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1. Introduction 

Given a graph G = (V, E) and four vertices sl, tl, s2, t2 E V, we consider the problem 
of finding two disjoint paths,  P~(sl, tO from si to t~ and Pz(s2, t2) from s2 to t2. 

This problem has four versions corresponding to the following cases: G is a directed/  
undirected graph and the paths are vertex-disjoint/edge-disjoint .  The problem in 
general is denoted by P2(si, t~; s2, tz; G) or  by P2 when G and s~, t~, s~, t~ have already 
been specified. The let ters D and U indicate whether we deal  with directed or 
undirected graphs respectively, while V and E stand for vertex-disjoint  and edge- 
disjoint paths,  respectively. For  example DVP2 denotes the problem P2 for directed 
graphs and vertex-disjoint directed paths. We also use the notation P2(s~, t~; s2~ t2; (7) 
for the predicate "There  exist two disjoint paths in G, P~(si, tj) and P~(s2, t~)." -'aP2(s~, 
t~; s2, t2; G) is the negation of  this predicate.  

The more general problem of finding k + 1 pairwise edge (vertex) disjoint paths,  k 
paths between sl and t~ and one path between s2 and t2, is shown by Even,  I tai ,  and 
Shamir [1] to be NP-complete.  Actually another  general  problem of finding k pairwise 
disjoint paths between k pairs of vertices (sl, ti), (s2, t2) . . . . .  (st, t~), respectively, is also 
NP-complete.  This can be shown by reduction from the previous problem to the last 
one where k + 1 pairwise disjoint paths are required between the k + 1 pairs of 
vertices (sl, tl), (sl, tl) . . . . .  (sl, tO, (s2, t2). 

In Section 2 we present polynomial  reductions between several pairs of  these four 
problems,  and their relation to connectivity is discussed. 

Authors' addresses- Y Perl, Department of Mathematics and Computer Science, Bar*llan University, 
Ramat-Gan, Israel, Y. Shdoach, Computer Science Department, Stanford University, Stanford, CA 94305. 

Journal of the AssoctaUon for Computing Machinery, Vol 25, No 1. January 1978, I~ 1-9 



2 Y. PERL AND Y. SHILOACH 

In Section 3 we solve DVP2  for acyclic directed graphs in O(1V I • ]EI) operations. 
UVP2 is solved for 3-connected planar graphs and 3-connected chordal graphs in 

O([E 1) operations in Sections 4 and 5, respectively. 
Itai [6] showed that the problem for a planar or a chordal graph G which is not 3- 

connected can also be solved in O(IE I) operations by reducing the problem into several 
separate problems for the 3-connected components of G. He makes use of Hopcroft 
and Tarjan's algorithm [4] for the decomposition of a graph into 3-connected compo- 

" nents in O([E [) operations. 

2. Reductions and Relation to Connecttvity 

Let P1 a P2 denote that Pi is polynomially reducible to Pz. For the exact definition of 
polynomial reducibility, see [7]. 

THEOREM 2.1. DVP2 a DEP2. 
PROOF Given a directed graph G = (V, E), we define G'  = (V', E ' )  as follows: 

v ' =  u {v',v"}; E'={v'~v"}v~V}U{u"-,v'tu~v~E}. 
vE~ 

Let P = (vl, ... , vm) be a directed path in G. Its corresponding directed path P '  m G '  is 
(v~, vT, v~, v~, ... , v~,, v~). One can easily verify that two directed paths Pa and P2 in G 
are vertex-disjoint iff P~ and P~ are edge-disjoint in G' .  Q.E.D.  

THEOREM 2.2 DEP2 a DVP2.  
PROOF. Given are G = ( V , E )  ands l ,  s2, tl, t2 E V. Add to G a ve r texu  and 4 

edges, u ~ s~, u --* sz, t~ ~ u, tz ~ u, obtaining a graph G ' .  Let G" = (V", E") denote 
the directed line graph of G '  [3], and let a, b, c, d @ V" correspond to the additional 
edges of G ' ,  respectively. Obviously 

DEP2(s~, tl ,  s2, t2; G) <-* DVP2(a,  c; b, d; G"). 

Q.E.D.  
THEOREM 2.3. UVP2 a DVP2. 
PROOf. Each undirected edge u - v is replaced by the pair u ~ v and v ~ u. 

Q .E .D.  
THEOREM 2.4. UEP2 a UVP2. 
PROOF. If there are two vertex disjoint paths P~(sa, tl) and Pz(s~, t2) they can be 

found by a UVP2 algorithm. Let G '  be the graph obtained from G by adding one 
vertex v and connecting it by four edges to sa, q,  s2, and t2. If there are two edge- 
disjoint paths P~(s~, q) and P2(s2, t2) which are not vertex-disjoint, they have a common 
vertex u 

CLAIM. Such Pa and Pz exist i f f  there exists a vertex u m G and four edge-disjoint 
paths connecting u and v in G'.  

The proof is trivial. 
In order to find P~ and Pz we choose a vertex u in G and search for four such paths 

using flow techniques (see, for example, [2]). This process is applied at most IvI Umes. 
Q.E.D.  

Theorems 2.1-2.4 can be summarized by 

UEP2 a UVP2 a DVP2 --- DEP2. 

P 2  AND CONNECTIVITY 

THEOREM 2.5. I f  G is a 3-edge-connected undtrected graph then UEP2(s~, q;  s2, t2; 
G) ts true for  any chotce o f  sl ,  q ,  s~, and tz. 

PROOF. There exist three edge-disjoint paths P~(Sl, tl), P2(s~, sz), Pa(Sl, tz) in G. 
(This is a variant of Menger's theorem.) P~ and Pa form a path P(sz, t~) which is edge- 
disjoint to P~. Q.E.D.  

The relation between vertex connectivity and UVP2 is discussed in several papers 
(see [8, l i  D. It is shown in [11] that 5-vertex-connectivity does not assure UVP2. It is 
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conjectured there that 6-connectivity and even 4-connectivity with nonplanari ty imply 
UVP2. 

There are similar problems concerning DVP2 and DEP2. One of the most interesting 
is: What  are the minimal values of Kt and Kz such that vertex strong Kt-connectivity 
implies DVP2 and edge strong Ka-connectivity implies DEP2? It  is shown in Figure 1 
that K~ _> 3. 

3. Acyclic Directed Graphs 

In this section we present an O([V [. lED algorithm solving DVP2 for acyclic directed 
graphs. 

An  edge which emanates from t~ or tz cannot participate in any solution to P2. Thus 
we may delete such edges from G and assume t~ and tz are sinks in G.  For  each v ~ V 
define the level l(v) as the length of a longest path emanating from v. l(v) can be 
efficiently determined by the familiar process of a successive delet ion of  all the sinks of 
the graph at a time. 

Let G = ( f ' , /~)  be defined by: 

f" = {(u, v)lu, v ~ V and u :k v}, 

/~ = {(u, v) ~ (u, w)lv ~ w E E and l(v) >- l(u)} 
U {<v, u) --+ <w, u)lv ~ w ~ E and l(v) -> l(u)}. 

Tm~OREM 3.1. P2(s~, t~; sz, tz; G) i f  and only i f  there exists a directed path P((sl,  sz), 
<t,, tz>) in G. 

PROOF. The "only if" direction: Let Pt(s~, tO and P2(s2, t2) be two disjoint paths in 
G. The proof  is by induction on L(PO + L(P2), i.e. the sum of  the lengths of  P~ and P2. 
If L(PO + L(P2) = 2 then P~ = (s,, q) and P2 = (sz, tz). If l(sO >- l(sz), set P = ((s~, sz), 
(q,  Sz>, (q,  tz)) in G. I f / ( s0  < t(sz) then P = ((s~, s2), (st ,  t2), (t~, tz)) is the desired path 
in f~. 

Assume that L(P1) + L(P2) > 2. Let Pt = (s~ = v~ . . . . .  v~ = tO and P2 = (s~ = wl, 
. . . .  Wm= tz). If l(sO >- l(s2) then <st, s2) ~ <vz, s2) is the first edge of  P.  The rest of  P is 
provided by the inductive hypothesis on the paths P~ = (v2 . . . . .  v~ -- tl) and Pz. If l(st) 
< l(sz), the first edge of P is (s~, s2) --~ (s~, wz) while the rest of it is given again by the 
inductive hypothesis on P~ and P~ = (wz, ... ,Wm = tz). This completes the proof  of the 
"only if" direction. 

The "if" direction: The proof  is by induction on L(P}. If L(P) = 2 then sl -'-) q E E 
and sz --~ t2 E E and P2(s~, q; sz, t2; G) holds. 

If P = (<s~, s2) = <vl, w~) . . . . .  (vk, w,) = <h, t2)) then Pt = (s~ = v~ . . . . .  v~ = h)  and 
P2 = (s2 = w~, . . . ,  w~ = t2) are directed paths f r o m s t  to tt and f r o m s ~  t o t s ,  
respectively. Note that the definition of G implies that for each 1 <-- i < k,  ei ther v~ = 
v,+~ and w, :k w,+~ or w, = w,+t and v, :k v~+t. Thus L(PO + L(P~) = L(P). If  the first 
edge of P is <s~, s2) ~ (vt, s2), then l(sO -> l(s2). By the inductive hypothesis,  P[ = (vz, 
. . . .  v~ = tt) and Pz are disjoint,  s2 is the first vertex of  Pz and therefore l(w~) < l(sz) for 
j = 2 . . . . .  k. Since l(sO >- l(s2) a n d s t  :# sz, s~ q~ Pz and therefore Pt and Pa are disjoint.  
A symmetric argument applies to the case in which (s~, sz) --o (st,  w~) is the first edge of 
P.  Q .E .D.  

s; tl 

FIG. 1 
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ALOORITHMIC ASPECTS Generating the graph G and finding a path P((sl, s2), 
(tl, t2)) in G takes O(IEI) operations. ILl -< 2 (IvI - 2 ) I E I  since each edge u ~ v E E 
yields at most 2(IVl - 2) edges in G,  namely the edges of the form (w, u) ~ (w, v) and 
(u, w ) ~  (v, w) for w E V - {u, v}. Thus P2 can be solved by an o ( I v  I. IEI) algorithm 
in terms of the original g r a p h - G .  

4. Planar 3-Connected Graphs 

In this section P2 means UVP2. 
THEOREM 4.1. Let G be a planar graph. I f  G has a planar representation such that 

four verttces sl, s2, tl, tz are on one face F i n  this cychc order, then ~P2(sl ,  tl; Sz, t2; G). 
PROOF Assume P2(Sl, t~; Se, t2; G). Construct a graph G '  by adding to G a vertex v 

and 4 edges (v, s~), (v, s2), (v, t~), (v, tz). The graph G '  is planar too, since we may place 
v reside F 

The subgraph of G '  containing any two disjoint paths Pl(S~, tl), Pz(s~, t2), F, v and its 
incident edges is contractible to the complete graph Ks. (See Figure 2.) 

Thus by Kuratowski's theorem (see for example [3]) G '  is not planar, a contradiction. 
Q .E .D.  

THEOREM 4 2. Let G be a planar graph and let s~, t~, s2, t2 be four verttces o f  G. I f  

(a) the vertices s~, s2, tt, t2 are not on one face in thts cyclic order m any planar 
representation o f  G, 

(b) there exist three dtslomt paths P~, Pz, Pz between s~ and t~ and three dis]omt paths 
Q1, Q2, Q3 between s2 and t2, 

then P2[sl, tl; s2, tz; G] 
Note that three disjoint paths for each pair are necessary since otherwise Sl and tl (s2 

and t2) can disconnect all the Q's  (P's).  
Theorems 4.1 and 4 2 y~eld the following theorem. 

.THEOREM 4 3. Let G be a 3-connected planar graph. Then P2(sl, t~, sz, t2; G) t f f  
there exists no planar representatton o f  G in which the vertices sl, sz, ta, t2 are on one face 
in this cyclic order 

PROOF OF THEOREM 4.2. We assume to the contrary ~ P 2  and conditions (a) and 
(b) through the following lemmas which establish some order on the paths, which 
enables us to prove the theorem 

Let Pa(u, v) and P2(v, w) be two paths. Denote by P~(u, v) * Pz(v, w) the path P(u, w) 
obtained by concatenation of Pa(u, v) and P2(v, w) 

Let u, v belong to a path P; then P[u; v] denotes the subpath of P between u and v. 
LEMMA 4.1. We may assume that t f  for some I -~ t, / -< 3, (1) u, v E Q~ A P, and 

(2) Q~[u; v] N Pk = (~ for k ~ t, then P~[u; v] = Qj[u ; v]. 
PROOF. Whenever 1 and 2 hold for some 1 - < t , j - <  3 b u t P , [ u ; v ]  ~ Q~[u;v]we  

change P, by replacing P,[u; v] by Q~[u; v]. 

Flo 2 
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Condition 2 ~mplies that the new P, is disjoint to Pk for k ~ i. We still have to prove 
that this process is fimte since, as shown in Figure 6, dealing with such a pair (u, v) may 
create a new pair (w, z) wolatmg the conditmns of the lemma. 

A common subpath of P, and Qj is maximal if it is not a proper  subpath of  any other  
common subpath of P, and Q~. (A maximal common subpath may be a single vertex.)  
The total number of maximal common subpaths of the P, and the Q~ is reduced,  at least 
by one,  each time such a replacement  occurs. Thus, after a finite number  of replace- 
ments, the lemma holds. Q .E .D.  

Henceforth we consider the order  of the vemces  of each P,(Q~) with respect to its 
walk from sl(s2) to tl(tz). ~ P 2  imphes that every Q~ intersects every P~ 

At  least one of the three paths Qj does not contain either sl or ta; assume it is Q1. 
Assume that Qa intersects the P, for the first t~me in the order  Pa, P~, P3; otherwise 
rename the P,. Let v~, and w~, denote the first and last vertices on Q, whmh belong to P,. 

L~MMA 4.2. The last P-path whtch mtersects Q~ is P3. 
PROOF. Assume the last P-path which intersects Q1 is P,, t ~ 3. Then the path 

a,[s2; vl,,] * P,[v,,,; wl,,] * Q,[w,,,, t2] 

is disjoint to P 3 - a  contradictmn to ~ P 2 .  Q .E .D.  
LEMMA 4.3. Let vl E Qi fq P~, vz E Qi n P3, then Q~[v~, v3] intersects Pz. 
PROOF. Assume that Q~[vl, v3] is disjoint to Pz. By Lemma 4.2 Qa[wL3; t2] is 

disjoint to Pz. Thus the path 

Qa[s2; Vl.1] * Pi[v,.,; v,] * Q,[v,, v3] * P3[vz; wl.3] * Q,[wl.3; t2] 

is disjoint to P 2 - a  contradictmn to ~P2 .  Q .E .D .  
LEMMA 4.4. All the Q~ intersect the P, for the first time m the order P,, P~, P3. 
Remark. The vertices s, and t, belong to all the P,. In the case where a Q-path 

passes through s, or t, ,  it is regarded as intersecting the P, in the order  Pa, P2, P,. 
PROOF. The claim is true for Q, by definitmn We prove it for Q2. The proof  for Q3 

is similar. 
Assume that P2 is the first P, whmh intersects Q2. We first show that Q,[wa.z; t2] is 

disjoint to P,. Assume there exists a vertex x such that x E Q,[w,.~; t2] fq P,. Lemma 
4.2 implies that there exists a vertex y such t h a t y  ~ Q,[x; t2] N P3- Lemma 4.3 implies 
that Q,[x; y] N P2 ~ f~, contradicting the defimtmn of w,,2. Thus Qa[wL2; tz] N P, = ~ .  

Thus the path,  

Qz[s2; v2,2] * P2[v2,2; w,.z] * Q,[w,,z; t2] 

~s disjoint to P ~ - a  contradiction to -7p2. 
Similarly, ~t can be shown that Pa is not the first P, which intersects Qz. Thus the first 

P, which intersects Q2 is Pa. In a similar way we can show that P2 is the second P-path 
which intersects Q2, completing the proof.  Q .E .D .  

L~MMA 4.5. Lemmas 4.2 and 4.3 are valid for every Qj. 
PROOF. Implied immediately by Lemma 4.4. 
We choose now a planar representatmn of G such that P2 is reside the region R 

which is bounded by P1 and P3 (see Figure 3). We assume that the order  of vja on P~ is 
vm, vza, v3.~ (otherwise renumber  the Q~), 

LEMMA 4.6. The verttces sz and t2 are either outside R or on tts boundary. 
PROOF. Assume that s2 ~s inside R. (The proof for t2 ~s symmetric.)  s~ is inside the 

region bounded by Pa and P2 since all the Q~ intersect P~ first (Lemma 4.4).  
Consider the cycle 

C = Q1[$2; vl.~ ] * Pl[Vl.~;Sl ] * P3 * P~[ta; v3a] * Qz[v~,~;sz] 

(heavy lines m Figure 3). We show that C ~ Qz[v2,~; v2,2] = ~ .  
Lemma 4.4 implies that P3 f3 Q2[v2a; v2,z] = ~ .  
Assume that there exists a vertex u ~ P~[v~,~; s~] ¢q Q2[v~a; vz,2]. ~,2 is the first 
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7 S t -  o. 

FIG. 3 FIG 4 

intersection of Q2 with P2 13 P3. Since u precedes Vz.2 on Q2, Lemma 4.1 implies that 
Q2[v2,~; u] = PlZv2,1+ u]. Thus v1,1 E Q~ N Q2, a contradiction. Therefore Pl[vl,l ;sl] N 
Q2[v2,1; v2,2] = O .  Similarly Pl[tl; v3.~] N a2[v2,1; v2,2] = O .  Hence C N Q2[v2,1; v2,2] = 
0 .  But v2,1 and v2,2 are outside and inside the region bounded by C, respectively. Thus 
C N Q2[v~,l; v2,2] # O - a  contradiction. Q.E .D.  

LEMMA 4.7. The vertices wl,,; w2,,; w3,, are in this order on P,, for  i = 2, 3. (See 
Figure 4.) 

PROOV. We first prove the lemma for i = 3. The vertices v~,~, v2,1, v3,1 are in this 
order on Pj. Let us prove that Q~[v,,~; w~.3] is inside R (the region bounded by P1 and 
P3)- If Q~[vj,t; w,,3] leaves R through a vertex of Pi (P3) then it cannot enter R again 
either through P~ (P3) or through P3 (P0,  by Lemmas 4.1 and 4.5, respectively. 

Let G '  denote the planar subgraph of  G contained in R (including the boundary). 
The boundary of  R is the external face of G ' .  Since the paths Qj[vj,1; w~,3] and Qk[vk,1; 
w~,a], 1 --< ] < k -< 3, are disjoint, the case i = 3 is implied by Theorem 4.1. 

A similar argument shows that if wl,3, w2,3, and w3,3 are in this order on P3 then wl,2, 
w~,2, and wa,2 are in this order on P2. This proves the case t = 2. Q.E.D.  

The lemmas above enable us to complete the proof of Theorem 4.2. By Lemma 
4.6, s2 and t~ are either outside R or on its boundary and by Lemma 4.7 the vertices 
vl,~; v2,~; v3.1 and w~,3; w2,3; w3.3 are in this order on P~ and P3, respectively. 

Consider the four following paths (see Figure 4): 

11 = Ql[s2; vl,,] * Pl[vl,l; sl], 12 = Pz[sl; w1,3] * Ql[wl,z; t~], 
13 = Q3[t,; Wz,3] * P3[w3,3; tl], 14 = Pl[tl; Vz,,] * Q3[v3,1; s2]. 

Note that if s, is on P1, then Ql[s2; v1,1] and Qz[va,l; s2] are empty. 
The cycle 11 * I~ */3 */4 encloses a region denoted by F. Let 

Y, = 11 * / 4  - { s l ,  t , } ,  12 = 1 2 " / 3  - { s i ,  t , } ,  
J~ = t ,  • t2  - {s2 ,  t , } ,  .I4 = I3 • I~ - {s2 ,  t2}. 

(see Figures 4 and 5). 
T h e  vertices s~, s2, tl, t, are on the boundary of F in this cyclic order. Thus by 

assumption a of  the theorem, the exterior of F is not a face of G. Hence, at least one of 
the following cases occurs. 

Case 1 (2). There exist u ~ Jl(J3), v ~ J,(J,) and a path R(u,  v); all of Its vertices 
except u and v are outside of  F. In the first case the path Q(s2, t2) = Jl[S2; u] * R(u,  v) * 
J~[v; t2] is disjoint to P2, which is inside F (see Figure 5(a)). 

In case 2 let P(sl, tO = J3[s~; u] * R(u,  v) * J,[v,  tl] and let Q(s2, t2) = Q2[s2; v2.2] * 
P,[v,.2; we.s] * Q2[w2,,; t,] (see Figure 5(b)). 
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R(u,v) R(u,v) 

s~ d 3 ~ l ~ d  4 
sl ~ tl 

ta tz 
(o) (b) 

Fro. 5 

Similar  a r g u m e n t s  to those  which  were  used  to show tha t  P~[v~,~; s~] f3 Q2[v2a; v2,2] = 
Q5 in the  p r o o f  of  L e m m a  4 .6  can  be  used  he re  to  show tha t  P f3 Q2[s2; v~,2] = (~. 
L e m m a  4 .7  ( for  i = 2) impl ies  t ha t  w2,2 4 ~ s~, t~ and  t h e r e f o r e  P (-I P2[v2,2; w2,z] = ~ .  I t  
fol lows direct ly  f rom L e m m a  4 .5  and  the  def in i t ion  of  wz,~ t ha t  P ~ Qz[w2,~; t2] = ~ .  
Thus  P O Q = ~ .  H e n c e ,  in b o t h  cases P 2  is t r u e - a  con t r ad i c t ion .  Q . E . D .  

THE ALGORITHM 

The algorithm actually follows the hnes of Theorem 4 1 and the proof of Theorem 4 2 

1 If st. s~, t~, t~ are on the same face F of G m this cychc order, then ~P2,  stop 
2 FAd three &sjomt paths P,(s~, tt) and three &sjomt paths Qj(s2, t2) 
3. Change the P, such that if u, v E Qj f"l P, and Qj[u, v] - {u, v} N Pk = O fork = 1, 2, 3, then P,[u; v] = 

Q~[u, v] (see Lemma 4 1) A hnear implementation of this step is gwen later 
4. Scan each of the Qj checkmg the followmg condmons 

a Qj Intersects every P, 
b. All the Qj mtersect the P,, for the first time, m the same order (say, P~, P2, P3) 
c Pa is the last P-path mtersected by Q~ 
d If u E Pt A Qj, v ~ P3 N Q~, then Qj[u, v] mtersects Pz 
In case any of these condmons is vtolated, construct two disjoint paths P(s~, t~) and Q(s2, t~) according to 
the proof of the appropriate lemma (one of 4 2, 4 3, 4 4, 4 5) While scannmg the Qj, determme the 
vertices vj.i, w~., 

5 If there exists a path Q(s2, t2) m G - P2, stop. The desired paths are Q and P2 (G - P2 is obtamed by 
remowng the vertices of P2 from G ) 

6 Let Q(s2, t~) = Q2[s2, v2.2] * P2[v2.z, w~.2] * Q2[wz.2, t2] FAd a path P(sl, tO in G - Q The desired paths 
are Q and P 

The  val idi ty  of s teps  5 a n d  6 can  be  easdy  de r ived  f rom the  e n d  of  the  p r o o f  of  
T h e o r e m  4.2.  

THE COMPLEXITY OF THE ALGORITHM. We p r o v e  now tha t  the  a l g o r i t h m  IS l inear .  
W e  a s sume  tha t  G is p l a n a r  and  its faces are g iven.  A n y w a y ,  this  is the  o u t p u t  of  the  
l inear  p lanar i ty  tes t ing  a l g o r i t h m  of  H o p c r o f t  and  T a r j a n  [5, 10]. S teps  1, ~l, 5,  a n d  6 
are  obvious ly  l inear .  S tep  2 is p e r f o r m e d  by app ly ing  flow t e c h n i q u e s  [2]. I t  is l i nea r  
since only t h r e e  a u g m e n t i n g  pa ths  a re  r e q m r e d  for  f ind ing  t h r e e  d i s jo in t  pa ths .  

A s t r a ]gh t fo rward  i m p l e m e n t a t i o n  of  s tep  3 r equ i res  O(n 2) ope ra t i ons .  In  the  
fol lowing we give a l inea r  i m p l e m e n t a t i o n  of  it which  yields the  l inear i ty  of  the  who le  
a lgo r i thm.  

This  i m p l e m e n t a t i o n  a n d  its l inear i ty  p r o o f  a re  technica l ly  comp l i ca t ed  and  are  no t  
g iven  in a full de ta i l ed  fo rm.  H o w e v e r ,  an  exact  fo rma l  i m p l e m e n t a t i o n  and  h n e a r i t y  
p r o o f  can  be  der ived  f rom this  desc r ip t ion  qu i te  easily.  

A LINEAR IMPLEMENTATION OF STEP 3 
Defini t ion.  A ver tex  v ~ V is a cross vertex if it is e i t h e r  an  e n d  ve r t ex  of  a m a x i m a l  
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c o m m o n  subpath (def ined in the p roo f  o f  L e m m a  4.1)  o r  s2 o r  t2. Hence fo r th  we 
consider  each Qj(s2, t2) as going f rom left to right (s2 is lef tmost) .  

With  every  cross ver tex  on Qj,  we associate a left pointer and a right pointer to the 
closest  cross vert ices on Qj to its left  and r ight ,  respect ively.  

The re  are  two types of  pointers .  A pointer  f rom u to v is a continuous pomter if u 
and v are  end  vert ices  of  the same maximal  c o m m o n  subpath.  Otherwise  it is a jumping 
pointer (see Figure  6).  

If  a couple  of  cross ver t ices  u,  v E Qj I't P, are  point ing one  to the o ther  by jumping  
pointers ,  then Q,[u; v] f') Pk = Q5 for k 4 i. Thus  P~[u; v] should be replaced  by Q,[u; 
v]. Such a couple  u,  v is a candidate couple and it is s tored  in a replacement list. 

A genera l  scheme of  the  imp lemen ta t ion  of  s tep 3 is as follows: 

1 (lmtiahzatlon,) Whde scanning the Qj, set the pointers of the cross vertices and put candidate couples into 
the replacement hst. 

2. Take a candidate couple (u, v) out of the replacement list. If there is no such couple-stop 
3. If u and v do not belong to the same P ,  return to 2. 
4 Scan P~[u; v] from u to v, excluding u and v Let w denote the current vertex m this scanning 
5. Delete w from P,. 
6. If w is a cross vertex, then connect left (w) and right (w) through the appropriate pointers. (w is no longer 

a cross vertex ) In the case where left (w) and right (w) belong to the same Pi, (left (w), right (w)) is added 
to the replacement hst in the case where left (w) (right (w)) is a continuous pointer, then the next current 
vertex m the scanmng of Pt[u; v] is left (w) (right (w)) 

7 Change ngh¢ (u) and left (v) into continuous pointers If left (u) or right (v) are continuous pointers, 
update the pointers approprtately. 

S tep  3 is r equ i red  since a coup le  which was put  into the r ep lacemen t  list may cease 
be ing  a candida te  couple  because of  changes  o f  the P,. The  couples  (u, v) and (x, y)  in 
Figure  6 are  put  into the  r ep l acemen t  list at step 1. If we t reat  (u, v) first, then (x, y) is 
not  a candida te  couple  a n y m o r e .  

W e  give  n o w  the  main  a rgumen t s  for  a l inear i ty  p roo f  o f  this implemen ta t ion .  It is 
easy  to  see  that  the  ini t ial izat ion is l inear .  A ver tex  of  P, which is not  in any of  the Qj is 
t rea ted  at  most  once  (s tep 5),  since af ter  its de le t ion  f rom P, it would  never  en ter  any 
o f  the Pk (only  vert ices  o f  the  Qj may  en t e r  the P~). 

Ver t i ces  o f  the Qj which a re  not  cross ver t ices  are  not  t rea ted  af ter  the init ial ization.  
A cross ver tex  w is t rea ted  on ly  if it be longs  to Pi[u ; v] for  some couple  (u, v) in the  
r e p l a ~ t t e n t  list. I f w  4: u ,  v it ceases  f rom being  a cross ver tex and the n u m b e r  of  cross 

QI 

-7, I . . . . . . . .  

a continuous pointer 
~ - - - - ~  a l u ~ i n g  pointer 

Fro. 6 
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vertices is reduced by one. Al though treating u and v may not reduce the  number  of 
cross vertices it always reduces the number  of maximal common subpaths,  which does 
not exceed n. The treatment  of a smgle cross vertex requires a constant number  of  
operat ions.  Thus, the whole implementat ion is linear. 

5. Chordal Graphs 

An undirected graph G = (V, E) is chordal if every cycle of length n ~_ 4 has a chord,  
i.e. an edge between two of its nonadjacent  vertices. For  applications of chordal graphs 
see [9]. 

A set S C V is a separating set if the deletion of the vertices of  S from G yields an 
unconnected graph. A separating set S is minimal if there is no separating proper  
subset of S. A path is minimal if there is no edge between nonadjacent  vertices of it. 

THEOREM 5.1. Every minimal separatmg set in a chordal graph is a clique. (See [9].) 
THEOREM 5.2. I f  G is a 3-connected chordal graph, UVP2(si, tl; s~, tz; t7) holds for 

any four vertices sl, ti, s~, and t2. 
PROOF. Assume ~UVP2(sl, tl; s2, t2; G). Let P(sl, tl) be a minimal path which 

neither passes through s2 nor through t2. (There exists such a path since G is 3- 
connected.)  The vertices of P form a separating set S between s2 and tz. Let  S'  C S be a 
minimal separating set between s2 and tz. [S't >-- 3 since G is 3-connected.  By Theorem 
5.1 S' is a c l i q u e - a  contradiction to the mimmality of P. Q .E .D .  

Theorem 5.2 suggests a simple algorithm to find disjoint paths P~(s~, t~) and P~s2, t~) 
in a 3-connected chordal graph G. 

THE ALGORITHM 

1. Fred a shortest path Pl(sl, tl) in G - {sz, t2} 
2. Find a path P~(s2, t2) in G - PI. 

The validity of the algorithm is easily derived from the proof of  Theorem 5.2. The 
algorithm requires O(IEI) operations.  
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