Algorithm to choose multiple mirror sites
for parallel download

Yu Cai

Department of Computer Science,
University of Colorado at Colorado Springs,

Colorado Springs, CO 80933-7150, USA

ycai@cs.uccs.edu
Tel: (719)262-3110
FAX: (719)262-3369

Abstract
With the recent development of HTTP and web service, we start to see the possibility of retrieving documents from multiple mirror sites. However, choosing the best mirror sites is not a trivial task and a bad choice may give poor performance. In this project, we try to develop algorithms to choose the best mirror sites for parallel download. We implement the brutal force algorithm and genetic algorithm, and compare the results. We also test the algorithms with simulated network topology as well as real-world network topology.

Keywords: parallel download, algorithm, mirror sites, genetic algorithm.

1. Introduction
With the recent development of HTTP and web service, we start to see the possibility of retrieving documents from multiple server sites, like the mirror sites.

Recent work by Rodriguez, Kirpal, and Biersack [1] studied how to use existing protocol to retrieve documents from mirror sites in parallel to reduce the download time and to improve the reliability. The proposed approach utilizes the HTTP1.1 byte range header to retrieve specific data in a mirror server site, which requires no changes on existing server and client settings.

However, choosing the best mirror sites is not a trivial task and a bad choice may give poor performance. Testing data [1], [2] shows that the performance of a bad choice might be 10 times slower than the best choice.

By using networking Measurement tools, like pathchar, cprobe, we can estimate the network bottleneck, available bandwidth, and the server load [3]. Kevin Lai and Mary Baker of Stanford University improve accuracy of the bottleneck bandwidth estimation by using better filtering technique in dynamic environment [4]. However, the accuracy of current network measurement methods still needed to be improved.

In this project, we develop algorithms to choose the best multiple mirror sites for parallel download. We implement a brutal force algorithm as well as a genetic algorithm.

We also test the algorithms with simulated network topology model as well as real-world network topology data.

We use GT-ITM (Georgia Tech Internetwork Topology Models), which is one of the most commonly used internet topology models. We use this model to access our algorithms. The reason is clear: networks that are large enough to be interesting, and are also expensive and difficult to control. Moreover, it is generally more efficient to assess solutions using analysis or simulation --- provided the model is a "good" abstraction of the real network and application [6].

2) Problem Analysis
a) Assumptions:

1) The network topology, the path bandwidth and server performance are known and static.

2) The internet routing is single-path routing, which means the routing path map can be simplified similar to a tree structure [3].

3) The documents which we want to retrieve are identical on the mirror sites.

b) Problems need to be solved:

1) What is the possible maximum download speed for a given network topology? We refer to it as “global max speed”.

2) How many mirror sites to need to be chosen to achieve the global max speed, and how to choose the mirror sites?

3) If we only want to choose a certain number of mirror sites, say 5 sites, what is the maximum download speed for 5 mirror sites? We refer to it as “n sites max speed”. And which 5 sites to choose to achieve this speed?

4) When there are multiple selections for the mirror sites to achieve the max speed, what are the criteria to use to tell the best selection?

5) What is the complexity of the algorithm? Both Brutal force and genetic algorithm.

c) Pre-analysis

Theoretical speaking, given a network topology, the global max speed exists, and it is determined by the bottleneck in the network. Because the global max speed is no greater than the sum of each server speed, which is limited. So the global max speed exists.

Similarly, given a network topology, and the number of mirror sites to choose, then the n sites max speed also exist.

In practical, when we choose more than 4 - 7 sites, the overall performance usually get saturates quickly, because we have to re-assembly the downloaded pieces into one whole file, which also takes a lot of computation time on local computer. Basically the more pieces we divide, the longer it takes to re-assembly.

d) How to find the bottleneck and the maximum speed for a set of servers?
Given a tree graph G = Tree (S, N, P), S is the set of server nodes, N is the set of the intermediate nodes(all nodes which are not server nodes), P is the set of the paths which connect S or N.

Assuming we choose a set of server nodes, S’= {s1, s2, …, sk}, then what is the maximum download speed of by choosing this set of server nodes?

We can solve this problem by scanning through s1, s2, …, sk. I use a variable called “available bandwidth” for each path to describe what is the available bandwidth for this path, since this path might have been used also by other server nodes.

Also I use a variable called “actual server speed” for each server to describe the actual server speed which has contribution to the max speed, since the server might or might not have contribution to the max speed, and might only contribute a portion of its total speed.

Then we can start scanning from si, trace back to the final client through the routing tree, and update the available bandwidth from each path which is used by si:

 si.[actual speed] = si.[server speed]

 path.[available bandwidth]=path.[available bandwidth]– si.[server speed]

If for si, at some place, the available bandwidth of the path is 0 or negative, then it means there is the bottleneck.

We set:

 si.[actual speed] =path.[available bandwidth]

 path.[available bandwidth] = 0

We do this until we reach the final client node, for the starting server si.

We do this for all the server nodes {s1, s2, …, sk},

After this, if the server has no contribution to the max speed, then its server “actual speed” is 0; if the server has contribution, the “actual speed” is the actual speed which the server contribute to the max speed. So the final max speed is the sum of each server “actual speed”.

e) Theorem

A related problem for above scanning algorithm is this: Is the final max speed related to the order which you scanning through the servers? The answer is No. Below is the theorem and prove.

Theorem 1:

Given a tree graph G = Tree (S, N, P), S is the set of server nodes, N is the set of the intermediate nodes(all nodes which are not server nodes), P is the set of the paths which connect S or N. Assuming we choose a set of server nodes, S’= {s1, s2, …, sk}, we can find the maximum download speed Smax for this server nodes set, through the above scanning algorithm, and the scanning order of the servers doesn’t change the max speed.

[Prove:]

Use mathematical induction: (partially finished)

When N=2, obviously it is correct.

Assume for all N<=k, it is true,

Then for N=k+1,

If there is no bottleneck in the network, obviously the max speed is the sum of all the server speeds, so it is true.

If there is at least one bottleneck, say node B, then we use set S1= {s1, s2, …, sj} to denote all the server nodes who are affected by this bottleneck, and we use S2= {si1, si2, …, sik} to denote the remain server nodes, then we can use bottleneck node B to represent the set S1, and final max speed is the sum of node B plus S2, which has less number of nodes than k. So the final max speed exists and doesn’t change by the scanning order.

f)Future works are:
1)How to implement the algorithms on TCP/IP layer.
2)How to use it in dynamic changing environment, when the bandwidth changes all the time.

3)How to measure the network topology and bandwidth in dynamic environment.

3) Algorithm Implementation
Brutal force algorithm and Genetic algorithm have been developed to solve the problem with fast processing time.

a) Brutal Force Algorithm 1:

If we assume all the servers are selected, and we scan through them one by one, then the max speed will be the global max speed. By check the server “actual speed”, we can know which servers are selected, and how much they contribute to the max speed.

This algorithm is simple and fast. The complexity is O(S*(N+P)), S is the set of server nodes, N is the set of the intermediate nodes(all nodes which are not server nodes), P is the set of the paths which connect S or N. To simplified it, assuming there are totally n nodes in the network topology, then the complexity is approximately O(n2).

The main problem with this algorithm is that we can only find the global max speed, but we have no control over how many mirror sites and which mirror sites to choose. In practical, we use this algorithm to find the upper bound of the max speed, and compare the result with genetic algorithm, but we don’t use it to choose mirror sites.

b) Brutal Force Algorithm 2:

If we want to find the n sites max speed, say 5 sites max speed, then we can generate all the possible combination of 5 sites out of all the servers, we find the max speed for each combination, then we find the maximum value among these speed, it is the 5 sites max speed.

Assuming there are totally n nodes in the network topology, then the complexity for finding m sites max speed is approximately O(nm+1) . When m gets bigger, the computation time increases dramatically.

c) Genetic Algorithm

For genetic algorithm, I implement two of them. One is fix-length algorithm, one is the varied-length algorithm.

The fix-length algorithm is used to find the n sites max speed, the length of chromosomes is n and fixed. It is just like ordinary genetic algorithm.

The varied-length algorithm is used to find the global max speed, the length of chromosomes is smaller than a given number, and can be changed. If there are two server sets that both achieve the max speed, then the sets with small size is chosen. Also, we can easily add some other criteria for server sets selection.

For better convergence, I copy the best chromosome in parent generation directly into the next generation (only 1 copy).

I only list the varied-length genetic algorithm below:

1) Assign Server number to each server, assign note number to each node, assign path number to each path. Assign the initial bandwidth of path and server responded speed.

2) Randomly initialize first generation of chromosome at random length by filling server number.

	S1
	S2
	S3
	S4
	S5

3) Crossover and mutation at certain probability with various chromosome length.

Parent 1:

	S6
	S2
	S10
	S4
	S5

Parent 2:

	S11
	S20
	S3
	S30
	S13
	S41
	S5

(
Son 1

	S6
	S2
	S30
	S13
	S41
	S5

Son 2

	S11
	S20
	S3
	S10
	S4
	S5

For the crossover, make sure no duplicated server number in chromosome. The length of chromosome is less than a given number.

Mutation is simply changing server number to another available server number.

4) Fitness function.

For a given chromosome, use the max speed for this server set as fitness function. Calculate the fitness function for all the population and find the maximum as the best result in this generation.

5) Run certain generations, and output the final result.

For the genetic algorithm, when the size of network is small, it converge quickly. When the size of network get bigger, we need to increase the number of generation to run, so that we can get a better result, but it still converge pretty quickly.

4) Testing Result
I test the algorithms with two real world network topology:

Fig 1 is a sample routing tree (20 nodes, 10 mirror sites), starting from a machine in Eurecom, to the mirror sites for Squid home page [1]:

[image: image1.png]Slovakia Portugal Greece

(]

995 kbps

286 kbps

O Micor Site
Australia
O Client

‘Eurécom, France

Fig. 2. Mitror sites for the Squid home page. Client is located at EURECOM,
France.

Here is the testing result:

	20 nodes, 10 mirror sites

	Brutal Force 1
	0.6 s

	Brutal Force 2
	10 s

	Fix-Length GA
	1.5 s

	Varied-Length GA
	1.5 s

Fig 2 is a sample routing tree (114 nodes, 11 mirror sites), starting from a machine in UCCS, to the mirror sites of Redhat [5]:

[image: image3.wmf]Wait

CS

uccsedge

uccs

ucar

gbr1-p60

gbr3-p70

gbr4-p80s

ggrl-p370s

att-gw

0.so-2-x12

0.so-3-t12s

 0.so-3-t12l

 so-1-0-x12

pos5-0

194.atm8

cybertrails

cyb-r2-atm0

nin.cyber

gbr2-p100

gr1-p3100

pacbell

 gige2-1

atl

gw2-netrail

130

cc-rstone

trillian

gbr2-p60

gbr3-p80

gbr4-p70d

gbr4-p80d

 sl-bb22-sj

 sl-bb20-ana

 sl-bb23-ana

 sl-bb21-fw

 sl-gw40-fw

 208.30

 164.58.1

 ilgw-okc

 164.58.10

 atlas

gbr3-p60d

gbr4-p40a

gbr4-p30w

gbr3-p60w

gbr3-p20n

gbr5-p60n

gbr3-p360n

12.125.50

true-love.r

 acr2-sonet2

 acr2-looks

coreouter2

xcore2.san

owen-nero

corv-car1-g

orstbrdr-gw

orstsw1-gw

ubu.nws

oarnet.cle

oebc2-atm6

199.18.115

krc5-atm1

tc4-atm3

se1-atm3

concretel

164.107.126

cis.ohio

atm2-0

157.at-6-0

0.so-0-1-0

0.so-3-0-0

0.so-7-0-0

0.so-0-1-0

186.atm9-0

Cisco0.xm

c6509-core

mirror.pa

26

108

128

141

484

331

9984(314)

275

36

1237

148

183

57

33

42

15

48

80

512

128

360

33

54

1856

405

361

305

256

210

1216

42

35

54

43

323

296

717

114

3328

109

52

981

64

65

361

36

45

39

41

55

208

29

57

90

28

55

53

57

157

19

78

Unit: Mb/s

 acr2-lookc

597

35

120

 acr1-lookc

iar1-lookc

merit-its

atm1-0-0

cc-rtr

adm-rtr

kedzie-rtr

pa-rtr

84

203

177

17

mirror.pa

192.205.32

c1-pos6-0

c1-pos1-c

c1-pos3-0

c1-pos2-0

c1-pos1-n

wbb1-pos2

10.252.0

mirror-no

591

5632

333

675

1.5

3.3

2133

427

nr1-p360

mes1.mae

128.161.3

 n233-150c

n233-150n

n233-150a

mirror.arc

35

34

15

0.so-2-x11

0.so-3-t11

 0.so-6-t11

 0.so-1-x11

0.os-7-xr1

193.atm6

191.atm6

ihets-gw

fillmore

29

445

169

25

56

194

67

< 20

20 - 100

100 - 500

500 - 1000

> 1000

Here is the testing result:

	114 nodes, 11 mirror sites

	Brutal Force 1
	0.7 s

	Brutal Force 2
	2 m

	Fix-Length GA
	2 s

	Varied-Length GA
	2 s

Fig 3 is a sample transit-stub hierarchical network topology derived from GT-ITM [7], we can derive routing tree structure from the network topology, by assuming the route from node to node is always the shortest route, in terms of network bandwidth.

[image: image2.png]Node

Transit node

Domain

Anchor router

5 Border Router
£ . ‘ : A

Stub-stub link

I use GT-ITM to access the algorithms, below is the result:

	
	BF1
	BF2
	FL GA
	VL GA

	150 nodes, 20 mirror sites
	0.7 s
	2 m
	2 s
	2 s

	200 n, 20 m
	0.7 s
	2.5 m
	2 s
	2 s

	300 n, 30 m
	0.7 s
	3 m
	2 s
	2 s

	500 n, 50 m
	0.8 s
	7 m
	5 s
	5 s

	800 n, 100 m
	0.8 s
	12 m
	6 s
	6 s

	1000 n, 100 m
	0.9 s
	20 m
	7 s
	7 s

	1000 n, 200 m
	1 s
	30 m
	8 s
	8 s

5) Reference

1) Pablo Rodriguez Andreas Kirpal Ernst W. Biersack, “Parallel-Access for Mirror Sites in the Internet”, Proceeding of Infocom, 2000.
http://www.ieee-infocom.org/2000/papers/65.ps

2) Ratul Mahajan, Aggregate Based Congestion: Detection and Control, April 2001. Seminar, University of Washington.

3) Vern Paxson, “Measurements and Analysis of End-to-End Internet Dynamics ” Ph.D. dissertation at UC Berkley.

4) Kevin Lai and Mary Baker, "Nettimer: A Tool for Measuring Bottleneck Link Bandwidth", Proceedings of the USENIX Symposium on Internet Technologies and Systems, March 2001.

5) Jing Yang and Zhong Li, “Selecting best Redhat Mirror Sites for parallel download”, http://cs.uccs.edu/~cs522/proj2001/jyang.ppt

6) Ellen W. Zegura, “GT-ITM: Georgia Tech Internetwork Topology Models”, http://www.cc.gatech.edu/projects/gtitm/

7) Thierry Ernst, “Existing NS-2 Presentation: GT-ITM. Topologies”,http://www.inrialpes.fr/planete/pub/mobiwan/Documents/ernst-ns-mobiwan-0501.ppt

1

_1099150397

