Linux TCP

Pasi Sarolahti
Seminar on Linux Kernel
12.12.2002

Outline

Basic TCP concepts

Linux TCP basics (wrt. BSD Unix)
Linux TCP Retransmission Engine
Linux TCP Features

Conclusion

Basic TCP Concepts

Reliable byte streams, data is delivered in order

Congestion control limits the transmission rate
Slow start (when cwnd < ssthresh)
Congestion avoidance (when cwnd >= ssthresh)
Congestion window is reduced after packet loss

Different loss recovery variants
Three successive duplicate ACKs are a signal of data loss
Old recovery algorithms (e.g. Reno) used in earlier Windows hosts and
some BSDs
NewReno improves performance when multiple packet losses occur in
same window
SACK option allows acknowledgement of discontinuous blocks of data
(better performance with multiple packet losses

Retransmission timer

Dynamically adjusted, based on measured packet round-trip times
When timer expires, unacknowledged segments are retransmitted by
default

BSD TCP vs. Linux TCP

By tradition, TCP specs and books are often based on the
concepts used in BSD Unix systems

BSD

Packets are stored in Mbufs (of
128 or 2048 bytes).

TCP congestion control uses bytes
in algorithms (e.g. initial cwnd =1 *
MSS = 1460)

Little bookkeeping for each packet

Better aligned with the IETF
specifications (i.e.: many IETF
activists have background with the
BSD family)

Linux

Packets are stored in skbuffs that
are sized according to network
interface MTU

TCP congestion control uses
packet counts (e.g. initial cwnd =

1)

More bookkeeping for each packet
(e.g. exact transmission time is
stored for all packets)

More “improvisation” on
implementation

Data Structures

Kernel-side correspondent for TCP
socket is struct sock

struct sock holds state data for the
socket (such as the TCP variables
regarding congestion window, etc.)

There are several queue pointers
‘outgoing packets not yet
acknowledged _
‘incoming packets not yet delivered
to application

Queues hold chains of sk_buffs
-sk_buff usually corresponds to one
packet sent/received to network
‘In addition to packet data, there are
protocol headers and control
Information _

‘Note: instead of a single .
send/receive socket buffer there is
just a chain of outgoing and
Incoming sk_buffs

struct sock

write queue

Y

sk_buff

control data

protocol
headers

payload

#

sk _buff

control data

protocol
headers

payload

tep info I

Congestion control state machine

Current state determines what to
do with the congestion window

Open: The “fast path” of execution.
Just transmit a new segment when
valid ACK comes in and adjust the
congestion window normally

Disorder. some data is
unacknowledged, but it is considered
to be reordering in the network for the
present

Recovery: unacknowledged data is
considered lost in the network. TCP
sender should retransmit

Loss: RTO has expired. TCP sender
should retransmit.

CWR: Other congestion notification
than data loss has occurred (ECN,
ICMP SQ, etc.)

congestion
notification

Retransmission Engine

Sender maintains the assumed state for each packet sent
Transmitted, acknowledged (by SACK), lost, retransmitted
Lost packet is always retransmitted ASAP (when allowed by cwnd), after
which it is marked retransmitted
Recovery state: always mark the first unacknowledged packet lost
(results in NewReno style retransmissions)
With SACK two alternatives:

FACK: all unacknowledged are marked lost when in Recovery state

conservative SACK: Consider possible packet reordering before marking
packets lost

Sender maintains estimate on number of packets in network

(packets sent after cumack - pkts sacked - pkts lost + rexmits)
Above calculations are compared to congestion window and to determine
when to transmit packet

When RTO occurs, the sender marks all unacknowledged
segments lost (although this is not always right decision)

Features (summary)

RTO calculation (different to RFC 2988, see next slide)
Explicit Congestion Notification (RFC 3168, no nonces)

Detecting false retransmissions
With TCP Timestamps (similar to Eifel)
With DSACK enhancement using SACK option (RFC 2883)

Limited Transmit (RFC 3042)

Destination cache for storing TCP variables (like TCP Control
Block Interdependence)

Quick acknowledgements
Congestion Window Validation

Linux RTO vs. RFC 2988

Standard RTO calculation behaves
weirdly with variable round-trip
times
When RTT drops suddenly,
RTO estimator gets higher
value
When RTT is constant for a
long while, small additional
delay can trigger RTO

Linux uses a minimum of 50 ms for
RTT variance => RTO estimator
does not get too near to RTT

If RTT decreases, weight of
variance term is reduced in the
algorithm

|| = RFC 2088

:

{* 10 ms}

me

1

10

To Kernel or Not To Kernel?

Currently the TCP implementation is fixed undetachable part of
kernel

Sometimes it would be useful to have TCP as kernel module
Easier developement
Implementation would be easier to change
Switching implementation would be possible without rebooting

One option would be to have TCP as a library in user-space
The congestion control algorithms would be carried out as a user process
Different user could have different flavors of TCP
Debugging would be very easy
However, number of difficult issues to be solved:
Performance
Security
Distribution of shared data (Path MTU, destination cache, etc.)
Policing (e.g. Ensuring that no one violates congestion control rules)

11

Summary

Linux takes a rather different approach on implementing TCP
than the traditional systems

Linux “implicitly” includes quite a few of the TCP enhancements

recently suggested in IETF and research papers
NewReno, two variants of SACK, DSACK, Eifel, ECN, Congestion
Window Validation, Limited transmit, Rate-halving
It also includes features that are different from IETF specs

Linux approach can also make some modifications difficult
A small modification somewhere can twist the packet markings and
counters and cause surprising side-effects

Unlike the earlier Linux versions, Linux 2.4 seems to be pretty
well compliant to IETF specs and free from weird bugs

