26
27

CHAPTER 3

DISCRETE EVENT SIMULATION

In this chapter, we will introduce the discrete event simulation theory [57] used for the load-balancing algorithm simulation. For the load balancing algorithm simulation we have to solve the following problems.

1) How to find next event.

2) How to manage events.

3) How to compute the event queueing time.

3.1 Priority Queue of Future-Event Set

A discrete-event simulation is a model of a dynamic system that is subject to a series of instantaneous happenings, or events. The events themselves arise out of actions within the simulation carried out at previous events and are used as the basic elements to drive the simulation through a developing sequence of the state-changes. The future events that have yet to occur are stored in the future-events set (FES). The advancement of time is accomplished by two primitive operations on the FES: first, the set is accessed to provide the next event, i.e., the future event with the minimum occurrence time; secondly, newly derived events may be stored away to await their future occurrences. Discrete-event simulation is thus a kind of event-driven programming [57].
3.2 Event Scheduling

We use time-advance mechanisms. Every event must have a predictable occurrence time when being inserted into the FES. Next occurred event will be from an FE notice. An FE may be thought of as an entry in a diary denoting a future appointment for, say, a meeting. When the data and hour fall due, the meeting ‘occurs’. Often, the activities that take place during the meeting will cause new, future appointments to be ‘inserted’ into the diary. Next ‘next event’ to occur can be found by looking through the diary, in ascending order of time, to the next entry, on which basis the clock time of the model is advanced. Occasionally, some entries may need to be postponed or cancelled. Naturally, when appointments have occurred, their entries can be discarded. Figure 3-1 shows the relationship between the future-event set (FES) and the activation of the model [57].

[image: image1.wmf]Occurrence

time = 10

Figure 3-1 Relationship between Future-Event Set (FES) and Model Activation

There are thus two essential pieces of information to be associated with every FE notice.

1) The occurrence time of the event.

2) A pointer to the actions comprising the event occurrence.

Essentially, discrete-event scheduling consists of the following operations.

1) The insertion of FE notices into the FES, and

2) The extraction of event-notices from the FES in strictly earliest-out priority order.

For the load balancing algorithm simulation, we use the linear-list method for future-event notice. We have a priority event-queue (PEQ) and we insert all events based on its occurrence time, so the queue is ordered based on the occurrence time of events. When an event have already occurred, next event that will occur is an event that is the first element of the queue. Figure 3-2 shows the structure of the PEQ.

Head

Figure 3-2 PEQ Structure

By using this data structure, we save the scanning time to look for next occurrence event.

3.3 Event Activity

When a list of events is drawn up, for every event, except the occurrence time, we also give every event a type, such as request, document, or communication message. Therefore when event occurs, we just look at its type, we can forward event to proper action function.

Figure 3-3 shows the structure of an event.

Figure 3-3 Event Structure.

The structure of the basic event activities is described as follows.

Get next event

If (event.type==’G’)

Generate next event();

Else if (event.type==’R’)

{

get-next-node-that-event-will-pass();

if(next node is the web server assigned)

 retrieve the request document;

 change the event type as ‘D’ and

 insert the event into the event queue();

else

 forward-event()

}

Else if (event.type==’D’)

{

get-next-node-from-event-path();

if(next node is the client node)

 computing the response time,

 cancel event();

else

 forward-event()

}

Chapter 5 will discuss the types of events in detail.

3.4 Queuing Delay of Event and Time Manage

In event simulation, another key factor is how to manage the time, because time is the only thread to measure and manage all events. For the load balancing algorithm simulation, we have the following time information.

1) Every event has a starting time and current time.

2) Every Node (router, web server, LBA, client) maintain a local time.

All these times will be initialized to zero at the beginning of the simulation. The simulation program retrieves the event, sends it to proper node and processes it. On receiving the event, the node compares the local time with the event time. If the local time is larger, there is queueing effect. The queuing delay is the difference between the event time and the local time. If the event time is larger, the local time should be advanced to the event time and there is no queueing effect. After completing the event processing, the program inserts this event back to the event queue.

The time manage procedure is given below.

get next event from event-queue: evt

if(evt.time > node.time) then

process event; // queueing delay is zero.

evt.time = evt.time + event processing time;

node.time = evt.time+event processing time;

else if(evt.time < node.time) then

queuing-delay = node.time - event.time;

process event;

node.time = node.time + event processing time;

evt.time = evt.time + queueing delay + event processing time;

end if

We will use that discrete event theory to design the simulation program.

EVENT:

Time. Sender.

Type. Receiver.

Path

Occurrence time = 10

Occurrence time = 11

Occurrence time = 30 ==�

…. ….

Current Activation

Insert of Scheduled Events

Retrieval of Next Event

Model

Events

Actions

Future-Event

Future-event

Notices

Future Activation

PAGE

