L 1Nux

Ori Pomerantz

2000 8 19

Linux

Linux

Linux

Linux

© //bow

http://metalab.unc.edu/ldp

email:xu_hui @icst.pku.edu.cn

2000 8 19

1 HELLO,WORLD ... e

EXHELLO.C .o e

PP TP PP
L 2 e

2 L e re b re e
3 IPROC e

4 IPROC e
5 [OCTLS

B e e nne s

GOODSAND SERVICES. ...t eee et et eeeeee st seeeeeseeseeseeeesesteseesesssseseseesessssessesssessesessssseseses
GNU GENERAL PUBLIC LICENSE.o oottt ettt see e s e

1 Hdlo, world

“ Helloworld”

init_module
cleanup_module init_module

Clean_module init_module

Exhello.c
/* hello.c
* Copyright (C) 1998 by Ori Pomerantz
*
* "Hello, world" - the kernel module version.
*/

/* The necessary header files*/

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, amodule */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>

#endif

/* Initialize the module */
int init_module()

{
printk("Hello, world - thisis the kernel speaking\n");

/* If we return anon zero value, it means that
* init_module failed and the kernel module
* can't be loaded */

return O;

“ Saut, Mundi”

/* Cleanup - undid whatever init_module did */
void cleanup_module()

{
printk(Short is the life of a kernel module\n™);
}
1 1
-C
® KERNEL_——
® MODULE—
® LINUX—
in/usr/include/linux/config.h
® SMP ——

12
® CONFIG_ MODVERSIONS—— CONFIG_MODVERSIONS
/usr/include/linux/modversions.h

ex Makefile

Makefile for a basic kernel module

CC=gcc
MODCFLAGS := -Wall -DMODULE -D__KERNEL _ -DLINUX

hello.o: hello.c /usr/include/linux/version.h
$(CC) $(MODCFLAGS) -c hello.c
echo insmod hello.o to turn it on
echo rmmod hello to turn if off
echo
echo X and kernel programming do not mix.
echo Do the insmod and rmmod from outside

root root 11

hello
/proc/modules
X printk
X Alt-F<n>
X xterm —C
— X "
X X printk
X printk xterm
—-C CPU X X
CPU
1.2
1 #define__NO_VERSION___
module.h kernel_version
version.h
__NO_VERSION___ module.h
2.
3. X86 Id —m elf_i386 — —0 <name of module>.o0

<1% source file>

ex start.c

[* start.c
* Copyright (C) 1999 by Ori Pomerantz
*
* "Hello, world" - the kernel module version.
* Thisfileincludesjust the start routine
*/

/* The necessary header files*/
/* Standard in kernel modules */

#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, amodule */

* Deal with CONFIG_MODVERSIONS */

#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>
#endif

/* Initiaize the module */
int init_module()
{
printk("Hello, world - thisis the kernel speaking\n");

/* If we return anon zero value, it means that
* init_module failed and the kernel module
* can't be loaded */
return O;
}

ex stop.c

[* stop.c
* Copyright (C) 1999 by Ori Pomerantz
*
* "Hello, world" - the kernel module version. This
* file includes just the stop routine.
*/

/* The necessary header files*/

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */

#define__NO_VERSION___ [* Thisisn't "the" file
* of the kernel module */
#include <linux/module.n> /* Specifically, amodule */

#include <linux/version.n> /* Not included by
* module.h because
* of the__NO_VERSION__ */

* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>
#endif

/* Cleanup - undid whatever init_module did */
void cleanup_modul&()

{
printk(" Short is the life of a kernel module\n™);

}
ex Makefile

Makefile for amultifile kernel module

CC=gcc
MODCFLAGS :=-Wall -DMODULE -D__KERNEL _ -DLINUX

hello.o: start.o stop.o
Id-m elf_i386 -r -0 hello.o start.o stop.o

start.o; start.c /usr/include/linux/version.h
$(CC) S(MODCFLAGS) -c start.c

stop.o: stop.c /usr/include/linux/version.h
$(CC) $(MODCFLAGS) -c stop.c

proc

modem
in/proc/devices
/dev
Is— /dev/hd[ab] *
3
linux
mknod
c

module_register_chrdev
Cleanup_module

_<action

cleanup_module

file_operation

void

/dev

IDE

/dev

Is-I

Init_module

Fops

cleanup_module

/proc/modules
mod_use _count_
MOD_INC_USE_COUNT MOD_DEC USE_COUNT
mod_use count_

ex chardev.c

[* chardev.c
* Copyright (C) 1998-1999 by Ori Pomerantz
*
* Create a character device (read only)
*/

/* The necessary header files*/

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, amodule */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>

#endif

[* For character devices */
#include <linux/fs.h> /* The character device
* definitions are here */
#include <linux/wrapper.n> /* A wrapper which does
* next to nothing at
* at present, but may
* help for compatibility
* with future versions
* of Linux */

/* In 2.2.3 /usr/include/linux/version.h includes
* amacro for this, but 2.0.35 doesn't - so | add
* it hereif necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)* 65536+(b)* 256+(c))
#endif

/* Conditional compilation. LINUX_VERSION_CODE is

* the code (as per KERNEL_VERSION) of thisversion. */
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,2,0)
#include <asm/uaccess.h> /* for put_user */
#endif

#define SUCCESS 0

/* Da/lce Declarations**************************** */

/* The name for our device, asit will appear
* in /proc/devices */
#define DEVICE_NAME "char_dev"

/* The maximum length of the message from the device */
#define BUF_LEN 80

/* s the device open right now? Used to prevent
* concurent access into the same device */
staticint Device Open = 0;

/* The message the device will give when asked */
static char MessagelBUF_LEN];

/* How far did the process reading the message
* get? Useful if the message is larger than the size
* of the buffer we get to fill in device read. */
static char *Message Ptr;

/* Thisfunction is called whenever a process
* attempts to open the device file */
static int device_open(struct inode *inode,
struct file *file)

static int counter = 0;

#ifdef DEBUG
printk ("device_open(%p,%p)\n", inode, file);

#endif

/* Thisishow you get the minor device number in
* case you have more than one physical device using
* the driver. */
printk("Device: %d.%d\n",
inode->i_rdev >> 8, inode->i_rdev & OXFF);

/* We don't want to talk to two processes at the
* sametime */
if (Device_Open)
return -EBUSY;

[* If thiswas a process, we would have had to
* be more careful here.
*
*|n the case of processes, the danger would be
*that one process might have check Device_Open
*and then be replaced by the schedualer by another
*process which runs this function. Then, when
*the first process was back on the CPU, it would assume
*the device is still not open.
* However, Linux guarantees that a process won't
* be replaced whileit is running in kernel context.

*
* |n the case of SMP, one CPU might increment
*Device_Open while another CPU is here, right after the check.
*However, in version 2.0 of the kernel thisis not a problem
*because there's alock to guarantee only one CPU will
*pe kernel module at the same time.
*Thisisbadin termsof performance, so version 2.2 changed it.
*Unfortunately, | don't have access to an SMP box
*to check how it works with SMP.

*/

Device Opent+;

[* Initialize the message. */
sprintf(Message,
"If | told you once, | told you %d times - %s",
counter++,
"Hello, world\n™);
/* The only reason we're allowed to do this sprintf
* is because the maximum length of the message

* (assuming 32 bit integers - up to 10 digits

* with the minus sign) islessthan BUF_LEN, which

* is80. BE CAREFUL NOT TO OVERFLOW BUFFERS,
* ESPECIALLY IN THE KERNEL!!!

*/

Message Ptr = Message;

/* Make sure that the module isn't removed while
* the file is open by incrementing the usage count
* (the number of opened references to the module, if
* it's not zero rmmod will fail)
*/
MOD_INC_USE_COUNT;

return SUCCESS;

/* Thisfunction is called when a process closes the

* devicefile. It doesn't have areturn value in

* version 2.0.x because it can't fail (you must ALWAYS

* be ableto close adevice). Inversion 2.2.x itis

* dlowed to fail - but we won't let it.

*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static int device_release(struct inode *inode,

struct file *file)
#else
static void device release(struct inode *inode,
struct file *file)
#endif
{
#ifdef DEBUG
printk ("device _release(%op,%p)\n", inode, file);

#endif

/* We're now ready for our next caller */
Device Open --;

/* Decrement the usage count, otherwise once you
* opened the file you'll never get rid of the module.
*/

MOD_DEC USE_COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
return O;
#endif

}

/* Thisfunction is called whenever a process which
* have already opened the device file attempts to
* read fromit. */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize t device _read(struct file *file,
char *buffer, /* The buffer to fill with data*/
size tlength, /* Thelength of the buffer */
loff t*offset) /* Our offset in thefile*/
#else
static int device_read(struct inode *inode,
struct file *file,
char *buffer, /* The buffer to fill with
* the data*/
int length) * The length of the buffer
* (mustn't write beyond that!) */
#endif
{
/* Number of bytes actually written to the buffer */
int bytes read = 0;

[* If we're at the end of the message, return 0
* (which signifies end of file) */
if (*Message Ptr ==0)
return O;

/* Actualy put the datainto the buffer */
while (length & & *Message Ptr) {

/* Because the buffer isin the user data segment,
* not the kernel data segment, assignment wouldn't
* work. Instead, we have to use put_user which
* copies data from the kernel data segment to the
* user data segment. */
put_user(*(Message Ptr++), buffer++);

length --;
bytes read ++;

#ifdef DEBUG
printk ("Read %d bytes, %d left\n",
bytes read, length);
#endif

/* Read functions are supposed to return the number
* of bytes actually inserted into the buffer */
return bytes read;

/* Thisfunction is called when somebody triesto write
* into our device file - unsupported in this example. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize t device write(struct file *file,
const char *buffer, [* The buffer */
size tlength, /* Thelength of the buffer */
loff t*offset) /* Our offset in thefile*/

#else

static int device_write(struct inode *inode,
struct file *file,
const char *buffer,
int length)

#endif

{

return -EINVAL,;
}

/* Module Declarations***************************** */

/* The mgjor device number for the device. Thisis
* global (well, static, which in this context is global
* within thisfile) because it has to be accessible
* both for registration and for release. */

staticint Major;

/* This structure will hold the functionsto be
* called when a process does something to the device
* we created. Since a pointer to this structureis
* kept in the devicestable, it can't be local to
* init_module. NULL isfor unimplemented functions. */

struct file_operations Fops = {
NULL, /* seek*/
device read,
device write,
NULL, /* readdir */
NULL, /* sdlect*/
NULL, /*ioctl */
NULL, /* mmap*/
device _open,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
NULL, /* flush*/
#endif
device release /* ak.a close*/

1

/* Initialize the module - Register the character device */
int init_module&()
{
/* Register the character device (atleast try) */
Major = module_register_chrdev(0,
DEVICE_NAME,
& Fops);

/* Negative values signify an error */
if (Major <0){
printk ("%s device failed with %d\n",
"Sorry, registering the character”,
Major);
return Mgor;

printk ("%s The major device number is %d.\n",
"Registeration is a success.”,
Major);

printk ("1f you want to talk to the device driver,\n");

printk ("you'll have to create a device file. \n");

printk ("We suggest you use\n");

printk ("mknod <name> ¢ %d <minor>\n", Magjor);

printk ("You can try different minor numbers %s",
"and see what happens.\n");

return O;

/* Cleanup - unregister the appropriate file from /proc */

void cleanup_modul&()

{
int ret;

/* Unregister the device */

ret = module_unregister_chrdev(Mgjor, DEVICE_NAME);

[* If theré's an error, report it */

if (ret < 0)

printk("Error in unregister_chrdev: %d\n", ret);

Linux

MPG

2%+ 2%0+c
2.0.35

n.< >m n.< >m

20x 22X
LINUX_VERSION_CODE ab.c
KERNEL_VERSION

3 /proc

Linux ——/proc
/proc
/proc/modules
/proc/meminfo
proc e /proc
/proc
init_module cleanup_module
proc_register_dynamic 31

/proc

MOD_INC_USE COUNT MOD_DEC USE_COUNT
/proc

ex procfs.c

[* procfs.c- createa"file" in/proc
* Copyright (C) 1998-1999 by Ori Pomerantz
*/

/* The necessary header files*/

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, amodule */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>

#endif

/* Necessary because we use the proc fs */
#include <linux/proc_fs.h>

/* In 2.2.3 /usr/include/linux/version.h includes a

* macro for this, but 2.0.35 doesn't - so | add it

* here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)* 65536+(b)* 256+(c))
#endif

/* Put datainto the proc fsfile.

Arguments

1. The buffer where the datais to be inserted, if
you decide to useiit.

2. A pointer to a pointer to characters. Thisis
useful if you don't want to use the buffer
alocated by the kernel.

3. The current position in the file.

4. The size of the buffer in the first argument.

5. Zero (for future use?).

Usage and Return Value

If you use your own buffer, like | do, put its
location in the second argument and return the
number of bytes used in the buffer.

A return value of zero means you have no further

information at thistime (end of file). A negative
return value is an error condition.

For More Information

Theway | discovered what to do with this function
wasn't by reading documentation, but by reading the
code which used it. | just looked to see what uses
the get_info field of proc_dir_entry struct (I used a
combination of find and grep, if you're interested),
and | saw that itisused in <kernel source
directory>/fs/proc/array.c.

If something is unknown about the kernel, thisis

usualy the way to go. In Linux we have the great
advantage of having the kernel source code for
free- useit.
*/
int procfile_read(char *buffer,
char **buffer_location,
off_t offset,
int buffer_length,
int zero)

intlen; /* The number of bytes actually used */

/* Thisisstatic so it will still bein memory
* when we leave this function */
static char my_buffer[80];

static int count = 1;

/* We give all of our information in one go, so if the
* user asks us if we have more information the
* answer should always be no.
*
* Thisisimportant because the standard read
* function from the library would continue to issue
* the read system call until the kernel replies
* that it has no more information, or until its
* buffer isfilled.
*/
if (offset >0)
return O;

/* Fill the buffer and get its length */
len = sprintf(my_buffer,

"For the %d%s time, go away!\n", count,

(count % 100 > 10 && count % 100 < 14) ?"th" :

(count % 10 == 1) ?"st" :
(count % 10==2) ?"nd" :
(count % 10 == 3) ?"rd" : "th");

count++;

/* Tell the function which called us where the
* puffer is*/
*puffer_location = my_buffer;

/* Return the length */
return len;

struct proc_dir_entry Our_Proc_File=
{
0, /* Inode number - ignore, it will befilled by
* proc_register[_dynamic] */

4, I* Length of the file name */

"test", /* Thefile name */

S IFREG | S IRUGO, /* File mode - thisis aregular
* file which can be read by its
* owner, its group, and everybody
* else*/

1, /* Number of links (directories where the

* fileis referenced) */
0,0, /* Theuidand gid for thefile - we giveit
* to root */
80, /* The size of the file reported by Is. */
NULL, /* functions which can be done on the inode
* (linking, removing, etc.) - we don't
* support any. */
procfile read, /* Theread function for thisfile,
* the function called when somebody
* tries to read something from it. */
NULL /* We could have here afunction to fill the
* file'sinode, to enable us to play with
* permissions, ownership, etc. */

/* Initialize the module - register the proc file */
int init_module()
{
/* Successif proc_register] _dynamic] is asuccess,
* failure otherwise. */
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,2,0)
/* Inversion 2.2, proc_register assign adynamic
* inode number automatically if it iszero in the
* gstructure , so there's no more need for

* proc_register_dynamic
*/
return proc_register(&proc_root, & Our_Proc_File);
#else
return proc_register_dynamic(& proc_root, & Our_Proc_File);
#endif

[* proc_root isthe root directory for the proc
* fs(/proc). Thisiswhere we want our file to be
* |ocated.
*/

/* Cleanup - unregister our file from /proc */
void cleanup_modul&()

{

proc_unregister(&proc_root, Our_Proc_File.low_ino);

/proc

/proc
proc
proc_dir_entry
/proc
Linux

struct file_operations
inod_operations
file_operations

inode_operations

inode_operations
module_input module_output

module_permission

put_usr get_user Linux

Put_user

ex procfs.c

[* procfs.c- createa"file" in/proc, which allows
* both input and output. */

/* Copyright (C) 1998-1999 by Ori Pomerantz */

/* The necessary header files*/

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.n> /* Specifically, amodule */

mknod
/proc
struct
/proc
file_operations
/proc
uid

Intel

get_user

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>

#endif

/* Necessary because we use proc fs*/
#include <linux/proc_fs.h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn't - so | add it
* here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)* 65536+(b)* 256+(c))
#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
#include <asm/uaccess.h> /* for get_user and put_user */
#endif

/* The module's file functions *******x* %k xkkxkkkxkkx* * [

/* Here we keep the last message received, to prove
* that we can process our input */

#define MESSAGE_LENGTH 80

static char Messagef MESSAGE_LENGTH];

/* Since we use the file operations struct, we can't
* use the special proc output provisions - we have to
* use a standard read function, which is this function */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize t module_output(
struct file*file, /* Thefileread */
char *buf, /* The buffer to put datato (in the
* user segment) */
size tlen, /[* Thelength of the buffer */
loff_t *offset) /* Offset in thefile - ignore */
#else

static int module_output(
struct inode *inode, /* The inode read */
struct file *file, /* Thefileread */
char *buf, /* The buffer to put datato (in the
* user segment) */
intlen) /* Thelength of the buffer */
#endif
{
static int finished = 0;
inti;
char messagel MESSAGE_LENGTH+30];

/* Wereturn 0 to indicate end of file, that we have
* no more information. Otherwise, processes will
* continue to read from usin an endless loop. */

if (finished) {

finished = 0;
return O;

/* We use put_user to copy the string from the kernel's
* memory segment to the memory segment of the process
* that called us. get_user, BTW, is
* used for the reverse. */
sprintf(message, "Last input:%s', Message);
for(i=0; i<len & & message][i]; i++)
put_user(messageli], buf+i);

/* Notice, we assume here that the size of the message
* isbelow len, or it will bereceived cut. In areal
* life situation, if the size of the message isless
* than len then we'd return len and on the second call
* gtart filling the buffer with the len+1'th byte of
* the message. */

finished = 1;

returni; /* Return the number of bytes "read" */

/* Thisfunction receives input from the user when the
* user writes to the /proc file. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

static ssize_t module_input(
struct file*file, /* Thefileitsalf */

const char * buf, /* The buffer with input */

size tlength, [* The buffer'slength */

loff_t *offset) * offset tofile - ignore */
#else

static int module_input(
struct inode *inode, /* Thefile'sinode */
struct file*file, /* Thefileitsalf */

const char * buf, /* The buffer with the input */
int length) /* The buffer'slength */
#endif
{
inti;

/* Put the input into Message, where module_output
* will later be ableto useit */
for(i=0; i<MESSAGE_LENGTH-1 & & i<length; i++)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
get_user(Message|i], buf+i);
/* Inversion 2.2 the semantics of get_user changed,
* it not longer returns a character, but expects a
* variable to fill up asitsfirst argument and a
* user segment pointer to fill it from as theits
* second.
*
* The reason for this changeis that the version 2.2
* get_user can aso read an short or an int. The way
* it knows the type of the variable it should read
* isby using sizeof, and for that it needs the
* variable itsalf.
*/
#else
Message[i] = get_user(buf+i);
#endif
Message|i] =\0'; /* wewant astandard, zero
* terminated string */

/* We need to return the number of input characters
* used */
returni;

/* Thisfunction decides whether to alow an operation
* (return zero) or not alow it (return anon-zero
* which indicates why it is not alowed).
*
* The operation can be one of the following values:
* 0 - Execute (run the "file" - meaninglessin our case)
* 2 - Write (input to the kernel module)
* 4 - Read (output from the kernel modul€)
*
* Thisisthe real function that checksfile
* permissions. The permissions returned by Is -I are
* for referece only, and can be overridden here.
*/
static int module_permission(struct inode *inode, int op)
{
/* We allow everybody to read from our module, but
* only root (uid 0) may writeto it */
if (op==4]| (op==2&& current->euid == Q))
return O;

[* If it'sanything else, accessis denied */
return -EACCES;

/* Thefileis opened - we don't really care about
* that, but it does mean we need to increment the
* modul€e's reference count. */
int module_open(struct inode *inode, struct file *file)

{
MOD_INC_USE_COUNT;

return O;

/* Thefileisclosed - again, interesting only because
* of the reference count. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
int module_close(struct inode *inode, struct file *file)
#else

void module_close(struct inode *inode, struct file *file)
#endif

{
MOD_DEC_USE_COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
return O; /* success*/
#endif

}

[* Structures to register as the /proc file, with
* pointersto al the relevant functions, ********x* */

/* File operations for our proc file. Thisis where we
* place pointersto al the functions called when
* somebody tries to do something to our file. NULL
* means we don't want to deal with something. */
static struct file_operations File_Ops 4 Our_Proc_File=
{
NULL, /* lseek */
module_output, /* "read" from thefile*/
module input, /* "write" tothefile*/
NULL, /* readdir */
NULL, /* select*/
NULL, /*ioctl */
NULL, /* mmap*/
module_open, /* Somebody opened the file */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
NULL, /* flush, added herein version 2.2 */
#endif
module_close, /* Somebody closed the file */
[* etc. etc. etc. (they aredl givenin
* Jusr/include/linux/fs.h). Since we don't put
* anything here, the system will keep the default
* data, which in Unix is zeros (NULLs when taken as
* pointers). */

1

/* Inode operations for our proc file. We need it so

* we'll have some place to specify the file operations
* structure we want to use, and the function we use for
* permissions. It's also possible to specify functions
* to be called for anything el se which could be done to
* an inode (although we don't bother, we just put
* NULL). */
static struct inode_operations Inode_Ops 4 Our_Proc_File =
{
&File Ops 4 Our_Proc File,
NULL, /* create */
NULL, /* lookup */
NULL, /* link */
NULL, /* unlink */
NULL, /* symlink */
NULL, /* mkdir */
NULL, /* rmdir */
NULL, /* mknod */
NULL, /* rename */
NULL, /* readlink */
NULL, /* follow_link */
NULL, /* readpage */
NULL, /* writepage */
NULL, /* bmap */
NULL, /* truncate */
module_permission /* check for permissions */

/* Directory entry */
static struct proc_dir_entry Our_Proc_File=
{
0, /* Inode number - ignore, it will befilled by
* proc_register[_dynamic] */
7, I* Length of the file name */
"rw_test", /* Thefile name*/
S IFREG | S IRUGO | S IWUSR,
/* File mode - thisis aregular file which
* can be read by its owner, its group, and everybody
* glse. Also, its owner can writeto it.
*
* Actually, thisfield isjust for reference, it's
* module_permission that does the actua check. It
* could use thisfield, but in our implementation it
* doesn't, for ssimplicity. */

1, /* Number of links (directories where the
* fileis referenced) */
0,0, /* Theuidandgid for thefile-
* we giveit to root */

80, /* The size of the file reported by Is. */
&Inode Ops 4 Our_Proc File,
/* A pointer to the inode structure for

* thefile, if we need it. In our case we

* do, because we need awrite function. */
NULL
/* The read function for the file. Irrelevant,

* because we put it in the inode structure above */

1

/* Moduleinitialization and cleanupp ********xxkkkdkkkkxk *

/* Initialize the module - register the proc file */
int init_module()
{
/* Successif proc_register] _dynamic] is asuccess,
* failure otherwise */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
/* Inversion 2.2, proc_register assign adynamic
* inode number automatically if it iszero in the
* gstructure , so there's no more need for
* proc_register_dynamic
*/
return proc_register(&proc_root, & Our_Proc_File);
#else
return proc_register_dynamic(& proc_root, & Our_Proc_File);
#endif
}

/* Cleanup - unregister our file from /proc */
void cleanup_modul&()

{

proc_unregister(&proc_root, Our_Proc_File.low_ino);

5 IOCTLS

device write
modem CPU
modem modem modem
modem
Unix ioctl(input output control)
ioctl ioctl
loctl ioctl
loctl ioctl loctl
10 IOR _IOW _|IOWR—
ioctl ioctl’s
chardev.h ioctl.c
ioctl’'s ioctl
ioctl’'s
" documentation/i octl-number.txt’
ex chardev.c
/* chardev.c

*

* Create an input/output character device
*/

/* Copyright (C) 1998-99 by Ori Pomerantz */

/* The necessary header files*/

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.n> /* Specifically, amodule */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>

#endif

/* For character devices */

/* The character device definitions are here */
#include <linux/fs.h>

/* A wrapper which does next to nothing at
* at present, but may help for compatibility
* with future versions of Linux */

#include <linux/wrapper.n>

/* Our own ioctl numbers */
#include "chardev.h"

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn't - so | add it
* here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)* 65536+(b)* 256+(c))
#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
#include <asm/uaccess.h> /* for get_user and put_user */
#endif

#define SUCCESS 0

/* De\/ICG Declarations******************************** */

/* The name for our device, asit will appear in
* [proc/devices */
#define DEVICE_NAME "char_dev"

/* The maximum length of the message for the device */
#define BUF_LEN 80

/* |sthe device open right now? Used to prevent
* concurent access into the same device */
staticint Device Open =0;

/* The message the device will give when asked */
static char Messagel BUF_LEN];

/* How far did the process reading the message get?
* Useful if the message is larger than the size of the
* buffer we get to fill in device read. */

static char *Message Ptr;

/* Thisfunction is called whenever a process attempts
* to open the devicefile*/
static int device_open(struct inode *inode,
struct file *file)
{
#ifdef DEBUG
printk ("device_open(%p)\n", file);
#endif

/* We don't want to talk to two processes at the
* sametime */
if (Device_Open)
return -EBUSY;

/* If thiswas a process, we would have had to be
* more careful here, because one process might have
* checked Device_Open right before the other one
* tried to increment it. However, we're in the
* kernel, so we're protected against context switches.
*
* ThisisNOT the right attitude to take, because we
* might be running on an SMP box, but we'll deal with
* SMPin alater chapter.
*/

Device Opent+;

/* Initiaize the message */
Message Ptr = Message;

MOD_INC_USE_COUNT;

return SUCCESS;

/* Thisfunction is called when a process closes the

* device file. It doesn't have areturn value because

* it cannot fail. Regardless of what €lse happens, you

* should always be able to close adevice (in 2.0, a2.2

* devicefile could be impossible to close). */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static int device_release(struct inode *inode,

struct file *file)
#else
static void device release(struct inode *inode,
struct file *file)
#endif
{
#ifdef DEBUG
printk ("device _release(%op,%p)\n", inode, file);

#endif

/* We're now ready for our next caller */
Device Open --;

MOD_DEC_USE_COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
return O;
#endif

}

/* Thisfunction is called whenever a process which
* has already opened the device file attempts to
* read fromit. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize t device read(
struct file *file,
char *buffer, /* The buffer to fill with the data*/
size tlength, /* Thelength of the buffer */
loff_t *offset) /* offset to thefile*/

#else
static int device_read(
struct inode *inode,
struct file *file,
char *buffer, /* The buffer to fill with the data*/
int length) * The length of the buffer
* (mustn't write beyond that!) */
#endif
{
/* Number of bytes actually written to the buffer */
int bytes read = 0;

#ifdef DEBUG
printk("device_read(%op,%op,%d)\n",
file, buffer, length);
#endif

[* If we're at the end of the message, return 0
* (which signifies end of file) */
if (*Message Ptr ==0)
return O;

/* Actualy put the datainto the buffer */
while (length & & *Message Ptr) {

/* Because the buffer isin the user data segment,
* not the kernel data segment, assignment wouldn't
* work. Instead, we have to use put_user which
* copies data from the kernel data segment to the
* user data segment. */
put_user(*(Message Ptr++), buffer++);
length --;
bytes read ++;

#ifdef DEBUG
printk ("Read %d bytes, %d left\n",
bytes read, length);
#endif

/* Read functions are supposed to return the number
* of bytes actually inserted into the buffer */
return bytes read;

/* Thisfunction is called when somebody tries to
* write into our devicefile. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize t device write(struct file *file,
const char *buffer,
size t length,
loff_t *offset)
#else
static int device_write(struct inode *inode,
struct file *file,
const char *buffer,
int length)
#endif
{

inti;

#ifdef DEBUG
printk ("device write(%p,%s,%d)",
file, buffer, length);
#endif

for(i=0; i<length & & i<BUF_LEN; i++)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
get_user(Message|i], buffer+i);
#else
Message[i] = get_user(buffer+i);
#endif

Message Ptr = Message;

/* Again, return the number of input characters used */
returni;

/* Thisfunction is called whenever a process tries to
* do anioctl on our device file. We get two extra
* parameters (additional to the inode and file
* gtructures, which all device functions get): the number
* of theioctl called and the parameter given to the

* joctl function.
*

* |f theioctl is write or read/write (meaning output

* isreturned to the calling process), theioctl call

* returns the output of this function.

*/

int device_ioctl(

struct inode *inode,
struct file *file,
unsigned int ioctl_num,/* The number of theioctl */
unsigned long ioctl_param) /* The parameter to it */

inti;
char *temp;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
char ch;

#endif

/* Switch according to theioctl called */
switch (ioctl_num) {
case |OCTL_SET_MSG:
/* Receive apointer to a message (in user space)
* and set that to be the device's message. */

/* Get the parameter given to ioctl by the process */
temp = (char *) ioctl_param;

/* Find the length of the message */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
get_user(ch, temp);
for (i=0; ch & & i<BUF_LEN; i++, temp++)
get_user(ch, temp);
#else
for (i=0; get_user(temp) && i<BUF_LEN; i++, temp++)

#endif

/* Don't reinvent the wheel - call device write */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
device write(file, (char *) ioctl_param, i, 0);
#else
device write(inode, file, (char *) ioctl_param, i);
#endif
break;

case IOCTL_GET_MSG:

/* Give the current message to the calling
* process - the parameter we got is a pointer,
* fill it. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
i = device _read(file, (char *) ioctl_param, 99, 0);
#else
i = device _read(inode, file, (char *) ioctl_param,
99);
#endif
/* Warning - we assume here the buffer length is
* 100. If it'sless than that we might overflow
* the buffer, causing the process to core dump.
*
* The reason we only allow up to 99 charactersis
* that the NULL which terminates the string also
* needs room. */

/* Put azero at the end of the buffer, so it

* will be properly terminated */
put_user(\0', (char *) ioctl_param+i);
break;

case |OCTL_GET_NTH_BYTE:
/* Thisioctl is both input (ioctl_param) and
* output (the return value of this function) */
return Messagefioctl_param];
break;

return SUCCESS;

/* Module Declarations*************************** */

/* This structure will hold the functions to be called
* when a process does something to the device we
* created. Since a pointer to this structureiskept in
* the devices table, it can't be local to
* init_module. NULL isfor unimplemented functions. */
struct file_operations Fops = {
NULL, /* seek*/
device read,

device write,
NULL, /* readdir */
NULL, /* sdlect*/
device ioctl, /* ioctl */
NULL, /* mmap*/
device _open,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
NULL, /* flush*/
#endif
device release /* ak.a close*/

1

/* Initialize the module - Register the character device */
int init_module()
{

int ret_val;

/* Register the character device (atleast try) */

ret val = module _register_chrdev(MAJOR_NUM,
DEVICE_NAME,
& Fops);

/* Negative values signify an error */
if (ret_val <0) {
printk ("%s failed with %d\n",
"Sorry, registering the character device ",
ret_va);
return ret_val,;

printk ("%s The major device number is %d.\n",
"Registeration is a success’,
MAJOR_NUM);

printk ("1f you want to talk to the device driver,\n");

printk ("you'll have to create a device file. \n");

printk ("We suggest you use\n");

printk ("mknod %s ¢ %d O\n", DEVICE_FILE_NAME,
MAJOR_NUM);

printk ("The device file name isimportant, because\n);

printk ("theioctl program assumes that's the\n");

printk ("file you'll use\n");

return O;

/* Cleanup - unregister the appropriate file from /proc */
void cleanup_modul&()

{
int ret;

/* Unregister the device */
ret = module_unregister_chrdev(MAJOR_NUM, DEVICE_NAME);

/* If theré's an error, report it */
if (ret<0)
printk("Error in module_unregister_chrdev: %d\n", ret);
}

ex chardev.h

/* chardev.h - the header file with the ioctl definitions.
*
* The declarations here have to be in a header file,
* because they need to be known both to the kernel
* module (in chardev.c) and the process calling ioctl
* (ioctl.c)
*/

#ifndef CHARDEV_H
#define CHARDEV_H

#include <linux/ioctl.h>

/* The mgjor device number. We can't rely on dynamic
* registration any more, because ioctls need to know
* it */

#define MAJOR_NUM 100

[* Set the message of the device driver */
#define IOCTL_SET_MSG _IOR(MAJOR_NUM, 0, char *)
/* _10OR means that we're creating an ioctl command

* number for passing information from a user process

* to the kernel module.
*

* Thefirst arguments, MAJOR_NUM, isthe major device
* number we're using.

*

* The second argument is the number of the command

* (there could be severa with different meanings).

*

* The third argument is the type we want to get from

* the process to the kernel.

*/

/* Get the message of the device driver */
#define IOCTL_GET_MSG _IOR(MAJOR_NUM, 1, char *)
/* This|OCTL is used for output, to get the message
* of the device driver. However, we still need the
* buffer to place the message in to be input,
* asit isalocated by the process.
*/

/* Get the n'th byte of the message */
#define IOCTL_GET_NTH_BYTE _IOWR(MAJOR_NUM, 2, int)
/* The IOCTL isused for both input and output. It
* receives from the user a number, n, and returns

* Message[n]. */

/* The name of the devicefile*/
#define DEVICE_FILE_NAME "char_dev"

#endif

exioctl.c

/* ioctl.c - the process to useioctl's to control the
* kernel module
*
* Until now we could have used cat for input and
* output. But now we need to do ioctl's, which require
* writing our own process.
*/

/* Copyright (C) 1998 by Ori Pomerantz */

/* device specifics, such asioctl numbers and the
* magjor devicefile. */
#include "chardev.h"

#include <fcntl.h> /* open*/
#include <unistd.h> [* exit */
#include <sydfioctl.h> /* ioctl */

/* Functions for theioctl calls*/

ioctl_set msg(int file_desc, char * message)

{
int ret_val;

ret_ val =ioctl(file_desc, IOCTL_SET_MSG, message);

if (ret_val <0) {
printf ("ioctl_set msg failed:%d\n", ret_val);
exit(-1);

}

ioctl_get msg(int file_desc)
{

int ret_val;

char message[100];

/* Warning - this is dangerous because we don't tell
* the kernel how far it's allowed to write, so it
* might overflow the buffer. In areal production
* program, we would have used two ioctls - oneto tell
* the kernel the buffer length and another to give
* it the buffer to fill
*/
ret_val =ioctl(file_desc, IOCTL_GET_MSG message);

if (ret_val <0) {
printf ("ioctl_get_msg failed:%d\n", ret_val);

exit(-1);
}

printf("get_msg message:%s\n”, message);

ioctl_get_nth_byte(int file_desc)
{

inti;

char c;

printf("get_nth_byte message:");

i=0;
while (c!=0) {
c =ioctl(file_desc, IOCTL_GET_NTH_BYTE, i++);

if c<0){
printf(
"ioctl_get_nth_byte failed at the %d'th byte:\n”, i);
exit(-1);

}

putchar(c);

}
putchar(\n');

/* Main - Cdll theioctl functions */
main()
{
int file_desc, ret_val;
char *msg = "Message passed by ioctl\n";

file_desc = open(DEVICE_FILE_NAME, 0);
if (file_desc < 0) {
printf ("Can't open devicefile: %s\n”,
DEVICE_FILE_NAME);
exit(-1);

ioctl_get_nth_byte(file_desc);
ioctl_get msg(file_desc);
ioctl_set msg(file_desc, msg);

close(file_desc);

ioctl’s Unix
argc agv
insmod
strl str2
Strl=xxx str2=yyy init_module strl
2.0 strl str2
2.2 MACRO_PARM
ex param.c
[* param.c

*

* Receive command line parameters at module installation
*/

/* Copyright (C) 1998-99 by Ori Pomerantz */

/* The necessary header files*/

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, amodule */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>

#endif

#include <stdio.h> /* | need NULL */

/* In 2.2.3 /usr/includée/linux/version.h includes a

/proc
Linux

XXX Sstr2

insmod

yyy

* macro for this, but 2.0.35 doesn't - so | add it

* here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)* 65536+(b)* 256+(c))
#endif

/* Emmanuel Papirakis:
*
* Prameter names are now (2.2) handled in a macro.
* The kernel doesn't resolve the symbol names
* like it seems to have once did.
*
* To pass parameters to a module, you have to use amacro
* defined in include/linux/modules.h (line 176).
* The macro takes two parameters. The parameter's name and
* it'stype. Thetypeisaletter in double quotes.
* For example, "i" should be an integer and "'s" should
* beastring.
*/

char *strl, *str2;

#f LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
MODULE_PARM(str1, "s");

MODULE_PARM(str2, "s");

#endif

/* Initialize the module - show the parameters */
int init_module&()
{
if (strl==NULL || str2==NULL) {
printk("Next time, do insmod param strl=<something>");
printk("str2=<something>\n");
} else
printk(" Strings:%s and %s\n", strl, str2);

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
printk("If you try to insmod this module twice,");
printk("(without rmmoding\n");

printk("it first), you might get the wrong");

printk("error message:\n");

printk("'symbol for parameters strl not found'.\n");
#endif

return O;

/* Cleanup */

void cleanup_modul&()
{

}

/proc
open
insmod rmmod
sync
/proc
strace <command> <arguments>
CPU “ ”
Intel
CPU 0x80
sysem_call
(sys_cal_table)
[<architecture>/kernel/entry.S Entry(system_call)
sys call_table
cleanup_module
printk
our_sys open uid id
uid printk
open
Init_module sys call_table

Cleanup_module
A B A open
A_open B open B_open A
A_open Sys open B B_open

B e A_open
A_open A B A
Sys open B B
A_open A_open

open
A
B_open A_open
B_open A_open
Sys _open /proc/ksyms

root rmmod

ex syscall.c

/* syscall.c
*
* System call "stealing" sample
*/

/* Copyright (C) 1998-99 by Ori Pomerantz */

/* The necessary header files*/

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.n> /* Specifically, amodule */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>

#endif

#include <sys/syscall.h> /* Thelist of system calls*/

[* For the current (process) structure, we need
* this to know who the current user is. */
#include <linux/sched.h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn't - so | add it
* here if necessary. */

SyS_open

Sys_open

#fndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((8)* 65536+(b)* 256+(C))
#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
#include <asm/uaccess.h>
#endif

/* The system call table (atable of functions). We
* just define this as external, and the kernel will
* fill it up for us when we are insmod'ed
*/

extern void *sys call_tabl€]];

/* UID we want to spy on - will befilled from the
* command line */
int uid;

#f LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
MODULE_PARM(uid, "i");
#endif

/* A pointer to the original system call. The reason
* we keep this, rather than call the original function
* (sys_open), is because somebody else might have
* replaced the system call before us. Note that this
* is not 100% safe, because if another module
* replaced sys_open before us, then when we're inserted
* well call the function in that module - and it
* might be removed before we are.
*
* Another reason for thisisthat we can't get sys open.
* |t'sastatic variable, so it is not exported. */
asmlinkageint (*original_call)(const char *, int, int);

/* For some reason, in 2.2.3 current->uid gave me
* zero, not the real user ID. | tried to find what went

* wrong, but | couldn't do it in a short time, and
* I'mlazy - so I'll just use the system call to get the
* uid, the way a process would.
*
* For some reason, after | recompiled the kernel this
* problem went away.
*/
asmlinkageint (*getuid_call)();

/* The function we'll replace sys_open (the function
* called when you call the open system call) with. To
* find the exact prototype, with the number and type
* of arguments, we find the original function first
* (it's at fs/open.c).
*
* |n theory, this means that we're tied to the
* current version of the kernel. In practice, the
* gystem calls amost never change (it would wreck havoc
* and require programs to be recompiled, since the system
* calls are the interface between the kernel and the

* processes).
*/
asmlinkageint our_sys open(const char *filename,
int flags,
int mode)
{
inti =0;
char ch;

/* Check if thisisthe user we're spying on */
if (uid == getuid_call()) {
/* getuid_call isthe getuid system call,
* which gives the uid of the user who
* ran the process which called the system
* call wegot */

/* Report thefile, if relevant */
printk("Opened file by %d: ", uid);
do{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
get_user(ch, filename+i);
#else

ch = get_user(filename+i);

#endif
i++;
printk("%c", ch);
} while (ch !=0);
printk("\n");
}

/* Cal the original sys open - otherwise, we lose
* the ability to open files */
return origina_call(filename, flags, mode);

/* Initialize the module - replace the system call */
int init_module()
{
/* Warning - too late for it now, but maybe for
* next time... */
printk("1'm dangerous. | hope you did a");
printk("sync before you insmod'ed me.\n");
printk("My counterpart, cleanup_module(), is even');
printk("more dangerous. If\n");
printk("you value your file system, it will ");
printk("be \"sync; rmmod\" \n");
printk("when you remove this module\n");

/* Keep a pointer to the original function in
* origina_call, and then replace the system call
* in the system call table with our_sys open */
origina_call = sys call_table] NR_open];
sys call_table]l NR_open] = our_sys open;

/* To get the address of the function for system
* call foo, goto sys call_table] NR foo]. */

printk(" Spying on UID:%d\n", uid);

/* Get the system call for getuid */
getuid_call =sys call_table] NR_getuid];

return O;

/* Cleanup - unregister the appropriate file from /proc */
void cleanup_modul&()
{
/* Return the system call back to normal */
if (sys_cal_table]l NR _open] !'=our_sys open) {
printk(" Somebody €else also played with the ");
printk("open system call\n");
printk("The system may beleftin");
printk("an unstable state\n");
}

sys call_table] NR_open] = original_call;
}

/proc/sleep
module_interruptible_sleep_on
8.1
TASK_INTERRUPTIBLE
WatQ——
CPU
module _ close
CPU
CPU module_interruptible_sleep_on
CPU
module close
Ctrl-C SIGINT -EINTR
O_NONBLOCK
-ERROR
cat_noblock O_NONBLOCK
ex Sleep.c

/* dleep.c - create a/proc file, and if several
* processestry to open it at the sametime, put al
* but oneto eep */

/* Copyright (C) 1998-99 by Ori Pomerantz */

/* The necessary header files*/

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, amodule */

* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1

#define MODV ERSIONS
#include <linux/modversions.h>
#endif

/* Necessary because we use proc fs*/
#include <linux/proc_fs.h>

/* For putting processes to deep and waking them up */
#include <linux/sched.h>
#include <linux/wrapper.h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn't - so | add it
* here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)* 65536+(b)* 256+(c))
#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
#include <asm/uaccess.h> /* for get_user and put_user */
#endif

/* The modul€'sfile functions *******x* % xkkxkkkxkkx* * [

/* Here we keep the last message received, to prove
* that we can process our input */

#define MESSAGE_LENGTH 80

static char Messagef MESSAGE_LENGTH];

/* Since we use the file operations struct, we can't use
* the specia proc output provisions - we have to use
* astandard read function, which is this function */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize t module_output(
struct file*file, /* Thefileread */
char *buf, /* The buffer to put datato (in the
* user segment) */
size tlen, /[* Thelength of the buffer */

loff_t *offset) /* Offset in thefile - ignore */
#else
static int module_output(
struct inode *inode, /* The inode read */
struct file*file, /* Thefileread */
char *buf, /* The buffer to put datato (in the
* user segment) */
intlen) /* Thelength of the buffer */
#endif
{
static int finished = 0;
inti;
char messagel MESSAGE_LENGTH+30];

/* Return O to signify end of file - that we have
* nothing more to say at this point. */
if (finished) {
finished = 0;
return O;

/* If you don't understand this by now, you're
* hopelessasakernel programmer. */
sprintf(message, "Last input:%s\n”, Message);
for(i=0; i<len & & message][i]; i++)
put_user(messageli], buf+i);

finished = 1;
returni; /* Return the number of bytes "read" */

/* Thisfunction receives input from the user when
* the user writes to the /proc file. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize_t module_input(
struct file*file, /* Thefileitsalf */

const char * buf, /* The buffer with input */

size t length, [* The buffer'slength */

loff_t *offset) * offset tofile - ignore */
#else

static int module_input(
struct inode *inode, /* Thefile'sinode */
struct file*file, /* Thefileitsalf */

const char * buf, /* The buffer with the input */
int length) /* The buffer'slength */
#endif
{

inti;

/* Put the input into Message, where module_output
* will later be ableto useit */

for(i=0; i<MESSAGE_LENGTH-1 & & i<length; i++)

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
get_user(Message|i], buf+i);

#else

Message[i] = get_user(buf+i);
#endif
/* we want a standard, zero terminated string */

Message[i] ="\0';

/* We need to return the number of input
* characters used */
returni;

[* 1if thefileis currently open by somebody */
int Already_Open = 0;

/* Queue of processes who want our file*/
static struct wait_queue *WaitQ = NULL;

/* Called when the /proc fileis opened */
static int module_open(struct inode *inode,
struct file *file)
{
/* If thefile'sflagsinclude O_NONBLOCK, it means
* the process doesn't want to wait for the file.
* Inthis case, if the file is aready open, we
* should fail with -EAGAIN, meaning "you'll haveto
* try again”, instead of blocking a process which
* would rather stay awake. */
if ((file->f_flags& O_NONBLOCK) & & Already Open)
return -EAGAIN;

/* Thisisthe correct place for MOD_INC_USE_COUNT
* becauseif aprocessisintheloop, whichis

* within the kernel module, the kernel module must
* not be removed. */
MOD_INC _USE COUNT;

[* If thefileis aready open, wait until it isn't */
while (Already Open)

{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
inti,is sig=0;
#endif

/* Thisfunction puts the current process,
* including any system calls, such as us, to sleep.
* Execution will be resumed right after the function
* call, either because somebody called
* wake_up(&WaitQ) (only module_close does that,
* when the fileis closed) or when a signal, such
* as Ctrl-C, is sent to the process */
module_interruptible_sleep_on(& WaitQ);

/* If we woke up because we got a signal we're not
* blocking, return -EINTR (fail the system call).
* This alows processes to be killed or stopped. */

/*
* Emmanuel Papirakis:
*
* Thisisalittle update to work with 2.2.*. Signals
* now are contained in two words (64 bits) and are
* gtored in a structure that contains an array of two
* unsigned longs. We now have to make 2 checksin our if.

*

* Ori Pomerantz;
*
* Nobody promised me they'll never use more than 64
* bits, or that this book won't be used for aversion
* of Linux with aword size of 16 bits. This code
* would work in any case.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

for(i=0; i<_NSIG_WORDS && lis sig; i++)

is_sig = current->signal.sig[i] &
~current->blocked.sig[i];
if (is_sig) {
#else
if (current->signal & ~current->blocked) {
#endif
/* It'simportant to put MOD_DEC_USE_COUNT here,
* because for processes where the open is
* interrupted there will never be a corresponding
* close. If we don't decrement the usage count
* here, we will be left with a positive usage
* count which well have no way to bring down to
* zero, giving us an immortal module, which can
* only bekilled by rebooting the machine. */
MOD_DEC USE_COUNT;
return -EINTR;

/* If we got here, Already _Open must be zero */

/* Open thefile*/
Already Open=1;
return O; /* Allow the access */

/* Caled when the /proc fileis closed */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
int module_close(struct inode *inode, struct file *file)
#else
void module_close(struct inode *inode, struct file *file)
#endif
{
/* Set Already_Open to zero, so one of the processes
* in the WaitQ will be able to set Already Open back
* to one and to open the file. All the other processes
* will be called when Already_Open is back to one, so
* they'll go back to deep. */
Already Open=0;

/* Wake up al the processes in WaitQ, so if anybody
* iswaiting for the file, they can haveit. */

module wake up(&WaitQ);

MOD_DEC_USE _COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
return O; /* success*/
#endif

}

/* Thisfunction decides whether to alow an operation
* (return zero) or not alow it (return a non-zero
* which indicates why it is not alowed).
*
* The operation can be one of the following values:
* 0 - Execute (run the "file" - meaninglessin our case)
* 2 - Write (input to the kernel module)
* 4 - Read (output from the kernel modul€)
*
* Thisisthe real function that checksfile
* permissions. The permissions returned by Is -I are
* for referece only, and can be overridden here.
*/
static int module_permission(struct inode *inode, int op)
{
/* We allow everybody to read from our module, but
* only root (uid 0) may writeto it */
if (op==4]| (op==2&& current->euid == Q))
return O;

/* If it'sanything else, accessis denied */
return -EACCES;

[* Structures to register as the /proc file, with
* pointersto al the relevant functions, *******%xx% % |

/* File operations for our proc file. Thisis where
* we place pointersto all the functions called when
* somebody tries to do something to our file. NULL

* means we don't want to deal with something. */
static struct file_operations File_Ops 4 Our_Proc_File=
{

NULL, /* lseek */
module_output, /* "read" from thefile*/
module input, /* "write" tothefile*/
NULL, /* readdir */
NULL, /* select*/
NULL, /*ioctl */
NULL, /* mmap*/
module_open,/* called when the /proc file is opened */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
NULL, /* flush*/

#endif
module_close /* called whenit's classed */

1

/* Inode operations for our proc file. We need it so
* we'll have somewhere to specify the file operations
* structure we want to use, and the function we use for
* permissions. It's also possible to specify functions
* to be called for anything else which could be done to an
* inode (although we don't bother, we just put NULL). */
static struct inode_operations Inode_Ops 4 Our_Proc_File =
{
&File Ops 4 Our_Proc File,
NULL, /* create */
NULL, /* lookup */
NULL, /* link */
NULL, /* unlink */
NULL, /* symlink */
NULL, /* mkdir */
NULL, /* rmdir */
NULL, /* mknod */
NULL, /* rename */
NULL, /* readlink */
NULL, /* follow_link */
NULL, /* readpage */
NULL, /* writepage */
NULL, /* bmap */
NULL, /* truncate */
module_permission /* check for permissions */

1

[* Directory entry */
static struct proc_dir_entry Our_Proc_File=
{
0, /* Inode number - ignore, it will befilled by
* proc_register[_dynamic] */
5, I* Length of the file name */
"deep”, I* Thefile name*/
S IFREG | S IRUGO | S IWUSR,
/* File mode - thisis aregular file which
* can be read by its owner, its group, and everybody
* glse. Also, its owner can writeto it.
*
* Actually, thisfield isjust for reference, it's
* module_permission that does the actual check. It
* could use thisfield, but in our implementation it
* doesn't, for ssimplicity. */
1, /* Number of links (directories where the
* fileis referenced) */
0,0, /* Theuid and gid for thefile - we give
* it to root */
80, /* The size of thefile reported by Is. */
&Inode Ops 4 Our_Proc File,
/* A pointer to the inode structure for
* thefile, if we need it. In our case we
* do, because we need awrite function. */
NULL /* Theread function for thefile.
* |rrelevant, because we put it
* in the inode structure above */

/* Moduleinitialization and cleanup ********xxkxxkxx

/* Initialize the module - register the proc file */
int init_module()
{
/* Successif proc_register_dynamic is a success,
* failure otherwise */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
return proc_register(&proc_root, & Our_Proc_File);

#else
return proc_register_dynamic(& proc_root, & Our_Proc_File);
#endif

[* proc_root istheroot directory for the proc
* fs (/proc). Thisiswhere we want our file to be
* |ocated.
*/

/* Cleanup - unregister our file from /proc. This could
* get dangerousif there are still processes waiting in
* WaitQ, because they are inside our open function,
* which will get unloaded. I'll explain how to avoid
* removal of akernel modulein such acasein
* chapter 10. */

void cleanup_modul&()

{

proc_unregister(&proc_root, Our_Proc_File.low_ino);

9 printk’s

1 X

9.1

tty tty
tty
ex printk.c

/* printk.c - send textual output to the tty you're
* running on, regardless of whether it's passed
* through X 11, telnet, etc. */

/* Copyright (C) 1998 by Ori Pomerantz */

/* The necessary header files*/

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.n> /* Specifically, amodule */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>

#endif

/* Necessary here */
#include <linux/sched.h> /* For current */
#include <linux/tty.n> /* For the tty declarations */

[* Print the string to the appropriate tty, the one
* the current task uses */
void print_string(char * str)
{
struct tty_struct *my _tty;

/* Thetty for the current task */
my_tty = current->tty;

tty

/* If my_tty isNULL, it means that the current task
* has no tty you can print to (thisis possible, for
* example, if it'sadaemon). In this case, there's
* nothing we can do. */

if (my_tty I=NULL) {

/* my_tty->driver is a struct which holds the tty's
* functions, one of which (write) is used to
* write strings to the tty. It can be used to take
* astring either from the user's memory segment
* or the kernel's memory segment.
*
* The function'sfirst parameter is the tty to
* write to, becausethe same function would
* normally be used for all tty's of a certain type.
* The second parameter controls whether the
* function receives a string from kernel memory
* (fase, 0) or from user memory (true, non zero).
* The third parameter is a pointer to a string,
* and the fourth parameter is the length of
* the string.
*/
(* (my_tty->driver).write)(
my_tty, /* Thetty itself */
0, /* We don't take the string from user space */
str, /* String */
strlen(str)); /* Length */

[* ttyswere originaly hardware devices, which
* (usualy) adhered strictly to the ASCII standard.
* According to ASCII, to moveto anew line you
* need two characters, acarriage return and a
* [ine feed. In Unix, on the other hand, the
* ASCII line feed is used for both purposes - so
* we can't just use \n, because it wouldn't have
* acarriage return and the next line will
* gtart at the column right
* after the line feed.
*
* BTW, thisisthe reason why the text file
* isdifferent between Unix and Windows.
* |n CP/M and its derivatives, such as MS-DOS and
* Windows, the ASCI| standard was strictly
* adhered to, and therefore a new line requires

* both aline feed and a carriage return.
*/
(* (my_tty->driver).write)(
my_tty,
0,
"\015\012",
2);

/* Moduleinitialization and cleanup ********x ¥k kkdkkkkx x|

/* Initialize the module - register the proc file */
int init_module()

{
print_string("Module Inserted");

return O;

/* Cleanup - unregister our file from /proc */
void cleanup_modul&()

{
print_string("Module Removed");

10

crontab

crontab
to_struct
queue_task tq_timer
tq_timer
rmmod
0 module_cleanup
cleanup_module void
sleep_on module_sleep on 10.1
rmmod
ex sched.c

/* sched.c - scheduale a function to be called on
* every timer interrupt. */

/* Copyright (C) 1998 by Ori Pomerantz */

/* The necessary header files*/

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, amodule */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>

#endif

rmmod

crontab

/* Necessary because we use the proc fs*/
#include <linux/proc_fs.h>

/* We scheduale tasks here */
#include <linux/tqueue.h>

/* We also need the ability to put ourselves to sleep
* and wake up later */
#include <linux/sched.h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn't - so | add it
* here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)* 65536+(b)* 256+(c))
#endif

/* The number of times the timer interrupt has been
* called so far */
static int TimerIntrpt = 0O;

/* Thisisused by cleanup, to prevent the module from
* being unloaded while intrpt_routineis till in
* the task queue */

static struct wait_queue *WaitQ = NULL;

static void intrpt_routine(void *);

/* Thetask queue structure for this task, from tqueue.h */
static struct tq_struct Task ={
NULL, /* Nextiteminlist - queue_task will do
* thisfor us*/
0, /* A flag meaning we haven't been inserted
* into atask queue yet */
intrpt_routine, /* The function to run */
NULL [* The void* parameter for that function */

1

/* Thisfunction will be called on every timer
* interrupt. Notice the void* pointer - task functions
* can be used for more than one purpose, each time
* getting a different parameter. */
static void intrpt_routine(void *irrelevant)
{
/* Increment the counter */
TimerIntrpt++;

/* If cleanup wants usto die */
if (WaitQ !=NULL)

wake_up(&WaitQ); /* Now cleanup_module can return */
else

/* Put ourselves back in the task queue */

gueue_task(& Task, &tq_timer);

/* Put datainto the proc fsfile. */

int procfile_read(char *buffer,
char **buffer_location, off_t offset,
int buffer_length, int zero)

intlen; /* The number of bytes actually used */

/* Thisis static so it will still bein memory
* when we leave this function */
static char my_buffer[80];

static int count = 1;

/* We give all of our information in one go, so if
* the anybody asks usif we have more information
* the answer should always be no.
*/
if (offset > 0)
return O;

/* Fill the buffer and get its length */
len = sprintf(my_buffer,
"Timer was called %d times so far\n",

Timerlntrpt);
count++;

/* Tell the function which called us where the
* puffer is*/
*puffer_location = my_buffer;

/* Return the length */
return len;

struct proc_dir_entry Our_Proc_File=
{
0, /* Inode number - ignore, it will befilled by
* proc_register_dynamic */

5, I* Length of the file name */
"sched", /* Thefile name*/
S IFREG | S IRUGO,
/* File mode - thisis aregular file which can

* beread by its owner, its group, and everybody

* dse*/
1, /* Number of links (directories where

* the fileis referenced) */
0,0, /* Theuid and gid for thefile - wegive
* it to root */
80, /* The size of the file reported by Is. */
NULL, /* functions which can be done on the
* inode (linking, removing, etc.) - we don't
* support any. */

procfile read,
/* The read function for thisfile, the function called

* when somebody triesto read something fromit. */
NULL
/* We could have here afunction to fill the

* file'sinode, to enable us to play with

* permissions, ownership, etc. */

1

/* Initialize the module - register the proc file */
int init_module()
{

/* Put the task in the tq_timer task queue, so it

* will be executed at next timer interrupt */
gueue_task(& Task, &tq_timer);

/* Successif proc_register_dynamic is a success,
* failure otherwise */
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,2,0)
return proc_register(&proc_root, & Our_Proc_File);
#else
return proc_register_dynamic(& proc_root, & Our_Proc_File);
#endif
}

/* Cleanup */

void cleanup_modul&()

{
/* Unregister our /proc file*/
proc_unregister(&proc_root, Our_Proc_File.low_ino);

/* Sleep until intrpt_routine is called one last
* time. Thisis necessary, because otherwise welll
* deallocate the memory holding intrpt_routine and
* Task whiletq_timer till references them.
* Notice that here we don't allow signalsto
* interrupt us.
*
* Since WaitQ is now not NULL, this automatically
* tellsthe interrupt routine it'stime to die. */

deep on(&WaitQ);
}

11

ioctl

CPU CPU
CPU CPU
ram ram
Linux IRQ Interrupt Requests IRQ
IRQ
IRQ
CPU
IRQ Intel 16 IRQ
IRQ /proc/interrupts
SA_SHIRQ IRQ
IRQ SA_INTERRUPT
IRQ
queue_task_irq
tg_immediate mark_bh(BH_IMMEDIATE) 20
queue_task queue_task mark_bh
Linux 32 BH_IMMEDIATE
11.1 Intel
Intel Intel
drivers/char/keyboard.c
insmod seep 120
reboot
IRQ1 Interl IRQ
inb(0x64)

got_char 7

ex intrpt.c

[* intrpt.c - An interrupt handler. */

/* Copyright (C) 1998 by Ori Pomerantz */

/* The necessary header files*/

/* Standard in kernel modules */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, amodule */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS

#include <linux/modversions.h>

#endif

#include <linux/sched.h>
#include <linux/tqueue.h>

/* We want an interrupt */
#include <linux/interrupt.h>

#include <asm/io.h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn't - so | add it
* here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)* 65536+(b)* 256+(c))
#endif

/* Bottom Half - thiswill get called by the kernel
* assoon asit's safe to do everything normally
* alowed by kernel modules. */

static void got_char(void * scancode)

printk(" Scan Code %x %s.\n",
(int) *((char *) scancode) & Ox7F,
*((char *) scancode) & 0x80 ? "Released” : "Pressed");

/* Thisfunction services keyboard interrupts. It reads
* the relevant information from the keyboard and then
* schedual es the bottom half to run when the kernel
* considersit safe. */
void irg_handler(int irqg,
void *dev_id,
struct pt_regs *regs)

/* Thisvariables are static because they need to be
* accessible (through pointers) to the bottom
* half routine. */
static unsigned char scancode;
static struct tg_struct task =
{NULL, O, got_char, & scancode};
unsigned char status;

/* Read keyboard status */
status = inb(0x64);
scancode = inb(0x60);

/* Scheduale bottom half to run */
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,2,0)
gueue_task(&task, &tq immediate);
#else
gueue_task irq(&task, &tq_immediate);
#endif
mark_bh(IMMEDIATE_BH);

/* Initialize the module - register the IRQ handler */
int init_module()
{
/* Since the keyboard handler won't co-exist with
* another handler, such as us, we have to disable
* it (freeits IRQ) before we do anything. Since we

* don't know whereit is, there's no way to
* reinstate it later - so the computer will have to
* be rebooted when we're done.
*/
free irg(1, NULL);

/* Request IRQ 1, the keyboard IRQ, to go to our
* irg_handler. */
return request_irqg(
1, /* The number of the keyboard IRQ on PCs*/
irq_handler, /* our handler */
SA_SHIRQ,
/* SA_SHIRQ means we're willing to have othe
* handlers on this IRQ.
*
* SA_INTERRUPT can be used to make the
* handler into afast interrupt.
*/
"test_keyboard_irq_handler", NULL);

/* Cleanup */
void cleanup_modul&()
{
/* Thisisonly here for completeness. It's totally
* irrelevant, since we don't have away to restore
* the normal keyboard interrupt so the computer
* iscompletely useless and has to be rebooted. */
free irg(1, NULL);
}

12

CPU
CPU
—_— CPU
CPU
2.0.x
CPU CPU
CPU SMP
2.2.X CPU

CPU

CPU CPU
SMP
Linux
CPU
SMP

1 Jproc/ksyms

2
3
Emmanuel Papirakis
1 Asm/success.h put_user get_user
2 Get_user 2.2 get_user
get_user 2 4 2 4

3 File_operations open close flush
4 Closeinfile_open 2.2 close
5 Read and writein file_operations ssize t
6 Proc_register_dynamic proc_register

0
7 Signals 32 _NSIG_WORDS
8 Queue task_irq

queue_task queue_task_irq
9 Module Parameters 2.2

MODULE_PARM

10 Symmetrical Multi-Processing
SMP

http:.//jungla.dit.upm.es/~jmseyas/linux/kernel/hackers-docs.html Linus

Phrack

GPL

Goods and Services

| hope nobody minds the shameless promotions here. They are all things which are likely to be of
use to beginning Linux Kernel Module programmers.

Getting thisBook in Print

The Coriolis group is going to print this book sometimes in the summer of '99. If this is already
summer, and you want this book in print, you can go easy on your printer and buy it in a nice,
bound form.

GNU GENERAL PUBLIC LICENSE

Printed below is the GNU Genera Public License (the GPL or copyleft), under which this book is
licensed.

Version 2, June 1991

Copyright ©1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software-to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation's software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
softwareis covered by the GNU Library General Public Licenseinstead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
softwar e (and charge for this serviceif you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions trandate to certain
responsibilitiesfor you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps. (1) copyright the software, and (2) offer you this

license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors
reputations.

Finally, any free program isthreatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent
must be licensed for everyone'sfreeuseor not licensed at all.

The precisetermsand conditionsfor copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMSAND CONDITIONSFOR COPYING, DISTRIBUTION AND MODIFICATION

0.

This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License. The
“Program’, below, refers to any such program or work, and a “work based on the Program' means
either the Program or any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, trandation is included without limitation in the term "modification’.) Each
licensee is addressed as “you'.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1

You may copy and distribute verbatim copies of the Program's source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

Y ou may charge afee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for afee.

2.

You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet al of these conditions:

a

Y ou must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b.

You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to al third

parties under the terms of this License.

C.

If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as awhole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wroteit.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3.

You may copy and distribute the Program (or awork based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a

Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b.

Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

C.

Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercia distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for making modifications to it.
For an executable work, complete source code means al the source code for al modules it
contains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a specia exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the

major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4.

You may not copy, modify, sublicense, or distribute the Program except as expressy provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5.

You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do
s0, and all its terms and conditions for copying, distributing or modifying the Program or works
based oniit.

6.

Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions on the
recipients exercise of the rights granted herein. Y ou are not responsible for enforcing compliance
by third parties to this License.

7.

If, as a consequence of a court judgment or alegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you may
not distribute the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which isimplemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she iswilling to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8.

If the distribution and/or use of the Program is restricted in certain countries either by patents or
by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

0.

The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and “any later version’, you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

10.

If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM °"AS IS WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED

INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMSAND CONDITIONS

APPENDIX: HOW TO APPLY THESE TERMSTO YOUR NEW PROGRAMS

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve thisisto make it free software which everyone can redistribute and
change under theseterms.

Todo so, attach the following noticesto the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should
have at least the “copyright' lineand a pointer to wherethefull noticeisfound.

onelineto give the program's name and a brief idea of what it does. Copyright ©19yy name
of author

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of theLicense, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Seethe GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA
02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
inter active mode:

The hypothetical commands show w and show ¢ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than show w and show c; they could even be mouse-clicks or menu items-whatever suitsyour
program.

You should also get your employer (if you work as a programmer) or your schooal, if any, to
sign a “copyright disclaimer' for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program Gnomovision (which
makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incor porating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If thisis what you want to do, use
the GNU Library General Public Licenseinstead of thisLicense.

11 root

31 20
41

51
52
6.1

8.1
8.2

8.3

9.1 Teletype

10.1

111 Linux

11.2 queue task_irq
queue_task

121

12.2 SMP

root
2.2 0
ioctl
ioctl
tail —f
—_— open
module_interruptible_sleep_on
Unix -
X xterm
Intel

2.2

CPU

CPU
module_sleep_on

Unix

queue_task_irq

