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Abstract— In a WDM optical network, each fiber
link can carry a certain set of wavelengths Λ =
{λ1, λ2, . . . , λW }. One scheme for tolerating a single link
failure (or node failure) in the network is the path
protection scheme, which establishes anactive path and
a link-disjoint (or node-disjoint) backup path, so that in
the event of a link failure (node failure) on the active
path, data can be quickly re-routed through the backup
path. We consider a dynamic scenario, where requests to
establish active-backup paths between a specified source-
destination node pair arrive sequentially. If a link-disjoint
(node-disjoint) active-backup path pair can be found at the
time of the request, the paths are established; otherwise,
the request is blocked. In this scenario, at the time a
request arrives, not every fiber link will have all W
wavelengths available for new call establishment, as some
of the wavelengths may already have been allocated to
earlier requests and communication through these paths
may still be in progress. We assume that the network nodes
do not have any wavelength converters. This paper studies
the existence of a pair of link-disjoint (node-disjoint)
active-backup paths satisfying the wavelength continuity
constraint between a specified source-destination node pair.
First we prove that both the link-disjoint and node-disjoint
versions of the problem are NP-Complete. Then we focus
on the link-disjoint version and present an approximation
algorithm and an exact algorithm for the problem. Finally,
through our experimental evaluations, we demonstrate
that our approximation algorithm produces near-optimal
solutions in almost all of the instances of the problem in
a fraction of the time required by the exact algorithm.

I. I NTRODUCTION

Survivability of high bandwidth optical networks has
emerged as an important area of research in recent years
due to its tremendous importance as a national and
international infrastructure for moving large volumes of
data. Failure of any part of this infrastructure, either due
to natural causes or malicious attacks is bound to have
a significantly large adverse impact on the economy.
In the last few years researchers have been examining
survivability issues in WDM networks [1], [2], [5], [17],

[7], [14], [18], [19], [21], [22], [26], [30], [31], [32]. Two
techniques,protectionat the WDM layer andrestoration
at the IP layer have emerged as the two main con-
tenders for fault management in optical networks [20],
[25]. Protection refers to pre-provisioned failure recovery
(usually hardware based) whereas restoration refers to
more dynamic recovery (usually software based) [10],
[9]. Between the two schemes, protection is typically
faster and normally offers single link failure and single
node failure protection. The protection schemes can be
divided into link protection, path protection[22], [23],
and partial path protectionschemes [11], [29]. Path
protection can be further subdivided intoshared path
protection and dedicated path protection [22], [23].
In the shared path protection scheme, spare capacity is
shared among various backup paths whereas in dedicated
path protection, spare capacity is reserved for each
individual source-to-destination path and no sharing of
this capacity is allowed [12].
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Fig. 1. Active and backup paths in a WDM network are link-disjoint.

In optical networks, cuts in fibers are considered to
be one of the most common failures, while failures of



routers are also possible. In the dedicated path protection
scheme, an alternate path is maintained in a stand-
by mode for every source-destination path used for
data transmission. These paths are referred to as the
secondaryor backup path and theprimary or active
path, respectively. Fig. 1 shows a WDM network (with
8 nodes and10 links) and2 existing connections. The
active and the backup paths between the nodesa andd
area-b-d on wavelengthλ1 anda-f -d on wavelengthλ2,
respectively. The active and the backup paths between
the nodesf and h are f -g-h on wavelengthλ2 and f -
d-h on wavelengthλ1, respectively. Clearly, in order to
tolerate any single link (node, respectively) failure, the
backup path should not be sharing any fiber link (node,
respectively) with its corresponding active path. Thus
the backup path should belink-disjoint (node-disjoint,
respectively) with the active path.

In this paper we study the following problem: Con-
sider a WDM network where each fiber can carryW
wavelengthsΛ = {λ1, λ2, . . . , λW }. A lightpath [4],
[15] is established between a source-destination node
pair when a request for such a path arrives and ap-
propriate network resources are available. For reasons
of survivability, following the dedicated path protection
strategy, we try to establish a primary (active) as well as a
secondary (backup) path. If sufficient network resources
are available at the time the request arrives, the active-
backup path pair is established, otherwise the call request
is blocked. We assume that the nodes do not have wave-
length converters1 and as a consequence, the active path
must maintain the same wavelength throughout the entire
path. The same is true for the backup path, although
it may be using a different wavelength. In the WDM
research community, this is known as thewavelength
continuity constraint. We point out that computing a pair
of active-backup paths with shared protection is more
complicated than the case with dedicated protection.
Therefore the NP-completeness of the problem with
dedicated protection gives a strong indication of the
hardness of the problem with shared protection.

Consider a situation where a request to establish
an active-backup path pair arrives at timeT . At time
T , several active-backup path pairs may already be in
existence. Accordingly, not every fiber link will have
all W wavelengths available for the establishment of
the new paths. It is possible that link 1 may have only
wavelengths{λ1, λ3} available, link 2 may have only

1The use of wavelength converters is considered expensive in
current WDM networks. Also, as shown in the appendix, the disjoint
paths problems can be solved in polynomial time in WDM networks
with wavelength converters, while the disjoint paths problems are
NP-complete in WDM networks without wavelength converters.

wavelengthλ2 available, and so on.
We refer to the problem under study in this paper as

the Disjoint Path Problem under Wavelength Continuity
Constraint (DPPWCC). Informally, it can be stated as
follows: Given a setΛ(e) ⊆ Λ of wavelengths available
on each linke, is it possible to establish an active and a
backup path between a specified source-destination node
pair satisfying the wavelength continuity constraint?

As discussed earlier, for link survivability (node
survivability, respectively), the active and the backup
paths should be link-disjoint (node-disjoint, respec-
tively). Therefore there is a link version (LDPPWCC)
and a node version (NDPPWCC) of the DPPWCC
problem. The following approach may be considered for
solving the DPPWCC problem. First, consider a network
comprising of only those links where wavelengthλ1 is
available for call establishment. If this network has two
link-disjoint (node-disjoint, respectively) paths between
the specified source-destination node pair, then we have
a solution for the DPPWCC problem2. If this network
does not have two link-disjoint (node-disjoint, respec-
tively) paths between the specified source-destination
node pair, then this process can be repeated for other
wavelengthsλ2 and λ3 etc. If one of them finds the
disjoint paths, we have a solution for the DPPWCC
problem. It may be noted that if any one of the attempts
succeeds,both the active and the backup paths will be
established using thesamewavelength. However, it may
be noted that it isnot necessarythat the active and
the backup paths use the same wavelength. It may be
possible to establish the active path using wavelength
λ2 and the backup path using wavelengthλ1, as in the
case of the connection between nodesf andh in Fig. 1.
This situation is certainly more complex than the one
where both the active path and the backup path use
the same wavelength. As will be seen in this paper,
under this situation both the LDPPWCC problem and
the NDPPWCC problem are intractable.

The objective of this paper is to specifically tackle
the DPPWCC problems. We show that the disjoint
path computation problem with wavelength continuity
constraint is NP-Complete, a commonly held belief in
the WDM networking research community. This formal
proof validates the study of heuristics and integer linear
programming (ILP) formulations. We also design an
enhanced version of the commonly used active path
first heuristic and present simulation results showing
that our new heuristic finds optimal solutions in99.8%

2The existence of a pair of disjoint pathson the same wavelength
can be solved in polynomial time using Suurballe’s algorithm [27],
[28].



of the cases tested, while using only a fraction of the
time required by the integer linear programming based
algorithm. The rest of the paper is organized as follows.
Section II provides some background in related areas.
Section III states the problems in a formal setting. Sec-
tion IV presents the complexity result for the problems.
Sections V and VI provide an approximate and an exact
solution for the link version of the LDPPWCC problem.
Section VII compares the results between the exact and
the approximate solutions and Section VIII concludes the
paper.

II. RELATED WORK

Although several researchers in the last few years have
published a significant number of papers on survivability
issues in WDM optical networks [1], [2], [5], [17],
[7], [14], [16], [18], [21], [22], [26], to the best of our
knowledge, the topic of this paper, the complexity of
the disjoint paths problem with wavelength continuity
constraint, remains open. Although many researchers in
the area believe that the problem is NP-Complete [6],
[3], there is no formal proof available in the literature.
A major contribution of this paper is to provide for the
first time a formal proof that the problem indeed is NP-
Complete [8].

Recently, Hu [12] published NP-Completeness results
related to diverse routing in optical mesh networks [3].
Although at a first glance it may appear that the problems
discussed in [12] are the same as the problems discussed
in this paper, they are in fact significantly different.
In this paper we consider the case where each link
can carry only a certain subset of the wavelengths, and
ask whether a disjoint pair of active-backup lightpaths
satisfying the wavelength continuity constraint can be
established between a specified pair of nodes. In the
problem studied in [12], the logical topology of the
network is given as part of the input. This implies that
lightpaths have already been established between the
appropriate pairs of nodes. The objective of the problem
studied in [12] is not to try establish a new active-
backup lightpath pair, but to use thealready established
lightpaths to find link-disjoint active-backup paths be-
tween the specified source-destination node pair, subject
to the constraint that failure of a single physical link
would not disrupt both the active and the backup paths.
Even in thefiber disjoint path problemwhere only link
failures are considered, the objective is not to establish
a new pair of disjoint lightpaths, but to find a pair of
disjoint paths using the existing lightpaths. Moreover,
the wavelength continuity constraint, which plays a key
role in the problem under consideration in this paper, has
no role in the problem considered in [12].

In order to compute a pair of link-disjoint active-
backup lightpaths, the current literature uses what is
known as theshortest active path first(APF) heuris-
tic [6], [13], which first computes a shortest lightpath
as a candidate for the active path, then finds the shortest
lightpath that is link-disjoint from the candidate path.
Computational studies show that the APF heuristic is
quite effective in practice [6], but there is no performance
guarantee for the APF heuristic. The ILP formulation of
the problem can be used to find optimal solutions, but
solving an ILP may take exponential time in the worst
case. Thus ILPs are usually used only to solve problems
known to be NP-Complete or problems with unknown
complexity.

III. PROBLEM FORMULATION

A WDM network is modeled by an undirected graph
G = (V, E,Λ), where V is the set ofvertices, de-
noting nodes in the network;E is the set ofedges,
denoting links (or optical fibers) in the network;Λ =
{λ1, λ2, . . . , λW } is the set ofwavelengthsandΛ(e) ⊆
Λ is the set of wavelengths available at linke 3. We
will use vertices and nodes interchangeably, as well as
edges and links. We will usen and m to denote the
number of nodes and links, respectively, and useW to
denote the total number of wavelengths a link may carry.
Throughout this paper, we will assume that the network
G is connected. Thereforem ≥ n − 1. In our model,
each undirected link(u, v) in the network represents a
bidirectional link connectingu and v. Whenever a link
is used by a connection, it is occupied in both directions.

Definition 1: A lightpath P (s, t, λ) between nodes
s ∈ V and t ∈ V on wavelengthλ ∈ Λ is an s–t path
π(s, t) in G which uses wavelengthλ on every link of
pathπ(s, t). π(s, t) is called thebasepath of P (s, t, λ).

Since each link has many wavelengths, several light-
paths may pass through the same link. The failure of a
particular linke may affect many existing connections–
all the connections whose lightpaths use linke.

Link-Disjoint Path Pair with Wavelength Continuity
Constraint (LDPPWCC)

Instance:A graph G = (V, E, W,Λ), whereW repre-
sents the total number of wavelengths a link can carry,
Λ(e) ⊆ Λ = {λ1, . . . , λW } represents the set of available

3Note that Λ(e) is a function of time as the set of available
wavelengths at a particular link varies with time. In this paper, we
are interested in the establishment of a new connection at the time
instanceT when the request comes in. Therefore we assume that
Λ(e) is the set of available wavelengths on linke at timeT .



wavelengths on linke ∈ E; a source nodes and a
destination nodet.

Question: Is it possible to establish two link-disjoint
paths froms to t, such that both the paths satisfy the
wavelength continuity constraint?

Node-Disjoint Path Pair with Wavelength Continuity
Constraint (NDPPWCC)

Instance:A graph G = (V, E, W,Λ), whereW repre-
sents the total number of wavelengths a link can carry,
Λ(e) ⊆ Λ = {λ1, . . . , λW } represents the set of available
wavelengths on linke ∈ E; a source nodes and a
destination nodet.

Question: Is it possible to establish two node-disjoint
paths froms to t, such that both the paths satisfy the
wavelength continuity constraint?

Since our objective is to establish only two paths, and
each path is required to use same wavelength throughout,
at most two wavelengths will be needed for path estab-
lishment. When both the paths can be established using
the same wavelength, the problem reduces to finding two
disjoint paths in a graph, polynomial time solutions for
which are already well known [27], [28]. Accordingly, in
this paper we concentrate on the scenario where both the
paths cannot be established using the same wavelength.
Instead of considering allW wavelengths, we will only
considertwo different wavelengths at a time. We will use
λR andλB to denote the two different wavelengths under
consideration. This leads to the following two problems.

Link-Disjoint Path Problem with Wavelength Conti-
nuity Constraint and 2 Wavelengths (LDPPWCC2W)

Instance:A graphG = (V, E,Λ), associated with each
edge e ∈ E, is Λ(e) ⊆ {λR, λB}, indicating the set
of free wavelengths (channels) associated with linke; a
source nodes and a destination nodet.

Question: Is it possible to establish two link-disjoint
paths froms to t, such that one of the paths uses the
wavelengthλR and the other usesλB?

Node-Disjoint Path Problem with Wavelength Conti-
nuity Constraint and 2 Wavelengths (NDPPWCC2W)

Instance:A graphG = (V, E,Λ), associated with each
edge e ∈ E, is Λ(e) ⊆ {λR, λB}, indicating the set
of free wavelengths (channels) associated with linke; a
source nodes and a destination nodet.

Question: Is it possible to establish two node-disjoint
paths froms to t, such that one of the paths uses the
wavelengthλR and the other usesλB?

The following lemma shows that the simplification
from W wavelengths to2 wavelengths does not lose any
generality.

Lemma 1: LDPPWCC can be solved in polynomial
time if and only if LDPPWCC2W can be solved in poly-
nomial time. NDPPWCC can be solved in polynomial
time if and only if NDPPWCC2W can be solved in
polynomial time.

PROOF. LDPPWCC2W is a special case of LDPP-
WCC. Therefore LDPPWCC can be solved in poly-
nomial time only if LDPPWCC2W can be solved in
polynomial time.

Now assume that LDPPWCC2W can be solved in
polynomial time. To solve LDPPWCC, we can use
Suurballe’s algorithm to see if the two link-disjoint paths
can be established using the same wavelengthλ, for
some λ ∈ Λ. This can be done in polynomial time
since there are at mostW wavelengths and Suurballe’s
algorithm runs in polynomial time. If such a pair of paths
can be found in this way, we have a positive answer to
LDPPWCC. If such a pair of paths cannot be found in
this way, then there does not exist a pair of link-disjoint
paths both using the same wavelength. Next, we can
solve W (W − 1)/2 instances of LDPPWCC2W, using
all combinations ofλR and λB with λR, λB ∈ Λ. This
process will also take polynomial time, if LDPPWCC2W
can be solved in polynomial time. There exists a pair of
link-disjoint paths if and only if we can find such a pair
for one of theW (W − 1)/2 LDPPWCC2W instances.
Therefore if LDPPWCC can be solved in polynomial
time if LDPPWCC2W can be solved in polynomial time.
We can prove for the node version of the problems
similarly. 2

LDPPWCC2W (NDPPWCC2W, respectively) can be
viewed as a path finding problem where each link is
colored using either red, green or blue, where the colors
red, green and blue indicate that wavelengthλR, λB, and
both, respectively, are available for path establishment
on that link. We want to find two link-disjoint (node-
joint, respectively) paths from nodes to nodet such that
one path (called thered path) uses only red and green
links and the other (called theblue path) uses only blue
and green links. Formally, the problem can be stated as
follows:

Link Disjoint Path Problem in Graphs with Red,
Green, Blue Links (LDPPRGB)

Instance:A graph G = (V, E), where each linke ∈ E
is colored red, blue or green; a source nodes and a
destination nodet.



Question: Is it possible to establish two link-disjoint
paths froms to t, such that one of the paths uses only
the red and green links and the other uses the blue and
green links?

Node Disjoint Path Problem in Graphs with Red,
Green, Blue Links (NDPPRGB)

Instance:A graph G = (V, E), where each linke ∈ E
is colored red, blue or green; a source nodes and a
destination nodet.

Question: Is it possible to establish two node-disjoint
paths froms to t, such that one of the paths uses only
the red and green links and the other uses the blue and
green links?

Note that LDPPRGB is equivalent to LDPPWCC2W
and NDPPRGB is equivalent to NDPPWCC2W. In the
following section we will prove that both LDPPRGB
and NDPPRGB are NP-Complete. Therefore the prob-
lems LDPPWCC2W and NDPPWCC2W are also NP-
Complete. This in turn implies that the problems LDP-
PWCC and NDPPWCC are NP-Complete.

IV. COMPLEXITY ANALYSIS

We will consider a graph whose edges are colored by
one of the three colors: red, green and blue. Recall that
a red pathis a path whose links are either red or green,
and ablue pathis a path whose links are either blue or
green.

Theorem 2:The problem LDPPRGB is NP-
Complete.
PROOF. Clearly LDPPRGB is in NP, as one can verify
efficiently whether two paths are link-disjoint. In the rest,
we will prove that the problem is also NP-hard.

We give a polynomial time reduction from 3SAT to
LDPPRGB. Since 3SAT is NP-hard, this will prove the
theorem. The reduction maps a 3-CNF formulaφ (an
instance of the 3SAT problem) to an LDPPRGB instance
(G, s, t) so thatφ is satisfiable if and only ifG contains
a reds–t pathpR and a blues–t pathpB such thatpR

andpB are link-disjoint inG.
We describe the mapping in two steps, while illus-

trating the process with the sample 3SAT instanceφ =
(x̄1∨x̄2∨x̄3)∧(x̄1∨x2∨x3)∧(x1∨x2∨x3)∧(x̄1∨x2∨x̄3).

Step 1. Let L = {x1, x̄1, . . . xl, x̄l} be the set of
literals made from the variables{x1, x2, . . . , xl} in φ.
Let C = {C1, . . . , Ck} be the set of clauses inφ. Note
that we usel to denote the number of variables and use
k to denote the number of clauses.

We define a graphG1 in the following way: Create
vertices s and t. For each clause-literal pair(Ci, xj),

create two verticesuij1 andvij1 and a green edge con-
necting them. For each clause-literal pair(Ci, x̄j), create
two verticesuij0 and vij0 and a green edge connecting
them. For each variablexj , create two verticesuj andvj

and red edges(uj , u1j1), (uj , u1j0), (vj , vkj1), (vj , vkj0),
as well as red edges(vij1, ui+1j1) and(vij0, ui+1j0) for
i = 1, 2, . . . , k − 1. Finally we add red edges(s, u1),
(vl, t) and red edges(vj , uj+1) for j = 1, 2, . . . , l − 1.
The graphG1 corresponding to the sample formula is
shown in Fig. 2.

Red edges

Green edges

s

t

C4 :

C3 :

C1 :

w2

x1 x2 x3
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x1 x2 x3
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C2 :

u1 u2 u3

Fig. 2. G1 corresponding to the sample 3SAT instance.

From the construction ofG1 and Fig. 2 we can see the
following facts: There are2l different reds–t paths in
G1. Let pR be any reds–t path. For any variablexj , pR

either goes through all of the vertices corresponding to
literal xj and none of the vertices corresponding to literal
x̄j , or goes through all of the vertices corresponding to
literal x̄j and none of the vertices corresponding to literal
xj .

Step 2.Next we addk + 1 vertices and6k + 2 blue
edges toG1 in the following way to obtain graphG2:
Add verticesw0, w1, . . . , wk and blue edges(s, w0) and
(wk, t).

Let Ci be theith clause andαi be one of the three
literals in Ci. If αi is xj , we add two blue edges
(wi−1, uij1) and (wi, vij1); if αi is x̄j , we add two
blue edges(wi−1, uij0) and(wi, vij0). Therefore6k blue
edges are added in this way. The graphG2 corresponding
to the sample formula is shown in Fig. 3.
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Fig. 3. G2 corresponding to the sample 3SAT instance.

From the construction ofG2 as shown in Fig. 3 we
can see the following facts: There arelk different blue
s–t paths inG2. Let pR be any reds–t path inG2 and
pB be any blues–t path in G2 which is link-disjoint
with pR. For any variablexj , if pB goes through any
of the vertices corresponding to literalxj , thenpR must
go through all of the vertices corresponding to literal
x̄j . Similarly, if pB goes through any of the vertices
corresponding to literal̄xj , thenpR must go through all
of the vertices corresponding to literalxj .

It is clear that graphG2 can be constructed from
formula φ in polynomial time, sinceG2 contains4kl +
2l+k+3 nodes,2kl+3l+1 red edges,2kl green edges
and6k + 2 blue edges.

We now prove the desired result that(G2, s, t) con-
tains a pair of link-disjoint red and blues–t paths if
and only if φ is satisfiable. Let us first assume that
(G2, s, t) contains link-disjoint pathspR andpB, where
pR goes through only red and green edges and that
that pB goes through only blue and green edges. We
will define a truth assignment of the variablesf :
{x1, x2, . . . , xl} 7→ {TRUE, FALSE} so thatφ is true
under this assignment.

Let xj be any literal inφ. if pB goes through any of
the vertices corresponding to literalxj , thenpR must go
through all of the vertices corresponding to literalx̄j . In
this case, we assignf(xj) = TRUE.

If pB goes through any of the vertices corresponding
to literal x̄j , thenpR must go through all of the vertices

corresponding to literalxj . In this case, we assign
f(xj) = FALSE.

If pB does not go through any of the vertices corre-
sponding to literalxj or literal x̄j , thenpR goes through
either all of vertices corresponding to literalxj or all
the vertices corresponding to literalx̄j . In the former
case, we setf(xj) = FALSE. In the latter case, we set
f(xj) = TRUE. In short,pB goes through the vertices
wi and the edges(uij1, vij1) (with f(xj) = TRUE)
and edges(uij0, vij0) (with f(xj) = FALSE) in the
truth assignment. Since the blue pathpB goes through
the verticesw0, w1, . . . , wc in that order,φ is satisfied
with the above truth assignment.

Blue path
Red path

t

C4 :

w3

w2

w1

w4

x1 x2 x3

v1 v2 v3

x2 x3
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v230v231v220v221v210v211
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u330u331u320u321u310u311

v330v331v320v321v310v311

u430u431u420u421u410u411

v430v431v420v421v410v411

C2 :

x1

u1 u2 u3

w0s

C3 :

C1 :

Fig. 4. Link-disjoint R/B paths to truth assignment satisfyingφ.

Fig. 4 illustrates the truth assignment corresponding
to the blue path pB: s-w0-u110-v110-w1-u210-v210-
w2-u321-v321-w3-u421-v421-w4-t and the red pathpR:
s-u1-u111-v111-u211-v211-u311-v311-u411-v411-v1-u2-
u120-v120-u320-v220-u320-v320-u420-v420-v2-u3-u131-
v131-u331-v231-u331-v331-u431-v431-v3-t. Since pB goes
through the verticesu110, v110, u210, v210 which
correspond to the literal̄x1, we setf(x1) = FALSE in
the truth assignment. SincepB goes through the vertices
u321, v321, u421, v421 which correspond to the literalx2,
we setf(x2) = TRUE in the truth assignment. For this
example,pB does not go through any of the vertices
corresponding to the literalsx3 and x̄3. We can assign
f(x3) as don’t care in the truth assignment. SincepR

goes through the vertices corresponding to the literal
x3, we setf(x3) = FALSE in the truth assignment.



One can easily verify thatφ evaluates toTRUE with
this truth assignment.

To show the converse, assumeφ is satisfiable and let
f be a truth assignment that satisfiesφ. We will show
that there exist a reds–t path pR and a blues–t path
pB which are link-disjoint inG2.

Note that any reds–t path will contain the edges
(s, u1), (vl, t), (vj−1, uj) for j = 1, 2, . . . , l, and a red
path from uj to vj for j = 1, 2, . . . , l. If f(x1) =
FALSE, we define the segment ofpR from uj–vj

to be s-u1-u111-v111-u211-v211-· · · -uc11-vc11-v1. Other-
wise, we define the segment ofpR from uj–vj to bes-
u1-u110-v110-u210-v210-· · · -uc10-vc10-v1. We define the
blue s–t path pB to contain the blue edges(s, w0),
(wc, t) and one green edge and two blue edges for each
clause in the sample 3SAT instanceφ. Let Ci be the
ith clause. SinceCi is TRUE under truth assignment
f , at least one of the three literals ofCi is TRUE. Let
xj (x̄j , respectively) be one such literal. The blue path
pB contains the blue edges(wi−1, uij1), (vij1, wi) and
the green edge(uij1, vij1) (the blue edges(wi−1, uij0),
(vij0, wi) and the green edge(uij0, vij0), respectively).

Consider the sample the sample 3SAT instance
φ again. The truth assignmentf(x1) = TRUE,
f(x2) = TRUE, f(x3) = FALSE satisfiesφ. Refer
to G2 in Fig. 3, the corresponding blue path ispB:
s-w0-u130-v130-w1-u221-v221-w2-u311-v311-w3-u421-
v421-w4-t, and the corresponding red path ispR:
s-u1-u110-v110-u210-v210-u310-v310-u410-v410-v1-u2-
u120-v120-u220-v220-u320-v320-u420-v420-v2-u3-u131-
v131-u231-v231-u331-v331-u431-v431-v3-t.

Since pB does not go through any vertices corre-
sponding to literal whose value isFALSE and the
ui–vi segment ofpR goes through only those vertices
corresponding to a literal whose value is notTRUE,
pB andpR are link-disjoint. This proves that LDPPRGB
is NP-hard. Since LDPPRGB is both in NP and NP-hard,
it is NP-Complete. 2

Theorem 3:The problem NDPPRGB is NP-
Complete.
PROOF. Again we prove this using reduction from 3SAT.
Given a 2-CNF formulaφ, we construct the same graph
G2 as in the proof of Theorem 2. It is clear from the
graph construction that a reds–t pathpR and a blues–t
path pB are link-disjoint if and only if they are node-
disjoint. It then follows the argument of the proof of
Theorem 2 that NDPPRGB is also NP-hard. It is easy
to verify whether two paths are node-disjoint. Therefore
NDPPRGB is NP-Complete. 2

Given that the problem is NP-Complete, it is appropri-
ate to study heuristic algorithms and ILP solutions. In the
rest of this paper, we will concentrate on LDPPWCC and

study both heuristic algorithms and ILP based optimal
solutions.

V. A PPROXIMATE SOLUTION USING HEURISTIC

TECHNIQUE

We consider the situation that some active-backup
paths are in existence while a new connection request
with source nodes and destination nodet arrives. Recall
that each link can carry up toW channels (W different
wavelengths). A channel isfree if it is not used by an
active or a backup path. A channel isactive if it is used
by an active path. A channel isreserved if it is used by
a backup path. We assume that we have full knowledge
of the network status.

The commonly used active path first (APF) heuristic
is described in the following.

Algorithm 1 APF (G, s, t)
step 1 Find ans–t lightpathAP on free channels using

the minimum number of links.
step 2 Let G′ be a copy ofG. Remove every active

or reserved channel. Remove every free channel
using a link onAP .

step 3 Find ans–t lightpathBP in G′ using the mini-
mum number of links.

step 4 IF both AP and BP can be found, output the
two paths. Otherwise, the request is blocked.

The advantage of heuristic APF is that it is simple and
runs fast. It the active pathAP is chosen correctly, the
heuristic will find the link-disjoint path pair. However,
there are cases where the heuristic APF may fail to find a
pair of link-disjoint paths, even when such a pair exists.
Fig. 5 shows an example for which APF fails.
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Link with only �1 available
Link with both �1 and �2 available
Link with only �2 available

Fig. 5. An example for which APF fails.

In the example shown in Fig. 5, APF will find the
path s-x-w-t (on λ1) as the candidate for the active
path AP . However, after removing the links along this
candidate active path,s and t is no longer connected in



the network. Therefore the heuristic APF cannot find a
pair of link-disjoints–t paths. Clearly, we can uses-u-v-
w-t (on λ2) as the active path and uses-x-y-z-t (on λ1)
as the backup path. In the following, we will present an
enhanced active path first heuristic (called APFE) which
can avoid pitfalls like this. In the description of APFE,
M represents avery big numberwhich is greater than
any integer andi · M > j · M for integersi > j.

Algorithm 2 APFE (G, S, t)
step 1 Find ans–t lightpathAP on free channels using

the minimum number of links. Setcost = ∞.
step 2 Let G′ be a copy ofG. For every active or

reserved channel, assign a cost of∞. For every
free channel on a link onAP , assign a cost of
M. For every other free channel, assign a cost
of 1.

step 3 Find a minimum costs–t lightpathBP in G′.
step 4 IF AP andBP are link-disjoint THEN

AP and BP are the active and backup paths
for

the connection request; STOP
ELSEIF the costBP is at leastcost THEN

STOP failure
ELSE

Setcost to the cost ofBP and letAP
representBP . goto Step3.

ENDIF

We note that the heuristic APFE will find a pair of
link-disjoint paths whenever the heuristic APF can find
such a pair. However, APFE may find a link-disjoint path
pair even when APF fails to do so. APFE tries to reduce
the number of shared links in the pair of active-backup
paths iteratively. When that number cannot be reduced
during one iteration, the heuristic stops and blocks the
connection request. We note that the heuristic APFE is
not guaranteed to find a pair of link-disjoint paths when
one exists.

For the example network shown in Fig. 5, APFE will
first find the paths-x-w-t (onλ1) as the candidate for the
active pathAP . It then find the paths-u-v-w-t (on λ2)
as a candidate for the backup pathBP . Note thatAP
andBP shares a common link(w, t). The heuristic then
discardsAP and findss-x-y-z-t (on λ1) as the active
path AP . This time, AP and BP are link-disjoint so
APFE finds the pair of link-disjoint paths successfully.
However, there are examples for which APFE fails.
For performance studies, we present an integer linear
programming (ILP) formulation in the next section and
present simulation results comparing APF, APFE and
ILP on sample network topologies.

VI. EXACT SOLUTION USING ILP

To evaluate the performance of the the heuristic al-
gorithms, we formulate the following ILP for LDP-
PWCC2W with wavelengthsλR and λB and source-
destination node pairs and t.

For each undirected link(u, v) ∈ E, defineR(u, v) =
1 if λR is available on(u, v) andR(u, v) = 0 otherwise.
Similarly, defineB(u, v) = 1 if λB is available on(u, v)
andB(u, v) = 0 otherwise. Define a functionδst(·) onV
such thatδst(s) = 1, δst(t) = −1, δst(v) = 0 for every
other nodev ∈ V . For each undirected link(u, v) ∈ E,
we associate four0/1 variablesr(u, v), b(u, v), r(v, u),
and b(v, u). Note thatr(u, v) and r(v, u) are different
although (u, v) and (v, u) denote the same undirected
edge. The same can be said aboutb(u, v) and b(v, u).
We will use ther(u, v) variables to define a red path
from s to t and use theb(u, v) variables to define a
blue path froms to t. The integer linear programming
formulation is given in the following:

(P): min
∑

[u,v]∈E

r(u, v) + r(v, u) + b(u, v) + b(v, u)

s.t.
∑

v∈V

r(x, v) −
∑

u∈V

r(u, x) = δst(x), ∀x ∈ V,

∑

v∈V

b(x, v) −
∑

u∈V

b(u, x) = δst(x), ∀x ∈ V,

r(u, v) + r(v, u) ≤ R(u, v), ∀(u, v) ∈ E,

b(u, v) + b(v, u) ≤ B(u, v), ∀(u, v) ∈ E,

r(u, v) + r(v, u) + b(u, v) + b(v, u) ≤ 1,∀(u, v) ∈ E,

r(u, v), r(v, u), b(u, v), b(v, u) ≥ 0, ∀(u, v) ∈ E.

r(u, v), b(u, v) ∈ {0, 1}.
The following is an explanation of the ILP formulation

(P). Recall thatR(u, v) is 1 if and only if wavelength
λR is available on link(i, j) andB(u, v) is 1 if and only
if wavelengthλB is available on link(i, j). Therefore a
feasible solution to (P) corresponds to a reds–t lightpath
on wavelengthλR, defined by the nonzero variables
r(u, v), and a blues–t lightpath on wavelengthλB,
defined by the nonzero variablesb(u, v).

The constraintr(u, v)+r(v, u) ≤ R(u, v) ensures that
the red path can only use the links on which wavelength
λR is available. The constraintb(u, v) + b(v, u) ≤
B(u, v) ensures that the blue path can only use the links
on which wavelengthλB is available. The constraint
r(u, v) + r(v, u) + b(u, v) + b(v, u) ≤ 1 ensures that
the red path and the blue path are link-disjoint.

Note that we have to solve up toW · (W − 1)
instances of (P) to solve problem LDPPWCC, since we
need to loop over all possible wavelength combinations.



The cases whereλR = λB can be solved using the
polynomial time algorithm of Suurballe [27], [28].

We choose to use this ILP formulation because (1)
it is simpler to understand and to implement since only
two wavelengths are involved; (2) the smaller the ILP,
the easier to solve, as ILPs may require exponential time
to solve.

VII. R ESULTS AND DISCUSSION

To evaluate the effectiveness of the heuristics and ILP
based algorithms, we have compared them using the 20-
node Arpanet topology (see Fig. 6) and the 33-node
Italian National Network topology (see Fig. 7). All three
algorithms are implemented on a SUN Ultra machine
using programming the language C and the optimization
package CPLEX 6.5.
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Fig. 6. 20-Node ARPANET Topology.

For each network topology, we construct 9 WDM
networks, obtained by having5, 10 and20 wavelengths
per link and network loads of25%, 50% and 75%. By
a network with 50% load, we mean that50% of the
channels in the network are marked as either active
or reserved. Clearly, the higher the network load, the
high the blocking probability. For each of the 18 WDM
networks, we consider all possible source-destination
node pairs and try to find a pair of link-disjoint source-
destination lightpaths using the optimal algorithm and
the two heuristics. For example, for the9 WDM net-
works generated from the Arpanet topology, we consider
all 190 = 20∗(20−1)/2 possible source-destination pairs
as the connection requests.

For each connection request, there are four possible
outcomes:

• NNN: meaning none of the three algorithms found
a pair of link-disjoint paths;

• NNY: meaning both heuristics failed to find a pair
of link-disjoint paths but the ILP exact algorithm
found one;

Fig. 7. 33-Node Italian National Network.

• NYY: meaning the first heuristic failed to find a pair
of link-disjoint paths but the second heuristic and
the ILP exact algorithm both found one;

• YYY: meaning all three algorithms found a pair of
link-disjoint paths.

Simulation results for networks corresponding to the
20-node Arpanet are shown in Table I. Simulation re-
sults for networks corresponding to the 33-node Italian
National Network are shown in Table II.

As an example, the entries in the first row of Table I
have the following meaning (from left to right): Maxi-
mum number of wavelengths per link is5; The network
load is25%; The average time (in milliseconds) used by
APF is 0.632; The average time (in milliseconds) used
by APFE is 1.158; The average time (in milliseconds)
used by ILP is 17.579; In 176 cases, all three algorithms
were successful; In 11 cases, APFE and ILP were both
successful while APF was not; In 2 cases, ILP was
successful while APFE was not; In 1 case, none of the
three algorithms can find a path pair, because there was
no pair of link-disjoint paths; Total number of connection
requests was 190.

From Table I, we can see that APFE found a pair
of disjoint paths in26 of the 28 cases for which APF
failed. From Table II, we can see that APFE found a pair
of disjoint paths in73 of the 81 cases for which APF
failed. This shows that APFE is noticeably better than
APF, while having a similar running time.

One can see that APFE uses only a fraction of the
time used by ILP. Among the6462 test cases shown in



TABLE I

SIMULATION RESULTS ONARPA-NET

Wavelengths Network Average Time (in milliseconds) Statistics for APF, APFE and ILP Total number
per Link Load(%) APF APFE ILP(exact) YYY NYY NNY NNN of Cases

5 25 0.632 1.158 17.579 176 11 2 1 190
5 50 0.316 0.789 5.895 40 0 0 150 190
5 75 0.316 0.368 1.316 4 0 0 186 190
10 25 1.0 1.316 30.053 190 0 0 0 190
10 50 0.947 2.105 16.421 127 7 0 56 190
10 75 0.421 0.474 3.632 9 0 0 181 190
20 25 2.579 2.368 82.211 190 0 0 0 190
20 50 1.053 1.526 35.211 175 8 0 7 190
20 75 0.632 0.947 7.842 15 0 0 175 190

TABLE II

SIMULATION RESULTS ONITALIAN NATIONAL NETWORK

Wavelengths Network Average Time (in milliseconds) Statistics for APF, APFE and ILP Total number
per Link Load(%) APF APFE ILP(exact) YYY NYY NNY NNN of Cases

5 25 1.875 1.723 32.348 528 0 0 0 528
5 50 1.080 2.348 18.390 239 17 0 272 528
5 75 0.455 0.549 3.807 54 0 0 474 528
10 25 3.371 3.258 71.61 528 0 0 0 528
10 50 2.045 3.788 42.33 423 26 8 71 528
10 75 0.663 1.269 9.602 76 8 0 444 528
20 25 5.947 6.023 135.928 528 0 0 0 528
20 50 3.674 4.886 91.042 518 10 0 0 528
20 75 1.042 2.102 19.943 113 12 0 403 528

the two tables, APFE failed to find a pair of paths when
one existed only10 times. In other words, APFE found
optimal solutions in99.8% of the cases, while using no
more than6 milliseconds in any particular case.

VIII. C ONCLUSION

In this paper, we presented a rigorous proof that
finding a pair of link-disjoint or node-disjoint paths with
the wavelength continuity constraint in a WDM network
is NP-Complete. To the best of our knowledge, this is the
first rigorous proof for this problem. We then presented
an enhanced active path first heuristic and an ILP based
algorithm. Computational results show that our enhanced
active path first heuristic outperforms the commonly used
active path first heuristic and finds optimal solutions in
almost all cases, while spending only a fraction of the
time used by the ILP based algorithm. Since finding a
path with dedicated protection is NP-Complete, we be-
lieve that the more complicated problem of finding a path
with shared protection is also NP-Complete. Currently
we are investigating the computational complexity of
shared backup path provisioning and effective heuristics
for that problem.

ACKNOWLEDGMENT

We would like to acknowledge the assistance of Bao
Shen for the ILP implementations and Bin Hao and
Rakesh Banka for the heuristic implementations. The
research of Fan Chung was supported in part by NSF
Grants DMS-0100472 and ITR-0205061. The research
of Guoliang Xue was supported in part by NSF ITR grant
ANI-0312635 and ARO grant DAAD19-00-1-0377.

REFERENCES

[1] V. Anand and C. Qiao, Dynamic establishment of protection
paths in WDM networks,ICCCN2000, pp. 198–204.

[2] S. Bandyopadhyay, A. Sengupta and A. Jaekel, Fault-tolerant
routing scheme for all optical networks,Proc. SPIE All Opti-
cal Networking Conf: Architecture, Control and Management
Issues, pp. 420–431, Boston, MA, Nov. 1998.

[3] R. Bhandari,Survivable networks: algorithms for diverse rout-
ing, Kluwer Academic Publishers, 1999.

[4] I. Chlamtac, A. Ganz and G. Karmi, Lightpath communications:
an approach to high bandwidth optical WAN’s,IEEE Trans. on
Communications, Vol. 40(1992), pp. 1171–1182.

[5] B. Doshi et. al., Optical network design and restoration,Bell
Laboratories Technical Journal, Vol. 4, No. 1, pp. 58–84, Jan-
Mar 1999.

[6] D.A. Dunn, W.D. Grover and M.H. MacGregor, Comparison of
k-shortest paths and maximum flow routing for network facility
restoration,IEEE JSAC, Vol. 2(1994), pp. 88–99.



[7] A. Fumagalli, I. Cerutti, M. Tacca, F. Masetti, R. Jagannathan
and S. Alagar, Survivable networks based on optimal routing
and WDM self healing rings,Proc. of IEEE Infocom’99,
pp. 726–733, March, 1999.

[8] M.R. Garey and D.S. Johnson,Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H. Freeman
Publishers, San Francisco, 1978.

[9] N. Ghani, S. Dixit and T. S. Wang, On IP-over-WDM inte-
gration”, IEEE Communications Magazine, Vol. 38, No. 3, pp.
72–84, March 2000.

[10] N. Ghani, S. Dixit and T. S. Wang, Channel provisioning for
higher layer protocols in WDM networks,Proc. SPIE All Op-
tical Networking Conf: Architecture, Control and Management
Issues, Boston, MA, Sept. 1999.

[11] K.P. Gummadi, M.J. Pradeep and C.S.R. Murthy, An efficient
primary-semenged backup scheme for dependable real-time
communication networks,IEEE/ACM Transactions on Network-
ing, Vol. 11(2003), pp. 81–94.

[12] J. Q. Hu, Diverse routing in optical mesh networks,IEEE
Transactions on Communications, Vol. 51(2003), pp. 489–494.

[13] A. Jukan, AoS-based Wavelength Routing in Multi-Service
WDM Networks, Springer-Verlag/Wien, 2001.

[14] M. Kodialam and T.V. Lakshman, Dynamic routing of locally
restorable bandwidth guaranteed tunnels using aggregated link
usage information,Infocom2001, pp. 376–385.

[15] K.C. Lee and V.O.K. Li, A wavelength rerouting algorithm
in wide-area all-optical networks,J. of Lightwave Technology,
Vol. 14(1996), pp. 1218–1229.

[16] Y. Liu and D. Tipper, Successive survivable routing for node
failures,Globecom2001, pp. 2093–2097.

[17] M. Médard, S.G. Finn and R.A. Barry, A novel approach to
automatic protection switching using trees,IEEE ICC’1997,
pp. 272–276.

[18] M. Médard, S.G. Finn, R.A. Barry and R.G. Gallager, Redun-
dant trees for preplanned recovery in arbitrary vertex-redundant
or edge-redundant graphs,IEEE/ACM Trans. on Networking,
Vol. 7(1999), pp. 641–652.

[19] M. Médard, R.A. Barry, S.G. Finn, W. He and S.S. Lumetta,
Generalized loop-back recovery in optical mesh networks,IEEE
Trans. Networking, Vol. 10(2002), pp. 153–164.

[20] B. Mukherjee,Optical Communication Networks, McGraw Hill,
1997.

[21] C. Qiao and D. Xu, Distributed partial information management
(DPIM) schemes for survivable networks - Part I,Infocom’2002,
pp. 302–311.

[22] S. Ramamurthy and B. Mukherjee, Survivable WDM mesh
networks. Part I-ProtectionInfocom’1999, pp. 744–751.

[23] S. Ramamurthy and B. Mukherjee, Survivable WDM mesh
networks. II. RestorationICC’1999, pp. 2023–2030.

[24] L. Ruan, D.Z. Du, X. Hu, X. Jia, D. Li, Z. Sun, Converter
placement supporting broadcast in WDM optical networks,
IEEE Transactions on Computers, Vol. 50(2001), pp. 750–758.

[25] L. Sahasrabuddhe, S. Ramamurthy and B. Mukherjee, Fault
management in IP-over-WDM networks: WDM protection ver-
sus IP restoration,IEEE JSAC, Vol. 20(2002), pp. 21–33.

[26] A. Sen, B. H. Shen and S. Bandyopadhyay, Survivability of
lightwave networks - path lengths in WDM Protection scheme,
Journal of High Speed Networks, Vol. 10(2001), pp. 303–315.

[27] J. W. Suurballe, Disjoint paths in a network,Networks,
Vol. 4(1974), pp. 125–145.

[28] J.W. Suurballe and R.E. Tarjan, A quick method for find-
ing shortest pairs of disjoint paths,Networks, Vol. 14(1984),
pp. 325–336.

[29] H. Wang, E. Modiano and M. Medard, Partial path protection
for WDM networks: End-to-end recovery using local failure
information, IEEE ISCC’02, pp. 719-725.

[30] G. Xue, L.Chen and K.Thulasiraman, Delay reduction in re-
dundant trees for pre-planned protection against singlelink/node
failure in 2-connected graphs,IEEE Globecom’2002, pp. 2691–
2695.

[31] G. Xue, L. Chen and K. Thulasiraman, Quality of service and
quality of protection issues in preplanned recovery schemes
using redundant trees,IEEE JSAC Optical Communications and
Networking Series, Vol. 21(2003), pp. 1332–1345.

[32] T.F. Znati, T. Alrabiah, R. Melhem, Low-cost, delay-bounded
point-to-multipoint communication to support multicasting over
WDM networksComputer Networks, Vol. 38(2002), pp. 423-
445.

APPENDIX

In this section, we will show that the problem of com-
puting a pair of link-disjoint (or node-disjoint) active-
backup paths without the wavelength continuity con-
straint in a WDM network with wavelength convert-
ers [24] at the network nodes is computationally easy.

Let G = (V, E,Λ) be the WDM network withn
nodes,m links, and a maximum ofW wavelengths per
link. Define the wavelength union graphG of G by
deleting every link inG for which there is no available
wavelengths. The wavelength union graph of the network
in Fig. 8 is shown in Fig. 9. Basically, a link ofG is a
link G if the link has at least one available wavelength.
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Fig. 8. A WDM Network.
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Fig. 9. Wavelength union graph of the network in Fig. 8

Clearly G can be constructed fromG in O(Wm)
time. We can then use Suurballe’s algorithm [27], [28] to
compute a shortest pair of link-disjoint (or node-disjoint)
paths connectings andt (or to confirm the nonexistence
of such a pair) inG. If such a pair does not exist,
then clearly there is no link-disjoint (node-disjoint) path
pairs connectings and t in G. Let π1 and π2 be the



shortest pair of link-disjoint (or node-disjoint)s–t paths.
For each link onπi or π2, we can assign an available
wavelength. Thereforeπ1 andπ2 can be used as a pair of
active-backup paths in a WDM network with wavelength
converters at the nodes.


