

ON PROXY SERVER BASED MULTIPATH CONNECTION

by

YU CAI

B.S., Zhong-Shan University, 1996

A dissertation submitted to the Graduate Faculty of the

University of Colorado at Colorado Springs

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2005

Copyright By Yu Cai 2005
©

eserved All Rights R

This dissertation for the degree of Doctor of Philosophy by

Yu Cai

Has been approved for the

Department of Computer Science

by

Dr. Edward. Chow, Chair

Dr. Terry Boult

Dr. Charlie Shub

Dr. Xiaobo Zhou

Dr. Rodger Ziemer

Date

Yu Cai (Ph.D., Computer Science)

On Proxy Serv

Dissertation directed by Professor Edwar

A multipath connection etwork hosts. The traffic

from a source can be spread over multiple mitted in parallel through the

network. The receiver collects the incomin ork packets, re-assembles them, and

delivers them to the upper-leve ections offer applications with

the ability to improve network performance, security and reliability.

In this dissertation, techniques for supporting the proxy server based multipath

connection (PSMC) are studied. Fir implementation of a proxy server

based overlay network using a set of inte ediate connection relay proxy servers is

presented. Multiple indirect alternate paths can be set up via these proxy servers. The

proxy server based overlay netwo ecure Collective Defense system

(SCOLD) to defend against Distributed Denial of Services (DDoS) attacks. The Berkeley

Internet Name Domain (BIND - v.9) package is enhanced to support indirect routing with

IP Tunneling. The performance of validates the capability of PSMC

in enhancing the network security.

Second, the existing TCP/IP protocol is enhanced with a proxy server based multipath

protocol (PSMP). On the sender sid anced to distribute packets across

multiple paths. The TCP congestion window control is revised for higher throughput. On

reordering problem. Detailed analysis of the PSMP is presen communication

er based Multipath Connection

d Chow

 provides multiple paths among n

 paths and trans

g netw

l end users. Multipath conn

st, the design and

rm

rk is used in a S

the SCOLD system

e, the IP layer is enh

the receiver side, the TCP layer is enhanced with a double buffer to solve the persistent

ted. A

channel is set up between the sender and the receiver for exchanging network traffic

Transmission Control Protocol (TCP) and

hird, proxy server selection algorithms are developed for selecting a subset of proxy

ser

n the network with

ser

information. The enhancement supports both

User Datagram Protocol (UDP).

T

vers from a large set of available proxy servers with various object functions and

constraints.

Forth, resource allocation schemes are proposed and implemented on the end server to

provide proportional differentiated services. These schemes are based on the queueing

theory and feedback control theory. By combining the multipath o

vice differentiation at the end server, a comprehensive solution for various QoS and

security related applications can be provided.

PSMC utilizes existing network protocols and infrastructure with some enhancements.

This ensures the ease of its deployment with the current Internet in various network

environments. Therefore, a large number of applications could benefit from utilizing

PSMC. The research results and insight obtained from PSMC could have broader impact

on the protocols and security in today’s Internet.

Dedication

This thesis is dedicated to my parents Tong-zhi and Lang-feng,

and to my soul mate Shu-han.

Acknowledgements

I am grateful for the support of professors, friends and my family. I would not

reach the completion of this long jou t them. They make this challenging

Ph.D. experie

Many people have sha elp me accomplish my goal.

First, I would like to sincerely thank my advisor, Dr. C. Edward Chow, for his constant

support and guidance. It was him who brought this exciting research topic to me and

guided me through the whole research. His worldwide around-the-clock instant responses

to my countless inquiries have been invaluable and motivational. I have been privileged

to have him as my advisor.

A sincere gratitude goes to Dr. Xiaobo Zhou. I have been receiving tremendous

help from his professional and personal advices. He has patiently taught me how to

analyze problems and write technical papers, which is very important for a researcher.

Many thanks to Dr. Terry Boult, who gives me valuable advice in my research. I

am so impressed by his brilliant mind and wealth of knowledge. Thanks to Dr. Charles

Shub, whose lectures have inspired me on my current research. Thanks to Dr. Rodger

Ziemer for his encouragement and reassurance at times of frustration.

I wish to pay special tributes to a much-cherished friend, Ganesh Kumar

Godavari. I am in deep appreciation for his willingness to share his knowledge, discuss

with me on my research and stay with me in school for many sleepless nights.

I am grateful to Dave Lohmann for troubleshooting my network and providing

priceless support during my research. Also deserve much credit are Dr. Augusteijn, Mrs.

Rhea, the staff in the Computer Science department and my many friends. I would like to

rney withou

nce also a memorable one.

red their time and expertise to h

recognize the Network Informatio enter (NISSC) and University of

Colorad

nd my soul mate – Shuhan. Without their love,

support

n and Space Security C

o at Colorado Springs for their partial financial support to this work.

Finally, I need to acknowledge three very important persons in my life, my

mother – Lanfeng, my father – Tongzhi a

, friendship, and faith, I will not be here today.

CONTENTS

CHAPTER

 I. INTRODUCTION ………………...…………..……..……….……… 1

 Overview ………………………………………………………….……… 1

 Contributions ……………………………………………………..….…… 6

 II. RELATED WORK …..…………………….……………….……..… 9

 Multipath Connection ………………….……………………...……..…… 9

 Network Protocols ………………….…………………………….……… 18

 DDoS, DNS and Overlay ……………………………………...………… 24

 Algorithms for Proxy Server Selection …………………..…....………… 28

 Differentiated Services …..………………..………..……….….………… 32

 III. PROXY SERVER BASED OVERLAY NETWORK ….…… 38

 Introduction ….……………………………………………………….….. 38

 System Overview ………..………………………………..….…..……… 40

 Enhanced Secure DNS Update ………..………………….….…..……… 47

 Indirect Route ………..…………………..……………….….…..……… 48

 Implementation ………..……………………………………..…..……… 51

 Experimental and Simulation Results ………..…………..……..……… 54

 Conclusion ………..…………………………………..…..……..……… 61

 IV. PROXY SERVER BASED MULTIPATH CONNECTION… 62

 Introduction ….…………………………………………..………........... 62

 Background ………..………………..……………………….…..……… 64

………..………………………………..….….…..……… 66

 PSMC Design

 Implementation ………..………………………………….….…..……… 76

 Experimental Results ………..…………………………….……..……… 82

 Conclusion ………..…………………………………..……..…...……… 96

 V. PROXY SERVER SELECTION ALGORITHMS ………… 97

 Introduction ………………………………………….………………… 97

 Network Model …………………………………….………....………… 98

 NP-hardness ……………………………………………………..……. 100

 Heuristic Path Selection Algorithm …………………………......……. 113

 Results Analysis …………………………………………….…………. 116

 Conclusion …………………………………………………….….……. 119

 VI. PROPORTIONAL DIFFERENTIATION PROVISIONING...121

 Introduction …………………………………………………...……..… 121

 Processing Rate Allocation …………………….………..……..……… 123

 Process Allocation on End Server ……………………………..……… 125

 Performance Evaluation ………………………………………….…… 129

 Conclusion ……………………………………………………….…… 148

B

A

 C. PSMC USER MANUAL 180

 VII. CONCLUSION AND FUTURE WORK …….……….…… 142

 Conclusion ………………………………………..……….…….…… 142

 Future Work …………………………………….….…….…...……… 144

IBLIOGRAPHY ……………………………………….….…….……… 146

PPENDIX

 A. SCOLD USER MANUAL …………………………...………….. 159

 B. TCP CONGESTION CONTROL & LINUX KERNEL ….…. 171

…………………………………….........

Table

 time (second) …………………………........…...… 55

e (second) …………………………….….……… 56

with and without DDoS attack …………………………..….………… 57

 5: Performance of enhanced resolver vs. original resolver ……….………… 58

 6: Performance of enhanced DNS vs. original DNS ………….….………… 58

 7: The influence of how many tunnels exist …………..………….………… 58

 8: Path detection, deletion and addition ……….………………….………… 59

 9: Machine setup in the testbed ………………..………………….………… 82

 10: TCP fairness ……………………………………………...…….………… 92

 11: TCP friendliness ………………………………………………..………… 93

 12: Initial set up time of multiple paths …………………………….………… 93

 13: Path detection, deletion and addition ………………….……….………… 94

 14: UDP test (2Mb/s paths only) ……………………………………….…… 95

 15: UDP test (one 200Kb/s, the rest 2Mb/s paths) ….……………….…..…… 95

TABLES

 1: SCOLD initial setup

 2: Secure DNS update tim

 3: Indirect Route processing overhead vs.

Direct Route delay under DDoS attack ……………..………………… 56

 4: Performance of nsreroute vs. nsupdate,

 16: UDP test (one 20Kb/s, the rest 2Mb/s paths) …………….…...….……… 95

 17: UDP and TCP competition test (Mb/s) ……..…………….……………… 96

 18: Running results on a real-world to ..……….………...…… 119 pology ………

Figure

 1. Single path connection vs. multipath connection …………………...…… 2

 2. Proxy server based multipath connection (PSMC) ……………………… 3

 3. Diagram of multipath connection …………………….….……….…..… 10

 4. Two servers interconnected by link aggregation ………….…….……… 11

 5. Datagram format for loose source routing ……………………………… 13

 6. Linux multipath connection for multiple ISP connections …….…..…… 16

 7. Protocols on OSI seven layer …………….…..…….….…….………… 18

 8. IP over IP tunneling …………………….…………….…….………..… 20

 9. IPsec tunnel and transport mode ……….………….….…….……..…… 21

 10. VPN …………………………………..……………….…...…………… 21

 11. A typical DDoS ………….…………..….…………..…..…..………..… 25

 12. Target site under DDoS attack ……..………….…..……..………..…… 42

 13. The control flow in SCOLD ……..………………...……..…………… 42

 14. Indirect route in SCOLD …………….….……….…….….…....……… 43

 15. Protect the root DNS server ………….………………………...……..… 45

 16. Secure DNS update via indirect route ……………………...…...……… 50

 17. Indirect route by using IP tunnel …………………….….………...….… 50

FIGURES

 18. SCOLD testbed ………….……………………………………..…....… 55

 19. Average initial setup time vs. network size ………………………....… 60

 20. Indirect route processing overhead vs. network size ……………..…… 60

 21. Proxy server based multipath connection (PSMC) ……….……..…..… 66

 22. PSMC throughput comparison ………………………………………… 83

 23. PSMC bandwidth utilization comparison 83

 24. PSMC latency analysis 85

 25. Processing overhead of PSMC on a single path …….…...…………… 85

 26. The impact of bad path 87

 27. The impact of double buffer 89

 28. The impact of cwnd adjustment 90

 29. Test bed for TCP fairness 91

 30. Test bed for TCP friendliness ………………………….………...…… 91

 31. Conversion from G to G2 102

 32. Conversion from G to G1………….………………….….…….…..… 104

 33. Conversion from G to G1 to G2 ………………………..….……..…… 105

 34. Max-flow, min-slowest path disjoint problem ……….…………..…… 108

 35. An instance of path selection 109

 36. Graph conversion 112

 37. Algorithm execution time 117

 38. Algorithm running results 117

…..………………..………

……………………………..……..………..…

……………….…………..……………………

…………………………..………………

……………………….….…..…….…

………….…………………………...…...…

…………………………….…..……………

…………………..……..………….……

………….………………………….……..……..…

…………………………….……..…..……

…………………………..….…….….……

 39. Network topology from a node at UCCS

 to the selected Redhat mirror servers ……………………….….…… 120

s allocation (δ1: δ2=1:3)

 44. Achieved average response time ratio and 95% confidence intervals
1 2

for integrated process allocation (…………….………….. 137

 46. A microscopic view of response tim …………….….………..….…… 139

 47. The variance of response time ratio ……………………………...…… 139

 40. The implementation structure …………………………..…….…....…… 129

 41. Achieved average response time and

response time ratio for fix process allocation ………..……………… 131

 42. Achieved average response time and response time ratio
for adaptive queueing-theoretical proces ….. 132

 43. Achieved average response time and response time ratio
for adaptive queueing-theoretical process allocation (δ1: δ2=1:2) ….. 133

for integrated process allocation (δ : δ =1:2) ……………………….. 135

 45. Achieved average response time ratio and 95% confidence intervals
δ1: δ2=1:3)

e

1

CHAPTER I

INTRODUCTION

Overview

The key challenge in today’s Internet is to improve network performance, security,

and reliability for heterogeneous Internet participants. The current network connections

are mostly over a single path. This single path connection model is simple and easy to

implement. The tremendous success of today’s Internet is a credit to the original design.

However, the single path connection is vulnerable to potential attacks, link breakage, or

even traffic congestion. It may also under-utilize network resources and suffer from

performance problems. Therefore, it does not always provide a good and reliable network

connection.

Due to the increasing demands from the Internet on network performance, security,

and reliability, the Internet is undergoing a number of significant changes. Various

Internet enhancements and services have been suggested [AKAM, DSEC, RON01,

SSav99, WAdj99, CCas02, MZha04, JChen98]. Multipath connections are one of them.

A multipath connection provides multiple paths among network hosts. The traffic

from a source is spread over multiple paths and transmitted in parallel through the

network (Figure 1.1). The receiver collects the incoming network packets, re-assembles

them, and delivers them to the upper-level end users. A multipath connection makes

better use of network resources by aggregating the available bandwidth on multiple paths.

2

Therefore, a multipath connection can significantly improve the network performance.

By providing redundant paths or alternate paths, a multipath connection has better ability

to cope with network congestion, link breakage, outrage, and potential attacks, thus

improve network security and reliability.

Figure 1.1: Single path connection vs. multipath connection

The IBM Systems Network Architecture (SNA) network in 1974 [SNA79] is probably

the first attempt to provide multiple path connections among network nodes on wide area

networks. N. F. Maxemchuk studied how to disperse the traffic over multiple paths in

1975. He called it “dispersity routing” [NMax75]. Since then, the idea of multipath

connection has been studied in various settings. One example of multipath connection is

link aggregation [LAgg], which is a data link layer protocol. In the IP layer, multipath

connection has been studied extensively in the name of multipath routing. Various table-

driving multipath routing algorithms (link state or distance vector) [SVJG01, SLMG00,

ICRR99, SMJG96, NTBB99, WZJG98, SLMG00, ANSD99] and source routing

algorithms [DJDM96, LZZZ02] were proposed. On the TCP layer, there have been works

like [MZha04, HHsi02]. For more details, please refer to Chapter 2.

3

In this dissertation, we design and implement a novel multipath connection

mechanism called the Proxy Server-based Multipath Connection (PSMC).

Figure 1.2 is a diagram that illustrates a PSMC network. There are three basic

components in a PSMC network. The multipath sender, or distributor, is responsible for

efficiently and adaptively distributing packets over the selected multiple paths. Some of

the packets will go through the normal direct route; other packets will go through the

alternate indirect routes via the proxy servers. The intermediate connection-relay proxy

servers, or forwarders, examine the incoming packets and forward them to the

destination through the selected paths. The multipath receiver, or collector, collects the

packets arrived from multiple paths, reassembles them in order, and delivers them to the

end user.

Figure 1.2: Proxy server-based multipath connection (PSMC)

4

The key features of PSMC are summarized as follows.

a) A proxy server-based overlay network is designed and implemented by using a set

of intermediate connection relay proxy servers. Multiple indirect or alternate paths

can be set up via these proxy servers.

b) A proxy server-based multipath protocol is designed and implemented by

enhancing the existing TCP/IP protocol to effectively distribute, transport, and

reassemble network packets over the multiple indirect paths between two end hosts.

c) Proxy server selection algorithms are designed and implemented to select a subset

of proxy servers from a large set of available proxy servers with various object

functions and constraints.

d) Resource allocation schemes are proposed and implemented on the end server and

server cluster to provide proportional service differentiation. These schemes are based

on queueing theory and feedback control theory. Combining the multipath on network

with service differentiation on the end server, a comprehensive solution for various

QoS and security related applications can be provided.

For convenience, from now on, we refer our approach of a proxy server-based

multipath connection as “PSMC”. We use the term “direct route” to refer to the network

route which a packet normally takes when it travels through the network. The term

“indirect route” is used to refer to the network route which utilizes the connection relay

proxy server. The term “proxy server” is used specifically for the connection relay proxy

5

servers in a PSMC network unless otherwise specified. We mix the usage of “route” and

“path”.

In addition to the general benefits provided by a multipath connection, PSMC has the

following unique advantages:

a) Ease of Deployment: PSMC utilizes and enhances the existing TCP/IP protocol

and network infrastructure to distribute, transport, and reassemble packets. Unlike

some multipath connection approaches like link aggregation and multipath routing,

which require significant changes on network infrastructure, PSMC is built on an

overlay network and only requires some feasible changes on network software and

protocols on the end systems and the proxy servers. This ensures the ease of

deployment with the current Internet. Therefore, PSMC can be more conveniently

and adaptively deployed in various network environments. PSMC also has good

scalability with regard to network size and number of proxy servers.

b) Flexibility and usability: PSMC is transparent to the application level end users.

The end user can easily set up, manage, and maintain the multipath connection.

PSMC also gives the end users more control and flexibility on multipath connection.

A large number of applications in various categories could benefit from utilizing

PSMC. For example, it can be used to defend against Distributed Denial of Service

(DDoS) attacks with intrusion tolerance. Particularly, it can be used to defend a

Domain Name System (DNS) Root Server against DDoS attacks. PSMC can also be

utilized to provide an alternate or backup route and additional bandwidth based on

operational requirements in an enterprise network. PSMC can be utilized to provide

Quality of Service (QoS) for various applications.

6

Contributions

The contributions of this dissertation are summarized below.

Contribution 1

A proxy server based overlay network using a set of intermediate connection

relay proxy servers is designed and implemented. Multiple indirect or alternate

paths can be set up via these proxy servers.

The proxy server based overlay network is used in a Secure Collective Defense

system (SCOLD) to defend against DDoS attacks. SCOLD provides alternate routes

via a set of proxy servers and alternate gateways when the normal route is unavailable

due to DDoS attacks. The BIND9 DNS server and its DNS update utilities are

enhanced to support new DNS entries with indirect routing information. The indirect

route is implemented by utilizing an IP tunnel. Protocol software for supporting the

establishment of indirect routes based on the new DNS entries is developed for Linux

systems.

Contribution 2

A proxy server based multipath protocol is designed and implemented by

enhancing the existing TCP/IP protocol to effectively distribute, transport, and

reassemble network packets over the multiple indirect paths between two end

hosts.

We modify the Linux kernel to support the enhanced TCP/IP protocols. On the sender

side, the IP layer is enhanced to distribute packets across multiple paths. The TCP

congestion window control is also revised for higher throughput. On the receiver side,

7

the TCP layer is enhanced with a double buffer to solve the TCP packet persistent

reordering problem over multiple paths. A communication channel is set up between

sender and receiver for exchanging network traffic information. The PSMC supports

both TCP and UDP, which enables PSMC to support multimedia applications in

today’s Internet.

Contribution 3

Proxy server selection algorithms are developed to select a subset of proxy

servers from a large set of available proxy servers to meet various object

functions and constraints.

Different sever selections may result in significantly different network performance.

Therefore, server selection is a critical decision in a multipath system. When there are

hundreds of proxy servers available, disjoint paths are more desirable because the

route correlation can be reduced and network reliability and throughput can be

improved. We have also developed heuristic algorithms to choose the best mirror

sites for parallel download from multiple mirror sites.

Contribution 4

Resource allocation schemes on the end server and server cluster are designed

and implemented to provide proportional differentiated services.

These schemes are based on queueing theory and feedback control theory. A process

allocation approach on the Apache Web server is presented for proportional

responsiveness differentiation.

8

Combining the multipath on the network with service differentiation on the end server,

a comprehensive solution for various QoS and security related applications can be

provided.

The rest of the dissertation is organized as follows. Chapter 2 presents the background

and related work. Chapter 3 presents the idea of a proxy server-based overlay network

(SCOLD). Chapter 4 presents the proxy server-based multipath protocol (PSMC).

Chapter 5 presents the proxy server selection algorithm and its performance analysis.

Chapter 6 studies the proportional service differentiation on end server and server cluster.

Chapter 7 contains the conclusion and suggests future work.

9

CHAPTER II

RELATED WORK

This chapter surveys related work and background for the idea of multipath connections.

Multipath Connection

The technique of multipath connection appears under many different labels, like

multiple path routing, alternate path routing, and traffic dispersion. Often the same label

is used in the literature to refer to different things. We try to survey and clarify the

different concepts of multipath connection in this section.

The IBM SNA network in 1974 [SNA79] is probably the first wide area network

which provides multiple path connections between network nodes. However, in the SNA

network, only one path is used at a time, and the purpose of multiple paths is to provide a

fault-tolerance mechanism. Also, SNA multiple paths are predefined and pre-computed.

Maxemchuk [NMax75] in 1975 used channel sharing to provide multipath

connections and reduce queuing delay in store-and-forward networks. He called the

technique “dispersity routing”. This research was extended to virtual circuit networks and

ATM networks to deal with busty traffic data, where both redundant and nonredundant

dispersity routing techniques were described.

10

According to the Open System Interconnection (OSI) Network Reference Model

[OSI], we try to differentiate multipath connections between the physical layer, data link

layer, network layer, transport layer, and application layer. This is only a rough

classification. Some approaches might be multiple layer implementations. Figure 2.1 is a

diagram illustrated the classifications for multipath connections.

Figure 2.1: Diagram illustrating multipath connections.

Physical layer

 Multipath connections in the physical layer are not always something that we want.

For example, sometimes FM radio sounds noisy because of “multipath interference”

[ERun]. Multipath interference happens when FM signals reflect from buildings in a city

or other large obstructions. These reflections interfere with each other and the FM radio

tries to demodulate the original signal as well as the reflection! Other usages of multipath

11

connections in physical layer, like antenna arrays, are beyond the scope of this

dissertation.

Data link layer

Multipath connections in the data link layer have been implemented as link

aggregation or trunking, defined in IEEE 802.3ad [LAgg]. It is a method of combining

multiple physical network links between two devices into a single logical link for

increased bandwidth. The upper layer applications or protocols, such as a MAC client,

can treat the link aggregation group as if it were a single link. Link aggregation requires

special network hardware and software support. Therefore, it is only suited for high-end

users. See Figure 2.2.

.

Figure 2.2: Two servers interconnected by link aggregation [LAgg]

Network layer

In the network layer, multipath connections have been studied extensively in the name

of multipath routing. Various protocols have been designed for wired networks and

wireless ad hoc networks.

a) Wired Networks

12

Based on the routing mechanism, we differentiate between table-driven algorithms

(link state or distance vector) and source routing.

Table-Driven Algorithms

Vutukury et al. [SVJG01] proposed a multipath distance vector routing algorithm

named Multipath Distance-Vector Algorithm (MDVA). It uses a set of loop-free

invariants to prevent the count-to-infinity problem. The computed multipaths are loop-

free at every instant.

Chen, in his Ph.D. dissertation [JChen98], proposed a complete multipath network

model that includes the following three components: routing algorithms that compute

multiple paths; a multipath forwarding method to ensure that data travel their specified

paths; and an end-host protocol that effectively uses multiple paths.

Other works in similar areas include [ICRR99, SMJG96, ROVR93, DSRN91,

NTBB99, WZJG98]. These protocols use table-driven algorithms (link state or distance

vector) to compute multiple routes. These protocols require fundamental changes on

Internet routers and routing protocols. Therefore, the usage and deployment of these

algorithms and protocols are limited.

Source Routing

Source routing is a technique whereby the sender of a packet can specify the route that

the packet should take when the packet travels through the network. In today’s Internet,

when a packet travels through the network, each router will examine the “destination IP

address” and choose the next hop to forward the packet. In source routing, the sender

13

makes some or all of these decisions. If the sender makes only some of these decisions, it

is called loose source routing. Source routing could be used to implement multipath

routing. But, because of the security concerns of source routing, most routers in today’s

Internet have disabled the source routing.

Figure 2.3: Datagram format for loose source routing

MultiProtocol Label Switching

Multiprotocol label switching (MPLS) provides a mechanism for engineering network

traffic patterns that is independent of routing tables. MPLS assigns short labels to

network packets that describe how to forward them through the network. MPLS is

independent of any routing protocol.

In the traditional Level 3 forwarding paradigm, as a packet travels from one router to

the next, an independent forwarding decision is made at each hop. The IP network layer

header is analyzed, and the next hop is chosen based on this analysis and on the

information in the routing table. In an MPLS environment, the analysis of the packet

header is performed just once when a packet enters the MPLS cloud. The packet is then

assigned to a stream, which is identified by a label, which is a short (20-bit) fixed-length

value at the front of the packet. Labels are used as lookup indexes into the label

14

forwarding table. For each label, this table stores forwarding information. Additional

information can be associated with a label, such as class-of-service (CoS) values, that can

be used to prioritize packet forwarding. MPLS could be used to set up multipath

connections for traffic engineering and quality of service.

b) Wireless ad hoc network

Multipath routing in ad hoc wireless network is a topic gaining interest, and much

work has recently been done in this field. An ad hoc wireless network is a collection of

wireless mobile hosts forming an instant deployable network without the aid of any base

station, other infrastructure or centralized administration. The most popular routing

approach in ad hoc network is on-demand routing because of its effectiveness and

efficiency. Routing protocols used in wired network, which periodically exchanging route

messages to maintain route table, are not well suited for ad hoc network, due to the

considerable overhead produced by route update and their slow convergence to

topological changes. On-demand routing protocols build routes only when a node needs

to send data packets to a destination. Each node operates as a specialized router, and

routes are obtained on-demand with no reliance on periodic advertisements.

Based on the routing mechanism, we differentiate between Table-driven algorithms (link

state or distance vector) and Source Routing.

Table-driven algorithms (link state or distance vector)

C. Perkins et al. [CPER99] proposed a novel algorithm for the operation of ad-hoc

networks, named Ad-hoc On Demand Distance Vector Routing (AODV). The routing

15

algorithm is quite suitable for a dynamic self-starting network, as required by users

wishing to utilize ad-hoc networks.

Multipath routing protocols in ad hoc network proposed in [SLMG00], [ANSD99] are

really backup route protocols, in the sense that even though these protocols build multiple

paths on demand, but the traffic is not distributed into multiple paths. Only one route is

primarily used and the secondary path is used when the primary route is broken.

S. Lee et al. [SLMG00-1] propose an on-demand multipath routing scheme for ad hoc

wireless network, called Split Multipath Routing (SMR), that establishes and utilizes

multiple routes of maximally disjoint paths. The proposed protocol uses a per-packet

allocation scheme to distribute data packets into multiple paths of active sessions.

Source Routing

Dynamic Source Routing (DSR) proposed by D. Johnson et al. [DJDM96] is an

enhanced source routing designed specially for wireless ad hoc network. The protocol is

composed of two main mechanisms of “Route Discovery” and “Route Maintenance”,

which together allow ad hoc nodes to discover and maintain routes to any destinations in

the ad hoc network. This protocol allows multipath routing and allows sender to select

the route(s) to use.

L. Wang et al. [LZZZ02] proposed a Multipath Source Routing (MSR) protocol for ad

hoc wireless networks based on Dynamic Source Routing. MSR extends DSR’s route

discovery and route maintenance mechanism to deal with multipath routing. The

proposed scheme distributes load balance between multiple paths based on the

measurement of RTT.

16

Transport layer

 Linux has its own implementation of multipath connection [CSim]. For convenience,

we refer to it as “Linux multipath connection”. It is a solution for using multiple ISP

connections (multi-homing) at the same time. Linux kernel needs to be patched to support

“Advance Router” and “Multiple Path Routing” options. The Linux kernel distributes

packets between multiple network connections in TCP layer. The solution’s configuration

is complicated, and it fails to provide fail-over mechanism in case of failure of a

connection. Also, it requires the host machine to have multiple network interfaces with

multiple ISP connections.

Figure 2.4: Linux multipath connection for multiple ISP connections

The closest multipath schemes on TCP layer to our PSMC work are mTCP [MZha04]

and pTCP [HHsi02]. There are some chandelling issues in designing and implementing a

TCP layer multipath solution. For more details, please refer to Chapter 4.

Both pTCP and mTCP are limited to TCP only, while PSMC supports TCP as well as

UDP. Another major difference is that PSMC can be installed on one end-host (one-way

multipath) or on two end-hosts (two-way multipath). In the first case, only the data

packets from sender are spread out over multiple paths, the return ACK packets from

17

receiver still go through the main direct path. In the second case, both the forwarding

packets and the return packets are sent through multiple paths. pTCP is designed to

support only one-way multipath.

Packet striping can occur on a different layer. The application layer [THac02, HSiv00]

and data link layer [HAdi96, I802] implementations suffer from the inability to

accurately profile the available bandwidth on individual paths. The TCP layer

implementations like mTCP and pTCP use a different striping scheme by monitoring and

keeping track of the outstanding packets on each path, which may impose operational

overhead and a complicated mechanism.

Previous works for TCP persistent reordering problem include TCP-PR [SBoh04] and

[MZha04, HHsi02]. TCP-PR does not rely on Dup ACKs to detect a packet loss, but uses

timers to keep track of how long ago a packet was transmitted. pTCP uses its striped

connection manager (SM) to handle the TCP re-sequencing while mTCP uses its sub-

flow control mechanism for TCP re-sequencing. In PSMC we use a double buffer

approach to temporarily hold the out-of-sequence packets, then deliver the in-sequence

packets to the TCP handler.

Related works for TCP congestion control in a lossy environment include TCP

Westwood [CCas02], which uses the better measured “residual bandwidth” to set TCP

congestion window size upon fast retransmit. In PSMC, we use an approximation of the

residual bandwidth, not by actually measuring the “residual bandwidth”.

18

Network Protocols

Figure 2.5 illustrates some commonly-used protocols on OSI seven-layer model.

Figure 2.5: Protocols on OSI seven layer [JAna]

19

IP tunnel

IP is the primary layer-three protocol in the Internet suite. In addition to internet

routing, IP provides error reporting and fragmentation / reassembly of datagrams.

We have investigated various approaches to implement indirect routing in PSMC, i.e.

SOCKS [SOCK], Zebedee [Zebe], IP Tunnel [IPIP] and IPSec [IPSe].

SOCKS proxy is like an old switch board and can cross wires the connection through

the system to another outside connection. SOCKS has several drawbacks. First, it didn’t

support UDP, only TCP. Second, it didn’t support certain applications, like FTP. Third, it

runs slow.

Zebedee is a simple program to establish an encrypted, compressed “tunnel” for

TCP/IP or UDP data transfer between two systems.

IP tunnel (also called IP encapsulation or IP over IP) is a technique to encapsulate IP

datagram within IP datagrams (Figure 2.6). This allows datagrams destined for one IP

address to be wrapped and redirected to another IP address. The IP tunnel can be set up

from Linux to Linux, windows to windows, or between Linux and windows (windows

must be Windows 2000 server and above).

The advantages of using IP tunnel are as follows. IP tunnel is a layer three protocol. All

the upper layer protocols and applications can utilize it. Second, IP tunnel is a widely

used protocol and supported by most modern operating systems. Last but not the least, IP

Tunnel itself consumes limited system resources since it is a device descriptor.

20

Figure 2.6: IP over IP tunneling [IPIP]

IP Tunnel brings overhead by an extra set of IP headers. Typically it is 20 bytes per

packet. So if the normal packet size (MTU) on a network is 1500 bytes, a packet that is

sent through a tunnel can only be 1480 bytes big, therefore the payload size is reduced.

This also causes fragmentation and reassembly overhead. But these overheads can be

reduced or avoided by setting smaller MTU at the client side.

 IPSec is an extension to the IP protocol which provides security to the IP and the

upper-layer protocols. The IPsec architecture is described in the RFC2401. IPsec uses

two different protocols – Authentication Header (AH) and Encapsulating Security

Payload (ESP) - to ensure the authentication, integrity and confidentiality of the

communication. It can protect either the entire IP datagram or only the upper-layer

protocols. The appropriate modes are called tunnel mode and transport mode. In tunnel

mode the IP datagram is fully encapsulated by a new IP datagram using the IPsec

protocol. In transport mode only the payload of the IP datagram is handled by the IPsec

21

protocol inserting the IPsec header between the IP header and the upper-layer protocol

header.

Figure 2.7: IPsec tunnel and transport mode [IPSe]

IPSec and IP tunnel has been used widely in Virtual Private Network (VPN) [VPN]. A

VPN is a private network that uses the Internet to securely connect remote sites or users

together. Instead of using a dedicated, real-world connection such as a leased line, a VPN

uses a “virtual” connection routed through the Internet. From the user’s perspective, a

VPN operates transparently. The tunneling handshake and packets transmission

mechanism in VPN is a good reference for PSMC packets transmission.

Figure 2.8: VPN [VPN]

22

TCP

TCP is an end to end protocol which operates over the heterogeneous Internet. TCP

has no advance knowledge of the network characteristics, thus it has to adjust its behavior

according to the current state of the network. TCP has built in support for congestion

control. Congestion control ensures that TCP does not pump data at a rate higher than

what the network can handle. For more information on congestion control, please refer to

the appendix.

TCP flow control is based on the premise that out-of-order packet is an indication of

packet loss, which is not true in multipath environment. Packet loss is detected by

Retransmission Time-Out (RTO timer) or Duplicate ACKs (usually three). When Time-

out occurs, TCP enters slow start. When dup ACKs occurs, TCP enters fast retransmit

and fast recovery.

TCP has four defined congestion control mechanisms to ensure the most efficient use

of bandwidth, and quick error and congestion recovery. TCP supports windowing—the

process of sending numerous data packets in sequence without waiting for an intervening

acknowledgement.

The four mechanisms, defined in detail in RFC 2581, are:

– Slow Start – Congestion Avoidance

– Fast Retransmit – Fast Recovery

TCP throughput formula

A simple form is as below:

23

TCP throughput =
pRTT

MSS*22.1 (2.1)

A more complicated form is as below [JPVF98]:

TCP throughput =
)321()

8
33,1min(

3
2 2

0 ppbpTbpRTT

MSS

++
 (2.2)

Here RTT is Round Trip Time. p is packet lost rate. b is the number of packets that are

acknowledged by a received ACK. Many TCP implementations send one cumulative

ACK for two consecutive packets received, so b is typically 2. T0 is the TCP sender

times-out.

TCP Implementation in Linux Kernel

In Linux kernel, packets are stored in skbuffs that are sized according to network

interface MTU. Kernel-side correspondent for TCP socket is struct sock. struct sock

holds state data for the socket (such as the TCP variables regarding congestion window,

etc.). There are several queue pointers: outgoing packets not yet acknowledged, incoming

packets not yet delivered to application. Queues hold chains of skbuffs. skbuff usually

corresponds to one packet sent / received to network. For more information, please refer

to the appendix.

UDP

User Datagram Protocol (UDP) is a connectionless protocol that provides the simplest

kind of transport services. In keeping with its simple capabilities, the UDP header is short

24

and simple, consisting primarily of a protocol identifier (17) in the IP header, an optional

checksum value, an UDP length, and source and destination port addresses.

Appropriate (and historical) uses for UDP concentrate on application layer services

that manage their own reliability and connections, such as NFS, and on chatty protocols

and services, such as DHCP, SNMP, or RIP that rely on simple controls and fail-safes,

and broadcast or periodic transmissions to handle potential reliability, deliverability, or

reachability problems. Many multimedia applications and protocols are built on UDP.

UDP runs up to 40% faster than TCP under some conditions because of its simplicity.

DDoS, DNS and Overlay

DDoS attacks and DDoS defense mechanisms

The operations of computers and networks rely on the availability of various resources

such as network bandwidth, data structures, disk space, and power supply. A

consumption DoS attack may be executed against any resource. For example, a TCP half-

open (SYN) attack consumes the kernel data structures involved in establishing a TCP

network connection. Distributed Denial of Service (DDoS) attacks are any DoS attacks

where tools are employed to rapidly “recruit” and coordinate attacks using a mass

number of conspirators from widely diverse systems around the globe. Figure 2.9 is a

diagram illustrated a typical DDoS attacks.

In general, DDoS defense research can be roughly categorized into three areas:

intrusion prevention, intrusion detection, and intrusion response. Intrusion prevention

focuses on stopping attacks before attack packets reach the target victim. Intrusion

25

detection explores the various techniques used to detect attack incidents as they occur.

Intrusion response research investigates various techniques to handle an attack once the

attack is discovered. In addition to these three research areas, intrusion tolerance, once a

sub-field of intrusion response, is emerging as a critical research domain.

Handler
(Middleman)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Handler
(Middleman)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Client
(Attack Commander)

Internet/ISP
Bandwidth

Mastermind
Intruder

www.victim.com
Bandwidth

Figure 2.9: A typical DDoS [Chow03]

J. Mirkovic, et al. from UCLA presented taxonomy of DDoS attacks and DDoS

Defense Mechanisms [JMir03]. The SCOLD falls into the category of intrusion tolerance

and reconfiguration mechanism. Related works in reconfiguration mechanism include

reconfigurable overlay networks ([RON01], [DYNA]), resource replication services

[JY00] and attack isolation strategies ([BBN]).

The XenoService [JY00] is a distributed network of web hosts that respond to an

attack on any one web site by replicating it rapidly and widely. In this way, a mom-and-

26

pop antiquarian bookstore that comes under a DDoS attack can within a few seconds

acquire more network connectivity than Microsoft, so that it can absorb a packet flood

and continue trading.

In [CCac02], Christian Cachin, et al. from IBM presents an intrusion tolerance system

named Secure INtrusion-Tolerant Replication Architecture1 (SINTRA). SINTRA

supplies a number of group communication primitives, such as binary and multi-valued

Byzantine agreement, reliable and consistent broadcast, and an atomic broadcast channel.

Atomic broadcast immediately provides secure state-machine replication.

DNS enhancement

DNSSEC [DSEC] (DNS Security Extensions) is one of the major efforts to improve

the DNS security. DNSSEC was designed to provide end-to-end authenticity and

integrity in DNS. All zone data in DNSSEC is digitally signed with public-key

cryptography. By checking the signature, a resolver can verify the validity of a DNS

response.

Another major DNS enhancement is dynamic DNS update protocol [DDU], which

allows an entity to update a DNS record “on the fly”. Dynamic DNS update can create

caching issues and additional problems. Dynamic DNS update was extended to secure

DNS update by using a set of keys to authenticate an update [SDU, DSEC]. Digital

signatures are stored in the DNS as SIG resource records and are used to encrypt and

decrypt update messages for a zone.

27

DNS has also been extended for purposes other than name-to-address mapping and

name resolution. Web server load balancing using DNS, storing IPSec key in DNS, and

attribute-base naming system are some of the many examples.

DNS for loading balancing and traffic distribution among a cluster of web servers has

been studied in [VCar99, EDDI]. The web servers are known by a single domain name,

and DNS dynamically map the domain name to a real web server IP address based on

loading balancing algorithm. Therefore, the clients’ traffic will be routed to different real

server.

In [MRic03], the author proposed a method for storing IPSec keying material in DNS.

The IPSECKEY resource record is used to publish a public key that is to be associated

with a domain name. It can be the public key of a host, network, or application.

Intentional Naming System [WA99] is a resource discovery and service location

system by mapping service name-attributes to name records using an intentional name

language.

Overlay network

Overlay network is an area gaining much interest in recent years. The Internet itself is

developed as an overlay on the traditional telephone network.

The RON [RON01] is an application layer overlay network that allows distributed

Internet applications to detect and recover from path outages and periods of degraded

performance within several seconds. It uses UDP encapsulation to send packets along

RON nodes. The RON nodes monitor the functioning and quality of the Internet paths

among themselves, and use this information to decide whether to route packets directly

28

over the Internet or by way of other RON nodes. RON suffers from scalability problem

with more than 50 nodes.

The Detour [SSav99] is an in-kernel packet encapsulation and routing architecture

designed to support alternate-hop routing, with an emphasis on high performance packet

classification and routing. It uses IP-in-IP encapsulation to send packets along alternate

paths. The authors proposed to use intelligent routers spread at key access and

interchange points to "tunnel" traffic through the Internet. These intelligent tunnels can

improve performance and availability by aggregating traffic information, shaping bursty

traffic flows, and using more efficient routes.

Compared with RON and Detour, SCOLD is not only a general purpose overlay

network, but also can be used for defending DDoS attacks and improving DNS

robustness.

Other overlay networks include the MBone [MBON] for IP multicast, the 6-Bone

[IPV6] for IPv6 connectivity and the X-Bone [XBON] for IP-based overlay. X-Bone

does not yet support fault-tolerant operation or application-controlled path selection.

Akamai [AKA] is a distributed content delivery system which significantly alleviates

service bottlenecks and shutdowns by delivering content from the Internet’s edge.

Akamai redirects client requests to the nearest available server likely to have the

requested content. The similar between SCOLD and Akamai is that both redirect client

traffic. Even though they are used for different purposes, they could benefit from each

other by sharing the service servers.

Algorithms for Proxy Server Selection

29

Cache server selection

Proxy server selection and placement is a critical decision in PSMC. Similar problems,

like mirror server and cache server placement and selection problems, are topics gaining

interests recent years [EYYM, LQVP01, SJCJ00, PKDR00, BLMG99]. Both mirror

server and cache server are used to replicate web content to improve the user-perceived

performance and reduce the over-all network traffic.

According to paper [EYYM], there are basically two types of approaches for server

selection problem.

 Formal approach

It abstracts the network topology to a formal graphic model, and use graphic theory to

study the problem. The algorithms are usually based on the following common

assumptions:

a) The network topology is pre-known and static.

 b) The cost associated with each path is pre-known and static.

 c) The network connection between two end nodes is static single path connection.

These assumptions are reasonable for simplifying the network topology, but they are

only approximation to the real Internet environment. Vern Paxson has studied extensively

the end-to-end Internet dynamics [VPax].

K-center problem is one of the well known optimal server placement problems. For k

replicas, we want to find a set of nodes K of size k that allows us to minimize the

maximum distance between a node and its closet replica. K-center problem is NP-

complete [LQVP01].

30

The existing formal algorithms include the followings.

a) Random algorithm: randomly selecting servers, without consideration of other

constrains [LQVP01].

b) Greedy algorithm: selecting servers in a greedy fashion and local optimal way

[LQVP01].

c) Tree-based algorithm: some authors propose solutions by further simplifying the

network model from a mesh model to a tree-based model [BLMG99]. However,

studies [LQVP01] show that this simplification does not always yield the optimal

solution.

d) K-min algorithm: by loosing the condition to tolerate the maximum distance

between a node and its closest center up to twice the distance of the maximum node-

closest center distance, it can be solved in O (N|E|) time [LQVP01, SJCJ00].

e) Hot Spot algorithm: place replicas near the clients generating the greatest load

[LQVP01].

Practical approach

In real world situation, the network topology and connection costs information might

not be pre-known or difficult to obtain. Therefore, the formal approach might not be

feasible. There are several practical server selection approaches for real work situation

without assumption of pre-known network information. It includes IDMap [SJCJ00] and

Client clustering [BKJW00]

IDMap is an architecture designed for global Internet host distance estimation service.

It provides a map with Internet distance instead of geographic distance. IDMap utilize a

31

set of Tracers to measure the distance between themselves and Address Prefixes regions

of the Internet. Client of IDMap can collect the advertised traces and use them to create

distance map.

Client clustering is the approach to cluster the clients and place the web replicas close

to the largest concentration of the clients.

Sever selection problem is an extremely difficult problem, and no prevailing approach

proposed by far.

Disjoint path selection

The problem of finding disjoint paths in a network has been given much attention in

the literature. Various methods have been devised to find a pair of shortest link-disjoint

paths with minimal total length [JSRT84, RBha94, JSuu74, RONS89, DSRN91]. In

[JSu74], Suurballe proposes an algorithm to find K node-disjoint paths with minimal total

length using the path augmentation method. The path augmentation method is originally

used to find a maximum flow in a network [CPKS82]. In [JSRT84], the authors improved

Suurballe’s algorithm such that pairs of link-disjoint paths from one source node to n

destination nodes could be efficiently obtained in a single Dijkstra-like computation. In

general, this type of problems can be solved in polynomial time [RBha94].

However, similar problems with additional multiple constrains become NP-Complete

[GYFK03, ZWJC96, CLSM90]. For example, if requiring the maximal length of the two

disjoint paths to be minimized, then the problem becomes NP-Complete [CLSM90].

Heuristic algorithms based on matrix calculation like [EONY95] have been proposed.

32

An optimal algorithm for finding K-best paths between a pair of nodes is given by Lee

and Wu in [SLCW99], where they transfer the K-best paths problem into a maximum

network flow and minimum cost network flow algorithm via some modifications to the

original graph. Distributed algorithms for the link/node-disjoint paths algorithms can be

found in [RONS89].

Complexity

The time complexity of a problem is the number of steps that it takes to solve an

instance of the problem, as a function of the size of the input. We generally use Big O

notation for complexity to generalize away from the details of a particular computer or

implementation. The Big O notation is a mathematical notation used to describe the

asymptotic behavior of functions. More exactly, it is used to describe an asymptotic

upper bound for the magnitude of a function in terms of another, usually simpler,

function.

The complexity class P is the set of decision problems that can be solved by a

deterministic machine in polynomial time.

The complexity class NP is the set of decision problems that can be solved by a non-

deterministic machine in polynomial time. This class contains many problems that people

would like to be able to solve effectively, including the Boolean satisfiability problem,

the Hamiltonian path problem and the Vertex cover problem. All the problems in this

class have the property that their solutions can be checked effectively.

Differentiated Services

33

Differentiated Services

The differentiated QoS provisioning problem was first formulated by the Internet

Engineering Task Force in the network core. Differentiated Services (DiffServ)

[SBDB98] is a major architecture, where the network traffic is divided into a number of

classes. It aims to define configurable types of packet forwarding in network core routers,

which can provide per-hop differentiated services to per-class aggregates of network

traffic.

The proportional differentiation model [CDDS99] states that certain class QoS metrics

should be proportional to their pre-specified differentiation weights, independent of the

class loads. Due to its inherent differentiation predictability and proportionality fairness,

the model has been accepted as an important DiffServ model and been applied in the

proportional queueing-delay differentiation (PDD) in packet scheduling [CDDS99,

CDDS02, MLJL01, BYPM02, JWCX04] and proportional loss differentiation in packet

dropping [YHRG04].

There are recent efforts on differentiation provisioning on end servers [TAKS02,

JAMD98, SCCE00, XCPM02, HZHT01]. On the server side, response time is a

fundamental performance metric. Existing response time differentiation strategies are

mostly based on priority scheduling in combination with admission control and content

adaptation [TAKS02, JAMD98, SCCE00].

The work in [XCPM02] adopted priority scheduling strategies, strict or adaptive, to

achieve response time differentiation on Internet servers. The results showed that the

differentiation can be achieved with requests of higher priority classes receiving lower

response time than those of lower priority classes.

34

However, this kind of strategies cannot quantitatively control quality spacings, say

proportionally, among the classes. Time-dependent priority scheduling algorithms

developed for PDD provisioning in packet networks can be tailored for PDD provisioning

on Web servers [SLJL04]. However, they are not applicable for proportional response

time differentiation because the response time is not only dependent on a job’s queueing

delay but also on its service time, which varies significantly depending on the requested

services. Providing proportional response time differentiation on Web servers is not only

important, but also challenging.

There are efforts on the design of new resource management mechanisms at kernel

level to support Diff-Serv provisioning efficiently, as exemplified by resource containers

[GBPD99], and its extension cluster reserves [MAPD00].

Resource container is a new operating system abstraction. It separates the notion of a

protection domain from that of a resource principal. A resource container encompasses

all system resources that the server uses to perform an independent activity, such as

processing a client HTTP request. All user and kernel level processing for an activity is

charged to the appropriate resource container and scheduled at the priority of the

container. Resource containers allow accurate accounting and scheduling of resources

consumed on behalf of a single client request or a class of client requests.

Thus, this new mechanism can help provide fine-grained resource management for

DiffServ provisioning when combined with an appropriate resource scheduler. However,

while kernel-level mechanisms can provide efficient control over resource management,

their weaknesses lie on the portability and deployment issues.

35

Proportional differentiation

The proportional differentiation model was proposed in the network core [CDDS99].

It was first applied for DiffServ provisioning in packet scheduling and packet dropping,

in which packet queueing delay and loss rate are key QoS factors, respectively. Many

algorithms have been designed to achieve proportional delay differentiation (PDD) in the

network routers.

They can be classified into three categories: rate-based; see BPR [CDDS99] for

example, time-dependent priority based; see WTP [CDDS02] and adaptive WTP

[MLJL01] for examples, and Little’s Law-based; see PAD [CDDS02] and LAD

[JWCX04] for examples. The work in [CLJL04] demonstrated that some of the

algorithms can be tailored for request scheduling for PDD provisioning on the server

side. However, the algorithms are not applicable to proportional response time

differentiation because response time is not only dependent on a job’s queueing delay but

also on its service time, which varies significantly depending on the requested services.

In [XCPM02, MTMS04], the authors addressed priority-based request scheduling

strategies for response time differentiation on Web servers. Incoming requests were

categorized into the appropriate queues with different priority levels for the

corresponding services. Requests were then executed according to their strict priority

levels [XCPM02] or adaptive priority levels [MTMS04]. The results showed that

response time differentiation can be achieved in the sense that higher classes receive less

response time than lower classes. However, the quality spacings among different classes

cannot be guaranteed by the priority scheduling strategies. Therefore, this kind of

36

priority-based scheduling strategies cannot achieve proportional response time

differentiation on Web servers.

Our integrated approach improves over the previous efforts in the sense that it can

quantitatively control quality spacings between different classes and provide robust

proportionality of response time differentiation.

In [XZJW04], the authors proposed a processing rate allocation strategy for server-

side DiffServ provisioning in terms of slowdown in E-Commerce applications. They left

a challenging implementation issue; that is, how to practically achieve the processing rate

for various traffic classes on servers.

In [HZHT01], the authors adopted an M/M/1 queueing model to guide node-based

resource allocation for stretch factor (a variant of slowdown) DiffServ provisioning in a

server cluster. However, to achieve the processing rates for different classes, the node

partitioning strategy still needs the support of resource allocation on individual servers.

In this thesis, we design and implement a practical application-level process allocation

approach on an Apache Web server to achieve differentiated processing rates.

In [TAKS02], the authors utilized feedback control approaches to achieve overload

protection and performance guarantees on Web servers. The strategy was based on real-

time scheduling theory which states that response time can be guaranteed if server

utilization is maintained below a pre-computed bound. Thus, control-theoretical

approaches, in combination with content adaptation strategies, were formulated to keep

server utilization at or below the bound.

In this thesis, we design and integrate a PID feedback controller with the queueing-

theoretical rate allocation. Our approach is complementary to the previous work in the

37

sense that our approach integrates the queueing theory and control theory for proportional

response time differentiation.

38

CHAPTER III

PROXY SERVER BASED OVERLAY NETWORK

In this chapter, we present the design and implementation of a proxy server based

overlay network called the Secure Collective Defense (SCOLD) system. SCOLD is a

general purpose application layer overlay network. It can be used to defend against DDoS

attacks and to provide alternate or backup routes.

Introduction

DDoS attacks exploit a number of compromised machines and launch large coordinated

packet floods towards a target, thereby causing denial of service for legitimate users. DDoS

attacks have been an immense threat to the Internet for years. One of the most prominent

attacks recently is on Akamai [AKA] in June 2004 that creates major Akamai and Internet

DNS Problems.

The increasing frequency and severity of network attacks reveal some fundamental

security problems of today’s Internet. The Internet was designed to provide fast, simple and

reliable communication mechanisms, and its tremendous success is a credit to the original

design. However, many network services like DNS and protocols like TCP/IP were not

designed with security as one of the basic considerations. Also, the highly distributed and

38

39

interdependent nature of Internet provides opportunities and resources for the coordinated

and simultaneous attacks by malicious participants. Due to the same nature of Internet, it is

difficult to enforce common security policies, measurements and coordination among the

participants of Internet. Therefore, the existing Internet architecture needs to be strengthened

and services / protocols need to be enhanced or re-designed with security in focus.

In this chapter, we present a novel DDoS defense system called Secure COLlective

Defense (SCOLD) system. The key idea of SCOLD is to follow intrusion tolerance

paradigm by providing clients with alternate routes via a set of proxy servers and alternate

gateways when the normal route is unavailable or unstable due to DDoS attacks, network

failure or congestion. The main techniques utilized in SCOLD are the enhanced Secure DNS

Update and Indirect Route [Chow04, DWil04]. SCOLD can also be used as a general

purpose application layer overlay network.

In SCOLD, the enhanced DNS system is utilized to store and convey the indirect routing

information, including the set of proxy server IP addresses. There are two steps to enable the

indirect routing in SCOLD. First, the client DNS server needs to get the indirect routing

information from the target DNS server. This is accomplished by the enhanced secure DNS

update. Second, after clients get the indirect routing information from the client DNS server,

clients can set up indirect route to the target server. Thus the communication channels

between clients and the target are kept open by using indirect routes during DDoS attacks.

39

40

System Overview

Motivation

Most organizations today deploy multiple gateways or multi-homing scheme [AAJP04] as

a backup measure in case of network congestion or failure. Recently overlay network

[SSav99, RON01] has been developed for the same purpose. When the main gateway is

congested or unavailable due to DDoS attacks, the legitimate traffic should be redirected

through the alternate gateways. However, the alternate gateways are exposed to public. They

are subjected to DDoS attacks too. Therefore, simply adding more alternate gateways may

not be sufficient to defend DDoS attacks.

Most existing DDoS defense mechanisms presume the scenario where packets are

transmitted along a normal Internet route and via the main gateway. Under very large-scale

DDoS attack, the huge volume of attack traffic at the main gateway will consume most of

the available network resources. Techniques like rate-limiting [TGMP01] and filtering

[MAZU] which are performed behind the main gateway will become less effective. Other

technique such as traceback [DSAP01, SS00] may require support from upstream routers

and still being developed as protocol standards.

The SCOLD system defends against DDoS attacks by setting up indirect routes between

clients and target server. The traffic between clients and target server is transported over

Internet through the indirect routes. In SCOLD, the three main problems that need to be

solved are as follows.

a) How to redirect the heterogeneous clients’ traffic through indirect route?

b) How to utilize alternate gateways while hiding their IP addresses from public

domain?

40

41

c) How to prevent the attack traffic from using indirect route?

We solve the first problem by setting up indirect route via a collection of geographically

separated proxy servers and alternate gateways. We solve the second and third problem by

using proxy servers that are equipped with IDS, firewall and rate-limiting mechanism, and

only expose the IP addresses of the proxy servers to the public clients.

System architecture

Figures 3.1-3.3 illustrates how the SCOLD system works. Figure 3.1 shows a target site

under DDoS attacks where R is the main gateway, and R1-R3 are the alternate gateways. In

the figure the majority of the traffic from net-a.com is malicious, that of net-b.com is

legitimate, and that of net-c.com is mixed.

Figure 3.2 shows the control flow of the SCOLD system. When the target site is under

DDoS attacks, its Intrusion Detection System (IDS) raises an intrusion alert and notifies the

SCOLD coordinator, who sits in the same or trusted domain of the target server. The

coordinator selects a set of proxy servers between the clients and the target server, and

notifies the selected proxy servers, proxies 2 and 3 here, to set up indirect routes. The proxy

servers notify the DNS servers of the client networks to perform a secure DNS update. The

clients from net-b.com and net-c.com are notified with indirect route, but net-a.com is not

notified due to its malicious traffic pattern which is detected by the IDS on the target

network.

41

42

42

Figure 3.1: Target site under DDoS attack

Figure 3.2: The control flow in SCOLD

43

Figure 3.3: Indirect route in SCOLD

Figure 3.3 shows how an indirect route is setup in the SCOLD system. After a secure DNS

update, the client side DNS server gets the new DNS entry containing the designated proxy

server IP addresses. The clients query their DNS server, get the set of proxy server IP

addresses, and set up indirect routes to the target server via the selected proxy servers. The

proxy servers examine the incoming traffic and relay it to the designated alternate gateway

on the target site.

On the client side, the name resolve library needs to be enhanced to support the indirect

routing. In enterprise environment, the internal clients go outside through an enterprise

gateway (or an enterprise proxy server). Instead of modifying the client resolver, the

43

44

enterprise gateway (or the enterprise proxy server) needs to be enhanced to support the

indirect route.

In SCOLD, the IP addresses of the alternate gateways and the SCOLD coordinator(s) are

revealed only to the trustworthy proxy servers to protect them from being attacked by

malicious clients. The clients in public domain can connect to the target side through the

designed proxy servers. To avoid traffic analysis at the proxy servers by intruders, multiple

proxy servers can be deployed in a chain on an indirect route.

The proxy servers in SCOLD are enhanced with IDS and firewall filters to block malicious

traffic that may try to come in through the indirect route. The detection of intrusion on the

proxy servers can provide additional information for identifying and isolating the spoofed

attack sources. In Figure 3.3, by combing the distributed intrusion detection results from the

main gateway R and the proxy server 3, the attack source from net-c.com could be more

accurately identified.

A proxy server itself may suffer from DDoS attacks or get congested when large volume of

traffic comes through it. Assuming a large collection of proxy servers available, the impact

of heavy traffic can be alleviated by spreading traffic over multiple proxy servers.

The procedure for resuming normal route is similar to setting up indirect route. The proxy

servers need to notify the client DNS servers with another secure DNS update to restore the

normal DNS records. The clients query the DNS server and start to resume the normal direct

route. We can also set an “expiration time” for indirect route so that SCOLD can

automatically revoke obsolete indirect routes.

44

45

All the control messages communicated in SCOLD system are encrypted using Secure

Sockets Layer (SSL) and all nodes involved must be mutually authenticated. Experiments

show that this is one of the major causes of overhead in SCOLD system.

Proxy servers can be provided by the participating organizations of SCOLD, or fee-based

service providers, like Akamai [AKA].

Note that different proxy server selection may result in different system performance; and

multiple proxy servers can be selected to enable parallel transmission or multi-path

connection. We study these problems in [YCai05].

More SCOLD applications

Enhanced SCOLD proxy servers with bandwidth throttling can be used to defend large-

scale DDoS attacks. The SCOLD coordinator collects and analyzes the target server system

load, available network bandwidth and the statistics of the client traffic. Based on the

information, the coordinator can decide what the allowed maximum bandwidth is for each

proxy server connecting to the target server. The proxy servers equipped with admission

control and rate-limiting mechanism can enforce such bandwidth throttling. In Figure 3.3,

the coordinator may assign different allowed maximum bandwidth to proxy 2 and 3,

depending on the sever load and client behavior. This integrated IDS can help to control

aggressive or malicious clients and reserve resources for normal operation.

45

46

Figure 3.4: Protect the root DNS server

A slightly revised version of SCOLD can be used to protect the Root DNS servers from

DDoS attacks, like the one caused a brief service disruption on the nine of the thirteen DNS

root servers in 2002 [NEWS-1]. In Figure 3.4, DNS 1-3 are the client side DNS servers, and

the main gateway R of the root DNS server is under sever DDoS attacks. DNS 1-3 may

experience significant delay or even failure when querying the root DNS server. Due to the

current DNS querying model, the end users will perceive a poor Internet performance with

unbearable delay.

By utilizing the SCOLD technique, we can set up indirect routes between client DNS and

root DNS to ensure the normal operation of root DNS server. The IDS on the root DNS

server raises alert and notifies the coordinator; the coordinator notifies the selected proxy

servers (proxy 2, 3 here); the proxy servers notify the legitimate client DNS servers with

their IP addresses; those DNS servers then set up indirect routes to the root DNS via the

proxy servers and the alternate gateways; then the client DNS servers can query the root

DNS server via indirect route.

In SCOLD architecture, the proxy servers become the “frontline” fighting against the

DDoS attacks. It brings several benefits. First, with large number of proxy servers available,

the target server gain more resources to defend DDoS attacks. Second, if a proxy server

46

47

fails, we can quickly recruit other proxy servers without significant lost. Third, proxy

servers with integrated IDS can provide powerful functionalities to detect and defect attacks.

In SCOLD, there are three defense lines against DDoS attacks. First, based on the

preliminary intrusion detection result from the main gateway, some malicious clients will

not be notified with indirect route. Second, the proxy servers are equipped with IDS and

firewall filters to further block malicious traffic. Third, the proxy servers are equipped with

admission control and rate-limiting mechanism to enforce bandwidth throttling and control

the aggressive clients.

Enhanced Secure DNS Update

In SCOLD, the DNS is utilized to store and convey the indirect routing information, which

are the proxy server IP addresses. This requires several modifications and enhancements on

current DNS.

 First, we need to redefine the DNS record format for storing the additional information.

A sample of the new DNS record in the DNS zone file looks like the following.

target.targetnet.com. 10 IN A 133.41.96.71

target.targetnet.com. 10 IN ALT 203.55.57.102

 10 IN ALT 203.55.57.103

 10 IN ALT 185.11.16.49

The first line is a normal DNS entry, containing host name and its IP address. The next 3

lines contain the IP addresses of proxy servers, as the newly defined “ALT” type (type 99).

47

48

The DNS zone data needs be securely updated from the target side DNS server to the client

side DNS server upon request. However, in the scenario of DDoS attack, the main gateway

of the target server domain may become unavailable or unstable. Therefore, the DNS update

might experience significant delay or even failure. By setting up indirect route and perform

the DNS update via the indirect route, we can overcome the problem.

Figure 3.5 illustrates how the enhanced DNS update works. Step 1, the target side IDS

raises intrusion alert, and notifies the coordinator. Step 2, the coordinator notifies the

selected proxy server(s). Step 3, the proxy server notifies the client DNS server for a secure

DNS update. Step 4, if the client DNS server decide to make a DNS update, it sends a

request back to the proxy server for setting up indirect route; if the proxy server grants the

permission, it notifies a selected alternate gateway and the target server for setting up

indirect route; then an indirect route from the target DNS server to the client DNS server via

the proxy server and the alternate gateway is set up. Step 5, the client DNS server performs

the secure DNS update and gets DNS zone records from the target DNS server.

In the enhanced DNS update, we can not only update DNS zone file through indirect route,

but also perform DNS query through indirect route. In Figure 3.5, after the indirect route is

set up, the client DNS server can query the target DNS server through the indirect route,

without being affected by the DDoS attacks.

Indirect Route

We investigate several alternatives for implementing indirect route, including SOCKS

proxy [SOCKS], Zebedee [ZEBE], IPSec [IPSE] and IP tunnel [IPIP]. SOCKS proxy server

48

49

is like an old switchboard and can cross wire between connections. The main drawbacks of

SOCKS are that it doesn’t support UDP and FTP. Zebedee is an application to establish an

encrypted and compressed tunnel between two systems. But it requires specific

configuration per network application. IP tunnel is a technique to encapsulate IP datagram

within IP datagram. This allows datagram destined for one IP address to be wrapped and

redirected to another IP address. IP tunnel provides what we want for indirect route. IPSec is

an extension to the IP protocol which provides security to the IP and the upper-layer

protocols. We believe whether client traffic needs to be encrypted is a client decision.

Therefore, we choose IP tunnel to support basic indirect routing. However, the

implementation using IP tunnel can be migrated to using IPSec easily. IP tunnel and IPSec

have been used widely in Virtual Private Network (VPN) [VPN] to set up “tunnel” between

network nodes and redirect traffic.

The advantages of using IP tunnel are as follows. IP tunnel is a layer three protocol. All the

upper layer protocols and applications can utilize it. Second, IP tunnel is a widely used

protocol and supported by most modern operating systems. Last but not the least, IP Tunnel

itself consumes limited system resources since it is a device descriptor.

There is overhead associated with IP Tunnel due to the extra set of IP header and the

reduced payload size. This can also cause fragmentation and reassembly overhead. In our

experiments, the overhead in term of response time varies between 30% and 200%. But

compared with the impact of DDoS attack, which may cause unbearable delay, the overhead

of IP tunnel is still in an acceptable range. Fragmentation overhead can be avoided if we

restrict the message transfer size at the sender.

49

50

Figure 3.6 illustrates how the indirect route set up by using IP tunnel. The client queries its

DNS and get the IP addresses of proxy servers; the client sends a request to a proxy server

for indirect route; if the proxy server grants permission, it notifies the designated alternate

gateway; the alternate gateway notifies the target server, then an indirect route can be set up

between the client and the target server via the proxy server and the alternate gateway. We

set a timeout value at client side in case the communication is lost or the indirect route is

broken.

Figure 3.5: Secure DNS update via indirect route

Figure 3.6: Indirect route by using IP tunnel

50

51

Implementation

Implementation summary

Our implementation on BIND 9 and Redhat Linux 8 / 9 is summarized as follows.

1) The BIND9 (v.9.2.2) DNS server [BIND9] was modified to support the newly defined

ALT type 99 data and to enable the automated secure DNS update.

2) The DNS dynamic update utility (nsupdate [NSUP]) was enhanced to support indirect

routing and the new data type. The enhanced DNS update utility is named nsreroute.

3) On client side, the domain name resolve library (v.2.3.2) was enhanced to support the

new data type and enable the automated set up of indirect route. In Redhat Linux, the

resolve library is usually located in /usr/lib or /lib directory, and named as libresolv-nnn.so

(nnn is the version). The routing table on the client node needs to be modified at run time.

4) An agent program runs on the participating nodes (client DNS server, target DNS

server, proxy server, alternate gateway and target server) listening for the control message.

The routing table on the participating node needs to be modified at run time.

5) The indirect route is implemented by using IP Tunnel [IPIP]. By modifying the routing

table at run time, we can utilize IP tunnel just like normal Ethernet devices, like eth0. We

also tested indirect route on Windows 2000 server using IP tunnel

6) All the control messages are encrypted using Secure Sockets Layer (SSL) and all

participating nodes must be mutually authenticated. The implementation of authentication

and encryption/decryption mechanism is a difficult decision, especially in large-scale

distributed system. However, this is not the key focus of the chapter. We utilize the most

commonly-used public key cryptography and digital certificate in OpenSSL (v.0.9.6)

[OSSL].

51

52

Enhanced Resolve Library

In Redhat Linux, the resolve library is usually located in /usr/lib or /lib directory, and

named as libresolv-nnn.so (nnn is the version). The source code of resolve library can be

obtained from glibc package. We modify the res_query.c file under glibc/resolv directory

(version 2.3.2). The source code is listed briefly below.

int __libc_res_nquery (){

static int scold_count = 0;

// scold_count is used to prevent multiple callings of SCOLD in one session.

…..

….

if(scold_count ++ < 1){ //not to run multiple times in one session

 check_result = check_target_status (target_server_name);

 /* target_server_name is the name of the target server,

* check_result return value: if 0 means keep current settings;

* -1 means to clear all tunnels and n means setup n tunnels.*/

 if(check_result != 0 && check_result != -1){ //set up tunnel now

 setup_IPTunnel(target_server_name);

 }

 else if (check_result == -1){ //clear existing tunnels

 clean_IPTunnel(target_server_name);

 }

52

53

 else if (check_result == 0){//keep current settings

 }

 }

 return (n);

}

/*user defined functions*/

int check_target_status (char *server_name) {

/*scold daemon on client update scold_status file upon indirect routing requests*/

 status = read_scold_status_file (server_name) ; //read in the scold_status file

 if (scold_timeout(server_name))

 status = -1; //timeout occurs, overwrite status to clean all tunnels

 return status;

}

void setup_IPTunnel(char *server_name) {

/*scold daemon on client update scold_proxy file with proxy server IPs*/

 proxy_server_list = read_scold_proxy_file (server_name); //read in proxy IP addresses

 _setup_IPTunnel (proxy_server_list); //set up IP tunnel via the proxy servers

}

void clean_IPTunnel(char *server_name) {

 proxy_server_list = read_scold_proxy_file (server_name); //read in proxy IP addresses

 _clean_IPTunnel (proxy_server_list); //clean IP tunnel via the proxy servers

}

53

54

Experimental and Simulation Results

In this section, we present some experimental and simulation results on SCOLD.

Experimental setup

We set up a test bed consists of more than 20 nodes with various machine settings. The test

bed includes HP Vectra machines (PIII 500MHz, 256MB RAM, 100Mb Ethernet

connection), HP Kayak machines (PII 233MHz, 96MB RAM, 10/100 Mb Ethernet

connection), Dell machines (PIII 1GHz, 528MB RAM, 100 Ethernet connection) and virtual

machines (96MB RAM, 100 Mb virtual Ethernet connection, running on a Dell machine

with dual PIII 1.2GHz and 4G RAM). The operating systems are Linux Redhat 8, 9 and

Windows 2000 server. StacheldrahtV4 [STA4] is used as the DDoS attack tool. Figure 3.7 is

one of the test beds which we used in the experiments.

Analysis of the experimental results

a) SCOLD initial setup overhead.

We first evaluate the time taken to initially set up an indirect route in SCOLD, which is the

SCOLD initial setup overhead. As discussed previously, there are three steps involved. Step

1, "IDS -> coordinator -> proxy". The overhead comes from the secure communication

among nodes. Step 2, "Proxy -> client DNS -> perform secure DNS update". The overhead

comes from the secure communication and the secure DNS update. Step 3, "client -> client

DNS -> set up indirect route". The overhead comes from the secure communication, the

client side resolve library processing overhead and the time to set up indirect route.

54

55

Figure 3.7: SCOLD testbed

Table 3.1 shows the initial setup time in SCOLD. It is observed that the overhead comes

primarily from the secure DNS update and the secure communication among nodes. Table

3.2 further shows that the secure DNS update time increases dramatically when the number

of client DNS servers increase. This suggests that there is a limit on how many client DNS

servers a proxy server can handle concurrently.

Table 3.1: SCOLD initial setup time (second)

Step 1 Step 2 Step 3 Total

2.1 4.7 2.7 9.5

55

56

Table 3.2: Secure DNS update time (second)

1 DNS 10 DNS 25 DNS 50 DNS

4.7 25 96 240

b) SCOLD performance

Next we evaluate the SCOLD performance. Table 3.3 shows the processing overhead of

using indirect route vs. the possible delay of direct route under DDoS attacks. The SCOLD

processing overhead comes from the IP tunneling overhead and more Internet hops involved

in indirect route. We can observe that the overhead of indirect route in term of response time

is about 70%. Further experiments shows the overhead varies from 30%–200%. However,

under DDoS attack, the response time of using direct route increases dramatically (15 times

to infinity), while the response time of using indirect route keep the same (No DDoS attacks

against proxy servers directly in the tests, same below). Table 3.3 also shows that the

SCOLD performance is relatively independent of the application type (Ping, HTTP, FTP).

Table 3.3: Indirect Route processing overhead vs. Direct Route delay under DDoS attack

Test No attack Under DDoS attack

Direct
Route

(a)

Indirect
Route

(b)

Direct
Route

(c)

Indirect
Route
(d)

Direct
Route
Delay

(c) / (a)

Indirect
Route

Overhead
(b - a) / (a)

Ping 49 ms 87 ms 1048 ms 87 ms 21 times 77%

HTTP(100k) 6.1s 11s 109s 11s 18 times 80%
HTTP(500k) 41s 71s 658s 71s 16 times 73%
HTTP(1M) 92 s 158s timeout 158s infinity 71%
FTP(100k) 4.2 s 7.5s 67s 7.5s 16 times 78%
FTP(500k) 23 s 39s 345s 39s 15 times 69%
FTP(1M) 52 s 88s 871s 88s 17 times 69%

56

57

We also evaluate the performance the enhanced secure DNS update. Table 3.4 shows

performance comparison between an enhanced DNS update with indirect route (using

nsreroute) vs. normal secure DNS update with direct route (using nsupdate). It shows that

the nsreroute with indirect route is usually slower than the nsupdate with direct route by 30 -

70%. The overhead is mainly caused by the time to set up indirect route and transport DNS

data via indirect route. However, when the main gateway of the target site is under DDoS

attack, the nsupdate with direct route is impacted seriously, and the nsreroute with indirect

route is almost not affected.

Table 3.4: Performance of nsreroute vs. nsupdate,

with and without DDoS attack

 No attack Under DDoS attack

nsupdate

(a)
nsreroute

(b)
nsupdate

(c)
nsreroute

(d)

nsupdate
Delay

(c) / (a)

nsreroute
Overhead

(b-a) / (a)
1 DNS 4.2 s 7.1s 50 s 7.1 s 12 times 70%

10 DNS 21.1 s 27.4 s timeout 27.4 s infinity 30%

c) More overhead analysis

Table 3.5 shows the overhead of enhanced resolver. We measure the response time to

resolve a domain name by using enhanced resolver and the original resolver. It is observed

that the enhanced resolve library only imposes very limited overhead compared to original

resolve library.

57

58

We evaluate the overhead of the enhanced BIND DNS server. Table 3.6 shows the

response time to answer a domain name query by using the enhanced DNS server and the

original DNS server. The result shows that the overhead of the enhanced DNS server is also

very limited.

Table 3.7 shows the overhead of IP tunnels itself. It is observed that the number of IP

tunnels on network nodes doesn’t affect the performance, because IP tunnel itself consumes

very limited system resources.

Table 3.5: Performance of enhanced resolver vs. original resolver

Test Enhanced
resolver

Original
Resolver

Ping 0.7 ms 0.6 ms

HTTP 0.7 ms 0.7 ms

FTP 0.7 ms 0.7 ms

Table 3.6: Performance of enhanced DNS vs. original DNS

Test Enhanced DNS Original DNS

Ping 1.2 ms 1.1 ms

HTTP 1.2 ms 1.1 ms

FTP 1.2 ms 1.1 ms

Table 3.7: The influence of how many tunnels exist

Test 1 tunnel 10 tunnels 50 tunnels 100 tunnels

Ping 87 ms 87 ms 87 ms 87 ms

HTTP(100k) 11s 11s 11s 11s

58

59

The alternate route via the proxy server may be under DDoS attacks too. Therefore we

may want to give up the current alternate route and recruit a new proxy server to set up a

new alternate route in some cases (assuming route initialization and DNS update already

finish). Table 3.8 shows how long it takes to remove the current route and recruit a new

route dynamically. In the test, we start a long web downloading task via a selected proxy

server. Then we launch a DDoS attack against the selected proxy server. The sender notices

a significant delay on the current alternate route. After a timeout period (set to 90 second in

the test), the sender decides to give up the current route and recruits a new route. It takes

about 2.8 seconds to finish a route deletion or route addition.

Table 3.8: Path detection, deletion and addition

Action Time to finish (second)

Route Delete 2.8

Route Add 2.8

Simulation results

To further analyze the overhead in SCOLD, the ns2 simulator [NS2] was used to perform

the simulation study for large-scale network. The topologies used in simulation are

generated using GT-ITM [GITM]. We create transit-stub graphs with 100-500 nodes. We

pick nodes in the same stub for target server, target DNS server, coordinator, main gateway

and 3 alternate gateways. We randomly pick 10% nodes as proxy servers, 5% nodes as

DDoS attackers, 20% nodes as clients and 4% nodes as client DNS servers.

59

60

For simplicity, we set the overhead of IP tunneling and the overhead of secure

communication to be a fixed percentage with a small random variance. We randomly

generate background traffic whose average is 60% of the total network bandwidth. We

generate DDoS attack traffic which can completely shutdown the victim. We keep proxy

servers away from being attacked directly.

Figure 3.8 shows that the average initial setup time of indirect route increases slowly when

60

0

5

10

15

20

100 200 300 400 500
Network size

in
iti

al
 s

et
up

 t
im

e

Figure 3.8: average initial setup time vs. network size

0%

20%

40%

60%

80%

100%

100 200 300 400 500
Network size

in
di

re
ct

 r
ou

te
 o

ve
rh

Figure 3.9: indirect route processing overhead vs. network size

61

the network size increases. Figure 3.9 shows that the indirect route processing overhead

keeps nearly constant when the network size increases. In both figures, SCOLD

demonstrates good scalability with respect to the initial setup overhead and the processing

overhead.

Conclusion

SCOLD redirects the traffic between clients and servers through indirect routes via proxy

servers and alternate gateways. BIND9 DNS package and its secure DNS update utility were

enhanced to support indirect route. IP tunnel was utilized to implement indirect routing. The

results show that SCOLD can improve the network security, availability, and performance.

SCOLD raises several issues. First, how should the Internet community form trust

relationships and coordinate with each other. Second, how to detect and deal with the

compromised proxy server nodes. These are important research issues and go beyond the

scope of this chapter.

It is our hope that the research results of SCOLD can produce valuable secure software

packages, and provide insights for network security and Internet cooperation.

61

62

CHAPTER IV

PROXY SERVER BASED MULTIPATH CONNECTION

In this chapter, we present the design and implementation of a multiple path approach

named Proxy Server based Multipath Connection (PSMC), which can utilize multiple

network paths in parallel and aggregate the available bandwidth of these paths. The

TCP/IP protocol is enhanced to support multipath connection.

Introduction

One key challenge in today’s Internet is to improve network performance, security and

reliability for various network users. The current network connection is mostly over a

single path connection, which may under-utilize network resources and suffer from

performance problems. It is also vulnerable to potential attacks, link breakage or even

traffic congestion.

Multipath connection provides potential multiple paths between network hosts. The

traffic from a source is spread over multiple paths and transmitted in parallel through the

network. Multipath connection not only can improve the network performance, but also

cope well with network congestion, link breakage and potential attacks.

63

In this chapter, we present a new multiple path connection approach named Proxy

Server based Multipath Connection (PSMC). We address a number of challenging key

issues in developing a multipath system as discussed below.

a) How to set up multiple paths between two end hosts. In PSMC, we set up

multiple paths via a set of intermediate connection relay proxy servers by using IP

tunneling. The mechanism is based on SCOLD system [Chow04, DWil04].

b) How to stripe packets across multiple paths. In PSMC, the packet striping is

done in the IP layer in a weighted round robin manner. Both TCP and UDP can benefit

from PSMC.

c) TCP persistent reordering problem [SBoh04]. TCP packets over multiple paths

are likely to reach the destination out of sequence order. Our experimental results show

that it can seriously degrade the overall system performance. In PSMC, we use a double

buffer at the TCP layer on the receiver side to solve the problem.

d) TCP high loss rate problem. The loss rate of a multipath connection is usually

higher than that of a single path connection. Traditional TCP blindly cuts the congestion

control window size in half upon fast retransmit, which may slow down the TCP

performance in multipath scenario. In PSMC, we set the congestion window size to a

more appropriate value upon fast retransmit.

e) “Bad” path detection. Experimental results show that a failed path, a “bad” path,

or paths with “uneven bandwidth distribution” can seriously affect the system

performance. In PSMC, by passively monitoring on end hosts and periodically

exchanging network information through the communication channel, we can quickly

detect the unwanted paths.

64

f) Path management and Failure recovery. To achieve maximum aggregate

bandwidth, algorithms need to be designed to select the best paths. At the same time, path

addition and path deletion need to be done dynamically with low cost in a timely manner.

The multipath system should also recover quickly from a path failure.

g) In PSMC, we propose a communication channel between sender and receiver for

exchanging network traffic information.

We implement PSMC on a network of Linux systems. The experimental results show

that our approach can significantly improve the network aggregate bandwidth, network

security and reliability.

Background

Multipath connection is a topic gaining interest. Early works include Maxemchuk

[NMax75] in 1975. In the network layer, multipath connection has been studied

extensively under the name of multipath routing [SLee00, SVut01, JChe98]. These

routing schemes require changes on intermediate routers, which may limit the usage.

PSMC sets up multiple paths based on the SCOLD system [Chow04, DWil04]. The

SCOLD is essentially an overlay network. Previous works on overlay-based techniques

include Detour [Deto] and RON [RON01]. Overlay network is a feasible solution for

multipath connection by utilizing the existing Internet infrastructure. For example, mTCP

[MZha04] is built on RON network. However, RON suffers from a scalability problem

65

with more than 50 nodes [RON01]. SCOLD has better scalability and flexibility

[Chow04].

The closest multipath schemes to our work are mTCP [MZha04] and pTCP [HHsi02].

Both are limited to TCP only, while PSMC supports TCP as well as UDP. Another major

difference is that PSMC can be installed on one end-host (one-way multipath) or on two

end-hosts (two-way multipath). In the first case, only the data packets from sender are

spread out over multiple paths, the return ACK packets from receiver still go through the

main direct path. In the second case, both the forwarding packets and the return packets

are sent through multiple paths. pTCP is designed to support only one-way multipath.

Packet striping can occur on a different layer. The application layer [THac02, HSiv00]

and data link layer [HAdi96, I802] implementations suffer from the inability to

accurately profile the available bandwidth on individual paths. The TCP layer

implementations like mTCP and pTCP use a different striping scheme by monitoring and

keeping track of the outstanding packets on each path, which may impose operational

overhead and a complicated mechanism.

Previous works for TCP persistent reordering problem include TCP-PR [SBoh04] and

[MZha04, HHsi02]. TCP-PR does not rely on Dup ACKs to detect a packet loss, but uses

timers to keep track of how long ago a packet was transmitted. pTCP uses its striped

connection manager (SM) to handle the TCP re-sequencing while mTCP uses its sub-

flow control mechanism for TCP re-sequencing. In PSMC we use a double buffer

approach to temporarily hold the out-of-sequence packets, then deliver the in-sequence

packets to the TCP handler.

66

Related works for TCP congestion control in a lossy environment include TCP

Westwood [CCas02], which uses the better measured “residual bandwidth” to set TCP

congestion window size upon fast retransmit. In PSMC, we use an approximation of the

residual bandwidth, not by actually measuring the “residual bandwidth”.

PSMC Design

System Overview

Figure 4.1 is a diagram that illustrates the overview of a PSMC system. The multipath

sender module is responsible for packet distribution among the selected multiple paths.

Some packets will go through the normal “direct route”, others might go through the

alternate “indirect routes” depending on the packet distribution. The intermediate

connection relay proxy servers examine the incoming packets and forward to the

destinations through the selected path. The multipath receiver module collects the packets

arrived from multiple paths, reassembles them in order and delivers to the upper layer.

Figure 4.1: Proxy server based multipath connection (PSMC)

67

In [SSav99], the authors find out that the default Internet direct route is usually not the

best. There exist many alternate routes which are much better. These findings justify the

usage of indirect routes.

For a network connection, sometimes the bottleneck lies at edge of the network, say

the telephone line for a dial-up modem user; or the bottleneck is the host processing

power, say the web server capacity. This may limit the benefits of using multipath

connection. However the situation is under significant improvement with the fast

development of technology. In this chapter we assume that the network bottlenecks are

not in the above two scenarios.

PSMC can improve network reliability and availability with multiple redundant paths

available. In [TNgu03, ABan96], the author proposed to use multiple paths to send

redundant error correction information to improve the transmission reliability. PSMC can

also be used to improve network security. For example, IPSec [IPSE] in real-time

multimedia service becomes feasible with adequate bandwidth available. PSMC makes

certain attacks like DDoS attacks, traffic analysis and traffic hijack harder to succeed,

since the traffic is spread over multiple paths.

The establishment of multiple paths in PSMC is based on the Secure Collective

Defense (SCOLD) system [Chow04, DWil04]. SCOLD originally is designed to defend

against the DDoS attacks, but it can also be used to provide multiple alternate paths

between two end hosts via a set of proxy servers. The proxy servers can be provided by

the participating organizations of SCOLD, or fee-based service providers. The indirect

routes are based on IP tunneling.

68

Some of the notations in this chapter are summarized as follows. Assuming there are n

paths between two end hosts, the available bandwidth, loss rate, Round Trip Time (RTT)

and one way delay (OWD) on path i is noted as BWi, pi, RTTi, OWDi respectively,

i=1…n.

Packet Striping on the IP layer

We decide to stripe packets on the IP layer because we want both TCP and UDP to

benefit from multipath connection. It is no doubt that TCP is used by the majority of

current Internet applications. However, most TCP flows on Internet are small [YZha02].

They do not gain as much benefit from multipath connection as large TCP flows do. On

the other hand, the ever-increasing demands on real-time multimedia service from

Internet gain UDP more and more interest. Many audio/video transmission protocols like

[VOIP, RSTP, RSVP] prefer to UDP. And most applications are the long-lived ones with

a large amount of packets to transmit. Therefore, we believe supporting UDP is important

when designing a multipath mechanism.

In PSMC, we adopt a weighted round robin data striping scheme among multiple

paths. To achieve the maximum usage of available bandwidth, the data striping ratio

should be the same as the ratio of available bandwidth on each path. For example, there

are two paths of 10Mb and 5Mb, then the data striping ratio should be 2:1. With the

traffic information from the communication channel, the sender can dynamically and

more accurately adjust its data striping ratio. For example, the sender’s data striping ratio

is 2:1 while the receiver’s data receiving ratio is 3:2, the sender should adjust its striping

ratio to 3:2.

69

Double buffer for TCP re-sequencing

Multipath connection brings a problem of TCP packet “persistent reordering”

problem. Because the individual paths have different latencies, packets over multiple

paths are likely to reach destination out-of-order. The TCP receiver observes the received

packet sequence numbers, and generates duplicate ACK (Dup ACK) for each out-of-

sequence segment. After the sender receives three Dup ACKs, it will enter fast

retransmit. TCP fast retransmit is based on the premise that out-of-order packet is an

indication of packet loss, which is not true in the multipath environment. Our

experimental results show that without considering the packet reordering, the aggregate

bandwidth of multipath connection might be even worse than that of a single path

connection in extreme cases.

The rational of our double buffer approach is as follows. Most out-of-order packets in

multipath connection are not caused by packet loss. Therefore, a better approach is to

hold the packet in a temporary buffer (not the TCP receive buffer), and wait for the

expected packet to arrive. If the expected packet arrives in time (before buffer is full),

then we deliver the in-sequence segment to the TCP handler. If the buffer is full and the

expected packet still doesn’t arrive, this indicates a likely real packet loss. We then

deliver some out-of-sequence packets to TCP handler and let TCP send a few Dup ACKs

to trigger a fast retransmit.

The size of double buffer needs to be carefully considered. If the buffer size is too

small, then it can not hold all the waiting packets. If the buffer size is too large, then it

70

takes too long to trigger a fast retransmit for a real packet loss. Obviously the buffer size

upper limit is the congestion window size cwnd, otherwise the packet flow may halt.

Now we try to derive the buffer size lower limit. Assume path 1 has the largest one

way delay (OWD) among all paths, OWD1 = OWDmax. In the initialization stage of the

buffer, at time OWD 1, the first packet on path 1 arrive the destination. On path i, there

are already packets arrive the destination (For simplicity, here

BWi is in terms of packets/second. We also assume no packet striping delay on sender).

All these packets need to be hold in the buffer. So the minimum buffer size is

)1*)max((+− iBWiOWDOWD

B1 = (4.1))1*)
1

max((+∑
=

−
i

BW
n

i
iOWDOWD

In the steady stage of packet transmission, in a time unit (second), there are BWi

packets arrived on path i. Assuming path k has the smallest bandwidth, BWk = BWmin.

For the time period of 1/BWmin, path k has two consecutive packets arrived. On path i, at

most packets arrived. So the minimum buffer size in this case is)1min/(+BWiBW

B2 = (4.2) ∑
=

+
n

i
BWiBW

1
)1min/(

The buffer size lower limit should be the maximum of B1 and B2.

B= max{ , } (4.3))1*)
1

max((+∑
=

−
i

BW
n

i
iOWDOWD ∑

=
+

n

i
BWiBW

1
)1min/(

We observe from above that the buffer size is related to the difference of the paths’

latency and bandwidth. A fast link combined with a slow link, or a large capacity link

with a small capacity link, may need a bigger buffer size than two moderate links. This

may slow down the overall performance. Therefore, we suggest that paths with similar

71

characteristics should be selected. This path selection criterion is made possible with a

large number of geographically diverse proxy servers available.

In the double buffer approach, the incoming packet is placed on the buffer in order of

the sequence number (earliest sequence number are closest to the head) and packets with

duplicate sequence numbers are removed. When the packet with the correct sequence

number arrives, the in-sequence packet segment is fed to the TCP processing code.

Otherwise, the buffering continues.

If the packet is lost, the expected packet will never arrive. There are several solutions

for the missing packet.

1) The double buffer does nothing. The TCP timer will time out and send another

acknowledgment requesting the packet. This is similar to RTO and slow stat. It is too

conservative and doesn’t perform well.

2) Use a fixed-size double buffer scheme. With a predefined double buffer size, when

the double buffer is full, then delivers the first 3 packets in double buffer to TCP handler

to trigger a fast retransmit. However, how to set double buffer size correctly and

dynamically is a problem. Our experimental results show that a fixed size double buffer

is not able to adapt well to the dynamic traffic condition.

3) The third solution is to dynamically adjust the size of the double buffer. We

propose an adaptive TCP double buffer algorithm below. The notations in the algorithm

are as follows: dbsizeup (double buffer size up limit), dbsizelow (double buffer size

72

lower limit), dbsize (double buffer size), N (the number of paths), packet_in_sequence

(the number of in-sequence packets delivered to TCP handler)

Adaptive TCP double buffer algorithm

1) Buffer initialization,

dbsizelow = max {N, user input value},

dbsizeup = min{ssthresh, user input value},

dbsize = a * dbsizelow (a is a user specified parameter, usually a=2)

packet_in_sequence=0

2) Check the incoming packet and put in double buffer,

3) Check double buffer for in-order sequence segment and deliver this segment to TCP

handler if it exists.

packet_in_sequence += segment size

4) If double buffer is full,

deliver first 3 packets in double buffer to TCP handler to trigger a fast retransmit,

dbsize dbsize -1 if dbsize > dbsizelow,

packet_in_sequence=0.

5) If packet_in_sequence > dbsize,

dbsize dbsize +1 if dbsize < dbsizeup,

6) loop back to step 2.

7) For each sampling period, or RTO timeout, dynamically update

dbsizelow = formula (4.3),

dbsizeup = cwnd,

73

dbsize = a*dbsizelow

TCP congestion window control

Another TCP related issue in multipath connection is the TCP congestion control

window size. In multipath environment, the packet loss rate on the aggregate paths is:

)
1

)1(1(∏
=

−−
n

i i
p

.

In PSMC, all paths share the same TCP congestion window. When three Dup ACKs

are detected, instead of blandly reducing the congestion window size in half, we should

adjust it to the “Residual Bandwidth”, which is equal to the difference between the total

bandwidth and the bandwidth of the path causing packet loss.

Assuming on the sender side, the packet striping ratio is si, (i=1...n). If path k is the

route which causes packet loss, then the “residual bandwidth” is:

cwnd
n

i
ik

n

i
i sss */)(

11
∑−∑
== .

As discussed in Section 3.4, we usually select paths with similar characteristic.

Therefore in practice, we adopt a simpler approach by set the “residual bandwidth” as

 ((n-1) / n) * cwnd

Our experimental results show that the approximation is acceptable.

The new TCP congestion window control algorithm is as follow:

TCP congestion window control algorithm

74

When three duplicated ACKs are detected,

 1) set ssthresh = ((n-1) / n) * cwnd, (instead of 1/2*cwnd in TCP Reno);

 2) if (cwnd > sshthresh) then set cwnd = sshthresh;

 3) The rest is the same as TCP Reno or new Reno.

Communication channel and passive monitoring

The network information like bandwidth, loss rate and latency for individual paths is

important for decision making in PSMC. Active probing on the network is usually

undesirable since it imposes extra load on the network and interferes with normal traffic.

Passive monitoring on end host is usually acceptable. However, keeping track of each

sub-flow as in mtcp may impose overhead and suffer from scalability problem when the

number of paths increases.

In PSMC, we perform passive monitoring on the end hosts to collect the network

information on the whole traffic flow. A secure communication channel is set up between

the end hosts to periodically exchange the information.

Path management

By using networking measurement tools, we can estimate the available bandwidth on

network links and get the network topology. Extensive works have been done in this field

[KLai01]. Then the well-known labeling algorithm for maximum network flow problem

can be used to find the maximum aggregate bandwidth between two end hosts and select

the best proxy servers to set up alternate routes [FGlo92].

75

PSMC may encounter the problem of path failure or “bad” path. Our experimental

results show that “bad” paths (meaning paths with extremely uneven bandwidth

distribution) can dramatically degrade the overall system performance. Therefore, bad

paths and failed paths need to be removed from the PSMC routing list.

Taking bandwidth as a performance metric (latency and error rate will be similar), if

the metric of path i is significantly below the average of other paths, we treat it as a “bad”

path. Our experimental results suggest the threshold to be 1:10.

When a path is removed from the routing list, the end hosts will stop using this path.

However, the packets which were already sent out through this path are unaffected.

The end hosts can also dynamically add new paths to the routing list. When the sender

observes that the current aggregate bandwidth drops significantly, it can start probing

other proxy servers and choose some of them to set up new paths.

Note that even with higher packet loss rate and higher path failure probability, PSMC

can still improve the network reliability and robustness. Neither packet loss nor sub-path

failure will stop the whole traffic flow. The probability of all sub-path failure is much

lower than that of single path failure. Our experimental results show that PSMC can

recover quickly from a path failure.

PSMC on UDP

PSMC on UDP is much simpler than on TCP. The congestion control, packet

persistent reordering and transmission errors are usually handled by the UDP application

itself.

76

 However, there are a couple of things that need to be addressed. Multipath connection

increases the available bandwidth with a price of higher loss rate, and the loss rate

increases when the number of routes increases. This is sometimes unacceptable to

multimedia protocols. Redundant or error correction information can be sent over

multiple routes for packet loss [TNgu03].

The second issue is that UDP is an “aggressive” protocol without built-in transmission

rate control and congestion control mechanism. A congested link that is only running

TCP is approximately fair to all users. However, when UDP data is introduced into the

link, there is no requirement for the UDP data rates to back off, forcing the remaining

TCP connections to back off even further. This is unfair to TCP.

One possible solution is to set a UDP transmission rate upper limit on each path at end

hosts to control the aggressiveness of UDP. This UDP upper limit can be negotiated

between end hosts through the communication channel according to the application

requirements.

Implementation

Implementation summary

The PSMC system is implemented on the Linux kernel 2.4.24, and can be migrated to

other kernel versions. We create a kernel patch which provides the necessary kernel

environment information and interface to the PSMC modules. The kernel modification is

primarily on net/ipv4/ip_output.c, tcp_input.c and tcp.c.

77

The whole PSMC system is designed into several independent modules based on

functionality. The PSMC is a loosely-coupled system. These modules can be loaded,

unloaded and maintained dynamically upon operational request. This greatly enhances

the system scalability, maintainability and flexibility.

The interface between PSMC modules and end users is through the /proc file system.

End users can conveniently input the PSMC parameters (like buffer size, routing

information and data striping ratio) through the /proc system. The communication

channel is built on secure socket connection with OpenSSL [OSSL].

IP striping

PSMC packet striping is implemented on IP layer. We modify the ip_output.c file

under the linux/net/ipv4 directory. To modulate the code, we put the PSMC functional

code in a PSMC module, and insert a function pointer in the ip_output.c.

//insert a function pointer to scold module in ip_output.c

int (*scold_function) (struct sk_buff *) = 0 ;

int ip_queue_xmit(struct sk_buff *skb) {

…

…

 if (scold_function && (*scold_function)(skb)) {

// the return value contains the new device information for packet striping

// linux will automatically do the packet striping with the new device

 }

78

 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,

 ip_queue_xmit2);

}

We also declare the inserted function pointer in netsyms.c under linux/net/ipv4 directory.

//declare and export the function in netsyms.c

extern int (*scold_function) (struct sk_buff *);

EXPORT_SYMBOL_NOVERS (scold_function);

In the PSMC module, we implement a weighted round robin packet dispatcher. Other

packet scheduling schemes can be easily implemented as well. The code is briefly listed

below.

// weighted round robin packet dispatcher for psmc

int psmc_wr_dispatcher(struct sk_buff *skb) {

 /* psmc daemon updates the psmc_wr file with

* destination, weight, proxy server IPs and tunnel device information.

* psmc_dest is the destination address */

 read_psmc_wr_file (psmc_dest); //read in psmc_wr file

//get the current position in the weight round robin dispatching manner

current_position = weighted_round_robin (psmc_dest);

79

//get the current device to dispatch packet

dev_m = dev_get_by_name (get_device (current_position));

if (dev_m == NULL){

 return 0; //no such device, use original device

}

if (dev_m){ //dev exists

 return psmc_dev[current_position];

//return value is the tunnel device number to send packet

//linux will automatically send packet via this new device

}

 }

 return 0; //use original device

}

Double buffering

TCP Persistent reordering problem is a major hit on the network performance. A

solution to out of order packets is to queue the arriving packets and wait for the delayed

packet. This packet buffering is done using the INET socket. The INET socket is

connection based, so there is one INET socket per connection and is a structure

containing information about the connection (e.g,. sequence number).

If the expected packet is lost, then it will never arrive. There are several solutions for

missing packet.

80

1) The double buffer does nothing. The TCP timer will time out and send another

acknowledgment requesting the packet.

2) Use a fixed-size double buffer.

3) Use an adaptive double buffer algorithm by dynamically adjust the size of the double

buffer.

The adaptive algorithm performs better than algorithm 1 and 2. More efficient double

buffer algorithms can to be designed and analyzed in future.

Our implementation of adaptive double buffer is listed below. We first redefine the

struct sock by adding a scoldLog struct, which is similar to backlog. The scoldLog is the

double buffer which temporarily holds the packets between IP and TCP.

//modify the sock.h under linux/include/net directory

struct sock {

…..

 struct {

 struct sk_buff *head;

 struct sk_buff *tail;

 } scoldLog;

}

Then we modify the tcp_ipv4.c file under linux/net/ipv4 directory to implement the

double buffer algorithm.

81

// modify the tcp_ipv4.c file under linux/net/ipv4 directory

int tcp_v4_rcv(struct sk_buff *skb)

{

…

 bh_lock_sock(sk);

 ret = 0;

/*The psmc scold buffer interacts with end user through proc file system.

* End user can turn on/off buffer and set buffer size via proc.

* packets in scold buffer are sorted with sequence number from small to large

* for simplicity, we list the code in high level*/

 if (scold_buffer_on) { // if turn on the buffer

insert_packet_scold_buffer (); // insert packet into sorted scold buffer

// if there is a packet segment in order, deliver the in-order segment to tcp handler

if (segment_in_order_scold_buffer()){

 deliver_segment_scold_buffer ();

delivered_packet_in_sequence += segment size;

// if many packet delivered in sequence, increase dbsize

if (delivered_packet_in_sequence > dbsize && dbsize < dbsizeup)

dbsize++;

}

//if double buffer is full, deliver first three packets to tcp handler to trigger fast retransmit

if(scold_buffer_full()){

82

 deliever_first_three_packets();

 if (dbsize > dbsizelow) dbsize --;

 packet_in_sequence=0;

}

//periodically update dbsize, dbsizelow and dbsizeup

update_db_size(sample_period);

}

…

}

Experimental Results

Experiment setup

We set up a testbed that consists of more than 20 nodes. Table 4.1 lists the machine

setup.

Table 4.1: Machine setup in the testbed

 Hardware OS

HP Vectra PIII 500MHz, 256MB RAM, 100Mb/s Ethernet connection Redhat 9

HP Kayak PII 233MHz, 96MB RAM, 10/100 Mb/s Ethernet connection Fedora Core 1

Dell PIII 1GHz, 512MB RAM, 100Mb/s Ethernet connection Fedora Core 1

VMWare
virtual machine

96MB RAM, 100 Mb/s virtual Ethernet connection, running
on a Dell machine with dual PIII 1.2GHz and 4GB RAM Fedora Core 1

83

Analysis of the experimental results

a) PSMC performance analysis on throughput

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of paths

Th
ro

ug
hp

ut
 (M

b/
s)

single path
mulitpath without double buffer (TCP)
multipath with double buffer(TCP)
multipath without double buffer (UDP)

Figure 4.2a: PSMC throughput comparison

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of paths

B
an

dw
id

th
 u

til
iz

at
io

n
(%

)

single path
mulitpath without double buffer (TCP)
multipath with double buffer(TCP)
multipath without double buffer (UDP)

Figure 4.2b: PSMC bandwidth utilization comparison

Figure 4.2a shows the throughput comparison between single path connection, multipath

84

without double buffer (TCP), multipath with double buffer (TCP) and multipath without

double buffer (UDP). The x axis is the number of paths in use. The y axis is the measured

throughput. The bandwidth on each path is 5Mb/s and the latency is 50ms. It is observed

that for TCP application, when more than 6 paths are in use, the performance of

multipath without double buffer get worse than that of single path connection. As

analyzed before, this is due to the persistent reordering problem in TCP. Therefore,

persistent reordering problem has serious impact on the TCP performance.

Figure 4.2a also shows that for TCP, PSMC with double buffer can aggregate the

bandwidth more effectively. The aggregate bandwidth increases when the number of

paths increases. However when there are more than 8 - 9 paths, the aggregate bandwidth

actually starts to decline slowly. This is due to multipath overhead. As the number of

paths increases, the packet loss rate increases. And the double buffer size gets bigger and

takes longer to respond to a real packet loss. All these factors slow down the system

performance. As analyzed below, the processing overhead of our PSMC code in Linux

kernel is limited and is not the major source of multipath overhead.

In practice, we usually pick 4 to 8 paths to achieve maximum aggregate bandwidth for

TCP applications. The bandwidth gain over 10 paths is limited.

Figure 4.2a also shows that for UDP, PSMC without double buffer can effectively

aggregate the available bandwidth (Due to the space limitation, we don’t show the UDP

bandwidth result after 10 paths). This is because we don’t have to consider problems like

persistent reordering and congestion control for UDP.

Figure 4.2b further shows the bandwidth utilization between the four types of

connections. The x axis is the number of paths in use. The y axis is the bandwidth

85

utilization, which is the ratio of measured throughput to the total bandwidth available. It

is not surprise that the single path connection and the multipath connection without

double buffer (TCP) can not utilize the available network bandwidth effectively. For the

multipath connection with double buffer (TCP) approach, as the number of paths

increases, the bandwidth utilization decreases slowly. For multipath without double

buffer (UDP), it can effectively use all the available bandwidth.

86

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 3 4 5 6 7 8 9 10
Number of paths

A
ve

ra
ge

 la
te

nc
y

(m
s)

multipath with double buffermultipath without double buffer single path

Figure 4.3: PSMC latency analysis

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

1 2 3 4 5 6 7 8 9 10
Number of paths

B
an

dw
id

th
 u

til
iz

at
io

n
(%

)

multipath with double buffermultipath without double buffer single path

Figure 4.4: processing overhead of PSMC on a single path

b) PSMC performance analysis on latency

Figure 4.3 shows the latency comparison on PSMC. We don’t use the Round Trip Time

(RTT) or One Way Delay (OWD) as the latency metrics because they can not properly

indicate the latency impact of PSMC. Instead we adopt the sender-perceived response

time which is the time period between sending out a packet and receiving the

corresponding ACK. We use the average sender-perceived response time over a long

87

period (1000 seconds) during a stable transmission stage as the latency metric. The

bandwidth on each path is 5Mb/s and the latency is 30ms. Figure 4.4 indicates that the

latency in PSMC with double buffer (TCP) increases when the number of paths increases.

This can be explained as follows: when there are more paths involved, the double buffer

size increases, the packets are hold in the buffer longer. At the same time, it takes longer

to detect a real packet loss. All these factors attribute to a longer average latency.

Figure 4.3 indicates that in a PSMC double buffer system (TCP), if latency is an

important factor, then we should not select more than 7 paths. Second, when possible,

select less number of paths because it can reduce the latency.

Even though the latency increases in a PSMC double buffer system for the TCP

applications, we argue that with the abundant bandwidth available, we can design and

utilize some transmission schemes which contain redundant or error correction

information to reduce the latency [TNgu03, ABan96].

Figure 4.3 also shows that the latency of PSMC without double buffer keeps almost the

same as the single path connection when the number of paths increases. This feather is

very helpful for the UDP related applications.

88

c)

Processing overhead of PSMC implementation

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

(1,1) (1,1/2) (1,1/4) (1,1/8) (1,1/16) (1,1/32) (1,0.01) (1,0.001)
Path

B
an

dw
id

th
 u

til
iz

at
io

n
(%

)

multipath with double buffermultipath without double buffer

Figure 4.5a: the impact of bad path

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

(2,
0.1)

(3,
0.1)

(4,
0.1)

(5,
0.1)

(6,
0.1)

(7,
0.1)

(2,
0.01)

(3,
0.01)

(4,
0.01)

(5,
0.01)

(6,
0.01)

(7,
0.01)

Path

B
an

dw
id

th
 u

til
iz

at
io

n
(%

)

multipath with double buffer

Figure 4.5b: the impact of bad path

From Figure 4.2a, we can also observe that if there is only one path in use, the

performance of the four connections is almost the same. This indicates that the processing

overhead of PSMC code on the single path may be very limited.

89

Figure 4.4 further shows that the processing overhead of PSMC over single path is

limited. The dark bar is for the single path connection, and the other two bars are for

PSMC with only one path in use. It shows that when PSMC is used as single path

connection, its performance is comparable with a true single path connection. This

indicates that the processing overhead of our PSMC implementation on throughput is

limited.

From Figure 4.3, we can also observe that the latency of PSMC is primarily caused by

the packet holding time in the double buffer. And the PSMC processing overhead has

limited impact on latency.

d) Impact of “bad” path

Figure 4.5a shows the impact of “bad” path with uneven bandwidth distribution. The x

axis notation (1, 1/2) means two paths are in use, the bandwidth ratio is 1:1/2. It is

observed that the bad or unbalanced paths have big impacts on performance. This is

because when the paths become more uneven, the double buffer size gets bigger. When

packets are lost, it takes longer to enter fast retransmit mode. Figure 4.4a also shows that

the bad path has bigger impact on PSMC without double buffer than with double buffer,

because PSMC without double buffer has a poorer ability to deal with packet reordering.

Figure 4.5b further depicts the impact of bad path. The x axis notation (3, 0.1) means

three paths are in use, and the bandwidth ratio is 1:1:0.1. We can observe that as the

number of paths increases, the impact of bad path gets more significant. This can be

explained that the increased number of paths can complicate the TCP reordering problem.

90

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

2 3 4 5 6 7 8 9

Number of paths

Th
ro

ug
hp

ut
 (M

b/
s)

adaptive double buffer
fixed double buffer (size=10)
fixed double buffer (20)
fixed double buffer (40)

Figure 4.6a: the impact of double buffer scheme

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

5 10 15 20 25 30 35 40 50 60
Buffer size

B
an

dw
id

th
 u

til
iz

at
io

n
(%

)

multipath with double buffer

Figure 4.6b: the impact of double buffer size

Figure 4.5a and 4.4.5b suggests that we should eliminate the bad path or uneven path

for whose bandwidth is below the 1/10 of the average. Keeping such uneven links in a

multipath connection may slow down the performance.

91

e) Impact of double buffer scheme and new cwnd scheme

Figure 4.6a shows the impact of the double buffer schemes. In the test, the bandwidth

on each path is 5Mb/s and the latency is 30ms. The sampling period is 60 seconds. The a

parameter is 2. We perform a long http download task in the test. It is observed that the

adaptive scheme consistently out-perform the fixed-size schemes. If the buffer size is set

to be small (10), it performs well when there are less number of paths. But when the

number of paths increases, its performance drops dramatically. This can be explained as

follows. When there are less number of paths (less than 6), the buffer size 10 is still OK

to temporarily hold the incoming packets. When there are more paths (more than 6), then

the buffer size 10 is too small to hold incoming packets, therefore, a lot of unnecessary

Dup ACKs are sent out, and the system performance drop dramatically. On the other

hand, if the buffer size is set to be too big (40), then it takes too long to respond to a real

packet loss. This will significantly degrade the system performance. It is observed that

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.01 0.1 1. 10.

Loss rate (%)

Th
ro

ug
hp

ut
 (M

b/
s)

TCP with 1/2*cwnd
TCP with (n-1)/n*cwnd

Figure 4.7: the impact of new cwnd scheme

92

the curve of size 40 performs worst. The buffer size 20 is in between and the performance

is in between either.

From Figure 4.6a, we also observe that when there are less than 6 paths in use, the

difference between adaptive scheme and fixed size scheme (size 10 and 20) are limited.

This suggests that the system performance seems not very sensitive to the double buffer

size. In Figure 4.6b we perform another test to see the impact of double buffer size by

using fixed-size scheme. It confirms that the PSMC performance is not very sensitive to

the double buffer size when the buffer size is in a certain range (10 – 25 in this test).

When the buffer size exceeds this range, the performance starts to decline gradually. This

is certainly a good news to our double buffer algorithm, since it means an approximate

Figure 4.8: test bed for TCP fairness

Figure 4.9: test bed for TCP friendliness

93

update on the double buffer size is acceptable.

Figure 4.7 shows the impact of new congestion window size adjustment scheme by

setting 1/2*cwnd to (n-1)/n*cwnd. The x axis is the lost rate in log scale. There are five

paths in the test and the bandwidth on each path is 2Mb/s. We run packet dropper on

proxy servers to simulate the packet loss. The packet dropping rate can be specified

through the /proc file system. As we can see, the new cwnd scheme is consistently out-

performs the old cwnd scheme. When the lost rate increases, the throughputs of both

schemes decline. However, the new scheme declines slower than old scheme. The effect

gets significant in a lossy network environment where packet loss rate is relatively high.

f) PSMC TCP fairness

TCP fairness implies that all connections are provided with similar opportunity to

transfer data, and no connection suffers from “starvation”. For example, if K TCP

sessions share same bottleneck link of bandwidth C, each has average rate of C/K.

Table 4.2: TCP fairness

TCP flow Throughput (Mb/s)

sender 1 - proxy 1 - receiver 5

sender 1 - proxy 2 - receiver 2.49

sender 2 - proxy 2 - receiver 2.49

sender 2 - proxy 3 - receiver 5

We run an experiment to evaluate the PSMC TCP fairness. The test bed is shown in

Figure 4.8. Sender 1 sends out packets to receiver via proxy 1 and proxy 2. Sender 2

sends out packets via proxy 2 and 3. The shared congestion link is between proxy 2 and

94

receiver. Table 4.2 shows the experimental results. It is observed that the TCP flow can

fairly share the bandwidth of the common link (2.49 + 2.49 ≈ 5.0).

g) PSMC TCP friendliness

TCP friendliness implies that PSMC must be “friendly” to other TCP variants. They

must be able to coexist with each other while providing opportunities for all connections

to progress satisfactorily.

We run an experiment to evaluate the TCP friendliness between PSMC and TCP Reno,

which is one of the most commonly used TCP variants. The test bed is shown in Figure

4.9. All links are 6Mb with 30ms latency. Sender 1 sends out packets to receiver via

proxy 1 and proxy 2 using PSMC. Sender 2 sends out packets via proxy 2 using TCP

Reno as a single path connection. Same for sender 3. The shared congestion link is

between proxy 2 and receiver. Table 4.3 is the experimental results.

Table 4.3: TCP friendliness

TCP flow Throughput (Mb/s)

sender 1 - proxy 1 - receiver 6

sender 1 - proxy 2 - receiver 1.99

sender 2 - proxy 2 - receiver 1.99

sender 3 - proxy 2 - receiver 1.99

h) Path related issues.

Now we study the path related issues. Table 4.4 shows the initial set up time of multiple

paths. The delay primarily comes from the secure communication overhead between the

participating hosts. The relatively long initial set up time makes PSMC more suitable for

95

long-lived flow. To reduce the path initialization time, paths can be set up ahead of time

(before run time). Also, these paths can be shared by different user sessions. We can also

observe that the initial set up time is scalable to the number of paths.

Table 4.4: Initial set up time of multiple paths

Number of paths Set up time (second)

2 10.3

5 12.1

10 14.8

50 20.4

Table 4.5: Path detection, deletion and addition

Action Time to finish
(second)

Attacked flow
(second)

Detection 2.1

Delete 5.8

Add 5.7

240 + 12 = 252

Table 4.5 shows how long it takes to detect a bad path and how long to delete and add a

path dynamically. We first start a web downloading task of 240 seconds by using 5 paths

in parallel. During the downloading process, we launch a DDoS attack against a selected

path. It takes 2.1 seconds to detect the “bad” path (not through IDS, but through PSMC

passive bandwidth monitoring). Then the sender deletes the bad path and recruits a new

path (of the same bandwidth). It takes about 5.8 seconds to finish such action. During the

test, the traffic flow continues without stopping. With the deletion and addition action,

the traffic flow finishes in 252 seconds. The overhead of deletion/addition action is about

(252-240)/240 = 5%, within an acceptable range for long-lived flow.

96

i) UDP tests

Table 4.6a: UDP test (2Mb/s paths only)

Number of paths 1 2 3 4 … 10

Aggregate
bandwidth (Mb/s)

2 4 6 8 … 20

Table 4.6b: UDP test (one 200Kb/s, the rest 2Mb/s paths)

Number of paths 1 2 3 4 … 10

Aggregate
bandwidth (Mb/s)

0.2 2.2 4.2 6.2 … 18.1

Table 4.6c: UDP test (one 20Kb/s, the rest 2Mb/s paths)

Number of paths 1 2 3 4 … 10

Aggregate
bandwidth (Mb/s)

0.02 2.02 4.02 6.01 … 18.01

We also run several UDP tests on PSMC. The first test uses real player video

streaming. We play a constant-bit-rate (CBR) video at a rate of 5Mb/s. There are 10 paths

of 2Mb/s available. By using a single path connection, the video constantly pauses and

enters the buffering mode. By using 3 paths in parallel (2M * 3 = 6M > 5M), the video

can be viewed smoothly.

The second UDP test uses a UDP packet generator which can generate a large amount

of UDP packets. There are 10 paths of 2Mb/s, 1 path of 200Kb/s and 1 path of 20Kb/s

available. Table 4.6(a-c) shows the result of UDP tests.

97

It is observed from the above tests that for UDP, PSMC can effectively utilize the

aggregate bandwidth, and the bad path has very limited impact on the aggregate

bandwidth.

We also run a UDP/TCP competition test. There is a multipath connection of two sub-

paths with total bandwidth of 6Mb/s, and 2 TCP flows of 2Mb/s each running on the

connection. Then we launch a large UDP flow without rate control. We observe that the

UDP flow quickly consumes most of the available bandwidth, leaving little share for TCP

flows. Then we enforce a rate limiting on UDP packets (1Mb/s) at sender side, and the

TCP flows start to recover. Table 4.7 illustrates the test result.

Table 4.7: UDP and TCP competition test (Mb/s)

 TCP1 TCP2

Before UDP starts 2 2

After UDP starts 0.1 0.1

UDP with rate control 2 2

Conclusion

In this chapter, we propose the design and implementation of the Proxy Server based

Multipath Connection (PSMC), which can set up multiple routes between two end hosts

and utilize them in parallel by striping packets across these routes. We summarize the key

issues in a multipath system and provide solutions in PSMC. The experimental results

show that PSMC can make good usage of network resources and significantly improve

the network performance, security and reliability.

97

CHAPTER V

PROXY SERVER SELECTION ALGORITHMS

Proxy server selection or path selection is a critical decision in a multipath

connection network. Different selection may result in significantly different result. In this

chapter, we present several algorithms including genetic algorithms to solve the proxy

server selection problem in multipath connection environment.

Introduction

In the previous two chapters, we present a new multipath connection approach called

Proxy Server based Multipath Connection (PSMC), in which the multiple paths are set up

via a set of intermediate connection relay proxy servers. The proxy servers examine the

incoming packets and forward them to the appropriate destination.

One of the key issues in a multipath system is path selection, or proxy server selection.

We will mix the usage of path selection and proxy server selection in this chapter. There

might be a large number of proxy servers available; we need to select the “optimal”

subset of proxy servers from the candidates and achieve the objective functions, like

maximum aggregate bandwidth. Different path selection may result in significantly

98

different performance [SSav99, RON01]. Therefore, server selection is a critical decision

in PSMC.

When the network paths are disjointed, the network reliability is improved, the

available throughput increases, the traffic along the paths are load-balanced and least

likely to be correlated. Therefore, finding multiple disjoint paths are usually desirable in

multipath environment.

There are two types of disjoint: link disjoint if no common links between paths, and

node disjoint if no common nodes between paths besides the end host nodes. In general a

link-disjoint paths algorithm can be extended to a node-disjoint algorithm with node

splitting [GYFK03, JSRT84].

Network Model

By using networking measurement tools, like traceroute [Trac], pathchar [Path],

cprobe [Cpro], we can obtain the IPs of the routers along the selected path and estimate

the bandwidth or latency on each link in that path. Extensive work has been done in

network measurement [SSav99, VPax, SJCJ00]. Usually we can get the network topology

between given end hosts based on the network measurement techniques. Figure 5.7 is an

example network topology from a node at UCCS network lab to the selected Redhat

mirror servers.

For simplicity, in this chapter we assume the network topology is known and static.

Even though it is not always true [VPax], we argue that in a short given period this

assumption is acceptable. We also assume the network bandwidth on network links is

99

known and static. Due to the dynamic nature of Internet, the available bandwidth on

network links is not a constant and keeps changing. However, with more accurate

bandwidth probing approaches, it is possible to measure the network bandwidth in a short

period. We also assume the network forwarding route and return route are same. Even

though it is not always true either [VPax], we argue that the results in this chapter on an

undirected graph can be extended to a directed graph.

We model the proxy server selection problem as followings.

Let G = (V, E) be a graph which models the network topology. V represents the set of

nodes including proxy server nodes, end host nodes, and the routers in between; E

represents the set of edges or link segments that connect the nodes in the network.

Let P be the set of proxy servers, P = {p1, p2,… pn}. The source node is s and

destination is d. For a proxy server pi, BW(pi) represents the available bandwidth of the

indirect route via pi from s to d, and L(pi) represents the latency of the indirect route via

pi. For an edge e, BW(e) represents the available bandwidth on edge e, and L(e)

represents the latency on edge e. Assume the route via pi consists of a set of edges e1, e2

…, em, we define

BW(pi) = min{BW(e1), BW(e2)… BW(em)},

and

L(pi) = L(e1) + L(e2) + … + L(em).

Let S be the subset of proxy servers that we selected, S⊆ P.

The proxy server selection problem is to find a subset S from P to maximize the

objective functions and meet some constraints in graph G.

100

NP Hardness

There are many open problems in server selection problem or sever placement

problem. Problems like mirror server and cache server placement and selection problems,

are topics gaining interests recent years [EYYM, LQVP01, SJCJ00, PKDR00,

BLMG99]. In this chapter, we concentrate on selecting disjoint paths, which has very

different objective functions with the cache server problem. For a related work survey on

disjoint paths, please refer to chapter 2.

We summarize the disjoint path selection problem in multipath environment and study

their NP-hardness as below.

1) Max-aggregate bandwidth problem.

The problem of finding maximum aggregate bandwidth in a given network is close to

the classic maximum flow problem [CPKS82] and can be solved in polynomial time. The

basic idea is to use augmenting path and labeling scheme.

Instance: A graph G = (V, E), with capacity BWi,j associated with each edge ei,j , a

source node s, a destination node d,

Question: Is there a set of paths S = {p1, p2, … pk} from s to d such that is

maximum?

∑
∈S

BW
ip

)
i

p(

Lemma 5.1: The Max-aggregate bandwidth problem can be solved in polynomial

time.

101

Prove: The max-aggregate bandwidth can be easily converted to the classic maximum

flow problem, therefore it can be solved in polynomial time. The complexity of max-

aggregate bandwidth problem is the same as the maximum flow problem. We denote the

complexity as O(c(maxflow)).

2) Max-bandwidth, k-disjoint path problem.

This problem refers to the problem of finding k disjoint path whose aggregate

bandwidth is maximum. This problem can be converted to the well-known K-best paths

problem in [SLCW99]. The K-best paths problem is to find k disjoint paths which have

the lowest total cost. It can be solved in polynomial time. The basic idea is to use node

splitting to transfer the K-best path problem into the classic maximum flow minimum

cost problem.

Instance: A graph G = (V, E), with capacity BWi,j associated with each edge ei,j , a

source node s, a destination node d, K is a given positive integer.

Question: Is there a set of node-disjoint paths S = {p1, p2, … pk} (set size is K) from s

to d such that is maximum. ∑
∈S

BW
ip

)
i

p(

Theorem 5.1: The max-bandwidth, k-disjoint path problem can be solved in

polynomial time.

Proof:

The K-best paths problem is as follows: Given a graph G2 = (V, E), with capacity

BWi,j and cost Ci,j associated with each edge ei,j , a source node s, a destination node d, K

102

is a given positive integer. Let . Find a set of node-disjoint

paths {p

∑=
∈ mji pathe

C jipathmC
,

,)(

1, p2, … pk} (set size is K) from s to d such that is minimum. ∑
=

k

i
iPC

1
)(

We can convert the max-bandwidth, k-disjoint path problem to the K-best paths

problem. For the given graph G = (V, E) in max-bandwidth, k-disjoint path problem, we

convert it to graph G2 by assigning zero cost to all the edges. The edge ei,j capacity in G2

is BWi,j, same as in G. Define a "virtual" edge from the origin s to the destination d with a

flow cost of one unit and no upper or lower bound on capacity. This virtual edge is node-

disjoint with all other edges. See Figure 5.1. We assign a large number as the "supply

quantity" at the origin s, and same quantity is "demanded" at the destination d.

Figure 5.1: conversion from G to G2

In trying to find the minimum cost flow with k-best paths algorithm in G2, the solution

procedure will push the maximum possible flow through the original network since it

costs nothing on these edges. Only the overflow over and above the maximal flow

possible in the original network is diverted through the virtual edge from the origin s to

103

the destination d. The maximum aggregate bandwidth in G is of total supply flow amount

minus virtual edge flow amount. Therefore, the solution in G2 by using k+1 best paths

algorithm also yield the solution in G with k disjoint path of maximum aggregate

bandwidth.

As we can see from the proof, the complexity of the max-bandwidth, k-disjoint path

problem is the same as the K-best paths problem, which is also the same as the well-

known Maximum flow and minimum cost network flow problem (MCNF). The best

known algorithm for MCNF is

O(c(mcnf)) = О(c(n,m,k)) = O(min{A1,A2,A3}),

where A1=nmlog(n2/m)lognM, A2=nm(loglogk)log(nM) and

A3=(mlogn)(m+nlongn). Here c(n,m,k) is the complexity of MCNF problem, n is the

number of nodes in G, m is the number of links in G, M is a big number.

3) Max-bandwidth, min-number-of-disjoint-paths problem.

This problem refers to finding a set of disjoint paths, whose aggregate bandwidth is

maximum, and the set size (number of paths) is minimum. This problem is important

because in practice people want to use least number of disjoint paths to achieve the

maximum aggregate bandwidth. As we can see from chapter 4, the more number of paths

are used, the less efficient of bandwidth utilization, and the longer latency. When

exceeding a threshold (8-10), adding paths will not provide additional bandwidth.

104

Instance: A graph G = (V, E), with capacity BWi,j associated with each edge ei,j , a

source node s, a destination node d.

Question: Is there a set of node-disjoint paths S = {p1, p2, … pk} (set size is K) from s

to d such that is maximum and k is minimum. ∑
∈S

BW
ip

)
i

p(

Lemma 5.2: The maximum number of link-disjoint paths in G can be found in

polynomial time.

Proof: For the given graph G = (V, E), we convert it to graph G1 by assigning unit

capacity to all edges. See Figure 5.2.

Figure 5.2: G to G1

Then we apply maximum flow algorithm on graph G1. Assuming the maximum flow

is K, since the link capacity is one unit, so there must be K paths in the solution path set.

Assume the solution path set S = {p1, p2, … pk}. First, p1, p2, … pk must be link disjoint,

otherwise the maximum flow is less than K. Second, there is no more link disjoint path in

G1, otherwise the maximum flow is more than K. Therefore K is the maximum number

of disjoint paths in G1 and G, and it can be found in polynomial time.

.

105

Lemma 5.3: The maximum number of node-disjoint paths in G can be found in

polynomial time.

Proof: For the given graph G = (V, E), we first convert it to a directed graph G1 by

duplicating edges and orienting them both ways [RATM93]. We then convert G1 to

graph G2 by splitting nodes (except s and d). As illustrated in Figure 5.3, we convert G to

G1 by duplicating edges, then split node i in G1 to node m and n in G2 by adding a virtual

link between m and n with the capacity of one unit. All the incoming edges go to one

node and outgoing edges go to the other. The capacities of all other links in G2 are also

set to be one unit.

Figure 5.3: conversion from G to G1 to G2

We then apply the max-flow algorithm on graph G2. Assuming the maximum flow is

K. From lemma 5.2, we know that the maximum number of link-disjoint paths in G2 is K.

Assume the solution path set S = {p1, p2, … pk}.

106

Translated back from G2 to G1, the link-disjoint paths selected in G2 are node-disjoint

paths in G1. Then translated back again from G1 to G, note that the duplicated edges in G1

can not be selected into the solution set at the same time. For example, e1_i and e1_o can

not be both in the solution set in G1. Therefore we can translate the solution set in G1 back

to G. Then we get the maximum number of node-disjoint paths in G, and it can be

obtained in polynomial time.

Theorem 5.2: The max-bandwidth, min-number-of-disjoint-paths problem can be

solved in polynomial time.

Prove: We first use lemma 5.1 to find the maximum aggregate bandwidth in G,

assuming is W. Then we use lemma 5.2, 5.3 to find the maximum number of link disjoint

paths L and node disjoint path N, assuming the aggregate bandwidth is WL and WN

respectively.

If W > WL, then it is not possible to find link disjoint paths to achieve maximum

aggregate bandwidth. If W = WL, then we can achieve maximum bandwidth W with

minimum number of link disjoint paths L.

Same for node disjoint. If W > WN, then it is not possible to find node disjoint paths

to achieve maximum aggregate bandwidth. If W = WN, then we can achieve maximum

bandwidth W with minimum number of node disjoint paths L.

Easy to see, the complexity of the proposed algorithm is the same as the max-flow

algorithm, which is denoted as О(c(maxflow)).

4) Max-bandwidth, min-longest-latency path problem.

107

In multipath environment, path latency is also an important factor. It is critical for

some real time multimedia applications. When selecting multiple paths, people usually

want to find a set of disjoint paths to achieve maximum aggregate bandwidth, at the same

time, the path with longest latency in this set is minimum among all possible path sets.

Instance: A graph G = (V, E), with capacity BWi,j and latency Li,j associated with each

edge ei,j , a source node s, a destination node d, let path latency . ∑
∈

=
p

L jiPL
ji, ,)(

Question: Is there a set of node-disjoint paths S={p1, p2, … pk} from s to d such that

is maximum, and the maximum path latency L(P∑
∈S

BW
ip

)
i

p(m) (m=1…k) is minimum.

Or given a non-negative number X, is the latency of the slowest path L(Pm) is less than or

equal to X?

Theorem 5.3: The max-bandwidth, min-longest-latency path problem is NP-

Complete.

Proof: We show the problem is NP-complete by giving a transformation from a well

known NP-complete problem – the Partition problem [MGDJ79].

The partition problem: given a finite set A and a size s s(a)∈Z+ for each a∈A, is there

a subset A’ ⊆A such that

∑
−∈

=∑
∈ '

)(
'

)(
AAa

as
Aa

as

It is easy to see that this problem is NP, since a non-deterministic algorithm can get a

set of disjoint paths with maximum aggregate bandwidth and check if the length of the

longer path is less than or equal to X.

Let’s construct an instance of the problem with a graph G = (V, E), with the following

characteristic:

108

1) (3n + 2) nodes, s is source node, d is destination node

2) V = {vi, i=1…2n} {uU i, i=1…n} U {s, d}

3) The edges are:

 a) (s, v1), (s, u1), (v2n, d), (un, d)

 b) (vi, vi+1), i=1…2n-1

 c) (ui, ui+1), i=1…n-1

 d) (v2i, ui+1), i=1…n-1

 e) (ui, v2i+1), i=1…n-1

4) The bandwidth on all edges BWi,j =1

5) The latency is as follows:

 a) L(v2i-1, v2i) = s(ai), i=1…n

b) The Latency of every other edge is 0

(0 means a very small number compared with s(ai))

6) The X = ∑
∈Aai

ais)(*2/1

It is easy to see that there are at most two disjoint paths from s to d, and the maximum

aggregate bandwidth is 2. We need to show that instance of the original problem will

have two disjoint paths from s to d of length at most X, if and only if elements of the

instance of the Partition problem can be divided into two groups, such that the sums of

these two groups are equal.

First, suppose that the set A can be divided into A’ and A-A’ such that

. In this case we need to show that we can construct two disjoint ∑
−∈

=∑
∈ '

)(
'

)(
AAa

as
Aa

as

109

paths from s to d that the longest latency is at most . Suppose A’={a∑

∈Aai
ais)(*2/1 f(1),

af(2)… af(m)}, f(1) < f(2)<…<f(m).

The two paths can be constructed as follows.

Path 1: s u1 … uf(1)-1 v2f(1)-1 v2f(1) uf(1)+1 … uf(2)-1 v2f(2)-1 v2f(2)

uf(2)+1 … uf(m)-1 v2f(m)-1 v2f(m) uf(m)+1 … un d.

Path 2: s v1 … v2f(1)-2 uf(1) v2f(1)+1 v2f(1)+2 … v2f(2)-2 uf(2)

v2f(2)+1 v2f(2)+2 … v2f(m)-2 uf(m) v2f(m)+1 v2f(m)+2 … v2n d.

We can verify that the path latency is X and the aggregate bandwidth is 2.

Second, now suppose that there are two disjoint path P1 and P2 from s to d, the

latency of slower path P2 is at most X and the aggregate bandwidth is 2.

It is easy to see that for edge (v2i-1, v2i) with latency s(ai), i=1…n, it must be part of P1

or P2, and can not be in P1 and P2 at the same time. So L(P1) + L(P2) =X. We also have

L(P1) <= L(P2) and L(P2) <=1/2*X, therefore, L(P1) = L(P2) = 1/2*X.

Assuming P1 contains edges with latency of af(1), af(2)… af(m), f(1) < f(2)<…<f(m),

then we can set A’={af(1), af(2)… af(m)}, and the sums of two groups A’ and A-A’ are

equal 1/2*X. Therefore, we prove the theorem.

5) Max-bandwidth, min-jointness problem.

In the real world scenarios, there may not exists disjoint paths between two given end

hosts, because the paths are likely to share some common links on the edge of the

Internet. Another scenario is as follows: two end hosts are in China and US respectively,

since there are limited gateways connections between China and International network

110

[IChi], therefore, the multiple paths between China and US are likely to share some

common links in the middle.

We define jointness and disjoint function as follows like [MZha04].

Jointness = (total number of shared links) / (total number of links)

Disjoint = 1 - (total number of shared links) / (total number of links) = 1 - jointness

We can also use bandwidth or latency instead of the number of links in the definition.

We study the problem of selecting a set of paths to achieve maximum aggregate

bandwidth with minimum jointness.

Instance: A graph G = (V, E), with capacity BWi,j associated with each edge ei,j , a

source node s, a destination node d.

Question: Is there a set of paths S = {p1, p2, … pk} from s to d such that

is maximum, and S is as diverse as possible? (is

minimum among all possible path set who have maximum aggregate bandwidth).

∑
∈S

BW
ip

)
i

p(∑
∈S

jinessJo
ji,p

),(int

Another objective function is to maximize , here α is a

given parameter. This objective function combines both bandwidth and jointness.

∑
∈

+
S

jiDisjoBW
ji,p

)),int()
i

p(*(α

The max-bandwidth, min-jointness problem appears to be NP-complete. We propose a

heuristic algorithm as follows.

In Theorem 5.2, when W > WL, then it is not possible to find link disjoint paths to

achieve maximum aggregate bandwidth. Only if W = WL, then we can achieve

maximum bandwidth W with minimum number of link disjoint paths L.

When W > WL, we first apply Theorem 5.2 to find a set of link disjoint paths S = {p1,

p2, … pk} which bandwidth is WL. Then we convert graph G to G1 by assigning one unit

111

cost on the selected path {p1, p2, … pk}, and zero cost on all other edges. We also need to

deduct the used bandwidth on each edge in {p1, p2, … pk}. Then we convert graph G1 to

G2 by removing the edges with zero bandwidth. Figure 5.6 is an example that illustrates

the above conversion.

Then we apply maximum flow minimum cost algorithm on G2. Assume the solution

path set S’ = {q1, q2, … qm}. Easy to see, the maximum aggregate bandwidth in G2 is (W-

WL). Since set S has unit cost, therefore the S’ use as much zero cost edges as possible.

This means S’ has as little common links with S as possible. However, note that S’ itself

may not be a disjoint set. Therefore, by combing S and S’, we can get a heuristic solution

which can achieve maximum aggregate bandwidth W and are diverse.

6) Constraints

There are also some constraints on the path selection. The experimental results in

PSMC show that the bandwidth distribution among the selected multiple paths has

significant impact on the overall system performance [YCai05]. A large-capacity link and

a small-capacity link may have worse aggregate bandwidth than two moderate links. The

experimental results suggest that if the bandwidth of a path is smaller than 1/10 of the

average of the bandwidth, then this path is treated as “bad” path and should be

eliminated.

Another constrain is the number of paths selected. The experimental results in PSMC

show that the total number of paths should be smaller than a threshold (usually 7-10)

[YCai05]. The bandwidth gain over 10 paths is limited, or even become negative.

112

7) Parallel download from multiple mirror sites

With the recent development of internet, we are able to retrieve documents from

multiple server sites, like the mirror sites, to increase the downloading speed, make better

use of available network bandwidth and parallel processing speed of servers. Recent

work by Rodriguez, Kirpal, and Biersack [RKB00] studied how to use the existing HTTP

protocol for retrieving documents from mirror sites in parallel to reduce the download

time and to improve the reliability. The proposed approach utilizes the HTTP 1.1 byte

range header to retrieve specific data in a mirror server site, which requires no changes on

existing server and client settings.

The algorithms we study for proxy server selection problem can be applied to the

parallel download from multiple mirror sites problem.

Heuristic Path Selection Algorithms

With the objective functions and constraints, some path selection problems in a

multipath system are NP-Complete. Heuristic algorithm is a feasible solution. In this

chapter we propose to use genetic algorithm and a greedy algorithm to solve the

problems.

The three example objective functions are:

a) Maximize and maximize ∑
∈S

BW
ip

)
i

p(∑
∈S

jiDisjo
ji,p

),(int

b) Maximize , here α is a given parameter. ∑
∈

+
S

jiDisjoBW
ji,p

)),int()
i

p(*(α

c) Maximize , and minimize ∑
∈S

BW
ip

)
i

p()}(|max{ ii pLSp ∈ .

113

The two example constraints are:

a) , here T is a parameter set to be 1/10. ∑
∈

>
S

SSizeofBWTBW
ip

)(/)
i

p(*)
i

p(

b) , here W is a parameter set to be 10. WSSizeof <)(

1) Genetic Algorithm

We proposed to use genetic algorithm to solve the NP-complete problem in path

selection. The reasons why to choose genetic algorithm are as follows.

a) It provides more flexibility and extensibility on this problem. If the objective

functions and constraints are later changed, we can easily modify the fitness function in

genetic algorithm to accommodate such changes. Other heuristic algorithms may require

more significant modification under such circumstances.

b) It provides better scalability. The execution time of genetic algorithm scales well

with regard to the network size.

c) It provides more controls for the end users. It can easily produce multiple outputs

and give end users the opportunity for further selection.

The disadvantages of genetic algorithm are as follows.

a) It is a heuristic algorithm and can not always give the optimal answer.

b) The execution time might be long for a small scale network.

We implement a fix-length genetic algorithm in which the length of chromosomes is

fixed, and a variable-length genetic algorithm in which the length of chromosomes can

change.

The genetic algorithm works as below.

114

1) Assign sequential server number, node number and path number to denote each

proxy server, node and path. Assign the initial bandwidth to each path.

2) Initialize the first generation of chromosomes by filling server number in

chromosome. For better performance, we put the last known best results into the

first generation.

3) Crossover and mutation at certain probability. Make sure no duplicated server in

chromosome, and the length of chromosome is less than the given upper limit.

Several different crossover and mutation methods have been combined together for

better performance [JKoz92].

4) Calculate fitness function. For a given chromosome, use the objective function as

fitness function, and check constraints.

5) Run certain generations, and output the stabilized result.

2) Greedy Algorithm

For the maximum bandwidth minimum jointness problem, we also proposed a

heuristic algorithm based on Section 5.3-5 to solve the path selection problem as follows.

1) Initialize the data set.

2) First use lemma 5.1 to find the maximum aggregate bandwidth, assuming is W.

Then use lemma 5.2, 5.3 to find the maximum number of link disjoint paths L,

assuming the aggregate bandwidth is WL. We have W > WL. Assume the solution

path set S = {p1, p2, … pk}.

115

3) Convert the original graph G to G2 by assigning unit cost on set S and deducting set

S from G, as illustrated in Figure 5.6.

4) Apply maximum flow minimum cost algorithm on G2. Assume the solution path set

S’ = {q1, q2, … qm}.

5) By combing S and S’, we can get a heuristic solution which can achieve maximum

aggregate bandwidth W and are diverse.

This is a greedy algorithm. As we can see from the algorithm, the execution time will

be polynomial. Every time when we change the objective functions, we need to design

new greedy algorithm.

Results Analysis

We tested the proposed algorithms for max-bandwidth min-jointness problem on

simulated network topologies as well as a real-world network topology.

GT-ITM [GITM], which is one of the most commonly used internet topology models,

is used to generate network topologies of various sizes for evaluating the performance of

the proposed algorithms. We randomly pick 10% nodes as proxy servers, and two nodes

as end host nodes.

116

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

20(5) 50(5) 100(10) 200(20) 400(40) 600(60) 800(80) 1000(100)

Number of nodes

Ex
ec

ut
io

n
tim

e
(s

)

Genetic algorithm - fix length
Genetic algorithm - variable length
Greedy algorithm

Figure 5.7: algorithm execution time

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Number of nodes

Pe
er

fo
rm

an
ce

 m
et

ric
s

(%
)

Genetic algirithm - fix length
Genetic algorithm - variable length
Greedy algorithm

100 nodes
10 servers

200 nodes
20 servers

600 nodes
60 servers

Figure 5.8: algorithm running results

Figure 5.7 shows the algorithm execution time vs. the simulated network size. The x

axis notation 20(10) means there are 20 nodes plus 10 proxy server nodes. For genetic

algorithm, it usually output stable results after 100 generations. It is observed that the

execution time of both algorithms increases when the size of network increases. The

greedy algorithm has lower execution time, but as we can see from Figure 5.7, the

running result is not satisfactory.

117

Figure 5.8 shows the distribution of the algorithm running results. The notation on the

chart “100 nodes, 10 servers” means there are 100 nodes in the network plus 10 proxy

server nodes. We use as the performance metrics so that

we can compare the running results fairly. The parameter α is used to normalize the

BW(p). Assuming the maximum aggregate bandwidth is W, then α = 1/W. The disjoint

(i, j) is already a normalize value in the range of (0 - 1). For the given network topology,

we run each algorithm 25 times. We set the best running result as 100%, and compare

other running results against it. For greedy algorithm, we change the number notation in

graph G for each run so it can yield different running results.

∑
∈

+
S

jiDisjoBW
ji,p

)),int()
i

p(*(α

We can observe from the chart that the genetic algorithm can yield satisfactory result

in the range of (80-100) %, which are close to the optimal result (100) %. There is no

significant difference between fix-length genetic algorithm and variable-length algorithm.

It is also observed that the greedy algorithm can not yield good result (60-80) %. This is

because the greedy algorithm tends to yield results with bad disjoint.

Figure 5.9 shows the real network topology from a node at University of Colorado at

Colorado Springs (UCCS) to the selected Redhat mirror servers. This topology can be

viewed as half of a PSMC network, with Redhat mirror sites selected as proxy server. We

use the topology and perform some tests on our algorithm. Table 5.1 shows the running

result. It is observed that the execution times of all algorithms are in acceptable range.

Both algorithm yield the optimal result because the simplicity of the given network

topology.

Table 5.1: running results on a real-world topology

118

Algorithm Execution time (s) Running result /

Optimal result
Genetic algorithm – fix length 7.1 100%

Genetic algorithm – variable length 7.2 100%

Greedy algorithm 3.1 100%

Conclusion

Multipath connection is a topic gaining interest. Path selection is a critical decision in

a multipath connection network. In this chapter, we present genetic algorithm to solve the

path selection problem in a multipath connection environment. Genetic algorithm has

better flexibility and extensibility when the context of problem changes. From the

performance result, it is observed that genetic algorithm can produce satisfactory results

within reasonable execution time.

119

 Wait

CS

uccsedge

uccs

ucar

gbr1-p60

gbr3-p70

gbr4-p80s

ggrl-p370s

att-gw

0.so-2-x12

0.so-3-t12s

 0.so-3-t12l

 so-1-0-x12

pos5-0

194.atm8

cybertrails

cyb-r2-atm0

nin.cyber

gbr2-p100

gr1-p3100

pacbell

 gige2-1

atl

gw2-netrail

130

cc-rstone

trillian

gbr2-p60

gbr3-p80
gbr4-p70d

gbr4-p80d

 sl-bb22-sj

 sl-bb20-ana

 sl-bb23-ana

 sl-bb21-fw

 sl-gw40-fw

 208.30

 164.58.1

 ilgw-okc

 164.58.10

 atlas

gbr3-p60d

gbr4-p40a

gbr4-p30w

gbr3-p60w

gbr3-p20n

gbr5-p60n

gbr3-p360n

12.125.50

true-love.r

 acr2-sonet2

 acr2-looks

coreouter2

xcore2.san

owen-nero

corv-car1-g

orstbrdr-gw

orstsw1-gw

ubu.nws

oarnet.cle

oebc2-atm6

199.18.115

krc5-atm1

tc4-atm3

se1-atm3

concretel

164.107.126

cis.ohio

atm2-0

157.at-6-0

0.so-0-1-0

0.so-3-0-0

0.so-7-0-0

0.so-0-1-0

186.atm9-0

Cisco0.xm

c6509-core

mirror.pa

26

108

128

141

484

331

9984(314)

275

36

1237

148

183

57

33

42

15

48

80

512

128

360

33

54

1856

405

361

305

256

210

1216

42

35

54

43

323

296

717

114

3328

109

52

981

64

65

361
36

45

39

41

55

208

29

57

90

28

55

53

57

157

19

78

Unit: Mb/s

 acr2-lookc

597

35

120

 acr1-lookc

iar1-lookc

merit-its

atm1-0-0

cc-rtr

adm-rtr

kedzie-rtr

pa-rtr

84

203

177

17

mirror.pa

192.205.32

c1-pos6-0

c1-pos1-c

c1-pos3-0

c1-pos2-0

c1-pos1-n

wbb1-pos2

10.252.0

mirror-no

591

5632

333

675

1.5

3.3

2133

427

nr1-p360

mes1.mae

128.161.3

 n233-150c

n233-150n

n233-150a

mirror.arc

35

34

15

0.so-2-x11

0.so-3-t11

 0.so-6-t11

 0.so-1-x11

0.os-7-xr1

193.atm6

191.atm6

ihets-gw

fillmore

29

445

169

25

56

194

67
< 20

20 - 100
100 - 500
500 - 1000
> 1000

Figure 5.9: network topology from a node at UCCS

to the selected Redhat mirror servers [Chow00]
Figure 5.9: network topology from a node at UCCS

to the selected Redhat mirror servers [Chow00]

119

 Wait

CS

uccsedge

uccs

ucar

gbr1-p60

gbr3-p70

gbr4-p80s

ggrl-p370s

att-gw

0.so-2-x12

0.so-3-t12s

 0.so-3-t12l

 so-1-0-x12

pos5-0

194.atm8

cybertrails

cyb-r2-atm0

nin.cyber

gbr2-p100

gr1-p3100

pacbell

 gige2-1

atl

gw2-netrail

130

cc-rstone

trillian

gbr2-p60

gbr3-p80
gbr4-p70d

gbr4-p80d

 sl-bb22-sj

 sl-bb20-ana

 sl-bb23-ana

 sl-bb21-fw

 sl-gw40-fw

 208.30

 164.58.1

 ilgw-okc

 164.58.10

 atlas

gbr3-p60d

gbr4-p40a

gbr4-p30w

gbr3-p60w

gbr3-p20n

gbr5-p60n

gbr3-p360n

12.125.50

true-love.r

 acr2-sonet2

 acr2-looks

coreouter2

xcore2.san

owen-nero

corv-car1-g

orstbrdr-gw

orstsw1-gw

ubu.nws

oarnet.cle

oebc2-atm6

199.18.115

krc5-atm1

tc4-atm3

se1-atm3

concretel

164.107.126

cis.ohio

atm2-0

157.at-6-0

0.so-0-1-0

0.so-3-0-0

0.so-7-0-0

0.so-0-1-0

186.atm9-0

Cisco0.xm

c6509-core

mirror.pa

26

108

128

141

484

331

9984(314)

275

36

1237

148

183

57

33

42

15

48

80

512

128

360

33

54

1856

405

361

305

256

210

1216

42

35

54

43

323

296

717

114

3328

109

52

981

64

65

361
36

45

39

41

55

208

29

57

90

28

55

53

57

157

19

78

Unit: Mb/s

 acr2-lookc

597

35

120

 acr1-lookc

iar1-lookc

merit-its

atm1-0-0

cc-rtr

adm-rtr

kedzie-rtr

pa-rtr

84

203

177

17

mirror.pa

192.205.32

c1-pos6-0

c1-pos1-c

c1-pos3-0

c1-pos2-0

c1-pos1-n

wbb1-pos2

10.252.0

mirror-no

591

5632

333

675

1.5

3.3

2133

427

nr1-p360

mes1.mae

128.161.3

 n233-150c

n233-150n

n233-150a

mirror.arc

35

34

15

0.so-2-x11

0.so-3-t11

 0.so-6-t11

 0.so-1-x11

0.os-7-xr1

193.atm6

191.atm6

ihets-gw

fillmore

29

445

169

25

56

194

67
< 20

20 - 100
100 - 500
500 - 1000
> 1000

121

CHAPTER VI

PROPORTIONAL DIFFERENTIATION PROVISIONING

With the abundant bandwidth provided by PSMC, the end server capacity may become

the performance bottleneck. There is an increasing demand for provisioning of different

levels of quality of services (QoS) on the end server. By combining multipath on network

with service differentiation on the end server, we can provide a comprehensive solution

for various applications to improve the performance, security and reliability of the overall

system.

In this chapter, we present several processing rate allocation schemes based on

queueing theory and feedback control theory for proportional service differentiation. We

implement the process allocation approaches on an Apache Web server to achieve the

processing rates allocated to the request classes.

Introduction

Due to the open and dynamics nature of Internet applications, the last decade has

witnessed an increasing demand for provisioning of different levels of quality of service

(QoS) to meet changing system configuration and resource availability and to satisfy

different client requirements. This differentiated QoS provisioning problem was first

formulated by the Internet Engineering Task Force in the network core. Differentiated

122

Services (DiffServ) [SBDB98] is a major architecture, where the network traffic is

divided into a number of classes. It aims to define configurable types of packet

forwarding in network core routers, which can provide per-hop differentiated services to

per-class aggregates of network traffic. The proportional differentiation model [CDDS99]

states that certain class QoS metrics should be proportional to their pre-specified

differentiation weights, independent of the class loads. Due to its inherent differentiation

predictability and proportionality fairness, the model has been accepted as an important

DiffServ model and been applied in the proportional queueing-delay differentiation

(PDD) in packet scheduling [CDDS99, CDDS02, MLJL01, BYPM02, JWCX04] and

proportional loss differentiation in packet dropping [YHRG04].

There are recent efforts on differentiation provisioning on end servers [TAKS02,

JAMD98, SCCE00, XCPM02, HZHT01]. On the server side, response time is a

fundamental performance metric. Existing response time differentiation strategies are

mostly based on priority scheduling in combination with admission control and content

adaptation [TAKS02, JAMD98, SCCE00]. The work in [XCPM02] adopted priority

scheduling strategies, strict or adaptive, to achieve response time differentiation on

Internet servers. The results showed that the differentiation can be achieved with requests

of higher priority classes receiving lower response time than those of lower priority

classes. However, this kind of strategies cannot quantitatively control quality spacings,

say proportionally, among the classes. Time-dependent priority scheduling algorithms

developed for PDD provisioning in packet networks can be tailored for PDD provisioning

on Web servers [SLJL04]. However, they are not applicable for proportional response

time differentiation because the response time is not only dependent on a job’s queueing

123

delay but also on its service time, which varies significantly depending on the requested

services. Providing proportional response time differentiation on Web servers is not only

important, but also challenging.

Processing Rate Allocation

 The proportional responsiveness differentiation model aims to control the ratios of the

average responsive time of classes based on their normalized differentiation parameters.

Let Ti denote the average response time of requests of class i. Specifically, the model

requires that the ratio of average responsive time between class i and j is fixed to the ratio

of the corresponding differentiation parameters

Nji
T
T

j

i

j

i ≤≤= ,1
δ
δ

 (6.1)

The differentiation predictability property requires that higher classes receive better

service, i.e., lower responsive time. Without loss of generality, we assume that class 1 is

the “highest class” and set δ0 <δ1 <δ2 < . . . <δN.

We adopt a M/M/1 FCFS queue for modeling the traffic. Recent Internet workload

measurements indicate that for some Web applications a heavy tailed distribution may be

more accurate for service time distributions. However, we note that the focus of this

Section is on adaptive process allocation for achieving different processing rates in

support of responsiveness differentiation. The processing rate allocation scheme derived

by an M/M/1 queueing model can give the key insights about the differentiation problem

and the feasibility of the process allocation strategy.

We partition the request processing rate of a Web server into N virtual servers. Each

124

virtual server handles requests of one class in a FCFS manner. Let µi denote the

normalized request processing rate of the virtual server i. We have

1
1

=∑
=

N

i
iµ (6.2)

Assume requests of class i in Poisson process arrive at virtual server i in a rate λi. It

follows that the traffic intensity on the server ρi = λi / µi. According to the foundations of

queueing theory, when ρi < 1, we have the expected response time of requests in class i as

 NiT
iiii

i
i ≤≤

−
=

−
= 11

)1(λµρµ
ρ

 (6.3)

For feasible processing rate allocation, we must ensure that the system utilization

. That is, the total processing requirement of the N classes of traffic is less

than the Web server’s processing capacity. Otherwise, a request’s response time can be

infinite and responsiveness differentiation would be infeasible. Admission control

mechanisms can be applied to drop requests from lower classes so that the constraint

holds.

1
1

≤∑ =

N

i iλ

According to the definition of (6.3), the set of (6.1) in combination with (6.2) lead to

∑

∑

=

=

−
+= N

i i
i

N

i
i

ii

1

1

1

1

δ
δ

λ
λµ (6.4)

∑

∑

=

=

−
= N

i
i

N

i i
i

i

C
T

1

1

1

λ

δ
δ

 (6.5)

From (6.5), we have the following three basic properties regarding the predictability and

controllability of the proportional responsiveness differentiation given by the processing

125

rate allocation strategy:

1. Response time of a request class increases with its request arrival rate.

2. With the increase of the differentiation parameter of a request class, its response time

increases but all other request classes have lower response times.

3. Increasing the workload (request arrival rate) of a higher request class causes a larger

increase in response time of a request class than increasing the workload of a lower

request class.

Process Allocation on End Server

A Fixed Process Allocation Strategy

On a process-per-request Web server such as Apache, a process is treated as the

scheduling entity for an independent activity. It is also the entity for the allocation of

resources, such as CPU cycles and memory space. Process abstraction serves both as a

protection domain and as a resource principal. Thus, it is reasonable to assume that the

processing rate of a virtual server is proportional to the number of active processes

allocated to its process pools.

On an Apache Web server, we can impose an upper bound on the number of processes

listening to a port. This maximum number is usually set to be 32 (or 64). To achieve the

processing rate ratios between classes, a straightforward solution is to partition 32

processes into multiple process pools listening to different ports. Each pool works as a

virtual server handling requests of a class in FCFS manner. Thus, we expect to achieve

the processing rates for different classes. We refer to this solution as fixed process

allocation strategy since the number of total processes allocated to the pools is fixed.

126

The problem with the fixed process allocation strategy is that not all allocated

processes are always active due to the workload dynamics. For example, we consider a

two-class response time differentiation scenario. Given the arrival rates, suppose the

calculated processing rate ratio of class 1 to class 2 (µ1 : µ2) is 3:1. According to the

fixed process allocation strategy, 32 processes are partitioned into 24 and 8 and allocated

to the process pool of classes 1 and 2, respectively. However, due to the workload

dynamics of two classes, it is likely that only 18 of 24 processes of class 1 are active

while all 8 processes of class 2 are active. Thus, the real processing rate ratio of class 1 to

class 2 is 2:1, instead of 3:1. The fixed process allocation strategy may not be able to

achieve proportional response time differentiation. We are going to show its results later.

A Queueing - theoretical Process Allocation

We propose a queueing-theoretical adaptive process allocation strategy. Its objective is

to dynamically and adaptively change the number of processes allocated to process pools

for handling different classes while ensuring the ratio of process allocations specified by

the queueing-theoretical processing rate allocation scheme. The rationale is that, to

achieve the processing rate ratios among classes, the allocation strategy has to assure that

most of the processes allocated to the process pools listening to corresponding ports are

active. To utilize the advantage of the Apache pre-forking mechanism, it allows a small

number of processes on a port to be idle. The number is identified by a threshold (H). If

more than H processes on a port are idle, the approach is to decrease the number of

processes allocated to all process pools proportionally.

Algorithm 6.1 gives the details of the approach.

127

Algorithm 6.1

A queueing-theoretical adaptive process allocation approach.

1: for each process allocation period do

2: get the number of active processes (pi) currently allocated to port i from Apache

scoreboard; let P = ; ∑=

N

i ip
1

// Apache server automatically forks new processes according to the workload

condition

3: get the normalized process allocations µ1, µ2 … µN according to (6.4);

4: search for a process multiplier m, so that ∑ ∑= =
+<≤

N

i

N

i ii mPm
1 1

)1(µµ

//mµi is the number of processes that the allocation strategy wants to allocate to port i.

// pi is the number of active processes on port i, which is adjusted in the following.

5: for each port number i do

6: while pi - mµi > H // too many processes forked on port i

7: prohibit a process on this port from listening new requests;

// this process will soon become idle and be killed by Apache itself.

8: end for

9: end for

In each process allocation period, a multiplier m is used to keep the ratio of the

number of active processes of process pools to the normalized value specified by the

allocation scheme (6.4). At line 3, the normalized process allocation (µi) is the

128

normalized integer value of the number of processes allocated to the process pool i. For

example, in a two-class scenario, if µ1/µ2 = 3/1, we have µ1 =3 and µ2 =1. At line 4, a

desirable value of m is searched. It is incremented if the total number of active processes

of all process pools (P) is greater than the target total number (∑=

N

i im
1
µ). This scenario

is possible due to the pre-forking mechanism of Apache Web servers. For instance,

although the allocation strategy initially assigns 3 and 1 processes for listening port 1

(process pool for handling class 1) and port 2 (process pool for handling class 2),

respectively, the Apache server may actually have forked 10 and 4 processes for listening

the two ports respectively. Line 7 adjusts the allocations to ensure the ratio of process

allocations among the classes. It lets Apache itself to prohibit a process from listening

new requests.

An Integrated Process Allocation Approach with Feedback Control

To provide fine-grained proportional response time differentiation, we propose to

design a feedback controller and integrate it with the queueing-theoretical adaptive

process allocation approach. Proportional integral derivative (PID) control is one of the

most classical control design techniques widely used in industrial control systems

[GFJP02]. In our system, PID controller is used to adjust the number of processes

allocated to a process pool according to the difference between the target average

response time and the experienced average response time of a request class. Specifically,

the operation of the PID controller is described as follows:

∑ −

=
∆+++=+

1

0
)()()()0()1(k

j iDiIiPii keKjeKkeKpkp (6.7)

129

p

the

in

resp

resp

acc

hen

hig

P

I

W

eva

diff

 Figure 6.1: The implementation structure
i(0) denotes the initial number of processes allocated to process pool i according to

queueing-theoretical process allocation approach. The other three terms added to pi(0)

the equation above denote proportional, integral, and derivative components,

ectively. Setting a larger proportional feedback gain (KP) typically leads to faster

onse at the cost of increasing system instability. The derivative control takes into

ount the change of errors (∆ei(k)) in adjusting the process allocation of a class and

ce responds fast to errors. Increasing the derivative gain (KD) typically results in

her system stability.

erformance Evaluation

mplementation Issues

e implemented the process allocation strategies on an Apache Web server to

luate the impact of the feedback control on the proportional response time

erentiation. Figure 6.1 depicts the architecture of the integrated process allocation

130

implementation. Two HP PCs (PIII 1 GHz, 516M RAM) installed with Redhat 9 were

used as a router and a Web server, respectively. Four HP PCs (PIII 233 MHz, 96MB

RAM) installed with Redhat 9 and Httperf 0.8 [DMTJ] were used to generate Http

requests of Poisson distribution. The router conducted traffic classifications. We installed

Apache 1.3.29 on the Web server. We configured Apache server at application level to

make one server listen to different ports. The number of ports was determined by the

number of traffic classes to be differentiated. The requests of class 1 were routed to port

80 which was handled by the process pool 1, requests of class 2 were routed to port 8000

handled by the process pool 2, and requests of class 3 were routed to port 8080 handled

by the process pool 3.

The process allocation module in the Web server calculated the processing rate of each

class according to its predicted load condition. The load was predicted for every sampling

period, which was the processing time of one thousand average-size requests. We

adopted a moving window with exponential averaging for the load prediction. The

predicted load was the average of past five sampling periods. We implemented the

process allocation approaches by modifying child main() function in http main.c file of

the Apache server. The process forking and killing mechanisms were not modified and

still handled by Apache. This application-level implementation is flexible and portable.

Performance Evaluation

a) Fixed process allocation

Figure 6.2(a) shows the achieved average response time of class 1 and 2 under various

system load conditions. The arrival rate ratio of two classes is 3:1. The differentiation

131

weight ratio is set to be 1:3. The fixed process allocation strategy dynamically partitions

all 32 processes into the two process pools for class 1 and class 2 according to their

changing arrival rates. It can be seen that requests of class 1 always receive lower

response time than those of class 2. This demonstrates that the responsive time

differentiation is achieved by the processing rate allocation scheme.

Figure 6.2(a-b): Achieved average response time and

response time ratio for fix process allocation

132

Figure 6.2(b) shows the achieved response time ratio of class 2 to class 1. The achieved

ratio is very different from target ratio. This can be explained by the fact that the variance

of interarrival time distributions and the variance of service time distributions affect the

performance of process allocation and scheduling significantly.

The fixed process allocation strategy cannot achieve proportional response time

Figure 6.3(a-b): Achieved average response time and response time ratio

for adaptive queueing-theoretical process allocation (δ1: δ2=1:3)

133

differentiation because the processing rate of classes cannot be achieved accurately due to

the workload dynamics.

b) Adaptive queueing-theoretical Process Allocation

Figure 6.3(a) depicts the achieved response time of classes 1 and 2 due to the adaptive

Figure 6.4(a-b): Achieved average response time and response time ratio

for adaptive queueing-theoretical process allocation (δ1: δ2=1:2)

134

process allocation strategy under various system load conditions. The arrival rate ratio of

two classes is 3:1. The differentiation weight ratio of two classes is 1:3. It shows that the

adaptive allocation strategy can achieve response time differentiation. That is, requests of

class 1 always receive lower response time than requests of class 2.

Figure 6.3(b) further depicts the achieved response time ratio of class 2 to class 1.

When the system load is between 40% to 80%, we can see that the proportional response

time differentiation can be achieved. The difference between the achieved response time

ratio and the expected ratio is trivial.

As we know, process abstraction serves both as a protection domain and as a resource

principal in current general purpose operating systems. However, because an application

has no control over the consumption of resources that the kernel consumes on behalf of

the application, resource principals do not always coincide with processes. We believe

that this problem is one of the primary reasons for the difference between the achieved

ratio and the expected ratio. There is a demand for new kernel-level resource

management mechanisms, such as resource container, a new operating system abstraction

introduced recently. Figure 6.3(b) also shows that when the arrival rate is below 30%, the

expected response time ratio is not achieved. This is explained by the fact that when the

workload is light, there is almost no queueing delay observed in all traffic queues. Note

that the request scheduling policy is work conserving. Therefore, DiffServ is not feasible

under certain light load conditions, as it was also observed in experiments for PDD

provisioning in packet networks. When the system load is higher than 90%, we also find

out that the expected ratio is not achieved. This can be explained that as the system load

is close to its capacity, the impact of the variance of incoming traffic on queueing delay

135

dominates and thus queueing delay in all traffic queues increases significantly. This

affects the controllability of the process allocation strategy significantly.

Figure 6.4(a) depicts the achieved response time of classes 1 and 2 due to the adaptive

process allocation strategy under various system load conditions. We change the

differentiation weight ratio of two classes from 1:3 to 1:2. The arrival rate ratio of two

Figure 6.5(a-b): Achieved average response time ratio and 95%
confidence intervals for integrated process allocation (δ1: δ2=1:2)

136

classes is kept to be 3:1. As shown by Figure 6.4(b), the expected response time ratio can

be achieved when the system load is between 30% and 80%. Thus, the proportional

response time differentiation is achieved.

c) Integrated Process Allocation

The objective of the integrated approach is to reduce the difference between the target

response time ratio and the achieved response time ratio of two classes due to the

queueing-theoretical approach. Meanwhile, it also aims to reduce the variance of the

ratios due to the queueing-theoretical approach.

Figure 6.5(a) depicts the achieved response time ratio due to the integrated approach and

the queueing-theoretical approach, respectively.. The arrival rate ratio of two classes is

3:1 and the differentiation weight ratio is set to be 1:2. In the integrated approach, two

different sets of control parameter were adopted. As we observe from the figure, the

performance of PID controller is quite sensitive to parameter settings. Actually, it is a

non-trivial task to tune the three parameters to get good performance of proportional

differentiation. Like others in [BKKL03], we assign the same value to the three PID

parameters. Integrated (α, β) gives the results due to the feedback parameter settings: the

PID parameters are set as KP1 = KI1 = KD1 = α for class 1 and KP2 = KI2 = KD2 =β for

class 2. Note that a set of good parameters for one class may not be effective for the

other, and vice versa.

From Figure 6.5(a), we can observe that the integrated approach with both feedback

parameter settings significantly outperforms the queueing-theoretical approach with

respect to the response time differentiation proportionality. When the arrival rate is below

137

Figure 6.6(a-b): Achieved average response time ratio and 95%
confidence intervals for integrated process allocation (δ1: δ2=1:3)

30%, the expected response time proportionality cannot be achieved. This is explained by

the fact that when the workload is light, there is almost no queueing delay observed in all

traffic queues. Because the scheduling is work conserving and non-preemptive, service

differentiation is not feasible under certain light load conditions [CDDS02]. In reality,

138

differentiation may not be necessary during light load conditions since the resources are

sufficient. Therefore, in the following diagrams, we will not present the results when the

workload is less than 30%. When the system load is close to system capacity, say at 90%,

the queueing-theoretical approach generates very poor proportionality. This can be

explained by the fact that as the system load is close to its capacity, the impact of the

variance of interarrival times on queueing delay dominates and thus queueing delay in all

traffic queues increase significantly. This affects the controllability of the queueing-

theoretical process allocation approach. On the other hand, the integrated approach with

feedback control is able to maintain desirable differentiation proportionality.

Figure 6.5(b) depicts the achieved 95% confidence intervals due to the approaches,

respectively. It shows that the integrated approach not only improves the differentiation

proportionality robustness in terms of the achieved mean response time ratios, but also

significantly outperforms the queueing-theoretical approach with much shorter

confidence intervals.

Figure 6.6(a) depicts the achieved response time ratio due to the two approaches,

respectively. The arrival rate ratio of two classes is 3:1 and the differentiation weight

ratio is now changed to 1:3. It can be observed that the integrated approach outperforms

the queueing-theoretical approach with respect to the achieved response time ratios. In

particular, the integrated approach can maintain desirable differentiation proportionality

during heavy load conditions. Figure 6.6(b) further depicts the achieved 95% confidence

intervals due to the approaches. It is obvious that the integrated approach generates much

short confidence intervals than the queueing-theoretical approach.

139

Figure 6.7: A microscopic view of response time

Figure 6.8: The variance of response time ratio

Figure 6.7 shows a microscopic view of the response time of individual requests of the

two classes due to the two approaches, when the system workload is 40%, 60%, and

80%, respectively. The target response time ratio of class A to class B is 3:1. The

experiments were run for 100 sampling periods for warming up and then the data was

collected for 30 sampling periods at each of three workload conditions. Obviously, we

140

can observe that the integrated approach achieves more consistent results during different

sampling periods at various workload conditions.

Figure 6.8 further quantitatively depicts the variance of the proportionality due to the

two approaches. At each of the three workload conditions (40%, 60%, 80%), we

conducted experiments by using a two-class workload with the target response time ratio

2:1 and 3:1, respectively. The upper line is the 95th percentile; the bar is the mean; and

the lower line is the 5th percentile. We can observe that the integrated approach can

significantly reduce the variance. For example, when the workload is 80% and the target

proportionality is 2, the difference between the 95th and the 5th percentile is 1.7 and 4.2

due to the integrated approach and the queueing-theoretical approach, respectively.

Furthermore, the mean is 2.2 and 2.7, respectively. At 80% workload condition, when the

target ratio is 3, the difference between 5th and 95th is 3.1 and 9.3, and the mean is 3 and

3.3, due to the integrated approach and the queueing-theoretical approach, respectively.

We conducted a wide ranger of sensitivity analyses. We varied the number of classes,

the arrival rate ratio of the classes, and the differentiation weight ratio of the classes.

While we do not have space to present all of the results, it worths note that we did not

reach any significantly different conclusion regarding to the differentiation

proportionality achieved by the integrated approach.

Conclusion

Providing proportional response time to different client classes is an important and

challenging issue. It is important because proportional model is a popular relative

DiffServ model and response time is a fundamental QoS metric on Web servers. It is

141

challenging because the conventional application-level process allocation approaches

lack fine-grained control of resource allocation and are insensitive to the bursty Internet

traffic.

142

CHAPTER VII

CONCLUSION AND FUTURE WORK

Conclusion

In this dissertation, we study the proxy server based multipath connection (PSMC).

First, a proxy server based overlay network using a set of intermediate connection relay

proxy servers is designed and implemented. This overlay network is used in a Secure

Collective Defense system (SCOLD) to defend against DDoS attacks. The BIND9 DNS

server and its DNS update utilities are enhanced to support new DNS entries with indirect

routing information. The indirect route is implemented by utilizing IP Tunnel. Protocol

software for supporting the establishment of indirect routes based on the new DNS

entries is developed for Linux systems. The experimental results validate the capability of

PSMC in enhancing network security and reliability.

Second, a proxy server based multipath protocol is designed and implemented by

enhancing the existing TCP/IP protocol to effectively distribute, transport and reassemble

network packets over the multiple indirect paths between two end hosts. We modify the

Linux kernel to support the enhanced TCP/IP protocols. On the sender side, the IP layer

is enhanced to stripe packets across multiple paths. The TCP congestion window control

is also revised for higher throughput. On the receiver side, the TCP layer is enhanced

with a double buffer to solve the TCP packet persistent reordering problem over multiple

143

paths. A communication channel is set up between sender and receiver for exchanging

network traffic information. The PSMC support both TCP and UDP, which enable PSMC

to support multimedia applications in today’s Internet. The experimental results show that

PSMC can effectively utilize the aggregate bandwidth from multiple routes and

significantly improve the network performance.

Third, proxy server selection algorithms are developed to select a subset of proxy

servers from a large set of available proxy servers to meet various object functions and

constraints. When there are hundreds of proxy servers available, the disjoint paths are

more desirable because the route correlation can be reduced and network reliability and

throughput can be improved. The experimental results show that different sever selection

may result in significantly different network performance, and the heuristic (genetic)

algorithms we proposed can yield satisfactory results for the NP-Complete problems.

Forth, resource allocation schemes on the end server and server cluster are designed

and implemented to provide proportional differentiated services. These schemes are

based on the queueing theory and feedback control theory. A process allocation approach

on Apache Web server is presented for proportional responsiveness differentiation. A

two-tier resource allocation approach for proportional slowdown differentiation on

cluster-based network is also presented.

Combining the multipath on network with service differentiation on the end server, a

comprehensive solution for various QoS and security related applications can be

provided.

The research result and insight gained from PSMC could have broader impact on the

protocols and security of today’s Internet.

144

Future Work

For the proxy server based overlay network (SCOLD), there are a set of challenging

problems.

1) How should the Internet community form trust relationships and coordinate with each

other?

2) How to detect and deal with the compromised proxy server nodes.

3) How to effectively manage and maintain a trusted proxy server list on clients?

4) How to improve the security on SCOLD itself and prevent future attacks and misuse?

For the proxy server based multipath connection (PSMC), the future works are listed

below.

1) With more network resources available, how to control the aggressive or malicious

users?

2) How to fairly distribute the network resources among the Internet participants?

3) Study more efficient double buffer management scheme.

4) Derive a TCP throughput formula for multipath connection.

5) Derive a TCP latency theoretical result for multipath connection with double buffer.

6) How to design better proxy server / alternate path selection algorithm

7) Client clustering algorithms with multiple proxy servers

8) Combine multipath and QoS to get more results

For the proportional differentiation provisioning on end server, the future works are listed

below.

145

1) Design and utilize better resources management units, like resource container.

2) Design better processing rate allocation schemes on Web server, FTP, and cluster

network.

146

BIBLIOGRAPH

[AAJP04] Aditya A., Jeffrey P., et. al., “A Comparison of Overlay Routing and

Multihoming Route Control”, In Proceedings of the ACM SIGCOMM 2004.

[ABan96] A. Banerjea, “Simulation study of the capacity effects of dispersity routing for

fault tolerant realtime channels”, Proceedings of ACM SIGCOMM, 1996.

[AKA] Akamai.com, http://www.akamai.com

[ANSD99] A. Nasipuri and S.R. Das, “On-Demand Multipath Routing for Mobile Ad

Hoc Networks”, Proceedings of IEEE ICCCN'99, Boston, MA, Oct. 1999, pp. 64-70.

[BBN] BBN Technologies, "Applications that participate in their own defense,"

http://www.bbn.com/infosec/apod.html

[BIND9] DNS BIND 9, http://www.isc.org/products/BIND/

[BLMG99] B. Li, M. J. Golin, G. F. Ialiano, and X. Deng, "On the optimal placement of

web proxies in the internet," Proc. of IEEE INFOCOM, Mar. 1999.

[BKJW00] B. Krishnamurthy, and J. Wang, "On network-aware clustering of web

clients," Proc. of ACM SIGCOMM, Aug. 2000.

[BKKL03] B. Ko, K. Lee, K. Amiri, and S. Calo. Scalable service differentiation in a

shared storage cache. In Proc. 23rd IEEE Int’l Conf. on Distributed Computing Systems

(ICDCS), 2003.

[BYPM02] B. Yang and P. Mohapatra. Multicasting in differentiated service domains. In

Proc. of IEEE Globecom, 2002.

http://www-2.cs.cmu.edu/~aditya/papers/over-multi.pdf
http://www-2.cs.cmu.edu/~aditya/papers/over-multi.pdf

147

[CCac02] Christian Cachin, et al. “Secure Intrusion-tolerant Replication on the Internet”,

Proc. Intl. Conference on Dependable Systems and Networks, 2002.

[CCas02] C. Casetti, et. al., "TCP Westwood: End-to-End Congestion Control for

Wired/Wireless Networks", In Wireless Networks Journal 8, 467-479, 2002

[CDDS99] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional differentiated

services: Delay differentiation and packet scheduling. In Proc. ACM SIGCOMM, 1999.

[CDDS02] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional differentiated

services: Delay differentiation and packet scheduling. IEEE/ACM Trans. on Networking,

10(1):12–26, 2002.

[Chow00] E. Chow, “network measurement”, technical report in UCCS 2000

[Chow02] A. Cearns, “A2D2”, master thesis in UCCS 2003

[Chow04] Edward Chow, Yu Cai, David Wilkinson, and Ganesh Godavari, “Secure

Collective Defense System”, In Proceedings of GlobeCom 2004.

[CLSM90] C-L Li, S.T. McCormick, D. Simchi-Levi, “The complexity of finding two

disjoint paths with min-max objective function”, Discrete Applied Mathematics, Vol. 26,

No. 1, pp. 105-115, January 1990.

[CPER99] C.E. Perkins and E.M. Royer. "Ad hoc On-Demand Distance Vector Routing."

In Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and

applications, February 1999, pp. 90-100.

[CPKS82] C.H. Papadimitriou and K. Steiglitz, “Combinatorial Optimization Algorithms

and Complexity”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.

[CPro] cprobe, http://cs-people.bu.edu/carter/tools/Tools.html

148

[CSim] Christoph Simon, “How to to use more than one independent Internet

connection”, http://www.ssi.bg/~ja/nano.txt

[DDU] Dynamic DNS update, RFC 2136, http://www.faqs.org/rfcs/rfc2136.html

[DETO] Detour, http://www.cs.washington.edu/research/networking/detour/

[DJDM96] D.B. Johnson and D.A. Maltz, “Dynamic Source Routing in Ad HocWireless

Networks”, In Mobile Computing, 1996, pp. 153-181.

[DMTJ] D. Mosberger and T. Jin. Httperf: a tool for measuring Web server performance.

http://www.hpl.hp.com/personal/David Mosberger/httperf.html.

[DSAP01] D. X. Song and A. Perrig, "Advanced and authenticated marking schemes for

IP Traceback," IEEE Infocom 2001.

[DSEC] DNSSEC, http://www.dnssec.net/

[DSRN91] D. Sidhu, R. Nair, and S. Abdallah, “Finding Disjoint Paths in Networks”,

Proceedings of ACM SIGCOMM'91, Zurich, Switzerland, Sep. 1991, pp. 43-51.

[DWil04] David Wilkinson, Edward Chow and Yu Cai, “Enhanced Secure Dynamic

DNS Update with Indirect Route”, In Proceedings of the IEEE Workshop on Information

Assurance, 2004.

[DYNA] Information Sciences Institute, “Dynabone”, http://www.isi.edu/dynabone

[EDDI] Eddie, Enhanced DNS Server, http://eddie.sourceforge.net/lbdns.html

[EONY95] E. Oki and N. Yamanaka, “A recursive matrix calculation method for disjoint

path search with hop link number constraints”, IEICE Trans. Commun., Vol. E78-B,

No.5, pp. 769-774, May 1995.

[ERun] Eddie Runner, “Multi Path Interference”,

http://www.mmxpress.com/technical/multipath.htm

mailto:eddie@installer.com

149

[EYYM] E. Yilmaz and Y. Manzano, "Surveying Formal and Practical Approaches for

Optimal Placement of Replicas on the Web",

http://websrv.cs.fsu.edu/research/reports/TR-020701.pdf

[FGlo92] F. Glover, et.al., “Network Models in Optimization and Their Applications in

Practice”, Wiley-Interscience, 1992

[Fran05] Frank Waltson, “Multipath”, master thesis in UCCS 2005.

[GFJP02] G. F. Franklin, J. D. Powell, and A. Emami-naeini. Feedback control of

dynamics systems. Prentice Hall, 4th edition, 2002.

[GBPD99] G. Banga, P. Druschel, and J. Mogul. Resource containers: A new facility for

resource management in server systems. In Proc. USENIX Symposium on Operating

System Design and Implementation, 1999.

[GHer]Glenn Herrin,” Linux IP Networking”, http://www.cs.unh.edu/cnrg/gherrin/

[GITM] GT-ITM, http://www.cc.gatech.edu/projects/gtitm/

[GYPM03] Guo, Y., F. A. Kuipers and P. Van Mieghem, "Link-Disjoint Paths for

Reliable QoS Routing", International Journal of Communication Systems, vol. 16, pp.

779-798, 2003.

[GYFK03] Guo, Y., F. A. Kuipers and P. Van Mieghem, "Link-Disjoint Paths for

Reliable QoS Routing", International Journal of Communication Systems, vol. 16, pp.

779-798, 2003.

[HAdi96] H. Adiseshu, et. al., “A reliable and scalable striping protocol”, In Proceedings

of ACM SIGCOMM, 1996.

[HHsi02] H. Hsieh, et. al., “ptcp: An end-to-end transport layer protocol for striped

connections”, In Proceedings of IEEE ICNP, 2002.

http://cs.uccs.edu/~scold/doc/Surveying server location problem.pdf
http://cs.uccs.edu/~scold/doc/Surveying server location problem.pdf
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Fred Glover/002-5531782-1782456
http://www.nas.its.tudelft.nl/people/Piet/papers/dimcra.pdf
http://www.nas.its.tudelft.nl/people/Piet/papers/dimcra.pdf
http://www.nas.its.tudelft.nl/people/Piet/papers/dimcra.pdf
http://www.nas.its.tudelft.nl/people/Piet/papers/dimcra.pdf

150

[HSiv00] H. Sivakumar, et. al., “PSockets: The case for application-level network

striping for data intensive applications using high speed wide area networks”. In

Supercomputing, 2000.

[HZHT01] H. Zhu, H. Tang, and T. Yang. Demand-driven service differentiation for

cluster-based network servers. In Proc. IEEE INFOCOM, pages 679–688, 2001.

[HWel] Harald Welte, “The journey of a packet”,

http://gnumonks.org/ftp/pub/doc/packet-journey-2.4.html

[IChi] Internet in China, http://austlii.edu.au/~graham/hkitlaw/Choy_and_Cullen.html

[ICRR99] I. Cidon, R. Rom, and Y. Shavitt, “Analysis of Multi-Path Routing”,

IEEE/ACM Transactions on Networking, vol. 7, no. 6, Dec. 1999, pp. 885-896.

[IPIP] “IPIP tunnel”, http://www.europe.redhat.com/documentation/HOWTO/Net-

HOWTO/x1284.php3

[IPSE] IPSec, http://www.ietf.org/html.charters/ipsec-charter.html

[IPV6] GUARDINI, I., et. al. “IPv6 Operational Experience within the 6bone”. In Proc.

Internet Society Conference 2000

[JAna] Julian Anastasov, “linux kernel patches”, http://www.ssi.bg/~ja/

[JAMD98] J. Almeida, M. Dabu, A. Manikutty, and P. Cao. Providing differentiated

levels of services in Web content hosting. In Proc. ACM SIGMETRICS Workshop on

Internet Server Performance, pages 91–102, 1998.

[JChe98] Johnny Chen, “New Approaches to Routing for Large-Scale Data Network”,

PhD Thesis, Rice University, 1998.

[JMir03] Jelena Mirkovic, et al. “A Taxonomy of DDoS Attacks and DDoS Defense

Mechanisms”, UCLA Technical Report, 2003

http://www.lasr.cs.ucla.edu/../ddos/ucla_tech_report_020018.pdf

151

[JKoz92] John R. Koza, “Genetic Programming”, MIT Press, 1992.

[JPVF98]J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: a

simple model and its empirical validation. ACMSIGCOMM, September 1998

[JSRT84] J.W. Suurballe and R.E. Tarjan, “A Quick Method for Finding Shortest Pairs of

Disjoint Paths”, Networks, Vol. 14, pp. 325-333, 1984.

[JSuu74] J.W. Suurballe, “Disjoint Paths in a Network”, Networks, Vol. 4, pp. 125-145,

1974.

[JY00] J. Yan et al., "The XenoService – A distributed defeat for DDoS", In Proceedings

of ISW 2000.

[JWCX04] J. Wei, C.-Z. Xu, and X. Zhou. A robust packet scheduling algorithm for

proportional delay differentiation services. In Proc. of IEEE Globecom, 2004.

[KLai01] K. Lai et.al., "Nettimer: A Tool for Measuring Bottleneck Link Bandwidth", In

Proceedings of the USENIX 2001

[KSHT02] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated resource management for

cluster-based Internet services. In Proc. of USENIX OSDI, pages 225–238, December

2002.

[LAgg] IEEE 802, “IEEE 802.3ad Link Aggregation”,

http://grouper.ieee.org/groups/802/3/ad/index.html

[LEJH99] L. Eggert and J. Heidemann. Application-level differentiated services for Web

servers. World Wide Web Journal, 3(2):133–142, 1999.

[LKle76] L. Kleinrock. Queueing Systems, Volume II. John Wiley and Sons, 1976.

[LQVP01] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, "On the placement of web

server replicas," Proc. of IEEE INFOCOM, Mar. 2001

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Koza%2C John R./104-2364842-1767939
http://cs.uccs.edu/~scold/doc/On the Placement of Web Server Replicas.pdf
http://cs.uccs.edu/~scold/doc/On the Placement of Web Server Replicas.pdf

152

[LZZZ02] Lianfang Zhang, Zenghua Zhao, Yantai Shu, Lei Wang, and Oliver W.W.

Yang; ``Load Balancing of Multipath Source Routing in Ad Hoc Networks''; In

Proceedings of IEEE International Conference on Communications (ICC 2002), 2002.

[MADK01] M. Arlitt, D. Krishnamurthy, and J. Rolia. Characterizing the scalability of a

large Web-based shopping system. ACM Trans. on Internet Technology, 1(1):44–69,

2001.

[MAPD00] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves: a mechanism

for resource management in cluster-based network servers. In Proc. ACM SIGMETRICS,

pages 90–101, 2000.

[MAZU] Mazu Networks, "Dynamically Provisioned Monitoring, traffic master"

http://www.mazunetworks.com/white_papers/provmon-toc.html

[MBON] ERIKSSON, H. “Mbone: The Multicast Backbone”. Communications of the

ACM 37, 8 (1994), 54–60.

[MEAB03] M. El-Gendy, A. Bose, and K. G. Shin. Evolution of the Internet QoS and

support of soft real-time applications. In Proc. of the IEEE, July 2003.

[MGDJ79] M. Gary, D. Johnson, “Computers and intractability, a guide to the theory of

NP-completeness”, W.H. Freeman Press 1979

[MLJL01] M. K. H. Leung, J. C. S. Lui, and D. K. Y. Yau. Adaptive proportional delay

differentiated services: Characteriza-tion and performance evaluation. IEEE/ACM Trans.

on Networking, 9(6):908–817, 2001.

[MMat97] M. Mathis, et. al., “The Macroscopic Behavior of the TCP Congestion

Avoidance Algorithm.” Computer Communication Review, volume 27, number3, 1997.

153

[MRic03] M. Richardson, “A method for storing IPsec keying material in DNS”,

http://www.sandelman.ottawa.on.ca/SSW/ietf/ipsec/key/draft-richardson-ipsec-rr.html,

2003

[MTMS04] M. M. Teixeira, M. J. Santana, and R. H. C. Santana. Using adaptive priority

scheduling for service differentiation QoS-aware Web servers. In Proc. IEEE 23rd Int’l

Conf. on Performance, Computing, and Communications (IPCCC), pages 279–285, 2004.

[Mcast]Multicast, http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ipmulti.htm

[MZha04] M. Zhang, et. al., “A Transport Layer Approach for Improving End-to-End

Performance and Robustness Using Redundant Paths”, In Proc. of the USENIX 2004

Annual Technical Conference. 2004.

[NBRF99] N. Bhatti and R. Friedrich. Web server support for tiered services. IEEE

Network, 13(5):64–71, 1999.

[NMax75] N. F. Maxemchuk, “Dispersity Routing in Store and Forward Networks”,

Ph.D. thesis, University of Pennsylvania, 1975.

[NEWS-1] Internetnews, “Massive DDoS Attack Hit DNS Root Servers”,

http://www.internetnews.com/

[NEWS-2] Computer World,

http://www.computerworld.com/printthis/2004/0,4814,93977,00.html

[NMax75] N. F. Maxemchuk, “Dispersity Routing in Store and Forward Networks”,

Ph.D. thesis, University of Pennsylvania, 1975.

[NS2] NS2, http://www-mash.cs.berkeley.edu/ns

[NSUP] Nsupdate, http://www.linuxforum.com/man/nsupdate.8.php

[NTBB99] N. Taft-Plotkin, B. Bellur, and R. Ogier, “Quality-of-Service Routing Using

154

Maximally Disjoint Paths”, Proceedings of IEEE IWQoS'99, London, UK, Jun. 1999, pp.

119-128.

[OSI] OSI, “Open System Interconnection Protocols”,

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/osi_prot.htm

[OSSL] OpenSSL, http://www.openssl.org

[Path] pathchar, http://www.caida.org/tools/utilities/others/pathchar/

[PKDR00] P. Krishnan, D. Raz, and Y. Shavitt, "The cache location problem,"

ACM/IEEE Transactions on Networking, vol. 8, no. 5, Oct. 2000.

[PRAK00] Pablo Rodriguez, Andreas Kirpal, Ernst W. Biersack, “Parallel-Access for

Mirror Sites in the Internet”, Proceeding of Infocom, 2000

[PSSH02] P. J. Shenoy, S. Hasan, P. Kulkarni, and K. Ramamritham. Middleware versus

native OS support: architectual considerations for supporting multimedia applications. In

Proc. IEEE Real-Time Technology and Application Symposium, 2002.

[PSar02] Pasi Sarolahti, Linux TCP,

http://www.cs.helsinki.fi/u/kraatika/Courses/sem02a/Linux-TCP.pdf, 2002

[RATM93] R.K. Ahuja, T.L. Magnanti, “Network flows”, Prentice-Hall, 1993

[RON01] D. G. Andersen, et al., "Resilient Overlay Networks," In Proceedings of 18th

ACM SOSP, October 2001.

[RBha94] R. Bhandari, “Optimal Diverse Routing in Telecommunication Fiber

Networks”, Proc. IEEE INFOCOM 1994, Toronto, Ontario, Canada, Vol.3, pp.1498-

1508, June 1994

[RONS89] R. Ogier and N. Shacham, "A distributed algorithm for finding shortest pairs

of disjoint paths," in Proceedings of IEEE INFOCOM 1989

http://cs.uccs.edu/~scold/doc/cache location algorithm.pdf
http://cs.uccs.edu/~scold/doc/cache location algorithm.pdf

155

[ROVR93] R. Ogier, V. Rutenburg, and N. Shacham, “Distributed Algorithms for

Computing Shortest Pairs of Disjoint Paths”, IEEE Transactions on Information Theory,

vol. 39, no. 2, Mar. 1993, pp. 443-455.

[RSTP] RSTP, http://www.cs.columbia.edu/~hgs/rtsp/

[RSVP] RSVP, http://www.isi.edu/div7/rsvp/rsvp.html

[SBDB98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An

architecture for differentiated services. IETF RFC 2475, 1998.

[SBoh04] S. Bohacek, et. al. “A New TCP for Persistent Packet Reordering”, In

Transactions on Networking, 2004.

[SCCE00] S. Chandra, C. S. Ellis, and A. Vahdat. Differentiated multimedia Web

services using quality aware transcoding. In Proc. IEEE INFOCOM, pages 961–968,

2000.

[SDU] Secure DNS update, http://www.faqs.org/rfcs/rfc3007.html

[SJCJ00] S. Jamin, C. Jin, D. Raz, Y. Shavitt, and L. Zhang, "On the placement of

internet instrumentation," Proc. of IEEE INFOCOM, Mar. 2000

[SLCW99] S.W. Lee and C. S. Wu, .”A k-best paths algorithm for highly reliable

communication networks”., IEICE Trans. On Commun., Vol. E82-B, No.4, pp.586-580,

April 1999.

[SLee00] S. Lee et. al., “Split Multipath Routing with Maximally Disjoint paths in Ad

Hoc Networks”, Technical Report, University of California, 2000.

[SLMG00-1] S. Lee and M. Gerla. “Split Multipath Routing with Maximally Disjoint

paths in Ad Hoc Networks”. In Technical Report in University of California, 2000.

[SMJG96] S. Murthy and J.J. Garcia-Luna-Aceves, “Congestion-Oriented Shortest

http://cs.uccs.edu/~scold/doc/On the Placement of Internet Instrumentation.pdf
http://cs.uccs.edu/~scold/doc/On the Placement of Internet Instrumentation.pdf

156

Multipath Routing”, Proceedings of IEEE INFOCOM'96, San Francisco, CA, Mar. 1996,

pp. 1028-1036.

[SLow02] Steven Low, TCP Congestion Control, CalTech Tech Report, 2002.

[SLJL04] S. C. M. Lee, J. C. S. Lui, and D. K. Y. Yau. A proportional-delay diffserv-

enabled Web server: admission control and dynamic adaptation. IEEE Trans. on Parallel

and Distributed Systems, 15(5):385–400, 2004.

[SNA79] J. P. Gray and T. B. McNeill. SNA multiple-system networking. IBM Systems

Journal, 18(2):263–297, 1979.

[SOCKS] SOCKS proxy server, http://www.tldp.org/HOWTO/Firewall -HOWTO-

11.html

[SSav99] Stefan Savage, et al. “Detour: a Case for Informed Internet Routing and

Transport,” IEEE Micro, pp. 50-59, v 19, no 1, 1999.

[SSav00] Stefan Savage, et al. "Practical network support for IP Traceback," In

Proceedings of 2000 ACM SIGCOMM Conference, Aug. 2000.

[SSin]Shweta Sinha, TCP tutorial,

http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html

[STA4] StacheldrahtV4, http://cs.uccs.edu/~scold/ddos

[SVJG01] S. Vutukury and J.J. Garcia-Luna-Aceves, “MDVA: A distance-vector

multipath routing protocol,” Proceedings of the IEEE INFOCOM, pp. 557–564, 2001.

[SVut01] S. Vutukury et.al., “MDVA: A distance-vector multipath routing protocol,”

Proceedings of the IEEE INFOCOM, 2001.

157

[TAKS02] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for Web

server end-systems: a control-theoretical approach. IEEE Trans. on Parallel and

Distributed Systems, 13(1):80–96, 2002.

[TGMP01] T. M. Gil and M. Poleto, "MULTOPS: a data-structure for bandwidth attack

detection," In Proceedings of 10th Usenix Security Symposium, August 2001.

[THac02] T. Hacker, et. al., “The end-to-end performance effects of parallel TCP sockets

on a lossy wide-area network”, In Proceedings of IPDPS, 2002.

[Trac] traceroute, http://www.traceroute.org/

[TNgu03] T. Nguyen et.al., “Path diversity with forward error correction system for

packet switched networks”, In Proceedings of IEEE INFOCOM, 2003.

[VCEC01] V. Cardellini, E. Casalicchio, M. Colajanni, and M. Mambelli. Web switch

support for differentiated services. ACM SIGMETRICS Performance Evaluation Review,

29(2):14–19, 2001.

[VPax] Vern Paxson, “Measurements and Analysis of End-to-End Internet Dynamics ”,

Ph.D. dissertation at UC Berkley.

[VOIP] VOIP, http://www.fcc.gov/voip/

[VPN] Virtual Private Network, http://www.vpnc.org/

[WA99] W. Adjie, et al., “The design and implementation of an intentional naming

system”, Operating Systems Review, vol.35, pp. 186-201, 1999.

[WZJG98] W.T. Zaumen and J.J. Garcia-Luna-Aceves, “Loop-Free Multipath Routing

Using Generalized Diffusing Computations”, Proceedings of IEEE INFOCOM' 98, San

Francisco, CA, Mar. 1998, pp. 1408-1417.

158

[XBON] TOUCH, J., AND HOTZ, S. “The X-Bone”. In Proc. 3rd Global Internet Mini-

Conference

[XCPM02] X. Chen and P. Mohapatra. Performance evaluation of service differentiating

Internet servers. IEEE Trans. on Computers, 51(11):1,368–1,375, 2002.

[XZCX04] X. Zhou and C.-Z. Xu. Harmonic proportional bandwidth allocation and

scheduling for service differentiation on streaming servers. IEEE Trans. on Parallel and

Distributed Systems, 15(9):838–551, 2004.

[XZJW04] X. Zhou, J. Wei, and C.-Z. Xu. Modeling and analysis of 2D service

differentiation on e-Commerce servers. In Proc. of IEEE 24th Int’l Conf. on Distributed

Computing Systems (ICDCS), pages 740–747, March 2004.

[XZYC04] X. Zhou, Y. Cai, G. K. Godavari, and C. E. Chow. An adaptive process

allocation strategy for proportional responsiveness differentiation on Web servers. In

Proc. IEEE 2nd Int’l Conf. on Web Services (ICWS), July 2004.

[YCai05] Yu Cai, Edward Chow. “Proxy Server Based Multipath Connection”, Technical

Report, http://cs.uccs.edu/scold/psmc.pdf, 2005

[YHRG04] Y. Huang and R. Gu. A simple fifo-based scheme for differentiated loss

guarantees. In Proc. IWQoS, 2004.

[YZha02] Y. Zhang, et. al., “On the characteristics and origins of Internet flow rates”. In

Proceedings of SIGCOMM, 2002.

[ZEBE] Zebedee, http://www.winton.org.uk/zebedee/

[ZWJC96] Z. Wang and J. Crowcroft, “QoS Routing for supporting Multimedia

Applications”, IEEE J. Selected Areas in Communications, Vol. 14, No.7, pp. 1228-1234,

September 1996.

159

APPENDIX A

SCOLD USER MANUAL

The SCOLD network is easily configured to illustrate an application layer overlay network and to

guide against various types of DDoS attacks. This user manual explains the steps required to configure and

start the SCOLD network. Sample demonstration scripts and files are also provided as a step-by-step guide

on how SCOLD works. The set up of the SCOLD test-bed includes three main components:

• The sender network

• The receiver network

• The proxy servers

A1 Overview

We have set up several different SCOLD testbeds for different research purposes. Figure A1 is one of

the SCOLD testbeds. All machines in the testbed are VMWare virtual machines based. The virtual machine

files are under d:/vmware/ycai directory on ardor.uccs.edu machine. To start a VMWare virtual machine,

just open the virtual machine file in the VMWare GUI interface. For more information on VMWare, please

refer to http://www.vmware.com/support/pubs/ws_pubs.html.

Figure A2 is another SCOLD testbeds. All machines are VMWare virtual machines and resides under

d:/vmware/ycai2 directory on ardor.uccs.edu machine. Figure A3 is the third SCOLD testbed on real

machines. The testbed is shared with IDIP project.

A2 Indirect Routing using IP Tunnel

160

1) Install IP tunnel package.

By default, Redhat Linux (version 9 or later) has IP tunnel package installed. You can check it by running:

"ip tunnel add tunl1 mode ipip remote 192.168.1.1"

If you can successfully add a new IP tunnel (see Section A2 - 3 “Verify the configuration and IP tunnel”),

then you are OK. Otherwise, you need to recompile Linux kernel to enable IP tunnel. The following Linux

kernel compile options show that IP tunneling is to be built into the kernel as opposed to be compiled as a

dynamic kernel module.

Linux Kernel Compile Options:

 Networking options --->
 [*] TCP/IP networking
 [*] IP: forwarding/gateway

 <*> IP: tunneling

Figure A1: SCOLD testbed 1

161

Figure A2: SCOLD testbed 2

Figure A3: SCOLD testbed 3

162

2) Set up IP tunnel

Below are scripts on each type of machine in SCOLD to set up IP tunnel in testbed 1.

a) Script on the client to setup tunnel. The IP address section in the script need to be customized as needed.

For more information on IP command, please refer to http://linux-ip.net/gl/ip-cref/. Note in the script, the

client has no information about the gateway IP. Client only knows the target server IP and designated proxy

server IP.

#!/bin/sh

#define var
client_ip=128.198.61.51
client_gw=128.198.61.1
proxy_ip=128.198.60.42
target_ip=128.198.60.201
tunl=tunl1

#config tunnel between client and proxy
ip tunnel add $tunl mode ipip remote $proxy_ip dev eth0
ifconfig $tunl $client_ip
ip link set $tunl up
ip route add $proxy_ip via $client_gw dev $tunl onlink

#route traffic between client and target through tunnel
ip route add $target_ip via $client_gw dev $tunl onlink

b) Script on the proxy servers. Note that the proxy servers have information about the client IP, gateway IP

and target IP.

#!/bin/sh

iptables -F
iptables -P INPUT ACCEPT
iptables -P FORWARD ACCEPT
#enable ip forwarding
echo "1" > /proc/sys/net/ipv4/ip_forward

#define var
client_ip=128.198.61.51
proxy_ip=128.198.60.42
proxy_gw=128.198.60.1
gw_ip=128.198.60.200
target_ip=128.198.60.201

#config tunnel between proxy and client
tunl=tunl1
ip tunnel add $tunl mode ipip remote $client_ip dev eth0

163

ifconfig $tunl $proxy_ip
ip link set $tunl up
ip route add $client_ip via $proxy_gw dev $tunl onlink

#config tunnel between proxy and gateway
tunl=tunl2
ip tunnel add $tunl mode ipip remote $gw_ip dev eth0
ifconfig $tunl $proxy_ip
ip link set $tunl up
ip route add $gw_ip via $proxy_gw dev $tunl onlink

#route between proxy and target through tunnel
ip route add $target_ip via $proxy_gw dev $tunl onlink

c) Script on the gateway in target server network. Note that the client IP, target IP and proxy IP are needed

in the script.

#!/bin/sh

iptables -F
iptables -P INPUT ACCEPT
iptables -P FORWARD ACCEPT
echo "1">/proc/sys/net/ipv4/ip_forward

#define var
client_ip=128.198.61.51
proxy_ip=128.198.60.42
gw_ip=128.198.60.200
gw_gw=128.198.60.129
tunl=tunl2

#config tunnel between gateway and proxy
ip tunnel add $tunl mode ipip remote $proxy_ip dev eth0
ifconfig $tunl $gw_ip
ip link set $tunl up
ip route add $proxy_ip via $gw_gw dev $tunl onlink

#route traffic between client and gateway through tunnel
ip route add $client_ip via $gw_gw dev $tunl onlink

d) Script on the target server.

#!/bin/sh

#define var
client_ip=128.198.61.51
gw_ip=128.198.60.200

164

#route between client and target through gateway
ip route add $client_ip via $gw_ip dev eth0 onlink

3) Verify the configuration and IP tunneling

After configuring machines in the testbed with the above scripts, you should be able to see the ip tunnel

devices using the following commands.

[root@client root]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:47:59:30
inet addr:128.198.61.51 Bcast:128.198.61.63 Mask:255.255.255.192
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:116492 errors:0 dropped:0 overruns:0 frame:0
TX packets:543 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:8552726 (8.1 Mb) TX bytes:48894 (47.7 Kb)
Interrupt:18 Base address:0x10a0

tunl1 Link encap:IPIP Tunnel HWaddr
inet addr:128.198.61.51 P-t-P:128.198.61.51 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MTU:1480 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

[root@client root]# ip link show
1: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100 link/ether
00:0c:29:47:59:30 brd ff:ff:ff:ff:ff:ff
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop link/ipip 0.0.0.0 brd 0.0.0.0
3: tunl1@eth0: <POINTOPOINT,NOARP,UP> mtu 1480 qdisc noqueue link/ipip 0.0.0.0 peer
128.198.60.42

[root@client root]# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
128.198.60.42 128.198.61.1 255.255.255.255 UGH 0 0 0 tunl1
128.198.61.0 0.0.0.0 255.255.255.192 U 0 0 0 eth0
0.0.0.0 128.198.61.1 0.0.0.0 UG 0 0 0 eth0

You should be able to ping the target server from the client machine, and vice verse, by passing ICMP

messages through IP tunnels. Run "netstat -i" on target or client or proxy machine several times during the

ping session, you will see IP packages passing through tunnel interfaces.

[root@client root]# ping ****(target IP)

165

[root@proxy root]# netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 76651 0 0 0 863 0 0 0 BMRU
tunl1 1480 0 0 0 0 0 0 0 0 0 OPRU

[root@proxy root]# netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 76676 0 0 0 878 0 0 0 BMRU
tunl1 1480 0 52 0 0 0 52 0 0 0 OPRU

[root@proxy root]# netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 76676 0 0 0 878 0 0 0 BMRU
tunl1 1480 0 104 0 0 0 104 0 0 0 OPRU

For more information on IP tunnel, please refer to: http://cs.uccs.edu/~scold/iptunnel.htm

A3 Set up SCOLD Daemon with SSL Support

A SCOLD Daemon server process named "scoldd" is set up to run on client, proxy, gateway and target

machine, listening to a designated port (5115 by default), waiting for messages from the SCOLD

coordinator, and setting up IPIP tunnels automatically upon requests. The communication among the

coordinator, client, proxy, gateway and target is mutually authenticated and SSL encrypted.

Below is a brief summary on the compilation and usage of the SCOLD Daemon.

Compilation

Download scold daemon source code from http://cs.uccs.edu/~scold/src/scoldd/,
In scoldd directory, run
make scoldd

Running

In scoldd directory, run
./scoldd

to stop running, use the following command
kill -9 $(pidof scoldd)

Testing

166

For example, the coordinator wants to talk to client 128.198.61.51 on port 5111, issue the following
commands

openssl s_client -connect 128.198.61.51:5111 -showcerts -cert certificate/ctestssl/cert/clicert.pem -key
certificate/ctestssl/private/private.key -CAfile certificate/ctestssl/ca/cacert.pem

You can use the existing certificate in our source code when perform the above test. However, if they are
expired, or you need to create your own certificate, please follow the following steps.

Creating certificate

On client, proxy, gateway, target machine,
go to certificate directory,
run "test.sh", input information as required
the testssl contain server certificate and private key
the ctestssl contain client certificate and private key
copy testssl to server testssl directory
copy ctestssl to client ctestssl directory

Verify IPIP tunnel

run "ifconfig" or "ip link show", should see IP tunnel configuration.
run "netstat -i" several times, should see IP tunnel traffic.
run "traceroute" before and after IP tunneling. After IP tunneling, you will not be able to see IP hops
because they are replaced with * signs.
run "wget http://128.198.60.201" for web access, "ssh -l root 128.198.60.201" for ssh
"ifconfig tunl1 down" to shut down the tunnel

The source code and related configuration script of SCOLD daemon is available under:

http://cs.uccs.edu/~scold/src/scoldd/

A4 Resolve Library

The resolve library on the client machine is enhanced to support indirect routing.

In Redhat Linux, the resolve library is usually located in /usr/lib or /lib directory, and named as libresolv-

nnn.so (nnn is the version). The source code of resolve library can be obtained from glibc package. The

glibc package can be obtained from:

http://directory.fsf.org/GNU/glibc.html.

We modify the res_query.c file under glibc/resolv directory (version 2.3.2). To our experiences, the version

of resolve library is independent of the Redhat Linux version. We have successfully deployed the v.2.3.2

glibc resolve library in several Redhat Linux versions (from 9 to Fedora core 2).

167

The resolve library is a shared library on Linux. The compilation of resolve library is very different from

the ordinary c complication because there are many compilation parameters need to be specified. A mal-

compiled resolve library can be devastating because it can easily crash the whole Linux system. For more

information on shared library, please refer to:

http://www.tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html

A simpler and safer solution for compiling the resolve library is to compile the whole glibc package. Please

refer to glibc complication help on how to compile the glic package. The URL of glibc help page is at:

http://www.gnu.org/software/libc/manual/html_mono/libc.html

The compilation of glibc package usually takes 15 - 60 minutes depending on the machine setting.

The compilation output of resolve library is in glibc/compile/resolv directory, and named as libresolv.so.

This shared library file (.so) is what we want for the enhanced resolve library.

Run “ls -la /lib/libresolv*” to list the existing resolve library. Below is an example.

-rwxr-xr-x 1 root root 73640 Nov 5 2003 /lib/libresolv-2.3.2.so
lrwxrwxrwx 1 root root 25 Jan 30 23:30 /lib/libresolv.so.2 -> libresolv-2.3.3.so

Backup the existing /lib/libresolv-2.3.2.so file, and copy the new libresolv.so from glibc/compile/resolv to

/lib to overwrite the existing file. Re-link /lib/libresolv.so.2 to new file if necessary.

-rwxr-xr-x 1 root root 64844 Nov 5 2003 /lib/libresolv-2.3.2.so
-rwxr-xr-x 1 root root 73640 Jul 25 2003 /lib/libresolv-2.3.3.so_backup
lrwxrwxrwx 1 root root 25 Jan 30 23:30 /lib/libresolv.so.2 -> libresolv-2.3.3.so

Reboot the machine.

Now you should get the new resolve library up and running.

Run a simple command “ping www.yahoo.com”, the new resolve library will be called.

Be very careful when working on the resolve library, you can easily crash the system. It is better to do the

resolve library development on a virtual machine, then migrate the compiled library to the machine you

want.

If you feel regret and decide to go back to the original resolve library, just copy the original resolve library

back to replace the enhanced one (assuming you can still boot up the Linux system).

The source code of resolve library is available under:

168

 http://cs.uccs.edu/~scold/src/glibc/

A5 Enhanced DNS Bind9

For more information on nsreroute and enhanced DNS, please refer to David Wilkson’s master thesis:

http://cs.uccs.edu/~chow/pub/master/dbwilkin/doc/dwilkinson_thesis.doc

The source code can be obtained at:

http://cs.uccs.edu/~chow/pub/master/dbwilkin/src

A6 A step by step demo

Below is a step by step SCOLD demo. It is based on the tested shown in Figure A2.

Testbed setup:

boot up the virtual machines and login to each machine

username: root

password: ****(available upon request, contact me at caiyu_usa@yahoo.com or Dr. chow at

chow@cs.uccs.edu)

vmware file location:

 ardor.uccs.edu:

 d:/vmware/ycai2,

 client, proxy, altgw, maingw, target 5 directories.

make sure the network cards of vmware is correctly configured: use bridged virtual network connection for

eth0, use host-only virtual network connection for the rest network interfaces.

To save disk space,

 run clientDNS on the same client machine,

 run targetDNS, the coordinator on the same target machine,

 run DDoS attackers on the same main gateway machine,

169

Demo steps:

1) Open 5 vmware machines: client, proxy, altgw, maingw, target,

2) Go to "/home/ycai/sslres" directory on all those machines

3) Run script "sh init.sh" on all those machines to initialize the machines, including procedures like run the

scold demo, set up direct route, set the routing table.

4) Now to show the direct route:

on the client machine, you can do the followings:

 ping 192.168.4.2(target.csnet.uccs.edu) from 192.168.0.1(client.csnet.uccs.edu)

 verify the direct route by "traceroute target.csnet.uccs.edu", 2 hops

 run "sh http_demo.sh" to see the http download of a big file with speed average of 50k - 60k/s from the

target sever.

5) Now launch DDoS attack

 run "sh ddos_attack.sh" on the target machine to launch the attack,

 run "sh http_demo.sh" on the client machine to see the http download speed drop dramatically to 1k -

10k/s

6) Now start the indirect route

 (stop the "sh http_demo.sh" job on client machine in step 5)

 run "sh indirec_route.sh" on the target machine to launch the indirect route,

 run "sh http_demo.sh" on client machine to see the indirect route, you will see the initil setup delay. But

after that, it runs fast (about 40k/s)

 verify the indirect route by "traceroute target.csnet.uccs.edu"

7) If needed, run "cleanipip.sh" to clean up the indirect route.

Below are references on installation for enhanced secure dns (sdns) and resolve library.

sdns installation:

1) get sdns source file from gandalf.uccs.edu, get bind source from Internet

2) get openssl file from gandalf: /usr/include/openssl

170

3) compile:

"./configure -with-openssl"

"make"

"make depend"

"make install"

4) get zone file from gandalf:/var/named

5) get bind conf file from gandalf: /etc/named.conf

libresolve installation:

1) source file in athena.uccs.edu:~ycai/glibc/resolv/res_query.c

2) go to glibc/compile, and run make to compile

3) go to glibc/compile/resolv and look for libresolv.so

4) copy the libresolv.so to the client machine /lib directory,

"ls -la /lib/libresolv*"

"rm -f /lib/libresolv.so.2"

"ln -s /lib/libresolv.so /lib/libresolv.so.2"

171

APPENDIX B

TCP CONGESTION CONTROL AND LINUX KERNEL

B1 TCP Congestion Control

TCP is an end to end transport layer protocol which operates over the heterogeneous Internet. TCP has

no prior knowledge of the network characteristics, thus it has to adjust its behavior according to the

returned ack message and know the current state of the network. TCP has built-in support for congestion

control, which ensures that TCP does not pump too many data packets than what the network can handle.

TCP is a complex protocol; hence we only introduce aspects related to TCP congestion control in this

appendix.

Figure B1 shows the evolution of TCP versions. After the first Internet congestion collapse in 1986,

Van Jacobson proposed the TCP congestion control mechanism.

Figure B1: TCP version [SLow02]

172

In a TCP session, each byte has a sequence number, and ACKs are cumulative.

Sliding window

TCP supports windowing scheme — the process of sending data packets in sequence without waiting

for an intervening acknowledgement. The sliding window in TCP serves several purposes. (1) It guarantees

the reliable delivery of data. (2) It ensures that the data is delivered in order. (3) It enforces flow control

between the sender and the receiver. See Figure B2 below for TCP sliding window.

awnd = MaxRcvBuffer - (LastByteRcvd - NextByteRead)

flightsize = min(awnd, cwnd)

Figure B2: Sliding window in TCP [SSin]

TCP Congestion Control

TCP flow control is based on the premise that an out-of-order packet is an indication of packet loss.

Note that this may not be true in a multipath environment since the out-of-order packets may be in

transmit over other paths. Packet loss is detected by Retransmission Time-Out (RTO timer) or Duplicate

ACKs (usually 3).

• When Time-out occurs, TCP enters slow start.

• When dup ACKs occurs, TCP enters fast retransmit and fast recovery.

173

TCP has four defined congestion control mechanisms to ensure the most efficient use of bandwidth, and

quick error and congestion recovery. The four mechanisms, defined in detail in RFC 2581, are:

– Slow Start – Congestion Avoidance

– Fast Retransmit – Fast Recovery

Retransmission Timeout

The first error-detection and error-recovery mechanism is the retransmission timer. The value specified

by this timer is referred to as the retransmission timeout (RTO). When RTO, TCP cuts congestion window

in half and enter slow start.

 ssthresh cwnd/2

 cwnd= 1

Slow Start

As the name suggests, "Slow Start" starts slowly, increasing its window size as it gains confidence

about the networks throughput. A TCP connection starts in the "Slow Start" state. In this state, TCP adjusts

its transmission rate based on the rate at which the acknowledgements are received from the other end.

TCP Slow start is implemented using two variables, cwnd (Congestion Window) and ssthresh (Slow

Start Threshold). cwnd is a self imposed transmit window restriction at the sender end. cwnd will increase

as TCP gains more confidence on the networks ability to handle traffic. ssthresh is the threshold for

determining the point at which TCP exits slow start. If cwnd increases beyond ssthresh, the TCP session in

that direction is considered to be out of slow start phase. Figure B3 shows the TCP slow start.

174

 Start with cwnd = 1 (slow start)

 On each successful ACK, increment cwnd, cwnd cwnd + 1

 Exponential growth of cwnd, for each RTT, cwnd 2 * cwnd

 Enter CA when cwnd >= ssthresh

Figure B3. TCP slow start [Slow02]

Congestion Avoidance

When cwnd exceed ssthresh, TCP will be out of slow start and enter congestion avoidance. Exiting

slow start signifies that the TCP connection has reached an equilibrium state where the congestion window

closely matches the networks capacity. From this point on, the congestion window will not move

geometrically. cwnd will move linearly once the connection is out of slow start.

 Starts when cwnd >= ssthresh

 On each successful ACK: cwnd cwnd + 1/cwnd

 Linear growth of cwnd, for each RTT: cwnd cwnd + 1

175

Fast Retransmit and Fast Recovery

TCP Fast Retransmit and Fast Recovery have been designed to speed up the recovery of the connection

when packet loss occurs. Fast Retransmit and Recovery detect packet loss via duplicate acknowledgements.

When a packet segment is lost, TCP at the receiver will keep sending ack segments indicating the next

expected sequence number. This sequence number would correspond to the lost segment. If only one

segment is lost, TCP will keep generating acks for the following segments. This will result in the

transmitter getting duplicate acks, acks with the same ack sequence number.

Fast Retransmit: TCP receives duplicate acks and it decides to retransmit the segment, without waiting

for the segment timer to expire. This speeds up the recovery of the lost segment.

Fast Recovery: Once the lost segment has been transmitted, TCP tries to maintain the current data flow

by not going back to slow start. TCP also adjusts the window for all segments that have been buffered by

the receiver.

The fast retransmit and fast recovery algorithms are usually implemented together as follows.

1. When the third duplicate ACK in a row is received, set ssthresh to one-half the current congestion

window, cwnd, but no less than two segments. Retransmit the missing segment. Set cwnd to ssthresh plus 3

times the segment size. This inflates the congestion window by the number of segments that have left the

network and which the other end has cached.

2. Each time another duplicate ACK arrives, increment cwnd by the segment size. This inflates the

congestion window for the additional segment that has left the network. Transmit a packet, if allowed by

the new value of cwnd.

3. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the value set in step

1). This ACK should be the acknowledgment of the retransmission from step 1, one round-trip time after

the retransmission. Additionally, this ACK should acknowledge all the intermediate segments sent between

the lost packet and the receipt of the first duplicate ACK. This step is congestion avoidance, since TCP is

down to one-half the rate it was at when the packet was lost. Figure B4 shows the congestion control of

TCP reno. Figure B5 shows its fast retransmit.

176

Enter Fast Retransmit and Fast Recovery after 3 dup ACKs

 Set ssthresh cwnd/2

 Retransmit lost packet

 Set cwnd ssthresh + 3 (window inflation)

 For each successive duplicate Ack: Increment cwnd by 1; New packets are transmitted if allowed

by cwnd

 On non-dup ACK (1 RTT later), set cwnd ssthresh (window deflation)

 Enter CA

Figure B4: TCP Reno Fast Retransmission and Fast Recovery [Slow02]

177

Figure B5: TCP fast retransmit [Slow02]

SACK

Cumulative ACK style in TCP is ambiguous, when multiple packets are lost. Selective

Acknowledgment (SACK) provides more precise information about packet. SACK is defined in RFC2018.

Figure B6 shows an example using SACK.

Figure B6: SACK [Slow02]

B2 TCP/IP in Linux Kernel

178

In Linux kernel TCP/IP implementation, packets are stored in struct sk_buffs. And

kernel-side correspondent for TCP socket is struct sock. Most network code that we are

going to modify in Linux kernel is located in linux/net/ipv4 directory.

struct sock holds state data for the socket (such as the TCP variables regarding

congestion window, etc.). There are several queue pointers: outgoing packets not yet

acknowledged, incoming packets not yet delivered to application. Queues hold chains of

sk_buffs. sk_buff usually corresponds to one packet sent/received to network. In addition

to packet data, there are protocol headers and control information in sk_buff. Figure B7

shows the structures. In our PSMC, we are going to add one more receive queue as

double buffer.

Figure B7: sock and sk_buff [PSar02]

Figure B8 shows the packet handling in Linux kernel.

179

Linux kernel programming is very different from user-level programming. Usage of

virtual machine is strongly advised for kernel development.

For more details on Linux kernel and TCP/IP, please refer to [GHer, HWel].

Figure B8: Packet handling in Linux kernel [GHer]

180

APPENDIX C

PSMC USER MANUAL

This user manual explains the steps required to setup, configure and run the proxy server based

multipath connection (PSMC) network for demonstrating the enhanced TCP/IP protocol with multiple

paths. Sample demonstration scripts and files are provided as a step-by-step guide on how PSMC works.

The set up of the PSMC testbed includes three main components:

• The sender network

• The receiver network

• The proxy servers

C1 PSMC

We have set up several different PSMC testbeds for different research purposes. Figure C1 is a PSMC

testbed on real machines. It is more realistic to measure the multipath performance on real machines.

Figure A1 in Appendix A is another PSMC testbed based on VMWare virtual machines. It is more

convenient to do Linux kernel development on virtual machines.

1) Set up proxy server based overlay network

We first need to set up the proxy server based overlay network. The procedure is the same as setting up

SCOLD testbed. Please refer to Appendix A for more information.

2) Set up Linux kernel development environment

181

User Mode Linux (UML) can be set up for Linux kernel development. For more information on UML,

please refer to Frank Watson’s master thesis [Fran05].

For Linux kernel compilation, please refer to the related documents. Note that different kernel version may

have slightly different compilation steps.

Figure C1: PSMC testbed

The command printk() can be used to print kernel debug information during the kernel code execution.

Source insight is a good source code navigation tool. It has Linux and Windows version. Linux Cross

Referencing web site (http://lxr.linux.no/) can also be used for reading source code. For Linux kernel

programming, reading and understanding the existing code is the first and important step. From my

experience, if you know where to modify the code and what the code does, then you almost finish 80% of

the job.

During kernel programming, the modified kernel may crash from time to time. Therefore, set up a

development platform on virtual machine is very helpful. You can use UML, VMWare or Virtual PC to set

up the virtual machine development environment.

3) IP striping

182

PSMC packet striping is implemented on the IP layer. We modify the ip_output.c file under the

linux/net/ipv4 directory. To modulate the code, we put the PSMC functional code in a PSMC module, and

insert a function pointer in the ip_output.c. Therefore, we can easily load, unload and update the PSMC

code without recompiling the whole kernel. We implemented a weighted round robin packet striping

scheme by now. More data striping schemes can be implemented on the PSMC module without modifying

the Linux kernel again.

4) Double buffering

We first redefine the struct sock by adding a scoldLog struct, which is similar to backlog. A sock struct is

correspondent to a socket connection; a sk_buff struct is correspondent to a packet in the socket connection.

And the new scoldLog is correspondent to the double buffer which temporarily holds the packets between

IP and TCP. The scoldLog is a packet link list (sk_buff link list) like backlog. Since we don’t physically

copy and store the packets in double buffer, the overhead of double buffer is minimized.

Then we modify the tcp_ipv4.c file under linux/net/ipv4 directory to implement the double buffer

algorithm. Right now we implemented an adaptive double buffer algorithm by dynamically changing the

buffer size according to the network condition. However, the double buffer imposes noticeable queueing

delay on packets, therefore a more efficient algorithm needs to be designed.

For more information on the PSMC code implementation, please refer to:

http://cs.uccs.edu/~chow/pub/master/ycai/src/psmc

5) PSMC Daemon

There are PSMC management daemons running end hosts. The primary responsibilities of PSMC daemon

include the followings: update the psmc_wr file, analyze the traffic information, dynamically adjust the

packet stripping ratio, dynamically adjust the double buffer size, exchange traffic information with the

other end. PSMC daemon analyzes the traffic information by running tcpdump, which imposes noticeable

overhead. A more efficient monitoring approach needs to be designed and implemented.

183

The psmc_wr file stores the destination, weight, proxy server IPs and tunnel device information. It is

updated by SCOLD daemon and PSMC daemon. A sample of psmc_wr file is as follow.

#destination IP: proxy IP: device name: striping ratio

128.198.60.105:128.198.60.102:tunl1:2

128.198.60.105:128.198.60.104:tunl2:5

128.198.61.51:128.198.60.104:tunl2:1

128.198.61.51:128.198.60.106:tunl4:1

6) Proc file system

The Linux proc file system can be used to communicate information between the kernel and the user to

tune the kernel performance. The proc system is a virtual file system. The PSMC uses the proc file system

to turn off and on the multiple path routing and control other variables used for PSMC logging and

buffering. A sample usage is like bleow.

root@client:/proc/sys/net/ipv4/multipath# cat bufferOn

0

root@client:/proc/sys/net/ipv4/multipath# echo "1" > bufferOn

root@client:/proc/sys/net/ipv4/multipath# cat bufferOn

1

7) Packet dropper and packet delayer

In PSMC performance evaluation, we need to adjust the lost rate and latency on certain routes to test

different scenarios. This is accomplished by using a packet dropper and packet delayer on the proxy

servers. We modify the dev_queue_xmit() function in /linux/net/core/dev.c file by periodically free skb

(drop packet) or wait for a period (add latency). The end user can specify the parameters like drop rate or

latency via proc file system. A sample code is listed below.

184

// modify dev_queue_xmit() function in /linux/net/core/dev.c for packet dropper

int dev_queue_xmit (struct sk_buff *skb){

…

 if (drop_packet()) {

 kfree_skb(skb);

 }

….

}

8) Rate limiting

In PSMC performance evaluation, we need to adjust the bandwidth on selected routes. This can be

accomplished by using rate limiting on proxy server. Below is a scrip example which limits 50 packets per

second.

iptables –flush

rate=50

iptables -A OUTPUT -p tcp -m limit --limit $rate/second -j ACCEPT

iptables -A OUTPUT -p tcp -j DROP

iptables -A OUTPUT -p udp -m limit --limit $rate/second -j ACCEPT

iptables -A OUTPUT -p udp -j DROP

We can use iptraf to monitor bandwidth and traffic condition on proxy server.

C2 A step by step demo

We use the PSMC testbed illustrated in Figure c2. The two end hosts install the PSMC modules, the proxy

servers install the packet dropper, packet delayer and bandwidth rate limiting.

1) Run ipip_init.sh on client, proxy, server machines to set up the overlay network and impose rate limiting.

185

2) Run “wget server” from client machine to download a large file and monitoring the bandwidth (5Mb/s).

By using “ethereal” on client, we can monitor the traffic condition and see how the packets are transmitted.

This is for single path scenarios.

3) Run psmc_init.sh on client and server machines to turn on the multipath and set double buffer size.

4) Run “wget server” from client machine to download a large file and monitoring the bandwidth (10Mb/s).

By using “ethereal” on client, we can monitor the traffic condition and see how the packets are transmitted

via two paths. This is for two-path scenarios.

5) Run add_proxy.sh on client machine, a new indirect route will be set up.

6) Run “wget server” from client machine to download a large file and monitoring the bandwidth (15Mb/s).

By using “ethereal” on client, we can monitor the traffic condition and see how the packets are transmitted

via three paths. This is for three-path scenarios.

	c3_SCOLD.pdf
	Indirect Route
	Implementation
	Experimental and Simulation Results
	Conclusion

	c4_PSMC.pdf
	Introduction
	Background
	IP striping
	int (*scold_function) (struct sk_buff *) = 0 ;
	We also declare the inserted function pointer in netsyms.c u
	Double buffering
	Experimental Results

	c5_algorithm.pdf
	Introduction
	Network Model

	NP Hardness
	Heuristic Path Selection Algorithms
	Results Analysis
	Conclusion

	c5_algorithm_2.pdf
	Introduction
	Network Model

	NP Hardness
	Heuristic Path Selection Algorithms
	Results Analysis
	Conclusion

