
TCP and Congestion Control (Day 2)

Yoshifumi Nishida
nishida@csl.sony.co.jp

Sony Computer Science Labs, Inc

 Today’s Contents

 Part1: TCP Issues and Solutions
 Part2: Congestion Control

 Part3: Simulating TCP

 Part 1: TCP Issues and Solutions

 Long Fat Networks

 Ambiguity of Acknowledgment

 Connection Setup Overhead

 Security Vulnerabilities

 Long Fat Network (1)

 What are "Long Fat Networks"?
 A network with large bandwidth and long delay.
 ex. High-capacity satellite channels

 TCP performance

 TCP performance is calculated by Window Size and RTT.

Window Size

Round-Trip Time
TCP peformance =

 Required Window Size for networks.
 Required Window Size = Round-Trip Time

�

 Maximum Transfer Rate of the network.

 But Maximum window size is limited to 65,535 bytes.
 The window size in TCP header has only 16 bits.

 Long Fat Network (2)

 65,535 bytes window size is not enough for Long Fat Networks!
 Example of Long Fat Networks.
 Transfer rate RTT(msec) Required Window Size (bytes)

 1.54Mbps (T1) 500 95,500

 45Mbps (T3) 60 337,500

 Long Fat Network (3)

 Window Scale Option
 Extension to specify large window size
 defined in RFC1323: TCP Extensions for High Performance.

 Option Format:

Window Scale Option

1 byte 1 byte

kind=3 len=3

1 byte

shift
count

 The window size is treated as:

 Window Size = Value in
Window Size field 2

shift count

 Max value of shift count is limited to 14.
 Maximum window size is 1,073,725,440 (65535 * 2^14) bytes with this option.

 Long Fat Network (4)

 Sequence Number Wrap Around
 Another issue for Long Fat Networks.

 32-bit sequence number space may wrap around in LFNs.

A B

232
bytes

 Time Stamp Option
 Provides transmit time information.
 TCP can identify each packet with Time Stamp and Sequence Number.

A B

232
bytes

time stamp: Y time stamp: X

 Ambiguity of the Acknowledgment (1)

 Cumulative ACK style is ambiguous, when multiple packets are
lost.

 TCP cannot identify which packets are lost exactly.
 Causes poor performance over lossy networks (ex. wireless networks)

ACK 1500

Data 1000-1499

Data 2000-2499

Data 1500-1999

Data 2500-2999

Data 3000-3499

 Ambiguity of the Acknowledgment (2)

 Selective Acknowledgment Options

 Provides precise information about packet arrivals.

 Two options are defined in RFC2018.

 SACK Permitted Option

 Used in a SYN packet to indicate that SACK option can be used.

 SACK Option

 Used in an ACK packet to indicate which packets were received
precisely.

 Ambiguity of the Acknowledgment (3)

 SACK Permitted Option

Sack-Permitted Option

1 byte 1 byte

kind=4 len=2

 SACK Option

KIND=5
LEN=variable

Left Edge of First Block

Right Edge of First Block

Left Edge of n th Block

Right Edge of n th Block

 Ambiguity of the Acknowledgment (4)

 Example of the SACK option

ACK 1500

Data 1000-1499

Data 2000-2499

Data 1500-1999

Data 2500-2999

Data 3000-3499

KIND=5 LEN=18

ISN+2000

ISN+2500

ISN+3000

ISN+3500

 Connection Setup Overhead (1)

 TCP is not suitable for a transaction service.
 TCP requires 3 packets for connection setup.

 TCP requires 4 packets for connection termination.

server status client status

SYN SENT
SYN_RCVD

ESTABLISHED

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

CLOSE_WAIT

LAST_ACK

CLOSED

SYN

SYN,ACK

ACK

ACK

FIN

ACK

FIN

LISTEN
CLOSED

CLOSED

CLOSED

 Connection Setup Overhead (2)

 T/TCP option

 TCP extension for transactions
 Exchange data with 3 packets.

 Use Connection Count (CC) to bypass 3 way handshake

 Defined in RFC1644.

server status client status

SYN SENT

TIME_WAIT

CLOSE_WAIT

LAST_ACK

CLOSED

SYN,ACK,FIN, data2

ACK

LISTEN

CLOSED

CLOSED

CLOSED

SYN, data1, FIN CC=x

CCEcho=x, CC=y

CC=x

 Security Vulnerabilities (1)

 Sequence Number Attack

 If someone can guess Sequence Number used in your TCP
connections...

 He can "hijack" your TCP connection.
 TCP checks IP address and Port Number and Sequence number.

 But most of current implementations use cryptic algorithms to generate
ISN (Initial Sequence Number).

 A Victim

Bad Guy

TCP connection

A’s IP address
A’s Port Number
A’s Seqnuence Number

 Security Vulnerabilities (2)

 SYN Flood Attack
 Denial of Service Attack
 Send a large number of SYN packets with Random source IP address

 Cause memory overflow on the victim
 TCP allocates memory when it receives SYN packets.

 Victim

Bad Guy
Random IP address
Random Port Number
SYN request

Someone SYN ,ACK

Allocate Memory for
the TCP connection

 Security Vulnerabilities (3)

 Protection against SYN Flood Attacks
 IP level solution
 Use IPsec
 Allows TCP connection only to authenticated hosts

 Use IP filter
 Filters out IP addresses that do not look legitimate

 Security Vulnerabilities (4)

 Protection against SYN Flood Attacks

 TCP level solution
 SYN Cache
 Reduces the memory size allocated after receiving SYN packets

 SYN Cookie
 Sends back ACK with Special Sequence Number in response to SYN packets.

 Does not allocate memory at all after receiving SYN.

 Victim

Bad Guy
Random IP address
Random Port Number
SYN request

Someone SYN ,ACK

Do not allocate memory
After receiving SYN

Cookie
Information

Bad Guy has to
guess cookie !!

 Part 2: Congestion Control

 How does congestion happen?

 Why congestion is difficult?

 Congestion Control by TCP

 How does congestion happen?

 Congestion occurs when there is too much traffic in the networks

 Routers have queuing capability.
 If a router cannot transmit packets at a given instance, it stores packets

in the queue and waits for the next chance to transmit.

 Queue has limited size
 If queue data exceeds limit, packet will be discarded.

 Router

queue

 Congestion Tends To Get Worse

 If congestion occurs..
 Packet transfers are delayed

 Packets are discarded

�

 Some protocols/applications try to retransmit data

 Users try to retransmit the data or request the same data again and again

�

 The ratio of valid data is decreasing...

�

 Congestion Collapse
 We cannot use network!

 Why is congestion control difficult? (1)

 Internet is designed to be autonomous.
 No central control.
 There is no way to control each user’s behavior.

 Internet is very huge and still expanding.

 Why is congestion control difficult? (2)

 The status of the Internet is hard to grasp
 It is difficult to determine how many user/application share the network

exactly.

 It is difficult to determine the source of the congestion exactly.

 It is difficult to determine the capacity of the networks exactly.

 It is difficult to determine how much networks are congested exactly.

 It is difficult to determine why packets are lost exactly.

 Congestion Control by TCP

 Autonomous control by end-nodes.
 No central control

 Simple estimation algorithms for network conditions.

 Selects appropriate transfer rate for each network.
 Avoid congestion as much as possible.

 Detects congestion
 Avoid congestion collapse as much as possible.

 TCP Congestion Control Concept (1)

 Primary concept

 There is no way for TCP to determine the network condition exactly.

 TCP regards ALL packet losses as congestion.

 Transmission control with simple algorithms.

 If packets are NOT lost..
 TCP assumes network is NOT congested

�
 Increases transfer rate.

 If packets are lost..
 TCP assumes network is congested

�

 Decreases transfer rate.

�

 TCP increases transfer rate until packet loss occurs.
 TCP tries to estimate the limit of the network by causing packet loss.

 TCP Congestion Control Concept (2)

 How to control transfer rate?
 Introduces new variable "congestion window (cwnd)" in sliding window

scheme.

 Adjusts the amount of data being injected into the networks

 How to determination Window Size?
 Window Size = min(advertised window, congestion window)
 Advertised Window is used for flow control, which is sent from receiver side.
 Congestion Window is used for congestion control, which is decided on sender

side.

 TCP Congestion Control Concept (3)

 Self-Clocking

 Uses an arrival of ACK as a trigger of new packet transmission.
 Packet arrval interval will change according to the characteristics of the transit

networks.

 Adjusts transfer rate to the network capacity automatically.
 No need for complex mechanism for controlling transfer rate!

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

Sender
side

Receiver
side

 History of TCP Congestion Control

 3 major versions of TCP congestion control

 TCP congestion control scheme has been deployed with BSD Unix.

 Tahoe
 Implemented in 4.3BSD Tahoe, Net/1 (around 1988)

 Slow Start and Congestion Avoidance

 Fast Retransmit

 Reno
 Implemented in 4.3BSD Reno, Net/2 (around 1990)

 Fast Recovery after Fast Retransmit

 NewReno	
 No reference implementation (around 1996)	

 New Fast Recovery Algorithm

 Tahoe TCP

 Two major congestion control schemes

 Slow-Start and Congestion Avoidance
 Increases Window Size
 Fast Retransmit
 Detects congestion

 Slow-Start and Congestion Avoidance (1)

 Two communication phases for increasing congestion window

 Slow Start
 Used at the beginning of a transfer, or after timeout.

 Starts from minimum window size
 Increases congestion window size by MSS bytes for each ACK received.

 Increases window size exponentially

 Congestion Avoidance

 Increases congestion window size by MSS / cwnd bytes for each ACK
received.

 Increases window size linearly

 Slow-Start and Congestion Avoidance (2)

 Transition from Slow-start to Congestion Avoidance

 TCP keeps a variable "ssthresh" to determine which algorithms
are used.

 If cwnd < ssthresh then do slow-start
 If cwnd > ssthresh then do congestion avoidance

 Algorithms for "ssthresh"
 Initial value: arbitrarily high value (ex. advertised window size)

 When TCP detects packet loss, it will be set to cwnd/2.

 Slow-Start and Congestion Avoidance (3)

 cwnd variation of Tahoe TCP

W
in

do
w

 S
iz

e

Time

ssthresh

Optimal window size

Limit of the network

slow-start

congestion
avoidance

Packet
Loss

Packet
Loss

Packet
Loss

slow-start

congestion
avoidance

slow-start

 Slow-Start and Congestion Avoidance (4)

 Goal of slow-start and congestion avoidance
 Keep window size around optimal size as much as possible.

 Slow-Start
 Increase window size rapidly to reach maximum safety transfer rate as fast as

possible.

 Maximum safety transfer rate:
 Half of the transfer rate that caused packet loss

 Congestion Avoidance
 Increase window size slowly to avoid packet losses as long as possible

 Fast Retransmit (1)

 Retransmit packets without waiting for retransmission timeout

 Fast retransmit uses "duplicate ACK" to trigger retransmission
packets.

 Duplicate ACK:
 ACKs that are the same as previous ACK

 Duplicate ACKs are generated by packet loss or packet disorder.	

Packet1

Duplicate ACK

Packet2

Packet3
ACK for packet1

ACK for packet1

duplicate ACK generated by packet loss

Packet1

Duplicate ACK

Packet2

Packet3
ACK for packet1

ACK for packet1

duplicate ACK generated by packet disorder

ACK for packe3

 Fast Retransmit (2)

 TCP cannot determine whether duplicate ACK is generated by packet
loss or packet disorder.

 But TCP assumes that 3 successive duplicate ACKs are caused by
packet loss.

Packet 1

Retansmited Packet by
Fast Retransmit

Packet 2

Packet 3

Packet 4

Packet 5

Packet 2

ACK for Packet 1

ACK for Packet 1

ACK for Packet 1

ACK for Packet 1

duplicate ACK

 Reno TCP

 Performance improvement for Tahoe TCP.

 Tahoe TCP is very sensitive to packet loss.

 1% packet loss rate may cause 50-75% decrease in throughput

 Introduced the "Fast Recovery" algorithm.
 Recovers transfer rate quickly after packet loss

 Fast Recovery (1)

 Problem of Tahoe TCP
 Window Size is set to minimum value after packet loss.

W
in

do
w

 S
iz

e

Time

slow-start

congestion
avoidance

Packet
Loss

Packet
Loss

Packet
Loss

slow-start

congestion
avoidance

slow-start

 Congestion estimation by Tahoe TCP
 Every packet loss is assumed to be serious congestion.

 Fast Recovery (2)

 Congestion estimation by Reno TCP

 If packet loss was found by Retransmit Timeout,
 Congestion is serious.
 Window Size should be set to minimum value and do Slow-start.

 If packet loss was found by Duplicate ACK,
 Congestion is not serious.

 Because..
 At least 3 packets could arrive at the receiver after packet loss.

 At least 3 packets have left the network, so there may be a chance to transmit a packet
 .
 So, Window Size is set to half of the current cwnd value and transits to

Congestion Avoidance phase.

 Fast Recovery (3)

 Example of cwnd variation of Reno TCP

W
in

do
w

 S
iz

e

Time
congestion
avoidance

Packet
Loss

Packet
Loss

slow-start

congestion
avoidance

Packet
Loss

congestion
avoidance

 After packet loss, TCP halves congestion window and enters
Congestion Avoidance phase.

 Problem of Reno TCP

 If two or more segments are lost in the current window, Fast
Recovery algorithm cannot retransmit all lost packets.

 TCP has to wait for retransmit timeout.

 Selective ACK option can solve this problem, but it has not been
widely implemented yet.

 Selective ACK requires a modification to both data sender and receiver.

 NewReno TCP

 Performance improvement for Reno TCP.
 Improves performance against multiple packet loss in the window.	

 Does not need Selective ACK.
 Requires modification to only data sender.

 NewReno is a bit more aggressive scheme than Reno.

 Reno retransmit packets in response to either retransmit timeout or 3
duplicate ACKs.

 Congestion Control with routers

 Advantage for using routers
 End nodes can only determine congestion by sensing packet losses.

 Router knows more about congestion than end nodes
 If queue length in the router exceeds a certain threshold, we can assume

network is becoming congested.

 But, how do the routers tell the end nodes?

 ICMP source quench

 Explicit Congestion Notification (ECN)

 ICMP Source Quench

 If router finds that network is congested, router sends back "ICMP
Source Quench" message to the data sender.

 Data sender should set window size to minimum after receiving Source
Quench.

 Cons.
 More traffic is generated in times of congestion.

 Pros.
 Can tell occurrence of congestion quickly.

Router

Host A Host B

Source Quench
Message

Data Packet

 Explicit Congestion Notification (ECN)

 If router finds that network is congested, router marks "ECN bit" in
the IP header.

 Receiver sends back ACK with "ECN echo" after receiving ECN packets.

 Sender should reduce Window Size after receiving ECN echo.
 Cons.
 ECN is a bit slower than Source Quench.
 Pros.
 Can find congestion before packet loss occurs

 Does not add any traffic in the networks

Router

Host A Host B

ECN

ECN echo

DATA DATA

ACK ACK

 Part 3: Simulating TCP

 Why simulation is necessary?
 Analyze theoretical aspects

 Can perform experiments easily rather than configuring real networks.

 Easy to implement new functions
 Does not require the knowledge of kernel coding

 Network Simulator (1)

 ns: Network Simulator
 http://www.isi.edu/nsnam/ns/

 Can be used on major OSs (Linux, FreeBSD, NetBSD, Windows...)

 Supports lots of networking technologies
 Application-level protocols
 HTTP, telnet, FTP

 Transport protocols
 UDP, TCP, RTP, SRM
 Supports various TCP versions: Tahoe, Reno, NewReno..

 Router Mechanisms
 Various queuing mechanism: CBQ, RED, ECN

 Link-layer mechanisms
 CSMA/CD

 High extensibility
 Lots of protocol functions are provided as C++ object class

 Network Simulator (2)

 nam: Network Animator
 http://www.isi.edu/nsnam/nam/

 Can visualize output of ns simulator

 Summary

 TCP provides a reliable service between end-nodes.
 Packet Retransmission based on Acknowledgment

 TCP plays an important role in congestion control in the Internet.

 Autonomous Control by end-node
 Simple estimation for network condition

 Congestion Control is one of the important topics for the future of
the Internet.

 TCP is NOT the perfect solution, but provides some essential hints.

