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A multipath connection etwork hosts. The traffic 

from a source can be spread over multiple mitted in parallel through the 

network. The receiver collects the incomin ork packets, re-assembles them, and 

delivers them to the upper-leve ections offer applications with 

the ability to improve network performance, security and reliability. 

In this dissertation, techniques for supporting the proxy server based multipath 

connection (PSMC) are studied. Fir  implementation of a proxy server 

based overlay network using a set of inte ediate connection relay proxy servers is 

presented. Multiple indirect alternate paths can be set up via these proxy servers. The 

proxy server based overlay netwo ecure Collective Defense system 

(SCOLD) to defend against Distributed Denial of Services (DDoS) attacks. The Berkeley 

Internet Name Domain (BIND - v.9) package is enhanced to support indirect routing with 

IP Tunneling. The performance of  validates the capability of PSMC 

in enhancing the network security. 

Second, the existing TCP/IP protocol is enhanced with a proxy server based multipath 

protocol (PSMP). On the sender sid anced to distribute packets across 

multiple paths. The TCP congestion window control is revised for higher throughput. On 

reordering problem. Detailed analysis of the PSMP is presen  communication 

er based Multipath Connection 

d Chow 

 provides multiple paths among n

 paths and trans

g netw

l end users. Multipath conn

st, the design and

rm

rk is used in a S

the SCOLD system

e, the IP layer is enh

the receiver side, the TCP layer is enhanced with a double buffer to solve the persistent 

ted. A



channel is set up between the sender and the receiver for exchanging network traffic 

Transmission Control Protocol (TCP) and 

hird, proxy server selection algorithms are developed for selecting a subset of proxy 

ser

n the network with 

ser

information. The enhancement supports both 

User Datagram Protocol (UDP). 

T

vers from a large set of available proxy servers with various object functions and 

constraints.  

Forth, resource allocation schemes are proposed and implemented on the end server to 

provide proportional differentiated services. These schemes are based on the queueing 

theory and feedback control theory. By combining the multipath o

vice differentiation at the end server, a comprehensive solution for various QoS and 

security related applications can be provided.  

PSMC utilizes existing network protocols and infrastructure with some enhancements. 

This ensures the ease of its deployment with the current Internet in various network 

environments. Therefore, a large number of applications could benefit from utilizing 

PSMC. The research results and insight obtained from PSMC could have broader impact 

on the protocols and security in today’s Internet. 
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CHAPTER I 

INTRODUCTION 

Overview 

The key challenge in today’s Internet is to improve network performance, security, 

and reliability for heterogeneous Internet participants. The current network connections 

are mostly over a single path. This single path connection model is simple and easy to 

implement. The tremendous success of today’s Internet is a credit to the original design. 

However, the single path connection is vulnerable to potential attacks, link breakage, or 

even traffic congestion. It may also under-utilize network resources and suffer from 

performance problems. Therefore, it does not always provide a good and reliable network 

connection. 

Due to the increasing demands from the Internet on network performance, security, 

and reliability, the Internet is undergoing a number of significant changes. Various 

Internet enhancements and services have been suggested [AKAM, DSEC, RON01, 

SSav99, WAdj99, CCas02, MZha04, JChen98]. Multipath connections are one of them. 

A multipath connection provides multiple paths among network hosts. The traffic 

from a source is spread over multiple paths and transmitted in parallel through the 

network (Figure 1.1). The receiver collects the incoming network packets, re-assembles 

them, and delivers them to the upper-level end users. A multipath connection makes 

better use of network resources by aggregating the available bandwidth on multiple paths. 
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Therefore, a multipath connection can significantly improve the network performance. 

By providing redundant paths or alternate paths, a multipath connection has better ability 

to cope with network congestion, link breakage, outrage, and potential attacks, thus 

improve network security and reliability.  

 

 

Figure 1.1: Single path connection vs. multipath connection 

 

The IBM Systems Network Architecture (SNA) network in 1974 [SNA79] is probably 

the first attempt to provide multiple path connections among network nodes on wide area 

networks. N. F. Maxemchuk studied how to disperse the traffic over multiple paths in 

1975. He called it “dispersity routing” [NMax75]. Since then, the idea of multipath 

connection has been studied in various settings. One example of multipath connection is 

link aggregation [LAgg], which is a data link layer protocol. In the IP layer, multipath 

connection has been studied extensively in the name of multipath routing. Various table-

driving multipath routing algorithms (link state or distance vector) [SVJG01, SLMG00, 

ICRR99, SMJG96, NTBB99, WZJG98, SLMG00, ANSD99] and source routing 

algorithms [DJDM96, LZZZ02] were proposed. On the TCP layer, there have been works 

like [MZha04, HHsi02].  For more details, please refer to Chapter 2. 
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In this dissertation, we design and implement a novel multipath connection 

mechanism called the Proxy Server-based Multipath Connection (PSMC).  

Figure 1.2 is a diagram that illustrates a PSMC network. There are three basic 

components in a PSMC network. The multipath sender, or distributor, is responsible for 

efficiently and adaptively distributing packets over the selected multiple paths. Some of 

the packets will go through the normal direct route; other packets will go through the 

alternate indirect routes via the proxy servers. The intermediate connection-relay proxy 

servers, or forwarders, examine the incoming packets and forward them to the 

destination through the selected paths. The multipath receiver, or collector, collects the 

packets arrived from multiple paths, reassembles them in order, and delivers them to the 

end user. 

 

 

Figure 1.2: Proxy server-based multipath connection (PSMC) 
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The key features of PSMC are summarized as follows. 

a) A proxy server-based overlay network is designed and implemented by using a set 

of intermediate connection relay proxy servers. Multiple indirect or alternate paths 

can be set up via these proxy servers.  

b) A proxy server-based multipath protocol is designed and implemented by 

enhancing the existing TCP/IP protocol to effectively distribute, transport, and 

reassemble network packets over the multiple indirect paths between two end hosts.  

c) Proxy server selection algorithms are designed and implemented to select a subset 

of proxy servers from a large set of available proxy servers with various object 

functions and constraints.  

d) Resource allocation schemes are proposed and implemented on the end server and 

server cluster to provide proportional service differentiation. These schemes are based 

on queueing theory and feedback control theory. Combining the multipath on network 

with service differentiation on the end server, a comprehensive solution for various 

QoS and security related applications can be provided.  

 

For convenience, from now on, we refer our approach of a proxy server-based 

multipath connection as “PSMC”. We use the term “direct route” to refer to the network 

route which a packet normally takes when it travels through the network. The term 

“indirect route” is used to refer to the network route which utilizes the connection relay 

proxy server. The term “proxy server” is used specifically for the connection relay proxy 
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servers in a PSMC network unless otherwise specified. We mix the usage of “route” and 

“path”. 

In addition to the general benefits provided by a multipath connection, PSMC has the 

following unique advantages: 

a) Ease of Deployment: PSMC utilizes and enhances the existing TCP/IP protocol 

and network infrastructure to distribute, transport, and reassemble packets. Unlike 

some multipath connection approaches like link aggregation and multipath routing, 

which require significant changes on network infrastructure, PSMC is built on an 

overlay network and only requires some feasible changes on network software and 

protocols on the end systems and the proxy servers. This ensures the ease of 

deployment with the current Internet. Therefore, PSMC can be more conveniently 

and adaptively deployed in various network environments. PSMC also has good 

scalability with regard to network size and number of proxy servers. 

b) Flexibility and usability: PSMC is transparent to the application level end users. 

The end user can easily set up, manage, and maintain the multipath connection. 

PSMC also gives the end users more control and flexibility on multipath connection. 

A large number of applications in various categories could benefit from utilizing 

PSMC. For example, it can be used to defend against Distributed Denial of Service 

(DDoS) attacks with intrusion tolerance. Particularly, it can be used to defend a 

Domain Name System (DNS) Root Server against DDoS attacks. PSMC can also be 

utilized to provide an alternate or backup route and additional bandwidth based on 

operational requirements in an enterprise network. PSMC can be utilized to provide 

Quality of Service (QoS) for various applications.  
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Contributions 

The contributions of this dissertation are summarized below. 

Contribution 1 

A proxy server based overlay network using a set of intermediate connection 

relay proxy servers is designed and implemented. Multiple indirect or alternate 

paths can be set up via these proxy servers.  

The proxy server based overlay network is used in a Secure Collective Defense 

system (SCOLD) to defend against DDoS attacks. SCOLD provides alternate routes 

via a set of proxy servers and alternate gateways when the normal route is unavailable 

due to DDoS attacks. The BIND9 DNS server and its DNS update utilities are 

enhanced to support new DNS entries with indirect routing information. The indirect 

route is implemented by utilizing an IP tunnel. Protocol software for supporting the 

establishment of indirect routes based on the new DNS entries is developed for Linux 

systems. 

 

Contribution 2 

A proxy server based multipath protocol is designed and implemented by 

enhancing the existing TCP/IP protocol to effectively distribute, transport, and 

reassemble network packets over the multiple indirect paths between two end 

hosts.  

We modify the Linux kernel to support the enhanced TCP/IP protocols. On the sender 

side, the IP layer is enhanced to distribute packets across multiple paths. The TCP 

congestion window control is also revised for higher throughput. On the receiver side, 
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the TCP layer is enhanced with a double buffer to solve the TCP packet persistent 

reordering problem over multiple paths. A communication channel is set up between 

sender and receiver for exchanging network traffic information. The PSMC supports 

both TCP and UDP, which enables PSMC to support multimedia applications in 

today’s Internet. 

 

Contribution 3  

Proxy server selection algorithms are developed to select a subset of proxy 

servers from a large set of available proxy servers to meet various object 

functions and constraints.  

Different sever selections may result in significantly different network performance. 

Therefore, server selection is a critical decision in a multipath system. When there are 

hundreds of proxy servers available, disjoint paths are more desirable because the 

route correlation can be reduced and network reliability and throughput can be 

improved. We have also developed heuristic algorithms to choose the best mirror 

sites for parallel download from multiple mirror sites.  

 

Contribution 4 

Resource allocation schemes on the end server and server cluster are designed 

and implemented to provide proportional differentiated services.  

These schemes are based on queueing theory and feedback control theory. A process 

allocation approach on the Apache Web server is presented for proportional 

responsiveness differentiation.  
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Combining the multipath on the network with service differentiation on the end server, 

a comprehensive solution for various QoS and security related applications can be 

provided.  

 

The rest of the dissertation is organized as follows. Chapter 2 presents the background 

and related work. Chapter 3 presents the idea of a proxy server-based overlay network 

(SCOLD). Chapter 4 presents the proxy server-based multipath protocol (PSMC). 

Chapter 5 presents the proxy server selection algorithm and its performance analysis. 

Chapter 6 studies the proportional service differentiation on end server and server cluster. 

Chapter 7 contains the conclusion and suggests future work. 
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CHAPTER II 

RELATED WORK 

 

This chapter surveys related work and background for the idea of multipath connections.  

 

Multipath Connection 

 

The technique of multipath connection appears under many different labels, like 

multiple path routing, alternate path routing, and traffic dispersion. Often the same label 

is used in the literature to refer to different things. We try to survey and clarify the 

different concepts of multipath connection in this section. 

The IBM SNA network in 1974 [SNA79] is probably the first wide area network 

which provides multiple path connections between network nodes. However, in the SNA 

network, only one path is used at a time, and the purpose of multiple paths is to provide a 

fault-tolerance mechanism. Also, SNA multiple paths are predefined and pre-computed.  

Maxemchuk [NMax75] in 1975 used channel sharing to provide multipath 

connections and reduce queuing delay in store-and-forward networks. He called the 

technique “dispersity routing”. This research was extended to virtual circuit networks and 

ATM networks to deal with busty traffic data, where both redundant and nonredundant 

dispersity routing techniques were described.  
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According to the Open System Interconnection (OSI) Network Reference Model 

[OSI], we try to differentiate multipath connections between the physical layer, data link 

layer, network layer, transport layer, and application layer. This is only a rough 

classification. Some approaches might be multiple layer implementations. Figure 2.1 is a 

diagram illustrated the classifications for multipath connections. 

 

 

Figure 2.1: Diagram illustrating multipath connections. 

 

Physical layer  

 Multipath connections in the physical layer are not always something that we want. 

For example, sometimes FM radio sounds noisy because of “multipath interference” 

[ERun]. Multipath interference happens when FM signals reflect from buildings in a city 

or other large obstructions. These reflections interfere with each other and the FM radio 

tries to demodulate the original signal as well as the reflection! Other usages of multipath 
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connections in physical layer, like antenna arrays, are beyond the scope of this 

dissertation. 

 

Data link layer  

Multipath connections in the data link layer have been implemented as link 

aggregation or trunking, defined in IEEE 802.3ad [LAgg]. It is a method of combining 

multiple physical network links between two devices into a single logical link for 

increased bandwidth. The upper layer applications or protocols, such as a MAC client, 

can treat the link aggregation group as if it were a single link. Link aggregation requires 

special network hardware and software support. Therefore, it is only suited for high-end 

users. See Figure 2.2. 

 

.  

Figure 2.2: Two servers interconnected by link aggregation [LAgg] 

 

Network layer 

In the network layer, multipath connections have been studied extensively in the name 

of multipath routing. Various protocols have been designed for wired networks and 

wireless ad hoc networks. 

a) Wired Networks 
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Based on the routing mechanism, we differentiate between table-driven algorithms 

(link state or distance vector) and source routing. 

 

Table-Driven Algorithms  

Vutukury et al. [SVJG01] proposed a multipath distance vector routing algorithm 

named Multipath Distance-Vector Algorithm (MDVA). It uses a set of loop-free 

invariants to prevent the count-to-infinity problem. The computed multipaths are loop-

free at every instant.  

Chen, in his Ph.D. dissertation [JChen98], proposed a complete multipath network 

model that includes the following three components: routing algorithms that compute 

multiple paths; a multipath forwarding method to ensure that data travel their specified 

paths; and an end-host protocol that effectively uses multiple paths.  

Other works in similar areas include [ICRR99, SMJG96, ROVR93, DSRN91, 

NTBB99, WZJG98]. These protocols use table-driven algorithms (link state or distance 

vector) to compute multiple routes. These protocols require fundamental changes on 

Internet routers and routing protocols. Therefore, the usage and deployment of these 

algorithms and protocols are limited.  

 

Source Routing 

Source routing is a technique whereby the sender of a packet can specify the route that 

the packet should take when the packet travels through the network. In today’s Internet, 

when a packet travels through the network, each router will examine the “destination IP 

address” and choose the next hop to forward the packet. In source routing, the sender 
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makes some or all of these decisions. If the sender makes only some of these decisions, it 

is called loose source routing. Source routing could be used to implement multipath 

routing. But, because of the security concerns of source routing, most routers in today’s 

Internet have disabled the source routing.  

 

 

Figure 2.3: Datagram format for loose source routing 

 

MultiProtocol Label Switching  

Multiprotocol label switching (MPLS) provides a mechanism for engineering network 

traffic patterns that is independent of routing tables. MPLS assigns short labels to 

network packets that describe how to forward them through the network. MPLS is 

independent of any routing protocol.  

In the traditional Level 3 forwarding paradigm, as a packet travels from one router to 

the next, an independent forwarding decision is made at each hop. The IP network layer 

header is analyzed, and the next hop is chosen based on this analysis and on the 

information in the routing table. In an MPLS environment, the analysis of the packet 

header is performed just once when a packet enters the MPLS cloud. The packet is then 

assigned to a stream, which is identified by a label, which is a short (20-bit) fixed-length 

value at the front of the packet. Labels are used as lookup indexes into the label 
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forwarding table. For each label, this table stores forwarding information. Additional 

information can be associated with a label, such as class-of-service (CoS) values, that can 

be used to prioritize packet forwarding. MPLS could be used to set up multipath 

connections for traffic engineering and quality of service.  

 

b) Wireless ad hoc network 

Multipath routing in ad hoc wireless network is a topic gaining interest, and much 

work has recently been done in this field. An ad hoc wireless network is a collection of 

wireless mobile hosts forming an instant deployable network without the aid of any base 

station, other infrastructure or centralized administration. The most popular routing 

approach in ad hoc network is on-demand routing because of its effectiveness and 

efficiency. Routing protocols used in wired network, which periodically exchanging route 

messages to maintain route table, are not well suited for ad hoc network, due to the 

considerable overhead produced by route update and their slow convergence to 

topological changes. On-demand routing protocols build routes only when a node needs 

to send data packets to a destination. Each node operates as a specialized router, and 

routes are obtained on-demand with no reliance on periodic advertisements. 

Based on the routing mechanism, we differentiate between Table-driven algorithms (link 

state or distance vector) and Source Routing. 

 

Table-driven algorithms (link state or distance vector) 

C. Perkins et al. [CPER99] proposed a novel algorithm for the operation of ad-hoc 

networks, named Ad-hoc On Demand Distance Vector Routing (AODV). The routing 
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algorithm is quite suitable for a dynamic self-starting network, as required by users 

wishing to utilize ad-hoc networks.  

Multipath routing protocols in ad hoc network proposed in [SLMG00], [ANSD99] are 

really backup route protocols, in the sense that even though these protocols build multiple 

paths on demand, but the traffic is not distributed into multiple paths. Only one route is 

primarily used and the secondary path is used when the primary route is broken. 

S. Lee et al. [SLMG00-1] propose an on-demand multipath routing scheme for ad hoc 

wireless network, called Split Multipath Routing (SMR), that establishes and utilizes 

multiple routes of maximally disjoint paths. The proposed protocol uses a per-packet 

allocation scheme to distribute data packets into multiple paths of active sessions.  

 

Source Routing 

Dynamic Source Routing (DSR) proposed by D. Johnson et al. [DJDM96] is an 

enhanced source routing designed specially for wireless ad hoc network. The protocol is 

composed of two main mechanisms of “Route Discovery” and “Route Maintenance”, 

which together allow ad hoc nodes to discover and maintain routes to any destinations in 

the ad hoc network. This protocol allows multipath routing and allows sender to select 

the route(s) to use.  

L. Wang et al. [LZZZ02] proposed a Multipath Source Routing (MSR) protocol for ad 

hoc wireless networks based on Dynamic Source Routing. MSR extends DSR’s route 

discovery and route maintenance mechanism to deal with multipath routing. The 

proposed scheme distributes load balance between multiple paths based on the 

measurement of RTT. 
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Transport layer 

 Linux has its own implementation of multipath connection [CSim]. For convenience, 

we refer to it as “Linux multipath connection”. It is a solution for using multiple ISP 

connections (multi-homing) at the same time. Linux kernel needs to be patched to support 

“Advance Router” and “Multiple Path Routing” options. The Linux kernel distributes 

packets between multiple network connections in TCP layer. The solution’s configuration 

is complicated, and it fails to provide fail-over mechanism in case of failure of a 

connection. Also, it requires the host machine to have multiple network interfaces with 

multiple ISP connections. 

 

 

Figure 2.4: Linux multipath connection for multiple ISP connections 

 

The closest multipath schemes on TCP layer to our PSMC work are mTCP [MZha04] 

and pTCP [HHsi02]. There are some chandelling issues in designing and implementing a 

TCP layer multipath solution. For more details, please refer to Chapter 4. 

Both pTCP and mTCP are limited to TCP only, while PSMC supports TCP as well as 

UDP. Another major difference is that PSMC can be installed on one end-host (one-way 

multipath) or on two end-hosts (two-way multipath). In the first case, only the data 

packets from sender are spread out over multiple paths, the return ACK packets from 
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receiver still go through the main direct path. In the second case, both the forwarding 

packets and the return packets are sent through multiple paths. pTCP is designed to 

support only one-way multipath. 

Packet striping can occur on a different layer. The application layer [THac02, HSiv00] 

and data link layer [HAdi96, I802] implementations suffer from the inability to 

accurately profile the available bandwidth on individual paths. The TCP layer 

implementations like mTCP and pTCP use a different striping scheme by monitoring and 

keeping track of the outstanding packets on each path, which may impose operational 

overhead and a complicated mechanism.  

Previous works for TCP persistent reordering problem include TCP-PR [SBoh04] and 

[MZha04, HHsi02]. TCP-PR does not rely on Dup ACKs to detect a packet loss, but uses 

timers to keep track of how long ago a packet was transmitted. pTCP uses its striped 

connection manager (SM) to handle the TCP re-sequencing while mTCP uses its sub-

flow control mechanism for TCP re-sequencing. In PSMC we use a double buffer 

approach to temporarily hold the out-of-sequence packets,  then deliver the in-sequence 

packets to the TCP handler. 

Related works for TCP congestion control in a lossy environment include TCP 

Westwood [CCas02], which uses the better measured “residual bandwidth” to set TCP 

congestion window size upon fast retransmit. In PSMC, we use an approximation of the 

residual bandwidth, not by actually measuring the “residual bandwidth”. 
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Network Protocols 

Figure 2.5 illustrates some commonly-used protocols on OSI seven-layer model.  

 

Figure 2.5: Protocols on OSI seven layer [JAna]
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IP tunnel 

IP is the primary layer-three protocol in the Internet suite. In addition to internet 

routing, IP provides error reporting and fragmentation / reassembly of datagrams.  

We have investigated various approaches to implement indirect routing in PSMC, i.e. 

SOCKS [SOCK], Zebedee [Zebe], IP Tunnel [IPIP] and IPSec [IPSe].  

SOCKS proxy is like an old switch board and can cross wires the connection through 

the system to another outside connection. SOCKS has several drawbacks. First, it didn’t 

support UDP, only TCP. Second, it didn’t support certain applications, like FTP. Third, it 

runs slow. 

Zebedee is a simple program to establish an encrypted, compressed “tunnel” for 

TCP/IP or UDP data transfer between two systems. 

IP tunnel (also called IP encapsulation or IP over IP) is a technique to encapsulate IP 

datagram within IP datagrams (Figure 2.6). This allows datagrams destined for one IP 

address to be wrapped and redirected to another IP address. The IP tunnel can be set up 

from Linux to Linux, windows to windows, or between Linux and windows (windows 

must be Windows 2000 server and above).  

The advantages of using IP tunnel are as follows. IP tunnel is a layer three protocol. All 

the upper layer protocols and applications can utilize it. Second, IP tunnel is a widely 

used protocol and supported by most modern operating systems. Last but not the least, IP 

Tunnel itself consumes limited system resources since it is a device descriptor.  
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Figure 2.6: IP over IP tunneling [IPIP] 

 

IP Tunnel brings overhead by an extra set of IP headers. Typically it is 20 bytes per 

packet. So if the normal packet size (MTU) on a network is 1500 bytes, a packet that is 

sent through a tunnel can only be 1480 bytes big, therefore the payload size is reduced. 

This also causes fragmentation and reassembly overhead. But these overheads can be 

reduced or avoided by setting smaller MTU at the client side. 

 IPSec is an extension to the IP protocol which provides security to the IP and the 

upper-layer protocols. The IPsec architecture is described in the RFC2401. IPsec uses 

two different protocols – Authentication Header (AH) and Encapsulating Security 

Payload (ESP) - to ensure the authentication, integrity and confidentiality of the 

communication. It can protect either the entire IP datagram or only the upper-layer 

protocols. The appropriate modes are called tunnel mode and transport mode. In tunnel 

mode the IP datagram is fully encapsulated by a new IP datagram using the IPsec 

protocol. In transport mode only the payload of the IP datagram is handled by the IPsec 
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protocol inserting the IPsec header between the IP header and the upper-layer protocol 

header.  

 

Figure 2.7: IPsec tunnel and transport mode [IPSe] 

IPSec and IP tunnel has been used widely in Virtual Private Network (VPN) [VPN]. A 

VPN is a private network that uses the Internet to securely connect remote sites or users 

together. Instead of using a dedicated, real-world connection such as a leased line, a VPN 

uses a “virtual” connection routed through the Internet. From the user’s perspective, a 

VPN operates transparently. The tunneling handshake and packets transmission 

mechanism in VPN is a good reference for PSMC packets transmission. 

 

Figure 2.8: VPN [VPN] 
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TCP 

TCP is an end to end protocol which operates over the heterogeneous Internet. TCP 

has no advance knowledge of the network characteristics, thus it has to adjust its behavior 

according to the current state of the network. TCP has built in support for congestion 

control. Congestion control ensures that TCP does not pump data at a rate higher than 

what the network can handle. For more information on congestion control, please refer to 

the appendix. 

TCP flow control is based on the premise that out-of-order packet is an indication of 

packet loss, which is not true in multipath environment. Packet loss is detected by 

Retransmission Time-Out (RTO timer) or Duplicate ACKs (usually three). When Time-

out occurs, TCP enters slow start. When dup ACKs occurs, TCP enters fast retransmit 

and fast recovery. 

TCP has four defined congestion control mechanisms to ensure the most efficient use 

of bandwidth, and quick error and congestion recovery. TCP supports windowing—the 

process of sending numerous data packets in sequence without waiting for an intervening 

acknowledgement. 

The four mechanisms, defined in detail in RFC 2581, are: 

– Slow Start     – Congestion Avoidance 

– Fast Retransmit    – Fast Recovery 

 

TCP throughput formula 

A simple form is as below: 
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TCP throughput = 
pRTT

MSS*22.1          (2.1) 

A more complicated form is as below [JPVF98]: 

TCP throughput = 
)321()

8
33,1min(

3
2 2

0 ppbpTbpRTT

MSS

++
   (2.2) 

Here RTT is Round Trip Time. p is packet lost rate. b is the number of packets that are 

acknowledged by a received ACK. Many TCP implementations send one cumulative 

ACK for two consecutive packets received, so b is typically 2. T0 is the TCP sender 

times-out. 

 

TCP Implementation in Linux Kernel 

In Linux kernel, packets are stored in skbuffs that are sized according to network 

interface MTU. Kernel-side correspondent for TCP socket is struct sock. struct sock 

holds state data for the socket (such as the TCP variables regarding congestion window, 

etc.). There are several queue pointers: outgoing packets not yet acknowledged, incoming 

packets not yet delivered to application. Queues hold chains of skbuffs. skbuff usually 

corresponds to one packet sent / received to network. For more information, please refer 

to the appendix. 

 

UDP 

User Datagram Protocol (UDP) is a connectionless protocol that provides the simplest 

kind of transport services. In keeping with its simple capabilities, the UDP header is short 
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and simple, consisting primarily of a protocol identifier (17) in the IP header, an optional 

checksum value, an UDP length, and source and destination port addresses. 

Appropriate (and historical) uses for UDP concentrate on application layer services 

that manage their own reliability and connections, such as NFS, and on chatty protocols 

and services, such as DHCP, SNMP, or RIP that rely on simple controls and fail-safes, 

and broadcast or periodic transmissions to handle potential reliability, deliverability, or 

reachability problems. Many multimedia applications and protocols are built on UDP. 

UDP runs up to 40% faster than TCP under some conditions because of its simplicity. 

 

DDoS, DNS and Overlay 

 

DDoS attacks and DDoS defense mechanisms 

The operations of computers and networks rely on the availability of various resources 

such as network bandwidth, data structures, disk space, and power supply. A 

consumption DoS attack may be executed against any resource. For example, a TCP half-

open (SYN) attack consumes the kernel data structures involved in establishing a TCP 

network connection. Distributed Denial of Service (DDoS) attacks are any DoS attacks 

where tools are employed to rapidly “recruit” and coordinate attacks using a mass 

number of conspirators from widely diverse systems around the globe. Figure 2.9 is a 

diagram illustrated a typical DDoS attacks. 

In general, DDoS defense research can be roughly categorized into three areas: 

intrusion prevention, intrusion detection, and intrusion response. Intrusion prevention 

focuses on stopping attacks before attack packets reach the target victim. Intrusion 
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detection explores the various techniques used to detect attack incidents as they occur. 

Intrusion response research investigates various techniques to handle an attack once the 

attack is discovered. In addition to these three research areas, intrusion tolerance, once a 

sub-field of intrusion response, is emerging as a critical research domain.  
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Figure 2.9:  A typical DDoS [Chow03] 

 

J. Mirkovic, et al. from UCLA presented taxonomy of DDoS attacks and DDoS 

Defense Mechanisms [JMir03]. The SCOLD falls into the category of intrusion tolerance 

and reconfiguration mechanism. Related works in reconfiguration mechanism include 

reconfigurable overlay networks ([RON01], [DYNA]), resource replication services 

[JY00] and attack isolation strategies ([BBN]).  

The XenoService [JY00] is a distributed network of web hosts that respond to an 

attack on any one web site by replicating it rapidly and widely. In this way, a mom-and-
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pop antiquarian bookstore that comes under a DDoS attack can within a few seconds 

acquire more network connectivity than Microsoft, so that it can absorb a packet flood 

and continue trading.  

In [CCac02], Christian Cachin, et al. from IBM presents an intrusion tolerance system 

named Secure INtrusion-Tolerant Replication Architecture1 (SINTRA). SINTRA 

supplies a number of group communication primitives, such as binary and multi-valued 

Byzantine agreement, reliable and consistent broadcast, and an atomic broadcast channel. 

Atomic broadcast immediately provides secure state-machine replication.  

 

DNS enhancement 

DNSSEC [DSEC] (DNS Security Extensions) is one of the major efforts to improve 

the DNS security. DNSSEC was designed to provide end-to-end authenticity and 

integrity in DNS. All zone data in DNSSEC is digitally signed with public-key 

cryptography. By checking the signature, a resolver can verify the validity of a DNS 

response. 

Another major DNS enhancement is dynamic DNS update protocol [DDU], which 

allows an entity to update a DNS record “on the fly”. Dynamic DNS update can create 

caching issues and additional problems. Dynamic DNS update was extended to secure 

DNS update by using a set of keys to authenticate an update [SDU, DSEC]. Digital 

signatures are stored in the DNS as SIG resource records and are used to encrypt and 

decrypt update messages for a zone. 
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DNS has also been extended for purposes other than name-to-address mapping and 

name resolution. Web server load balancing using DNS, storing IPSec key in DNS, and 

attribute-base naming system are some of the many examples.  

DNS for loading balancing and traffic distribution among a cluster of web servers has 

been studied in [VCar99, EDDI]. The web servers are known by a single domain name, 

and DNS dynamically map the domain name to a real web server IP address based on 

loading balancing algorithm. Therefore, the clients’ traffic will be routed to different real 

server. 

In [MRic03], the author proposed a method for storing IPSec keying material in DNS. 

The IPSECKEY resource record is used to publish a public key that is to be associated 

with a domain name. It can be the public key of a host, network, or application. 

Intentional Naming System [WA99] is a resource discovery and service location 

system by mapping service name-attributes to name records using an intentional name 

language. 

 

Overlay network 

Overlay network is an area gaining much interest in recent years. The Internet itself is 

developed as an overlay on the traditional telephone network.  

The RON [RON01] is an application layer overlay network that allows distributed 

Internet applications to detect and recover from path outages and periods of degraded 

performance within several seconds. It uses UDP encapsulation to send packets along 

RON nodes. The RON nodes monitor the functioning and quality of the Internet paths 

among themselves, and use this information to decide whether to route packets directly 
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over the Internet or by way of other RON nodes. RON suffers from scalability problem 

with more than 50 nodes.  

The Detour [SSav99] is an in-kernel packet encapsulation and routing architecture 

designed to support alternate-hop routing, with an emphasis on high performance packet 

classification and routing. It uses IP-in-IP encapsulation to send packets along alternate 

paths. The authors proposed to use intelligent routers spread at key access and 

interchange points to "tunnel" traffic through the Internet. These intelligent tunnels can 

improve performance and availability by aggregating traffic information, shaping bursty 

traffic flows, and using more efficient routes.  

Compared with RON and Detour, SCOLD is not only a general purpose overlay 

network, but also can be used for defending DDoS attacks and improving DNS 

robustness. 

Other overlay networks include the MBone [MBON] for IP multicast, the 6-Bone 

[IPV6] for IPv6 connectivity and the X-Bone [XBON] for IP-based overlay. X-Bone 

does not yet support fault-tolerant operation or application-controlled path selection. 

Akamai [AKA] is a distributed content delivery system which significantly alleviates 

service bottlenecks and shutdowns by delivering content from the Internet’s edge. 

Akamai redirects client requests to the nearest available server likely to have the 

requested content. The similar between SCOLD and Akamai is that both redirect client 

traffic. Even though they are used for different purposes, they could benefit from each 

other by sharing the service servers. 

 

Algorithms for Proxy Server Selection 
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Cache server selection 

Proxy server selection and placement is a critical decision in PSMC. Similar problems, 

like mirror server and cache server placement and selection problems, are topics gaining 

interests recent years [EYYM, LQVP01, SJCJ00, PKDR00, BLMG99]. Both mirror 

server and cache server are used to replicate web content to improve the user-perceived 

performance and reduce the over-all network traffic. 

According to paper [EYYM], there are basically two types of approaches for server 

selection problem. 

 

 Formal approach 

It abstracts the network topology to a formal graphic model, and use graphic theory to 

study the problem. The algorithms are usually based on the following common 

assumptions:  

a) The network topology is pre-known and static.  

 b) The cost associated with each path is pre-known and static. 

  c) The network connection between two end nodes is static single path connection. 

These assumptions are reasonable for simplifying the network topology, but they are 

only approximation to the real Internet environment. Vern Paxson has studied extensively 

the end-to-end Internet dynamics [VPax].  

K-center problem is one of the well known optimal server placement problems. For k 

replicas, we want to find a set of nodes K of size k that allows us to minimize the 

maximum distance between a node and its closet replica. K-center problem is NP-

complete [LQVP01].  
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The existing formal algorithms include the followings.  

a) Random algorithm: randomly selecting servers, without consideration of other 

constrains [LQVP01].    

b) Greedy algorithm: selecting servers in a greedy fashion and local optimal way 

[LQVP01]. 

c) Tree-based algorithm: some authors propose solutions by further simplifying the 

network model from a mesh model to a tree-based model [BLMG99]. However, 

studies [LQVP01] show that this simplification does not always yield the optimal 

solution.  

d) K-min algorithm: by loosing the condition to tolerate the maximum distance 

between a node and its closest center up to twice the distance of the maximum node-

closest center distance, it can be solved in O (N|E|) time [LQVP01, SJCJ00]. 

e) Hot Spot algorithm: place replicas near the clients generating the greatest load 

[LQVP01]. 

 

Practical approach 

In real world situation, the network topology and connection costs information might 

not be pre-known or difficult to obtain. Therefore, the formal approach might not be 

feasible. There are several practical server selection approaches for real work situation 

without assumption of pre-known network information. It includes IDMap [SJCJ00] and 

Client clustering [BKJW00] 

IDMap is an architecture designed for global Internet host distance estimation service. 

It provides a map with Internet distance instead of geographic distance. IDMap utilize a 
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set of Tracers to measure the distance between themselves and Address Prefixes regions 

of the Internet. Client of IDMap can collect the advertised traces and use them to create 

distance map.  

Client clustering is the approach to cluster the clients and place the web replicas close 

to the largest concentration of the clients. 

Sever selection problem is an extremely difficult problem, and no prevailing approach 

proposed by far.  

 

Disjoint path selection 

The problem of finding disjoint paths in a network has been given much attention in 

the literature. Various methods have been devised to find a pair of shortest link-disjoint 

paths with minimal total length [JSRT84, RBha94, JSuu74, RONS89, DSRN91]. In 

[JSu74], Suurballe proposes an algorithm to find K node-disjoint paths with minimal total 

length using the path augmentation method. The path augmentation method is originally 

used to find a maximum flow in a network [CPKS82]. In [JSRT84], the authors improved 

Suurballe’s algorithm such that pairs of link-disjoint paths from one source node to n 

destination nodes could be efficiently obtained in a single Dijkstra-like computation. In 

general, this type of problems can be solved in polynomial time [RBha94]. 

However, similar problems with additional multiple constrains become NP-Complete 

[GYFK03, ZWJC96, CLSM90]. For example, if requiring the maximal length of the two 

disjoint paths to be minimized, then the problem becomes NP-Complete [CLSM90]. 

Heuristic algorithms based on matrix calculation like [EONY95] have been proposed. 
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An optimal algorithm for finding K-best paths between a pair of nodes is given by Lee 

and Wu in [SLCW99], where they transfer the K-best paths problem into a maximum 

network flow and minimum cost network flow algorithm via some modifications to the 

original graph. Distributed algorithms for the link/node-disjoint paths algorithms can be 

found in [RONS89]. 

 

Complexity 

The time complexity of a problem is the number of steps that it takes to solve an 

instance of the problem, as a function of the size of the input. We generally use Big O 

notation for complexity to generalize away from the details of a particular computer or 

implementation. The Big O notation is a mathematical notation used to describe the 

asymptotic behavior of functions. More exactly, it is used to describe an asymptotic 

upper bound for the magnitude of a function in terms of another, usually simpler, 

function. 

The complexity class P is the set of decision problems that can be solved by a 

deterministic machine in polynomial time.  

The complexity class NP is the set of decision problems that can be solved by a non-

deterministic machine in polynomial time. This class contains many problems that people 

would like to be able to solve effectively, including the Boolean satisfiability problem, 

the Hamiltonian path problem and the Vertex cover problem. All the problems in this 

class have the property that their solutions can be checked effectively. 

 

Differentiated Services 
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Differentiated Services 

The differentiated QoS provisioning problem was first formulated by the Internet 

Engineering Task Force in the network core. Differentiated Services (DiffServ) 

[SBDB98] is a major architecture, where the network traffic is divided into a number of 

classes. It aims to define configurable types of packet forwarding in network core routers, 

which can provide per-hop differentiated services to per-class aggregates of network 

traffic.  

The proportional differentiation model [CDDS99] states that certain class QoS metrics 

should be proportional to their pre-specified differentiation weights, independent of the 

class loads. Due to its inherent differentiation predictability and proportionality fairness, 

the model has been accepted as an important DiffServ model and been applied in the 

proportional queueing-delay differentiation (PDD) in packet scheduling [CDDS99, 

CDDS02, MLJL01, BYPM02, JWCX04] and proportional loss differentiation in packet 

dropping [YHRG04].  

There are recent efforts on differentiation provisioning on end servers [TAKS02, 

JAMD98, SCCE00, XCPM02, HZHT01]. On the server side, response time is a 

fundamental performance metric. Existing response time differentiation strategies are 

mostly based on priority scheduling in combination with admission control and content 

adaptation [TAKS02, JAMD98, SCCE00].  

The work in [XCPM02] adopted priority scheduling strategies, strict or adaptive, to 

achieve response time differentiation on Internet servers. The results showed that the 

differentiation can be achieved with requests of higher priority classes receiving lower 

response time than those of lower priority classes.  
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However, this kind of strategies cannot quantitatively control quality spacings, say 

proportionally, among the classes. Time-dependent priority scheduling algorithms 

developed for PDD provisioning in packet networks can be tailored for PDD provisioning 

on Web servers [SLJL04]. However, they are not applicable for proportional response 

time differentiation because the response time is not only dependent on a job’s queueing 

delay but also on its service time, which varies significantly depending on the requested 

services. Providing proportional response time differentiation on Web servers is not only 

important, but also challenging.  

There are efforts on the design of new resource management mechanisms at kernel 

level to support Diff-Serv provisioning efficiently, as exemplified by resource containers 

[GBPD99], and its extension cluster reserves [MAPD00].  

Resource container is a new operating system abstraction. It separates the notion of a 

protection domain from that of a resource principal. A resource container encompasses 

all system resources that the server uses to perform an independent activity, such as 

processing a client HTTP request. All user and kernel level processing for an activity is 

charged to the appropriate resource container and scheduled at the priority of the 

container. Resource containers allow accurate accounting and scheduling of resources 

consumed on behalf of a single client request or a class of client requests.  

Thus, this new mechanism can help provide fine-grained resource management for 

DiffServ provisioning when combined with an appropriate resource scheduler. However, 

while kernel-level mechanisms can provide efficient control over resource management, 

their weaknesses lie on the portability and deployment issues.  
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Proportional differentiation 

The proportional differentiation model was proposed in the network core [CDDS99]. 

It was first applied for DiffServ provisioning in packet scheduling and packet dropping, 

in which packet queueing delay and loss rate are key QoS factors, respectively. Many 

algorithms have been designed to achieve proportional delay differentiation (PDD) in the 

network routers.  

They can be classified into three categories: rate-based; see BPR [CDDS99] for 

example, time-dependent priority based; see WTP [CDDS02] and adaptive WTP 

[MLJL01] for examples, and Little’s Law-based; see PAD [CDDS02] and LAD 

[JWCX04] for examples. The work in [CLJL04] demonstrated that some of the 

algorithms can be tailored for request scheduling for PDD provisioning on the server 

side. However, the algorithms are not applicable to proportional response time 

differentiation because response time is not only dependent on a job’s queueing delay but 

also on its service time, which varies significantly depending on the requested services.  

In [XCPM02, MTMS04], the authors addressed priority-based request scheduling 

strategies for response time differentiation on Web servers. Incoming requests were 

categorized into the appropriate queues with different priority levels for the 

corresponding services. Requests were then executed according to their strict priority 

levels [XCPM02] or adaptive priority levels [MTMS04]. The results showed that 

response time differentiation can be achieved in the sense that higher classes receive less 

response time than lower classes. However, the quality spacings among different classes 

cannot be guaranteed by the priority scheduling strategies. Therefore, this kind of 
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priority-based scheduling strategies cannot achieve proportional response time 

differentiation on Web servers.  

Our integrated approach improves over the previous efforts in the sense that it can 

quantitatively control quality spacings between different classes and provide robust 

proportionality of response time differentiation.  

In [XZJW04], the authors proposed a processing rate allocation strategy for server-

side DiffServ provisioning in terms of slowdown in E-Commerce applications. They left 

a challenging implementation issue; that is, how to practically achieve the processing rate 

for various traffic classes on servers.  

In [HZHT01], the authors adopted an M/M/1 queueing model to guide node-based 

resource allocation for stretch factor (a variant of slowdown) DiffServ provisioning in a 

server cluster. However, to achieve the processing rates for different classes, the node 

partitioning strategy still needs the support of resource allocation on individual servers.  

In this thesis, we design and implement a practical application-level process allocation 

approach on an Apache Web server to achieve differentiated processing rates.  

In [TAKS02], the authors utilized feedback control approaches to achieve overload 

protection and performance guarantees on Web servers. The strategy was based on real-

time scheduling theory which states that response time can be guaranteed if server 

utilization is maintained below a pre-computed bound. Thus, control-theoretical 

approaches, in combination with content adaptation strategies, were formulated to keep 

server utilization at or below the bound.  

In this thesis, we design and integrate a PID feedback controller with the queueing-

theoretical rate allocation. Our approach is complementary to the previous work in the 
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sense that our approach integrates the queueing theory and control theory for proportional 

response time differentiation.  
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CHAPTER III  

PROXY SERVER BASED OVERLAY NETWORK  

 
In this chapter, we present the design and implementation of a proxy server based 

overlay network called the Secure Collective Defense (SCOLD) system. SCOLD is a 

general purpose application layer overlay network. It can be used to defend against DDoS 

attacks and to provide alternate or backup routes.  

 

Introduction 

DDoS attacks exploit a number of compromised machines and launch large coordinated 

packet floods towards a target, thereby causing denial of service for legitimate users. DDoS 

attacks have been an immense threat to the Internet for years. One of the most prominent 

attacks recently is on Akamai [AKA] in June 2004 that creates major Akamai and Internet 

DNS Problems. 

The increasing frequency and severity of network attacks reveal some fundamental 

security problems of today’s Internet. The Internet was designed to provide fast, simple and 

reliable communication mechanisms, and its tremendous success is a credit to the original 

design. However, many network services like DNS and protocols like TCP/IP were not 

designed with security as one of the basic considerations. Also, the highly distributed and 
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interdependent nature of Internet provides opportunities and resources for the coordinated 

and simultaneous attacks by malicious participants. Due to the same nature of Internet, it is 

difficult to enforce common security policies, measurements and coordination among the 

participants of Internet. Therefore, the existing Internet architecture needs to be strengthened 

and services / protocols need to be enhanced or re-designed with security in focus. 

In this chapter, we present a novel DDoS defense system called Secure COLlective 

Defense (SCOLD) system. The key idea of SCOLD is to follow intrusion tolerance 

paradigm by providing clients with alternate routes via a set of proxy servers and alternate 

gateways when the normal route is unavailable or unstable due to DDoS attacks, network 

failure or congestion. The main techniques utilized in SCOLD are the enhanced Secure DNS 

Update and Indirect Route [Chow04, DWil04]. SCOLD can also be used as a general 

purpose application layer overlay network. 

In SCOLD, the enhanced DNS system is utilized to store and convey the indirect routing 

information, including the set of proxy server IP addresses. There are two steps to enable the 

indirect routing in SCOLD. First, the client DNS server needs to get the indirect routing 

information from the target DNS server. This is accomplished by the enhanced secure DNS 

update. Second, after clients get the indirect routing information from the client DNS server, 

clients can set up indirect route to the target server. Thus the communication channels 

between clients and the target are kept open by using indirect routes during DDoS attacks. 
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System Overview 

Motivation 

Most organizations today deploy multiple gateways or multi-homing scheme [AAJP04] as 

a backup measure in case of network congestion or failure. Recently overlay network 

[SSav99, RON01] has been developed for the same purpose. When the main gateway is 

congested or unavailable due to DDoS attacks, the legitimate traffic should be redirected 

through the alternate gateways. However, the alternate gateways are exposed to public. They 

are subjected to DDoS attacks too. Therefore, simply adding more alternate gateways may 

not be sufficient to defend DDoS attacks. 

Most existing DDoS defense mechanisms presume the scenario where packets are 

transmitted along a normal Internet route and via the main gateway. Under very large-scale 

DDoS attack, the huge volume of attack traffic at the main gateway will consume most of 

the available network resources. Techniques like rate-limiting [TGMP01] and filtering 

[MAZU] which are performed behind the main gateway will become less effective. Other 

technique such as traceback [DSAP01, SS00] may require support from upstream routers 

and still being developed as protocol standards. 

The SCOLD system defends against DDoS attacks by setting up indirect routes between 

clients and target server. The traffic between clients and target server is transported over 

Internet through the indirect routes. In SCOLD, the three main problems that need to be 

solved are as follows.  

a)  How to redirect the heterogeneous clients’ traffic through indirect route? 

b) How to utilize alternate gateways while hiding their IP addresses from public 

domain? 
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c)  How to prevent the attack traffic from using indirect route? 

We solve the first problem by setting up indirect route via a collection of geographically 

separated proxy servers and alternate gateways. We solve the second and third problem by 

using proxy servers that are equipped with IDS, firewall and rate-limiting mechanism, and 

only expose the IP addresses of the proxy servers to the public clients. 

 

System architecture 

Figures 3.1-3.3 illustrates how the SCOLD system works. Figure 3.1 shows a target site 

under DDoS attacks where R is the main gateway, and R1-R3 are the alternate gateways. In 

the figure the majority of the traffic from net-a.com is malicious, that of net-b.com is 

legitimate, and that of net-c.com is mixed.  

Figure 3.2 shows the control flow of the SCOLD system. When the target site is under 

DDoS attacks, its Intrusion Detection System (IDS) raises an intrusion alert and notifies the 

SCOLD coordinator, who sits in the same or trusted domain of the target server. The 

coordinator selects a set of proxy servers between the clients and the target server, and 

notifies the selected proxy servers, proxies 2 and 3 here, to set up indirect routes. The proxy 

servers notify the DNS servers of the client networks to perform a secure DNS update. The 

clients from net-b.com and net-c.com are notified with indirect route, but net-a.com is not 

notified due to its malicious traffic pattern which is detected by the IDS on the target 

network.  
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Figure 3.1: Target site under DDoS attack 

 
 
 
 

 
Figure 3.2: The control flow in SCOLD 
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Figure 3.3: Indirect route in SCOLD 

 
   

 

Figure 3.3 shows how an indirect route is setup in the SCOLD system. After a secure DNS 

update, the client side DNS server gets the new DNS entry containing the designated proxy 

server IP addresses. The clients query their DNS server, get the set of proxy server IP 

addresses, and set up indirect routes to the target server via the selected proxy servers. The 

proxy servers examine the incoming traffic and relay it to the designated alternate gateway 

on the target site. 

On the client side, the name resolve library needs to be enhanced to support the indirect 

routing. In enterprise environment, the internal clients go outside through an enterprise 

gateway (or an enterprise proxy server). Instead of modifying the client resolver, the 
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enterprise gateway (or the enterprise proxy server) needs to be enhanced to support the 

indirect route.  

In SCOLD, the IP addresses of the alternate gateways and the SCOLD coordinator(s) are 

revealed only to the trustworthy proxy servers to protect them from being attacked by 

malicious clients. The clients in public domain can connect to the target side through the 

designed proxy servers. To avoid traffic analysis at the proxy servers by intruders, multiple 

proxy servers can be deployed in a chain on an indirect route.  

The proxy servers in SCOLD are enhanced with IDS and firewall filters to block malicious 

traffic that may try to come in through the indirect route. The detection of intrusion on the 

proxy servers can provide additional information for identifying and isolating the spoofed 

attack sources. In Figure 3.3, by combing the distributed intrusion detection results from the 

main gateway R and the proxy server 3, the attack source from net-c.com could be more 

accurately identified.  

A proxy server itself may suffer from DDoS attacks or get congested when large volume of 

traffic comes through it. Assuming a large collection of proxy servers available, the impact 

of heavy traffic can be alleviated by spreading traffic over multiple proxy servers. 

The procedure for resuming normal route is similar to setting up indirect route. The proxy 

servers need to notify the client DNS servers with another secure DNS update to restore the 

normal DNS records. The clients query the DNS server and start to resume the normal direct 

route. We can also set an “expiration time” for indirect route so that SCOLD can 

automatically revoke obsolete indirect routes. 
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All the control messages communicated in SCOLD system are encrypted using Secure 

Sockets Layer (SSL) and all nodes involved must be mutually authenticated. Experiments 

show that this is one of the major causes of overhead in SCOLD system. 

Proxy servers can be provided by the participating organizations of SCOLD, or fee-based 

service providers, like Akamai [AKA]. 

Note that different proxy server selection may result in different system performance; and 

multiple proxy servers can be selected to enable parallel transmission or multi-path 

connection. We study these problems in [YCai05].  

 

More SCOLD applications 

Enhanced SCOLD proxy servers with bandwidth throttling can be used to defend large-

scale DDoS attacks. The SCOLD coordinator collects and analyzes the target server system 

load, available network bandwidth and the statistics of the client traffic. Based on the 

information, the coordinator can decide what the allowed maximum bandwidth is for each 

proxy server connecting to the target server. The proxy servers equipped with admission 

control and rate-limiting mechanism can enforce such bandwidth throttling. In Figure 3.3, 

the coordinator may assign different allowed maximum bandwidth to proxy 2 and 3, 

depending on the sever load and client behavior. This integrated IDS can help to control 

aggressive or malicious clients and reserve resources for normal operation. 
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Figure 3.4: Protect the root DNS server 

 

A slightly revised version of SCOLD can be used to protect the Root DNS servers from 

DDoS attacks, like the one caused a brief service disruption on the nine of the thirteen DNS 

root servers in 2002 [NEWS-1]. In Figure 3.4, DNS 1-3 are the client side DNS servers, and 

the main gateway R of the root DNS server is under sever DDoS attacks. DNS 1-3 may 

experience significant delay or even failure when querying the root DNS server. Due to the 

current DNS querying model, the end users will perceive a poor Internet performance with 

unbearable delay.  

By utilizing the SCOLD technique, we can set up indirect routes between client DNS and 

root DNS to ensure the normal operation of root DNS server. The IDS on the root DNS 

server raises alert and notifies the coordinator; the coordinator notifies the selected proxy 

servers (proxy 2, 3 here); the proxy servers notify the legitimate client DNS servers with 

their IP addresses; those DNS servers then set up indirect routes to the root DNS via the 

proxy servers and the alternate gateways; then the client DNS servers can query the root 

DNS server via indirect route.  

In SCOLD architecture, the proxy servers become the “frontline” fighting against the 

DDoS attacks. It brings several benefits. First, with large number of proxy servers available, 

the target server gain more resources to defend DDoS attacks. Second, if a proxy server 
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fails, we can quickly recruit other proxy servers without significant lost. Third, proxy 

servers with integrated IDS can provide powerful functionalities to detect and defect attacks. 

In SCOLD, there are three defense lines against DDoS attacks. First, based on the 

preliminary intrusion detection result from the main gateway, some malicious clients will 

not be notified with indirect route. Second, the proxy servers are equipped with IDS and 

firewall filters to further block malicious traffic. Third, the proxy servers are equipped with 

admission control and rate-limiting mechanism to enforce bandwidth throttling and control 

the aggressive clients. 

 

Enhanced Secure DNS Update 

 

In SCOLD, the DNS is utilized to store and convey the indirect routing information, which 

are the proxy server IP addresses. This requires several modifications and enhancements on 

current DNS. 

   First, we need to redefine the DNS record format for storing the additional information. 

A sample of the new DNS record in the DNS zone file looks like the following. 

 

target.targetnet.com.   10   IN   A         133.41.96.71 

target.targetnet.com.   10   IN   ALT    203.55.57.102 

                                    10   IN   ALT    203.55.57.103 

                                    10   IN   ALT    185.11.16.49 

 

The first line is a normal DNS entry, containing host name and its IP address. The next 3 

lines contain the IP addresses of proxy servers, as the newly defined “ALT” type (type 99).  
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The DNS zone data needs be securely updated from the target side DNS server to the client 

side DNS server upon request. However, in the scenario of DDoS attack, the main gateway 

of the target server domain may become unavailable or unstable. Therefore, the DNS update 

might experience significant delay or even failure. By setting up indirect route and perform 

the DNS update via the indirect route, we can overcome the problem.  

Figure 3.5 illustrates how the enhanced DNS update works. Step 1, the target side IDS 

raises intrusion alert, and notifies the coordinator. Step 2, the coordinator notifies the 

selected proxy server(s). Step 3, the proxy server notifies the client DNS server for a secure 

DNS update. Step 4, if the client DNS server decide to make a DNS update, it sends a 

request back to the proxy server for setting up indirect route; if the proxy server grants the 

permission, it notifies a selected alternate gateway and the target server for setting up 

indirect route; then an indirect route from the target DNS server to the client DNS server via 

the proxy server and the alternate gateway is set up. Step 5, the client DNS server performs 

the secure DNS update and gets DNS zone records from the target DNS server. 

In the enhanced DNS update, we can not only update DNS zone file through indirect route, 

but also perform DNS query through indirect route. In Figure 3.5, after the indirect route is 

set up, the client DNS server can query the target DNS server through the indirect route, 

without being affected by the DDoS attacks. 

 

Indirect Route 

We investigate several alternatives for implementing indirect route, including SOCKS 

proxy [SOCKS], Zebedee [ZEBE], IPSec [IPSE] and IP tunnel [IPIP]. SOCKS proxy server 
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is like an old switchboard and can cross wire between connections. The main drawbacks of 

SOCKS are that it doesn’t support UDP and FTP. Zebedee is an application to establish an 

encrypted and compressed tunnel between two systems. But it requires specific 

configuration per network application. IP tunnel is a technique to encapsulate IP datagram 

within IP datagram. This allows datagram destined for one IP address to be wrapped and 

redirected to another IP address. IP tunnel provides what we want for indirect route. IPSec is 

an extension to the IP protocol which provides security to the IP and the upper-layer 

protocols. We believe whether client traffic needs to be encrypted is a client decision. 

Therefore, we choose IP tunnel to support basic indirect routing. However, the 

implementation using IP tunnel can be migrated to using IPSec easily. IP tunnel and IPSec 

have been used widely in Virtual Private Network (VPN) [VPN] to set up “tunnel” between 

network nodes and redirect traffic. 

The advantages of using IP tunnel are as follows. IP tunnel is a layer three protocol. All the 

upper layer protocols and applications can utilize it. Second, IP tunnel is a widely used 

protocol and supported by most modern operating systems. Last but not the least, IP Tunnel 

itself consumes limited system resources since it is a device descriptor.  

There is overhead associated with IP Tunnel due to the extra set of IP header and the 

reduced payload size. This can also cause fragmentation and reassembly overhead. In our 

experiments, the overhead in term of response time varies between 30% and 200%. But 

compared with the impact of DDoS attack, which may cause unbearable delay, the overhead 

of IP tunnel is still in an acceptable range. Fragmentation overhead can be avoided if we 

restrict the message transfer size at the sender. 
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Figure 3.6 illustrates how the indirect route set up by using IP tunnel. The client queries its 

DNS and get the IP addresses of proxy servers; the client sends a request to a proxy server 

for indirect route; if the proxy server grants permission, it notifies the designated alternate 

gateway; the alternate gateway notifies the target server, then an indirect route can be set up 

between the client and the target server via the proxy server and the alternate gateway. We 

set a timeout value at client side in case the communication is lost or the indirect route is 

broken. 

 
Figure 3.5: Secure DNS update via indirect route 

 
 

 
 

Figure 3.6: Indirect route by using IP tunnel 
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Implementation 

Implementation summary 

Our implementation on BIND 9 and Redhat Linux 8 / 9 is summarized as follows.  

1) The BIND9 (v.9.2.2) DNS server [BIND9] was modified to support the newly defined 

ALT type 99 data and to enable the automated secure DNS update.  

2) The DNS dynamic update utility (nsupdate [NSUP]) was enhanced to support indirect 

routing and the new data type. The enhanced DNS update utility is named nsreroute. 

3) On client side, the domain name resolve library (v.2.3.2) was enhanced to support the 

new data type and enable the automated set up of indirect route. In Redhat Linux, the 

resolve library is usually located in /usr/lib or /lib directory, and named as libresolv-nnn.so 

(nnn is the version). The routing table on the client node needs to be modified at run time. 

4) An agent program runs on the participating nodes (client DNS server, target DNS 

server, proxy server, alternate gateway and target server) listening for the control message. 

The routing table on the participating node needs to be modified at run time.  

5) The indirect route is implemented by using IP Tunnel [IPIP]. By modifying the routing 

table at run time, we can utilize IP tunnel just like normal Ethernet devices, like eth0. We 

also tested indirect route on Windows 2000 server using IP tunnel 

6) All the control messages are encrypted using Secure Sockets Layer (SSL) and all 

participating nodes must be mutually authenticated. The implementation of authentication 

and encryption/decryption mechanism is a difficult decision, especially in large-scale 

distributed system. However, this is not the key focus of the chapter. We utilize the most 

commonly-used public key cryptography and digital certificate in OpenSSL (v.0.9.6) 

[OSSL]. 
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Enhanced Resolve Library 

In Redhat Linux, the resolve library is usually located in /usr/lib or /lib directory, and 

named as libresolv-nnn.so (nnn is the version). The source code of resolve library can be 

obtained from glibc package. We modify the res_query.c file under glibc/resolv directory 

(version 2.3.2). The source code is listed briefly below. 

 

int  __libc_res_nquery (){ 

static int scold_count = 0;  

// scold_count is used to prevent multiple callings of SCOLD in one session. 

….. 

…. 

if(scold_count ++  < 1){  //not to run multiple times in one session  

   check_result = check_target_status (target_server_name); 

   /* target_server_name is the name of the target server, 

* check_result return value: if 0 means keep current settings;  

* -1 means to clear all tunnels and n means setup n tunnels.*/ 

 

   if(check_result != 0 && check_result != -1){ //set up tunnel now      

      setup_IPTunnel(target_server_name);  

   } 

   else if (check_result == -1){ //clear existing tunnels 

     clean_IPTunnel(target_server_name);  

   } 
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   else if (check_result == 0){//keep current settings 

   } 

 } 

 return (n); 

} 

/*user defined functions*/ 

int check_target_status (char *server_name) { 

/*scold daemon on client update scold_status file upon indirect routing requests*/ 

       status = read_scold_status_file (server_name) ; //read in the scold_status file 

       if (scold_timeout(server_name)) 

             status = -1; //timeout occurs, overwrite status to clean all tunnels 

       return status; 

} 

void setup_IPTunnel(char *server_name) { 

/*scold daemon on client update scold_proxy file with proxy server IPs*/ 

       proxy_server_list = read_scold_proxy_file (server_name); //read in proxy IP addresses 

       _setup_IPTunnel (proxy_server_list); //set up IP tunnel via the proxy servers 

} 

void clean_IPTunnel(char *server_name) { 

       proxy_server_list = read_scold_proxy_file (server_name); //read in proxy IP addresses 

       _clean_IPTunnel (proxy_server_list); //clean IP tunnel via the proxy servers 

} 
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Experimental and Simulation Results 

In this section, we present some experimental and simulation results on SCOLD.   

 

Experimental setup 

We set up a test bed consists of more than 20 nodes with various machine settings. The test 

bed includes HP Vectra machines (PIII 500MHz, 256MB RAM, 100Mb Ethernet 

connection), HP Kayak machines (PII 233MHz, 96MB RAM, 10/100 Mb Ethernet 

connection), Dell machines (PIII 1GHz, 528MB RAM, 100 Ethernet connection) and virtual 

machines (96MB RAM, 100 Mb virtual Ethernet connection, running on a Dell machine 

with dual PIII 1.2GHz and 4G RAM). The operating systems are Linux Redhat 8, 9 and 

Windows 2000 server. StacheldrahtV4 [STA4] is used as the DDoS attack tool. Figure 3.7 is 

one of the test beds which we used in the experiments. 

 

Analysis of the experimental results 

a) SCOLD initial setup overhead. 

We first evaluate the time taken to initially set up an indirect route in SCOLD, which is the 

SCOLD initial setup overhead. As discussed previously, there are three steps involved. Step 

1, "IDS -> coordinator -> proxy". The overhead comes from the secure communication 

among nodes. Step 2, "Proxy -> client DNS -> perform secure DNS update". The overhead 

comes from the secure communication and the secure DNS update. Step 3, "client -> client 

DNS -> set up indirect route". The overhead comes from the secure communication, the 

client side resolve library processing overhead and the time to set up indirect route. 
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Figure 3.7: SCOLD testbed 

Table 3.1 shows the initial setup time in SCOLD. It is observed that the overhead comes 

primarily from the secure DNS update and the secure communication among nodes. Table 

3.2 further shows that the secure DNS update time increases dramatically when the number 

of client DNS servers increase. This suggests that there is a limit on how many client DNS 

servers a proxy server can handle concurrently. 

Table 3.1: SCOLD initial setup time (second) 

Step 1 Step 2 Step 3 Total 

2.1 4.7 2.7 9.5 
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Table 3.2: Secure DNS update time (second) 

1 DNS 10 DNS 25 DNS 50 DNS 

4.7 25 96 240 

 

b) SCOLD performance 

Next we evaluate the SCOLD performance. Table 3.3 shows the processing overhead of 

using indirect route vs. the possible delay of direct route under DDoS attacks. The SCOLD 

processing overhead comes from the IP tunneling overhead and more Internet hops involved 

in indirect route. We can observe that the overhead of indirect route in term of response time 

is about 70%. Further experiments shows the overhead varies from 30%–200%. However, 

under DDoS attack, the response time of using direct route increases dramatically (15 times 

to infinity), while the response time of using indirect route keep the same (No DDoS attacks 

against proxy servers directly in the tests, same below).  Table 3.3 also shows that the 

SCOLD performance is relatively independent of the application type (Ping, HTTP, FTP). 

Table 3.3: Indirect Route processing overhead vs. Direct Route delay under DDoS attack 

Test No attack Under DDoS attack  

 
Direct 
Route 

(a) 

Indirect 
Route 

(b) 

Direct 
Route 

(c) 

Indirect 
Route 
(d) 

Direct 
Route 
Delay 

(c) / (a) 

Indirect 
Route 

Overhead 
(b - a) / (a) 

Ping 49 ms 87 ms 1048 ms 87 ms 21 times 77% 

HTTP(100k) 6.1s 11s 109s 11s 18 times 80% 
HTTP(500k) 41s 71s 658s 71s 16 times 73% 
HTTP(1M) 92 s 158s timeout 158s infinity 71% 
FTP(100k) 4.2 s 7.5s 67s 7.5s 16 times 78% 
FTP(500k) 23 s 39s 345s 39s 15 times 69% 
FTP(1M) 52 s 88s 871s 88s 17 times 69% 

56 



 
57 

 
We also evaluate the performance the enhanced secure DNS update. Table 3.4 shows 

performance comparison between an enhanced DNS update with indirect route (using 

nsreroute) vs. normal secure DNS update with direct route (using nsupdate). It shows that 

the nsreroute with indirect route is usually slower than the nsupdate with direct route by 30 - 

70%. The overhead is mainly caused by the time to set up indirect route and transport DNS 

data via indirect route. However, when the main gateway of the target site is under DDoS 

attack, the nsupdate with direct route is impacted seriously, and the nsreroute with indirect 

route is almost not affected.  

Table 3.4: Performance of nsreroute vs. nsupdate,  

with and without DDoS attack 

 No attack Under DDoS attack  

 
nsupdate 

(a) 
nsreroute 

(b) 
nsupdate 

(c) 
nsreroute 

(d) 

nsupdate 
Delay 

(c) / (a) 

nsreroute 
Overhead 

(b-a) / (a)  
1 DNS 4.2 s 7.1s 50 s 7.1 s 12 times 70% 

10 DNS 21.1 s 27.4 s timeout 27.4 s infinity 30% 

 

 

c) More overhead analysis 

Table 3.5 shows the overhead of enhanced resolver. We measure the response time to 

resolve a domain name by using enhanced resolver and the original resolver. It is observed 

that the enhanced resolve library only imposes very limited overhead compared to original 

resolve library.  
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We evaluate the overhead of the enhanced BIND DNS server. Table 3.6 shows the 

response time to answer a domain name query by using the enhanced DNS server and the 

original DNS server. The result shows that the overhead of the enhanced DNS server is also 

very limited. 

Table 3.7 shows the overhead of IP tunnels itself. It is observed that the number of IP 

tunnels on network nodes doesn’t affect the performance, because IP tunnel itself consumes 

very limited system resources. 

Table 3.5: Performance of enhanced resolver vs. original resolver 

Test Enhanced  
resolver 

Original  
Resolver 

Ping 0.7 ms 0.6 ms 

HTTP 0.7 ms 0.7 ms 

FTP 0.7 ms 0.7 ms 

 

Table 3.6: Performance of enhanced DNS vs. original DNS 

Test Enhanced DNS Original DNS 

Ping 1.2 ms 1.1 ms 

HTTP 1.2 ms 1.1 ms 

FTP 1.2 ms 1.1 ms 

 

Table 3.7: The influence of how many tunnels exist 

Test 1 tunnel  10 tunnels 50 tunnels 100 tunnels 

Ping 87 ms 87 ms 87 ms 87 ms 

HTTP(100k) 11s 11s 11s 11s 
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The alternate route via the proxy server may be under DDoS attacks too. Therefore we 

may want to give up the current alternate route and recruit a new proxy server to set up a 

new alternate route in some cases (assuming route initialization and DNS update already 

finish). Table 3.8 shows how long it takes to remove the current route and recruit a new 

route dynamically. In the test, we start a long web downloading task via a selected proxy 

server. Then we launch a DDoS attack against the selected proxy server. The sender notices 

a significant delay on the current alternate route. After a timeout period (set to 90 second in 

the test), the sender decides to give up the current route and recruits a new route. It takes 

about 2.8 seconds to finish a route deletion or route addition.  

Table 3.8: Path detection, deletion and addition 

Action Time to finish (second) 

Route Delete 2.8 

Route Add 2.8 

 

 

Simulation results 

To further analyze the overhead in SCOLD, the ns2 simulator [NS2] was used to perform 

the simulation study for large-scale network. The topologies used in simulation are 

generated using GT-ITM [GITM].  We create transit-stub graphs with 100-500 nodes. We 

pick nodes in the same stub for target server, target DNS server, coordinator, main gateway 

and 3 alternate gateways. We randomly pick 10% nodes as proxy servers, 5% nodes as 

DDoS attackers, 20% nodes as clients and 4% nodes as client DNS servers. 
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For simplicity, we set the overhead of IP tunneling and the overhead of secure 

communication to be a fixed percentage with a small random variance. We randomly 

generate background traffic whose average is 60% of the total network bandwidth. We 

generate DDoS attack traffic which can completely shutdown the victim. We keep proxy 

servers away from being attacked directly. 

Figure 3.8 shows that the average initial setup time of indirect route increases slowly when 
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Figure 3.8: average initial setup time vs. network size 
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Figure 3.9: indirect route processing overhead vs. network size 
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the network size increases. Figure 3.9 shows that the indirect route processing overhead 

keeps nearly constant when the network size increases. In both figures, SCOLD 

demonstrates good scalability with respect to the initial setup overhead and the processing 

overhead. 

 

Conclusion 

SCOLD redirects the traffic between clients and servers through indirect routes via proxy 

servers and alternate gateways. BIND9 DNS package and its secure DNS update utility were 

enhanced to support indirect route. IP tunnel was utilized to implement indirect routing. The 

results show that SCOLD can improve the network security, availability, and performance.  

SCOLD raises several issues. First, how should the Internet community form trust 

relationships and coordinate with each other. Second, how to detect and deal with the 

compromised proxy server nodes. These are important research issues and go beyond the 

scope of this chapter. 

It is our hope that the research results of SCOLD can produce valuable secure software 

packages, and provide insights for network security and Internet cooperation. 
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CHAPTER IV 
 

PROXY SERVER BASED MULTIPATH CONNECTION 
 

 
In this chapter, we present the design and implementation of a multiple path approach 

named Proxy Server based Multipath Connection (PSMC), which can utilize multiple 

network paths in parallel and aggregate the available bandwidth of these paths. The 

TCP/IP protocol is enhanced to support multipath connection. 

 

Introduction 

 
One key challenge in today’s Internet is to improve network performance, security and 

reliability for various network users. The current network connection is mostly over a 

single path connection, which may under-utilize network resources and suffer from 

performance problems. It is also vulnerable to potential attacks, link breakage or even 

traffic congestion.  

Multipath connection provides potential multiple paths between network hosts. The 

traffic from a source is spread over multiple paths and transmitted in parallel through the 

network. Multipath connection not only can improve the network performance, but also 

cope well with network congestion, link breakage and potential attacks.  
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In this chapter, we present a new multiple path connection approach named Proxy 

Server based Multipath Connection (PSMC). We address a number of challenging key 

issues in developing a multipath system as discussed below. 

a) How to set up multiple paths between two end hosts. In PSMC, we set up 

multiple paths via a set of intermediate connection relay proxy servers by using IP 

tunneling. The mechanism is based on SCOLD system [Chow04, DWil04]. 

b) How to stripe packets across multiple paths. In PSMC, the packet striping is 

done in the IP layer in a weighted round robin manner. Both TCP and UDP can benefit 

from PSMC. 

c) TCP persistent reordering problem [SBoh04]. TCP packets over multiple paths 

are likely to reach the destination out of sequence order. Our experimental results show 

that it can seriously degrade the overall system performance. In PSMC, we use a double 

buffer at the TCP layer on the receiver side to solve the problem. 

d) TCP high loss rate problem. The loss rate of a multipath connection is usually 

higher than that of a single path connection. Traditional TCP blindly cuts the congestion 

control window size in half upon fast retransmit, which may slow down the TCP 

performance in multipath scenario. In PSMC, we set the congestion window size to a 

more appropriate value upon fast retransmit. 

e) “Bad” path detection. Experimental results show that a failed path, a “bad” path, 

or paths with “uneven bandwidth distribution” can seriously affect the system 

performance. In PSMC, by passively monitoring on end hosts and periodically 

exchanging network information through the communication channel, we can quickly 

detect the unwanted paths.  
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f) Path management and Failure recovery. To achieve maximum aggregate 

bandwidth, algorithms need to be designed to select the best paths. At the same time, path 

addition and path deletion need to be done dynamically with low cost in a timely manner. 

The multipath system should also recover quickly from a path failure.  

g) In PSMC, we propose a communication channel between sender and receiver for 

exchanging network traffic information.  

We implement PSMC on a network of Linux systems. The experimental results show 

that our approach can significantly improve the network aggregate bandwidth, network 

security and reliability. 

 

Background 

 

Multipath connection is a topic gaining interest. Early works include Maxemchuk 

[NMax75] in 1975. In the network layer, multipath connection has been studied 

extensively under the name of multipath routing [SLee00, SVut01, JChe98]. These 

routing schemes require changes on intermediate routers, which may limit the usage. 

PSMC sets up multiple paths based on the SCOLD system [Chow04, DWil04]. The 

SCOLD is essentially an overlay network. Previous works on overlay-based techniques 

include Detour [Deto] and RON [RON01]. Overlay network is a feasible solution for 

multipath connection by utilizing the existing Internet infrastructure. For example, mTCP 

[MZha04] is built on RON network. However, RON suffers from a scalability problem 
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with more than 50 nodes [RON01]. SCOLD has better scalability and flexibility 

[Chow04]. 

The closest multipath schemes to our work are mTCP [MZha04] and pTCP [HHsi02]. 

Both are limited to TCP only, while PSMC supports TCP as well as UDP. Another major 

difference is that PSMC can be installed on one end-host (one-way multipath) or on two 

end-hosts (two-way multipath). In the first case, only the data packets from sender are 

spread out over multiple paths, the return ACK packets from receiver still go through the 

main direct path. In the second case, both the forwarding packets and the return packets 

are sent through multiple paths. pTCP is designed to support only one-way multipath. 

Packet striping can occur on a different layer. The application layer [THac02, HSiv00] 

and data link layer [HAdi96, I802] implementations suffer from the inability to 

accurately profile the available bandwidth on individual paths. The TCP layer 

implementations like mTCP and pTCP use a different striping scheme by monitoring and 

keeping track of the outstanding packets on each path, which may impose operational 

overhead and a complicated mechanism.  

Previous works for TCP persistent reordering problem include TCP-PR [SBoh04] and 

[MZha04, HHsi02]. TCP-PR does not rely on Dup ACKs to detect a packet loss, but uses 

timers to keep track of how long ago a packet was transmitted. pTCP uses its striped 

connection manager (SM) to handle the TCP re-sequencing while mTCP uses its sub-

flow control mechanism for TCP re-sequencing. In PSMC we use a double buffer 

approach to temporarily hold the out-of-sequence packets,  then deliver the in-sequence 

packets to the TCP handler. 
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Related works for TCP congestion control in a lossy environment include TCP 

Westwood [CCas02], which uses the better measured “residual bandwidth” to set TCP 

congestion window size upon fast retransmit. In PSMC, we use an approximation of the 

residual bandwidth, not by actually measuring the “residual bandwidth”. 

 

PSMC Design 

 

System Overview 

Figure 4.1 is a diagram that illustrates the overview of a PSMC system. The multipath 

sender module is responsible for packet distribution among the selected multiple paths. 

Some packets will go through the normal “direct route”, others might go through the 

alternate “indirect routes” depending on the packet distribution. The intermediate 

connection relay proxy servers examine the incoming packets and forward to the 

destinations through the selected path. The multipath receiver module collects the packets 

arrived from multiple paths, reassembles them in order and delivers to the upper layer. 

 
Figure 4.1: Proxy server based multipath connection (PSMC) 
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In [SSav99], the authors find out that the default Internet direct route is usually not the 

best. There exist many alternate routes which are much better. These findings justify the 

usage of indirect routes.  

For a network connection, sometimes the bottleneck lies at edge of the network, say 

the telephone line for a dial-up modem user; or the bottleneck is the host processing 

power, say the web server capacity. This may limit the benefits of using multipath 

connection. However the situation is under significant improvement with the fast 

development of technology. In this chapter we assume that the network bottlenecks are 

not in the above two scenarios.  

PSMC can improve network reliability and availability with multiple redundant paths 

available. In [TNgu03, ABan96], the author proposed to use multiple paths to send 

redundant error correction information to improve the transmission reliability. PSMC can 

also be used to improve network security. For example, IPSec [IPSE] in real-time 

multimedia service becomes feasible with adequate bandwidth available. PSMC makes 

certain attacks like DDoS attacks, traffic analysis and traffic hijack harder to succeed, 

since the traffic is spread over multiple paths. 

The establishment of multiple paths in PSMC is based on the Secure Collective 

Defense (SCOLD) system [Chow04, DWil04]. SCOLD originally is designed to defend 

against the DDoS attacks, but it can also be used to provide multiple alternate paths 

between two end hosts via a set of proxy servers. The proxy servers can be provided by 

the participating organizations of SCOLD, or fee-based service providers. The indirect 

routes are based on IP tunneling. 
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Some of the notations in this chapter are summarized as follows. Assuming there are n 

paths between two end hosts, the available bandwidth, loss rate,  Round Trip Time (RTT) 

and one way delay (OWD) on path i is noted as BWi, pi, RTTi, OWDi respectively, 

i=1…n. 

 

Packet Striping on the IP layer 

We decide to stripe packets on the IP layer because we want both TCP and UDP to 

benefit from multipath connection. It is no doubt that TCP is used by the majority of 

current Internet applications. However, most TCP flows on Internet are small [YZha02]. 

They do not gain as much benefit from multipath connection as large TCP flows do. On 

the other hand, the ever-increasing demands on real-time multimedia service from 

Internet gain UDP more and more interest. Many audio/video transmission protocols like 

[VOIP, RSTP, RSVP] prefer to UDP. And most applications are the long-lived ones with 

a large amount of packets to transmit. Therefore, we believe supporting UDP is important 

when designing a multipath mechanism. 

In PSMC, we adopt a weighted round robin data striping scheme among multiple 

paths. To achieve the maximum usage of available bandwidth, the data striping ratio 

should be the same as the ratio of available bandwidth on each path. For example, there 

are two paths of 10Mb and 5Mb, then the data striping ratio should be 2:1. With the 

traffic information from the communication channel, the sender can dynamically and 

more accurately adjust its data striping ratio. For example, the sender’s data striping ratio 

is 2:1 while the receiver’s data receiving ratio is 3:2, the sender should adjust its striping 

ratio to 3:2. 
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Double buffer for TCP re-sequencing 

Multipath connection brings a problem of TCP packet “persistent reordering” 

problem. Because the individual paths have different latencies, packets over multiple 

paths are likely to reach destination out-of-order. The TCP receiver observes the received 

packet sequence numbers, and generates duplicate ACK (Dup ACK) for each out-of-

sequence segment. After the sender receives three Dup ACKs, it will enter fast 

retransmit. TCP fast retransmit is based on the premise that out-of-order packet is an 

indication of packet loss, which is not true in the multipath environment. Our 

experimental results show that without considering the packet reordering, the aggregate 

bandwidth of multipath connection might be even worse than that of a single path 

connection in extreme cases. 

The rational of our double buffer approach is as follows. Most out-of-order packets in 

multipath connection are not caused by packet loss. Therefore, a better approach is to 

hold the packet in a temporary buffer (not the TCP receive buffer), and wait for the 

expected packet to arrive. If the expected packet arrives in time (before buffer is full), 

then we deliver the in-sequence segment to the TCP handler. If the buffer is full and the 

expected packet still doesn’t arrive, this indicates a likely real packet loss. We then 

deliver some out-of-sequence packets to TCP handler and let TCP send a few Dup ACKs 

to trigger a fast retransmit. 

The size of double buffer needs to be carefully considered. If the buffer size is too 

small, then it can not hold all the waiting packets. If the buffer size is too large, then it 
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takes too long to trigger a fast retransmit for a real packet loss. Obviously the buffer size 

upper limit is the congestion window size cwnd, otherwise the packet flow may halt.  

Now we try to derive the buffer size lower limit. Assume path 1 has the largest one 

way delay (OWD) among all paths, OWD1 = OWDmax. In the initialization stage of the 

buffer, at time OWD 1, the first packet on path 1 arrive the destination. On path i, there 

are already  packets arrive the destination (For simplicity, here 

BWi is in terms of packets/second. We also assume no packet striping delay on sender). 

All these packets need to be hold in the buffer. So the minimum buffer size is 

)1*)max(( +− iBWiOWDOWD

B1 =     (4.1) )1*)
1

max(( +∑
=

−
i

BW
n

i
iOWDOWD

In the steady stage of packet transmission, in a time unit (second), there are BWi 

packets arrived on path i. Assuming path k has the smallest bandwidth, BWk = BWmin. 

For the time period of 1/BWmin, path k has two consecutive packets arrived. On path i, at 

most packets arrived. So the minimum buffer size in this case is  )1min/( +BWiBW
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The buffer size lower limit should be the maximum of B1 and B2.  
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We observe from above that the buffer size is related to the difference of the paths’ 

latency and bandwidth. A fast link combined with a slow link, or a large capacity link 

with a small capacity link, may need a bigger buffer size than two moderate links. This 

may slow down the overall performance. Therefore, we suggest that paths with similar 
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characteristics should be selected. This path selection criterion is made possible with a 

large number of geographically diverse proxy servers available. 

In the double buffer approach, the incoming packet is placed on the buffer in order of 

the sequence number (earliest sequence number are closest to the head) and packets with 

duplicate sequence numbers are removed. When the packet with the correct sequence 

number arrives, the in-sequence packet segment is fed to the TCP processing code. 

Otherwise, the buffering continues. 

If the packet is lost, the expected packet will never arrive. There are several solutions 

for the missing packet.  

 

 

1) The double buffer does nothing. The TCP timer will time out and send another 

acknowledgment requesting the packet. This is similar to RTO and slow stat. It is too 

conservative and doesn’t perform well.   

2) Use a fixed-size double buffer scheme. With a predefined double buffer size, when 

the double buffer is full, then delivers the first 3 packets in double buffer to TCP handler 

to trigger a fast retransmit. However, how to set double buffer size correctly and 

dynamically is a problem. Our experimental results show that a fixed size double buffer 

is not able to adapt well to the dynamic traffic condition. 

3) The third solution is to dynamically adjust the size of the double buffer. We 

propose an adaptive TCP double buffer algorithm below. The notations in the algorithm 

are as follows: dbsizeup (double buffer size up limit), dbsizelow (double buffer size 
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lower limit), dbsize (double buffer size), N (the number of paths), packet_in_sequence 

(the number of in-sequence packets delivered to TCP handler) 

 

Adaptive TCP double buffer algorithm 

1) Buffer initialization,  

dbsizelow = max {N, user input value},  

dbsizeup = min{ssthresh, user input value}, 

dbsize = a * dbsizelow (a is a user specified parameter, usually a=2) 

packet_in_sequence=0 

2) Check the incoming packet and put in double buffer, 

3) Check double buffer for in-order sequence segment and deliver this segment to TCP 

handler if it exists.  

packet_in_sequence += segment size 

4) If double buffer is full,  

deliver first 3 packets in double buffer to TCP handler to trigger a fast retransmit, 

dbsize  dbsize -1 if dbsize > dbsizelow,  

packet_in_sequence=0. 

5) If packet_in_sequence > dbsize,  

dbsize  dbsize +1 if dbsize < dbsizeup, 

6) loop back to step 2. 

7) For each sampling period, or RTO timeout, dynamically update  

dbsizelow = formula (4.3),  

dbsizeup = cwnd,  
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dbsize = a*dbsizelow 

 

 

TCP congestion window control 

Another TCP related issue in multipath connection is the TCP congestion control 

window size. In multipath environment, the packet loss rate on the aggregate paths is: 

)
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)1(1( ∏
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n

i i
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. 

In PSMC, all paths share the same TCP congestion window. When three Dup ACKs 

are detected, instead of blandly reducing the congestion window size in half, we should 

adjust it to the “Residual Bandwidth”, which is equal to the difference between the total 

bandwidth and the bandwidth of the path causing packet loss. 

Assuming on the sender side, the packet striping ratio is si, (i=1...n). If path k is the 

route which causes packet loss, then the “residual bandwidth” is:  
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As discussed in Section 3.4, we usually select paths with similar characteristic. 

Therefore in practice, we adopt a simpler approach by set the “residual bandwidth” as  

 ((n-1) / n) * cwnd  

Our experimental results show that the approximation is acceptable.  

The new TCP congestion window control algorithm is as follow: 

 

TCP congestion window control algorithm 
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When three duplicated ACKs are detected, 

 1) set ssthresh =  ((n-1) / n) * cwnd, (instead of 1/2*cwnd in TCP Reno); 

 2) if (cwnd > sshthresh) then set cwnd = sshthresh; 

 3) The rest is the same as TCP Reno or new Reno. 

 

 

Communication channel and passive monitoring 

The network information like bandwidth, loss rate and latency for individual paths is 

important for decision making in PSMC. Active probing on the network is usually 

undesirable since it imposes extra load on the network and interferes with normal traffic. 

Passive monitoring on end host is usually acceptable. However, keeping track of each 

sub-flow as in mtcp may impose overhead and suffer from scalability problem when the 

number of paths increases.  

In PSMC, we perform passive monitoring on the end hosts to collect the network 

information on the whole traffic flow. A secure communication channel is set up between 

the end hosts to periodically exchange the information.  

 

Path management 

By using networking measurement tools, we can estimate the available bandwidth on 

network links and get the network topology. Extensive works have been done in this field 

[KLai01]. Then the well-known labeling algorithm for maximum network flow problem 

can be used to find the maximum aggregate bandwidth between two end hosts and select 

the best proxy servers to set up alternate routes [FGlo92]. 
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PSMC may encounter the problem of path failure or “bad” path. Our experimental 

results show that “bad” paths (meaning paths with extremely uneven bandwidth 

distribution) can dramatically degrade the overall system performance. Therefore, bad 

paths and failed paths need to be removed from the PSMC routing list. 

Taking bandwidth as a performance metric (latency and error rate will be similar), if 

the metric of path i is significantly below the average of other paths, we treat it as a “bad” 

path. Our experimental results suggest the threshold to be 1:10. 

When a path is removed from the routing list, the end hosts will stop using this path. 

However, the packets which were already sent out through this path are unaffected. 

The end hosts can also dynamically add new paths to the routing list. When the sender 

observes that the current aggregate bandwidth drops significantly, it can start probing 

other proxy servers and choose some of them to set up new paths. 

Note that even with higher packet loss rate and higher path failure probability, PSMC 

can still improve the network reliability and robustness. Neither packet loss nor sub-path 

failure will stop the whole traffic flow. The probability of all sub-path failure is much 

lower than that of single path failure. Our experimental results show that PSMC can 

recover quickly from a path failure. 

 

PSMC on UDP 

PSMC on UDP is much simpler than on TCP. The congestion control, packet 

persistent reordering and transmission errors are usually handled by the UDP application 

itself. 
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 However, there are a couple of things that need to be addressed. Multipath connection 

increases the available bandwidth with a price of higher loss rate, and the loss rate 

increases when the number of routes increases. This is sometimes unacceptable to 

multimedia protocols. Redundant or error correction information can be sent over 

multiple routes for packet loss [TNgu03].  

The second issue is that UDP is an “aggressive” protocol without built-in transmission 

rate control and congestion control mechanism. A congested link that is only running 

TCP is approximately fair to all users. However, when UDP data is introduced into the 

link, there is no requirement for the UDP data rates to back off, forcing the remaining 

TCP connections to back off even further. This is unfair to TCP.  

One possible solution is to set a UDP transmission rate upper limit on each path at end 

hosts to control the aggressiveness of UDP. This UDP upper limit can be negotiated 

between end hosts through the communication channel according to the application 

requirements. 

 

Implementation 

 

Implementation summary 

The PSMC system is implemented on the Linux kernel 2.4.24, and can be migrated to 

other kernel versions. We create a kernel patch which provides the necessary kernel 

environment information and interface to the PSMC modules. The kernel modification is 

primarily on net/ipv4/ip_output.c, tcp_input.c and tcp.c. 
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The whole PSMC system is designed into several independent modules based on 

functionality. The PSMC is a loosely-coupled system. These modules can be loaded, 

unloaded and maintained dynamically upon operational request. This greatly enhances 

the system scalability, maintainability and flexibility.  

The interface between PSMC modules and end users is through the /proc file system. 

End users can conveniently input the PSMC parameters (like buffer size, routing 

information and data striping ratio) through the /proc system. The communication 

channel is built on secure socket connection with OpenSSL [OSSL]. 

IP striping 

PSMC packet striping is implemented on IP layer. We modify the ip_output.c file 

under the linux/net/ipv4 directory. To modulate the code, we put the PSMC functional 

code in a PSMC module, and insert a function pointer in the ip_output.c. 

//insert a function pointer to scold module in ip_output.c 

int (*scold_function) (struct sk_buff *) = 0 ;  

int ip_queue_xmit(struct sk_buff *skb) { 

… 

… 

           if (scold_function && (*scold_function)(skb)) {  

// the return value contains the new device information for packet striping        

// linux will automatically do the packet striping with the new device 

    }  
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 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev, 

         ip_queue_xmit2); 

} 

We also declare the inserted function pointer in netsyms.c under linux/net/ipv4 directory. 

//declare and export the function in netsyms.c  

extern int (*scold_function) (struct sk_buff *); 

EXPORT_SYMBOL_NOVERS (scold_function); 

 

In the PSMC module, we implement a weighted round robin packet dispatcher. Other 

packet scheduling schemes can be easily implemented as well. The code is briefly listed 

below. 

// weighted round robin packet dispatcher for psmc 

int  psmc_wr_dispatcher(struct sk_buff *skb) { 

    /* psmc daemon updates the psmc_wr file with  

* destination, weight, proxy server IPs and tunnel device information.  

* psmc_dest is the destination address */ 

    read_psmc_wr_file (psmc_dest); //read in psmc_wr file 

 

//get the current position in the weight round robin dispatching manner 

current_position = weighted_round_robin (psmc_dest);  
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//get the current device to dispatch packet 

dev_m = dev_get_by_name (get_device (current_position)); 

 

if (dev_m == NULL){ 

 return 0; //no such device, use original device 

} 

if (dev_m){ //dev exists 

 return psmc_dev[current_position];  

//return value is the tunnel device number to send packet 

//linux will automatically send packet via this new device 

} 

  } 

  return 0; //use original device 

} 

 

Double buffering 

TCP Persistent reordering problem is a major hit on the network performance. A 

solution to out of order packets is to queue the arriving packets and wait for the delayed 

packet. This packet buffering is done using the INET socket. The INET socket is 

connection based, so there is one INET socket per connection and is a structure 

containing information about the connection (e.g,. sequence number). 

If the expected packet is lost, then it will never arrive. There are several solutions for 

missing packet.  
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1) The double buffer does nothing. The TCP timer will time out and send another 

acknowledgment requesting the packet.  

2) Use a fixed-size double buffer.  

3) Use an adaptive double buffer algorithm by dynamically adjust the size of the double 

buffer. 

The adaptive algorithm performs better than algorithm 1 and 2. More efficient double 

buffer algorithms can to be designed and analyzed in future. 

Our implementation of adaptive double buffer is listed below. We first redefine the 

struct sock by adding a scoldLog struct, which is similar to backlog. The scoldLog is the 

double buffer which temporarily holds the packets between IP and TCP. 

//modify the sock.h under linux/include/net directory 

struct sock { 

….. 

    struct { 

        struct sk_buff *head; 

        struct sk_buff *tail; 

    } scoldLog; 

} 

 

Then we modify the tcp_ipv4.c file under linux/net/ipv4 directory to implement the 

double buffer algorithm. 

 



 
 
 
 

81 
 

// modify the tcp_ipv4.c file under linux/net/ipv4 directory 

int tcp_v4_rcv(struct sk_buff *skb) 

{ 

… 

  bh_lock_sock(sk); 

  ret = 0; 

/*The psmc scold buffer interacts with end user through proc file system. 

* End user can turn on/off buffer and set buffer size via proc. 

* packets in scold buffer are sorted with sequence number from small to large  

* for simplicity, we list the code in high level*/ 

  if (scold_buffer_on) { // if turn on the buffer 

insert_packet_scold_buffer (); // insert packet into sorted scold buffer  

// if there is a packet segment in order, deliver the in-order segment to tcp handler 

if (segment_in_order_scold_buffer()){ 

     deliver_segment_scold_buffer ();  

delivered_packet_in_sequence += segment size; 

// if many packet delivered in sequence, increase dbsize 

if (delivered_packet_in_sequence > dbsize && dbsize < dbsizeup)  

dbsize++; 

} 

//if double buffer is full, deliver first three packets to tcp handler to trigger fast retransmit 

if(scold_buffer_full()){ 
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     deliever_first_three_packets(); 

     if (dbsize > dbsizelow)      dbsize --; 

     packet_in_sequence=0; 

} 

//periodically update dbsize, dbsizelow and dbsizeup 

update_db_size(sample_period);  

} 

… 

} 

 

Experimental Results 

 

Experiment setup 

We set up a testbed that consists of more than 20 nodes. Table 4.1 lists the machine 

setup. 

Table 4.1: Machine setup in the testbed 

 Hardware OS 

HP Vectra PIII 500MHz, 256MB RAM, 100Mb/s Ethernet connection Redhat 9 

HP Kayak PII 233MHz, 96MB RAM, 10/100 Mb/s Ethernet connection Fedora Core 1 

Dell PIII 1GHz, 512MB RAM, 100Mb/s Ethernet connection Fedora Core 1 

VMWare 
virtual machine 

96MB RAM, 100 Mb/s virtual Ethernet connection, running 
on a Dell machine with dual PIII 1.2GHz and 4GB RAM Fedora Core 1 
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Analysis of the experimental results 

a) PSMC performance analysis on throughput 
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Figure 4.2a: PSMC throughput comparison 
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Figure 4.2b: PSMC bandwidth utilization comparison 

Figure 4.2a shows the throughput comparison between single path connection, multipath 
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without double buffer (TCP), multipath with double buffer (TCP) and multipath without 

double buffer (UDP). The x axis is the number of paths in use. The y axis is the measured 

throughput. The bandwidth on each path is 5Mb/s and the latency is 50ms. It is observed 

that for TCP application, when more than 6 paths are in use, the performance of 

multipath without double buffer get worse than that of single path connection. As 

analyzed before, this is due to the persistent reordering problem in TCP. Therefore, 

persistent reordering problem has serious impact on the TCP performance. 

Figure 4.2a also shows that for TCP, PSMC with double buffer can aggregate the 

bandwidth more effectively. The aggregate bandwidth increases when the number of 

paths increases. However when there are more than 8 - 9 paths, the aggregate bandwidth 

actually starts to decline slowly. This is due to multipath overhead. As the number of 

paths increases, the packet loss rate increases. And the double buffer size gets bigger and 

takes longer to respond to a real packet loss. All these factors slow down the system 

performance. As analyzed below, the processing overhead of our PSMC code in Linux 

kernel is limited and is not the major source of multipath overhead.  

In practice, we usually pick 4 to 8 paths to achieve maximum aggregate bandwidth for 

TCP applications. The bandwidth gain over 10 paths is limited. 

Figure 4.2a also shows that for UDP, PSMC without double buffer can effectively 

aggregate the available bandwidth (Due to the space limitation, we don’t show the UDP 

bandwidth result after 10 paths). This is because we don’t have to consider problems like 

persistent reordering and congestion control for UDP. 

Figure 4.2b further shows the bandwidth utilization between the four types of 

connections. The x axis is the number of paths in use. The y axis is the bandwidth 
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utilization, which is the ratio of measured throughput to the total bandwidth available. It 

is not surprise that the single path connection and the multipath connection without 

double buffer (TCP) can not utilize the available network bandwidth effectively. For the 

multipath connection with double buffer (TCP) approach, as the number of paths 

increases, the bandwidth utilization decreases slowly. For multipath without double 

buffer (UDP), it can effectively use all the available bandwidth. 
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Figure 4.3: PSMC latency analysis 
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Figure 4.4: processing overhead of PSMC on a single path 

 

b) PSMC performance analysis on latency 

Figure 4.3 shows the latency comparison on PSMC. We don’t use the Round Trip Time 

(RTT) or One Way Delay (OWD) as the latency metrics because they can not properly 

indicate the latency impact of PSMC. Instead we adopt the sender-perceived response 

time which is the time period between sending out a packet and receiving the 

corresponding ACK. We use the average sender-perceived response time over a long 
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period (1000 seconds) during a stable transmission stage as the latency metric. The 

bandwidth on each path is 5Mb/s and the latency is 30ms. Figure 4.4 indicates that the 

latency in PSMC with double buffer (TCP) increases when the number of paths increases. 

This can be explained as follows: when there are more paths involved, the double buffer 

size increases, the packets are hold in the buffer longer. At the same time, it takes longer 

to detect a real packet loss. All these factors attribute to a longer average latency. 

Figure 4.3 indicates that in a PSMC double buffer system (TCP), if latency is an 

important factor, then we should not select more than 7 paths. Second, when possible, 

select less number of paths because it can reduce the latency. 

Even though the latency increases in a PSMC double buffer system for the TCP 

applications, we argue that with the abundant bandwidth available, we can design and 

utilize some transmission schemes which contain redundant or error correction 

information to reduce the latency [TNgu03, ABan96]. 

Figure 4.3 also shows that the latency of PSMC without double buffer keeps almost the 

same as the single path connection when the number of paths increases. This feather is 

very helpful for the UDP related applications.  
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c) 

Processing overhead of PSMC implementation 
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Figure 4.5a: the impact of bad path 
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Figure 4.5b: the impact of bad path 

From Figure 4.2a, we can also observe that if there is only one path in use, the 

performance of the four connections is almost the same. This indicates that the processing 

overhead of PSMC code on the single path may be very limited. 
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Figure 4.4 further shows that the processing overhead of PSMC over single path is 

limited. The dark bar is for the single path connection, and the other two bars are for 

PSMC with only one path in use. It shows that when PSMC is used as single path 

connection, its performance is comparable with a true single path connection. This 

indicates that the processing overhead of our PSMC implementation on throughput is 

limited. 

From Figure 4.3, we can also observe that the latency of PSMC is primarily caused by 

the packet holding time in the double buffer. And the PSMC processing overhead has 

limited impact on latency. 

 

d) Impact of “bad” path 

Figure 4.5a shows the impact of “bad” path with uneven bandwidth distribution. The x 

axis notation (1, 1/2) means two paths are in use, the bandwidth ratio is 1:1/2. It is 

observed that the bad or unbalanced paths have big impacts on performance. This is 

because when the paths become more uneven, the double buffer size gets bigger. When 

packets are lost, it takes longer to enter fast retransmit mode. Figure 4.4a also shows that 

the bad path has bigger impact on PSMC without double buffer than with double buffer, 

because PSMC without double buffer has a poorer ability to deal with packet reordering. 

Figure 4.5b further depicts the impact of bad path. The x axis notation (3, 0.1) means 

three paths are in use, and the bandwidth ratio is 1:1:0.1. We can observe that as the 

number of paths increases, the impact of bad path gets more significant. This can be 

explained that the increased number of paths can complicate the TCP reordering problem. 
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Figure 4.6a: the impact of double buffer scheme 
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Figure 4.6b: the impact of double buffer size 

Figure 4.5a and 4.4.5b suggests that we should eliminate the bad path or uneven path 

for whose bandwidth is below the 1/10 of the average. Keeping such uneven links in a 

multipath connection may slow down the performance. 
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e) Impact of double buffer scheme and new cwnd scheme 

Figure 4.6a shows the impact of the double buffer schemes. In the test, the bandwidth 

on each path is 5Mb/s and the latency is 30ms. The sampling period is 60 seconds. The a 

parameter is 2. We perform a long http download task in the test. It is observed that the 

adaptive scheme consistently out-perform the fixed-size schemes. If the buffer size is set 

to be small (10), it performs well when there are less number of paths. But when the 

number of paths increases, its performance drops dramatically. This can be explained as 

follows. When there are less number of paths (less than 6), the buffer size 10 is still OK 

to temporarily hold the incoming packets. When there are more paths (more than 6), then 

the buffer size 10 is too small to hold incoming packets, therefore, a lot of unnecessary 

Dup ACKs are sent out, and the system performance drop dramatically. On the other 

hand, if the buffer size is set to be too big (40), then it takes too long to respond to a real 

packet loss. This will significantly degrade the system performance. It is observed that 
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Figure 4.7: the impact of new cwnd scheme 
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the curve of size 40 performs worst. The buffer size 20 is in between and the performance 

is in between either.  

From Figure 4.6a, we also observe that when there are less than 6 paths in use, the 

difference between adaptive scheme and fixed size scheme (size 10 and 20) are limited. 

This suggests that the system performance seems not very sensitive to the double buffer 

size. In Figure 4.6b we perform another test to see the impact of double buffer size by 

using fixed-size scheme. It confirms that the PSMC performance is not very sensitive to 

the double buffer size when the buffer size is in a certain range (10 – 25 in this test). 

When the buffer size exceeds this range, the performance starts to decline gradually. This 

is certainly a good news to our double buffer algorithm, since it means an approximate 

              
Figure 4.8: test bed for TCP fairness 

 

 
Figure 4.9: test bed for TCP friendliness 
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update on the double buffer size is acceptable. 

Figure 4.7 shows the impact of new congestion window size adjustment scheme by 

setting 1/2*cwnd to (n-1)/n*cwnd. The x axis is the lost rate in log scale. There are five 

paths in the test and the bandwidth on each path is 2Mb/s. We run packet dropper on 

proxy servers to simulate the packet loss. The packet dropping rate can be specified 

through the /proc file system. As we can see, the new cwnd scheme is consistently out-

performs the old cwnd scheme. When the lost rate increases, the throughputs of both 

schemes decline. However, the new scheme declines slower than old scheme. The effect 

gets significant in a lossy network environment where packet loss rate is relatively high.  

 

f) PSMC TCP fairness  

TCP fairness implies that all connections are provided with similar opportunity to 

transfer data, and no connection suffers from “starvation”. For example, if K TCP 

sessions share same bottleneck link of bandwidth C, each has average rate of C/K. 

Table 4.2: TCP fairness 

TCP flow Throughput (Mb/s) 

sender 1 - proxy 1 - receiver 5 

sender 1 - proxy 2 - receiver 2.49 

sender 2 - proxy 2 - receiver 2.49 

sender 2 - proxy 3 - receiver 5 

 

We run an experiment to evaluate the PSMC TCP fairness. The test bed is shown in 

Figure 4.8. Sender 1 sends out packets to receiver via proxy 1 and proxy 2. Sender 2 

sends out packets via proxy 2 and 3. The shared congestion link is between proxy 2 and 
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receiver. Table 4.2 shows the experimental results. It is observed that the TCP flow can 

fairly share the bandwidth of the common link (2.49 + 2.49 ≈ 5.0). 

 

g) PSMC TCP friendliness 

TCP friendliness implies that PSMC must be “friendly” to other TCP variants. They 

must be able to coexist with each other while providing opportunities for all connections 

to progress satisfactorily. 

We run an experiment to evaluate the TCP friendliness between PSMC and TCP Reno, 

which is one of the most commonly used TCP variants. The test bed is shown in Figure 

4.9. All links are 6Mb with 30ms latency. Sender 1 sends out packets to receiver via 

proxy 1 and proxy 2 using PSMC. Sender 2 sends out packets via proxy 2 using TCP 

Reno as a single path connection. Same for sender 3. The shared congestion link is 

between proxy 2 and receiver. Table 4.3 is the experimental results.  

Table 4.3: TCP friendliness 

TCP flow Throughput (Mb/s) 

sender 1 - proxy 1 - receiver 6 

sender 1 - proxy 2 - receiver 1.99 

sender 2 - proxy 2 - receiver 1.99 

sender 3 - proxy 2 - receiver 1.99 

 

h) Path related issues. 

Now we study the path related issues. Table 4.4 shows the initial set up time of multiple 

paths. The delay primarily comes from the secure communication overhead between the 

participating hosts. The relatively long initial set up time makes PSMC more suitable for 
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long-lived flow. To reduce the path initialization time, paths can be set up ahead of time 

(before run time). Also, these paths can be shared by different user sessions.  We can also 

observe that the initial set up time is scalable to the number of paths. 

Table 4.4: Initial set up time of multiple paths 

Number of paths Set up time (second) 

2 10.3 

5 12.1 

10 14.8 

50 20.4 

 

Table 4.5: Path detection, deletion and addition 

Action Time to finish 
(second) 

Attacked flow 
(second) 

Detection 2.1 

Delete 5.8 

Add 5.7 

240 + 12 = 252 

 

Table 4.5 shows how long it takes to detect a bad path and how long to delete and add a 

path dynamically. We first start a web downloading task of 240 seconds by using 5 paths 

in parallel. During the downloading process, we launch a DDoS attack against a selected 

path. It takes 2.1 seconds to detect the “bad” path (not through IDS, but through PSMC 

passive bandwidth monitoring). Then the sender deletes the bad path and recruits a new 

path (of the same bandwidth). It takes about 5.8 seconds to finish such action. During the 

test, the traffic flow continues without stopping. With the deletion and addition action, 

the traffic flow finishes in 252 seconds. The overhead of deletion/addition action is about 

(252-240)/240 = 5%, within an acceptable range for long-lived flow. 
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i) UDP tests 

Table 4.6a: UDP test (2Mb/s paths only) 

Number of paths 1 2 3 4 … 10 

Aggregate  
bandwidth (Mb/s) 

2 4 6 8 … 20 

 

Table 4.6b: UDP test (one 200Kb/s, the rest 2Mb/s paths) 

Number of paths 1 2 3 4 … 10 

Aggregate  
bandwidth (Mb/s) 

0.2 2.2 4.2 6.2 … 18.1 

 

Table 4.6c: UDP test (one 20Kb/s, the rest 2Mb/s paths) 

Number of paths 1 2 3 4 … 10 

Aggregate  
bandwidth (Mb/s) 

0.02 2.02 4.02 6.01 … 18.01 

 

We also run several UDP tests on PSMC. The first test uses real player video 

streaming. We play a constant-bit-rate (CBR) video at a rate of 5Mb/s. There are 10 paths 

of 2Mb/s available. By using a single path connection, the video constantly pauses and 

enters the buffering mode. By using 3 paths in parallel (2M * 3 = 6M > 5M), the video 

can be viewed smoothly.  

The second UDP test uses a UDP packet generator which can generate a large amount 

of UDP packets. There are 10 paths of 2Mb/s, 1 path of 200Kb/s and 1 path of 20Kb/s 

available. Table 4.6(a-c) shows the result of UDP tests. 
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It is observed from the above tests that for UDP, PSMC can effectively utilize the 

aggregate bandwidth, and the bad path has very limited impact on the aggregate 

bandwidth. 

We also run a UDP/TCP competition test. There is a multipath connection of two sub-

paths with total bandwidth of 6Mb/s, and 2 TCP flows of 2Mb/s each running on the 

connection. Then we launch a large UDP flow without rate control. We observe that the 

UDP flow quickly consumes most of the available bandwidth, leaving little share for TCP 

flows. Then we enforce a rate limiting on UDP packets (1Mb/s) at sender side, and the 

TCP flows start to recover. Table 4.7 illustrates the test result. 

Table 4.7: UDP and TCP competition test (Mb/s) 

 TCP1 TCP2 

Before UDP starts 2 2 

After UDP starts 0.1 0.1 

UDP with rate control 2 2 

 

 

Conclusion  

In this chapter, we propose the design and implementation of the Proxy Server based 

Multipath Connection (PSMC), which can set up multiple routes between two end hosts 

and utilize them in parallel by striping packets across these routes. We summarize the key 

issues in a multipath system and provide solutions in PSMC. The experimental results 

show that PSMC can make good usage of network resources and significantly improve 

the network performance, security and reliability. 
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CHAPTER V 

PROXY SERVER SELECTION ALGORITHMS 

  
 

Proxy server selection or path selection is a critical decision in a multipath 

connection network. Different selection may result in significantly different result. In this 

chapter, we present several algorithms including genetic algorithms to solve the proxy 

server selection problem in multipath connection environment.  

 

Introduction 

 
In the previous two chapters, we present a new multipath connection approach called 

Proxy Server based Multipath Connection (PSMC), in which the multiple paths are set up 

via a set of intermediate connection relay proxy servers. The proxy servers examine the 

incoming packets and forward them to the appropriate destination.  

One of the key issues in a multipath system is path selection, or proxy server selection. 

We will mix the usage of path selection and proxy server selection in this chapter. There 

might be a large number of proxy servers available; we need to select the “optimal” 

subset of proxy servers from the candidates and achieve the objective functions, like 

maximum aggregate bandwidth. Different path selection may result in significantly 
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different performance [SSav99, RON01]. Therefore, server selection is a critical decision 

in PSMC. 

When the network paths are disjointed, the network reliability is improved, the 

available throughput increases, the traffic along the paths are load-balanced and least 

likely to be correlated. Therefore, finding multiple disjoint paths are usually desirable in 

multipath environment. 

There are two types of disjoint: link disjoint if no common links between paths, and 

node disjoint if no common nodes between paths besides the end host nodes. In general a 

link-disjoint paths algorithm can be extended to a node-disjoint algorithm with node 

splitting [GYFK03, JSRT84].  

 

Network Model 

By using networking measurement tools, like traceroute [Trac], pathchar [Path], 

cprobe [Cpro], we can obtain the IPs of the routers along the selected path and estimate 

the bandwidth or latency on each link in that path. Extensive work has been done in 

network measurement [SSav99, VPax, SJCJ00]. Usually we can get the network topology 

between given end hosts based on the network measurement techniques. Figure 5.7 is an 

example network topology from a node at UCCS network lab to the selected Redhat 

mirror servers. 

For simplicity, in this chapter we assume the network topology is known and static. 

Even though it is not always true [VPax], we argue that in a short given period this 

assumption is acceptable. We also assume the network bandwidth on network links is 
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known and static. Due to the dynamic nature of Internet, the available bandwidth on 

network links is not a constant and keeps changing. However, with more accurate 

bandwidth probing approaches, it is possible to measure the network bandwidth in a short 

period. We also assume the network forwarding route and return route are same. Even 

though it is not always true either [VPax], we argue that the results in this chapter on an 

undirected graph can be extended to a directed graph. 

 

We model the proxy server selection problem as followings. 

Let G = (V, E) be a graph which models the network topology. V represents the set of 

nodes including proxy server nodes, end host nodes, and the routers in between; E 

represents the set of edges or link segments that connect the nodes in the network.  

Let P be the set of proxy servers, P = {p1, p2,… pn}. The source node is s and 

destination is d. For a proxy server pi, BW(pi) represents the available bandwidth of the 

indirect route via pi from s to d, and L(pi) represents the latency of the indirect route via 

pi. For an edge e, BW(e) represents the available bandwidth on edge e, and L(e) 

represents the latency on edge e. Assume the route via pi consists of a set of edges e1, e2 

…, em, we define  

BW(pi) = min{BW(e1), BW(e2)… BW(em)},  

and  

L(pi) = L(e1) + L(e2) + … + L(em).  

Let S be the subset of proxy servers that we selected, S⊆  P.  

The proxy server selection problem is to find a subset S from P to maximize the 

objective functions and meet some constraints in graph G. 
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NP Hardness 

There are many open problems in server selection problem or sever placement 

problem. Problems like mirror server and cache server placement and selection problems, 

are topics gaining interests recent years [EYYM, LQVP01, SJCJ00, PKDR00, 

BLMG99]. In this chapter, we concentrate on selecting disjoint paths, which has very 

different objective functions with the cache server problem. For a related work survey on 

disjoint paths, please refer to chapter 2. 

We summarize the disjoint path selection problem in multipath environment and study 

their NP-hardness as below. 

 

1) Max-aggregate bandwidth problem.  

The problem of finding maximum aggregate bandwidth in a given network is close to 

the classic maximum flow problem [CPKS82] and can be solved in polynomial time. The 

basic idea is to use augmenting path and labeling scheme.  

Instance: A graph G = (V, E), with capacity BWi,j associated with each edge ei,j , a 

source node s, a destination node d,  

Question: Is there a set of paths S = {p1, p2, … pk} from s to d such that  is 

maximum? 

∑
∈S

BW
ip

)
i

p(

Lemma 5.1: The Max-aggregate bandwidth problem can be solved in polynomial 

time. 
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Prove: The max-aggregate bandwidth can be easily converted to the classic maximum 

flow problem, therefore it can be solved in polynomial time. The complexity of max-

aggregate bandwidth problem is the same as the maximum flow problem. We denote the 

complexity as O(c(maxflow)). 

 

2) Max-bandwidth, k-disjoint path problem.  

This problem refers to the problem of finding k disjoint path whose aggregate 

bandwidth is maximum. This problem can be converted to the well-known K-best paths 

problem in [SLCW99]. The K-best paths problem is to find k disjoint paths which have 

the lowest total cost. It can be solved in polynomial time. The basic idea is to use node 

splitting to transfer the K-best path problem into the classic maximum flow minimum 

cost problem. 

Instance: A graph G = (V, E), with capacity BWi,j associated with each edge ei,j , a 

source node s, a destination node d, K is a given positive integer. 

Question: Is there a set of node-disjoint paths S = {p1, p2, … pk} (set size is K) from s 

to d such that is maximum. ∑
∈S

BW
ip

)
i

p(

Theorem 5.1: The max-bandwidth, k-disjoint path problem can be solved in 

polynomial time. 

Proof:  

The K-best paths problem is as follows: Given a graph G2 = (V, E), with capacity 

BWi,j and cost Ci,j associated with each edge ei,j , a source node s, a destination node d, K 
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is a given positive integer. Let  . Find a set of node-disjoint 

paths {p

∑=
∈ mji pathe

C jipathmC
,

,)(

1, p2, … pk} (set size is K) from s to d such that is minimum. ∑
=

k

i
iPC

1
)(

We can convert the max-bandwidth, k-disjoint path problem to the K-best paths 

problem. For the given graph G = (V, E) in max-bandwidth, k-disjoint path problem, we 

convert it to graph G2 by assigning zero cost to all the edges. The edge ei,j capacity in G2 

is BWi,j, same as in G. Define a "virtual" edge from the origin s to the destination d with a 

flow cost of one unit and no upper or lower bound on capacity. This virtual edge is node-

disjoint with all other edges. See Figure 5.1. We assign a large number as the "supply 

quantity" at the origin s, and same quantity is "demanded" at the destination d.  

 

 

Figure 5.1: conversion from G to G2 

 

In trying to find the minimum cost flow with k-best paths algorithm in G2, the solution 

procedure will push the maximum possible flow through the original network since it 

costs nothing on these edges. Only the overflow over and above the maximal flow 

possible in the original network is diverted through the virtual edge from the origin s to 
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the destination d. The maximum aggregate bandwidth in G is of total supply flow amount 

minus virtual edge flow amount. Therefore, the solution in G2 by using k+1 best paths 

algorithm also yield the solution in G with k disjoint path of maximum aggregate 

bandwidth. 

 

As we can see from the proof, the complexity of the max-bandwidth, k-disjoint path 

problem is the same as the K-best paths problem, which is also the same as the well-

known Maximum flow and minimum cost network flow problem (MCNF). The best 

known algorithm for MCNF is  

 

O(c(mcnf)) = О(c(n,m,k)) = O(min{A1,A2,A3}),  

 

where A1=nmlog(n2/m)lognM, A2=nm(loglogk)log(nM) and 

A3=(mlogn)(m+nlongn). Here c(n,m,k) is the complexity of MCNF problem, n is the 

number of nodes in G, m is the number of links in G, M is a big number.  

 

3) Max-bandwidth, min-number-of-disjoint-paths problem.  

This problem refers to finding a set of disjoint paths, whose aggregate bandwidth is 

maximum, and the set size (number of paths) is minimum. This problem is important 

because in practice people want to use least number of disjoint paths to achieve the 

maximum aggregate bandwidth. As we can see from chapter 4, the more number of paths 

are used, the less efficient of bandwidth utilization, and the longer latency. When 

exceeding a threshold (8-10), adding paths will not provide additional bandwidth. 
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Instance: A graph G = (V, E), with capacity BWi,j associated with each edge ei,j , a 

source node s, a destination node d. 

Question: Is there a set of node-disjoint paths S = {p1, p2, … pk} (set size is K) from s 

to d such that is maximum and k is minimum. ∑
∈S

BW
ip

)
i

p(

Lemma 5.2: The maximum number of link-disjoint paths in G can be found in 

polynomial time. 

Proof: For the given graph G = (V, E), we convert it to graph G1 by assigning unit 

capacity to all edges. See Figure 5.2. 

 

 

Figure 5.2: G to G1 

 

Then we apply maximum flow algorithm on graph G1. Assuming the maximum flow 

is K, since the link capacity is one unit, so there must be K paths in the solution path set. 

Assume the solution path set S = {p1, p2, … pk}. First, p1, p2, … pk  must be link disjoint, 

otherwise the maximum flow is less than K. Second, there is no more link disjoint path in 

G1, otherwise the maximum flow is more than K. Therefore K is the maximum number 

of disjoint paths in G1 and G, and it can be found in polynomial time. 

. 
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Lemma 5.3: The maximum number of node-disjoint paths in G can be found in 

polynomial time. 

Proof: For the given graph G = (V, E), we first convert it to a directed graph G1 by 

duplicating edges and orienting them both ways [RATM93]. We then convert G1 to 

graph G2 by splitting nodes (except s and d). As illustrated in Figure 5.3, we convert G to 

G1 by duplicating edges, then split node i in G1 to node m and n in G2 by adding a virtual 

link between m and n with the capacity of one unit. All the incoming edges go to one 

node and outgoing edges go to the other. The capacities of all other links in G2 are also 

set to be one unit.  

 

 

Figure 5.3: conversion from G to G1 to G2

 

We then apply the max-flow algorithm on graph G2. Assuming the maximum flow is 

K. From lemma 5.2, we know that the maximum number of link-disjoint paths in G2 is K. 

Assume the solution path set S = {p1, p2, … pk}.  
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Translated back from G2  to G1, the link-disjoint paths selected in G2 are node-disjoint 

paths in G1. Then translated back again from G1 to G, note that the duplicated edges in G1 

can not be selected into the solution set at the same time. For example, e1_i and e1_o can 

not be both in the solution set in G1. Therefore we can translate the solution set in G1 back 

to G. Then we get the maximum number of node-disjoint paths in G, and it can be 

obtained in polynomial time. 

 

Theorem 5.2: The max-bandwidth, min-number-of-disjoint-paths problem can be 

solved in polynomial time. 

Prove: We first use lemma 5.1 to find the maximum aggregate bandwidth in G,  

assuming is W. Then we use lemma 5.2, 5.3 to find the maximum number of link disjoint 

paths L and node disjoint path N, assuming the aggregate bandwidth is WL and WN 

respectively. 

If W > WL, then it is not possible to find link disjoint paths to achieve maximum 

aggregate bandwidth. If W = WL, then we can achieve maximum bandwidth W with 

minimum number of link disjoint paths L. 

Same for node disjoint. If W > WN, then it is not possible to find node disjoint paths 

to achieve maximum aggregate bandwidth. If W = WN, then we can achieve maximum 

bandwidth W with minimum number of node disjoint paths L. 

Easy to see, the complexity of the proposed algorithm is the same as the max-flow 

algorithm, which is denoted as О(c(maxflow)). 

 

4) Max-bandwidth, min-longest-latency path problem.  
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In multipath environment, path latency is also an important factor. It is critical for 

some real time multimedia applications. When selecting multiple paths, people usually 

want to find a set of disjoint paths to achieve maximum aggregate bandwidth, at the same 

time, the path with longest latency in this set is minimum among all possible path sets.  

Instance: A graph G = (V, E), with capacity BWi,j and latency Li,j associated with each 

edge ei,j , a source node s, a destination node d, let path latency . ∑
∈

=
p

L jiPL
ji, ,)(

Question: Is there a set of node-disjoint paths S={p1, p2, … pk} from s to d such that 

is maximum, and the maximum path latency L(P∑
∈S

BW
ip

)
i

p( m) (m=1…k) is minimum. 

Or given a non-negative number X, is the latency of the slowest path L(Pm) is less than or 

equal to X? 

Theorem 5.3: The max-bandwidth, min-longest-latency path problem is NP-

Complete. 

Proof: We show the problem is NP-complete by giving a transformation from a well 

known NP-complete problem – the Partition problem [MGDJ79]. 

The partition problem: given a finite set A and a size s s(a)∈Z+ for each a∈A, is there 

a subset A’ ⊆A such that  

∑
−∈

=∑
∈ '

)(
'

)(
AAa

as
Aa

as  

It is easy to see that this problem is NP, since a non-deterministic algorithm can get a 

set of disjoint paths with maximum aggregate bandwidth and check if the length of the 

longer path is less than or equal to X. 

Let’s construct an instance of the problem with a graph G = (V, E), with the following 

characteristic: 
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1) (3n + 2) nodes, s is source node, d is destination node 

2) V = {vi, i=1…2n}  {uU i, i=1…n} U  {s, d} 

3) The edges are: 

 a) (s, v1), (s, u1), (v2n, d), (un, d) 

 b) (vi, vi+1), i=1…2n-1 

 c) (ui, ui+1), i=1…n-1 

 d) (v2i, ui+1), i=1…n-1 

 e) (ui, v2i+1), i=1…n-1 

4) The bandwidth on all edges BWi,j =1 

5) The latency is as follows:  

 a) L(v2i-1, v2i) = s(ai), i=1…n 

b) The Latency of every other edge is 0  

(0 means a very small number compared with s(ai)) 

6) The X =  ∑
∈Aai

ais )(*2/1

It is easy to see that there are at most two disjoint paths from s to d, and the maximum 

aggregate bandwidth is 2. We need to show that instance of the original problem will 

have two disjoint paths from s to d of length at most X, if and only if elements of the 

instance of the Partition problem can be divided into two groups, such that the sums of 

these two groups are equal. 

First, suppose that the set A can be divided into A’ and A-A’ such that 

. In this case we need to show that we can construct two disjoint ∑
−∈

=∑
∈ '

)(
'

)(
AAa

as
Aa

as
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paths from s to d that the longest latency is at most . Suppose A’={a∑

∈Aai
ais )(*2/1 f(1), 

af(2)… af(m)}, f(1) < f(2)<…<f(m). 

The two paths can be constructed as follows. 

Path 1: s  u1  …  uf(1)-1  v2f(1)-1  v2f(1)  uf(1)+1 …  uf(2)-1  v2f(2)-1  v2f(2)  

uf(2)+1 …  uf(m)-1  v2f(m)-1  v2f(m)  uf(m)+1 … un d. 

Path 2: s  v1  …  v2f(1)-2  uf(1)  v2f(1)+1  v2f(1)+2 …  v2f(2)-2  uf(2)  

v2f(2)+1  v2f(2)+2 …  v2f(m)-2  uf(m)  v2f(m)+1  v2f(m)+2 … v2n d. 

We can verify that the path latency is X and the aggregate bandwidth is 2. 

Second, now suppose that there are two disjoint path P1 and P2 from s to d, the 

latency of slower path P2 is at most X and the aggregate bandwidth is 2. 

It is easy to see that for edge (v2i-1, v2i) with latency s(ai), i=1…n, it must be part of P1 

or P2, and can not be in P1 and P2 at the same time. So L(P1) + L(P2) =X. We also have 

L(P1) <= L(P2) and L(P2) <=1/2*X, therefore, L(P1) = L(P2) = 1/2*X.  

Assuming P1 contains edges with latency of af(1), af(2)… af(m), f(1) < f(2)<…<f(m), 

then we can set A’={af(1), af(2)… af(m)}, and the sums of two groups A’ and A-A’ are 

equal 1/2*X. Therefore, we prove the theorem. 

 

5) Max-bandwidth, min-jointness problem.  

In the real world scenarios, there may not exists disjoint paths between two given end 

hosts, because the paths are likely to share some common links on the edge of the 

Internet. Another scenario is as follows: two end hosts are in China and US respectively, 

since there are limited gateways connections between China and International network 
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[IChi], therefore, the multiple paths between China and US are likely to share some 

common links in the middle. 

We define jointness and disjoint function as follows like [MZha04]. 

Jointness = (total number of shared links) / (total number of links) 

Disjoint = 1 - (total number of shared links) / (total number of links) = 1 - jointness 

We can also use bandwidth or latency instead of the number of links in the definition.  

We study the problem of selecting a set of paths to achieve maximum aggregate 

bandwidth with minimum jointness. 

Instance: A graph G = (V, E), with capacity BWi,j  associated with each edge ei,j , a 

source node s, a destination node d. 

Question: Is there a set of paths S = {p1, p2, … pk} from s to d such that 

is maximum, and S is as diverse as possible? ( is 

minimum among all possible path set who have maximum aggregate bandwidth).  

∑
∈S

BW
ip

)
i

p( ∑
∈S

jinessJo
ji,p

),(int

Another objective function is to maximize  , here α is a 

given parameter. This objective function combines both bandwidth and jointness. 

∑
∈

+
S

jiDisjoBW
ji,p

)),int()
i

p(*(α

The max-bandwidth, min-jointness problem appears to be NP-complete. We propose a 

heuristic algorithm as follows.  

In Theorem 5.2, when W > WL, then it is not possible to find link disjoint paths to 

achieve maximum aggregate bandwidth. Only if W = WL, then we can achieve 

maximum bandwidth W with minimum number of link disjoint paths L. 

When W > WL, we first apply Theorem 5.2 to find a set of link disjoint paths S = {p1, 

p2, … pk} which bandwidth is WL. Then we convert graph G to G1 by assigning one unit 
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cost on the selected path {p1, p2, … pk}, and zero cost on all other edges. We also need to 

deduct the used bandwidth on each edge in {p1, p2, … pk}. Then we convert graph G1 to 

G2 by removing the edges with zero bandwidth. Figure 5.6 is an example that illustrates 

the above conversion.  

Then we apply maximum flow minimum cost algorithm on G2. Assume the solution 

path set S’ = {q1, q2, … qm}. Easy to see, the maximum aggregate bandwidth in G2 is (W-

WL). Since set S has unit cost, therefore the S’ use as much zero cost edges as possible. 

This means S’ has as little common links with S as possible. However, note that S’ itself 

may not be a disjoint set. Therefore, by combing S and S’, we can get a heuristic solution 

which can achieve maximum aggregate bandwidth W and are diverse. 

 

6) Constraints 

There are also some constraints on the path selection. The experimental results in 

PSMC show that the bandwidth distribution among the selected multiple paths has 

significant impact on the overall system performance [YCai05]. A large-capacity link and 

a small-capacity link may have worse aggregate bandwidth than two moderate links. The 

experimental results suggest that if the bandwidth of a path is smaller than 1/10 of the 

average of the bandwidth, then this path is treated as “bad” path and should be 

eliminated. 

Another constrain is the number of paths selected. The experimental results in PSMC 

show that the total number of paths should be smaller than a threshold (usually 7-10) 

[YCai05]. The bandwidth gain over 10 paths is limited, or even become negative.  
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7) Parallel download from multiple mirror sites 

With the recent development of internet, we are able to retrieve documents from 

multiple server sites, like the mirror sites, to increase the downloading speed, make better 

use of available network bandwidth and parallel processing speed of servers. Recent 

work by Rodriguez, Kirpal, and Biersack [RKB00] studied how to use the existing HTTP 

protocol for retrieving documents from mirror sites in parallel to reduce the download 

time and to improve the reliability.  The proposed approach utilizes the HTTP 1.1 byte 

range header to retrieve specific data in a mirror server site, which requires no changes on 

existing server and client settings. 

The algorithms we study for proxy server selection problem can be applied to the 

parallel download from multiple mirror sites problem. 

 

Heuristic Path Selection Algorithms 

With the objective functions and constraints, some path selection problems in a 

multipath system are NP-Complete. Heuristic algorithm is a feasible solution. In this 

chapter we propose to use genetic algorithm and a greedy algorithm to solve the 

problems. 

The three example objective functions are: 

a) Maximize  and maximize  ∑
∈S

BW
ip

)
i

p( ∑
∈S

jiDisjo
ji,p

),(int

b) Maximize  , here α is a given parameter. ∑
∈

+
S

jiDisjoBW
ji,p

)),int()
i

p(*(α

c) Maximize , and minimize ∑
∈S

BW
ip

)
i

p( )}(|max{ ii pLSp ∈ . 
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The two example constraints are: 

a) , here T is a parameter set to be 1/10. ∑
∈

>
S

SSizeofBWTBW
ip

)(/)
i

p(*)
i

p(

b) , here W is a parameter set to be 10. WSSizeof <)(

 

1) Genetic Algorithm 

We proposed to use genetic algorithm to solve the NP-complete problem in path 

selection. The reasons why to choose genetic algorithm are as follows. 

a) It provides more flexibility and extensibility on this problem. If the objective 

functions and constraints are later changed, we can easily modify the fitness function in 

genetic algorithm to accommodate such changes. Other heuristic algorithms may require 

more significant modification under such circumstances. 

b) It provides better scalability. The execution time of genetic algorithm scales well 

with regard to the network size. 

c) It provides more controls for the end users. It can easily produce multiple outputs 

and give end users the opportunity for further selection. 

The disadvantages of genetic algorithm are as follows. 

a) It is a heuristic algorithm and can not always give the optimal answer. 

b) The execution time might be long for a small scale network. 

We implement a fix-length genetic algorithm in which the length of chromosomes is 

fixed, and a variable-length genetic algorithm in which the length of chromosomes can 

change.  

The genetic algorithm works as below. 
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1) Assign sequential server number, node number and path number to denote each 

proxy server, node and path. Assign the initial bandwidth to each path. 

2) Initialize the first generation of chromosomes by filling server number in 

chromosome. For better performance, we put the last known best results into the 

first generation. 

3) Crossover and mutation at certain probability. Make sure no duplicated server in 

chromosome, and the length of chromosome is less than the given upper limit. 

Several different crossover and mutation methods have been combined together for 

better performance [JKoz92]. 

4) Calculate fitness function. For a given chromosome, use the objective function as 

fitness function, and check constraints.  

5) Run certain generations, and output the stabilized result. 

 

 

2) Greedy Algorithm 

For the maximum bandwidth minimum jointness problem, we also proposed a 

heuristic algorithm based on Section 5.3-5 to solve the path selection problem as follows.     

 

1) Initialize the data set. 

2) First use lemma 5.1 to find the maximum aggregate bandwidth, assuming is W. 

Then use lemma 5.2, 5.3 to find the maximum number of link disjoint paths L, 

assuming the aggregate bandwidth is WL. We have W > WL. Assume the solution 

path set S = {p1, p2, … pk}. 
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3) Convert the original graph G to G2 by assigning unit cost on set S and deducting set 

S from G, as illustrated in Figure 5.6.  

4) Apply maximum flow minimum cost algorithm on G2. Assume the solution path set 

S’ = {q1, q2, … qm}. 

5) By combing S and S’, we can get a heuristic solution which can achieve maximum 

aggregate bandwidth W and are diverse. 

 

This is a greedy algorithm. As we can see from the algorithm, the execution time will 

be polynomial. Every time when we change the objective functions, we need to design 

new greedy algorithm. 

 

Results Analysis 

We tested the proposed algorithms for max-bandwidth min-jointness problem on 

simulated network topologies as well as a real-world network topology.  

GT-ITM [GITM], which is one of the most commonly used internet topology models, 

is used to generate network topologies of various sizes for evaluating the performance of 

the proposed algorithms. We randomly pick 10% nodes as proxy servers, and two nodes 

as end host nodes.  
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Figure 5.7: algorithm execution time 
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Figure 5.8: algorithm running results 

 

Figure 5.7 shows the algorithm execution time vs. the simulated network size. The x 

axis notation 20(10) means there are 20 nodes plus 10 proxy server nodes. For genetic 

algorithm, it usually output stable results after 100 generations. It is observed that the 

execution time of both algorithms increases when the size of network increases. The 

greedy algorithm has lower execution time, but as we can see from Figure 5.7, the 

running result is not satisfactory. 
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Figure 5.8 shows the distribution of the algorithm running results. The notation on the 

chart “100 nodes, 10 servers” means there are 100 nodes in the network plus 10 proxy 

server nodes. We use  as the performance metrics so that 

we can compare the running results fairly. The parameter α is used to normalize the 

BW(p). Assuming the maximum aggregate bandwidth is W, then α = 1/W. The disjoint 

(i, j) is already a normalize value in the range of (0 - 1). For the given network topology, 

we run each algorithm 25 times. We set the best running result as 100%, and compare 

other running results against it. For greedy algorithm, we change the number notation in 

graph G for each run so it can yield different running results. 

∑
∈

+
S

jiDisjoBW
ji,p

)),int()
i

p(*(α

We can observe from the chart that the genetic algorithm can yield satisfactory result 

in the range of (80-100) %, which are close to the optimal result (100) %. There is no 

significant difference between fix-length genetic algorithm and variable-length algorithm. 

It is also observed that the greedy algorithm can not yield good result (60-80) %. This is 

because the greedy algorithm tends to yield results with bad disjoint.  

Figure 5.9 shows the real network topology from a node at University of Colorado at 

Colorado Springs (UCCS) to the selected Redhat mirror servers. This topology can be 

viewed as half of a PSMC network, with Redhat mirror sites selected as proxy server. We 

use the topology and perform some tests on our algorithm. Table 5.1 shows the running 

result. It is observed that the execution times of all algorithms are in acceptable range. 

Both algorithm yield the optimal result because the simplicity of the given network 

topology. 

Table 5.1: running results on a real-world topology 
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Algorithm Execution time (s) Running result / 

Optimal result 
Genetic algorithm – fix length 7.1 100% 

Genetic algorithm – variable length 7.2 100% 

Greedy algorithm 3.1 100% 

 

Conclusion 

Multipath connection is a topic gaining interest. Path selection is a critical decision in 

a multipath connection network. In this chapter, we present genetic algorithm to solve the 

path selection problem in a multipath connection environment. Genetic algorithm has 

better flexibility and extensibility when the context of problem changes. From the 

performance result, it is observed that genetic algorithm can produce satisfactory results 

within reasonable execution time. 
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Figure 5.9: network topology from a node at UCCS 

to the selected Redhat mirror servers [Chow00] 
Figure 5.9: network topology from a node at UCCS 

to the selected Redhat mirror servers [Chow00] 
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CHAPTER VI 

PROPORTIONAL DIFFERENTIATION PROVISIONING 

 

With the abundant bandwidth provided by PSMC, the end server capacity may become 

the performance bottleneck. There is an increasing demand for provisioning of different 

levels of quality of services (QoS) on the end server. By combining multipath on network 

with service differentiation on the end server, we can provide a comprehensive solution 

for various applications to improve the performance, security and reliability of the overall 

system. 

In this chapter, we present several processing rate allocation schemes based on 

queueing theory and feedback control theory for proportional service differentiation. We 

implement the process allocation approaches on an Apache Web server to achieve the 

processing rates allocated to the request classes.  

 

Introduction  

Due to the open and dynamics nature of Internet applications, the last decade has 

witnessed an increasing demand for provisioning of different levels of quality of service 

(QoS) to meet changing system configuration and resource availability and to satisfy 

different client requirements. This differentiated QoS provisioning problem was first 

formulated by the Internet Engineering Task Force in the network core. Differentiated 
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Services (DiffServ) [SBDB98] is a major architecture, where the network traffic is 

divided into a number of classes. It aims to define configurable types of packet 

forwarding in network core routers, which can provide per-hop differentiated services to 

per-class aggregates of network traffic. The proportional differentiation model [CDDS99] 

states that certain class QoS metrics should be proportional to their pre-specified 

differentiation weights, independent of the class loads. Due to its inherent differentiation 

predictability and proportionality fairness, the model has been accepted as an important 

DiffServ model and been applied in the proportional queueing-delay differentiation 

(PDD) in packet scheduling [CDDS99, CDDS02, MLJL01, BYPM02, JWCX04] and 

proportional loss differentiation in packet dropping [YHRG04].  

There are recent efforts on differentiation provisioning on end servers [TAKS02, 

JAMD98, SCCE00, XCPM02, HZHT01]. On the server side, response time is a 

fundamental performance metric. Existing response time differentiation strategies are 

mostly based on priority scheduling in combination with admission control and content 

adaptation [TAKS02, JAMD98, SCCE00]. The work in [XCPM02] adopted priority 

scheduling strategies, strict or adaptive, to achieve response time differentiation on 

Internet servers. The results showed that the differentiation can be achieved with requests 

of higher priority classes receiving lower response time than those of lower priority 

classes. However, this kind of strategies cannot quantitatively control quality spacings, 

say proportionally, among the classes. Time-dependent priority scheduling algorithms 

developed for PDD provisioning in packet networks can be tailored for PDD provisioning 

on Web servers [SLJL04]. However, they are not applicable for proportional response 

time differentiation because the response time is not only dependent on a job’s queueing 
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delay but also on its service time, which varies significantly depending on the requested 

services. Providing proportional response time differentiation on Web servers is not only 

important, but also challenging.  

 

Processing Rate Allocation 

  The proportional responsiveness differentiation model aims to control the ratios of the 

average responsive time of classes based on their normalized differentiation parameters. 

Let Ti denote the average response time of requests of class i. Specifically, the model 

requires that the ratio of average responsive time between class i and j is fixed to the ratio 

of the corresponding differentiation parameters 

Nji
T
T

j

i

j

i ≤≤= ,1
δ
δ

         (6.1) 

The differentiation predictability property requires that higher classes receive better 

service, i.e., lower responsive time. Without loss of generality, we assume that class 1 is 

the “highest class” and set δ0 <δ1 <δ2 < . . . <δN. 

We adopt a M/M/1 FCFS queue for modeling the traffic. Recent Internet workload 

measurements indicate that for some Web applications a heavy tailed distribution may be 

more accurate for service time distributions. However, we note that the focus of this 

Section is on adaptive process allocation for achieving different processing rates in 

support of responsiveness differentiation. The processing rate allocation scheme derived 

by an M/M/1 queueing model can give the key insights about the differentiation problem 

and the feasibility of the process allocation strategy. 

We partition the request processing rate of a Web server into N virtual servers. Each 
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virtual server handles requests of one class in a FCFS manner. Let µi denote the 

normalized request processing rate of the virtual server i. We have 

1
1

=∑
=

N

i
iµ             (6.2) 

Assume requests of class i in Poisson process arrive at virtual server i in a rate λi. It 

follows that the traffic intensity on the server ρi = λi / µi. According to the foundations of 

queueing theory, when ρi < 1, we have the expected response time of requests in class i as 

      NiT
iiii

i
i ≤≤

−
=

−
= 11

)1( λµρµ
ρ

     (6.3) 

For feasible processing rate allocation, we must ensure that the system utilization 

. That is, the total processing requirement of the N classes of traffic is less 

than the Web server’s processing capacity. Otherwise, a request’s response time can be 

infinite and responsiveness differentiation would be infeasible. Admission control 

mechanisms can be applied to drop requests from lower classes so that the constraint 

holds. 
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From (6.5), we have the following three basic properties regarding the predictability and 

controllability of the proportional responsiveness differentiation given by the processing 
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rate allocation strategy:  

1. Response time of a request class increases with its request arrival rate. 

2. With the increase of the differentiation parameter of a request class, its response time 

increases but all other request classes have lower response times. 

3. Increasing the workload (request arrival rate) of a higher request class causes a larger 

increase in response time of a request class than increasing the workload of a lower 

request class. 

 

Process Allocation on End Server 

A Fixed Process Allocation Strategy  

On a process-per-request Web server such as Apache, a process is treated as the 

scheduling entity for an independent activity. It is also the entity for the allocation of 

resources, such as CPU cycles and memory space. Process abstraction serves both as a 

protection domain and as a resource principal. Thus, it is reasonable to assume that the 

processing rate of a virtual server is proportional to the number of active processes 

allocated to its process pools.  

On an Apache Web server, we can impose an upper bound on the number of processes 

listening to a port. This maximum number is usually set to be 32 (or 64). To achieve the 

processing rate ratios between classes, a straightforward solution is to partition 32 

processes into multiple process pools listening to different ports. Each pool works as a 

virtual server handling requests of a class in FCFS manner. Thus, we expect to achieve 

the processing rates for different classes. We refer to this solution as fixed process 

allocation strategy since the number of total processes allocated to the pools is fixed.  
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The problem with the fixed process allocation strategy is that not all allocated 

processes are always active due to the workload dynamics. For example, we consider a 

two-class response time differentiation scenario. Given the arrival rates, suppose the 

calculated processing rate ratio of class 1 to class 2 (µ1 : µ2) is 3:1. According to the 

fixed process allocation strategy, 32 processes are partitioned into 24 and 8 and allocated 

to the process pool of classes 1 and 2, respectively. However, due to the workload 

dynamics of two classes, it is likely that only 18 of 24 processes of class 1 are active 

while all 8 processes of class 2 are active. Thus, the real processing rate ratio of class 1 to 

class 2 is 2:1, instead of 3:1. The fixed process allocation strategy may not be able to 

achieve proportional response time differentiation. We are going to show its results later. 

 

A Queueing - theoretical Process Allocation  

We propose a queueing-theoretical adaptive process allocation strategy. Its objective is 

to dynamically and adaptively change the number of processes allocated to process pools 

for handling different classes while ensuring the ratio of process allocations specified by 

the queueing-theoretical processing rate allocation scheme. The rationale is that, to 

achieve the processing rate ratios among classes, the allocation strategy has to assure that 

most of the processes allocated to the process pools listening to corresponding ports are 

active. To utilize the advantage of the Apache pre-forking mechanism, it allows a small 

number of processes on a port to be idle. The number is identified by a threshold (H). If 

more than H processes on a port are idle, the approach is to decrease the number of 

processes allocated to all process pools proportionally.  

Algorithm 6.1 gives the details of the approach.  
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Algorithm 6.1   

A queueing-theoretical adaptive process allocation approach.  

1: for each process allocation period do  

2: get the number of active processes (pi) currently allocated to port i from Apache 

scoreboard; let P = ;  ∑=

N

i ip
1

// Apache server automatically forks new processes according to the workload 

condition 

3: get the normalized process allocations µ1, µ2 … µN according to (6.4);  

4: search for a process multiplier m, so that ∑ ∑= =
+<≤

N

i

N

i ii mPm
1 1

)1( µµ  

//mµi is the number of processes that the allocation strategy wants to allocate to port i.  

// pi is the number of active processes on port i, which is adjusted in the following.  

5: for each port number i do  

6:   while pi - mµi > H // too many processes forked on port i 

7:     prohibit a process on this port from listening new requests;  

// this process will soon become idle and be killed by Apache itself.  

8:   end for  

9: end for  

  

In each process allocation period, a multiplier m is used to keep the ratio of the 

number of active processes of process pools to the normalized value specified by the 

allocation scheme (6.4). At line 3, the normalized process allocation (µi) is the 
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normalized integer value of the number of processes allocated to the process pool i. For 

example, in a two-class scenario, if µ1/µ2 = 3/1, we have µ1 =3 and µ2 =1. At line 4, a 

desirable value of m is searched. It is incremented if the total number of active processes 

of all process pools (P) is greater than the target total number ( ∑=

N

i im
1
µ ). This scenario 

is possible due to the pre-forking mechanism of Apache Web servers. For instance, 

although the allocation strategy initially assigns 3 and 1 processes for listening port 1 

(process pool for handling class 1) and port 2 (process pool for handling class 2), 

respectively, the Apache server may actually have forked 10 and 4 processes for listening 

the two ports respectively. Line 7 adjusts the allocations to ensure the ratio of process 

allocations among the classes. It lets Apache itself to prohibit a process from listening 

new requests.  

 

An Integrated Process Allocation Approach with Feedback Control  

To provide fine-grained proportional response time differentiation, we propose to 

design a feedback controller and integrate it with the queueing-theoretical adaptive 

process allocation approach. Proportional integral derivative (PID) control is one of the 

most classical control design techniques widely used in industrial control systems 

[GFJP02]. In our system, PID controller is used to adjust the number of processes 

allocated to a process pool according to the difference between the target average 

response time and the experienced average response time of a request class. Specifically, 

the operation of the PID controller is described as follows:  

∑ −

=
∆+++=+

1

0
)()()()0()1( k

j iDiIiPii keKjeKkeKpkp      (6.7) 

 



 
129 

 

p

the 

in 

resp

resp

acc

hen

hig

 

P

I

W

eva

diff

 

 

 

 

 

      Figure 6.1: The implementation structure 
i(0) denotes the initial number of processes allocated to process pool i according to 

queueing-theoretical process allocation approach. The other three terms added to pi(0) 

the equation above denote proportional, integral, and derivative components, 

ectively. Setting a larger proportional feedback gain (KP) typically leads to faster 

onse at the cost of increasing system instability. The derivative control takes into 

ount the change of errors (∆ei(k)) in adjusting the process allocation of a class and 

ce responds fast to errors. Increasing the derivative gain (KD) typically results in 

her system stability.  

erformance Evaluation  

mplementation Issues  

e implemented the process allocation strategies on an Apache Web server to 

luate the impact of the feedback control on the proportional response time 

erentiation. Figure 6.1 depicts the architecture of the integrated process allocation 
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implementation. Two HP PCs (PIII 1 GHz, 516M RAM) installed with Redhat 9 were 

used as a router and a Web server, respectively. Four HP PCs (PIII 233 MHz, 96MB 

RAM) installed with Redhat 9 and Httperf 0.8 [DMTJ] were used to generate Http 

requests of Poisson distribution. The router conducted traffic classifications. We installed 

Apache 1.3.29 on the Web server. We configured Apache server at application level to 

make one server listen to different ports. The number of ports was determined by the 

number of traffic classes to be differentiated. The requests of class 1 were routed to port 

80 which was handled by the process pool 1, requests of class 2 were routed to port 8000 

handled by the process pool 2, and requests of class 3 were routed to port 8080 handled 

by the process pool 3. 

The process allocation module in the Web server calculated the processing rate of each 

class according to its predicted load condition. The load was predicted for every sampling 

period, which was the processing time of one thousand average-size requests. We 

adopted a moving window with exponential averaging for the load prediction. The 

predicted load was the average of past five sampling periods. We implemented the 

process allocation approaches by modifying child main() function in http main.c file of 

the Apache server. The process forking and killing mechanisms were not modified and 

still handled by Apache. This application-level implementation is flexible and portable. 

 

Performance Evaluation  

a) Fixed process allocation 

Figure 6.2(a) shows the achieved average response time of class 1 and 2 under various 

system load conditions. The arrival rate ratio of two classes is 3:1. The differentiation 
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weight ratio is set to be 1:3. The fixed process allocation strategy dynamically partitions 

all 32 processes into the two process pools for class 1 and class 2 according to their 

changing arrival rates. It can be seen that requests of class 1 always receive lower 

response time than those of class 2. This demonstrates that the responsive time 

differentiation is achieved by the processing rate allocation scheme. 

 

 
Figure 6.2(a-b): Achieved average response time and  

response time ratio for fix process allocation 
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Figure 6.2(b) shows the achieved response time ratio of class 2 to class 1. The achieved 

ratio is very different from target ratio. This can be explained by the fact that the variance 

of interarrival time distributions and the variance of service time distributions affect the 

performance of process allocation and scheduling significantly. 

The fixed process allocation strategy cannot achieve proportional response time 

 

 
Figure 6.3(a-b): Achieved average response time and response time ratio 

for adaptive queueing-theoretical process allocation (δ1: δ2=1:3) 
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differentiation because the processing rate of classes cannot be achieved accurately due to 

the workload dynamics. 

 

b) Adaptive queueing-theoretical Process Allocation 

Figure 6.3(a) depicts the achieved response time of classes 1 and 2 due to the adaptive 

 

 
Figure 6.4(a-b): Achieved average response time and response time ratio 

for adaptive queueing-theoretical process allocation (δ1: δ2=1:2) 
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process allocation strategy under various system load conditions. The arrival rate ratio of 

two classes is 3:1. The differentiation weight ratio of two classes is 1:3. It shows that the 

adaptive allocation strategy can achieve response time differentiation. That is, requests of 

class 1 always receive lower response time than requests of class 2. 

Figure 6.3(b) further depicts the achieved response time ratio of class 2 to class 1. 

When the system load is between 40% to 80%, we can see that the proportional response 

time differentiation can be achieved. The difference between the achieved response time 

ratio and the expected ratio is trivial.  

As we know, process abstraction serves both as a protection domain and as a resource 

principal in current general purpose operating systems. However, because an application 

has no control over the consumption of resources that the kernel consumes on behalf of 

the application, resource principals do not always coincide with processes. We believe 

that this problem is one of the primary reasons for the difference between the achieved 

ratio and the expected ratio. There is a demand for new kernel-level resource 

management mechanisms, such as resource container, a new operating system abstraction 

introduced recently. Figure 6.3(b) also shows that when the arrival rate is below 30%, the 

expected response time ratio is not achieved. This is explained by the fact that when the 

workload is light, there is almost no queueing delay observed in all traffic queues. Note 

that the request scheduling policy is work conserving. Therefore, DiffServ is not feasible 

under certain light load conditions, as it was also observed in experiments for PDD 

provisioning in packet networks. When the system load is higher than 90%, we also find 

out that the expected ratio is not achieved. This can be explained that as the system load 

is close to its capacity, the impact of the variance of incoming traffic on queueing delay 
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dominates and thus queueing delay in all traffic queues increases significantly. This 

affects the controllability of the process allocation strategy significantly. 

Figure 6.4(a) depicts the achieved response time of classes 1 and 2 due to the adaptive 

process allocation strategy under various system load conditions. We change the 

differentiation weight ratio of two classes from 1:3 to 1:2. The arrival rate ratio of two 

 
 

 

 

 
Figure 6.5(a-b): Achieved average response time ratio and 95%  
confidence intervals for integrated process allocation (δ1: δ2=1:2)
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classes is kept to be 3:1. As shown by Figure 6.4(b), the expected response time ratio can 

be achieved when the system load is between 30% and 80%. Thus, the proportional 

response time differentiation is achieved. 

 

c) Integrated Process Allocation 

The objective of the integrated approach is to reduce the difference between the target 

response time ratio and the achieved response time ratio of two classes due to the 

queueing-theoretical approach. Meanwhile, it also aims to reduce the variance of the 

ratios due to the queueing-theoretical approach.  

Figure 6.5(a) depicts the achieved response time ratio due to the integrated approach and 

the queueing-theoretical approach, respectively.. The arrival rate ratio of two classes  is 

3:1 and the differentiation weight ratio is set to be 1:2. In the integrated approach, two 

different sets of control parameter were adopted. As we observe from the figure, the 

performance of PID controller is quite sensitive to parameter settings. Actually, it is a 

non-trivial task to tune the three parameters to get good performance of proportional 

differentiation. Like others in [BKKL03], we assign the same value to the three PID 

parameters. Integrated (α, β) gives the results due to the feedback parameter settings: the 

PID parameters are set as KP1 = KI1 = KD1 = α for class 1 and KP2 = KI2 = KD2 =β for 

class 2. Note that a set of good parameters for one class may not be effective for the 

other, and vice versa. 

From Figure 6.5(a), we can observe that the integrated approach with both feedback 

parameter settings significantly outperforms the queueing-theoretical approach with 

respect to the response time differentiation proportionality. When the arrival rate is below 

 



 
137 

 
 

 

 
Figure 6.6(a-b): Achieved average response time ratio and 95%  
confidence intervals for integrated process allocation (δ1: δ2=1:3) 

 

30%, the expected response time proportionality cannot be achieved. This is explained by 

the fact that when the workload is light, there is almost no queueing delay observed in all 

traffic queues. Because the scheduling is work conserving and non-preemptive, service 

differentiation is not feasible under certain light load conditions [CDDS02]. In reality, 
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differentiation may not be necessary during light load conditions since the resources are 

sufficient. Therefore, in the following diagrams, we will not present the results when the 

workload is less than 30%. When the system load is close to system capacity, say at 90%, 

the queueing-theoretical approach generates very poor proportionality. This can be 

explained by the fact that as the system load is close to its capacity, the impact of the 

variance of interarrival times on queueing delay dominates and thus queueing delay in all 

traffic queues increase significantly. This affects the controllability of the queueing-

theoretical process allocation approach. On the other hand, the integrated approach with 

feedback control is able to maintain desirable differentiation proportionality.  

Figure 6.5(b) depicts the achieved 95% confidence intervals due to the approaches, 

respectively. It shows that the integrated approach not only improves the differentiation 

proportionality robustness in terms of the achieved mean response time ratios, but also 

significantly outperforms the queueing-theoretical approach with much shorter 

confidence intervals.  

Figure 6.6(a) depicts the achieved response time ratio due to the two approaches, 

respectively. The arrival rate ratio of two classes is 3:1 and the differentiation weight 

ratio is now changed to 1:3. It can be observed that the integrated approach outperforms 

the queueing-theoretical approach with respect to the achieved response time ratios. In 

particular, the integrated approach can maintain desirable differentiation proportionality 

during heavy load conditions. Figure 6.6(b) further depicts the achieved 95% confidence 

intervals due to the approaches. It is obvious that the integrated approach generates much 

short confidence intervals than the queueing-theoretical approach.  
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Figure 6.7: A microscopic view of response time 

 

 
Figure 6.8:  The variance of response time ratio 

 

Figure 6.7 shows a microscopic view of the response time of individual requests of the 

two classes due to the two approaches, when the system workload is 40%, 60%, and 

80%, respectively. The target response time ratio of class A to class B is 3:1. The 

experiments were run for 100 sampling periods for warming up and then the data was 

collected for 30 sampling periods at each of three workload conditions. Obviously, we 
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can observe that the integrated approach achieves more consistent results during different 

sampling periods at various workload conditions.  

Figure 6.8 further quantitatively depicts the variance of the proportionality due to the 

two approaches. At each of the three workload conditions (40%, 60%, 80%), we 

conducted experiments by using a two-class workload with the target response time ratio 

2:1 and 3:1, respectively. The upper line is the 95th percentile; the bar is the mean; and 

the lower line is the 5th percentile. We can observe that the integrated approach can 

significantly reduce the variance. For example, when the workload is 80% and the target 

proportionality is 2, the difference between the 95th and the 5th percentile is 1.7 and 4.2 

due to the integrated approach and the queueing-theoretical approach, respectively. 

Furthermore, the mean is 2.2 and 2.7, respectively. At 80% workload condition, when the 

target ratio is 3, the difference between 5th and 95th is 3.1 and 9.3, and the mean is 3 and 

3.3, due to the integrated approach and the queueing-theoretical approach, respectively.  

We conducted a wide ranger of sensitivity analyses. We varied the number of classes, 

the arrival rate ratio of the classes, and the differentiation weight ratio of the classes. 

While we do not have space to present all of the results, it worths note that we did not 

reach any significantly different conclusion regarding to the differentiation 

proportionality achieved by the integrated approach.  

 

Conclusion 

Providing proportional response time to different client classes is an important and 

challenging issue. It is important because proportional model is a popular relative 

DiffServ model and response time is a fundamental QoS metric on Web servers. It is 
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challenging because the conventional application-level process allocation approaches 

lack fine-grained control of resource allocation and are insensitive to the bursty Internet 

traffic.   
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

 

Conclusion 

In this dissertation, we study the proxy server based multipath connection (PSMC). 

First, a proxy server based overlay network using a set of intermediate connection relay 

proxy servers is designed and implemented. This overlay network is used in a Secure 

Collective Defense system (SCOLD) to defend against DDoS attacks. The BIND9 DNS 

server and its DNS update utilities are enhanced to support new DNS entries with indirect 

routing information. The indirect route is implemented by utilizing IP Tunnel. Protocol 

software for supporting the establishment of indirect routes based on the new DNS 

entries is developed for Linux systems. The experimental results validate the capability of 

PSMC in enhancing network security and reliability. 

Second, a proxy server based multipath protocol is designed and implemented by 

enhancing the existing TCP/IP protocol to effectively distribute, transport and reassemble 

network packets over the multiple indirect paths between two end hosts. We modify the 

Linux kernel to support the enhanced TCP/IP protocols. On the sender side, the IP layer 

is enhanced to stripe packets across multiple paths. The TCP congestion window control 

is also revised for higher throughput. On the receiver side, the TCP layer is enhanced 

with a double buffer to solve the TCP packet persistent reordering problem over multiple 

 



 
143 

 
paths. A communication channel is set up between sender and receiver for exchanging 

network traffic information. The PSMC support both TCP and UDP, which enable PSMC 

to support multimedia applications in today’s Internet. The experimental results show that 

PSMC can effectively utilize the aggregate bandwidth from multiple routes and 

significantly improve the network performance. 

Third, proxy server selection algorithms are developed to select a subset of proxy 

servers from a large set of available proxy servers to meet various object functions and 

constraints. When there are hundreds of proxy servers available, the disjoint paths are 

more desirable because the route correlation can be reduced and network reliability and 

throughput can be improved. The experimental results show that different sever selection 

may result in significantly different network performance, and the heuristic (genetic) 

algorithms we proposed can yield satisfactory results for the NP-Complete problems. 

Forth, resource allocation schemes on the end server and server cluster are designed 

and implemented to provide proportional differentiated services. These schemes are 

based on the queueing theory and feedback control theory. A process allocation approach 

on Apache Web server is presented for proportional responsiveness differentiation. A 

two-tier resource allocation approach for proportional slowdown differentiation on 

cluster-based network is also presented.  

Combining the multipath on network with service differentiation on the end server, a 

comprehensive solution for various QoS and security related applications can be 

provided.   

The research result and insight gained from PSMC could have broader impact on the 

protocols and security of today’s Internet. 
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Future Work 

For the proxy server based overlay network (SCOLD), there are a set of challenging 

problems. 

1) How should the Internet community form trust relationships and coordinate with each 

other?  

2) How to detect and deal with the compromised proxy server nodes. 

3) How to effectively manage and maintain a trusted proxy server list on clients? 

4) How to improve the security on SCOLD itself and prevent future attacks and misuse? 

 

For the proxy server based multipath connection (PSMC), the future works are listed 

below. 

1) With more network resources available, how to control the aggressive or malicious 

users?  

2) How to fairly distribute the network resources among the Internet participants? 

3) Study more efficient double buffer management scheme. 

4) Derive a TCP throughput formula for multipath connection. 

5) Derive a TCP latency theoretical result for multipath connection with double buffer. 

6) How to design better proxy server / alternate path selection algorithm 

7) Client clustering algorithms with multiple proxy servers 

8) Combine multipath and QoS to get more results 

 

For the proportional differentiation provisioning on end server, the future works are listed 

below. 
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1) Design and utilize better resources management units, like resource container. 

2) Design better processing rate allocation schemes on Web server, FTP, and cluster 

network. 
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APPENDIX A  

SCOLD USER MANUAL 

 

The SCOLD network is easily configured to illustrate an application layer overlay network and to 

guide against various types of DDoS attacks. This user manual explains the steps required to configure and 

start the SCOLD network. Sample demonstration scripts and files are also provided as a step-by-step guide 

on how SCOLD works. The set up of the SCOLD test-bed includes three main components: 

• The sender network 

• The receiver network 

• The proxy servers 

 

A1 Overview 

We have set up several different SCOLD testbeds for different research purposes. Figure A1 is one of 

the SCOLD testbeds. All machines in the testbed are VMWare virtual machines based. The virtual machine 

files are under d:/vmware/ycai directory on ardor.uccs.edu machine. To start a VMWare virtual machine, 

just open the virtual machine file in the VMWare GUI interface. For more information on VMWare, please 

refer to http://www.vmware.com/support/pubs/ws_pubs.html.  

Figure A2 is another SCOLD testbeds. All machines are VMWare virtual machines and resides under 

d:/vmware/ycai2 directory on ardor.uccs.edu machine. Figure A3 is the third SCOLD testbed on real 

machines. The testbed is shared with IDIP project. 

 

A2 Indirect Routing using IP Tunnel 
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1) Install IP tunnel package. 

By default, Redhat Linux (version 9 or later) has IP tunnel package installed. You can check it by running:  

"ip tunnel add tunl1 mode ipip remote 192.168.1.1" 

If you can successfully add a new IP tunnel (see Section A2 - 3 “Verify the configuration and IP tunnel”), 

then you are OK. Otherwise, you need to recompile Linux kernel to enable IP tunnel. The following Linux 

kernel compile options show that IP tunneling is to be built into the kernel as opposed to be compiled as a 

dynamic kernel module. 

Linux Kernel Compile Options: 

 Networking options  ---> 
     [*] TCP/IP networking 
     [*] IP: forwarding/gateway 
     .... 
     <*> IP: tunneling 
 

 

 

Figure A1: SCOLD testbed 1 
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Figure A2: SCOLD testbed 2 

 

 

Figure A3: SCOLD testbed 3 
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2) Set up IP tunnel  

Below are scripts on each type of machine in SCOLD to set up IP tunnel in testbed 1. 

a) Script on the client to setup tunnel. The IP address section in the script need to be customized as needed. 

For more information on IP command, please refer to http://linux-ip.net/gl/ip-cref/. Note in the script, the 

client has no information about the gateway IP. Client only knows the target server IP and designated proxy 

server IP. 

#!/bin/sh 
 
#define var 
client_ip=128.198.61.51 
client_gw=128.198.61.1 
proxy_ip=128.198.60.42 
target_ip=128.198.60.201 
tunl=tunl1 
 
#config tunnel between client and proxy 
ip tunnel add $tunl mode ipip remote $proxy_ip dev eth0  
ifconfig $tunl $client_ip 
ip link set $tunl up 
ip route add $proxy_ip via $client_gw dev $tunl onlink 
 
#route traffic between client and target through tunnel 
ip route add $target_ip via $client_gw dev $tunl onlink 
 

b) Script on the proxy servers. Note that the proxy servers have information about the client IP, gateway IP 

and target IP. 

#!/bin/sh 
 
iptables -F 
iptables -P INPUT ACCEPT 
iptables -P FORWARD ACCEPT 
#enable ip forwarding 
echo "1" > /proc/sys/net/ipv4/ip_forward 
 
#define var 
client_ip=128.198.61.51 
proxy_ip=128.198.60.42 
proxy_gw=128.198.60.1 
gw_ip=128.198.60.200 
target_ip=128.198.60.201 
 
#config tunnel between proxy and client 
tunl=tunl1 
ip tunnel add $tunl mode ipip remote $client_ip dev eth0  
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ifconfig $tunl $proxy_ip 
ip link set $tunl up 
ip route add $client_ip via $proxy_gw dev $tunl onlink 
 
#config tunnel between proxy and gateway 
tunl=tunl2 
ip tunnel add $tunl mode ipip remote $gw_ip dev eth0  
ifconfig $tunl $proxy_ip 
ip link set $tunl up 
ip route add $gw_ip via $proxy_gw dev $tunl onlink 
 
#route between proxy and target through tunnel 
ip route add $target_ip via $proxy_gw dev $tunl onlink 
 

c) Script on the gateway in target server network. Note that the client IP, target IP and proxy IP are needed 

in the script. 

#!/bin/sh 
 
iptables -F 
iptables -P INPUT ACCEPT 
iptables -P FORWARD ACCEPT 
echo "1">/proc/sys/net/ipv4/ip_forward 
 
#define var 
client_ip=128.198.61.51 
proxy_ip=128.198.60.42 
gw_ip=128.198.60.200 
gw_gw=128.198.60.129 
tunl=tunl2 
 
#config tunnel between gateway and proxy 
ip tunnel add $tunl mode ipip remote $proxy_ip dev eth0  
ifconfig $tunl $gw_ip 
ip link set $tunl up 
ip route add $proxy_ip via $gw_gw dev $tunl onlink 
 
#route traffic between client and gateway through tunnel 
ip route add $client_ip via $gw_gw dev $tunl onlink 
 

d) Script on the target server. 

#!/bin/sh 
 
#define var 
client_ip=128.198.61.51 
gw_ip=128.198.60.200 
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#route between client and target through gateway 
ip route add $client_ip via $gw_ip dev eth0 onlink 
 

3) Verify the configuration and IP tunneling 

After configuring machines in the testbed with the above scripts, you should be able to see the ip tunnel 

devices using the following commands. 

[root@client root]# ifconfig 
eth0 Link encap:Ethernet HWaddr 00:0C:29:47:59:30 
inet addr:128.198.61.51 Bcast:128.198.61.63 Mask:255.255.255.192 
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 
RX packets:116492 errors:0 dropped:0 overruns:0 frame:0 
TX packets:543 errors:0 dropped:0 overruns:0 carrier:0 
collisions:0 txqueuelen:100 
RX bytes:8552726 (8.1 Mb) TX bytes:48894 (47.7 Kb) 
Interrupt:18 Base address:0x10a0 
 
tunl1 Link encap:IPIP Tunnel HWaddr 
inet addr:128.198.61.51 P-t-P:128.198.61.51 Mask:255.255.255.255 
UP POINTOPOINT RUNNING NOARP MTU:1480 Metric:1 
RX packets:0 errors:0 dropped:0 overruns:0 frame:0 
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 
collisions:0 txqueuelen:0 
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b) 
 
[root@client root]# ip link show  
1: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100 link/ether 
00:0c:29:47:59:30 brd ff:ff:ff:ff:ff:ff 
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop link/ipip 0.0.0.0 brd 0.0.0.0 
3: tunl1@eth0: <POINTOPOINT,NOARP,UP> mtu 1480 qdisc noqueue link/ipip 0.0.0.0 peer 
128.198.60.42 
 
[root@client root]# route -n 
Kernel IP routing table 
Destination Gateway Genmask Flags Metric Ref Use Iface 
128.198.60.42 128.198.61.1 255.255.255.255 UGH 0 0 0 tunl1 
128.198.61.0 0.0.0.0 255.255.255.192 U 0 0 0 eth0 
0.0.0.0 128.198.61.1 0.0.0.0 UG 0 0 0 eth0 
 

You should be able to ping the target server from the client machine, and vice verse, by passing ICMP 

messages through IP tunnels. Run "netstat -i" on target or client or proxy machine several times during the 

ping session, you will see IP packages passing through tunnel interfaces. 

[root@client root]# ping ****(target IP) 
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[root@proxy root]# netstat -i 
Kernel Interface table 
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 76651 0 0 0 863 0 0 0 BMRU 
tunl1 1480 0 0 0 0 0 0 0 0 0 OPRU 
 
[root@proxy root]# netstat -i 
Kernel Interface table 
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 76676 0 0 0 878 0 0 0 BMRU 
tunl1 1480 0 52 0 0 0 52 0 0 0 OPRU 
 
[root@proxy root]# netstat -i 
Kernel Interface table 
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 76676 0 0 0 878 0 0 0 BMRU 
tunl1 1480 0 104 0 0 0 104 0 0 0 OPRU 
 

For more information on IP tunnel, please refer to: http://cs.uccs.edu/~scold/iptunnel.htm 

 

A3 Set up SCOLD Daemon with SSL Support 

A SCOLD Daemon server process named "scoldd" is set up to run on client, proxy, gateway and target 

machine, listening to a designated port (5115 by default), waiting for messages from the SCOLD 

coordinator, and setting up IPIP tunnels automatically upon requests. The communication among the 

coordinator, client, proxy, gateway and target is mutually authenticated and SSL encrypted. 

Below is a brief summary on the compilation and usage of the SCOLD Daemon. 

Compilation 
----------- 
Download scold daemon source code from http://cs.uccs.edu/~scold/src/scoldd/, 
In scoldd directory, run 
make scoldd 
 
Running 
------- 
In scoldd directory, run 
./scoldd 
 
to stop running, use the following command 
kill -9 $(pidof scoldd) 
 
Testing 
------------ 
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For example, the coordinator wants to talk to client 128.198.61.51 on port 5111, issue the following 
commands 
 
openssl s_client -connect 128.198.61.51:5111 -showcerts -cert certificate/ctestssl/cert/clicert.pem -key 
certificate/ctestssl/private/private.key -CAfile certificate/ctestssl/ca/cacert.pem 
 
You can use the existing certificate in our source code when perform the above test. However, if they are 
expired, or you need to create your own certificate, please follow the following steps. 

 
Creating certificate 
--------------------- 
On client, proxy, gateway, target machine, 
go to certificate directory, 
run "test.sh", input information as required 
the testssl contain server certificate and private key 
the ctestssl contain client certificate and private key 
copy testssl to server testssl directory 
copy ctestssl to client ctestssl directory  
 
 
Verify IPIP tunnel 
-------------------- 
run "ifconfig" or "ip link show", should see IP tunnel configuration. 
run "netstat -i" several times, should see IP tunnel traffic. 
run "traceroute" before and after IP tunneling. After IP tunneling, you will not be able to see IP hops 
because they are replaced with * signs. 
run "wget http://128.198.60.201" for web access, "ssh -l root 128.198.60.201" for ssh  
"ifconfig tunl1 down" to shut down the tunnel 

The source code and related configuration script of SCOLD daemon is available under: 

http://cs.uccs.edu/~scold/src/scoldd/ 

 

A4 Resolve Library 

The resolve library on the client machine is enhanced to support indirect routing.  

In Redhat Linux, the resolve library is usually located in /usr/lib or /lib directory, and named as libresolv-

nnn.so (nnn is the version). The source code of resolve library can be obtained from glibc package. The 

glibc package can be obtained from:  

http://directory.fsf.org/GNU/glibc.html.  

We modify the res_query.c file under glibc/resolv directory (version 2.3.2). To our experiences, the version 

of resolve library is independent of the Redhat Linux version. We have successfully deployed the v.2.3.2 

glibc resolve library in several Redhat Linux versions (from 9 to Fedora core 2). 
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The resolve library is a shared library on Linux. The compilation of resolve library is very different from 

the ordinary c complication because there are many compilation parameters need to be specified. A mal-

compiled resolve library can be devastating because it can easily crash the whole Linux system. For more 

information on shared library, please refer to: 

http://www.tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html 

A simpler and safer solution for compiling the resolve library is to compile the whole glibc package. Please 

refer to glibc complication help on how to compile the glic package. The URL of glibc help page is at: 

http://www.gnu.org/software/libc/manual/html_mono/libc.html 

The compilation of glibc package usually takes 15 - 60 minutes depending on the machine setting. 

The compilation output of resolve library is in glibc/compile/resolv directory, and named as libresolv.so. 

This shared library file (.so) is what we want for the enhanced resolve library. 

Run “ls -la /lib/libresolv*” to list the existing resolve library. Below is an example. 

-rwxr-xr-x       1 root     root        73640 Nov  5  2003 /lib/libresolv-2.3.2.so 
lrwxrwxrwx    1 root     root           25 Jan 30 23:30 /lib/libresolv.so.2 -> libresolv-2.3.3.so 

 

Backup the existing /lib/libresolv-2.3.2.so file, and copy the new libresolv.so from glibc/compile/resolv to 

/lib to overwrite the existing file. Re-link /lib/libresolv.so.2 to new file if necessary. 

-rwxr-xr-x       1 root     root        64844 Nov  5  2003 /lib/libresolv-2.3.2.so 
-rwxr-xr-x       1 root     root        73640 Jul 25  2003 /lib/libresolv-2.3.3.so_backup 
lrwxrwxrwx    1 root     root           25 Jan 30 23:30 /lib/libresolv.so.2 -> libresolv-2.3.3.so 
 

 

Reboot the machine. 

Now you should get the new resolve library up and running. 

Run a simple command “ping www.yahoo.com”, the new resolve library will be called. 

Be very careful when working on the resolve library, you can easily crash the system. It is better to do the 

resolve library development on a virtual machine, then migrate the compiled library to the machine you 

want. 

If you feel regret and decide to go back to the original resolve library, just copy the original resolve library 

back to replace the enhanced one (assuming you can still boot up the Linux system).  

The source code of resolve library is available under:  
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 http://cs.uccs.edu/~scold/src/glibc/ 

 

A5 Enhanced DNS Bind9 

For more information on nsreroute and enhanced DNS, please refer to David Wilkson’s master thesis: 

http://cs.uccs.edu/~chow/pub/master/dbwilkin/doc/dwilkinson_thesis.doc    

The source code can be obtained at:  

http://cs.uccs.edu/~chow/pub/master/dbwilkin/src 

 

A6 A step by step demo 

Below is a step by step SCOLD demo. It is based on the tested shown in Figure A2. 

Testbed setup: 

boot up the virtual machines and login to each machine 

username: root 

password: ****(available upon request, contact me at caiyu_usa@yahoo.com or Dr. chow at 

chow@cs.uccs.edu) 

vmware file location:  

      ardor.uccs.edu:  

      d:/vmware/ycai2,  

      client, proxy, altgw, maingw, target 5 directories. 

make sure the network cards of vmware is correctly configured: use bridged virtual network connection for 

eth0, use host-only virtual network connection for the rest network interfaces. 

To save disk space,  

    run clientDNS on the same client machine, 

    run targetDNS, the coordinator on the same target machine, 

    run DDoS attackers on the same main gateway machine, 
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Demo steps: 

1) Open 5 vmware machines: client, proxy, altgw, maingw, target,  

2) Go to "/home/ycai/sslres" directory on all those machines 

3) Run script "sh init.sh" on all those machines to initialize the machines, including procedures like run the 

scold demo, set up direct route, set the routing table.  

4) Now to show the direct route: 

on the client machine, you can do the followings: 

   ping 192.168.4.2(target.csnet.uccs.edu) from 192.168.0.1(client.csnet.uccs.edu)  

   verify the direct route by "traceroute target.csnet.uccs.edu", 2 hops 

   run "sh http_demo.sh" to see the http download of a big file with speed average of 50k - 60k/s from the 

target sever. 

5) Now launch DDoS attack 

    run "sh ddos_attack.sh" on the target machine to launch the attack, 

    run "sh http_demo.sh" on the client machine to see the http download speed drop dramatically to 1k -

10k/s 

6) Now start the indirect route 

    (stop the "sh http_demo.sh" job on client machine in step 5)    

    run "sh indirec_route.sh" on the target machine to launch the indirect route,    

    run "sh http_demo.sh" on client machine to see the indirect route, you will see the initil setup delay. But 

after that, it runs fast (about 40k/s) 

    verify the indirect route by "traceroute target.csnet.uccs.edu" 

7) If needed, run "cleanipip.sh" to clean up the indirect route.  

Below are references on installation for enhanced secure dns (sdns) and resolve library. 

sdns installation: 

1) get sdns source file from gandalf.uccs.edu, get bind source from Internet 

2) get openssl file from gandalf: /usr/include/openssl 
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3) compile:  

"./configure -with-openssl" 

"make" 

"make depend" 

"make install" 

4) get zone file from gandalf:/var/named 

5) get bind conf file from gandalf: /etc/named.conf 

 

libresolve installation: 

1) source file in athena.uccs.edu:~ycai/glibc/resolv/res_query.c  

2) go to glibc/compile, and run make to compile 

3) go to glibc/compile/resolv and look for libresolv.so 

4) copy the libresolv.so to the client machine /lib directory, 

"ls -la /lib/libresolv*" 

"rm -f /lib/libresolv.so.2" 

"ln -s /lib/libresolv.so /lib/libresolv.so.2" 
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APPENDIX B 

TCP CONGESTION CONTROL AND LINUX KERNEL 

 

B1 TCP Congestion Control 

TCP is an end to end transport layer protocol which operates over the heterogeneous Internet. TCP has 

no prior knowledge of the network characteristics, thus it has to adjust its behavior according to the 

returned ack message and know the current state of the network. TCP has built-in support for congestion 

control, which ensures that TCP does not pump too many data packets than what the network can handle. 

TCP is a complex protocol; hence we only introduce aspects related to TCP congestion control in this 

appendix. 

Figure B1 shows the evolution of TCP versions. After the first Internet congestion collapse in 1986, 

Van Jacobson proposed the TCP congestion control mechanism. 

 

 

Figure B1: TCP version [SLow02] 
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In a TCP session, each byte has a sequence number, and ACKs are cumulative. 

Sliding window 

TCP supports windowing scheme — the process of sending data packets in sequence without waiting 

for an intervening acknowledgement. The sliding window in TCP serves several purposes. (1) It guarantees 

the reliable delivery of data. (2) It ensures that the data is delivered in order. (3) It enforces flow control 

between the sender and the receiver. See Figure B2 below for TCP sliding window.  

awnd = MaxRcvBuffer - (LastByteRcvd - NextByteRead) 

flightsize = min(awnd, cwnd) 

 

 

Figure B2: Sliding window in TCP [SSin] 

 

TCP Congestion Control 

TCP flow control is based on the premise that an out-of-order packet is an indication of packet loss. 

Note that this may not be true in a multipath environment since the out-of-order packets may be in 

transmit over other paths. Packet loss is detected by Retransmission Time-Out (RTO timer) or Duplicate 

ACKs (usually 3).  

• When Time-out occurs, TCP enters slow start.  

• When dup ACKs occurs, TCP enters fast retransmit and fast recovery. 
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TCP has four defined congestion control mechanisms to ensure the most efficient use of bandwidth, and 

quick error and congestion recovery. The four mechanisms, defined in detail in RFC 2581, are: 

– Slow Start     – Congestion Avoidance 

– Fast Retransmit    – Fast Recovery 

 

 

Retransmission Timeout 

The first error-detection and error-recovery mechanism is the retransmission timer. The value specified 

by this timer is referred to as the retransmission timeout (RTO). When RTO, TCP cuts congestion window 

in half and enter slow start. 

 

 ssthresh  cwnd/2 

 cwnd= 1 

 

 

Slow Start 

As the name suggests, "Slow Start" starts slowly, increasing its window size as it gains confidence 

about the networks throughput. A TCP connection starts in the "Slow Start" state. In this state, TCP adjusts 

its transmission rate based on the rate at which the acknowledgements are received from the other end.  

TCP Slow start is implemented using two variables, cwnd (Congestion Window) and ssthresh (Slow 

Start Threshold). cwnd is a self imposed transmit window restriction at the sender end. cwnd will increase 

as TCP gains more confidence on the networks ability to handle traffic. ssthresh is the threshold for 

determining the point at which TCP exits slow start. If cwnd increases beyond ssthresh, the TCP session in 

that direction is considered to be out of slow start phase. Figure B3 shows the TCP slow start. 
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 Start with cwnd = 1 (slow start) 

 On each successful ACK, increment cwnd, cwnd  cwnd + 1 

 Exponential growth of cwnd, for each RTT, cwnd  2 * cwnd 

 Enter CA when cwnd >= ssthresh 

 

 

Figure B3. TCP slow start [Slow02] 

 

Congestion Avoidance 

When cwnd exceed ssthresh, TCP will be out of slow start and enter congestion avoidance. Exiting 

slow start signifies that the TCP connection has reached an equilibrium state where the congestion window 

closely matches the networks capacity. From this point on, the congestion window will not move 

geometrically. cwnd will move linearly once the connection is out of slow start.  

 

 Starts when cwnd >= ssthresh 

 On each successful ACK: cwnd  cwnd + 1/cwnd 

 Linear growth of cwnd, for each RTT: cwnd  cwnd + 1 

 

 

 



 
175 

 
Fast Retransmit and Fast Recovery 

TCP Fast Retransmit and Fast Recovery have been designed to speed up the recovery of the connection 

when packet loss occurs. Fast Retransmit and Recovery detect packet loss via duplicate acknowledgements. 

When a packet segment is lost, TCP at the receiver will keep sending ack segments indicating the next 

expected sequence number. This sequence number would correspond to the lost segment. If only one 

segment is lost, TCP will keep generating acks for the following segments. This will result in the 

transmitter getting duplicate acks, acks with the same ack sequence number. 

Fast Retransmit: TCP receives duplicate acks and it decides to retransmit the segment, without waiting 

for the segment timer to expire. This speeds up the recovery of the lost segment.  

Fast Recovery: Once the lost segment has been transmitted, TCP tries to maintain the current data flow 

by not going back to slow start. TCP also adjusts the window for all segments that have been buffered by 

the receiver. 

The fast retransmit and fast recovery algorithms are usually implemented together as follows. 

1. When the third duplicate ACK in a row is received, set ssthresh to one-half the current congestion 

window, cwnd, but no less than two segments. Retransmit the missing segment. Set cwnd to ssthresh plus 3 

times the segment size. This inflates the congestion window by the number of segments that have left the 

network and which the other end has cached. 

2. Each time another duplicate ACK arrives, increment cwnd by the segment size. This inflates the 

congestion window for the additional segment that has left the network. Transmit a packet, if allowed by 

the new value of cwnd. 

3. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the value set in step 

1). This ACK should be the acknowledgment of the retransmission from step 1, one round-trip time after 

the retransmission. Additionally, this ACK should acknowledge all the intermediate segments sent between 

the lost packet and the receipt of the first duplicate ACK. This step is congestion avoidance, since TCP is 

down to one-half the rate it was at when the packet was lost. Figure B4 shows the congestion control of 

TCP reno. Figure B5 shows its fast retransmit. 
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Enter Fast Retransmit and Fast Recovery after 3 dup ACKs 

 Set ssthresh  cwnd/2 

 Retransmit lost packet 

 Set cwnd  ssthresh + 3 (window inflation) 

 For each successive duplicate Ack: Increment cwnd by 1; New packets are transmitted if allowed 

by cwnd  

 On non-dup ACK (1 RTT later), set cwnd  ssthresh (window deflation) 

 Enter CA 

 

 

 

Figure B4: TCP Reno Fast Retransmission and Fast Recovery [Slow02] 
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Figure B5: TCP fast retransmit [Slow02] 

SACK 

Cumulative ACK style in TCP is ambiguous, when multiple packets are lost. Selective 

Acknowledgment (SACK) provides more precise information about packet. SACK is defined in RFC2018. 

Figure B6 shows an example using SACK. 

 

Figure B6: SACK [Slow02] 

 

B2 TCP/IP in Linux Kernel 
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In Linux kernel TCP/IP implementation, packets are stored in struct sk_buffs. And 

kernel-side correspondent for TCP socket is struct sock. Most network code that we are 

going to modify in Linux kernel is located in linux/net/ipv4 directory. 

struct sock holds state data for the socket (such as the TCP variables regarding 

congestion window, etc.). There are several queue pointers: outgoing packets not yet 

acknowledged, incoming packets not yet delivered to application. Queues hold chains of 

sk_buffs. sk_buff usually corresponds to one packet sent/received to network. In addition 

to packet data, there are protocol headers and control information in sk_buff. Figure B7 

shows the structures. In our PSMC, we are going to add one more receive queue as 

double buffer. 

 

Figure B7: sock and sk_buff [PSar02] 

 

Figure B8 shows the packet handling in Linux kernel.  
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Linux kernel programming is very different from user-level programming. Usage of 

virtual machine is strongly advised for kernel development.  

For more details on Linux kernel and TCP/IP, please refer to [GHer, HWel]. 

 

 

Figure B8: Packet handling in Linux kernel [GHer] 
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APPENDIX C  

PSMC USER MANUAL 

 

This user manual explains the steps required to setup, configure and run the proxy server based 

multipath connection (PSMC) network for demonstrating the enhanced TCP/IP protocol with multiple 

paths. Sample demonstration scripts and files are provided as a step-by-step guide on how PSMC works. 

The set up of the PSMC testbed includes three main components: 

• The sender network 

• The receiver network 

• The proxy servers 

 

C1 PSMC 

We have set up several different PSMC testbeds for different research purposes. Figure C1 is a PSMC 

testbed on real machines. It is more realistic to measure the multipath performance on real machines. 

Figure A1 in Appendix A is another PSMC testbed based on VMWare virtual machines. It is more 

convenient to do Linux kernel development on virtual machines. 

 

1) Set up proxy server based overlay network 

We first need to set up the proxy server based overlay network. The procedure is the same as setting up 

SCOLD testbed. Please refer to Appendix A for more information. 

 

2) Set up Linux kernel development environment 
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User Mode Linux (UML) can be set up for Linux kernel development. For more information on UML, 

please refer to Frank Watson’s master thesis [Fran05].  

For Linux kernel compilation, please refer to the related documents. Note that different kernel version may 

have slightly different compilation steps. 

 

 

Figure C1: PSMC testbed 

 

The command printk() can be used to print kernel debug information during the kernel code execution.  

Source insight is a good source code navigation tool. It has Linux and Windows version. Linux Cross 

Referencing web site (http://lxr.linux.no/) can also be used for reading source code. For Linux kernel 

programming, reading and understanding the existing code is the first and important step. From my 

experience, if you know where to modify the code and what the code does, then you almost finish 80% of 

the job. 

During kernel programming, the modified kernel may crash from time to time. Therefore, set up a 

development platform on virtual machine is very helpful. You can use UML, VMWare or Virtual PC to set 

up the virtual machine development environment. 

 

3) IP striping 
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PSMC packet striping is implemented on the IP layer. We modify the ip_output.c file under the 

linux/net/ipv4 directory. To modulate the code, we put the PSMC functional code in a PSMC module, and 

insert a function pointer in the ip_output.c. Therefore, we can easily load, unload and update the PSMC 

code without recompiling the whole kernel. We implemented a weighted round robin packet striping 

scheme by now. More data striping schemes can be implemented on the PSMC module without modifying 

the Linux kernel again. 

 

4) Double buffering 

We first redefine the struct sock by adding a scoldLog struct, which is similar to backlog. A sock struct is 

correspondent to a socket connection; a sk_buff struct is correspondent to a packet in the socket connection. 

And the new scoldLog is correspondent to the double buffer which temporarily holds the packets between 

IP and TCP. The scoldLog is a packet link list (sk_buff link list) like backlog. Since we don’t physically 

copy and store the packets in double buffer, the overhead of double buffer is minimized. 

Then we modify the tcp_ipv4.c file under linux/net/ipv4 directory to implement the double buffer 

algorithm. Right now we implemented an adaptive double buffer algorithm by dynamically changing the 

buffer size according to the network condition. However, the double buffer imposes noticeable queueing 

delay on packets, therefore a more efficient algorithm needs to be designed.  

 

For more information on the PSMC code implementation, please refer to: 

http://cs.uccs.edu/~chow/pub/master/ycai/src/psmc 

 

5) PSMC Daemon 

There are PSMC management daemons running end hosts. The primary responsibilities of PSMC daemon 

include the followings: update the psmc_wr file, analyze the traffic information, dynamically adjust the 

packet stripping ratio, dynamically adjust the double buffer size, exchange traffic information with the 

other end. PSMC daemon analyzes the traffic information by running tcpdump, which imposes noticeable 

overhead. A more efficient monitoring approach needs to be designed and implemented. 
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The psmc_wr file stores the destination, weight, proxy server IPs and tunnel device information. It is 

updated by SCOLD daemon and PSMC daemon. A sample of psmc_wr file is as follow. 

#destination IP: proxy IP: device name: striping ratio 

128.198.60.105:128.198.60.102:tunl1:2 

128.198.60.105:128.198.60.104:tunl2:5 

128.198.61.51:128.198.60.104:tunl2:1 

128.198.61.51:128.198.60.106:tunl4:1 

 

6) Proc file system 

The Linux proc file system can be used to communicate information between the kernel and the user to 

tune the kernel performance. The proc system is a virtual file system. The PSMC uses the proc file system 

to turn off and on the multiple path routing and control other variables used for PSMC logging and 

buffering. A sample usage is like bleow. 

root@client:/proc/sys/net/ipv4/multipath# cat bufferOn 

0 

root@client:/proc/sys/net/ipv4/multipath# echo "1" > bufferOn 

root@client:/proc/sys/net/ipv4/multipath# cat bufferOn 

1 

 

7) Packet dropper and packet delayer 

In PSMC performance evaluation, we need to adjust the lost rate and latency on certain routes to test 

different scenarios. This is accomplished by using a packet dropper and packet delayer on the proxy 

servers. We modify the dev_queue_xmit() function in /linux/net/core/dev.c file by periodically free skb 

(drop packet) or wait for a period (add latency). The end user can specify the parameters like drop rate or 

latency via proc file system. A sample code is listed below. 
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// modify dev_queue_xmit() function in /linux/net/core/dev.c for packet dropper 

int dev_queue_xmit (struct sk_buff *skb){ 

… 

   if (drop_packet()) { 

       kfree_skb(skb); 

  } 

…. 

} 

 

8) Rate limiting 

In PSMC performance evaluation, we need to adjust the bandwidth on selected routes. This can be 

accomplished by using rate limiting on proxy server. Below is a scrip example which limits 50 packets per 

second. 

 

iptables –flush 

rate=50 

iptables -A OUTPUT -p tcp -m limit --limit $rate/second -j ACCEPT 

iptables -A OUTPUT -p tcp -j DROP 

iptables -A OUTPUT -p udp -m limit --limit $rate/second -j ACCEPT 

iptables -A OUTPUT -p udp -j DROP 

 

We can use iptraf to monitor bandwidth and traffic condition on proxy server. 

 

C2 A step by step demo 

We use the PSMC testbed illustrated in Figure c2. The two end hosts install the PSMC modules, the proxy 

servers install the packet dropper, packet delayer and bandwidth rate limiting. 

1) Run ipip_init.sh on client, proxy, server machines to set up the overlay network and impose rate limiting. 
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2) Run “wget server” from client machine to download a large file and monitoring the bandwidth (5Mb/s). 

By using “ethereal” on client, we can monitor the traffic condition and see how the packets are transmitted. 

This is for single path scenarios. 

3) Run psmc_init.sh on client and server machines to turn on the multipath and set double buffer size. 

4) Run “wget server” from client machine to download a large file and monitoring the bandwidth (10Mb/s). 

By using “ethereal” on client, we can monitor the traffic condition and see how the packets are transmitted 

via two paths. This is for two-path scenarios. 

5) Run add_proxy.sh on client machine, a new indirect route will be set up. 

6) Run “wget server” from client machine to download a large file and monitoring the bandwidth (15Mb/s). 

By using “ethereal” on client, we can monitor the traffic condition and see how the packets are transmitted 

via three paths. This is for three-path scenarios. 

 

 


	c3_SCOLD.pdf
	Indirect Route
	Implementation
	Experimental and Simulation Results
	Conclusion

	c4_PSMC.pdf
	Introduction
	Background
	IP striping
	int (*scold_function) (struct sk_buff *) = 0 ;
	We also declare the inserted function pointer in netsyms.c u
	Double buffering
	Experimental Results

	c5_algorithm.pdf
	Introduction
	Network Model

	NP Hardness
	Heuristic Path Selection Algorithms
	Results Analysis
	Conclusion

	c5_algorithm_2.pdf
	Introduction
	Network Model

	NP Hardness
	Heuristic Path Selection Algorithms
	Results Analysis
	Conclusion




