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PAPER

A K-Best Paths Algorithm for Highly Reliable

Communication Networks∗

Shi-Wei LEE† and Cheng-Shong WU†, Nonmembers

SUMMARY In highly reliable communication network de-
sign, disjoint paths between pairs of nodes are often needed in
the design phase. The problem of finding k paths which are as
diverse as possible and have the lowest total cost is called a k-best
paths problem. We propose an algorithm for finding the k-best
paths connecting a pair of nodes in a graph G. Graph exten-
sion is used to transfer the k-best paths problem to a problem
which deploits well-known maximum flow (MaxFlow) and mini-
mum cost network flow (MCNF) algorithms. We prove the k-best
paths solution of our algorithm to be an optimal one and the time
complexity is the same as MCNF algorithm. Our computational
experiences show that the proposed algorithm can solve k-best
paths problem for a large network within reasonable computation
time.
key words: K-best paths, disjoint paths, reliable network design

1. Introduction

Two kinds of path finding procedures are often needed
in the design of reliable communication networks. The
first one is to find k shortest paths between a pair
of nodes. Those paths may be simple or allow loops.
For the k shortest simple paths problem, Lawler pro-
posed the best known algorithm in computation order
O(k(m + n logn)) in undirected graphs [8], where n
and m are the number of nodes and links of the input
network. For the directed counterpart, Katoh et al.
gave the best known bound in O(kn(m + n logn))[7].
Recently Eppstein developed an efficient algorithm for
finding the k shortest paths allowing loops in O(m +
n logn+ k) [5].

The other kind of path finding procedure is about
disjoint paths. In [6], the authors proved that to find
the maximum disjointed paths with length constraints
(hop limitation) for hop count h ≥ 5 is an NP-complete
problem. Due to the intractable characteristics of the
problem, several literature published on the k-shortest
link-disjointed paths problem with unity link cost and
hop limitation employed heuristic methods based on
matrix multiplications [10], [13], [14].

The network reliability is not guaranteed by using
the method in [13], [14] because the number of link-
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disjointed paths is over estimated. Oki et al. proposed
a modified matrix multiplication method which used a
recursive matrix-calculation (RM) method to get the
link-disjointed paths [10]. The computation complex-
ity for [10] is O(khM(n)) for getting k link-disjointed
paths with hop limitation h. Matrix multiplication
needs M(n) computation time which is Ω(n2). The
authors suggest to use a super computer equipped with
vector processors to implement the RM method. In
our opinion, the computation time can be reduced to
O(km) by using Breadth First Search (BFS) in the path
search steps of the RM method.

In this paper, we focus on finding k-best paths
without hop limitation. The problem of finding k paths
which are as diverse as possible and have the lowest to-
tal cost is called a k-best paths problem. Dunn et al. [4]
proposed a successively shortest path algorithm which
is not only a heuristic method but also may even overes-
timate the number of link-disjointed paths. Suurballe
et al. [11] gave an algorithm for finding two disjoint
paths. Castanon [3] gave an O(n3 logn) algorithm for
finding the k-best disjoint paths by using minimum cost
network flow (MCNF) algorithm. However, the algo-
rithm can only be applied in a trellis graph. Recently
Nikolopoulos et al. [9] provided an algorithm to trans-
fer an arbitrary graph to a trellis graph and then to
obtain the k-best paths by Castanon’s Algorithm. The
computation time for the transformation is not given
in their paper. However, in our observation, one has to
transform a graph with n nodes to a corresponding trel-
lis graph containing n2 nodes in the worst case. Thus,
the computation time to get the k-best paths in [9] is
O(n6 log n). In addition, the solution provided by [9] is
not optimal since the algorithm is only a heuristic one.

In this paper, we propose a k-best paths (KBP)
algorithm for arbitrary networks. In particular, graph
extension is used to transfer the KBP problem to
a problem which deploits well-known maximum flow
(MaxFlow) and minimum cost network flow (MCNF)
algorithms. For any input digraph, we prove that our
KBP algorithm can output k-best paths optimally in
O(c(n,m, k)), where c(n,m, k) is the time complexity
for minimum cost network flow algorithm for a graph
with n nodes, m links, and k units of flow.

If the desired number of paths, k, is larger than
the maximum number of mutually disjointed paths the
network can support, the k-best paths algorithm should
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output the k paths with the lowest total cost and min-
imum number of common nodes. Although [9] tries
to deal with this issue, only networks with cutpoints†

are considered and the algorithm can not be applied to
arbitrary networks.

The paper is organized as follows. In Sect. 2, re-
lated notation and graph transformation are described.
Section 3 gives the KBP algorithm and its verification.
Section 4 analyzes the time complexity for KBP algo-
rithm. Some computational experiences are presented
in Sect. 5. Finally, we give a brief conclusion in Sect. 6.

2. Background

Let G(N ,L) be a directed network, where N =
{1, ..., n} is a finite set whose elements are called nodes
and L = {1, ...,m} is a finite set whose elements are
called arcs or links. Each link l is defined by an or-
dered pair (i, j) of nodes, where i is the tail node and j
is the head node. In what follows we assume that i 6= j,
for any arc (i, j) ∈ L.

Let s ∈ N and t ∈ N be two distinct nodes
of G. A path p from s to t in G is a se-
quence of nodes and arcs of the form p = {s =
n1, (n1, n2), n2, . . . , nk−1, (nk−1, nk), nk = t}.

Let ci,j be a nonnegative cost value associated with
link (i, j) ∈ L and let c(p) =

∑
(i,j)∈p ci,j be a function

which associates a nonnegative cost to the path.
Let PG be the k-best paths output from the KBP

algorithm. PG = {p1, p2, . . . , pk}. Total cost for the
solution PG is defined as C(PG) =

∑
p∈PG c(p).

Note that, although in what follows the input
graph G is a digraph, any undirected graph can also
be applied to KBP algorithm by applying the trans-
forming technique to become a directed one [1]. The
computation complexity for an undirected graph still
remains the same order as a directed one.

Throughout the paper, we assume the desired
number k is greater than one. For k being equal to
one, k-best paths problem is just the same as the short-
est path problem. Following notation is needed in our
algorithm.

Notation:
N ,L: [node, link] set in digraph G
k: the number of desired best paths
n,m: number of [nodes, links] in graph G
s, t: [source, termination] node
G1: graph obtained from G by letting link capacity to

be unity
G2: graph obtained from G by splitting every node of

G1 into two nodes and adding an artificial link be-
tween the splitted nodes

G3: graph obtained from G1 by adding additional ar-
tificial nodes and links

Nl: number of maximum link-disjointed paths in G
Nd: number of maximum mutually disjointed paths in

G
M: a big number
MaxFlow(G, s, t): maximum flow algorithm on G be-

tween s and t
MCNF(G, k, s, t): minimum cost network flow for in-

put graph G and k unit flow supplied between s
and t

PG: k-best paths output from KBP algorithm.
PG2: k paths output from MCNF for graph G2

PG3: k paths output from MCNF for graph G3

Before presenting the algorithm, let us first clarify
the following terminology:

mutually disjointed paths: Paths that are both
node-disjointed and link-disjointed for each other.

link-disjointed paths: Paths that are link-disjointed
for each other.

K-best paths algorithm: Algorithm for finding k
paths with lowest total link cost between a source-
termination pair. These k paths are mutually dis-
jointed if there exists such k mutually disjointed
paths in graph G; otherwise the algorithm is to
find k link-disjointed paths with the least number
of nodes jointed.

in-degree: Number of links entering the interested
node.

out-degree: Number of links leaving the interested
node.

Several graphs denoted G1, G2, G3 are needed in
the KBP algorithm. Input Graph G is a digraph with
non-negative link cost. Graph G1 is obtained from G
by setting the link capacity to be unity while reserving
the same network topology. The reason for assigning
unity link capacity in G1 and other graphs used in the
paper is to enforce the mutual exclusivity constraints
such as link-disjointed or node-disjointed when we ap-
ply MaxFlow or MCNF algorithms to the graphs.

Graph G2 is also obtained from graph G (Fig. 1).
For every node in set N − {s, t}, if min{in-degree,
out-degree} ≥ 2, the node, say j, is splitted into two
nodes and an artificial link is added between the two

Fig. 1 Node splitting for graph G2.

†A vertex is called a cutpoint if the network becomes
disconnected when the vertex is removed. A network with
cutpoints is a network which becomes disconnected if any
one of the cutpoints is removed.
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Fig. 2 Node splitting for graph G3.

nodes to form a complex node j′. The link cost of ar-
tificial link is set to be zero. The capacity of every link
including the artificial one is set to be unity.

Graph G3 is derived from G1. For each node
in set N − {s, t} , say node j, one of the two cases
may happen. If min{in-degree, out-degree} = 1, no
additional process is needed. In the other case, if
min{in-degree, out-degree} ≥ 2, the node is splitted
into three sub nodes and three links are added to form
a complex node j′ as shown is Fig. 2 . One sub node,
say i, is connected to all incoming links, while the other
one, say o, is connected to all outgoing links. An ar-
tificial link with the cost of zero and unity capacity
is added to connect sub node i and sub node o. The
other two artificial links have link cost M/2 and capac-
ity d = min{in-degree, out-degree, k} − 1, where M is a
big number greater than

∑
{i,j}∈L ci,j .

We define a mapping from paths obtained from
graphG2 toG, denoted PG ←− PG2, by replacing paths
through node j′ to node j. The same definition is also
applied to mapping paths between PG3 and PG.

3. The KBP Algorithm

The algorithm is stated in Fig. 3.
Since the capacity of each link in G1 is set to be

unity, each link can be selected at most once when ap-
plying the MaxFlow algorithm to graph G1. Thus, step
2 gives us the maximum number of of the link-disjoited
path in G1.

Similarly, because only single unit of flow can pass
through complex node j′ in G2, step 8 gives us Nd, the
maximum nuber of the mutually disjointed paths. In
the case of k ≤ Nd, we can just run the MCNF al-
gorithm on G2 to find the k-best mutually disjointed
paths on step 11. However, if k > Nd, the number of
the mutually disjointed paths is less than k, i.e., there
must be some node-jointed paths in the output of the
algorithm. Assigning big M on the cost of the artificial
links in the complex node in G3 forces the MCNF algo-
rithm not to choose a node more than once unless there
are no other path to transfer the flow. Thus, steps 17–
19 give us the k-best paths in which some of them are
node jointed.

Algorithm KBP(G, k, s, t):
Begin
1. Get G1 from G;
2. Nl=MaxFlow(G1, s, t);
3. If k > Nl
4. return(’Cannot find k link-disjointed paths in G’);
5. Else
6. Begin
7. Get G2 from G;
8. Nd=MaxFlow(G2, s, t);
9. If k ≤ Nd
10. Begin
11. Get PG2 by running MCNF(G2, k, s, t);
12. PG ←− PG2; /*mapping PG2 to PG*/
13. return(PG); /*K-best paths found, all of

them are mutually disjointed */
14. End
15. Else
16. Begin
17. Get G3 from G1;
18. Get PG3 by running MCNF(G3, k, s, t);
19. PG ←− PG3; /*mapping PG3 to PG*/
20. return(PG); /*K-best paths found, some of

them are node jointed */
21. End
22. End
End.

Fig. 3 K-best paths algorithm.

3.1 Verification of KBP Algorithm

Definition 1: The number N(PG) for path set PG is
defined as

∑
v∈N [Nv(PG)− 1]+, where Nv(PG) is total

number of paths in PG through node v and [x]+ =
max{x, 0}.

Note that N(PG) is just the number of common
nodes used by paths in PG.

Before giving lemma and theorems, we first em-
phasize the following two equations are true between
any path sets PG and its corresponding PG2 and PG3.

C(PG2) = C(PG)
C(PG3) = N(PG)×M + C(PG)

Since the big M is a big number greater than∑
{i,j}∈L ci,j , the following inequality also holds.

N(PG)×M ≤ C(PG3) < (N(PG) + 1)×M

Lemma 1: If k mutually disjointed paths can be
found in G, then the algorithm KBP outputs the opti-
mal solution.

Proof: Let PG be the output from KBP algorithm.
Let lemma 1 be false. Assume that there exists another
solution P̄G such that C(PG) > C(P̄G). Since the cost
of artificial edge in G2 is zero, C(PG) = C(PG2). For
graph G2, C(PG2) ≤ C(P̄G2) = C(P̄G) always holds
because C(PG2) is obtained from minimum cost flow
algorithm. We have a contradiction. 2
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Lemma 2: If PG3 is an optimal solution got from
MCNF for graph G3, N(PG) is minimum.

Proof: Let lemma 2 be false. There exists P̄G such
that N(P̄G) < N(PG). Since PG is optimal, N(PG) ×
M ≤ C(PG3) ≤ C(P̄G3) < (N(P̄G)+1)×M. Therefore,
N(PG) < N(P̄G) + 1, a contradiction. 2

Lemma 3: PG3 is optimal to graph G3 if and only if
PG has minimum N(PG) and minimum C(PG).

Proof: We first prove the only if part. Since PG3 is op-
timal to graph G3, N(PG) must be minimum by lemma
2. Let C(PG) not be minimum. Then there exists op-
timal P̄G to G with C(P̄G) < C(PG). From lemma
2, N(P̄G) = N(PG). Therefore, we have C(P̄G3) =
N(P̄G)×M+C(P̄G) < N(PG)×M+C(PG) = C(PG3)
which is a contradiction. Hence C(PG) must be mini-
mum.

For the if part, assume P̄G3 is optimal to graph
G3. C(P̄G3) = N(P̄G)×M + C(P̄G) ≥ N(PG) ×M +
C(PG) = C(PG3). Therefore, PG3 is also optimal. 2

Theorem 1: If input graph G has k-best paths, algo-
rithm KBP outputs one optimal solution.

Proof: Immediate from Lemma 1 and Lemma 3. 2

4. Computational Complexity

Theorem 2: KBP algorithm generates the k-best
paths at a computational effort of O(c(n,m, k)).

Proof: The computational effort in each step of KBP
is analyzed as follows.

Step 1. Graph G1 can be obtained in O(m).
Step 2,8. Both of them can be performed in
O(min {n2/3m,m3/2}) time because both graph
G1 and G2 have O(n) number of nodes and O(m)
number of links which have all unity link capacity.

Step 7,17. Graph G2, G3 can be obtained in O(n).
Step 11,18. Since graph G2 and G3 have O(n) num-

ber of nodes and O(m) number of links, the
computational complexity of MCNF algorithm is
then denoted by O(c(n,m, k)). The best known
algorithm for MCNF is O(min{A1, A2, A3}),
where A1 = nm log (n2/m) lognM , A2 =
nm(log log k) log(nM) and A3 = (m logn)(m +
n logn)} [1].

The analysis shows the computational effort domi-
nated by minimum cost network flow algorithm, i.e.
O(c(n,m, k)). 2

5. Experimental Results

We apply our algorithm to graphs generated by GRID-
GEN, a program generating random graph developed
by [15]. The codes of maximum flow algorithm, ε-
Relax-MF and the minimum cost network flow algo-
rithm, RELAX-IV, can be found in [15] and [16].

Table 1 Experimental results.

n m k mutually disjointed CPU time (sec)
100 1000 8 Y 6.714
100 1000 9 N 6.781
100 2000 20 Y 10.448
100 2000 23 N 10.465
100 3000 27 Y 11.049
100 3000 33 N 11.196

200 4000 21 Y 11.849
200 4000 22 N 11.882
200 5000 23 Y 12.516
200 5000 24 N 12.549
200 6000 28 Y 13.199
200 6000 31 N 13.345

400 12000 29 Y 14.478
400 12000 30 N 14.568
400 14000 31 Y 15.681
400 14000 33 N 15.864
400 16000 36 Y 16.999
400 16000 38 N 17.232

The program is written by FORTRAN and runs
on IBM RS6000 machine. Table 1 summaries the com-
putational results. We show the CPU time (in second)
and whether the output k-best paths are mutually dis-
jointed or not for different number of nodes (n), links
(m), and desired number of disjoint paths (k). The ex-
perimental results show the KBP algorithm can solve
k-best paths problem for a large network within rea-
sonable computation time.

6. Conclusions

In this paper, a KBP algorithm which solves k-best
paths problem for highly reliable communication net-
work is proposed. KBP algorithm generates the k-best
paths at a computational effort of O(c(n,m, k)). The
solution output by KBP is a real optimal solution for k
disjoint paths and it is very useful for planning highly
reliable communication networks.
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