secondary connection’s throughput only when
congestion is encountered. That is, in the absence of contention from other connections, a
secondary connection should still exploits the bandwidth of a path as before. A secondary
connection’s performance should differ only when competing connections cause link con-
gestion. In this case, secondary MPTCP connections will back off more, thus giving the
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TCP connections using that link more share of the bandwidth.

Unfortunately in practice, this is not always true: in TCP-new Reno for example, be-
cause the protocol probes network bandwidth by causing congestion, secondary connec-
tions will back off more even though there may not be any contending connections. On the
other hand, with more advanced TCP algorithmsthat do not probe path bandwidth through
causing congestion [27], their TCP secondary connections should behave the same in the
absence of congestion.

Theimpact of congestion backoff percentage on TCP fairness and MPTCP performance
isshown in Section 7.5.

7.4.3 Path Information

The previous sections describe the MPTCP protocol; however, they did not describe how
MPTCP obtains path information and how MPTCP specifies a packet’s path. This section
discusses these two issues.

For MPTCP to obtain information about the paths a network provides (both the type of
services and the number of paths in each service), it must query itslocal router. The result
of the queries should be a set of path IDsthat the router cal culates between network nodes.
Querying the local router is sufficient because the router knows the type and the number
of paths calculated to different destinations. How this information is exchanged and stored
between hosts and local routers depend on the detail s of the actual network. We believe that
thisinformation can be efficiently propagated using a protocol similar to ones used in local
areanetworksto distribute information (e.g. NIS, ARP, and DNS). In addition, because this
information sharing is purely local, it does not have significant impact on the scalability,
cost, or performance of multipath networks. For these reasons, the actual protocols to
propagate this path information are not described in this thesis.

In order to specify apath in amultipath network, a packet needs to specify adestination
address and a path identifier. The forwarding method developed in Chapter 6 requires
that each packet is tagged with a path ID of the form [Dst, ¢4, ,] where Dst is the
destination address, ), specifiesthe path service, and ¢, specifiesthe particular path within
that service. Our implementation of MPTCP uses this path 1D format.

In our simulator, | P headers are augmented with apath ID field. Thisfieldisinterpreted
by routers to determine where to forward a packet; the forwarding procedure is given in
Chapter 6. Whenever MPTCP sends a segment, it sets the segment’s path ID field, thereby
ensuring that the segment travel s the specified path.
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7.4.4 Limitations

The MPTCP protocol described in this chapter uses multiple, independent TCP connec-
tions. That is, the different TCP sub-connections operate independently and are unaware
of each other. The advantage of this approach is that the MPTCP protocol makes minimal
modification to TCP, which alows MPTCP to easily change and upgrade the underlying
TCP protocol. The disadvantage is that the different connections are not able to work
together. This section lists some of the limitations of MPTCP as well as some possible
improvements.

One limitation of non-cooperative sub-connectionsis that a sub-TCP connection cannot
reduce the retransmission duties of another connection. For example, consider an MPTCP
connection that opens three TCP sub-connections and that connection 1 has the highest
bandwidth path to the destination. Suppose that during data transmission, this connection’s
path becomes very congested and subsequently drops many of this connection’s packets. In
MPTCP, connection 1 issolely responsiblefor retransmitting all the lost segments; this may
be many segments depending on the congestion window size and the severity of the con-
gestion. In an ideal situation, however, MPTCP should be able to transmit connection 1's
lost segments on different connections in order to off load the connection’s retransmission
duties.

Notice that not off loading connection 1's unacknowledged segments to other con-
nection may not reduce the amount of segments the sender sends to the receiver because
MPTCP dynamically load balances between TCP connections. That is, MPTCP will not
give new data to TCP connections that are not ready to transmit new data. Despite dy-
namic load balancing, requiring a connection to retransmit a large number of segments
forces the MPTCP receiver to buffer more segments from other connections. This results
in higher receiver memory usage, increased MPTCP connection latency, and potentially
lower throughput.

Another example where cooperating TCP connections can improve performance is
where a connection’s forward path is underutilized but the reverse path is congested. In
this scenario, even though a TCP connection’s forward path can transmit more segments,
TCP will not send them because the ACKs are returning slowly or are being lost on the
reverse path. ldeally, in this case, different sub-TCP connections should cooperate such
that the receiver sends ACK's on the least congested reverse path. This way, the sender can
fully exploit the bandwidth of its forward paths. However, this optimization is not possible
in MPTCP because its sub-TCP connections are independent,

In short, designing a multipath transport protocol requires a tradeoff between the so-
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phistication of the protocol and its performance. This section indicates that MPTCP can
obtain higher performanceif its sub-connections cooperate. However, the potential increase
in performance comes at the cost of implementing cooperative mechanisms. In this thesis,
we make the tradeoff toward simplicity rather than performance. Simulations show that
the despite its simplicity, MPTCP is able to effectively exploit available network resources.
These simulation results are given next.

7.5 MPTCP Experiments

This section experimentally evaluates MPTCP performance. Because MPTCP increases
end-to-end throughput, the evaluation of MPTCP isin terms of effective throughput. In ad-
dition, fairnessissues between MPTCP connections and other single path TCP connections
are also addressed here.

MPTCP throughput is eval uated here not only because throughput isacommon network
performance metric, but also because many applications such as FTP will benefit fromin-
creased network throughput. The experiments conducted in this section examine MPTCP
performance with varying network topologies and traffic patterns. The results show that
MPTCP effectively increases network throughput, even under high network utilization lev-
els.

Another issue this section addressesis the fairness of MPTCP. Since MPTCP uses more
paths and competes with other single path TCP connections, it seemsthat TCP performance
would significantly degrade when competing with other MPTCP connections. The exper-
iments in this section evaluate the performance of TCP connections versus MPTCP con-
nections with different congestion backoff percentages. The result of the simulations show
that congestion backoff slightly improves the throughput of competing TCP connections.

The experiments in this section are organized as follows. In Section 7.5.1, the per-
formance of MPTCP is simulated on a simple, 3 node network. Section 7.5.2 uses the
same network to evaluate MPTCP fairness with respect to TCP connections. Finally, Sec-
tion 7.5.3 verifies MPTCP performance and fairness in a more realistic network scenario
with an Internet-like network topology and traffic pattern. The conclusion of these experi-
mentsis that MPTCP effectively utilizes available network resources and that its increased
performance has nominal effects on other TCP connections.
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7.5.1 Aggregate Throughput

The experiment conducted in this section measures MPTCP throughput. This experiment
uses a basic three node network shown in Figure 7.1. The simple network is used to under-
stand basic MPTCP behaviors.

In the network depicted in Figure 7.1, all links are full- duplex and have equal capacity
and delay, 1000K B/s (kilobytes per second) and 10us respectively. In addition, each router
can buffer up to 50 packets for each of its out-going links. The multipath routing algorithm
providestwo link disoint paths between each node, the one- and two-hop paths. Each node
has two clients that send a burst of packets to a random client on another node, and the
interval between bursts are exponentially distributed. The average burst interval is varied
to change the network utilization level. The burst size is 1000 packets and each packet is
1500 bytes long.
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Figure 7.3 : Non-congestion aware multipath protocol versus MPTCP on a triangle net-
work. The left figure shows the throughput percentage of a naive striping multipath pro-
tocol versus single path TCP. The right figure shows the performance of MPTCP versus
single path TCP.

The graphsin Figure 7.3 featuresfour transport protocols: TCP, naive multipath striping
protocol, MPTCP without congestion backoff, and MPTCP with 25% congestion back-off
percentage. TCP and the two MPTCP protocols have been described earlier. The multipath
striping protocol works as follows: the multipath striping protocol clocks the sending of its
data at full link capacity and distributes the data by striping them along the two available
paths. That is, given N packets destined for destination D, the protocol sends packet 2: on
the one-hop path and packet 2: 4+ 1 on the two-hop path to D, 0 < : < N/2. Although
the striping protocol does not perform congestion control, it does acknowledge received
packets and retransmit lost ones.
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In Figure 7.3, the y-axis represents the average end-to-end client throughput as a per-
centage of link capacity, and the x-axis denotes the amount of traffic injected into the net-
work, normalized by network capacity. Thus, = = 100% denotes all nodes (there are 2
traffic generating clients in each node) simultaneously sending packets. The throughput
result of each protocol is represented by their respective labeled curve. In each experiment,
all clients are using the same protocol to transmit data to each other.

In both graphs, as the frequency of client transmission increases (marked by network in-
put percentage on the x-axis), the average effective performance decreases. Thisis because
as clients send more data, the amount network contention increases, resulting in lower end-
to-end average throughput. Notice that although average end-to-end throughput decreases
with increase network traffic, the aggregate network throughput increases because the net-
work is more fully utilized.

The left graph in Figure 7.3 compares the performance of the naive multipath striping
protocol versus TCP. This graph shows that when the network is relatively unused, the
striping protocol performs better than its single path counterpart. However, when clients
send data at greater than 60% of network capacity, the performance of the striping multipath
protocol quickly degenerates. The reason for the degradation is that the striping protocol
does not adapt to the shift in performance optimization.

As stated in Section 7.2, in order to maximize throughput in amultipath network, a pro-
tocol needs to alter its data transmission strategy in response to network traffic conditions.
At low network utilization (low traffic levels), using more network resources (in terms of
using more paths) increases effective throughput. However, at high network utilization,
the performance optimization point shifts so that conserving resource usage achieves better
performance. In the three node topology, the optimization point begins to favor conserving
resources when utilization reaches 60%. At this point, a strategy that conserves resources
achieves better performance. The inability to adapt to this optimization shift is indicated
by the degradation of the striping protocol’s performance curve.

The right graph in Figure 7.3 shows that MPTCP adapts to the optimization shift (both
with and without congestion backoff). The graph shows the average end-to-end perfor-
mance when the nodes are using MPTCP versus TCP. Notice that MPTCP performanceis
consistently better then TCP, even when nodes are transmitting al the time. This demon-
strates that MPTCP is effective in shifting its transmission strategy as the performance
optimization point shifts. For example, at full network utilization, MPTCP's performance
gracefully degrades to the TCP performance, which is the optimal point at full utilization.
This ability to gracefully degrade to TCP indicates the effectiveness of MPTCP's conges-
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tion control mechanism at exploiting available bandwidth without incurring performance
degradation due to network contention.

The right graph in Figure 7.3 also shows the performance difference of non-congestion
backoff MPTCP versus MPTCP with 25% congestion backoff percentage. As the perfor-
mance curves show, the congestion backoff percentage has nominal affects on competing
MPTCP performance.

Comparing the two graphs, the naive striping protocol performs better than MPTCP
only when the network is less than 20% utilized. The reason is that the MPTCP congestion
control mechanisms are conservative and thus take longer to fully utilize available path
bandwidth. However, the same conservative mechanisms alow MPTCP to significantly
outperform the naive protocol at high network utilization levels.

The result of this experiment is that MPTCP is able to effectively use multiple paths
to increase throughput, and that even during high levels of network contention, MPTCP
outperformsits single path counterpart.

7.5.2 MPTCP Congestion Backoff Percentage

The previous experiment shows that MPTCP outperforms TCP when all clients are using
the same protocol. As mentioned earlier, in a realistic multipath network, nodes using
MPTCP will be competing with nodes using TCP. This section examines the impact of
congestion backoff percentage on MPTCP performance and the performance of competing
TCP connections.
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Figure 7.4 : Congestion backoff percentage on a three node network.

The impact of MPTCP congestion backoff percentages is shown in Figure 7.4. The
curves labeled SP-x denote the throughput obtained by a TCP connection while compet-
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ing with  MPTCP secondary connections (= ranges from 1 to 4). The simulations were
conducted on the three node network in Figure 7.1. In this experiment, N1 establishes a
TCP connection and sends data to N3 while = MPTCP connections from N2 simultane-
oudly transfer data to N3. Thus, N2's the secondary MPTCP connections compete with
N1's TCP connection on link (N1, N3).

In Figure 7.4, the y-axis denotes the TCP throughput as a percentage of TCP's through-
put without any competing connections. The x-axis indicates the congestion backoff per-
centage of the MPTCP secondary connection(s). The throughput of the secondary connec-
tions is not shown in the figure.

As the graph shows, TCP is able to obtain higher throughput when secondary MPTCP
connections back-off more. However, the performance gain is not very much. For exam-
ple, consider the SP-1 curve which shows a single TCP connection competing with asingle
MPTCP secondary connection (thetop curve in Figure 7.4), at congestion backoff percent-
age of 25%, the TCP connection obtained 60% of the available TCP bandwidth. Thisis
only 10% more than competing with a secondary MPTCP connection at 50% congestion
backoff percentage.

Contrary to the experimental results, one expects that TCP performance would be more
or less inversely proportional to the MPTCP congestion backoff percentages. Detailed
analysis of TCP traces shows the cause of the observed behavior. As the congestion back-
off percentage decreases, MPTCP secondary connections retract their congestion windows
more whenever they sense congestion. This has the temporary effect of giving the TCP
connection more of the network bandwidth. However, as the MPTCP/TCP connections re-
sume and increase their sending rates, the network eventually drops packets. When packets
are dropped, the majority of dropped packetswill be from the TCP connection because this
connection is sending the majority of packets on the congested link. These packet drops
reduce the TCP congestion window, decreasing its throughpui.

Because the probability that a connection’s packets are dropped on a congested link is
proportional to the number of packets the connection sends on that link, the performance
gains TCP obtains from less aggressive secondary MPTCP connections are diminished.
Therefore, TCP performance does not significantly exceed the performance of MPTCP
secondary connections.

In spite of this phenomenon, decreasing congestion backoff percentage does give TCP
connections sightly more share of the network bandwidth. This motivated us to set the
MPTCP congestion backoff percentage at 25%.
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7.5.3 Foreground and Background Traffic

The previoustwo sections eval uate the performance and fairness of MPTCP on athree node
network with simple traffic patterns. The purpose of this section is to determine whether
the MPTCP benefits observed in the three node network can be translated in a larger, more
realistic network and traffic model. In addition, fairness is also evaluated in this section
by measuring the effect of MPTCP on TCP performance. Specifically, whether MPTCP
performance improvements come at the expense of other TCP connections.

To better reflect the Internet topol ogy, this experiment uses a cluster network topol ogy.
The simulated network is composed of 195 links and 10 cluster networks, with 10 nodes
per cluster. Refer to Section 9.1 on the construction of cluster networks. Every node in the
network can send and receive data, and the capacity removal algorithm is used to compute
paths between nodes (Chapter 6). For a more redlistic traffic pattern, a combination of
foreground and background traffic is used. A foreground traffic node transmits a large
stream of packets (5,000 packets) to a receiving node, which is randomly chosen with
the restriction that it must be in a different cluster than the sending node. A background
traffic node sends a stream of packets ranging from 100 — 2,000 packets to another network
node chosen at random without restrictions. After transmission, background nodes wait an
exponentially distributed amount of time (a Pareto distribution with average of 20 seconds)
and then proceed to transfer data to another destination node picked at random. Three of
the 100 nodes are randomly chosen to transmit foreground traffic. The remaining 97 nodes
generate background traffic. All nodes transmit using either MPTCP or TCP. The results
of the simulations are collected when all foreground nodes finish transferring.
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Figure 7.5 : The foreground and background performance of MPTCP using the capacity
removal algorithm. The left graph shows the average foreground throughput and the right
graph shows the average background throughpui.
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The two graphs in Figure 7.5 show the MPTCP and TCP foreground and background
traffic throughput. In both graphs, the x-axis shows the burst sizes of the background
traffic, which range from 100 to 2,000 packets, and the y-axis shows effective throughput
in KB/s. Each curveis labeled to represent the transport protocol used by foreground and
background nodes. Thefirst |abel denotestheforeground transmission style, and the second
denotes the background transmission style. SP stands for using TCP, and MP2 and MP3
stand for using MPTCP with 2 and 3 paths respectively.

For example, the curve with label MP3-SP denotes that the experiment was conducted
where the foreground nodes transmitted using 3-path MPTCP, and the background nodes
used TCP. The analysis of Figure 7.5 is divided into MPTCP performance and MPTCP's
effect on TCP connections. These analyses are given below.

M PT CP Performance

The left graph in Figure 7.5 shows the foreground performance curves. The lowest two
curves show the foreground throughput of TCP connections. The two curves only differ
in their background transmission styles. Similarly, the middle two curves show 2-path
MPTCP performance, and the two highest curves denote the 3-path MPTCP foreground
performance.

Notice that as network utilization increases (marked by increasing background traffic
bursts), both 2- and 3-path MPTCP gracefully degrades its performance to reflect shift in
the performance optimization point. Asin the three node network, this shows that MPTCP
is able to effectively increase performance even at high network utilization levels. In addi-
tion, this graphs confirms two important points: 1) the capacity removal algorithm effec-
tively offers throughput-service paths, and 2) MPTCP is able to increase throughput given
additional network resources.

The right graph in Figure 7.5 shows the background throughput performance. The
curves are labeled in the same manner as foreground performance graph. The bottom 3
coinciding curves denote the background TCP performance. The differencein these curves
is the foreground transmission style. The middle 2 curves (SP-MP2 and MP2-MP2) show
the background performance of 2-path MPTCP. These two curves are just below the MP3-
MP3 curve. Notice at low background burst sizes, the background traffic performance
does not achieve the same level of throughput as the foreground traffic. The reason is
that the small burst sizes were not large enough for the TCP agorithms to achieve steady
state. Thus, the background performance differencesare not as evident asin the foreground
performance curves. Despite the smaller performance distinction, the higher performance
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achieved by 2-path and 3-path background MPTCP connections again demonstrates the
protocol’s ability to increase throughput given more network resources.

In summary, the performance result in this subsection confirms that the MPTCP's
throughput on the three node network translates to a larger and a more realistic network.
In addition, MPTCP s ability to increase network performance when more paths are calcu-
lated demonstrates that the capacity removal algorithm successfully provides high through-
put paths.

MPTCP and TCP connections

The second issue this experiment reveal s is the interaction between MPTCP and TCP con-
nections. Noticethat for both the foreground and background graphs, the throughput curves
are grouped by transmission modes (i.e. SP, MP2, or MP3). These tight groupings show
that the performance obtained by foreground transmission mode is largely independent of
background transmission mode, and vice versa. This shows that the MPTCP performance
increase has nominal impact on the performance of TCP connections.

A good example is the SP-MP2 and SP-SP foreground performance curves. Here, the
two foreground TCP's performance curves are almost identical while SP-MP2 background
performance is consistently better than SP-SP background performance. This shows that
the background MP2 and SP connections has roughly the same effect on the TCP fore-
ground connections. Similarly, the tight grouping of background performance curves be-
tween SP-SP, MP2-SP, and MP3-SP show that the 2- and 3-path MPTCP foreground con-
nections do not noticeably affect the performance of background TCP connections.

However, this result seems counter-intuitive. Intuitively, given that MPTCP uses more
network resources to increase itsthroughput, it seemsthat this performanceincrease should
come at the expense of the performances of other connections. The reason this intuition
is flawed is that it overlooks the fact that network traffic is bursty; therefore even under
heavy network usage, there are still underutilized network resources in the network. So if
MPTCP mainly uses these resources to increase its performance, it will not significantly
degrade the performance of other connections. The tight performance groupings in the
simulation results show that most of the performance gains obtained by MPTCP are dueto
using otherwise underutilized resources.

The conclusion of this experiment is that 1) MPTCP successfully increases end-to-end
performance and 2) that the majority of performance increase obtained by MPTCP does
not come at the expense of other TCP connections.
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7.5.4 Network Resources and Throughput

The previous experiments show that using capacity removal paths, MPTCP can increase
network performance over TCP; however, the experiments did not show the dependency
between the physical network connectivity and multipath routing’s performance potential.
This dependency is important because it indicates how much a given network can reap
the performance benefits offered by multipath routing. The purpose of this section is to
determine this dependency by evaluating the relationship between network connectivity
and MPTCP performance. To this end, the experimentsin this section vary two parameters:
1) the network connectivity and 2) the number of paths cal culated between nodes.

The experiment conducted in this section uses a 20 node network with the number of
links ranging from 40 to 120 (network connectivity from 2 to 6). The network topology is
randomly generated and all links have equal bandwidth and latency. The capacity removal
algorithm is used to compute paths between nodes. In the simulations, each node in the
network randomly selects another node and sends a burst 5,000 packets. The inter-burst
time is randomly and exponentialy distributed using Pareto distribution with a 2 second
average. Thisexperiment used alarge burst size to obtain steady-state throughput and small
inter-burst times to keep the overall network traffic high. Figure 7.6 shows the simulation
results.
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Figure 7.6 : MPTCP throughput on a 20 node network with varying network connectivity.

The x-axisin Figure 7.6 denotes network connectivity, and the y-axis denotes through-
put of MPTCP and TCP connections normalized by link capacity. Each curve shows the
average throughput of all nodes using the transmission style denoted by the curve's label.

This figure shows three noteworthy results. First, 3-path MPTCP achieves the highest
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performance for all network connectivities, followed by 2-path MPTCP and TCP. This
confirms the performance MPTCP benefits observed in the previous experiments.

Second, the performance difference of using multiple paths increases as network con-
nectivity increases. This correlation between performance increase and connectivity shows
that the more connected a network, the more end-to-end path resources are available (as
calculated by the path calculation algorithm), resulting in higher MPTCP throughput. Asa
consequence, thisimpliesthat the benefits of multipath routing are less in sparse topologies
and morein dense topologies.

The third observation is that single path routing severely underutilizes the resources
of awell connected network. Notice that the performance of TCP increased only slightly
as connectivity increased from 2 to 6. In contrast, 2-path and 3-path MPTCP effectively
utilize the avail able connectivity to increase throughput. Furthermore, the graph shows that
3-path MPTCP obtains higher performance gains than 2-path MPTCP.

These results show that the combination of the capacity removal path calculation algo-
rithm and the MPTCP protocol effectively utilizes available physical network resources to
increase end-to-end throughput.

7.6 MPTCP Summary

This chapter develops a transport protocol MPTCP that increases end-to-end throughput
using multiple paths. MPTCP provides areliable bit-stream service and operates by estab-
lishing multiple independent single path TCP connections. Moreover, the MPTCP sender
dynamically load balances the different TCP connections by sending data on each connec-
tion according to the connection’s sending rate. The MPTCP receiver then reassembles the
data from its receiving TCP connections.

Extensive simul ations were conducted in this chapter that demonstrate the effectiveness
of MPTCP. The simulations show that MPTCP is able to effectively increase end-to-end
throughput in large, Internet-like cluster networks and under both light and heavy network
utilization levels. In addition, the experiments demonstrate that the performance improve-
ments achieved by MPTCP do not necessarily come at the expense of other TCP connec-
tions, but rather, most of the performance improvements are obtained by using otherwise
underutilized network resources. The conclusion of this chapter isthat MPTCP effectively
utilizes multiple paths to increase end-to-end throughput.
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Chapter 8

Multipath Routing Algorithms

The previous three chapters presented components necessary to make multipath routing
viable: algorithms that compute multiple paths, an efficient multipath forwarding method,
and a multipath transport protocol that maximizes end-to-end throughput. This chapter
implements two multipath routing algorithms using the developed path calculation and
path forwarding components. The two multipath routing algorithms, MPDV and MPLS,
based on the Distance Vector and the Link State routing algorithms respectively.

Both routing algorithms devel oped here use the suffix matched forwarding method and
calculate capacity removal paths. Suffix matched forwarding was chosen for its efficiency,
and the capacity removal paths are cal cul ated because this path calculation algorithm high-
lights some key differences between DV and L S path computation styles. Moreover, since
the next chapter evaluates the throughput offered by a multipath network, the capacity re-
moval routing algorithms described in this chapter can thus be directly applied to next
chapter’s experiments.

The description of MPDV and MPL S are given below. Section 8.1 presents MPDV, and
Section 8.2 the MPL S algorithm.

8.1 TheMPDV Capacity Removal Algorithm

The Distance Vector (DV) routing algorithm iswidely deployed in today’s networks. Rout-
ing protocols that use this algorithm include RIP [7], BGP [133], and EPG. For a basic
description of the algorithm, refer to Section 2.1. This section lists the extensions needed
to enable amultipath DV algorithm to calculate capacity removal paths.

The description of MPDV is divided into two parts: the additional data structures
needed to implement capacity removal MPDV and the actual path calculation algorithm.

8.1.1 Data StructureCosts

This subsection describes the additional data structures needed to convert single path DV
(SPDV) to calculate capacity remova paths and to use the suffix matched forwarding
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method. Data structure changes are needed in MPDV forwarding tables and in MPDV Dis-
tance Vector packets (MPDVP's). MPDVFP's are multipath versions of single path DVP's,
and are exchanged by MPDV routers to compute paths between nodes.

MPDV Forwarding Tables

In the basic SPDV agorithm, each forwarding table entry consists of three elements. the
destination address, the next-hop neighbor on the known least-cost path to the destination,
and the cost of that path. Extending DV to use the suffix matched forwarding method
requires adding two local path IDs to each forwarding table entry, ¢; and ¢, (refer to
Section 6.2.2 for details).

However, adding ¢, and ¢, does not provide enough informationfor MPDV to calculate
capacity removal paths. To calculate these paths, MPDV needs to add, for each forwarding
table entry, a capacity-source route of the path that the entry advertises. A capacity-source
route lists a path’s links and the capacity of each link. Capacity-source routes are needed
for two reasons: first, the source route component is used to eliminate looping paths, and
second, the capacity of each link is used by the capacity removal algorithm to calculate
paths.

MPDVPs

These additional elements in a router’s forwarding table entries also increase the size of
MPDVP's. In SPDV, a DVP contains a list of path entries where each entry consists of
two elements: a path’'s destination address and the cost of the path. As given in Sec-
tion 6.2.2, the suffix matched MPDV extension requires adding a local path identifier ¢
to each MPDVP entry in order to ensure correct path forwarding. In addition to this lo-
cal path 1D, the capacity removal MPDVP entry also needs to carry the capacity-source
route of the advertised path. This addition ensures that whenever a router receives a path
from aMPDVP, the router has the necessary path information to perform capacity removal
computation.

In summary, the additional data structure overhead of MPDV occurs in the routing for-
warding tables and MPDV P messages. For the forwarding table, the extra router memory
overhead is 1) capacity-source route and 2) two local path IDsfor each path. To break down
this cost, each path ID takes 1 byte and each element in a capacity-source route is 5 bytes
(4 bytes for link specification and 1 for denoting link capacity). As for MPDV message
overheads, two extra elements are added per MPDVP entry: 1) capacity-source route and
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2) one local path ID for each advertised path.
The way these data structure additions are used to compute capacity removal pathsis
described next.

812 TheMPDV Algorithm

Given the extrainformationin the MPDV P and forwarding table entries, each MPDV router
calculates capacity removal paths. The procedureto establish suffix-matched local path IDs
for path forwarding is not given here because it is described in Section 6.2.

The description of capacity removal MPDV starts with MPDV P construction. When a
router constructs a MPDVP, it adds a MPDVP entry for every path it wants to advertise.
A MPDVP entry consists of the path’s destination address, cost, local path ID, and the
path’s capacity-source route. Thisinformationis contained in the router’s forwarding table
entry for that path. On receiving a MPDVP, a router updates the costs of each advertised
path by adding the cost of the incoming link to the advertised paths; the incoming link
is the link on which the router receives the MPDVP. In addition, the router appends the
incoming link and the link’s capacity to each MPDV P entry’s capacity-source route. These
two updates ensure that every path advertised in the MPDV P correctly reflects the cost and
capacity-source route with respect to the receiving router.

After updating each advertised path, a router executes the capacity removal MPDV
algorithm asfollows. First, therouter discards any MPDV P paths that contain loops. A path
loops if it contains a link in its capacity-source route that appears more than once. After
discarding looping paths, the router combines, for each destination listed in the MPDVPR,
the paths it already hasto that destination (stored in its forwarding table) with the MPDV P
paths to that destination. Now that all available paths to a destination are grouped together,
the capacity removal algorithm proceeds to select, for each destination, the best A pathsin
that group.

Selecting A paths to destination D starts by sorting all available paths to D by path
cost. We refer to P; as the path with the ;' smallest cost to D and L; as the set of links
in P;. Noticethat /; and its capacity are given in F;’s capacity-source route. Next, for
each P, its capacity C'ap(F;) is calculated as MIN(Cap(l)),Vl € L;. If Cap(P;) < a
preset minimum capacity threshold, then Fis discarded. Otherwise P, isadmissible. If P,
isadmissible thenVi € L, V5 > ¢,VI' € L;,if [ =1, then Cap(l') = Cap(l') — Cap(P;).
That is, if path F; is admissible, then subtract the capacity of F; from al linksin F; that
also appear in path F;, 5 > 1. This process starts from the least cost pathto D, £, and ends
when all paths in the group are processed or A admissible paths are found. Finaly, the
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router installs the selected paths into its forwarding table for destination D and discardsthe
remaining paths. This capacity removal process is repeated to find A best paths to every
destination. The pseudocode of the algorithm is shown in Figure 8.1.

For each destination, the complexity of the capacity removal MPDV algorithm, as given
in Figure 8.1, islinear in the number of advertised paths and the length of each path. Since
there are N destinations and each router receives at most /&' paths per destination, the
computational complexity of the MPDV algorithm is O(N K L), where L is the average
path length. Thisis afactor of A" more than SPDV, whose complexity is O(N).

Notice that the paths calculated by MPDV are dlightly different from the centralized
capacity removal algorithm described Chapter 5. In the centralized algorithm, the " path
to Dst isthe:" shortest path to Dst with path capacity greater than the capacity threshold,
where path ¢’s capacity is calculated after subtracting path j's link capacities, 1 < j < 1.
In contrast, with MPDV, R’s ‘" path to Dst is the ;' shortest path advertised by R’s
neighbors with path capacity greater than the capacity threshold (again, after subtracting
path j's link capacities, 1 < j < ¢). Because the MPDV algorithm calculates paths based
on paths advertised by neighboring routers, the MPDV algorithm always calculates suffix
matched paths. In comparison, the centralized algorithm calculates its paths regardless of
the paths calculated by neighboring nodes, and as a result, the centralized agorithm does
not always calculate suffix matched paths. Chapter 9 shows that this slight difference in
path calculation has an impact on the number of calculated paths and on the amount of
offered performance.

8.1.3 MPDV Capacity Removal Example

Figure 8.2 shows an example of MPDV'’s capacity removal computation process. For this
example, K is 3 and the minimum capacity threshold is 0. In the figure, boxes denote
routers and edges denote links, and all links have unit costs. The edges are labeled by two
characters: thefirst letter is the link’s name and the second denotes the link’s capacity. For
example, A-2 labels link A with 2 capacity units. The dotted lines in the figure show the
paths N5 receives from its neighborsto node V1.

The MPDV paths are propagated by MPDV P exchanges: initially, N1 sendsaMPDVP
to its neighbors that contains a path to itself. When N2 and N4 receive this MPDVR,
they append the incoming link’s label and capacity to the MPDV P entry. Specifically, N2
appends link A with capacity 2 to the capacity-source route to N 1; therefore the capacity-
source route of the path is[A-2]. N4 does the same and the capacity-source route to N1
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Let Ap, = set of advertised paths to Dst
Let Fps = set paths to Dst in router forwarding table
Let P = " least cost path in Tpy

Tpst = Apst U Fpgt;
Fpga =0;
i = 1;
while(| Fpy |< K or Tpg #0)
Tpsi =1Tps — B,
if (Fpse==10)
Max_cost = Cost(F) * Cost BOUND;
if (Cost(F;) > Max_cost)
br eak;
if (Cap(F) < Capacity_Threshol d)
conti nue;
Fpg = Fpg UFR;
i ++;
Vie P,VP; €Tpy, 1f (I == 1U'ePF)
Cap(!') = Cap(l') - Cap(F);

Figure 8.1 : The pseudocode for the MPDV capacity removal algorithm. The code shows
the calculation of K" capacity removal pathsto Dst.
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Figure 8.2 : An example of the capacity removal MPDV algorithm. The dotted lines show
the pathsto N1 that V5 receives from its neighbors.

becomes [C-1].* N2 and N4 then compute paths based on the new information given by
N1's MPDVP and propagate the newly computed paths. This example showsthat N5 has
received 4 pathsto N1: (C,G), (A,E), (A,D,G), and (A,B,F). In Figure 8.2, the capacity-
source route of each path is givenin “[]” next to the path.

After N5 receives MPDVPs from its neighbors advertising these paths to N1, N5
begins the capacity removal agorithm. First N'5 sorts the paths by cost: (G,C), (E.A),
(G,D,A), (FB,A). Next, N5 inspects each path in ascending order of path cost. The first
path, (G,C), isadmissible because Cap(C, G) = 1 > 0. Therefore the link capacities of C
and G are subtracted by C'ap(C, ) = 1. The path (E,A) is also admissible, and the capac-
itiesof links E and A are also subtracted by 1. Next, N5 considersthe path (G,D,A). Here,
Cap(G, D, A) = 0 because the capacity of link GisO (link G’s capacity was subtracted by
1 from path (G,C)). Since Cap(G, D, A) < 0, this path is discarded. Finaly, path (F,B,A)
is admissible with capacity 1. With k' = 3, N5 keeps paths (G,C), (E,A), and (FB,A) in
its forwarding table. Now whenever N5 advertises pathsto N1, it puts these three paths
into its MPDVP.

*Notice that because source routes are appended, the sequence of linksin a capacity-source routesis the
reverse of the actual paths. This does not affect the correct functioning of the algorithms.
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8.1.4 Capacity Removal MPDV Costs

Given the capacity removal MPDV agorithm, this subsection discusses the algorithm’s
costs. The MPDV costs are categorized by 1) per packet forwarding overhead, 2) router
CPU usage, 3) routing message, and 4) router memory overhead.

The first and the most performance critical overhead is the per packet path forwarding
overhead. Thisoverhead consists of the additional per packet path 1D cost (in the number of
bits) and additional router processing needed to interpret path IDs and to forward packets.
Because of the suffix matched forwarding method, MPDV'’s per packet overhead of path
specification is constant and fixed-length. Moreover, the suffix matched path IDs are small
integers, thereby allowing efficient router forwarding table lookup which decreases the
per packet forwarding time [149, 160]. With low per packet forwarding overhead, MPDV
decreases the time to transmit and forward data packets.

The second and third MPDV cost categories are router CPU usage and routing mes-
sages. With respect to the message complexity, the previous section showed that each
MPDVP contains at most O( N K') entries where each entry islength O(L). Thus the mes-
sage complexity of each MPDVPisO(N K L), afactor of K L more than that of SPDV.

The message complexity of the entire MPDV algorithmisthe product of the complexity
of individual MPDV P's and the number of MPDV P's sent. Although it has been shown that
the worse case number of messages for a Distance Vector style algorithm is O(2V) [25],
the average case complexity is©(N M?(In(M))?) [23,157]; here M isthe average number
of neighboring routers. Therefore the average message complexity of the capacity removal
agorithmisO(NK L« NM?(in(M))?) = O(N*M*K L(In(M))?). Again, thisisafactor
of AL more than that of SPDV.

Moreover, because DV style algorithms exchange paths via messages, the computa-
tional complexity is the same as the message complexity. That is, the average MPDV
computational complexity isalso O(N?M>K L(In(M))?).

With respect to MPDV'’ srouter memory requirement, MPDV routers need memory pro-
portional to the number of paths calculated and their length, O( K’ N ). Thisis comparedto
SPDV where memory and message overheads are proportional only to the number of paths
calculated O(N'). However, it isworth noting that although MPDV requires K L additional
memory, this does not mean that the forwarding tables are K L times larger (for simplicity
in our previous discussion, we used the term “forwarding table overhead” synonymously
with “router memory overhead”). The reason is that the capacity-source routes are not
needed for packet forwarding; therefore these source routes can be stored elsewhere, say
in slower and cheaper router memory. Thus, although the MPDV message overhead is K L
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more than SPDV, the performance critical forward table overhead is actually only a factor
of K.

In summary, capacity removal MPDV overheads in router memory, router CPU, and
routing messages are a factor A", more than SPDV. In addition, the performance critical
cost category, per packet forwarding overhead, is low because the suffix matched forward-
ing method uses small integer, fixed-length path IDs, allowing efficient packet transmission
and forwarding.

8.2 TheMPLS Capacity Removal Algorithm

This section describes the implementation of an LS based multipath routing algorithm that
calculates capacity removal paths. The LS routing algorithm is the basis of many widely
used routing algorithms. Unlike DV, L Srouters share topol ogy information and each router
computes paths with the knowledge of the entire network graph. As the implementation
shows, this style of path computation has a large impact on the amount of resources LS
needs to compute multiple paths.

821 TheMPLSAlgorithm

Before describing the MPL S algorithm, we briefly review of the traditional single path LS
(SPLYS) algorithm. In SPLS, each router periodically broadcasts its local topology in a
Link State Packet (LSP). This information consists of the router ID and the cost of each
of its out-going links. Routers gather these broadcasts, locally construct the entire network
graph, and perform a shortest path computation to all other nodes. For each router, the
result of the path computation is stored in its forwarding table.

To convert SPLSto MPL S that compute capacity removal pathsis very straightforward.
First, the L SPisaugmented with acapacity component: an L SP now consists of the sending
router’s ID plusthe cost and capacity of each of the router’s out-going links. MPL S routers
periodically broadcast their LSPs as in the SPLS algorithm. After all routers broadcast
their LSPs, each router constructs the entire network graph knowing the cost and capacity
of each network link. After collecting this information, routers individually execute the
centralized capacity removal path calculation agorithm.

The centralized capacity removal algorithm is described in Section 5.2.2. To summa
rize, the algorithm finds successive shortest paths to destinations using only links that are
above a capacity threshold. When the current shortest path is found to a destination, the
algorithm tests if it exceeds the cost bound. If so, path computation for that destination
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ends. Otherwise, the path is stored in that destination’s forwarding table, and the path’s
capacity is subtracted from each link in that path. This process continues until A paths are
found or until no other admissible path exists. In this chapter’s implementation, the cost
bound is set at twice the cost of the shortest path, and the capacity threshold is zero.

The time complexity for the LS capacity removal algorithm to calculate A paths to a
destinationis O(K = E  [g(F)), where F isthe number of edgesin the network.

8.22 BascMPLSForwarding

The previous subsection described the MPL'S capacity remova computation, but it did not
describe the packet forwarding on the computed paths. Like MPDV, thisimplementation of
the capacity removal MPLS algorithm uses the suffix matched forwarding method. How-
ever, unlike MPDV where establishing local path IDs is straightforward, establishing path
IDsin MPLS may require additional computation and messages, depending on the type of
paths computed. The basic MPLS suffix matched forwarding method is given here, and
extensions to cover non-suffix matched paths are given in the next subsection.

The essence of the suffix matched forwarding method is the establishment of local path
| Ds between nodes. These local path 1Ds guarantee forwarding of packetson their intended
paths. In MPLS, establishing local path IDs is athree-step process. In the first step, every
router labelsthe :** path to destination D withthe path ID 7, ¢ < K. Second, for each path
(21,...,2,) that ; computes, x, findsthe path ID of the path (xs,... ,z,) as caculated
by z,'s neighbor z,. That is, router z; finds z,’s j'* path to z,, such that the ;% path is
(22,...,2,). Thiscalculation is very simple because «; has the entire network topology
in its memory, and the path ID assignments are deterministic (i.e. x; and z, will both
caculate the path (x4, ... ,x,) aszy’'s ;7 pathto z,,).

In the third step, »; matches the local path ID of the path (x,... ,x,) with 25’s path
ID of the path (z5,... ,z,) and stores the two path IDs in the forwarding table entry for
path (x1,...,x,). Now that the two path IDs are established on this path, suffix matched
path forwarding can be used. This process of cal culating and matching path IDsis executed
by every router for every calculated path. For more details on the MPLS suffix matched
forwarding method, refer to Section 6.3.

8.2.3 Non-Suffix Matched Paths

The three step process described above correctly forwards packets if the path set is suffix
matched. Unfortunately, the centralized capacity removal algorithm does not always com-
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pute suffix matched paths. This means that in step 2, when a router attempts to find the
a match for a non-suffix matched path, it will discover that the path’s next-hop neighbor
does not calculate the suffix of that path. Fortunately, there are techniques to resolve these
non-suffix matched paths; alist of techniquesis provided in Section 6.3. The one used in
here is the explicit routing method. We choose this method because of its efficiency and
because we can explicitly measure its message and storage costs.

The explicit routing method operates as follows: during step 2 of path ID matching, if a
router failsto match the suffix of a path, the router stores the source route of this non-suffix
matched path. When a router receives a packet with a path ID specifying the non-suffix
matched path (indicated by the source route), the router source routes the packet to its
destination. Furthermore, explicit routing uses the label swapping optimization to establish
local path IDs after source routing the first packet [85]. Therefore, subsequent packets
traversing the same path will be forwarded using the conventional fixed-length path IDs.
This optimization significantly reduces the source routing cost because it is done only once
per non-suffix matched path. Although, these labels need to be re-established when paths
are recalculated (say due to link failures), the amortized cost of source routing packets on
non-suffix matched paths is small because path recomputation occurs much less frequently
compared to packet forwarding. An example of the explicit routing method is given in
Figure 8.3.

Figure 8.3 : An example of the capacity removal MPLS non-suffix matched forwarding.
Here N1 computes 2 paths to N3 denoted by the dotted lines, and N2 computes thetwo solid
paths to N3. N1's paths through N2 are not suffix matched because N2 did not compute a
path that is the suffix of N1's path.

Inthisfigure, both N1 and N2 compute two pathsto N3, denoted by the dotted and solid
lines respectively. Notice N1's path that passes through N2 is not suffix matched because
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N2 did not compute the suffix of N1's path. According to the explicit routing method, upon
receiving the first packet destined on this non-suffix matched path, N1 will source route
this packet on the dotted path through N2 to N3. In addition, thisfirst packet will establish
local path IDs along routers on this path so that subsequent packets destined for this path
will not be source routed, but instead, use the path ID established by the source-routed
packet. Thus, subsequent packets on non-suffix matched paths will be forwarded in the
same manner as packets on suffix matched paths.

8.24 Capacity Removal MPLS Costs

For the most part, the implementation of the capacity removal MPLS algorithm is straight-
forward. This section summarizesthe various costs incurred by the agorithm: 1) per packet
forwarding overhead, 2) router CPU usage, 3) routing message, and 4) router memory over-
head.

Like MPDV, the performance critical per packet forwarding overhead of MPLS isvery
efficient: fixed-size per packet path 1D which can be efficiently indexed in router forward-
ing tables. However, unlike MPDV where all paths are suffix matched, some paths in
capacity removal MPLS are not. For these paths, source routing is required. Since the
label swapping optimization is used, source routing is incurred only once per path, and
non-suffix paths need to be re-source routed only after path recomputation, which occurs
infrequently compared to data packet forwarding. Thus the cost of source routing does not
significantly contribute to packet forwarding complexity.

In the second cost category, router CPU overhead, the time complexity of the cen-
tralized capacity removal algorithm to compute al pairs K paths is O(KNE * [g(F)).
Since each router also needs to calculate paths for its neighbors, the time complexity is
O(KNEM =lg(E)), where M isthe average number of neighboring routers. Thisis com-
pared to shortest path L Swhose complexity isO( Exlg(F)). Although the CPU complexity
isafactor K’ N M more, we believe this computation overhead can be offset by leveraging
the technology curve (e.g. faster processors and larger memories) [11] and developing more
efficient capacity removal algorithmsthat use dynamic programming.

The routing message cost is divided into two categories: the extra cost in the LSPs
and the costs incurred by source routing packets on non-suffix matched paths. For the first
category, the cost overhead is nominal — one capacity specification per link in an LSP. In
this implementation, this adds only one additional byte per link in aLSP; thusthe MPLS's
LSP complexity isthesame assingle path LS, O( N F). The second message cost category,
source routing cost, depends on the number of non-suffix matched paths and the length
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of each path. However, the use of the label swapping optimization significantly decreases
the source routing cost. Given that the source routing message cost depends on the num-
ber of non-suffix matched paths and their length, this cost is experimentally quantified in
Section 9.4.

With respect to router memory, there are two types of router storage: general purpose
memory and forwarding table memory. Aswith MPDV storage, the memory requirement
for the general purpose memory is not as crucia as the forwarding memory, which is per-
formance critical.

A MPLS router’s general storage complexity is typically dominated by storing the en-
tire topology in memory: each router needs to store every other router’'s LSPs, incurring
O(N M) memory costs. With non-suffix matched paths, an MPL S router also needsto store
the non-suffix matched source routes, requiring an additional O(NplL) storage, where p is
the average number of non-suffix matched paths to a destination passing through a router,
and L the average path length.

With respect to forwarding table storage, the MPLS cost is proportional to the number
of paths calculated. However, due to non-suffix matched paths, arouter may store paths that
pass through the router but which the router itself does not compute. For example, router
N2 in Figure 8.3 will need to store three paths, even though it only calculated two. This
additional path entry comes from establishing a local path ID with N1 for N1's non-suffix
matched path. Thus, the router forwarding table storage complexity for capacity removal
MPLSiSO(K N + NpL).

Because router storage costs depend on the number of non-suffix matched paths and
their length, this cost is experimentally quantified in the next chapter.

In general, the routing costs for the capacity removal MPL S routing algorithm are low,
and because MPLS has the entire network topology in memory, calculating multiple paths
is straightforward. However, there are costs in MPLS that cannot be analytically deter-
mined, specifically, the message cost of source routing packets and router storage costs.
For these costs that depend on non-suffix matched paths, the next chapter experimentally
measures their actual costs.
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Chapter 9

Multipath Cost-Benefit Analysis

In this chapter, we experimentally evaluate the performance improvements obtained by
using capacity removal MPDV and MPLS algorithms, and then measure each routing al-
gorithm’s message, computation, and storage costs. The goal of these measurementsisto
determine whether the cost incurred by a multipath routing algorithm justifies the end-to-
end performance gains obtained using the provided paths.

The performanceis measured in terms of throughput, latency, and message drop proba-
bility (message delivery reliability). Throughput is measured using MPTCP. The higher the
MPTCP obtained throughput, the better throughput performance of the multipath network.
Latency and drop probability are measured using a multipath ping program. This program
uses multiple paths to measure round-trip delay and drop probabilities. To make the mea-
surements more redlistic, the ping experiments are conducted using the background traffic
generated by the throughput experiments.

In addition to measuring the performance offered by a multipath network, this chapter
also measures the performance (or efficiency) of the routing algorithms that implement
multipath networks. The two algorithms, capacity removal MPLSand MPDV, are eval uated
in this chapter in terms their packet forwarding cost, router memory requirement, router
CPU usage, and routing message cost. Although many of the routing costs are analytically
evaluated, some routing costs depend on the network topology and the paths computed
between nodes. This chapter experimentally measures these network dependent costs, as
well as the constants of the analytically formulated costs.

The results of the experiments show that even in sparse topol ogies (a 100 node, Internet-
like cluster topologies with link to node ratio less than 2:1), the capacity removal MPDV
and MPLS are able to provide paths that allow both MPTCP and multipath ping to achieve
higher performance, compared to their single path counterparts. Moreover, the costs in-
curred by MPLS and MPDV are low enough such that we believe they can be feasibly
implemented in large-scale networks.

This chapter is organized as follows. The next subsection describes the experimental
environment. Section 9.2 presents MPTCP throughput, and Section 9.3 presentsthe latency
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and drop probability performance. Finally, Section 9.4 presents the various routing costs
of the two routing algorithms. A summary of the experiments appears in Section 9.5.

9.1 Simulation Environment

The simulation environment consists of the network ssimulator and the network topol ogy.
The network simulator used is based on the“xsim” package from the University of Arizona
[28], an execution-driven, packet-level network simulator. The simulator takes as input a
description of the network topology, including link characteristics such as bandwidth and
propagation delay, and a set of software modules that implement the various protocols
running on the routers and end-hosts in the network. Simulation time advances according
to the calculated transmission and propagation delay of packets in the network. In the
simulator, software processing in the routers and hosts is assumed to have zero time cost.

Software processing occurs in three places in our ssimulation: in end-host processing,
router path computation, and router packet forwarding. In each of these places, we be-
lieve this zero time cost assumption does not significantly affect our results. First, end-host
processing is usually severa orders of magnitude faster than end-to-end network latency;
therefore accounting for their processing costs has little impact on end-to-end measured
performance. Second, since router path computation is not performance critical, occurs
infrequently compared to packet forwarding, and the computational complexity of our
MPDV and MPLS implementation are based on their single path counterparts, account-
ing their computational time should not significantly ater our performance measurement.
And third, with respect to the performance critical cost of router packet forwarding, our
multipath forwarding method adds only one additional hash lookup in the forwarding pro-
cess, therefore, the additional processing cost of forwarding is also very small and should
not have alarge impact on our simulation results.

To make the performance and cost measurements more realistic, the experiments in
this chapter use an Internet-like clustered topology. Cluster topology is created by first
constructing agroup (or cluster) of small flat topologies. Flat topologies are parameterized
by the number of nodes (V) and links (£). The construction process randomly picks two
nodes and connects them until all £ links have been connected. The only restriction on
node connection is that no more than one link can exist between a node pair. After con-
necting £ links, the network is inspected for connectedness. If the network is connected,
aflat topology is generated and returned. Otherwise, the network is discarded, and the flat
topology construction processis repeated.
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A clustered network topology is build by inter-connecting a set of flat topologies. The
flat topologies are connected by randomly connecting nodes from different flat topologies
(clusters). Links connecting nodes within a cluster (intra-cluster links) have 1000 KB/s
bandwidth and unit cost, and links connecting clusters (inter-cluster links) have 2000 KB/s
bandwidth and two units of cost. All links have a 10us transmission delay. These parame-
terswhere chosen to reflect the higher connectivity within clusters and thelarger bandwidth
of inter-cluster links.

9.2 Throughput Performance

This section evaluates the throughput offered by the capacity removal MPDV and MPLS
routing algorithms. Throughput is measured by end-hosts transmitting packetsusing MPTCP
on networks running each routing algorithm. Recall Chapter 7 showed that the capacity re-
moval algorithm effectively computes paths with additional network resources, and that
the MPTCP protocol is able to translate the additional resources into increased throughput.
This section extends the results of Chapter 7 and investigates whether these throughput im-
provements can actually be obtained using the capacity removal MPLS and MPDV routing
algorithms.

9.21 Basic Throughput Performance

To determine whether MPTCP is able to achieve the same level of performance using
MPLS and MPDV, the first experiment conducted in this section uses the same experi-
mental parameters as the MPTCP experiment in Section 7.5.

In summary, the experimental network consists of 100 nodes organized in 10 node
clusters with 17 intra-cluster links and 25 inter-cluster links (atotal of 195 links).* Traffic
is divided into two categories: foreground traffic and background traffic. A foreground
traffic node transmits 5,000 packets to a node in another cluster, and a background traffic
node sends a burst of packets ranging from 100 - 2,000 packets to a destination chosen at
random. The size of each packet is 1500 bytes. The inter-burst times of background nodes
are exponentially distributed (a Pareto distribution with average of 20 seconds). The three

*This network topology is particularly desirable because it is not too connected and not too sparse. The
network is not too connected so that the traffic generated will produce network contention in order to show
interesting properties of multipath routing, and the network is not too sparse so that meaningful multiple
paths can be calculated between nodes. In short, the 1:2 node to link ratio highlights performance differences
in single path and multipath routing.
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foreground nodes are picked randomly and the rest are background nodes. The performance
results of MPTCP on both MPDV and MPLS are given in Figures 9.1 and 9.2.

2500

Effective Throughput (KB/S)

0 . . . . . . . . .
0 200 400 600 800 10001200 14001600 18002000

2000
1500 |
1000 |

500 |

Foreground MPTCP Traffic (CapRemoval, 100N-195L)

i

R S

Background Traffic Stream

Effective Throughput (KB/S)

Background MPTCP Traffic (CapRemoval, 100N-195L))
00 ; T T T T T . . .

MP3-MP3 ——
MP3-SP -
| MP2-MP2 -5 |
2000 MP2-SP -x
SP-MP2 -+--
SP-SP -x--
1500 |
_ = A=
- e
1000 /7
B
«’ e s ooszimiminnis S —
//*/
500 | *
o e
0 200 400 600 800 10001200 1400 160018002000

Background Traffic Stream

Figure 9.1 : The foreground and background MPTCP performance using the MPL S capac-

ity removal
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Figure 9.2 : The foreground and background MPTCP performance using MPDV capacity
removal algorithm.

The graphs in Figures 9.1 and 9.2 show the MPTCP foreground and background per-
formance on MPLS and MPDV respectively. In both figures, the left graph shows the
foreground performance curves, and the right graph shows background performance. The
x-axis denotes background traffic burst sizes, ranging from 100 to 2,000 packets, and y-
axis denotes the effective throughput in KB/s for the respective foreground or background
traffic. Curvesin each figure are labeled to represent the transport protocol used by fore-
ground and background nodes: thefirst |abel denotes the foreground transmission style and
the second the background transmission style. SP stands for using SPTCP, and MP2 and
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MP3 stand for using MPTCP with 2 and 3 paths respectively. For example, the curve la-
beled MP3-SP represents the network performance when the foreground nodes used 3-path
MPTCP and the background nodes used SPTCP.

The graphsin Figures 9.1 and 9.2 show that foreground and background MPTCP per-
formances exhibit the same characteristics described in Chapter 7. Mainly, MPTCP is
effective in increasing network throughput even at high levels of network utilization, and
the performance gains of multipath MPTCP do not come at the expense of SPTCP connec-
tions. For detailed MPTCP analysis, refer to Section 7.5. In addition to MPTCP behavior,
two other important points are illustrated in the two figures.

First and foremost, both figures show that MPTCP obtains a high level of performance
with both MPLS and MPDV. Moreover, the graphs show that MPTCP foreground per-
formance is roughly proportiona to the number of paths provided by each agorithm.
This demonstrates that MPLS and MPDV agorithms are able to provide paths with ad-
ditional resources, thereby alowing MPTCP to improve its throughput. The two figures
confirm that in a realistic network setting, the combination of MPTCP and capacity re-
moval MPDV/MPLS a gorithms achieves higher network throughput than is achievablein
single path routing.

The second important resultin Figures 9.1 and 9.2 isthat MPTCP performanceis higher
in MPLS than in MPDV. Performance using MPLS is the same as offered by the central-
ized capacity removal algorithm shown in Figure 7.5 because MPL S cal culates paths using
the same centralized capacity removal algorithm. In contrast, MPTCP's performance on
MPDV is worse than on MPLS. The performance difference is due to the differencesin
MPLS and MPDV path calculation. Specifically, MPDV aways cal culates suffix matched
paths, and MPL S does not.

In the following three subsections, we investigate the MPLS and MPDV performance
disparity caused by their path calculation differences.

9.22 MPLSand MPDV Throughput Differences

To investigate the impact of MPLS and MPDV path computation differences, the same
simulation wasrerun in asparser topology to reduce the number of available physical paths,
thereby emphasizing the differences in path computation styles. This sparse network has
15 intra-cluster and 20 inter-cluster links (170 links), as compared to the original network
which has 17 intra-cluster and 25 inter-cluster links (195 links). Figure 9.3 shows the
MPTCP performance results in this simulation environment.

To highlight performance differences, the graph in Figure 9.3 shows only MPTCP fore-
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Figure 9.3 : The foreground performance of MPTCP and SPTCP using the capacity re-
moval MPLS and MPDV algorithms on a sparse 100 node, 170 link network topol ogy.

ground traffic performance in the sparse network. For each curve, the background nodes
use the same transmission style as the foreground nodes. The graph shows the MPTCP
performance using 3-path MPLS, 3-path MPDV, and SPTCP. Three-path MPTCP is fea-
tured because using more paths accentuates the performance differences between MPLS
and MPDV. The background performances are not shown because they exhibit the same
performance characteristics asin Figures 9.2 and 9.1.

Aswith the previoustopology, Figure 9.3 showsthat MPTCP is able to obtain multipath
performance benefits using MPDV and MPLS. This shows the generality and versatility of
MPTCP and MPLS/MPDV in increasing network throughput even in a topology where
the ratio of links to nodes is less than 2:1. In addition, the figure shows that MPTCP
foreground performance decreases as the amount of background traffic increases. This
is again consistent with our observation that as total network traffic increases, average
individual throughput decreases.

The notable feature illustrated by Figure 9.3 is the MPTCP performance difference
between MPDV and MPLS. MPTCP performs better under MPLS than under MPDV, es-
pecialy in the region where network utilization is low. Analysis of the number of paths
calculated by each routing algorithm reveals the source of this performance disparity. Fig-
ure 9.4 shows the number of paths calculated by MPLS and MPDV in this network.

In Figure 9.4, the x-axis denotes rank, the maximum number of paths the routing algo-
rithm is allowed to calculate between a node pair, and the y-axis shows the total number
of paths actually calculated. At rank = 1 (K = 1), both agorithms calculate the single
shortest paths. Since there are 100 nodes, the number of calculated path is 100° = 10,000
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Routing Algorithm: Number of Paths, 100N-170L
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Figure 9.4 : The number of path calculated by each the MPDV and MPLS agorithmsin
the 170 link sparse network topology.

paths.

As the figure shows, the difference between the paths calculated by MPLS and MPDV
increases with rank. Moreover, this increase is sub-linear because the number of possible
paths is limited by the physical connectivity of the network. The figure shows that at rank
3, MPDV calculates 18000 and MPL S calculates 22000 paths, a difference of 22%. These
extra MPLS paths allow MPTCP to achieve higher throughput.

9.2.3 MPLSand MPDV Path Calculation Process

MPLS calculates more paths than MPDV because MPLS can calculate paths that are not
suffix matched. In other words, MPDV isrestricted inits path calculation because it aways
calculates suffix matched paths. Figure 9.5 shows how this restriction influences the paths
that an algorithm can calculate.

Figure 9.5 : An example of the capacity removal path calculationto V1.
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In Figure 9.5, the boxes denote routers and curves denote paths. Here, capacity removal
paths to N1 are being calculated. Assume that N2's shortest path to N1 is the dotted path
labeled A, and that N3's shortest path to N1 is the solid path C'. Assume further that rank
= 2, and all links have equal capacity (i.e. calculating link digoint paths). In the MPLS
algorithm, N3 will calculate two paths. the first path is ', and the second one passes
through N2 via the dotted curve and connects to path 5. Using MPDV, however, N3 will
calculate only one path. This is because N2 will select and propagate only path A and
discard path B, since path B isinadmissible because it has common links with path A. So
when N3 receives N2's advertised path A, N3 discards A because A isinadmissible due to
the links shared with path C'.

The calculation of non-suffix matched paths is precisely the reason MPLS calculates
more paths than MPDV. Recall, a path set P is suffix matched if and only if Vo € P, a =
(xoy...,2,), then (x;,... ,x,) € P,¥i,0 < i < n. Figure 9.6 shows the percentage of
non-suffix matched paths that MPLS calculates in this sparse topology. The percentage
of non-suffix matched path is the number of non-suffix matched paths divided by the total
number of paths calcul ated.

MPLS Percentage Non-Suffix Matched
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Figure 9.6 : The percentage of non-suffix matched paths calculated by MPLS in a 100
node, 170 link cluster topology.

The Figure 9.6 shows that at rank = 3, approximately 35% of the paths calculated by
MPLS are non-suffix matched. Because of these paths, MPLS s able to cal cul ate approxi-
mately 22% more paths than MPDV (Figure 9.4). These extra paths, in turn, contribute to
higher MPTCP performance.
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9.24 MPLSand MPDV Throughput Summary

This section analyzed the throughput of MPLS and MPDV capacity removal routing al-
gorithms. The experiments show that even with relatively sparse topologies (100 nodes
with 195 links and 170 links), MPLS and MPDV were able to calculate paths that alow
end-hosts to increase their throughput. Our experiments demonstrate that the capacity re-
moval MPLS and MPDV agorithms, in conjunction with MPTCP, substantially increase
end-to-end throughput compared to TCP using single path routing.

Further examination of MPLS and MPDV shows that under certain circumstances,
MPDV does not compute as many paths as MPLS. The reason is that capacity removal
MPLS can calculate non-suffix matched paths, but capacity removal MPDV cannot. This
difference in path computation results in lower MPDV performance in scenarios where
calculating only suffix matched paths produces a significantly lower number of paths. The
performance impact of this disparity isreflected in MPTCP's achievable throughput.

9.3 Latency and Message Drop Performance

The previous section showed that multipath routing can be of immediate benefit to today’s
applications by offering increased network throughput. The purpose of this section is to
show that multipath routing can also be used to reduce end-to-end network latency and
message drop probability (or increase likelihood of message delivery), two performance
metrics also of immediate benefit for today’s applications.

To measure these two performance metrics, this section uses a multipath ping program
that measures observed round-trip latency and message drops. Round trip latency is an
important performance metric for interactive applications such as telnet and web sessions,
and message drop probability is used for applications that want to increase the reliability
of their message transmission.

To provide aredlistic traffic scenario, the multipath ping programis run in the presence
of the background traffic generated in the throughput experiments. Simulation results show
that under all traffic conditions, the multipath ping program achieves |ower round-trip delay
and alower number of message drops compared to a single path ping program. The con-
clusion of our experimentsis that in addition to providing increased throughput, multipath
routing simultaneously allows decreased round-trip delays and message drop probabilities.
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9.3.1 TheMultipath Ping Program

The operation of a ping program is very simple: given a destination address, the program
sends a message to the destination, and upon receiving this message, the destination’s ping
program sends the message back to the sender. Round-trip latency is then calculated by
subtracting the time the sender sends the message by the time the sender receives the reply
message.

The single path ping program does exactly as described in the ping program specifica-
tion: the sender sends a ping message to its destination; the destination then echos a ping
upon receiving the ping message. However, because the multipath ping program can send
messages of more than one path, multipath ping can selectively choose the lowest delay
path to the destination, and similarly, the destination can choose the lowest delay path back
to the sender. The multipath ping program devel oped in this section uses the minimal delay
path to and from destinations.

The multipath ping program operates as follows. Given adestination address, the sender
duplicates the ping message on all available paths to that destination. Upon receiving the
first ping message, the destination immediately sends areply message on all available paths
back to the original sender. The destination ignores subsequent ping messages that arriveon
different but slower paths. When the original sender receives a destination’s reply (thefirst
one), it calculates the round-trip time. The sender also ignores the subsequent destination
reply messages that arrive on slower paths. If the sender does not receive any ping message
replies, the message is counted as a dropped message.

Notice that in addition to minimizing delay, the multipath ping approach also reduces
the probability that a ping is dropped by duplicating messages on multiple paths. Although
this duplication approach may not be appropriatefor many interactive applications (because
it sends more messages), there are applications that need to send urgent messages and want
these messages to have minimum transmission time and message drop probability.

For those applications that wish to lower communication delays without message du-
plication, they (or a low latency protocol) can periodically “ping” al available paths and
then solely use the path that provides the lowest measured delay. For example, a possible
low latency protocol could duplicate only retransmitted messages on multiple paths. This
approach not only urgently retransmits a dropped message, but also uses this retransmitted
message to find the current least delay path. The newly selected least delay path is then
solely used for subsequent message delivery, until the next message drop.

For the purpose of this experiment, the multipath ping protocol described above mea-
sures the appropriate performance metrics: the reductions in round-trip latency and mes-
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sage drops that a multipath network can provide. The simulation results are presented next.

9.3.2 Round-trip Latency

Both the multipath and single path ping programs are implemented in our network sim-
ulator. The experimental configuration used to measure their performance is the same as
the one used in the first throughput experiment: the 100 router, 195 link cluster network
topology, MPTCP and SPTCP generated traffic, and the MPLS capacity removal routing
algorithm (the performance results capacity removal MPDV are similar and not shown
here).

In the latency experiment, each ping host sends a ping message to a randomly chosen
destination. The time between a host’s transmission of two consecutive pings is exponen-
tially distributed (a Pareto distribution with average of 5 seconds). The latency and the
percentage of dropped pings of single path ping (SP_ping) and multipath ping (MP_ping)
aregivenin Figures 9.7 and 9.8.

MPLS: Latency Measurements (100N-195L)
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Figure 9.7 : The measured round-trip latency observed by the MP_ping and SP_ping pro-
grams. The experiment is conducted using a 100 node, 195 link cluster network.

Thegraphin Figure 9.7 showstwo latency measurements: the latency of 3-path MP_ping
on a multipath network where the background traffic uses 3-path MPTCRP, and the latency
of SP_ping where the background traffic uses SPTCP. In this figure, the x-axis denotes the
background traffic burst sizes, and the y-axis denotes the average latency observed by the
each ping program. Notice that the 3-path MPTCP generates more background traffic than
SPTCP. That is, for the same background burst size (x-axis), the multipath network pro-
vides higher overall throughput than the single path network. In addition to offering higher
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throughput, this experiment shows that multipath routing also provides lower round-trip
latency and message drop probability.

The latency graph in Figure 9.7 shows that as the background traffic increases (indi-
cated by increasing the burst size), the round-trip latency increases correspondingly. This
is expected because higher network traffic increases router queuing, which in turn increases
network delay. In addition, the graph shows that as network traffic increases, the dispar-
ity in round-trip latency between MP_ping and SP_ping also increases. The reason is that
at low network traffic, all paths have relatively low queuing delays, so the delay difference
between the minimal delay path and the static metric shortest path isrelatively small. How-
ever, at high network traffic, the delay differences among multiple pathsincrease; hencethe
increase disparity in SP_ping and MP_ping round-trip latencies.

9.3.3 Message Drop Probability

The second performance metric measured message drop probability. Message drop proba-
bility isdefined asthelikelihood that a transmitted message isnot received at its destination:
if a message is duplicated, then the message drop occurs when all duplicates are dropped
by the network and never reaches the intended destination.

The multipath ping program is used to measure message drops. Because ping messages
and their replies are sent on multiple paths, a message drop occurs only if every path to
or from the destination drops the ping or reply ping messages. That is, assuming equal
likelihood of packet drops, if the drop probability of one path is p, then drop probability
of SP_ping is 2 * p (a message has to travel to and from the destination), and the drop
probability of MP_pingis 2+ p™ , where K isthe number of paths between nodes. The drop
measurements for SP_ping and MP_ping are given in Figure 9.8.

The graph in Figure 9.8 shows the percentage of dropped pings observed by SP_ping
and MP_ping. The x-axis shows background traffic burst sizes, and y-axis shows the per-
centage of dropped ping messages. The results shown in this figure are gather in the same
simulations that produced the latency measurements in Figure 9.7. The graph confirms
our analysis that the MP_ping program incurs less message drops compared to SP_ping.
At high network utilization levels (e.g. background burst sizes > 600 packets), MP_ping
incurs approximately half the drops compared to SP_ping.

However, given that MP_ping uses three paths, one expects the MP_ping to drop mes-
sages more seldom than 50% of SP_ping drops. One factor causing higher MP_ping drop
rateisthat MP_ping’s background nodes (which use 3-path MPTCP) generate, according to
Figure 9.1, approximately two times more traffic than SP_ping’'s background nodes (which
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MPLS: Dropped Messages (100N-195L)
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Figure 9.8 : The measured ping drop percentages of MP_ping and SP_ping. The results
shown are collected in the same experiments that produced the latency measurements in
Figure 9.7.

use single path TCP). Because of the higher traffic rates, the probability, p, that a path will
drop a packet in amultipath environment is higher than in a single path environment.

The spikes and dips of message drop percentagesin Figure 9.8 are a product of random
traffic generation. Because the initiation times of ping messages and background traffic
use a random distribution, the spikes are the result of a combination of an unusually high
traffic generation in the presence of ping measurements. Similarly, the dips are the result
of the opposite scenario. The two curves have similar shape because their traffic use the
same random distribution seed. However, since MPTCP nodes achieve higher throughput
(thereby reducing transmission times), the background traffic sending times slightly differ
between TCP and MPTCP sending nodes; thus the two curves do not have precisely the
same shape.

9.34 Latency and Drop Probability Summary

This section shows that in addition to increasing throughput, a multipath network can also
increase application performance through decreased round-trip latency and message drop
probability. To quantify these performance improvements, a multipath ping program is
developed that uses multiple paths to minimize round-trip latency and message drops.

Using a 100 node Internet-like cluster network and realistic MPTCP/TCP background
traffic, we measure the performance of the single path (SP_ping) and multipath ping (M P_ping)
programs. Simulation results show that not only do multipath networks increase through-
put compared to single path networks (Section 9.2), multipath networks simultaneously
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allow the MP_ping program to achieve lower round-trip delay and lower drop probability
compared to the SP_ping program on a single path network.

The conclusion of our performance experimentsis that the additional resources offered
by a multipath network can be effectively used to increase network performance, measured
in throughput, latency, and message drop probability.

9.4 Routing Costs

The previous sections show the improvements in throughput, latency, and message drops
offered by the capacity removal MPDV and MPL S routing algorithms. This section exam-
ines the overhead incurred by the two routing algorithms. The runtime cost of MPDV and
MPLS, as stated in Section 4.2.3, consists of three components.

1. Packet forwarding: overhead of per packet path specification and additional router
processing needed to deliver packets on multiple paths.

2. Router Storage: additional memory needed to store and support multiple paths.

3. Path computation: routing and algorithmic overhead of calculating multiple path.
This refersto number of routing messages and bytes exchanged between routers and
the amount of CPU needed to compute paths.

Of thethree cost categories, thefirst isthe most performancecritical because packet for-
warding directly influences the speed in which packets are delivered through the network.
Packet forwarding consists of two components. path specification and router forwarding.
First, given that every packet must specify its path, path specification must be space effi-
cient to decrease the cost of transmitting and storing packets. Second, router’s processing
for each packet should be efficient in order to reduce packet forwarding time.

The second and third cost categories affect the feasibility of multipath routing. That
is, maintaining low router storage and computation overhead is important because if they
incur prohibitively high costs, multipath routing cannot be feasibly implemented in real
networks. However, these two costs do not directly affect network performance because
they do not directly influence packet forwarding speed.

The result of thissection’s cost analysis shows that capacity removal MPLS and MPDV
efficiently implements packet forwarding. Because of the suffix matched forwarding method,
data packets in both routing algorithms specify their paths using small, fixed-length path
IDs. These IDs, inturn, allow fast path lookups which speed packet forwarding time. This
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section al so shows that both routing storage and route computation costs are reasonably low
such that we believe MPLS and MPDV can be feasibly implemented in current routers.

The remainder of this section presents the cost results for each category in the order
presented above. The next section addresses the per packet forwarding overhead, followed
by router storage and multipath computation overhead.

9.4.1 Per Packet Forwarding Overhead

This subsection examines the per packet forwarding overhead for the capacity removal
MPDV and MPLS algorithms. The per packet forwarding overhead refersto 1) the amount
of extra information (in bytes) that each packet needs in order to specify the path to its
destination, and 2) the additional router processing needed to forward these packets on
their specified paths. Itis critical to minimize these two costs because they are incurred on
every data packet.

Path 1D Specification

The suffix matched forwarding method is used in both MPLS and MPDV implementations.
This forwarding method guarantees fixed-length path 1Ds for suffix matched path sets.
In particular, the method guarantees the number of bits needed to specify () paths to a
destinationis [log,(())] bits. InMPDV, each router hasat most &* paths to each destination,
where K is the rank. Therefore, the per packet forwarding overhead is [log,(K')| bits,
and the total cost of path specification is therefore the size of the destination address plus
[log, (K)].

In MPLS, however, this analysis is not so straightforward. Because routers have to
forward packets on non-suffix matched paths, a router may have to specify more than K’
paths to a destination. For a destination D, the actua number of paths a router has to
distinguish to D is number of paths the router calculates to D plus the number of non-
suffix matched paths to D that passes through the router (see Figure 8.3). That is, for a
destination D, given that a router calculates K’ paths and that p’ non-suffix matched paths
to 1) pass through the router, the path specification overhead is [log,( K’ + )] bits.

This additional per packet forwarding overhead is the price MPL S pays for computing
more paths. Notice that the per packet overhead is still [log,(Q)] bits, where @ = K’ + p'.

To make the number of MPLS paths more concrete, in the 170 link topology with
K = 3, the percentage of non-suffix matched paths is 30%. Therefore on average, arouter
needs to specify approximately 2 K™ paths to adestination (if non-suffix matched percentage
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is 50%, then a router needs exactly 2/K".). In addition, because each non-suffix matched
path potentially needs a forwarding table entry on every router it traverses, the average
non-suffix matched path a router has to support is thus 2K L, where L is the average path
length. In the 170 link topology, L is 6. It turns out that the actual number of paths a
MPLS router needs to specify to adestination is much |less than this upper bound. The next
section, which focuses on router storage overheads, re-addresses this issue.

In both MPDV and MPL S implementations, 1 byteis used to specify the path ID. Thus
every MPL S router can support up to 2° — K non-suffix matched paths to each destination.
That is, given that X' = 3, and L = 6, the number of non-suffix matched paths a router
needs to distinguish is 36 (according to the 2KL formula above), which is much less than
2% = 256. Indeed, in all our simulations, 1 byte was sufficient to uniquely identify all paths
to a specific destination.

In summary, the suffix matched forwarding method used in MPLS and MPDV provides
efficient guarantees on the size of per packet path IDs. The per packet overhead of path
specification for both MPLS and MPDV s fixed-size and small. In MPDV, because it
calculates suffix matched paths, the path ID size is precisely [log,(K)], where K is the
rank. In MPLS, where routers cal culate more paths to destinations (via non-suffix matched
paths), the cost is higher. However, in practice, a 1 byte path ID is sufficiently large enough
for MPL S routersto distinguish al paths to a destination.

Packet Forwarding

Using suffix matched forwarding, the packet forwarding process consists of receiving the
packet, looking up the packet’s destination address and path 1D to find the next-hop address,
updating the packet’s path 1D, and then forwarding the packet to next-hop router/network.
Like the per packet forwarding overhead, efficient packet forwardingis critical to network
performance because it directly affects the speed at which packets are delivered to their
destinations.

The packet forwarding overheads incurred by the suffix matched forwarding method are
1) the additional path ID lookup to find the next-hop address, and 2) updating the packet’s
path ID.

With respect to forwarding table lookup, the state-of-the art single-path IP forwarding
lookup methods hash on destination addresses to retrieve the next-hop address [48, 160].
In a multipath environment, an additional path ID lookup is required. Because of suffix
matched forwarding, the path ID is a small integer and therefore can be easily indexed (or
hashed) once the destination’s forwarding table entry isfound. This requires one additional
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lookup and thus nominally affects routing lookup time. Notice that because hashing is
used to determine next-hops, the number of extra paths calculated by a multipath routing
algorithm does not have a linear affect on routing lookup time. In addition to hashing
speeds, another issue is the size of the forwarding tables. The larger the forwarding table
size, the slower or more expensive the memory. The next section shows that MPDV and
MPLS forwarding tables are, on average, only a factor of A larger than in single path
routing.

The second forwarding overhead is updating a packet’s current path 1D with the path 1D
in the forwarding table. This updating process involves writing the new path ID (stored in
the router’s forwarding table) into the packet’s header. Since high speed network switches,
such as ones in ATM [130], also perform this procedure on every data unit, we believe
that the path 1D update procedure can be efficiently implemented in routers as well. More-
over, there are proposed router architecturesthat explicitly use path 1D updates to forward
packets [134]. Due to these advances, we believe updating path IDs can be efficiently im-
plemented in multipath routers and will not significantly degrade their packet forwarding
efficiency.

9.4.2 Router Storage Overhead

Router storage refers to the amount of memory a router needs in order to support a rout-
ing agorithm. In high speed routers, there are two types of router memory, fast memory
(e.g9. SRAM) and general purpose memory (e.g. DRAM). Since packet forwarding is per-
formance critical, fast memory is typically used to store router forwarding tables, thereby
allowing fast forwarding table lookup [48]. Genera purpose memory is used to store all
other information that a routing algorithm uses.

With respect to fast memory, it isimportant to keep the size of forwarding tables small
because larger tables imply slower fast memory access times and/or more expensive (in
terms of Dollars) router costs. However, since information stored in the general purpose
memory is not performance critical and that the memory isinexpensive, the general storage
memory constraint isthat it needs to be reasonably low so that multipath routing algorithms
can be feasibly implemented in routers.

The experiments measuring router storage overhead is thus divided into forwarding
table size and general router storage size. Their measurements are given below.
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Forwarding Table Size

As proven in Chapter 6, the suffix matched forwarding method guarantees that a router’s
forwarding table size is proportional to the number of paths the router has to al destina
tions. Given () paths to each destination, a router would then need O(N Q) storage for
pathsto al destinations. This analysis applies directly to capacity removal MPDV because
every MPDV router has at most A paths to any destination; thus the storage requirement
per MPDV router isO(K N). This storage requirement isonly afactor A" morethan single
path DV, which requires O( V) storage.

Capacity removal MPL S storageis not as simple to analyze because the centralized ca-
pacity removal algorithm can calculate non-suffix matched paths; thereforea MPLS router
may have to store non-suffix matched paths that it did not calculate. In MPLS, a router
needs to store, for each destination D, the paths it calculates to D plus the non-suffix
matched pathsto D that pass through the router. Notice that this sum is also the number of
paths a MPLS router has to distinguish. From the analysis in the previous chapter, the per
MPLS router forwarding table sizeis O(K'N 4+ NplL), where p is the average number of
non-suffix matched paths to a particular destination that pass through arouter, and 1 isthe
average non-suffix matched path length.

However, in reality, the number of additional forwarding table space is much less be-
cause many non-suffix matched paths do not need additional forwarding table entries. Fig-
ure 9.9 shows an example.

(ns) E(nel

Figure 9.9 : An example of anon-suffix matched path set. Here, N5 does not need to store
N1 and N3's non-suffix matched paths.

In Figure 9.9, nodes N1 - N4 computes paths to N6 that passes through N5, but N5 does
not cal cul ate the corresponding suffix of the path to N6. Thefigure showsthat thereare four
non-suffixed matched paths, shown in dotted lines. When router N1 and N3 attemptsto find
amatch for their paths to N6, they will find the correct match in N2 and N4 respectively;
therefore, as far as N1 and N3 are concerned, their paths to N6 is suffix matched. In this
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example, N2 and N4 will fail to find matches in N5. Using the explicit routing method,
N5 will add two forwarding table entries (i.e. paths) to make N2 and N4's paths suffix
matched. Notice that adding these two pathsin N5 automatically makes N1 and N3's paths
suffix matched as well.

Due to this property, the actual number of extra forwarding table entries are much
smaller than the worse case analysis. Figure 9.10 shows the actual forwarding table storage
of MPDV and MPLS routing algorithms on the 100 node, 170 link sparse topology. We
show the numbers for a sparse topology because for MPLS capacity removal paths, the
number of non-suffix matched paths increases as network connectivity decreases.
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Figure 9.10 : The aggregate forwarding table storage for MPLS and MPDV in a 100 node,
170 link cluster network.

In Figure9.10, the y-axis shows the aggregate router MPL S and MPDV storage require-
ment, in bytes, and the x-axis shows the rank of the routing algorithm. Each forwarding
table entry is 12 bytes. Not surprisingly, the curves are heavily correlated with the number
of paths each algorithm calculates (Figure 9.4). Recall from Figure 9.4, MPLS calculates
22% more paths than MPDV at rank = 3. From Figure 9.10, the extra 22% paths (non-
suffix matched paths) that MPLS calculates tranglate into approximately two times more
forwarding table space. Thus, 2NK ~ NK 4+ Npl, — 2K ~ K 4+ pl. — plL ~ K.
That is, experimentally, pL is approximately K.

Since multipath routers compute K paths to every destination, one expects that router
forwarding tables need at least K times more storage than their single path counterparts.
Indeed, our results show that MPDV adheres to this lower bound while capacity removal
MPLS needs more forwarding table space for non-suffix matched paths. Our experiments
show that for 100 node 170 and 190 link Internet-like networks, the storage complexity is
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roughly 2N K.

To put these asymptotic complexitiesin perspective, according Figure 9.10, computing
3 paths between nodes requires, per router, approximately 4,500 bytesin MPLS and 2,000
bytesin MPDV (divide the y-axis by 100). Given that a 100 node routing domain is quite
large, the forwarding table sizes measured here are realistic and applicable to many routing
domains. Because the actual sizes of the forwarding tables are fairly small, we believe the
amount of fast memory needed to store multipath forwarding tables are not prohibitively
costly nor will the performance of the memory be significantly slow when compared to
current, single path routing requirements.

General Router Storage Requirement

The second router storage category is general router memory, which stores a routing al-
gorithm’s non-performance critical information. Although not performance critical, this
storage requirement nevertheless needs to be reasonably low so that multipath routing al-
gorithms can be feasibly implemented. This section experimentally measures the general
memory requirements of capacity removal MPDV and MPLS routing agorithms.

In general router memory, the information stored primarily includes the data needed for
a routing algorithm to perform path computation. Thus for MPDV, a router stores infor-
mation of every path it computes, which includes the path’s cost, next-hop, and capacity-
source route. In MPLS, a router stores the most recent L SPs the router has received from
other routers and the source routes of non-suffix matched paths. From the storage analysis
in Chapter 8, the per router storage complexity isO(NK L) and O(NM + NplL) for ca
pacity removal MPDV and MPLS respectively. To place these complexitiesin perspective,
Figure 9.11 shows the router aggregate general storage cost for the 170 link network.

In Figure 9.11, the x-axis shows the rank of the labeled routing algorithm, and the y-
axis shows the aggregate general router storage (in Kbytes) that each algorithm requires.
Because the MPDV cost is proportional to the number of paths calculated and the aver-
age path length, the cost curve of MPDV has the same shape as Figure 9.4, which shows
the number of paths MPDV calculates. The general storage requirement for the 195 link
network has the same properties as shown in Figure 9.11.

For MPLS, the general storage cost consist of storing LSPs (O( /N M)) and the source
routes for non-suffix matched paths. Since the number of non-suffix matched paths in-
creases with rank, the MPLS curve in Figure 9.11 increases as rank increases. Although
Link State based algorithms typically have to store other information such as the network
graph and different data structures used to compute paths, these costs are not shown in here
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Aggregate General Router Storage Requirement
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Figure9.11: Thetotal genera storage cost for MPLS and MPDV in the 100 node, 170 link
cluster network.

because they are heavily dependent on specific implementations of the path calculation
algorithm.

To put these storage requirements in perspective, Figure 9.4 shows that each router
needs approximately 6 and 7.3 Kbytes of general memory to store the information needed
by MPDV and MPLSto calculate 3 paths per destination. Notice that these memories only
measure the information needed by the routing algorithm. In practice, a routing protocol,
which implements routing algorithm, would require additional memory for its internal data
structures. However, since protocol costs are need for both single path and multipath rout-
ing, these costs do not affect the additional costs incurred by a multipath routing algorithm.

Given that the additional per router general storage requirement of MPDV and MPLS
are relatively small (on the order of Kilobytes) in comparison to the amount memory in
routers (on the order of Megabytes), we believe that current router’s memory capacity can
satisfy the additional storage requirements needed by a multipath routing agorithm.

9.4.3 CPU Usagein Path Computation

Router computation cost refers to the CPU cycles needed to compute multiple paths. This
cost is not performance critical because path computation istypically performed on a sepa-
rate processor than ones that forward packets [92]; furthermore, path computations are rel-
atively infrequent compared to packet forwarding. Nevertheless, this cost needs to be low
so that path computations can be performed in reasonable time. This subsection analyzes
the computational complexities of the MPDV and MPLS capacity removal agorithms.

For the capacity removal MPLS algorithm, the computation analysis is straightfor-
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ward. The algorithmic complexity of the centralized, naive capacity removal algorithm
iISO(KNE«lg(F)). Inaddition, since MPL S uses the suffix matched forwarding method,
aMPLS router needs to compute, for each destination, paths to that destination from itself
aswell as from al of the router’s neighbors; therefore, the naive computation complexity
iISOIMKNE *1g(F))), where M isthe average number of neighboring routers.

In MPDV, the amount of computation depends on the number of paths each router
has to examine and the length of those paths. This is more than the complexity of single
path DV which depends only on the number of paths calculated. The reason is that the
capacity removal a gorithm requires examination of each link in apath. Given that MPDV
computes A” times more paths and average path length is L, the computation complexity
is O(K L) more than SPDV. Given that the average computational complexity of SPDV is
O(N?*M?3(In(M))?*) (Section 8.1), the average complexity of the capacity removal MPDV
agorithmisthus O( K L « N2 M?(In(M))?).

We believe optimization such as dynamic programming for MPLS and efficient path
encoding for MPDV can reduce the CPU overhead of capacity removal path computation.
However, despite the lack of these optimizations, the complexities of the two algorithms
are reasonably low; therefore, we believe that they can be feasibly implemented in current
routers.

9.4.4 Routing M essage Cost

Routing message cost refers to the number of messages needed to propagate information
in order to perform route computations. Because our multipath implementations use static
metrics, routing message cost is incurred only during topology changes, which occurs rel-
atively infrequently compared to data forwarding. Nevertheless, this cost cannot be pro-
hibitively high because it may affect data forwarding speed (Chapter 3). This subsection
analyzes the message cost of MPLS and MPDV algorithms.

As stated in Section 8.1, the average message complexity of capacity removal MPDV
iSO(N*M?K L(In(M))?*); afactor K. more than the SPDV. This complexity is derived
from the product of the size of each MPDV P and the number of MPDV P's transmitted: the
size of each MPDVPis O(N K L), and the average number of MPDVP's transmissions is
O(NM?3(In(M))*).

For MPLS, the routing message overhead comes in two categories. The first category
is the messages needed to disseminate topology information. The requirement is the same
as the single path LS agorithm, which is O(NF). Notice that compared to SPLS, the
MPLS topology messages require an additional capacity specification per link (1 byte);
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this additional cost does not affect the MPL S message complexity.

The second MPL S message overhead is the cost needed to support non-suffix matched
paths. Our implementation of MPLS uses the explicit routing method that source routes
non-suffix matched paths. This method does not require any additional computation, but in-
curs message cost proportional to the number of non-suffix matched paths and their lengths.
Thus, the explicit routing message overhead is O(NpL).

However, since the number of suffix matched paths is topology dependent and not all
non-suffix matched path need to be source routed (illustrated in Figure 9.9), the analytical
bound does not provide a concrete bound. Therefore, we experimentally quantified this
cost. Given that message costs increase as network connectivity increases (refer to message
complexity analysis), Figure 9.12 shows the routing message cost for MPLS and MPDV
in the 195 link topology. The message costs for the 170 link topology exhibit similar
characteristics and are not shown here.

Routing Message Costs
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Figure9.12 : The routing message cost for capacity removal MPLS and MPDV agorithms.
The message costs shown are the total number of bytes each routing a gorithm transmitsfor
path computation. MPL S uses the explicit routing technique to resolve non-suffix matched
paths.

The x-axisin Figure 9.12 denotes the rank of each algorithm, and the y-axis shows the
routing message cost (in bytes) needed to compute paths between nodes.

As Figure 9.12 shows, the MPLS message costs increase sightly with the number of
paths calculated between nodes. At rank = 1, the MPLS curve shows the cost of LSP
broadcasts, which is constant regardless of the rank value. Notice that the MPL S message
cost increases slightly with rank. Thisincrease is attributed to the message cost of explicit
routing of non-suffix matched paths. The graph shows that the maximum message overhead
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incurred by source routing (at rank = 5) is approximately 10% of the cost to broadcast L SPs.
This means the explicit routing message cost O(NplL) is approximately 10% of the LSP
broadcast cost.

For MPDV, noticethat the message cost of computing 2 paths per nodeis approximately
the 2 times more than computing one path; however, the cost of computing 3, 4, and 5
paths are only slightly more than computing 2 paths. The reason is that the message cost
of MPDV is proportional to the number of paths actually computed. Notice that the curve
in Figure 9.4, which shows the number paths MPDV calculates, has the same shape as
the MPDV message cost curve in Figure 9.12. This confirms the analysis that MPDV'’s
messaging cost is proportional to the number of paths computed.

In addition to measuring message costs to compute all-pairs paths, another way to gauge
message cost isto measure the number of messages needed by arouting algorithm to react
to asingle topology change (e.g. link failure or recovery). This measure of message cost is
giveninFigure9.13. Thisfigure showsthe message cost incurred by each routing algorithm
to recompute paths when a random link fails and subsequently recovers (i.e. two topology
changes).

Routing Message Cost with Topology Changes
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Figure 9.13 : The routing cost of MPDV and MPLS for a single link failure and recovery.
The costs show the total number of bytes each routing algorithm transmits to adapt to one
link failure and recovery.

In Figure 9.13, the x-axis denotes the rank, and y-axis shows the routing message cost
when a link fails and subsequently recovers. The MPDV cost curve shows that routing
message cost for an isolated topology change has the same general shape as the cost curve
in Figure 9.12. However, the proportion of cost difference between 1-rank MPDV and 2-
rank MPDV is higher. Thisis because the 2-rank MPDV has twice the amount of affected
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paths per topology change, resulting in twice the MPDV message size and two times the
amount of updates

The MPLS cost includes topology broadcasts and source routes to establish non-suffix
matched path IDs. Again, MPLS costs increase as rank increases. The cost curve in Fig-
ure 9.13 shows that the maximum source routing cost (at rank = 5) is approximately the
same as the cost for asingle MPL S failure and recovery broadcast.

The experimentsin this section show that the message costs of both complete and incre-
mental path computations are relatively low. Figures 9.12 and 9.13 show that MPDV costs
are proportional to the number of calculated paths and that capacity-source routes con-
tribute approximately 1. times more routing message cost compared to SPDV. For MPLS,
our experiments show that the additional cost of source routing non-suffix matched paths
are comparabl e to the message cost of broadcasting topology changes.

Given that current link speeds are on the order of Megabits to Gigabits per second and
that multiple paths are recomputed only when topology changes, the additional multipath
message costs, as shown in Figures 9.12 and 9.13, consume a negligible proportion of
link bandwidth. Therefore, with the combination of low message overhead, infrequency of
route recomputations, and high link bandwidth, we believe the extra messages incurred by
MPDV and MPLS will consume a negligible amount of link bandwidth.

9.4.5 Routing Cost Summary

The various costs of executing MPDV and MPLS routing algorithms can be divided into
the following five elements: 1) per packet path specification, 2) per packet forwarding time
(which depends on forwarding table storage), 3) router general storage requirement, 4)
router CPU usage, and 5) routing messages. The first two cost elements are performance
critical because they are incurred on every packet and directly affect packet delivery times.
The last three categories, athough not performance critical, need to be low in order to
make the implementation of multipath routing feasible in large-scale networks. The five
cost categories are summarized below.

Using the suffix matched forwarding method, the per packet overhead of specifying
suffix matched pathsis O([lg(K)]), where K is the number of paths provided a between
node pair. This bound holds for al MPDV based algorithms and for MPL S agorithms that
compute suffix matched paths. For MPLS that uses non-suffix matched path calculation
algorithms, the per packet overhead to specify pathsto adestination D isO([lg(K + p)]),
where p is the average number of non-suffix matched paths to D that passes through a
router. In our experiments p isvery small, p < 5.
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The second cost category, per packet forwarding cost, is aso low when using suffix
matched forwarding. Because the path IDs are small integers, forwarding packets on mul-
tiple path requires only one additional hash lookup, which has minimal impact on router
forwarding speed [48,149,160]. In addition, the suffix matched forwarding allows compact
storage of paths in forwarding tables: the MPDV forwarding table complexity is O(N K),
K times more than single path DV. For non-suffix matched MPLS (e.g. capacity removal
MPLS), arouter’s forwarding table complexity is O(NK + NplL)). Inour experiments,
the MPLS storage complexity no more than 2N K. Thus the suffix matched forwarding
method’s small, fixed-length integer path IDs not only have low per packet overhead but
also allow efficient packet forwarding.

Thethird cost category, general router storage, is also low. General router storageis not
performance critical because the information stored in these memories do not directly affect
packet forwarding efficiency. In our implementations, the per router storage for MPDV is
O(NKL), KL times more than single path DV, and O(NM + NpL)) for MPLS routers.
From our measurements, we believe the memory requirementsfor both MPDV and MPLS
can be satisfied by today’s routers.

Router CPU usage is the fourth cost category. Because more paths are calculated be-
tween nodes, the CPU complexities are higher for multipath routing algorithms, compared
to their single path counterparts. In MPDV, the CPU complexity usage is proportional
to the number of paths examined and their path length (O(N*M°K L(in(M))?)). This
is a factor KA’ more than SPDV. For SPLS, the computation complexity of calculating
shortest pathsis O(E « lg( E')), whereasfor MPLS, itisO(MW). Here W isthe complex-
ity the multipath calculation algorithm. With the centralized capacity removal agorithm,
W = O(NKEFE *lg(F)). Although the actual path computation algorithm has higher
complexity, we believe that with the low frequency of path computation, better algorithm
design, and advance processor technology, the computation complexity of MPLS will not
be a performance bottleneck.

The last cost category is routing message overhead. A routing algorithm’'s message
overhead depends on its path calculation process. For LS based algorithms, message costs
are largely independent in the number and type of the paths calculated. This is because
L S messages broadcast topology information and are thus independent of path calculation.
However, because our capacity removal MPLS implementation source routes non-suffix
matched paths, its message complexity is O(NE + NplL). Thisis compared to SPLS
whose message complexity is O(N E). In our smulations, NE + NplL < 2N F, for both
computing all-pairs paths and for computing paths after asingle link failure or recovery.
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Routing Alg. | Per Pkt Cost Forwarding Tab. | CPU Usage Rout. Msgs Exp. Msgs
SPDV o(1) O(N) O(N2M?3(In(M))?) O(N2ZM?(In(M))?) 0.72MB
MPDV O(lg(K)) O(KNL) O(NIM?*K L(In(M))?) | ©(N2M?KL(in(M))?) | 56MB
SPLS o(1) O(N) O(Elg(E)) O(NE) 2.1MB
MPLS-SM O(lg(K)) O(NK) O(MW) O(NE) 2.1MB
MPLSNSM | O(lg(K +p)) | O(N(K +p)) | O(MW) O(NE + NpL) 2.2MB

Table 9.1 : A summary of the routing costs incurred by different routing algorithms. This
table shows the different routing cost categories for the single shortest path DV (SPDV),
capacity removal MPDV (MPDV), shortest path Link State (SPLS), suffix matched MPLS
(MPLS-SM), and non-suffix matched, capacity removal MPLS (MPLS-NSM) routing al-
gorithms. The last column shows the actual message cost measured for each algorithm on
the 100 node 195 link network (for the multipath algorithms, the costs shown are for com-
puting 3 paths). The variablesin the table represent the following: N the number of nodes,
FE the number of network edges, A number of paths calculated between a node pair, p the
average number of non-suffix matched paths to a destination that passes through a router,
L the average path length, and W the centralized algorithmic complexity of calculating &
paths between nodes.

Unlike L S based algorithms, the message costs of DV based algorithmsare closely tied
with path calculation because paths are computed through message exchanges. In SPDV,
the message overhead is ©( N? M?(in(M))?), and in MPDV, the message overhead is K
more, O(N*M>K L(In(M))?*). MPDV uses a factor of K L more because the capacity
removal algorithm needs to examine each path’s links, and there are &X' more paths to ex-
amine.

Again, we believe that given current network link speeds and the relative infrequency
of path computations, the extra message costs incurred by MPDV and MPL Swill consume
negligible network bandwidth.

Table 9.1 summarizes the different cost categories. The processing cost for packet
forwarding is omitted in the table because it is the same for all five algorithms.

9.5 Experimental Conclusions

This section presents the cost and performance of the capacity removal MPLS and MPDV
routing algorithms. The experiments were conducted on two relatively sparse Internet-like,
cluster topologies (100 nodes with 195 and 170 links). The results of these experiments
show that the implementations of capacity removal MPDV and MPLS routing algorithms
provide additional network resources to end-hosts at low routing costs and that end-hosts
can effectively use these additional resources to increase their performance.
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Network performance is measured in terms of throughput, round-trip latency, and mes-
sage drop probability. MPTCP is used to measure throughput, and a multipath ping pro-
gram is used to measure latency and drop probability. With respect to throughput, our
simulations show that MPTCP fully utilizes the paths provided by MPDV and MPLS. This
observation confirms two important properties of our multipath architecture. First, both
capacity removal MPDV and MPLS agorithms compute paths that provide more network
resources. Second, MPTCP effectively uses these resources to increase network through-
put.

In addition to throughput, our simulations show that multipath networks also allow
end-hosts to successfully increase their performance in terms of lower latency and reduced
message drop probability. A multipath ping program is used to measure these two perfor-
mance metrics. Compared to a single path ping program, the simulations show that the
multipath ping program achieves 15% lower round-trip delay and incurs approximately
50% less message drops.

The performance sections in this chapter show that multipath networks can provide
quality paths and that these paths can be efficiently utilized to increase end-to-end perfor-
mance.

The second focus of this experimental section is the runtime cost of multipath routing
algorithms. The five cost categories are 1) per packet path specification, 2) packet forward-
ing, 3) router storage, 4) path computation, and 5) routing messages. Of the five costs,
the first two are performance critical because they directly influence the speed of packet
delivery. Given that MPDV and MPLS both use the suffix matched forwarding method,
these two costs are kept at aminimal: fixed-length per packet path IDs, one additional path
ID lookup per packet, and small forwarding tables. For the other three cost categories, our
experiments show that their overheads are reasonably |ow, thereby making the implemen-
tation of multipath routing possible for large-scale data networks.

The conclusion of this chapter is that multipath routing can provide substantial end-to-
end performance improvement, and we believe that the costs incurred by multipath routing
algorithms can be satisfied in modern networks.
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Chapter 10

Related Work

The research presented in this thesis builds on a large body of work. The purpose of this
section is to compare and present other work relating to dynamic metric and multipath
routing models. Section 10.1 presents related research in dynamic metric routing, and
Section 10.2 multipath routing.

10.1 Dynamic Metric Routing
Dynamic Metric Routing Algorithms

The ARPANET was one of the earliest testbeds for dynamic metric routing. Dynamic met-
ric routing was implemented in the early 1980's and used the Link State routing algorithm.
This traditionally static metric routing algorithm was modified to compute dynamic metric
paths in the following manner: every router continually monitors the costs of its outgoing
links. Whenever the difference between alink’s current cost and its last advertised cost ex-
ceeds a preset threshold, the router then broadcasts an L SP to reflect this cost change. The
L SP broadcast initiates a global path recomputation that incorporates the new link cost. A
dynamic metric Distance Vector algorithm can be implemented in a similar fashion.

Asdiscussed in Chapter 3, two primary disadvantages of thistype of routing algorithms
were observed and documented by Khanna and Zinky [94]. First, dynamic metric LS/DV
algorithms have the tendency to oscillate traffic from one area of congestion to another.
These routing oscillations underutilize network resources and exacerbate network conges-
tion. Second, the amount of routing resources used by both algorithmsis unpredictable and
hard to control. This problem isworsened because dynamic metric LS/DV'’s resource con-
sumption increases as network traffic increases, thereby competing for network resources at
atime when they are most scarce. These two disadvantages limit the wide use of dynamic
metric routing in today’s Internet.

The hybrid-Scout routing algorithm, to alarge extent, overcomes these two limitations
(see Chapter 3). Hybrid-Scout reduces route oscillation by independently calculating dy-
namic metric paths to a selected set of destinations, and its routing costs are easily con-
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trolled by Scout generating destinations. The key idea behind the hybrid algorithmis that
calculating dynamic metric paths to a selected set of “hot” destinations is sufficient in re-
ducing network congestion, and that such selective calculations can be done efficiently.
This idea is made feasible by the high degree of destination locality observed in network
traffic today.

Other Measures Of Dynamic Metrics

This thesis develops routing algorithms targeted for large-scale, packet switched wired
networks. Inthese networks, dynamic link metricsare typically used to measure the amount
of traffic experienced on a particular link. In other types of networks, however, dynamic
link metrics can be used to measure link properties other than traffic.

One such application of dynamic metrics have been applied to wireless, ad hoc mobile
networks. In these networks, computers are not physically connected but communicate
using wireless channels. The reliability of a connection between neighboring computers
depends on factors including distance, the number of interfering signals, etc. Because
not all wireless “links’ have the same signa strength, Dube et al. in [56] use dynamic
link metrics to measure the strength of a wireless connection (measured in terms of signal
strength). This link measure is dynamic because a wireless connection’s signal strength
changes as computers move.

In this context, the routing algorithm provides paths between nodes based not only on
path length, but also on the signal strength of each link on that path. In their implemen-
tation, packets are routed on paths that use stronger signal links over paths that do not.
The routing algorithm used in [56] is a variation of the dynamic metric Distance Vector
algorithm where route recomputations are triggered by link cost changes (Chapter 3).

We believe that the Hybrid-Scout algorithm can be applied in this network environment
to efficiently calculate strong signal paths. Like wired networks, effectiveness of hybrid-
Scout depends on the amount of destination locality in ad hoc networks. However, unlike
wired networks which may consist of tens of thousands of nodes, ad hoc networks are
typically small, on the order of less than fifty nodes. Given their size, the reduction in
routing cost of hybrid-Scout, compared to dynamic metric LS/DV agorithms, will not be
as significant as observed in large networks.
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Quality of Service Routing

The current Internet provides a best-effort service model: packets are delivered to their
destinations without guarantees on the success of packet delivery nor on delivery times.
However, with the emergence of applications such as IP telephony and video conferenc-
ing, many advocate that traditional best-effort networks should support mechanisms that
provide delivery guarantees [17, 29, 40, 86, 162].

These delivery guarantees are generally refer to as Quality of Service (QoS) [34, 91,
162,169]. The QoS of a pathistypically specified as a combination the path’s delay bound
(i.e., packets sent on this path will reach the destination in time less than ¢) and the path’s
available bandwidth (i.e., X amount of throughput can be obtained on this path before
packet drops). Before transmitting data, an application that requires QoS needs to specify
its QoS requirement and make reservations on the path to its destination (i.e. on every
router in the path). Once the reservation is made, the application is assured to receive the
requested QoS.

Notice, at any given time, the QoS requirement that a router can satisfy depends on the
QoS requests the router is currently supporting. That is, the probability arouter can satisfy
a certain QoS request is dynamic and depends on traffic. Thus, a dynamic link metric can
be formed to expresses the probability that a QoS request can be satisfied, and paths can be
computed to optimize this metric.

Indeed, there are several proposals to compute paths that consider QoS metrics [9, 11,
72]. Currently, there are two general approaches to implement QoS routing. Thefirstisto
use dynamic metric versions of the Link State or Distance Vector algorithms[9, 72] (refer
to Chapter 2 for their implementation). The triggering mechanisms allow the two routing
algorithms to calculate paths that maximize the probability of satisfying QoS requests.
Recall that in datagram networks, routing instabilities tend to occur in dynamic metric
routing because path recomputations can potentially shift alarge amount of data from one
congested area to another. However, this large traffic shift does not occur in QoS routing
because once a QoS path is reserved, packets traveling the path are not re-routed, even
though the current path between the source and destination may have been recomputed to
use a different path. That is, reserved QoS paths are pinned and packets traversing these
paths are not affected by subsequent path computations, thereby reducing large traffic shifts
and routing instabilities.

We believe the hybrid Scout algorithm be successfully applied to compute QoS paths.
However, because routing instabilities and costs are reduced in QoS based LS and DV
algorithms, we believe that the cost-performance benefits of hybrid Scout benefits will be
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less compared to ones observed in congestion-oriented dynamic metric routing.

The second approach to QoS routing isto dynamically calculate a QoS path given a QoS
request [10]. In this approach, whenever arouter receives a QoS request from a host, the
router dynamically computes a path with the highest probability of satisfying the request.
Once the path is calculated, the router then forwards the QoS request on that path. To make
this approach feasible, the chalenge is to reduce the amount of router processing needed
for dynamic path computation.

In addition to explicitly considering QoS constraints in the actua routing algorithm,
researchers have studied other methods to increase network QoS. One such approach to ex-
amine the impact of multipath networks. That is, given anetwork that offers multiple paths
between nodes, how can end-hosts best utilize these paths to better ensure their network
QoS to their destinations.

Roa and Batsell in [131] proposed a method which guarantees that end-hosts can trans-
mit their messages with minimal delay, given an accurate view of the network (e.g. up-to-
date information of router queues and traffic patterns). Cidon and Rom developed end-host
reservation algorithms to increase the probability of reserving QoS request on a multipath
network [39]. The different algorithms they developed make different tradeoffs between
the probability of satisfying a QoS request with the amount of network resources and time
needed to satisfy the request.

Algorithmsfor Highly Dynamic Networ ks

Another network environment which requires routing techniques similar to dynamic metric
routing is in highly dynamic networks. Highly dynamic networks are characterized by fre-
guent changes in network topology. These networks are typically wireless and highly mo-
bile. Abstractly, dynamic networks can be modeled as a dynamic metric networks where a
connected link has cost 1 and aunconnected link has cost infinity, and alink’s cost changes
between these two valuesto indicate the link’s connectedness (val ue 1) or disconnectedness
(valueinfinity).

Johnson and Maltz proposed a host-initiated routing algorithm for such networks [87]
called Dynamic Source Routing (DSR), which is similar to Scout [33]. The assumption
of their work is that the network topology changes so rapidly such that maintaining valid
routes to al destinations is infeasible. Thus DSR calculates paths on demand: whenever a
node wishes to transfer data to another node, the sending node initiates a path computation
to that node. DSR is similar to Scout in that small messages are flooded to cal cul ate paths.
However, they differ in several key aspects. First hybrid-Scout maintains paths between
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al nodes; in an environment such as the Internet, DSR’s on-demand path calculation is
prohibitively expensive. Second, DSR initiates path cal culation from the source, as oppose
to the destination. Third, Scout is guaranteed to converge on the shortest path, DSR ssimply
computes a feasible path. Fourth, DSR uses source routing, whereas hybrid-Scout uses
hop-by-hop forwarding.

Perkinsin [127] proposed a modification to DSR called the Ad Hoc On-Demand Dis-
tance Vector (AODV). This routing algorithm is a hybrid of DSR and DV for ad hoc net-
works. AODV uses DSR for on-demand route discovery of hop-by-hop routes and uses
the DV mechanism for invalidating the on-demand paths when link failures are detected.
Like the hybrid-Scout algorithm, AODV is an hybrid agorithm. However, unlike hybrid-
Scout where both the DV/L'S and the Scout component compute routes, the DV component
in AODV is used only to invalidate routes discovered by DSR (in a similar way the DV
component in hybrid-Scout invalidates Scout paths). Again, the AODV agorithm cannot
be directly applied to large-scale datagram networks because on-demand route discovery is
too expensive.

10.2 Multipath Routing

This section surveys related work on multipath routing. The discussion is organized as
follows: the first section describes other designs and/or implementations of multipath net-
works in comparison with the one proposed in this thesis. Section 10.2.2 discusses other
work specifically related to algorithms that calculate multiple paths, and the last section
surveys different proposed path forwarding methods.

10.2.1 Multipath Networksand Architectures
IBM SNA

The IBM Systems Network Architecture (SNA) network is a wide area network first de-
ployed in 1974 [70]. This network provides multiple paths between nodes because its
designers thought that the traffic generated by routing algorithms that adapt to network
failures/recoveries would incur prohibitively high routing costs® [6]. Therefore to account
for network failures, multiple paths between nodes are centrally pre-computed so that if one
path fails, other paths would still be operational. SNA also has a notion of multi-service

*Thisis known to be untrue today.
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and multi-option paths: the service type are interactive and batch which are used to dictate
packet priority.

Conceptually, the SNA multipath model is very different from the one developed inthis
thesis. First, the purpose of SNA's multiple pathsisto provide fault-tolerance without using
adaptive routing; whereas in our model, fault-toleranceis provided by the adaptiveness of
the routing algorithm, and multiple paths are used solely to increase network performance
and services. Second, path servicesin SNA are predefined. In contrast, the proposed mul-
tipath model is designed to accommodate future path services that have yet to be defined.

In practice, SNA also differs significantly from our proposed multipath network. First,
SNA’'s multiple paths are predefined and centrally pre-computed. That is, path computa-
tion is done centrally off-line where routing tables are distributed after this computation is
complete. Since SNA routing is not distributed and not adaptive, it cannot be practically
deployed in wide-area networks of today’s scale. Secondly, the SNA network restricts an
application to use only one path at atime, and the path is specified at connection time. On
the other hand, our multipath routing model allows full application freedom on the usage
of multiple paths.

Scalable Routing Architecture

Estrin et al. proposed amore recent multipath routing model targeted for today’slarge-scale
Internet environment called the Scalable Inter-domain Routing Architecture (SRA) [59].
This proposed multipath routing scheme supports two types of paths. Thefirst is the static
metric single shortest paths calculated by atraditional DV routing algorithm. Packets trav-
eling on these paths are hop-by-hop forwarded as in the current Internet. These “generic”
paths are calculated by routers, and it is expected that the majority of network packets will
use these generic paths. The second type of path called Type Of Service (TOS) path, is cal-
culated by end-hosts. Packets sent on TOS paths are forwarding using | P 1oose source rout-
ing [57]. Calculation of these paths requires end-hoststo first collect the network topology
information from routers and then individually calculate the desired path(s). Since there
are no restrictions on path calculation, applications in SRA can send packets on arbitrary
paths.

Although SRA and the multipath model considered in this thesis are targeted for the
same network environment, they are fundamentally very different. In SRA, packets trav-
eling on non-shortest paths (i.e. on TOS paths) are expected to be few in comparison to
packets on generic paths. This assumption is reflected in the difficulty in which TOS paths
are calculated and the inefficiency of the packet forwarding method. Whereas, in the mul-
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tipath model proposed, al paths are calculated with the same efficiency and packets are
forwarded the same way irrespective of the path they travel. In short, our multipath model
views packets traveling non-generic paths as the general case, whereas in SRA, they are
viewed as the exception. This perspective differenceis evident in each model’s path calcu-
lation and packet forwarding methods.

Detour

As mentioned in Chapter 2, Internet routing is decomposed into routing domains for scala-
bility reasons. Routing domains are typically divided by domain ownership, as opposed to
domain geographies. This causes routing inefficiency because the path between two geo-
graphically close nodes may actually traverse domainsthat are geographically very far from
the source and destination domains. In addition, inter-domain routing algorithms calculate
paths based on minimizing the number of domains traversed. This policy also gives rise
to sub-optimal routing because the time needed for a packet to traverse a domain depends
on the size of the domain, which is highly variable. The result of domain decompositions
and inter-domain routing policy frequently causes routing anomalies because minimizing
the number of domains in a path does not necessarily minimize path delay. For example,
sending a packet “directly” from domain A to B may take longer than sending the packet
“indirectly” from A to C and thento B.

The Detour project aims to overcome such routing efficiencies caused by these two
factors[8,136]. Detour’s approach isto establish a set of “smart” routers that communicate
with each other to setup a virtual network. The nodes of the virtual network are Detour
routers, and avirtual link connecting two Detour routersis the path in the physical network
that connects the two routers. Packets sent by one Detour router are tunneled [134] to its
neighboring router. The cost of each virtua link is computed dynamically by sampling
the link’s delay. In the previous example, Detour hopes that its routers will automatically
reroute packets sent from A to B through €' using this virtual network.

Detour also plans to support “ multipath routing”: if Detour routers detect that there are
multiple, virtual paths to a destination, the routers will distribute data among the multiple
paths. Notice that this type of multipath routing differs from the model proposed in this
thesis because end-hosts in Detour do not have control over which path to use. As stated
in Chapter 4, the absence of end-host control limits the performance gains of multipath
networks.

In short, Detour aims to address inter-domain routing inefficiencies by establishing a
virtual network that delivers packets based on actual observed path latencies (i.e. not based
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on the number of domains traversed). Detour also plans to support a form of multipath
routing where end-hosts do not have control over which path to send their packets.

We believe the Detour architecture may be used to incrementally deploy the multipath
routing model described in this thesis. Using the virtua network, Detour-like routers can
implement end-host controlled multipath routing. Details of this approach are given in
Chapter 11.

Specialized Networks

Another network environment where using multiple paths have been proposed and imple-
mented is in short-hauled networks [50, 106, 166]. Short-hauled networks are characterized
by tightly coupled network elements and are usually implemented in multiprocessor net-
works or switches. Examples of short-hauled networks are Banyan networks [140], Omega
networks, mesh topology networks [143], cube topology networks [37,55, 105, 143], gen-
eral multistage networks [49, 104], and internal ATM switching elements [ 76, 88, 145, 155,
164].

The goals for providing multiple paths in a short-hauled network are to decrease switch
blocking probability (e.g. switch overloading) and to increase fault tolerance [132, 161].
In addition to scale, the main conceptual difference between a short-hauled network and a
wide areanetwork isthat paths between nodes within short-haul ed networks are hardwired.
That is, paths between nodes are determined at network design/construction time, as oppose
to one that is dynamically determined and adapts to component failures.

Hardwiring pathsis possible in short-hauled networks because node addresses are cho-
sen so that the network can determine the path to a node by inspecting the node’s address.
In this well defined environment, short-hauled network designers are able to assign, a pri-
ori, multiple paths between nodes.

Unfortunately, the methods employed in these networks are not directly applicable to
wide area networks. The three main reasons are 1) wide area networks are not tightly
coupled, 2) the wide area network environment is dynamic (i.e. node and links may fail),
and 3) it isnot possible to pre-assign paths to nodes based on node address.

10.2.2 Multipath Calculation Algorithms

This section presents related work on multipath calculation agorithms. Unlike the mul-
tipath networks presented in the last section, the algorithms described here are concerned
with path computation and are generally not designed for a distributed network environ-
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ment. Nevertheless, these algorithms are important because they providethe basis on which
to build distributed multipath calculation algorithms.

Introductory algorithm text books such as [19,42, 108] provide basic path computation
algorithms. For more advanced graph algorithms, refer to [5].

Digoint Paths

The most obvious multipath calculation criteriaisto cal culate multipledigoint paths. There
are two types of path digjointness, node and link digointness. A set of paths between two
nodesis node (link) digoint if and only if all pathsin the set do not have any node (link) in
common [152]. Several algorithms are surveyed below.

The agorithm presented in [118] computes pair digoint paths between nodes such that
the total costs of the paths are minimal. Later work by [36] extended the algorithm to
compute K digoint paths with guaranteed total minimal path cost. Notice that both of
these algorithms do not guarantee that the least cost path isin the computed set.

Sidhu et al. developed a distributed multipath cal culation algorithm that cal culates node
digoint path and guarantees that the shortest path is in the calculated set [146]. This algo-
rithm calculates path from node X to Y by considering the relative position of ¥ on the
shortest path tree rooted at X. Alternate paths are calculated by finding cross edges that
connect Y to X. The two major drawbacks of this algorithm are that 1) the algorithm may
diverge if the network topology changes during path computation, and 2) the worst case
message complexity is exponential.

A variant of digoint paths isinitial link digoint paths. Initia link digoint paths, de-
scribed in [156], is a centralized, dynamic programming algorithm that calculates K paths
to every node such that the pathsto a particular node hasdistinct initial links. The algorithm
is based on Dijkstra’s shortest path algorithm [54].

Shortest K Paths

Another criteria for calculating multiple paths is to calculate unconstrained A shortest
paths. The objective of this criteriais to find /A distinct paths between two nodes such
that they have the minimum sum compared to al other A" possible distinct paths. Many
algorithms have been devel oped to compute these paths; refer to [103,141,165] for different
approaches. The computational lower bound for computing unconstrained /&” shortest path
isO(m + nlog(n) 4+ kn), where m isthe number of edges, » number of nodes, and % the
number of path to calcul ate between nodes [58].
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M ulti-commodity Flows

Perhaps the most well study of all multipath calculation algorithms are ones that compute
multi-commodity flow paths. The constraint of a multi-commodity flow problem is to
minimizethetotal cost of transmitting multiple resourcesto and from different nodes. This
optimization is constrained by the capacities of each link for each resource and the costs of
using alink [5,63]. For more references on this subject, refer to [13, 14, 89].

A variant of multi-commodity is maximum flow. A maximum flow algorithm com-
putes paths between two nodes such that the aggregate capacity of the calculated paths is
maximized between the two nodes. These paths can be calculated efficiently and are ap-
plicable to routing algorithms that wish to provide high capacity paths between nodes [5].
The capacity removal algorithm presented Chapter 5 also computes paths to increase ca-
pacity. But unlike maximum flow algorithms, the capacity removal algorithm considers
path length and the number of paths cal culated.

10.2.3 Multipath Forwarding M ethods

As Chapter 4 showed, forwarding messages on multiplepathsis significantly harder than on
single shortest paths because paths in a multipath network are not guaranteed to be suffix
matched. For paths that are suffix matched, Chapter 6 presented an efficient forwarding
method that require fixed-length per packet path 1D and router storage linear to the number
of paths provided. This section surveys other path forwarding methods.

Sour ce Routing

Source routing is a forwarding technique in which the sender of a message determines the
path a message is to travel and tags the message with that path. That is, a message contains
an explicit list of nodes the packet is to traverse. Upon receiving such a message, arouter
simply forwards the message to the neighbor specified in the message's source route.

This method is very flexible because messages can be forwarding on arbitrarily paths.
However, source routing has two major drawbacks. First, with each message carrying
an explicit path, source routing’s message overhead is variable length and high for large
networks and long paths. Second, for each router, the storage requirement for each path is
O(LP), where L is the average path length, and P is the size to encode each element in a
path. This requirement is compared to O(1) in conventional single path routing algorithms
and the proposed suffix matched forwarding method.
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L abel Swapping

Label swapping performs path forwarding by using local path identifiers [139]. In label
swapping, apath X = (xo,... ,x,) isimplemented by nodes =; and x;;, sharing aloca
path identifier (LPID) such that whenever x; receives a message with [pid;_;, it forwards
the messageto ;. 1, replacing the LPID with [pid;, 0 < ¢ < n. Examples of label swapping
are the suffix matched forwarding and ATM’s virtual circuit forwarding methods.

The advantage of label swapping is that the message overhead and the per path router
memory overhead are constant. However, the difficulty in label swapping is the estab-
lishment of LPIDs such that they globally compose the calculated paths. For example,
ATM requires a specia pre-connection packet that traverses the intended path to establish
LPIDs. Notice that in the suffix matched forwarding method, however, LPIDs are implic-
itly made consistent by exploiting the suffix matched property and therefore do not need
pre-connection packets.

The label swapping technique has also been applied to make source routing more effi-
cient [85]. For example, the solution adopted in Chapter 6 uses source routing with label
swapping to establish LPIDs for non-suffix matched paths. Using this optimization, a path
is source routed only once, and label swapping is used subsequently. This optimization
greatly amortizes the initial source routing overhead.

Compact Addressing

Source routing lists nodes on a path where nodes are identified by a node identifier, which
can be very large (in number of bits). For example, a node on the Internet has an ID
that is 32 bits long [30] and will increase to 128 bits with I1Pv6 [26]. Compact addressing
reduces the amount of bits needed to enumerate a path by observing that nodes only forward
messages to their neighbors. Therefore, if a node has a local name for each neighbor,
say wy, ... ,wy for neighbors 1 to M, then a node only needs [log(A)] bits to forward
messages to its correct neighbor [67]. Assume that anode has at most M neighbors, thento
encode asource route of length [ takes/« [log( M )| bits. Since M istypically not very large
(< 20), this optimization can substantially reduce the overhead of source routing packets.
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Chapter 11

Conclusionsand Future Directions

The contributions of this dissertation are the methods developed to implement dynamic
metric and multipath routing models, and the experimental analysis which demonstrates
that the two models can be implemented efficiently and significant performance gains ob-
tained. The two routing models, compared to the current Internet’s static metric single path
model, better utilize network resources to provide higher network performance.

For the dynamic metric routing model, this thesis develops a novel routing agorithm,
hybrid-Scout, that increases network performance by exploiting the destination locality
observed in network traffic. For multipath routing, this thesis develops not only efficient
multipath routing algorithms, but also a transport protocol that effectively uses multiple
paths.

This chapter concludes the research presented in this dissertation and outlines potential
future research directions.

11.1 Conclusions
Dynamic Metric Routing

This dissertation began with the development of a dynamic metric single path routing algo-
rithm, the hybrid-Scout. Traditional dynamic metric routing algorithmsbased on Link State
and Distance Vector suffer two primary drawbacks: the tendencies for routing oscillations
and uncontrolled routing costs. The hybrid-Scout algorithm addresses these two problems
through selective, time staggered path computations that are controlled by destinations.
The algorithm is selective because it calculates dynamic metric paths only to certain
“hot” destinations — analysis of Internet traffic locality indicates that a few destinations
receive the majority of network traffic (the top 1% destinations receive 60% of network
traffic); thus calculating dynamic metric paths to these destinations significantly impacts
the performance of the entire network. Moreover, the dynamic metric paths are calcul ated
in atime staggered manner. These two properties of the hybrid-Scout algorithm, selective
and time staggered route computation, reduce route oscillations because not all paths are
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calculated at the same time.

In addition to increasing route stability, the routing costs incurred by hybrid-Scout are
also predictable. In traditional dynamic metric routing algorithms, routing traffic are trig-
gered by network traffic, making them unpredictable and traffic dependent. In hybrid-
Scout, however, routing traffic are controlled by the destinations whose paths are dynam-
ically calculated. Therefore, routing costs are easily controlled by bounding the routing
costs of these destination.

To validate the hybrid-Scout algorithm, extensive simulations were conducted to mea-
sure its effectiveness and efficiency and to determine the conditions under which hybrid-
Scout is better than dynamic metric LS and DV. Simulation results show that, for an
Internet-like topology, 1) hybrid-Scout is effective at rerouting network congestion, under
the condition that at least 50% traffic are destined to selected destinations, and 2) hybrid-
Scout is more efficient (by 1 to 2 orders of magnitude in routing cost) than both dynamic
metric LS and DV if less than 10% of nodes generate Scouts. Since these conditions are
present in today’s Internet, we conclude that hybrid-Scout, if implemented, can improve
Internet performance.

Multipath Routing

The second main contribution of this dissertation is the development of methods that im-
plement and utilize multipath networks. Multipath networks are networks that provide
multiple paths between nodes at the same time, and transmitting nodes can select which
path(s) to use. With respect to multipath routing, the contributions of this dissertation are
the design and evaluation of algorithms that make multipath routing feasible for large scale
data networks.

To this end, solutions to solve two main multipath problems are developed: 1) rout-
ing algorithms that efficiently support multiple paths between nodes, and 2) an end-host
protocol that effectively uses multiple paths to actually increase throughput performance.

Thefirst problem, supporting multiple paths efficiently, is primarily concerned with the
cost of specifying and forwarding packets on their intended paths. While trivial in single
path routing, this processis difficult in a multipath context because there are more than one
path to a destination. To solve this problem, this dissertation develops a novel forwarding
method, the suffix-matched forwarding method, that uses fixed-length per packet path IDs
and requiresrouter storage linear to the number of paths calculated. The method’slow over-
head is achieved by exploiting path sets with the suffix matched property. To demonstrate
the applicability of suffix matched forwarding, this thesis extends the method to multipath
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versions of the LS and DV routing algorithms.

The second multipath contribution of thisthesisis the devel opment of an end-host pro-
tocol that effectively uses multiple paths to increase end-to-end and network throughput.
This thesis develops a multipath transport protocol, MPTCR, that provides a reliable bit-
stream service and effectively uses multiple paths to maximize throughput. Extensive
simulations show that MPTCP is able to increase throughput proportional to the amount
of available network resources. Furthermore, MPTCP sustains high network performance
even during very high levels of network utilization.

In addition to performance, this thesis also measured the costs incurred by two multi-
path routing algorithms, MPDV and MPL S, based on DV and L Srouting a gorithmsrespec-
tively. Because both algorithms use suffix matched forwarding, the performance critical
operation of packet forwarding uses fixed-sized, per packet path IDs and adds only one ad-
ditional lookup in router’s packet forwarding procedure. With respect to non-performance
critical costs, simulations show that the overhead of router CPU usage, router message
cost, and router storage requirements are reasonably low so that we believe the two routing
algorithms can be feasibly implemented in today’s network routers.

11.2 FutureDirections

Two general directions of research can follow from the work presented in this dissertation.
Thefirst isthe improvement of the hybrid-Scout dynamic metric routing algorithm, and the
second is the further devel opment of the multipath routing model.

11.2.1 Hybrid-Scout

The efficiency of the hybrid-Scout algorithm depends on a network’s destination locality:
experiments show that if at most 10% of the destinations (hot destinations) generate at
least 50% of the network traffic, hybrid-Scout is more efficient and effective than traditional
dynamic metric routing algorithms. Thisthesis assumes that the hot destinations are known
and that each destination generates Scouts at arate appropriate for the destination’sreceived
traffic. A future research direction for the hybrid-Scout algorithm is to remove the two
assumptions: develop amechanism that determinesthe set of hot destinations and the Scout
generation rate for each hot destination.

To accomplish this, adistributed traffic monitoring protocol can be installed in network
routers. The protocol gathers traffic statistics to determine which destination networks are
“hot”. Once this determination is made, routers directly connected to these destinations can
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then generate Scouts on each of those destination’s behalf. In addition, since routers have
traffic statistics of all hot destinations, the appropriate Scout generation rate can be derived
for each destination.

The development of mechanisms to determine hot destinations and their Scout gener-
ation rate will make hybrid-Scout easier to deploy. With these mechanisms, hybrid-Scout
will not require manual configuration of Scout generating destinations and their rates.

11.2.2 Multipath Routing

This dissertation laid the ground work for supporting multipath routing in large-scale net-
works. Because applications of multipath routing have largely been unexplored, there are
many open research issues. Among others, a list of avenues worth pursuing are 1) the
support for different path services 2) the investigation of cooperative multipath transport
protocols, and 3) the incremental deployment of multipath routing in an Internet-like net-
work. Each of these possibilities are described in detail below.

Supporting Different Path Services

This dissertation examines two path services, low delay and high throughput services.
These two services are chosen because of their prevalent use. However, with increasing
diversity of network applications and demands, the need for paths with other services has
increased. Examples of these new services are Qo0S, security, real-time, and network pric-
ing. Possible research directions are to develop multipath methods to efficiently support
these path services. To give an example of the issues involved in supporting each of the
mentioned services, an outline of some of the problems involved in supporting the QoS
path service is given below.

To provide QoS path services, routers need to enforce queuing disciplines to provide
different types of delivery guarantees [95]. Example QoS services are guaranteed, priority,
and bounded services [11, 43]. Current proposals to support QoS have been primarily
focused on the single path routing model. In a multipath setting, if an end-host has can
make QoS requests on multiple paths to a destination, one expects that QoS requests can
be more easily satisfied. Doing this raises two research issues: how should multiple paths
be calculated in order to consider router QoS guarantees? And how end-host applications
should best use these paths to most efficiently obtain their QoS requirements?

Thefirst issue isconcerned with path cal culation: designing path calculation algorithms
such that the paths calculated between nodes provide the maximum likelihood of satisfy-
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ing end-host QoS requests. As stated in Chapter 5, end-hosts can benefit from a multipath
network only if the paths provided offers higher performance than in a single path en-
vironment. The second issue relates to designing protocols that efficiently use network
resources to provide QoS guarantees. For example, a QoS protocol should have the ability
to combine QoS guarantees of individual paths to provide an overall QoS for an applica
tion. Protocolsto accomplish this task need more sophisticated path management strategies
than the scheme MPTCP uses for dynamic load balancing.

Transport Protocols

Another possible area of research isto design a multipath transport protocol that uses mul-
tiple paths in a cooperative manner. Recall that MPTCP uses separate TCP connections on
each available path, and each path is solely responsible for transmitting its own packets.
In a cooperative protocol, a more flexible form of load balancing can be used and many
redundancies may be reduced.

For example, a cooperative protocol can load balance lost segments from one connec-
tion to another. As mentioned in Chapter 7, this reduces receiver buffering which can
increase protocol throughput. A cooperative protocol can also reduce redundancies. For
example, receiverscan send one ACK to acknowledge data received on several connections,
and the combined ACK should travel the fastest path back to the sender.

Multipath I ncremental Deployment

The algorithms and techniques developed in this dissertation are designed and evaluated
under realistic network assumptions. Thus, the natural research question is how to deployed
the proposed method in an actual large-scale, wide area network.

In practice, deploying algorithmsin wide area networksis done in an incremental fash-
ion. Theincremental processis necessary because of the network sizes and because differ-
ent parts of these networksare often under different administrative controls. These two fac-
tors make simultaneous routing algorithm updates of every router in a large-scale network
impractical. Thus, a practical research subject is developing a method to incrementally
deploy the multipath routing algorithms developed here.

As mentioned in Section 10.2.1, a Detour-like architecture can be used to incrementally
deploy the proposed multipath model [47,115,136]. Using thisapproach, arouter with mul-
tipath capabilities establishes a virtual multipath network with other multipath-routers. In
this virtual network, the nodes are multipath-routers, and the links are established between
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these routers using 1P tunneling [134]. With this architecture, only end-hosts whose local
router is a multipath router can use the multipath network because the local router is re-
sponsible for tranglating host multipath 1Ds into suffix matched path IDs. In incremental
deployment, the connectivity of the virtual network increases as more multipath routersare
placed in the network, resulting in higher performance of the multipath network.
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Appendix A

The Scout Routing Algorithm

This chapter describes the Scout routing algorithm. Scout isadestination initiated, selective
shortest-path computation algorithm. The key idea underlying Scout is that a destination
periodically floods small, fixed-sized messages through the network which explore avail-
able paths back to the destination*. These exploratory messages, called Scouts, are of a
fixed, small size and can be readily piggy-backed onto data packets on a hop-by-hop basis,
which largely defrays their cost to the network.

The remainder of this chapter is organized as follows. The next section describes the
Scout routing algorithm, followed by Section A.2 which provesits correctness. Concluding
remarks are given in Section A.3.

A.1 Flood Based Route Discovery

To facilitate the presentation, the Scout algorithm is presented by initially assuming ideal-
ized network characteristics. These assumptions are then progressively removed and addi-
tions provided to deal with the relaxed assumptions.

Ideal Network: To feature the basic concepts of the algorithm, assume

e Static network topology where all links have unit cost.
e Message delay along each link is equal.

We define the shortest-path tree rooted at node R as a tree which connects all reachable
nodes to R with the |east cost.

The basic mechanism of route discovery is through message flooding. In the Scout al-
gorithm, each node in the network periodically sends a Scout message to all its neighboring
nodes. Let R be the node initiating the Scout message. The period between two consec-
utive floodings of Scout messages from R is called the broadcast interval (BI). A Scout
[ R, CRr] contains the originating node’s address, R, and the cost to reach R, Cr. Initialy

*1n general a destination could represent a single host, a subnetwork, or an entire routing domain.
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C'r is zero. When a node P receives a Scout message [ R, Cr] from its neighbor @), P
first modifies the Scout’s cost C'r to include the cost of sending a message from P to @,
C'r = Cr+ Cost(P — Q). C'r represents the cost a message will takeif it is sent by P
via() to R. Under the two assumptions above, if P has already seen a Scout from R in the
current broadcast interval, P already has arouteto R with cost at least C'. Inthiscase, P
remembersthis aternate path but does not forward the Scout. Otherwise [ R,Cr] isthefirst
Scout P has seen in this broadcast interval, then P forwards [ R, C’g] to al its neighbors
except (). Since nodes only forward R’'s Scout at most once in each Bl, the flooding of
Scout messages terminates after every node has forwarded a Scout message of the form
[ R, C'r]. This means the total number of Scouts exchanged in each broadcast interval for a
singlenodeis O(L), where L is the number of linksin the network.

After thetermination of i’s Bl, every node in the network knows the minimum path to
R. This knowledge is represented in the form of a next-hop address. node P the minimal
path to R if P knows the minimal cost to /£ and which of its adjacent nodes is on the
minimal path. In the Scout algorithm, node P knows the shortest cost to £ and the shortest
next-hop to R when P receives the first Scout message in a Bl. Nodes decide the shortest
next-hop to R as the neighbor from whom they received the least cost Scout in the current
Bl. Theforwardingtree constructed isasink treerooted at R. Since nodesonly advertise (or
forward) the least cost route to R, the Scout algorithm guarantees that all nodes will know
the minimum path to R when flooding terminates. All pairs shortest path is computed once
every node in the network floods its Scout message; thus the worst case time complexity of
the Scout algorithm is O( N L) messages, where N isthe number of nodes in the network.

To disambiguate Scout messages from one broadcast interval with another, assume for
the time being that before R floods, all messages of R’s previousflood are terminated. This
requires the Bl to be at least the time it takes for a message to traverse the longest path in
the network. This assumption isremoved in the general algorithm.

N1: [N1,0]

B

N2: iNl, 1] N3; [N1, 1] N4: [N1, 1]

UL

N6: Q\l\l, 2] N6:[NL,2]  N7:[N1,2] N5: [N1, 2]

a1 s

N10: [N1,3] N3:[N1,3] N8 [N1,3] N5:[NL,3] N9:[NL,3] N7:[NL, 3]

N8: [N1, 4] NO: [N1,4] N10:[N1, 4] N8: [N1, 4]

Figure A.1 : Example network topology and the first round broadcast tree from N1. All
link costs in the network are 1.
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Figure A.1 shows the broadcast tree for Scout message flooding initiated by N1 in
the above network under our idealized assumptions. A broadcast tree represents an event
ordering of sending and receiving messages.

The figure illustrates a sequence of events in which Scouts are sent and received after
N1 initiates a broadcast interval. A node N:: [Nz, £] in the tree represents an event in
which node N: receives a Scout [Nz, Cll\lx] . Edges show Scout message transmissions
and time flows downward in the figure. For events on the same level of the tree, we adopt
the convention that events on the left happen earlier than events on the right. For example,
event N6: [N1,2], the child of N2: [N1,1] happens before N6: [N1,2], the child of N3:
[N1,1]. That is, node N6 receives a Scout from N2 before receiving one from N3, therefore
as the figure shows, N6: [N1,2] child of N2: [N1,1] forwards the Scout while the other
does not. Leafs of the tree correspond to events which occurred on nodes who have already
received a Scout from N1. As Figure A.1 shows, the shortest path is computed when
flooding terminates.

Non-uniform link cost and delay: The Scout algorithm described above relies heavily
on the assumption that the first Scout message of a Bl is the one with minimal cost. Next,
this assumption isremoved by allowing non-unit link costs and non-uniform (but bounded)
link delays. For now, the assumption that all Scouts of R are terminated before R’s next
flood and that the network topology is static is preserved.

We define two terms. Node P’s designated neighbor to R in the broadcast interval i is
defined as the neighbor that gave P the least cost Scout to R in broadcast interval « — 1.
P’s upstream node to R in broadcast interval : is the neighbor which provided the Scout
that P forwarded to its neighbors (after modifying its cost).

As with the previous algorithm, every node R periodically floods its Scout message
[R, Cr]. Upon receiving [R, C'r] from a neighbor, P computes (" as before. In the
first broadcast interval, immediately after receiving the first Scout message from R, node
P forwards[R,C'R] to al neighbors except k. Node P might receive more of k'S Scouts
in the same BI, indicating different paths and path coststo k. P remembers these Scouts
and adjusts its data forwarding table to reflect the new paths, but P does not forward the
Scout messages. In the next broadcast interval, P waits to receive a Scout message from
its designated neighbor before flooding. When P receives the Scout from this designated
neighbor, P computes C'r and examines all other Scout messages it has received in the
current Bl (including the one from its designated neighbor), to find the Scout with the least
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cost O to RT. P forwards[R, C"R] to al neighbors except the neighbor from which it
received the Scout with the least cost. This neighbor isnow P’s upstream node for this Bl.

As an example, consider the network in Figure A.1 with the cost of edge (N1, N2) and
(N1, N3) set to 5 and all other edge weights being 1. In the first broadcast interval of N1,
the broadcast tree is exactly the same asin Figure A.1, except the cost of the N2 and N3
subtree is increased by 4. Figure A.2 shows the broadcast tree for the second broadcast
interval of N1.

N1: [NZ, 0]
N2: [N1, 5] N3: [N, 5] N4: [N1, 1]
Ne: [il, 6 N6 [r\)u,/s] h[m, 6] N5: [N1, 2]
N10: [ﬁi?] N3: [N1, 7] N7 waits for N5 N7: [N1, 3]

N8: [N1, §] N3:[N1,4] N8 [N1,4] NO:[N1,4]

/ \ Ng,[\18,N9willwai/d/'/7 ‘
N7:[N1,9]  N9:[NL 9] for N7inthe next N8:[N1, 5]

broadcast interval

Figure A.2 : Broadcast tree after the second round of flooding from N1 in the network of
Figure 1 with unequal link costs.

Noticein Figure A.2, N7 does not forward the first Scout it receives (one from N3) but
waits for N5 (its designated neighbor) and then forwards the Scout with the least cost. The
shortest-path tree is computed in the third broadcast interval when N3, N8 and N9 wait for
N7 and forward the least cost Scouts to N6 and N10.

Under these network assumptions, the shortest path computation to any node R is
bounded by K broadcast intervals, where K is the depth of the shortest-path tree rooted
a R. Inthe example above, the depth of the shortest-path treeis 5 and the Scout algorithm
converged in 3 broadcast intervals. It is worth mentioning that although the shortest-path
computation is bounded by K broadcast intervals, all nodes know a pathto R after R’sfirst
broadcast interval. The quality of the path progressively improveswith additional broadcast
intervals.

tIn general, with a dynamic network, the least cost Scout may not come from the designated neighbor,
since link costs may change between broadcast intervals.
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Unrestricted Network: Thisisthe generalized network where nodes/links can fail and
recover and link costs can change}. The static network assumption guarantees that if node
P receives a Scout message in the previous broadcast interval from neighbor ¢, P will also
receive a Scout message from ¢) in the current broadcast interval. If links are allowed to
fail and recover, P might never receive another message from ¢). To resolve this problem,
Scout is modified by requiring P to flood the first Scout message from R if P did not flood
any of R’s Scout messages in the previous Bl. In other words, if P waited for a Scout from
its designated neighbor () in the previous Bl but never received a Scout, instead of waiting
for (), or any other neighbor in the current round, P immediately floods the first Scout it
sees in the current broadcast interval and recal cul ates its designated neighbor.

P isnot allowed to wait for a neighbor in the current BI, in particular, the designated
neighbor, because if there are multiple failures, waiting for the best information might
cause cascading waits. This decision was motivated by the observation that propagating
more recent, perhaps sub-optimal, information is more useful than trying to wait for the
best information which entails the risk of not propagating any information at all.

To handle overlapping broadcast intervals from the same source, Scout messages are
simply tagged with a sequence number indicating the current broadcasting interval. The
sequence number ensures that the algorithm only makes routing decisions based on the
information from the most recent broadcasting interval. Figure A.3 summarizes the general
Scout algorithm.

1. Destinations periodically generate a Scout with an increasing sequence number.

2. On receiving a Scout, the router discards the Scout if
the Scout sequence number is not current
OR the Scout advertises a path to the current node.

3. Therouter adds the cost of the incoming link to the cost of the Scout and

A. If the router has not forwarded a Scout (from the same source)
in the last BI, flood the Scout.

B. Elseif Scout is from the designated neighbor, forward the least cost
Scout (from the same source) received in the current BI.

C. Else store the Scout.

4. Update forwarding table to reflect the shortest path.

Figure A.3 : Scout Algorithm Summary for Unrestricted Networks.

Scout and Distance Vector Routing Algorithms

!Notice that convergence of a shortest path computation applies only when the network is not changing
for some period.
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Both the Scout and the Distance Vector routing algorithms compute shortest paths between
nodes by exchanging messages that convey path cost information. In Scout, if a router
receives a Scout message from neighbor ¢) originated from node A with cost (', the router
knows that it can reach A via () with cost C'. Similarly, in DV, if a router receives a DV
packet from neighbor () containing an entry to A with cost C, the router knows that it can
reach A via() with cost C.

However, the method in which each algorithm initiate path computation and propagate
routing messages are very different. In Scout, path computation to node A is alwaysiniti-
ated by A, viaflooding Scout messages. However, in DV, path computation to a node can
be initiated by any router. For example, in the event of a link failure, routers connected
to the failed link will initiate a path computation to every node whose path used the failed
link.

In addition to the differences in initiating path computations, the two algorithms also
differ in how routing messages are propagated. In Scout, a Scout message contains path
information only to the initiating node. Whereasin DV, aDV packet may contain path in-
formation to many nodes. The combination of path aggregation and computation initiation
allows DV to efficiently compute all-pairs shortest path. Asnoted in Chapter 3, computing
all-pairs shortest path is not as efficient using Scout.

A.2 Scout Proof of Correctness

The proof of Scout shortest-path convergence for the unrestricted Scout algorithm proceeds
by showing that sink trees rooted at R are iteratively transformed into shortest-path trees
rooted at R in anumber of rounds bounded by the structure of the network. Intuitively this
follows because every node eventually receives a Scout from the neighbor with the lowest
cost to R, and therefore every node eventually knows the shortest path to k. As stated in
Chapter 2, the Scout convergence and its proof apply only in situations where the network
state (e.g. topology) changes at a slower rate than Scout’s convergence time.

We define S PT' as the shortest-path tree rooted at R. S PT' has depth K, and SPT;
as the subtree of S PT', aso rooted at R, such the depth of SP7T; is:. T; isthe sink tree
built from R’s broadcast tree built by the Scout algorithm in broadcast interval :. Tree A
contains tree B iff B isasubtree of A and A and B share the same root. We prove that
Vi e [0,..., K], T; contains S PT;.

Lemma 1: Assuming 7; contains S PT;, then for all nodesP € T; N S PT;, P will not
change its forwarding tables in subsequent trees 75, 7 > 1.
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Proof: Since node P € SPT;, P dready has the shortest path (in cost and next-hop)
to the sink R. Thus in subsequent broadcast rounds of R, P cannot receive a Scout with
alower cogt, in fact, P will aways receive the same lowest cost from the same neighbor
(its designated neighbor). Therefore P will not alter its forwarding table (both cost and
next-hop) in subsequent broadcast rounds.

This implies nodes of distance ¢ or less from the root R in 7; will stay in the same
positionin 7}, .

Theorem 1: Broadcast tree containment: Ve € [0,... , K], SPT; iscontained in 7;.

Proof: by induction on the depth of the broadcast tree 7;.

Base: : = 0. SPTy = R, and the root of 7; is R by definition of sink trees, therefore
Ty contains S P1j.

Induction: Assume Vw < z < K, T, contains SPT,, proof that 7.,, also contains
SPT.,y.

Let the set . = leaf nodes of (S P1;). By the induction hypothesis and the algorithm
structure, the set of nodes m. know that in round = + 1, they should wait for their parent
node in 7., who will offer them the shortest cost to R. Thus in broadcast interval = + 1,
nodes in m. forward only R’s least cost Scout to their neighbors. This implies neighbors
of node n € m. are guaranteed to receive n’s shortest path to R. In particular, leaf nodes
L = leaf nodes of (S PT.1) will receive the minimal path cost from nodesin ... After the
broadcast interval = + 1, nodes ! € L deduces the minimal path to R is through its parent
node in m. (by the definition of SPT.,;). So the leaf nodes of 7., are attached in to
the same nodes in SPT.,;. And from lemmal, interior nodesin 7., preserve the same
connections as nodesin 7,; Therefore, 7., contains S P1.4;.

From the induction when = = K — 1, Tk will contains S PTx, and SPT; = SPT.
Since S PT contains all nodes in the network, by the tree containment definition, 7 must
equal S PT. Thusafter K™ broadcast rounds of R, the Scout algorithm is guaranteed to have
computed the shortest path to R. When = > K, T, obviously contains S PT" from lemma 1.

Intuitively, non-uniform link costs and link delays cause the Scout agorithm more
broadcast intervals to convergence because a link can advertise a high cost in the reverse
direction (to R) but have very fast forward propagation (away from R). When this occurs,
node P will initially flood the costly Scout. The extranumber of broadcast intervals needed
to send the minimal cost Scout to P is exactly the shortest distance (in links) from P to an
ancestor of P on the shortest-path tree who currently knows the minimal cost to R, which
is aways bounded by K.

Theorem 2: Shortest Path Convergence. The unrestricted Scout algorithm in Fig-
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ure A.3 computes the single shortest path between every pair of nodes in the network.

Proof: This follows directly from Theorem 1. We proved that the broadcast tree even-
tually contains the shortest path tree for any given node sending Scouts. Thus when every
node in the network generates Scouts, then in abounded number of rounds, every node will
know the shortest path to every other node.

Theorem 3: Scout message bound on convergence. The unrestricted Scout algorithm
in Figure A.3 converges to the single shortest path on O( £’) BI's, with no morethan O( L)
messages per round per node. Where L is the number of linksin the network.

Proof: The first bound on the number of Bl’s for shortest path convergence is proven
above. The second followsdirectly from the algorithm. Since every nodes can only forward
one Scout per round, at most O( 1) Scouts can be forwarded per round per node.

A.3 Scout Summary

This chapter presented and proved the correctness of Scout, adestination initiated, selective
shortest path routing algorithm. A destination initiates Scout path computation to itself by
flooding Scout messages, which discovers path back to the initiating destination. Further-
more, Scout messages are small, fixed-sized and therefore can be hop-by-hop piggybacked
onto data packets, largely defraying their costs to the network.

The main features of the Scout routing algorithm are

1. Independent and uncorrelated path computation
2. Destination controlled and initiated Scout messages

Scout is independent because Scout messages initiated by a destination cal culate paths
ONLY to that destination and is uncorrelated because the time in which a destination ini-
tiates its Scouts is determined only by the destination. Thus, Scout path computations to
different destinations will occur at different times. Thisisin contrast to traditional LS and
DV routing algorithms where all-pairs path computation occur at the same time.

Because Scout is destination initiated, the amount of Scouts injected into the network
is determined by destinations. On the other hand, LS and DV’s routing traffic is triggered
by network changes. The advantage of this triggering property isthat in arelatively static
network environment, very little routing overhead is incurred. The disadvantage is that
during high rates of network changes, the LS and DV routing overhead are hard to predict
and control. With Scout, the amount of routing messages are not triggered and thus do not
depend on network changes. This non-triggering in Scout implies that during low rates of
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network change, many Scout messages are sent unnecessarily (because the shortest paths
did not change); On the other hand, it also means that during high rates of change, Scout
messages are predictable and can be easily controlled.

The principal disadvantage of the Scout algorithm is that individual Scout messages
do not aggregate path computation; thus computing all-pairs shortest paths in a relatively
network static environment (such as the Internet) requires more routing message overhead
than LS or DV routing algorithms. Again, the reason LS and DV performs better in this
scenario isthat 1) path computation is aggregated (the two algorithms always computes all-
pairs shortest path) and 2) path computation are triggered by network changes (a relative
static network has infrequent network changes).
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