PAGE
29

CHAPTER 3

DISCRETE EVENT SIMULATION

In this chapter, we will introduce the discrete event simulation theory used for the load-balancing algorithm simulation. For the load-balancing algorithm simulation we have to solve the following problems.

1) How to find next event.

2) How to manage events.

3) How to compute event queuing time.

3.1 PRIORITY QUEUE OF FUTURE-EVENT SET

A discrete-event simulation is a model of a dynamic system that is subject to a series of instantaneous happenings, or events. The events themselves arise out of actions within the simulation carried out at previous events and are used as the basic elements to drive the simulation through a developing sequence of the state-changes. The future events that have yet to occur are stored in the future-events set (FES). The advancement of time is accomplished by two primitive operations on the FES: firstly, the set is accessed to provide the next event (i.e. the future event with the minimum occurrence time); secondly, newly derived events may be stored away (scheduled) to await future occurrence. Discrete-event simulation is thus a kind of event-driven programming.

3.2 EVENT SCHEDULING

We use time-advance mechanisms. Every event must have a predictable occurrence time when being inserted into the FES. Next occurred event will be get from a FE notice. A FE may be thought of as an entry in a diary denoting a future appointment for, say, a meeting. When the data and hour fall due, the meeting ‘occurs’. Often, the activities that take place during the meeting will cause new, future appointments to be ‘inserted’ into the diary. Next ‘next event’ to occur can be found by looking through the diary, in ascending order of time, to the next entry, on which basis the clock time of the model is advanced. Occasionally, some entries may need to be postponed or cancelled. Naturally, when appointments have occurred, their entries can be discarded. Figure 3-1 shows the relationship between the future-event set (FES) and the activation of the model.

[image: image1.wmf]Occurrence

time = 10

Figure 3-1 Relationship between Future-Event Set (FES) and Model Activation

There are thus two essential pieces of information to be associated with every FE notice.

1) The occurrence time of the event.

2) A pointer to the actions comprising the event occurrence.

Essentially, discrete-event scheduling consists of the following operations.

1) The insertion of FE notices into the FES, and

2) The extraction of event-notices from the FES in strictly earliest-out priority order.

For the load-balancing algorithm simulation, we use the linear-list method for future-event notice. We have a priority event-queue (PEQ) and we insert all events based on its occurrence time, so the queue is ordered based on the occurrence time of events. When an event have already occurred, next event that will occur is an event that is the first element of the queue. Figure 3-2 shows the structure of the PEQ.

Head

Figure 3-2 PEQ Structure

By using this data structure, we save the scanning time to look for next occurrence event.

3.3 EVENT ACTIVITY

When a list of events is drawn up, for every event, except of the occurrence time, we also give every event a type, such as request, document, or communication message. Therefore when event occurs, we just look at its type, we can forward event to proper action function (See Chapter 5). For each event, there is a path assigned to this event. Thus the event can pass through the proper path to reach final node. Figure 3-3 shows the structure of a event.

Figure 3-3 Event Structure.

The structure of the event activities is described as follows.

Get next event

If (event.type==’G’)

Generate next event();

Else if (event.type==’R’)

{

get-next-node-that-event-will-pass();

forward-event()

}

Else if (event.type==’D’)

{

get-next-node-from-event-path();

forward-event()

}

Chapter 5 will discuss the types of events in detail.

3.4 QUEUING DELAY OF EVENT AND TIME MANAGE

In event simulation, the another key factor is how to manage the time because time is only thread to measure and manage all events. For the load-balancing algorithm simulation, we have the following time information.

1) Every event has a starting time and current time.

2) Every Node (router, web server, LBA, client) has a time.

All these time will be initialized to zero at the beginning of the simulation. The simulation program retrieves the first event, sends it to proper node and processes it. After completing the event processing, the program sets the event time is to the occurrence time plus the processing time, and inserts this event back to event-queue. The node time is straightly forward equal to the event time if the node time is less than the event occurrence time.

It is possible that when we finish processing an event and retrieve next occurrence event from priority event-queue, the node time have already passed the event occurrence time. This means that the event has already reached and is queued up, but the node is busy to process other event based on the first in and first out sequence. In this case we calculate the queuing delay of the event by subtracting the event occurrence time from the node current time. The event current time is equal to the event occurrence time plus the event queuing delay time and plus processing time. The time manage procedure is given below.

get next event from event-queue: evt

if(evt.time > node.time) then

process event;

evt.time=evt.time+process time;

node.time = evt.time;

else if(evt.time < node.time) then

queuing-delay= node.time-node.time;

process event;

node.time=node.time+process event time;

evt.time=evt.time+queuing-delay+process time;

end if

EVENT:

Time.

Type.

Path

Occurrence time = 10

Occurrence time = 11

Occurrence time = 30 ==�

…. ….

Current Activation

Insert of Scheduled Events

Retrieval of Next Event

Model

Events

Actions

Future-Event

Future-event

Notices

Future Activation

PAGE

