
1

Linux TCP

Pasi Sarolahti
Seminar on Linux Kernel

12.12.2002

2

Outline

• Basic TCP concepts
• Linux TCP basics (wrt. BSD Unix)
• Linux TCP Retransmission Engine
• Linux TCP Features
• Conclusion

3

Basic TCP Concepts

• Reliable byte streams, data is delivered in order
• Congestion control limits the transmission rate

• Slow start (when cwnd < ssthresh)
• Congestion avoidance (when cwnd >= ssthresh)
• Congestion window is reduced after packet loss

• Different loss recovery variants
• Three successive duplicate ACKs are a signal of data loss
• Old recovery algorithms (e.g. Reno) used in earlier Windows hosts and

some BSDs
• NewReno improves performance when multiple packet losses occur in

same window
• SACK option allows acknowledgement of discontinuous blocks of data

(better performance with multiple packet losses

• Retransmission timer
• Dynamically adjusted, based on measured packet round-trip times
• When timer expires, unacknowledged segments are retransmitted by

default

4

BSD TCP vs. Linux TCP

• Packets are stored in Mbufs (of
128 or 2048 bytes).

• TCP congestion control uses bytes
in algorithms (e.g. initial cwnd = 1 *
MSS = 1460)

• Little bookkeeping for each packet
• Better aligned with the IETF

specifications (i.e.: many IETF
activists have background with the
BSD family)

• Packets are stored in skbuffs that
are sized according to network
interface MTU

• TCP congestion control uses
packet counts (e.g. initial cwnd =
1)

• More bookkeeping for each packet
(e.g. exact transmission time is
stored for all packets)

• More “improvisation” on
implementation

By tradition, TCP specs and books are often based on the
concepts used in BSD Unix systems

BSD Linux

5

Data Structures

• Kernel-side correspondent for TCP
socket is struct sock

• struct sock holds state data for the
socket (such as the TCP variables
regarding congestion window, etc.)

• There are several queue pointers
•outgoing packets not yet
acknowledged
•incoming packets not yet delivered
to application

• Queues hold chains of sk_buffs
•sk_buff usually corresponds to one
packet sent/received to network
•In addition to packet data, there are
protocol headers and control
information
•Note: instead of a single
send/receive socket buffer there is
just a chain of outgoing and
incoming sk_buffs

6

Congestion control state machine

• Current state determines what to
do with the congestion window

• Open: The “fast path” of execution.
Just transmit a new segment when
valid ACK comes in and adjust the
congestion window normally

• Disorder: some data is
unacknowledged, but it is considered
to be reordering in the network for the
present

• Recovery: unacknowledged data is
considered lost in the network. TCP
sender should retransmit

• Loss: RTO has expired. TCP sender
should retransmit.

• CWR: Other congestion notification
than data loss has occurred (ECN,
ICMP SQ, etc.)

7

Retransmission Engine

• Sender maintains the assumed state for each packet sent
• Transmitted, acknowledged (by SACK), lost, retransmitted
• Lost packet is always retransmitted ASAP (when allowed by cwnd), after

which it is marked retransmitted
• Recovery state: always mark the first unacknowledged packet lost

(results in NewReno style retransmissions)
• With SACK two alternatives:

• FACK: all unacknowledged are marked lost when in Recovery state
• conservative SACK: Consider possible packet reordering before marking

packets lost

• Sender maintains estimate on number of packets in network
(packets sent after cumack - pkts sacked - pkts lost + rexmits)

• Above calculations are compared to congestion window and to determine
when to transmit packet

• When RTO occurs, the sender marks all unacknowledged
segments lost (although this is not always right decision)

8

Features (summary)

• RTO calculation (different to RFC 2988, see next slide)
• Explicit Congestion Notification (RFC 3168, no nonces)
• Detecting false retransmissions

• With TCP Timestamps (similar to Eifel)
• With DSACK enhancement using SACK option (RFC 2883)

• Limited Transmit (RFC 3042)
• Destination cache for storing TCP variables (like TCP Control

Block Interdependence)
• Quick acknowledgements
• Congestion Window Validation

9

Linux RTO vs. RFC 2988

• Standard RTO calculation behaves
weirdly with variable round-trip
times

• When RTT drops suddenly,
RTO estimator gets higher
value

• When RTT is constant for a
long while, small additional
delay can trigger RTO

• Linux uses a minimum of 50 ms for
RTT variance => RTO estimator
does not get too near to RTT

• If RTT decreases, weight of
variance term is reduced in the
algorithm

10

To Kernel or Not To Kernel?

• Currently the TCP implementation is fixed undetachable part of
kernel

• Sometimes it would be useful to have TCP as kernel module
• Easier developement
• Implementation would be easier to change
• Switching implementation would be possible without rebooting

• One option would be to have TCP as a library in user-space
• The congestion control algorithms would be carried out as a user process
• Different user could have different flavors of TCP
• Debugging would be very easy
• However, number of difficult issues to be solved:

• Performance
• Security
• Distribution of shared data (Path MTU, destination cache, etc.)
• Policing (e.g. Ensuring that no one violates congestion control rules)

11

Summary

• Linux takes a rather different approach on implementing TCP
than the traditional systems

• Linux “implicitly” includes quite a few of the TCP enhancements
recently suggested in IETF and research papers

• NewReno, two variants of SACK, DSACK, Eifel, ECN, Congestion
Window Validation, Limited transmit, Rate-halving

• It also includes features that are different from IETF specs

• Linux approach can also make some modifications difficult
• A small modification somewhere can twist the packet markings and

counters and cause surprising side-effects

• Unlike the earlier Linux versions, Linux 2.4 seems to be pretty
well compliant to IETF specs and free from weird bugs

