
Reducing Outgoing Traffic of Proxy Cache by using Client-Cluster

Kyungbaek Kim and Daeyeon Park

Department of Electrical Engineering & Computer Science,

Division of Electrical Engineering,

Korea Advanced Institute of Science and Technology (KAIST),

373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea

E-mail: kbkim@sslab.kaist.ac.kr and daeyeon@ee.kaist.ac.kr

Abstract

Many web cache systems and policies have been proposed. These studies, however, consider large

sized objects less useful than small sized objects for the performance and evict them as soon as possible.

Even if this approach increases the hit rate, the byte hit rate decreases and the connections occurring

over the congested links to outside networks waste more bandwidth to obtain large sized objects.

This paper suggests the web cache system which uses the client-cluster which is composed of the resid-

ual resources of clients as an exclusive storage for large sized objects. This proposed system achieves

not only the high hit rate but also the high byte hit rate, and reduces the outgoing traffics. We use DHT

based peer-to-peer lookup protocol to manage the client-cluster. With the natural characteristics of this

1

protocol, our system with the client-cluster is self-organizing, fault-tolerant, well-balanced and scalable.

Additionally, we manage the large sized object by the index based allocation method and balance the

loads of all clients well.

We examine the performance of the cache system via a trace driven simulation and demonstrate effec-

tive enhancement of the proxy cache performance.

keywords : peer-to-peer, clustering, web cacing, replacement algorithm

1 Introduction

The recent increases in popularity of the Web has led to a considerable increase in the amount of

Internet traffic. Especially, requests for large sized objects such as music and video files increase ex-

ponentially. As a result, web caching has become an increasingly important issue. Web caching aims

to reduce network traffic, server load, and user-perceived retrieval delay by replication popular content

on caches that are strategically placed within the network. Web caches are often deployed by institu-

tions(corporations, universities, and ISPs) to reduce traffic on access links between the institution and

its upstream ISP.

By caching requests for a group of users, a web proxy cache can quickly return objects previously

accessed by other clients and reduce bandwidth consumption and network traffic. To maximize the

cache performance, a proxy cache tries to handle as many requests as possible. However, the storage

of a proxy cache is limited and it can not store all requested object in its storage. If a cache is full and

needs space for new objects, it evicts the other objects which is not useful for cache performance; this is

the replacement policy of a web proxy cache [14], [2], [1], [7], [13]. Generally, if a cache needs space,

it evicts large sized objects first in compliance with the replacement policy. According to this behavior,

2

a cache has more small sized objects and achieves higher hit rate and reduces more access links between

the institution and its upstream ISP.

Using these replacement policies, large sized objects are not cached for long time, there is few chance

for large sized objects to hit in a cache. According to this, though these replacement policies increase

the hit rate, they reduce the byte hit rate which is the number of bytes that hit in the proxy cache as

a percentage of the total number of bytes requested. This degradation of byte hit rate makes a proxy

cache use more outgoing traffic even if few access links exist. As is the case for the web proxy cache,

we assume that the intra-community file transfers occur at relatively fast rates, whereas file transfers

into the community occur at relatively slow rates. As an example, the community may be a university

or corporate campus, with tens of thousands of peers in the campus community interconnected by high

speed LANs, but with connections to the outside world occurring over congested campus access links.

Consequently, if we leave the proxy cache to waste more outgoing traffic, the performance not only of a

proxy cache but also of the connections to the outside network decreases more.

To prevent this degradation, we should store large sized objects and maximize the chance to hit these

objects. As a naive approach, a proxy cache increases its local storage. However this approach is only

a temporary solution and is still affected by the general replacement policies. Therefore we need an

exclusive storage for large sized objects. We can use CDN services to do this, but these services need

expensive cost for hardwares and managements. Moreover, these approaches need too much adminis-

trative cost for the frequent variation of clients. For example, a growth in client population necessitates

increasing the storages and updating the system information.

In this paper, we suggest a new web cache system which uses the residual resources of clients. Basi-

cally, a web proxy cache stores small sized objects and resources of clients are used to store large sized

3

objects. This separation of storages make a proxy cache storing more small sized objects, because it

does not need to store any large sized objects, and large sized objects are stored in an exclusive storage

which is supplied by clients. According to this behavior, a proxy cache keeps or improves its perfor-

mance such as the hit rate ,the byte hit rate and the usage of outgoing bandwidth. Furthermore, the size

of an exclusive storage increases as more clients use a proxy, and this reduces the administrative cost

and makes the proxy cache more scalable.

The client-cluster is composed of the client’s residual resources. Since clients join and leave dynam-

ically, in order to use its storage efficiently, the client-cluster must be self-organizing and fault tolerant

and the load of each client should be balanced. To cope with these requirements, we manage the client-

cluster by using Distributed Hash Table (DHT) based peer-to-peer protocol. By using this protocol,

all clients receive roughly the same load because the hash function balances load with high probabil-

ity. Moreover, the proxy cache does not need to manage information about these clients and we save

administrative cost.

This protocol matches an object with a client. However, we try to store large sized objects in client-

cluster and it is hard and unfair for a client to store a large sized object. Therefore, we break up a large

sized object into many small sized blocks and store these blocks to many clients by using the index based

allocation method. All of blocks are distributed in the client-cluster and the storage overhead for each

client reduces balances. When a proxy cache sends requests to a client-cluster and the requested objects

are not stored in it, the proxy cache takes on additional latency. To prevent this latency, we use a cache

summary with a Bloom filter, which determines whether the requested objects are in the client-cluster.

This paper is organized as follow. In section 2, we describe web caching and peer-to-peer lookup

algorithm briefly. Section 3 introduces the detail of the client-cluster storing for large sized objects. The

4

simulation environment and the performance evaluation are given in section 4. We mention other related

works in section 5. Finally, we conclude in section 6.

2 Background

2.1 Web caching and replacement policy

The basic operation of the web caching is simple. Web browsers generate HTTP GET requests for

Internet objects such as HTML pages, images, mp3 files, etc. These are serviced from a local web

browser cache, web proxy caches, or an original content server - depending on which cache contains a

copy of the object. If a cache closer to the client has a copy of the requested object, we reduce more

bandwidth consumption and decrease more network traffic. Hence, the cache hit rate and byte hit rate

should be maximized and the miss penalty, which is the cost when a miss occurs, should be minimized

when designing a web cache system.

If a web cache has the infinite storage, there is no problem for caching objects and a web cache

achieves maximum of hit rate and byte hit rate. A web cache, however, has the size-limited storage and

if a cache needs space for new objects, it evicts the other cached objects which is not useful for cache

performance. In this case, the policy of selecting object is the replacement policy.

Many replacement policies are proposed and generally evict large sized object first for new objects

and some policies even give up storing large objects [14], [2], [1], [7], [13]. Because of these policies, the

web cache stores more objects ,increases the hit rate and decreases the number of access links between

the institution and its upstream ISP. However, because these policies evict large sized objects first, the

large sized objects are not cached for long time and there is few chance for the large sized objects to hit

in the cache. Although the web cache can achieve high hit rate with these policies, it can not achieve

5

high byte hit rate and wastes more upstream bandwidth for retrieving large sized objects. If the requests

of large sized objects increase, this degradation appears remarkably.

Even if a storage of a web cache increases for caching large sized files, it is only a temporary solution

and needs expensive costs for the cache management, such as new hardwares and re-configuration. That

is, this approach is not scalable and resourceful.

2.2 Peer-to-Peer Lookup

Peer-to-peer systems are distributed systems without any centralized control or hierarchical organi-

zation, where the software running at each node is equivalent in functionality; this includes redundant

storage, selection of nearby servers, anonymity, search, and hierarchical naming. Among these features,

lookup for a data is an essential functionality for peer-to-peer systems.

A number of peer-to-peer lookup protocols have been recently proposed, including Pastry, Chord,

CAN and Tapestry [12], [11], [15], [10]. In a self-organizing and decentralized manner, these protocols

provide a DHT (distributed hash-table) that reliably maps a given object key to a unique live node in the

network. Because DHT is made by a hash function that balances load with high probability, each live

node has the same responsibility for data storage and query load. If a node wants to find an object, a node

simply sends a query with the object key corresponding to the object to the selected node determined by

the DHT. Typically, the length of routing is about O(log n), where n is the number of nodes. According

to these properties, peer-to-peer systems balance storage and query load, transparently tolerate node

failures and provide efficient routing of queries.

6

3 Proposed Idea

3.1 Overview

As we described in the previous section, a web proxy cache evicts large sized objects first to get

free space which is used to store a new cached object and this feature reduces the cache performance,

especially the byte hit rate. According to this, the large sized object is the main obstacle of the cache

performance. To solve this problem, we exploit the residual resources of clients for a proxy cache. That

is, any client that wants to use the cache provides small resources to the cache and the proxy cache

uses these additional resources to maintain the proxy cache system. This feature makes the proxy cache

resourceful and scalable.

We use these resources as an exclusive storage for large sized objects. Generally a web proxy cache

stores all of requested objects in the local storage, but in our system, a cache only stores small sized

objects and large sized objects are stored in the exclusive storage which is distributed among the client

cluster. When a proxy cache receives a request, it checks its local storage. If a hit occurs, it returns

the requested object; otherwise, it sends a lookup message to the exclusive storage and this message is

forwarded to the client that has responsibility for storing the object. The behavior of the cache depends

on the size of the requested object. If the size is small, the cache deals with the object in the local cache,

otherwise, it turns over the object to the exclusive storage. According to this behavior, we can achieve

the high byte hit rate and save more outgoing bandwidth. Additionally, the proxy cache stores more

small sized objects and the hit rate increases more.

7

3.2 Management of Client-Cluster

In our scheme, a proxy cache uses the resources of clients that are in the same network. Generally, if

a peer wants to use other peers, it should have information about those. This approach is available when

the other peers are reliable and available. However, the client membership is very large and changes

dynamically. If the proxy cache manages the states of all clients, too much overhead is created to manage

the client information and complex problems such as fault-tolerance, consistency and scalability arise.

In consideration of these issues, we establish the proxy cache such that it has no information for the

clients and the client-cluster manages itself.

We design the client-cluster by using DHT(distributed hash table) based peer-to-peer protocol

[11], [12]. To use this protocol, each client needs an application whose name is Station. A Station

is not a browser or a browser cache, but a management program to provide clients’ resources for a proxy

cache. A client can not use resources of a Station directly, while a proxy cache sends requests issued

from clients to Stations in order to use resources of a client-cluster. When a Station receives requests

from a proxy cache, it forwards requests to another Station or checks whether it has the requested ob-

jects. Each Station has a unique node key and a DHT. The unique node key is generated by computing

the SHA-1 hash of the client identifier, such as an ip address or an ethernet address, and the object key

is obtained by computing the SHA-1 of the corresponding URL. The DHT describes the mapping of the

object keys to responsible live node keys for efficient routing of request queries. It is similar to a routing

table in a network router. A Station uses this table with the key of the requested object to forward the

request to the next Station. Additionally, the DHT of a Station has the keys of neighbor Stations which

are numerically close to the Station, like the leaf nodes in PASTY or the successor list in CHORD.

The basic operation of the lookup in a client-cluster is shown in figure 1. When a proxy cache sends

8

Figure 1. Basic lookup operation in the client-cluster. In this figure, total hop count is 3 for an object.

a request query to one Station of a client-cluster, the Station gets the object key of the requested object

and selects the next Station according to the DHT and the object key. Finally, the home Station, which

is a Station having the numerically closest node key to the requested object key among all currently live

nodes, receives the request and checks whether it has the object in local cache. If a hit occurs, the home

Station returns the object to the proxy cache; otherwise, it only returns a null object. In figure 1, the

node whose key is 07200310 is the home Station for the object whose key is 07100470. The cost of this

operation is typically O(log n), where n is the total number of Stations. If 1000 Stations exist, the cost

of lookup is about 3, and if 100000 Stations, the cost is about 5. Since the RTT for any server in the

Internet from one client is 10 or 100 times bigger than that for another client in the same network, we

reduce the latency for an object by 2 or 20 times when we obtain the object in the client-cluster.

The client-cluster can cope with frequent variations in client membership by using this protocol.

Though the clients dynamically join and leave, the lazy update for managing the small information of

the membership changes does not spoil the lookup operation of this protocol. When a Station joins the

9

client-cluster, it sends a join message to any one Station in the client-cluster and gets new DHT and other

Stations to update their DHT for the new Station lazily. On the other hand, when a Station leaves or fails,

other Stations which have a DHT mapping with the departing Station detect the failure of it lazily and

repair their DHT. According to this feature, the client-cluster is self-organizing and fault-tolerant.

All Stations have roughly the same amount of objects, because the DHT used for the lookup operation

provides a degree of natural load balance. Moreover, the object range, which is managed by one Station,

is determined by the number of live nodes. That is, if there are few live nodes, the object range is large;

otherwise, it is small. According to this, when the client membership changes, the object range is resized

automatically and the home Stations for every object are changed implicitly.

3.3 Storage for Large Sized Objects

In our system, large sized objects are stored in the client-cluster. Basically, the client-cluster stores

the object in the corresponding node which has numerically closest node key to the object key. However,

each node in the client-cluster supports the residual resource which are not used by a node and it is too

small to store the whole of the large sized object. To solve this problem, we break up the large sized

object into many small sized blocks and store these blocks to many nodes. Each block has the block key

which is obtained by hashing the block itself and the home node that has numerically closest node key

to the block key stores the block. According to this, all of blocks for a large sized object are distributed

in the client-cluster and the storage overhead for each client reduces and balances.

We use the index based allocation method to store large sized objects, because this method is simple

,cost-effective and easy to access randomly. Figure 2 shows the simple structure of our index based

allocation method. First of all, we need the object header block which has the basic information about

10

Figure 2. The structure of our index based allocation method

the large sized object, such as URL, size and modified time, and indirect pointers, such as the single

indirect IPs, the double indirect IP and the triple indirect IP. We do not use direct pointers in the object

header block. In the general indexed method, the direct pointer is used to store small sized files to avoid

making unnecessary index blocks. In our client-cluster, however, the size of the stored objects is enough

large to neglect the overhead of index blocks. The home node for an large sized object store this object

header block instead of the object itself and manage these header blocks as a LRU list separately from

data blocks.

An index pointer indicates an index block by using index block key which is the hashed value of the

index block itself. The index block is composed of URL, the block pointers which address data blocks

by using data block key and the range of the block pointers. The data block is the leaf block of this

method and stores the real data chunk. Each data block has URL and block number which is assigned

continuously from the start of the object to the end.

The basic operation for requesting the object is shown in figure 3. Client A wants to get an object and

sends a request to the proxy cache. The proxy first checks its local storage, because it has no idea about

the size of the requested object. If a hit occurs, the proxy cache return the object to Client A and this

11

Figure 3. Operation of the client-cluster, when Client A wants to get an object.

object is the small sized object. Otherwise, the proxy cache sends a lookup message to the client-cluster.

In this figure, Client B gets this lookup message first and forwards it to Client C, and finally this message

arrives at Client D, the home node for the large sized object. This home node returns a lookup result

which indicates whether the node has the object header block or not. If the object header block exists,

the proxy returns the redirection class response, especially 302 Moved Temporarily response whose

destination is the Station of Client A, and the Station obtains the object header block from Client D and

gets data blocks by using parallel connections. Otherwise, the proxy sends a request to the origin server

for the object and obtains the object. If the size of the object is small, the proxy cache stores this object

in its local storage and returns the object to Client A, otherwise, it just relaies the object and Client A

takes a charge of storing this object such as creating data blocks, index blocks and the object header

block and distributing these blocks into the client-cluster.

12

3.4 Client-Cluster Summary

When the proxy misses the object in its storage, it always checks the client-cluster without regard

to the size of the object. If the object is the large sized object, this overhead is negligible, because the

transfer overhead for the large sized object is much more than this. However, if the object is the small

sized object, this lookup behavior is unnecessary and we get additional latency by this behavior and

waste the internal bandwidth. To prevent this leakage, the proxy can have a summary of the objects in

the client-cluster.

We use Bloom filter [5] as the summary of the client-cluster. A Bloom filter is a method for repre-

senting a set � � ��� ��� ���� �� of n elements to support membership queries. The idea is to allocate a

vector v of m bits, initially all set to 0, and then choose k independent hash functions, ��� ��� ��� ��, each

with range �� ���� �. For each element � � �, the bits at positions ������ ������ ���� ����� in v are set

to 1. Given a query for b we check the bits at position ������ ������ ���� �����. If any of them is 0, then

certainly b is not in the set A. For a Bloom filter to represent the large sized objects in the client-cluster,

when the proxy cache obtains an large sized object from the outside network, we insert a key for the

object to the summary; when the objects in the client-cluster are removed we delete the key from the

summary. Using to this summary, we can know whether the requested object is in the client-cluster or

not and reduce the unnecessary lookups.

3.5 n-chance Replacement on Client-Cluster

Each client whose key range does not overlap stores index blocks and data blocks as an LRU list.

This behavior distributes an large sized object over the client-cluster very well, but missing just one

block spoils the whole of the large sized object. This block missing occurs, when a client leaves/fails

13

or, a client evicts blocks to store new blocks; the replacement. We can overcome the failure or leaving

of clients by appling the simple replication strategy to the p2p protocol for client-cluster. To solve the

problem of the replacement, we move the evicted blocks to other clients before evicting blocks. When

a client evicts a block, it first regenerates the different block key by hashing the block and an optional

suffix which is the random value. To move the block correctly, the client finds the object header block

and the index block by URL and the block number of the evicted block and update the block pointer with

the new block key. We permit this chance of moving blocks for one large sized object until the number

of the chance is bigger than the threadhold value, n. If an large sized object uses all of n chance, whole

of blocks of the object is removed from the client-cluster. That is the n-chance replacement policy.

4 Evaluation

In this section, we present the results of extensive trace driven simulations that we have conducted

to evaluate the performance of our system. We design our proxy cache simulator to conduct the perfor-

mance evaluation. This simulator illustrates the behavior of a proxy cache and client-cluster. We have

assumed that we simulate the behavior of a proxy cache effectively. The proxy cache is error-free and

does not store non-cachable objects: dynamic data, control data and etc. We also assume that there are

not any problems in the network, such as congestions and overflow buffers. The size of a proxy cache is

in the range from 0.5MByte to 500MBytes. Each client uses one Stations which has the storage, about

40MBytes. The client-cluster stores large sized objects whose size is bigger than 1MBytes and the size

of each block for the large sized objects is 32KBytes.

14

Traces Measureing Request Object Request Object Hit Byte Hit
Day Size Size Number Number Rate Rate

Trace 1 2001.10.08 9.02GB 3.48GB 699280 215427 69.19% 63.60%
Trace 2 2001.10.09 11.66GB 1.38GB 698871 224104 67.93% 57.79%

Table 1. Traces used in our simulation

4.1 Traces used

In our trace-driven simulations we use traces from KAIST, which uses a class B ip address for the

network. The trace from the proxy cache in KAIST contains over 3.4 million requests in a single day.

We have run our simulations with traces from this proxy cache since October, 2001. We show some of

the characteristics of these traces in table 1. Note that these characteristics are the results when the cache

size is infinite. However, our simulations assume limited cache storage and ratios including hit rate and

byte hit rate can not be higher than infinite-hit rate and infinite-byte hit rate, which are the hit rate and

the byte hit rate when the infinite storage is used.

4.2 Preliminary inspection

When we use a proxy cache, we first observe the proxy cache handling how many objects to estimate

the performace of it. That is, if more hits occur in a proxy cache, the proxy cache achieves better

performance. However, every hit does not have same weight in other aspect, the byte hit. Since the size

of a requested object is variable, both of a large number of hits for a small sized object and a few of hits

for a large sized object achieve similar byte hits. In figure 4, we show the distribution of the hits which

occurs in a proxy cache, when we use traces which is mentioned above and simulate a proxy cache

whose storage is infinite. We distribute the hits by the size of a file. we get the maximum hit number

takes place on files whose size is about 256 Byte and the minimum value on about 64MB files. However,

15

(a) Trace 1 (b) Trace 2

Figure 4. Hit distribution in the proxy cache which has the infinite storage

in the aspect of the byte hit, the byte hits on about 64MB files are bigger than it on about 256MB files.

According to this result, if the general replacement algorithms evict large sized objects to achieve the

high hit rate, they should give up the high byte hit rate. To prevent this degradation of the byte hit rate,

we must store large sized objects in the exclusive storage which has no relation to a proxy cache. We

store large sized objects in the client-cluster, which is composed of clients and needs no cost to manage

a proxy cache or other storages.

Additionally, in figure 4, hits decrease rapidly on about 1MByte files. We exploit this value, 1MByte,

as the threshold value to select large sized object.

4.3 Hit Rate and Byte Hit Rate

Figure 5 and 6 show comparisons of the hit rate and the byte hit rate. By the hit rate, we mean the

number of requests that hit in the proxy cache as a percentage of total requests. A higher the hit rate

means the proxy cache can handle more requests and the original server must deal with proportionally

lighter load of requests. The byte hit rate is the number of bytes that hit in the proxy cache as a percentage

16

(a) Trace 1 (b) Trace 2

Figure 5. Hit rate comparison between only proxy cache and client-clustering

of total number of bytes requested. A higher byte hit rate results in a greater decrease in network traffic

on the server side.

In the figures, proxy only means using only a proxy cache and client-clustering means using the client-

cluster to store large sized objects. When we use the client-cluster, a hit do not only occurs at the local

storage of a proxy cache but also at the client-cluster. To separate the two types of hits, we use pure hit

that indicates the hit or byte hit rate which is obtained at the local storage of a proxy cache. infinite is

the rate when a proxy cache has infinite storage.

The figure 5 shows the effect of using a client-cluster to the hit rate. When we use a client-cluster

to store large sized objects, the hit rate increases by about 10% without any relation to the proxy cache

size. Moreover, in every case, the hit rate of pure hit is very similar to the hit rate of client-clustering.

Numerically the difference of these two value is only about 0.2%. Most of hits occur in a local storage

of a proxy cache and few hits (about 0.2%) occur in a client-cluster. When using a client-cluster, the

increasing effect of the hit rate is due to the increase of the hit rate in the local storage of a proxy cache.

That is, a proxy cache does not handle large sized objects any more and it can store more small sized

17

(a) Trace 1 (b) Trace 2

Figure 6. Byte Hit rate comparison between only proxy cache and client-clustering

objects, and the hit rate of the whole system increases.

From the result of the hit rate, when we use a client-cluster only few hits occur in the client-cluster for

large sized objects. However, these hits bring very big byte hits because of the large size of requested

objects. In figure 6, when using a client-cluster, the byte hit rate increases remarkably and it achieves

similar value to the infinite-byte hit rate without any relation to a proxy cache size. Differently form the

hit rate, the byte hit rate of pure hit is smaller than the rate of client-clustering or the rate of proxy only.

Especially, in the result of trace 2, the byte hit rate which is obtained from the local storage of a proxy

cache is smaller than a third of the byte hit rate from a client-cluster. According to these, though a proxy

cache achieves high hit rate, small sized objects in the proxy cause the low byte hit rate. We can cope

with this weak point to store large sized objects in a client-cluster. Consequently, to use a client-cluster

which is a exclusive storage for large sized objects, we achieve not only the high hit rate, but also the

high byte hit rate. We can preserve and improve the performance of a proxy cache without the expensive

management cost.

Additionally, to show scalability of the proxy cache which use the client-cluster, we assume every

18

(a) Trace 1 (b) Trace 2

Figure 7. Hit rate comparison with various client number

(a) Trace 1 (b) Trace 2

Figure 8. Byte Hit rate comparison with various client number

100 clients make 0.35 million requests and simulate with variable client number. The results are shown

in figure 7 and figure 8 where the cent n indicates use of only a proxy cache whose size is n hundreads

MB and the back n means a proxy cache and a client-cluster are used. In every case, when we use the

client-cluster, the hit rate increases by about 10% and the byte hit rate icreases by about 10% – 15%.

Note that in figure 8 (b) the byte hit rate achieves the high hit rate without any relation to the number

of clients. This means that a proxy cache which use a client-cluster cope with a growth of the client

19

population without any management cost, that is, the proposed system is scalable.

In figure 8 (a), the whole of the byte hit rate decreases severely, however, the hit rate is high in figure 7

(a). The characteristics of the trace 1 cause this appearance. In the table 1, the request size of the trace 2

is about 11 times the object size, however, the request size of the trace 1 is only about 3 times the object

size. That is, the trace 1 has much more requests for small sized objects than large sized objects and

the effect of storing large sized objects is insufficient to compensate the degradation of the byte hit rate.

In order to prevent this happening, the proxy cache should have a backup storage such as an proposed

system in [8] and maximize the hit rate for the small sized objects.

4.4 Client Load

We examine the client loads, which include the request number, storage size, stored object, etc, to

verify that the client-cluster balances the storage and requested queries. Table 2 shows a summary of the

supported storage size, the requested number and the requested byte of clients. According to this table,

in order to store the whole of large sized objects in the client-cluster, each client should supply about

10MB – 20MB storages to the proxy cache and handle about 1000 – 4000 requests for a day. These

loads are enough for any client to handle in these days and if a number of client is 300 or more, these

loads are negligible. The deviation value of each metric is less than 4% and each client receives roughly

same load. Furthermore, when the client number increases the load of each client decreases. We are sure

of the scalability of our system according to these results.

20

Client Mean Max dev. Mean Max dev. Mean Max dev.
Number Size Size Req. Req. Byte Req. Byte Req.

100 20967KB 21659KB 1.65 3662 3899 2.12 120025KB 127762KB 2.1
200 10586KB 11141KB 2.48 1842 2001 2.99 60374KB 65568KB 2.98
300 7081KB 7372KB 1.98 1230 1375 4.1 40327KB 45056KB 4.09

Table 2. Summary of client loads for Trace 1 with the 200MB proxy

5 Related work

Many peer-to-peer applications such as Napster, Kazza and Morpheus become popular. Addition-

ally, large area file systems using peer-to-peer have been proposed, including PAST [4], CFS [3] and

Oceanstore [9]. The target of these systems, however, is a wide area network, and they address issues of

the characteristics of web objects such as size, popularity and update frequency.

A similar proposal for our approach appeared in [8] and [6]. In [6], they use web browser caches of

clients itself. This approach do not concern about large sized objects and the load of each client can not

balance well. Moreover, when the availability of clients is asymmetric, some clients decrease the total

performance of the cache system. In [8], they use residual resources of clients as a backup storage of a

proxy cache and maximize the hit rate which is similar to the infinite-hit rate. However, this proposed

system is affected by large sized objects. Therefor, they cannot achieve high byte hit rate and cannot

balance the load about the byte requests.

6 Conclusion

In this paper, we propose and evaluate the peer-to-peer client-cluster which is used as an exclusive

storage for a web proxy cache. The proxy cache with this client-cluster achieves not only high hit rate

but also high byte hit rate. This behavior reduces the outgoing traffic which occurs over the congested

21

links and improves the performance of the connections to the outside world. Moreover, the client-

cluster supported by the clients which use the proxy cache is highly scalable and the proxy just needs

low administrative cost. Even if the clients take the load, this load has been verified on a range of real

workloads to be low and well balanced. Additionally, if we use this client-cluster not only as an exclusive

storage of a proxy cache but also as a backup storage of a proxy cache, we achieve the high value for

both of the hit rate and the byte hit rate, which is similar to the value when we use the infinite cache.

This is our ongoing work.

References

[1] C. Aggarwal, H. L. Wolf, and P. S. Yu. Caching on the world wide web. IEEE Transaction on Knowledge

and data Engineering, 11(1), January 1999.

[2] P. Cao and S. Irani. Cost-aware www proxy caching algorithms. In Proceedings of Usenix symposium on

Internet Technology and Systems, December 1997.

[3] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage with cfs. In

Proceedings of ACM SOSP 2001, 2001.

[4] P. Druschel and A. Rowstron. Past: A large-scale, persistent peer-to-peer storage utility. In Proceedings of

HotOS VIII, 2001.

[5] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A scalable wide-area web cache sharing

protocol. In Proceedings of ACM SIGCOMM 98, 1998.

[6] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized peer-to-peer web cache. In Proceedings of

Principles of Distributed Computing’02, 2002.

[7] K. Kim and D. Park. Least popularity per byte replacement algorithm for a proxy cache. In Proceedings of

IPADS 2001, June 2001.

22

[8] K. Kim and D. Park. Efficient and scalable client clustering for web proxy cache. IEICE Transaction on

Information and Systems, E86-D(9), September 2003.

[9] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gumadi, S. Rhea, H. Weatherspoon, W. Weimer,

C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale persistent storage. In Proceedings of

ACM ASPLOS 2000, November 2000.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. In

Proceedings of ACM SIGCOMM 2001, 2000.

[11] A. Rowstron and P. Druschel. Pastry:scalable, decentralized object location and routing for large-scale

peer-to-peer systems. In Proceedings of the International Conference on Distributed Systems Plat-

forms(Middleware), November 2001.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord a scalable peer-to-peer lookup

service for internet applications. In Proceedings of ACM SIGCOMM 2001, August 2001.

[13] J. Wang. A survey of web caching schemes for the internet. ACM Computer Communication Review,

29(5):36–46, October 1999.

[14] S. Williams, M. Abrams, R. Standbridge, G. Abdulla, and E. A. Fox. Removal policies in network caches

for world-wide web documents. In Proceedings of the ACM SIGCOMM96, August 1996.

[15] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant wide-area location

and routing. UCB Technical Report UCB/CSD-01-114, 2001.

23

