Finding Two Disjoint Paths Between Tweo Pairs of Vertices
in a Graph

Y. PERL

Bar-llan Unwversity, Ramat-Gan, Israel
AND

Y. SHILOACH

Weizmann Institute of Science, Rehovot, Israel

ABSTRACT. Given a graph G = (V, E) and four vertices s,, #,, 55, and f,, the problem of finding two disjont
paths, P, from s, tot, and P, from s, to t,, is considered Tins problem may arise as a transportation network
problem and m printed circuits routing The relations between several versions of the problem are discussed
Efficient algonthms are given for the following special cases — acychce directed graphs and 3-connected planar
and chordal graphs.

KEY WORDS AND PHRASES: graph algonithms, disjoint paths, pairs of vertices, efficiency of algorithms,
connectivity, planar graphs, chordal graphs, acychic directed graphs, polynonmal reductions, transportation
networks, routing

CR CATEGORIES: 5 25, 5.32

1. Introduction

Given a graph G = (V, E) and four vertices s,, I,, 55, t, € V, we consider the problem
of finding two disjoint paths, Py(s,, t;) from s, to ¢, and P,(s,, t,) from s, to £,.

This problem has four versions corresponding to the following cases: G is a directed/
undirected graph and the paths are vertex-disjoint/edge-disjoint. The problem in
general is denoted by P2(s,, #;; 53, t,; G) or by P2 when G and s,, ¢,, §,, t, have already
been specified. The letters D and U indicate whether we deal with directed or
undirected graphs respectively, while V and E stand for vertex-disjoint and edge-
disjoint paths, respectively. For example DV P2 denotes the problem P2 for directed
graphs and vertex-disjoint directed paths. We also use the notation P2(s,, t,; Sz, §2; G)
for the predicate “There exist two disjoint paths in G, Py(s,, t,) and Pys,, t,).” "WP2(s,,
t;; 2, to; G) is the negation of this predicate.

The more general problem of finding k + 1 pairwise edge (vertex) disjoint paths, k
paths between s, and ¢, and one path between s, and t,, is shown by Even, Itai, and
Shamir [1] to be NP-complete. Actually another general problem of finding k pairwise
disjoint paths between k pairs of vertices (s,, t,), (53, £2), ... , (s, 1), respectively, is also
NP-complete. This can be shown by reduction from the previous problem to the last
one where k + 1 pairwise disjoint paths are required between the k + 1 pairs of
vertices (s, 1)), (81, 1), «.. 5 (82, 1h), (52, 22)-

In Section 2 we present polynomial reductions between several pairs of these four
problems, and their relation to connectivity is discussed.
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In Section 3 we solve DVP2 for acyclic directed graphs in O(|V|-|E|) operations.

UVP2 1s solved for 3-connected planar graphs and 3-connected chordal graphs in
O(|E|) operations in Sections 4 and 5, respectively.

Itai {6] showed that the problem for a planar or a chordal graph G which is not 3-
connected can also be solved in O(| E|) operations by reducing the problem nto several
separate problems for the 3-connected components of G. He makes use of Hopcroft
and Tarjan’s algorithm [4] for the decomposition of a graph into 3-connected compo-

“nents 1n O(|E{) operations.

2. Reductions and Relation to Connectivity

Let P, a P, denote that P, 1s polynomially reducible to P,. For the exact definition of
polynomial reducibility, see [7].

THEOREM 2.1. DVP2 a DEP2.

Proor Given a directed graph G = (V, E), we define G’ = (V’, E’) as follows:

Vi= U {' v} E={p->viveVIUu - viu—v EE}L
vev

Let P = (v, ... , vy) be a directed path in G. Its corresponding directed path P’ in G' 1s
(vi, Vi, V3, V3, ..o 5 Vi, V). One can easily verify that two directed paths P, and P; in G
are vertex-disjoint iff P{ and P; are edge-disjoint in G'. Q.E.D.

THEOREM 2.2 DEP2 o DVP2.

Proor. Given are G = (V, E) and s,, 55, t1, t, € V. Add to G a vertex u and 4
edges, u — s, u = $,, t; = u, t, —> u, obtaining a graph G'. Let G" = (V”, E") denote
the directed line graph of G’ [3], and let a, b, ¢, d € V" correspond to the additional
edges of G', respectively. Obviously

DEP2s, t,, 59, t; G) © DVP2a, c; b, d; G").

Q.E.D.

THEOREM 2.3. UVP2 a DVP2.

Proor. Each undirected edge u — v is replaced by the pairu — v and v — u.
Q.E.D.

THEOREM 2.4. UEP2 a UVP2.

Proor. If there are two vertex disjoint paths Py(s,, ;) and P,(s,, ;) they can be
found by a UVP2 algorithm. Let G’ be the graph obtamed from G by adding one
vertex v and connecting it by four edges to sy, #;, 55, and ¢,. If there are two edge-
disjoint paths P,(sy, ¢,) and Py(s,, ;) which are not vertex-disjoint, they have a common
vertex u

CramM. Such P, and P, exist iff there exists a vertex u in G and four edge-disjoint
paths connecting u and v in G'.

The proof s trivial.

In order to find P, and P, we choose a vertex u in G and search for four such paths
using flow techniques (see, for example, [2]). This process is applied at most |V| times.
Q.E.D.

Theorems 2.1-2.4 can be summarized by

UEP2 o UVP2 a DVP2 = DEP2.

P2 anD CONNECTIVITY

THEOREM 2.5. If G is a 3-edge-connected undirected graph then UEP2(sy, t,; s3, t5;
G) 1s true for any choice of sy, t,, 55, and t,.

Proor. There exist three edge-disjoint paths Py(s, t,), Py(sy, s3), Ps(sy, &) in G.
(This is a variant of Menger’s theorem.) P, and P; form a path P(s,, t,) which is edge-
disjoint to P,. Q.E.D.

The relation between vertex connectivity and UVP2 is discussed in several papers
(see [8, 11}]). It is shown 1n [11] that S-vertex-connectivity does not assure UVP2. It is
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conjectured there that 6-connectivity and even 4-connectivity with nonplanarity imply
UVP2.

There are similar problems concerning DV P2 and DE P2. One of the most interesting
is: What are the minimal values of K; and K, such that vertex strong K,-connectivity
implies DVP2 and edge strong K,-connectivity implies DE P2? It is shown in Figure 1
that K, = 3.

3. Acyclic Directed Graphs

In this section we present an O([V |-|E}) algorithm solving DVP2 for acyclic directed
graphs.

An edge which emanates from ¢, or ¢, cannot participate in any solution to P2. Thus
we may delete such edges from G and assume ¢, and ¢, are sinks in G. For eachv € V
define the level I{v) as the length of a longest path emanating from v. /(v) can be
efficiently determined by the familiar process of a successive deletion of all the sinks of
the graph at a time.

Let G = (V, E) be defined by:

V = {u, u,v € Vandu # v},

E = {(u, v) > (u, w)lv - w € E and I(v) = l(u)}

U v, u) = {w, u)lv > w € E and i(v) = Ku)}.

THEOREM 3.1. P2(s,, t;; 5, ty; G) if and only if there exists a directed path P((s;, s5),
(i, ) in G.

Proor. The “only if” direction: Let P,(s,, t;) and Ps,, t,) be two disjoint paths in
G. The proof is by induction on L(P,) + L(P,), 1.e. the sum of the lengths of P, and P,.
If L(P,) + L(P;) = 2 then P, = (5, t;) and P, = (s,, t,). If I{s;) = Ks;), set P = ({sy, 52),
(11, 59), (11, 1)) in G. If I(s,) < I(s,) then P = ((sy, 52), (51, tz), (t1, 1)) is the desired path
in G.

Assume that L(P,) + L{P,) > 2. Let P, = (s, = vy, ... , vy = ) and P, = (5, = w,,
e s Wi = 1) I U(s,) = I(s,) then (s,, 55) = (v,, §,) is the fnrst edge of P. The rest of P is
provided by the inductive hypothesis on the paths Py = (v,, ... , vy = t;) and P,. If Ks;)
< l(s;), the first edge of P is (s,, s;) = (53, w,) while the rest of it is given again by the
inductive hypothesis on P, and P, = (w,, ... , w,, = ;). This completes the proof of the

“only if”’ direction.

The “if”’ direction: The proof is by induction on L(P). If L{(P) = 2 then s; — t, €E
and s, — t, € E and P2(sq, t,; 53, t3; G) holds.

EP=((s1,8) = (viy W, o , (Vi W) =(ty, 1)) then Py = (5, = vy, ... , v = tx) and
P, = (53 = wy, ..., w, = tz) are directed paths from s, to ¢, and from s, to ¢,
respectively. Note that the definition of G implies that for each 1 < i < k, either v; =
Vog and w, # w,, orw, = w,,, and v, # v,. Thus L(P,) + L(P;) = L(P). If the first
edge of P is (5, 5,) — (vy, 5,), then I(s,) = I(s,). By the inductive hypothesis, P} = (v,

, Vi = t,) and P, are disjoint. s, is the first vertex of P, and therefore I(w;) < l(s,) for
ji=2,...,k.Since l(s,) = I(s,) and s, # 5,, 5; € P, and therefore P, and P, are disjoint.
A symmetric argument applies to the case in which (s,, 5,) — (s,, w;) is the first edge of
P. Q.E.D.

Fig. 1
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ALGORITHMIC ASPECTS Generating the graph G and finding a path P(s;, s,),
(t1, t)) in G takes O(|E|) operations. |E| = 2 (|V| - 2)|E| since each edge u — v € E
yields at most 2(|V| — 2) edges in G, namely the edges of the form (w, u) — (w, v) and
(u,w)—= (v, w)forw € V — {u, v}. Thus P2 can be solved by an O(|V|-|E|) algorlthm
in terms of the original graph—G.

4. Planar 3-Connected Graphs

In this section P2 means UVP2.

THEOREM 4.1. Let G be a planar graph. If G has a planar representation such that
four veruces s, s, £, t; are on one face F in this cyclic order, then 71P2(s,, t,; S5, t; G).

ProoF  Assume P2(sy, t,; 5, t;; G). Construct a graph G’ by adding to G a vertex v
and 4 edges (v, s,), (v, s5), (v, t;), (v, t;). The graph G’ is planar too, since we may place
v mside F

The subgraph of G’ containing any two disjoint paths Pi(s,, t,), Py(s3, t,), F, v and its
incident edges is contractible to the complete graph K;. (See Figure 2.)

Thus by Kuratowski’s theorem (see for example [3]) G’ is not planar, a contradiction.
Q.E.D.

THEOREM 4 2. Let G be a planar graph and let s, t,, s,, t, be four vertices of G. If

(a) the vertices sy, 55, t,, t, are not on one face in this cyclic order in any planar
representation of G,

(b) there exist three disjoint paths P,, P,, P; between s, and t, and three disjoint paths
Qi, Q., Q; between s, and t,,

then P2[sq, t,} 81, ty; G|

Note that three disjoint paths for each pair are necessary since otherwise s, and 1, (s,
and ¢,) can disconnect all the Q’s (P’s).

Theorems 4.1 and 4 2 yield the following theorem.

‘THEOREM 4 3. Let G be a 3-connected planar graph. Then P2(sy, t,, s,, ts; G) tff
there exists no planar representation of G in which the vertices sy, s, t1, t, are on one face
in this cyclic order

Proor ofF THEOREM 4.2. We assume to the contrary P2 and conditions (a) and
(b) through the following lemmas which establish some order on the paths, which
enables us to prove the theorem

Let Py(u, v) and P,(v, w) be two paths. Denote by P,(u, v) * Py(v, w) the path P(u, w)
obtained by concatenation of P,(u, v) and Py(v, w)

Letu, v belong to a path P; then P[u; v] denotes the subpath of P between u and v.

LemMa 4.1. We may assume that if for some | = 1,7 =<3, Du,v € Q, N P, and
) Qlu;v]l N P, = & for k + 1, then Plu;v] = QJlu;v].

Proor. Whenever 1 and 2 hold for some 1 <1, j < 3 but PJu; v] ¥ QJfu; v] we
change P, by replacing P[u; v] by Qfu; v].

Fic 2
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Condition 2 implies that the new P, is disjoint to Py for k # i. We still have to prove
that this process is finite since, as shown in Figure 6, dealing with such a pair («, v) may
create a new pair (w, z) violating the conditions of the lemma.

A common subpath of P, and @, is maximal if it is not a proper subpath of any other
common subpath of P, and Q,. (A maximal common subpath may be a single vertex.)
The total number of maximal common subpaths of the P, and the Q, is reduced, at least
by one, each time such a replacement occurs. Thus, after a finite number of replace-
ments, the lemma holds. Q.E.D.

Henceforth we consider the order of the vertlces of each P(Q;) with respect to its
walk from s,(s;) to ¢,(z;). TP2 imphes that every Q, intersects every P,

At least one of the three paths Q; does not contain either s, or ¢;; assume 1t 1s Q,.
Assume that @, intersects the P, for the first ime in the order P, P,, P;; otherwise
rename the P,. Let v,, and w,, denote the first and last vertices on Q, which belong to P,.

LemMa 4.2. The last P-path which intersects Q, is P.

Proor. Assume the last P-path which intersects Q, is P,, 1 # 3. Then the path

Ouls2; v * Plvis wid * Qilwy,, 6]

is disjoint to P;—a contradiction to "P2. Q.E.D.

LemMa 4.3. Letv, € Q, N Py, vy € Q) N Py, then Q\v,, v,] intersects P,.

Proor. Assume that Q,[v,, v,] is disjoint to P,. By Lemma 4.2 Q[w,;; ;] is
disjoint to P,. Thus the path

Qilsas vl * Pivias vid * Qulvy, val * Palva; wis] = Qulwy s £a]

is disjoint to P, —a contradiction to P2. Q.E.D.

LemMma 4.4, All the Q, intersect the P, for the first time in the order P,, P,, P;.

Remark. The vertices s, and ¢, belong to all the P,. In the case where a Q-path
passes through s, or¢,, it is regarded as intersecting the P, in the order P,, P,, P,.

Proor. The claim is true for Q, by definition We prove it for Q,. The proof for Q,
is similar.

Assume that P, is the first P, which intersects Q,. We first show that Qy[w,,; £,] is
disjoint to P,. Assume there exists a vertex x such that x € Qy[w,,; t,] N P;. Lemma
4.2 implies that there exists a vertex y such thaty € Q,[x; t,] N P;. Lemma 4.3 implies
that Qy[x; y] N P, # &, contradicting the definition of w, ,. Thus Qy[w,z; ] N P, = <.

Thus the path,

Quls25 Vao] * Polvass wiel * Quwyp; 2]

1s disjoint to P, —a contradiction to TP2.

Similarly, 1t can be shown that P, is not the first P, which intersects Q,. Thus the first
P, which intersects Q, 1s P;. In a similar way we can show that P, is the second P-path
which ntersects Q,, completing the proof. Q.E.D.

LEMMA 4.5. Lemmas 4.2 and 4.3 are valid for every Q,.

Proor. Implied immediately by Lemma 4.4.

We choose now a planar representation of G such that P, is inside the region R
which is bounded by P, and P; (see Figure 3). We assume that the order of v,; on P, 1s
Vi1s Va1, V3, (Otherwise renumber the Q).

LEMMA 4.6. The vertices s, and t, are either outside R or on its boundary.

ProOF. Assume that s, 1s inside R. (The proof for ¢, 1s symmetric.) s, is instde the
region bounded by P, and P, since all the Q, intersect P, first (Lemma 4.4).

Consider the cycle

C = Qilse; vial * Pfvy,i;8:] % Py # Pifty; vy, ] * Qolvss; ss)

(heavy lines n Figure 3). We show that C N Qy[v,,; vael = &
Lemma 4.4 implies that P; N Q,[vy 5 veo]l = &
Assume that there exists a vertex u € Pyfv,,; 5;] N Qulvsey; Vool v is the first
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intersection of Q, with P, U P;. Since u precedes v,, on Q,, Lemma 4.1 implies that
Qulvsq;ul = P3v2,1, u]. Thusv,, € Q, N Q,, a contradiction. Therefore Py[v,,;s,] N
Qofvs,13 voo] = . Similarly Pft,; vy,] N Qyfve; vas] = &. Hence C N Qylvy 5 vs0] =
. But v, and v, , are outside and inside the region bounded by C, respectively. Thus
C N Qyv,,; vy 2] # @ —a contradiction. Q.E.D.

LemMma 4.7. The vertices w,,; wy,; Wy, are in this order on P,, for i = 2, 3. (See
Figure 4.)

Proor. We first prove the lemma for i = 3. The vertices v, ,, v,,, v3, are in this
order on P,. Let us prove that Q/[v,,; w, ;] is inside R (the region bounded by P, and
Py). If Qfv;,; w,s] leaves R through a vertex of P, (P;) then it cannot enter R again
either through P, (P;) or through P; (P,), by Lemmas 4.1 and 4.5, respectively.

Let G’ denote the planar subgraph of G contained in R (including the boundary).
The boundary of R is the external face of G’. Since the paths Q)v;; w;s] and Qulvy.;
wial, 1 =j < k = 3, are disjoint, the case i = 3 is implied by Theorem 4.1.

A similar argument shows that if w, 5, w, 3, and wy 3 are in this order on P; then w5,
Wy, and wy, are in this order on P,. This proves the case: = 2. Q.E.D.

The lemmas above enable us to complete the proof of Theorem 4.2. By Lemma
4.6, s, and ¢, are either outside R or on its boundary and by Lemma 4.7 the vertices
Vi1 Vo Vaa and wy g3 w35 wg g are in this order on P, and P;, respectively.

Consider the four following paths (see Figure 4):

5y = Qulse; viad * Pilvias s1), L = Pifsis wia] * Quwiss 2],
Iy = Qulta; wa sl * Pofwa s ty], I, = Pylty;va] * Qulva s ss).

Note that if s, is on Py, then Q,[s,; v, ] and Qyvg,; s,] are empty.
The cycle 1, * I, * I; * I, encloses a region denoted by F. Let

Ji=Lxl, = {5, ), =L —{s,t},
Ba=1*x1, — {55, 0}, Jy =13 %1, — {sy, t5}.

(see Figures 4 and 5).

The vertices s,, 5., ¢, t, are on the boundary of F in this cyclic order. Thus by
assumption g of the theorem, the exterior of F is not a face of G. Hence, at least one of
the following cases occurs.

Case 1 (2). There exist u € J,(J;), v € J,(J,) and a path R(u, v); all of its vertices
except u and v are outside of F. In the first case the path O(s,, ;) = Ji[sz; u] * R(u, v) *
JJ[v; t,] is disjoint to P,, which is inside F (see Figure 5(a)).

In case 2 let P(s,, t;) = Jofsy; u] * R, v) * J[v, t;] and let Q(s,, ) = Qylss; Vo 2] *
Pylvy,25 Wa 0] * Qulwss; t:] (see Figure 5(b)).
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R{u,v) Riu,v)

te
(a) {(b)
Fic. 5

Similar arguments to those which were used to show that Py[v, ;;5,] N Quve,; Vo] =
@ in the proof of Lemma 4.6 can be used here to show that P N Qyfs,; ves] = &.
Lemma 4.7 (fori = 2) implies that w,; # sy, t, and therefore P N Pylv, s w,,] = &. It
follows directly from Lemma 4.5 and the definition of w,, that P N Q,[w,,; t.] = &.
Thus P N Q = . Hence, in both cases P2 is true —a contradiction. Q.E.D.

THE ALGORITHM

The algorithm actually follows the lines of Theorem 4 1 and the proof of Theorem 4 2

1 Ifs,. s, 4, L, are on the same face F of G m this cyclic order, then —P2, stop

2 Find three disjoint paths P,(s;, t,) and three disjoint paths Qs,, ,)

3. Change the P, such thatifu,v € Q; N P, and Qju,v] — {u,v} N P, = Sfork = 1,2, 3, then Plu;v] =
Qfu, v] (see Lemma 4 1) A linear implementation of this step 1s given later

4. Scan each of the Q, checking the following conditions
a Q) ntersects every P,
b. All the Q, intersect the P,, for the first ime, in the same order (say, Py, P;, P;)
¢ P, s the last P-path intersected by Q;
d Ifu € PN Q, v E PN Q, then Qfu, v] mntersects P,
In case any of these conditions 1s violated, construct two disjoint paths P(s,, t;) and Q(s,, £,) according to
the proof of the appropriate lemma (one of 4 2, 4 3, 4 4, 4 5) While scanming the Q;, deternune the
vertices vy, w;,,

5 If there exists a path Q(s,, ;) In G — Py, stop. The desired paths are Q and P, (G — P, 15 obtained by
removing the vertices of P, from G )

6 Let Qss, ty) = Quls2, Vol * Polvas, was] * Qo[ws,, t,] Find a path P(sy, t;) in G — Q The desired paths
are Q and P

The validity of steps 5 and 6 can be easily derived from the end of the proof of
Theorem 4.2.

THE COMPLEXITY OF THE ALGORITHM. We prove now that the algorithm 1s linear.
We assume that G is planar and its faces are given. Anyway, this is the output of the
linear planarity testing algorithm of Hopcroft and Tarjan [5, 10)]. Steps 1, 4, 5, and 6
are obviously linear. Step 2 is performed by applying flow techmques [2]. It is linear
since only three augmenting paths are required for finding three disjoint paths.

A straightforward implementation of step 3 requires O(n?) operations. In the
following we give a linear implementation of it which yields the linearity of the whole
algorithm,

This implementation and its linearity proof are technically comphcated and are not
given in a full detailed form. However, an exact formal implementation and linearity
proof can be derived from this description quite easily.

A LINEAR IMPLEMENTATION OF STEP 3

Definition. A vertex v € V is a cross vertex if it is either an end vertex of a maximal
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common subpath (defined in the proof of Lemma 4.1) or s, or ¢;. Henceforth we
consider each Qy(s,, £,) as going from left to right (s, is leftmost).

With every cross vertex on Q;, we associate a left pointer and a right pointer to the
closest cross vertices on Q; to its left and right, respectively.

There are two types of pointers. A pointer from u to v is a continuous pownter if u
and v are end vertices of the same maximal common subpath. Otherwise it is a jumping
pointer (see Figure 6).

If a couple of cross vertices u, v € Q; N P, are pointing one to the other by jumping
pointers, then QJu; vl N P, = & for k + i. Thus P[u; v] should be replaced by Q)fu;
v]. Such a couple u, v is a candidate couple and it is stored in a replacement list.

A general scheme of the implementation of step 3 is as follows:

1 (Imtiahzation.) While scanning the Q;, set the pointers of the cross vertices and put candidate couples into
the replacement list.

. Take a candidate couple (4, v) out of the replacement list. If there is no such couple —stop

. If u and v do not belong to the same P;, return to 2.

Scan £fu; v] from u to v, excluding u and v Let w denote the current vertex in this scanning

. Delete w from P,.

. If w is a cross vertex, then connect left (w) and right (w) through the appropriate pomters. (w 1s no longer
a cross vertex ) In the case where left (w) and right (w) belong to the same P;, (left (w), nght (w)) 1s added
to the replacement hst In the case where left (w) (right (w)) is a continyous pointer, then the next current
vertex wn the scanming of Pfu; v] s left (w) (night (w))

7 Change night () and left {(v) into continuous pointers If left () or night (v) are continuous ponters,

update the ponters appropriately.

[ SRV I NI

Step 3 is required since a couple which was put into the replacement list may cease
being a candidate couple because of changes of the P,. The couples (u, v) and {(x, y) in
Figure 6 are put into the replacement list at step 1. If we treat (i, v) first, then (x, y) is
not a candidate couple anymore.

We give now the main arguments for a linearity proof of this implementation. It is
easy to see that the initialization is linear. A vertex of P, which is not in any of the Q; 1s
treated at most once (step 5), since after its deletion from P, it would never enter any
of the P, (only vertices of the Q, may enter the P,).

Vertices of the Q, which are not cross vertices are not treated after the initialization.
A cross vertex w is treated only if it belongs to Pfu; v] for some couple (u, v) in the
replacement list. i w # u, v it ceases from being a cross vertex and the number of cross

e g continuous pointer

«——e g jumping pointer
Fic. 6
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vertices is reduced by one. Although treating u and v may not reduce the number of
cross vertices it always reduces the number of maximal common subpaths, which does
not exceed n. The treatment of a single cross vertex requires a constant number of
operations. Thus, the whole implementation is linear.

5. Chordal Graphs

An undirected graph G = (V, E) is chordal if every cycle of length n = 4 has a chord,
i.e. an edge between two of its nonadjacent vertices. For applications of chordal graphs
see [9].

A set § C V is a separating set if the deletion of the vertices of $ from G yields an
unconnected graph. A separating set S is minimal if there is no separating proper
subset of §. A path is minimal if there is no edge between nonadjacent vertices of it.

THEOREM 5.1. Every mimimal separating set in a chordal graph is a clique. (See [9].)

THEOREM 5.2. If G is a 3-connected chordal graph, UVP2(s,, t,; s, t,5 G) holds for
any four vertices sy, t,, S5, and t,.

Proor. Assume WUVP2s,, t,; 52, t; G). Let Pfs,, t;) be a minimal path which
neither passes through s, nor through t,. (There exists such a path since G is 3-
connected.) The vertices of P form a separating set S betweens, and,. Let ' C Sbe a
minimal separating set between s, and t,. |§’| = 3 since G is 3-connected. By Theorem
5.1 §' is a clique —a contradiction to the minmmality of P. Q.E.D.

Theorem 5.2 suggests a simple algorithm to find disjoint paths Pi(sy, t,) and Pys,, t,)
in a 3-connected chordal graph G.

THE ALGORITHM

1. Find a shortest path Py(s;, ;) n G — {s;, 5}
2. Find a path Pys,, t,) in G — P,.

The validity of the algorithm is easily derived from the proof of Theorem 5.2. The
algorithm requires O(|E|) operations.
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