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Abstract

In the protection scheme of fault management in a WDM optical network, cor-
responding to every source-destination path used for data transmission, a backup
path is maintained in a stand-by mode. In the case of a failure (either due to a
fiber cut or due to equipment failure) in the primary path, data transmission is
quickly switched to the backup path. In order to tolerate any single fault, the
backup path must be edge (or node) disjoint from the primary path. Most often
a shortest path between the source and the destination is chosen as the primary
path. To obtain a link (node) disjoint backup (or secondary) path, the links (nodes)
of the primary path are removed from the graph and then a shortest path in the
modified graph is chosen as the backup path. The attractive feature of this scheme
is its simplicity. However, the scheme has a severe drawback. Due to the choice of
a shortest path as the primary path, the length of a link disjoint secondary path
may be unacceptably large. In this paper, we propose a novel way of choosing
the primary and the secondary paths so that the lengths of both the paths are
small. Unfortunately, the problem of choosing primary and secondary paths in
this way turns out to be NP-complete. We provide the NP-completeness proof of
both the edge disjoint and the node disjoint version of the problem. We provide
an approximation algorithm for the problem with a guaranteed performance bound
of 2 and a mathematical programming formulation for the ezact solution of the
problem. Though the approximate solution provides a performance bound of 2,
through extensive experimental evaluation, we find that the approximate solution
is very close to the optimal solution and the ratio between the approximate to the
optimal solution never exceeds 1.2. Although we discuss the single fault scenario
in this paper, the algorithms discussed here, can be used equally effectively for the
multiple fault scenario also. Finally, we discuss other variations of the disjoint path
problem relevant to the lightwave networks.
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1 Introduction

Survivability of high bandwidth optical networks has become an area of concern because
of its importance as a national and international infrastructure for moving large volumes
of data from one part of the globe to another. Failure of any part in such an impor-
tant infrastructure and the resulting inability to move data around quickly may have a
tremendous economic impact. For this reason, survivability issues in high bandwidth op-
tical networks has become an important area of research in recent years. The research on
on this topic has mostly focussed on SONET networks so far. Only recently, researchers
have started examining survivability issues in WDM networks [2, 4, 7, 8, 18, 22]. Two
techniques, protection at the WDM layer and restoration at the IP layer, have emerged as
the leading contenders for fault management in optical networks [23]. Protection refers
to pre-provisioned failure recovery (usually hardware based), whereas restoration refers
to more dynamic recovery (usually software based) [12, 11]. Between the two schemes,
protection is typically faster and usually performs single link protection.

In optical fiber networks, cuts in fibers are considered to be one of the most common
failures. Since in a WDM network, an optical fiber cable carries an extremely high volume
of traffic, disruption of service is very expensive. Equipment failure at a switching node
disables all the links passing through that node and the adverse impact of such an event
on the network is even greater than that of a cable cut. Due to its importance as a

critical national (and international) infrastructure, quick detection and identification of
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Figure 1: Primary and backup paths in a WDM network

faults and restoration of normal services is absolutely essential.

In the WDM protection scheme of fault management in an optical network, corre-
sponding to every source-destination path used for data transmission, a backup path is
maintained in a stand-by mode. In the mesh path protection scheme, global mesh pro-
tection is provided by switching, in less than 100ms, from a failed lightpath to a backup
path. Due to very fast switching time constraint, these schemes are based on predefined
backup paths designed ahead of time in a central location and stored in the nodes of the
network, so that they can be activated quickly in the case of a failure of the primary path
[10]. The primary and the backup paths between the nodes D to A and from H to F is
shown in figure 1.

Clearly, in order to tolerate any single link failure, the alternate path should not
be sharing any fiber link with the primary path. In order to tolerate any single node
equipment failure, the alternate path should not be sharing any node with the primary

path. Thus the alternate path should be edge (or node) disjoint from the primary path.
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Figure 2: MinMax path and MinSum path in a WDM network

Since there are a number of virtues associated with a short path length, often a shortest
path between the source and the destination is used as the primary path. To obtain a
link (node) disjoint backup (or secondary) path, the links (nodes) of the primary path are
removed from the graph and then a shortest source-destination path in the modified graph
is used as the backup path. We will refer to this path pair as Shortest Path Pair (SPP).
Although this idea is attractive because of its simplicity, the selection of the primary and
the secondary paths in this manner has a severe drawback. Because the primary path is
a shortest path in the original graph, there is no control over the length of the secondary
path and this length may be unacceptably large. If the path lengths represent the delay,
this implies unacceptably long delay on the backup path. In the example shown in figure
2, node A is the source and node B is the destination. Suppose that the weights on the
links shown in the figure represent the delay. In this example, the shortest path from
AtoBis A — D — C — B with a total delay of 3¢, where € is a very small number.
If this path is used as the primary path, the edge disjoint backup path has to be the
direct link between A and B with a delay of 2x — 4¢, where z is any arbitrary number.

However, in this example if the path A — C' — B is used as the primary path, then the



path A — D — B can be used as the backup path, with delays on both the paths being
equal to z. It may be noted that the delay associated with the backup path in the first
pair of disjoint paths (22 — 4e), is almost double of the delay of the backup path on the
second pair of paths (z). In a QoS constrained environment, it is extremely important
that the data arrives at the destination within a specified delay. If the acceptable delay
is z and there is a non-zero probability of failure of the primary path, then clearly the
second pair of paths is much preferable than the first pair.

If all edge weights are identical, then the length of the paths is measured in terms of
the number of hops between the source and the destination. Long paths are undesirable
because it increases the blocking probability. The results presented in this paper are
valid for both the situations, when (i) the path length is measured in terms of the delay
and (ii) the path lengths are measured in terms of hops.

In this paper, we propose a novel way of choosing the primary and the backup paths
such that the length of the primary as well as the backup path is small. Disjoint path
problems, because of their applications in the design of reliable networks, have been
extensively studied [3, 5, 19, 28, 30, 31]. The knowledge of a set of k£ disjoint (either node
or edge) paths between a pair of source-destination nodes can be utilized to enhance the
reliability and congestion control aspects of the network. Most of the earlier studies on
this topic find k£ node or edge disjoint paths between a source-destination node pair such
that the sum of the path lengths is minimized. In the WDM protection scheme we are
interested in only two disjoint (primary and backup) paths, i.e., k = 2. We refer to the
pair of disjoint paths whose sum of the path lengths is minimum as the Minimum Sum
Path Pair,(MinSumPP).

If the path lengths represent the delay on that path, minimizing the sum of the path



lengths may not be very meaningful. In this case, one would like to find a set of £ (node
or edge)-disjoint paths between the source-destination node pair such that the length of
the longest path in this set is shortest among all such sets. In the optical domain, where
k = 2, we want to find the path pair, whose longer path is shortest among all such pairs
of paths. We refer to this path pair as the Minimum Mazimum Path Pair,(MinMazPP).
In the WDM protection scheme, if MinMaxPP is selected as the primary and the backup
paths, then the delay on the backup path will be minimum (the delay on the primary
path is always less than that of the backup path).

In this paper we propose the use of MinMaxPP as the path pair for the primary
and the backup path instead of the shortest path pair, SPP. Unfortunately, the problem
of choosing a primary and a backup path in this way for a specified source-destination
node pair turns out to be NP-complete. We provide the NP-completeness proof of both
the edge disjoint and the node disjoint version of the MinMaxPP problem. In contrast,
MinSumPP can be computed very efficiently by Dijkstra’s shortest path computation
algorithm [30, 31]. In fact, the computational complexity of the MinSumPP is no differ-
ent from that of the SPP, whose main attraction is its simplicity. Since MinMaxPP is
computationally difficult to find, we propose the use of MinSumPP as an approximation
of the MinMaxPP. We show that the approximate solution (MinSumPP) never exceeds
the optimal solution (MinMaxPP) by factor of 2.

In this paper we also provide a mathematical programming formulation for the ezact
solution of the MinMaxPP problem. Though the approximate solution (MinSumPP)
provides a performance bound of 2, through extensive experimental evaluation, we find
that the ratio between the approximate solution to the optimal solution never exceeds 1.2.

Although we discuss single fault (k = 2) scenario in this paper, the algorithms discussed



here, can be used equally effectively for the multiple fault scenario also (i.e., any arbitrary
k). Finally, we discuss other variations of the disjoint path problem applicable to the
lightwave networks.

The paper is organized as follows: in section 2 we describe the edge- and node-
disjoint versions of the path problem and show that both the problems are NP-complete;
in section 3 we provide a mathematical programming formulation for the ezact solution of
the problem; in section 4 we present a heuristic solution and show that the approrimate
solution obtained by this method is bounded by two times the optimal solution; section
5 presents the comparison results of our experimental evaluation of the performance of
the exact solution with the approximate solution; in section 6 we discuss some variation

of the backup path problem; section 7 concludes the paper.

2 Disjoint Path Problem

As mentioned earlier, disjoint path problems, because of their applications in the design
of reliable networks, have been extensively studied [3, 5, 19, 28, 30, 31]. An algorithm
for computing a set of k edge-disjoint paths between a pair of source and destination
nodes, with a minimum total edge cost is given in [15]. Suurballe in [30] presented an
algorithm for the same problem for node-disjoint paths. An efficient implementation of
the edge-disjoint path problem with minimum total edge cost is given in [31]. Skiscim
et. al. in [28] studied the problem of k successively shortest paths problem. However, in
this case the paths are not required to be either node or edge disjoint. Nikolopoulos in
[19] provided a solution for the selection of k-best (paths with minimum total edge cost)
node disjoint paths by mapping it into a Trellis graph.

Suppose that the number of edge (node) disjoint paths between any pair of nodes



u and v in a graph G = (V, E) is denoted by k(u,v). The edge (node) connectivity of
a graph is the minimum value of k(u,v) taken over all pairs of nodes u and v. For an
optical network to have a backup path corresponding to every source destination node
pair, the connectivity of the network must be at least two. Topology design of optical
networks has been extensively researched. Most of the topologies proposed have edge

(node) connectivity of at least two [6, 13, 16, 17, 21, 24, 25, 26, 27, 32].

2.1 Node Disjoint Path Problem

Instance: A graph G = (V, E), with weight w; ; associated with each edge e; ;, (w;; > 0),
a source node s, a destination node d and a positive integer k.

Problem: Find a set of k node-disjoint paths from s to d such that the length of the
longest path in this set, is the shortest among all such sets of £ node-disjoint paths from
s to d.

Node Disjoint k-Path Problem (NDKPP) - Decision Version

Instance: A graph G = (V, E), with weight w; ; associated with each edge e; ;, (w;; > 0),
a source node s, a destination node d and a positive integer £ and a non-negative number
X.

Question: Is there a set of k£ node-disjoint paths from s to d such that the length of the

longest path in this set is less than or equal to X ?

Theorem 1 The node disjoint k-path problem is NP-complete.

Proof: We show NDEPP is NP-complete by considering a restricted version of the problem

where £ = 2. We call the restricted version the Node Disjoint 2-Path Problem (ND2PP).



Node Disjoint 2-Path Problem (ND2PP)

Instance: A graph G = (V, E), with weight w; ; associated with each edge e; ;, (w;; > 0),
a source node s, a destination d and a non-negative number X.

Question: Is there a set of two node-disjoint paths from s to d such that the length of
the longest path in this set is less than or equal to X 7

We show ND2PP is NP-complete by giving a transformation from a well known NP-

complete problem - the Partition Problem [9].
Partition Problem (PartProb)
Instance: A finite set A and a “size” s(a;) € Z* for each a; € A.
Question: Is there a subset A’ C A such that
Y os(a) = D s(w)
a; €A’ a;€A—A!
Proof: 1t is easy to see that ND2PP € NP, since a non-deterministic algorithm need only
guess two edge disjoint paths P; and P, and check in polynomial time that the length of
the longer path is less than or equal to X.

We will transform the Partition Problem (PartProb) to ND2PP. Let the set A =
{ai,...,a,} and a “size” s(a;) € Z* for each a; € A,1 < i < n, make up an arbitrary
instance of the PartProb. From this instance of the PartProb we construct an instance
of the ND2PP problem. An instance of the ND2PP comprises of a non-negative integer
X and a graph G = (V, E) with the following charactersitcs:

(i) each edge (4,7) has a non-negative weights wy; ;) associated with it,

(ii) the graph has specified source and destination nodes s and t respectively,

(iii) the graph G = (V, E) has two node disjoint paths from s to ¢ of length at most X,
if and only if the elements of the set A can be partitioned into two groups such that the

sum of the weights in one group is equal to the sum of the weights in the other group.
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Figure 3: Node Disjoint Paths

We construct the graph G = (V, E) in such a way that it has 3n + 2 nodes, V =
{H{vi, 1 <i<2n}U{u;, 1 <i<n}U{s}U{d}}. The directed edges are from
(i) s =ug = vy — v1 and s — uy
(ii) vop, — d and u, = d = Up41 = Vopy1
(iil) v; = vi11,1 <i<2n—1
(iv) u; = uip1,1 <i<n-—1
(V) v9; = ujp1,1 <i<n-—1
(Vi) u; = vgi11,1 <i<n-—1
Such a graph is shown in figure 3. The weights on the edges are as follows:

(1) w(vei_1 — vo) = 8(a3), 1 <i<n

(ii) The weight of every other edge is 0.

In the graph of figure 3, the source node is s and the destination node is d. The parameter
X is set equal to 1/23, <4 s(a;).

It is easy to see that the construction of the instance of the ND2PP problem can be
accomplished in polynomial time. We need to show that instance of the ND2PP problem
will have two node disjoint paths from s to d of length at most X, if and only if elements
of the instance of the PartProb can be divided into two groups, such that the sum of the
sizes of the elements in one group is equal to the sum of the size of the elements of the

other group.



Suppose that the elements of the set A can be divided into A’ and A — A’ such that
Yaiear 5(a;) = X4,eaa 5(a;). In this case we can construct two node disjoint paths from
s to d such that the length of the longest path is at most 1/23, <4 s(a;). Suppose that
the set A’ contains m elements of the set A (A = {a4,...,a,}, and they are given by
A" = {asqy,ap02),---,08m)}, where f:{1,...,m} — {1,...,n} is a mapping function.
We also assume f(1) < f(2) < ... < f(m).

The paths P, and P, may be constructed in the following way:

Py:s=wuy— u — ... = Up1)—1 = Vag(1)—1 — V2f1) —> Uf1)41 —> --. —> Up2)—1 —
V2f(2)-1 7 V2f(2) 7 Up@)+1 7 -ee T2 Ufm)-1 77 V2f(m)-1 T V2f(m) 7 Ufm)+1 7
Uf(my42 —> -+ —> Uy —> Upy1 = d

Py:s=wvy = vy — ... = Uyp)—2 —> Up) —> Vag(1)+1 —> V2f(1)42 — --- —> Vaj2)—2 —
Uf(2) — Vaf(2)+1 — ... — Vaf(3)—2 — U (3) — Vaf(3)+1 — ... — Va f(m)—2 — U f(m) —
Vof(m)41 —> -+ — Vap —> Vopy1 = d

It can be easily verified that the length of the paths P, and P, will both be X =
1/2%q,ea 8(as).

Now suppose that the instance of ND2PP has two different node disjoint paths P; and
P, from s to d such that the length of the longer path P, is at most X = 1/23, c 4 s(a;).
Consider the directed edges vg;_1 — v9;,1 < 7 < n of the graph, each with weight a;
associated with it. Since the paths P, and P, are node disjoint, such an edge, vo;_1 —
vg;, 1 < 4 < n, cannot be a part of both P, and P,. Suppose, if possible such an edge
is not part of either P, or P,. Because of the structure of the graph, if both P, and
P, (establishing a path between the nodes s and t) are not using the edge vy 1 —
vg;, 1 < 4 < n, then both of them must be passing through the node u;,1 < 7 < n,

contradicting the assumption that the paths P; and P, are node disjoint. Therefore,



each edge vo; 1 — w9, 1 < i < n (with a weight a; associated with it) must be part of
either P; or P,. Since the weights associated with every other edge is zero, the length of
the path is determined only by the weights of these edges. Since the sum of the weights
of these edges is >°,.c 4 5(a;), the sum of the path lengths of P; and P, must be equal
to >4,ca 5(a;). Since the length of the longer path P is equal to X = 1/23,.c 4 5(a;),
the length of the shorter path P, is also equal to X = 1/23,.c 4 s(a;). Therefore, the
sum of the weights associated with the edges of the path P; is equal to the sum of the
weights associated with the edges of the path P,. This implies that the subset of the
weights vy; 1 — v9;,1 < ¢ < n, associated with the edges of the path P, add up to
X =1/2%,.ca5(a;) and the remaining weights of the set vy;_; — v9;,1 < i < n are
associated with the edges of the path P,. This proves that if there exists two node
disjoint paths P; and P, from s to ¢, then the elements of the set A = {ay,as,...,a,}
can be partitioned into two subsets, such that the sum of the sizes of the elements in
one set is equal to the sum of the sizes of the elements of the other set. This proves the

theorem.

2.2 Edge Disjoint Path Problem

Edge Disjoint k-Path Problem - Optimization Version

Instance: A graph G = (V, E), with weight w; ; associated with each edge e; ;, (w;; > 0),
a source node s, a destination node d and a positive integer k.

Problem: Find a set of k edge-disjoint paths from s to d such that the length of the
longest path in this set is the shortest among all such sets of £ edge-disjoint paths from
s to d.

Edge Disjoint k-Path Problem (EDKPP) - Decision Version



Instance: A graph G = (V, E), with weight w; ; associated with each edge e; ;, (w;; > 0),
a source node s, a destination node d and a positive integer £ and a non-negative number
X.

Question: Is there a set of k edge-disjoint paths from s to d such that the length of the

longest path in this set is less than or equal to X 7

Theorem 2 The edge disjoint k-path problem is NP-complete.

Proof: We show EDEPP is NP-complete by considering a restricted version of the problem
where k£ = 2. We call the restricted version the Edge Disjoint 2-Path Problem (ED2PP).
Edge Disjoint 2-Path Problem (ED2PP)

Instance: A graph G = (V, E), with weight w; ; associated with each edge e; ;, (w;; > 0),
a source node s, a destination d and a non-negative number X.

Question: Is there a set of two edge-disjoint paths from s to d such that the length of
the longest path in this set is less than or equal to X 7

We show ED2PP is NP-complete by giving a transformation from the ND2PP problem
discussed in the previous section.

Proof: 1t is easy to see that ED2PP € NP, since a non-deterministic algorithm need only
guess two edge disjoint paths P; and P, and check in polynomial time that the length of
the longer path is less than or equal to X.

We will transform ND2PP to ED2PP. We construct an instance of the ED2PP from
an instance of the ND2PP by replacing each node v; of the instance of ND2PP with
two nodes v;; and v; 2. A directed edge is introduced from v;; to v;2 and a weight of 0
is assigned on this edge. It is easy to check that the instance of ED2PP will have two
edge-disjoint paths from s to d such that the length of the longer path among the two

paths, is less than or equal to X if and only if the instance of ND2PP will have two



node-disjoint paths from s to d such that the length of the longer path is less than or

equal to X.

3 Mathematical Programming Formulation

A mathematical programming [14] solution to the optimization version of the EDPP is
given next. This formulation seeks to find a set of k£ edge disjoint paths from the source
to the destination such that the length of the longest path in this set is shortest among
all such sets of paths. If only one backup is needed, as is the case in the WDM protection
scheme, the parameter k is set equal to 2. If k edge disjoint paths are maintained (k > 2),
it can tolerate up to k — 1 failures.

The node disjoint version of the problem can be transformed to the edge disjoint
version in O(n) time, where n, is the number of nodes in the network through a technique
known as node splitting [30]. In this technique, every node v; in the graph is replaced
with two nodes v;; and v;, and directed edges, v;; — v;o and v; — v;1.

The variable r is used to identify a path, 1 < r < k. A binary indicator variable
] ; is associated with each link (4, 7) of the directed graph G = (V, E). If the variable
zj ; = 1, it indicates that the link (4, j) is a part of the r-th path from the source to the
destination and if z7 ; = 0 then it is not a part of such a path.

Minimize C

Subject to the following constraints:

—1 if j is the source node

(B) > @, — Y ;=91 if j is the destination node
{i]zeV} {ilieV'}

0 if j is any other node

\



) Z wiri; < C,Vr1<r<k
(L9)eE

(#9) x;; = 0/1, Vr, 1 <r <k; V(i,j) € E

An exact solution to the EDPP can be obtained by solving the integer linear program-
ming problem given above. However, the computational time may be high if the problem
size is large. Next, we give a polynomial time algorithm that finds an approximate

solution with a guaranteed performance bound for the NP-complete EDPP problem.

4 Approximate solution to the Path Problem

Consider another edge disjoint path problem with a different objective:
Edge Disjoint k-Path Problem - Minimum Total Edge Cost (EDkPP-MTEC)
Instance: A graph G = (V, E), with weight w; ; associated with each edge e; ;, (w;; > 0),
a source node s, a destination node d and a positive integer k.
Problem: Find a set of k edge-disjoint paths from s to d such that the sum of the length
of the paths in this set, is the minimum among all such sets of £ edge-disjoint paths from
s to d.

Clearly, EDLPP is different from EDEKPP-MTEC in its objective. The computational

complexities of these problems are also different. In this paper, we have shown that the



EDEPP is NP-complete, whereas it is well known that the EDKPP-MTEC can be solved
in polynomial time [30, 31]. If n is the number of nodes in the graph and m is the number
of edges, then the set of k£ edge-disjoint paths from a given source s to a given destination
d, with minimum total edge cost can be found in O(kmlog;,,,/, n) time [15, 31].

We use the algorithm to compute the optimal solution to the EDEPP-MTEC problem
[15] as an approximate solution to the EDKPP problem. Suppose that the k disjoint paths
generated by the optimal solution of the EDkPP-MTEC problem are P;, P, ... P, and
the optimal solution of the EDEPP are the k disjoint paths P/, Pj, ... P,. We denote the
length of the paths P, and P/ by PL; and PL, respectively. Without loss of generality,
we assume that PL; < PL; ., and PL; < PL; ,,for 1 <i <k —1.

We measure the quality of the approximate solution of the EDKPP problem by the
ratio PLy/PLj,.

Since the path set P;, Py, ... P is the optimal solution to the EDKPP-MTEC problem,
PL+PLy+ ...+ PLy < PL)+ PLy+ ...+ PL;
Since PL; < PL;_, for 1 <i <k — 1, the above equation can be rewritten as
PL +PLy+ ...+ PL, < kPL,
or PL, < kPL) as PL; > 0 for 1 <4 < k. This reduces to
PLy/PL, <k

Thus the ratio of the approzximate solution to the EDEKPP, PL,, to the optimal solu-
tion, PL}, is bounded by k.

In the protection scheme in the lightwave network only two disjoint paths (one primary
and one backup) are sought, i.e., k = 2. Therefore, in this case the approximate solution

is bounded by 2 times the optimal solution. Closer examination reveals that the ratio



PL,/PL, must be strictly less than 2. Suppose, if possible PLy, = 2PL,,. As PL1+PLy <
PL\| + PL}, this implies PL; + 2PL, < PL} + PL;, or PL, < PL| — PL,. This cannot
be true unless PL; = 0, because from our initial assumption we have, PL| < PLI,.
Therefore the PLs must be less than 2P L.

Next we show that this bound is tight. Consider the example shown in figure 2. The
MinSum path pair in this example are A - D — C — B and A — B with a total path
length 2x — e and the MinMax path pair in this exampleis A - C — Band A - D — B
with a total path length 2z. The length of the backup path in the first case is 2z — 4e
whereas in the second case it is only x. Thus the ratio between the backup path length
of the MinSum pair to the backup path length of the MinMax pair may be very close to

2.

4.1 Algorithm for Edge Disjoint k-Path (Minimum Total Edge

Cost) Problem

In this subsection, we briefly sketch the algorithm we use to compute MinSum Path Pair
(MSPP).

The MSPP is a special case of the minimum cost flow problem [15]. The minimum
cost flow formulation of the MSPP given below is from [1]:

A binary indicator variable z; ; is associated with each link (7, j) of the directed graph
G = (V,E),|V| = n,|E| = m. If the variable z; ; = 1, indicates that the link (¢, j) is a
part of the path from the source to the destination and z; ; = 0 otherwise. The parameter
b(i) associated with each node ¢ € V, indicates the supply or demand at the node 7 and

c; ; is the cost of the edge (4, j).

Minimaze Z(i,j)eE Ci jTi j



Subject to the following constraints:

@ > wy— D, w=b() VieV

{51G,5)eE} {5105 €eE}

(ii)z;; = 0/1V(i,j) € E

Lawler in [15] has given a minimum cost augmenting path algorithm for the minimum
cost network flow. Suurballe in [30] present an algorithm for the same problem for
node-disjoint paths. An efficient implementation of the edge-disjoint path problem with
minimum total edge cost is given in [31]. As we use it to compute the MSPP in the
graph, we briefly describe the algorithm from [31] .

The algorithm performs two preliminary steps:

Step 1: It finds a shortest path tree T rooted at s. For any node v of the graph, this
tree contains a shortest path from s to v. The edges of this tree are referred to as the
tree edges and the other edges as the non-tree edges. The shortest path distance from
the node s to any node v in the graph is denoted by d(s,v).

Step 2: The length of each edge (v, w) denoted by c(v,w) is transformed by defining
d(v,w) = c(v,w) +d(s,v) — d(s,w).

For any node v, GG, denotes the graph formed from G by reversing all the edges along
the path 7" from s to v.

The following theorem stated in [31] follows from the minimum cost augmenting path

algorithm for the minimum cost network flow problem given in [15].

Theorem 3 For any vertex v, the total length of a shortest pair of edge disjoint paths

from s to v, is dy(s,v), where d, denotes the distance function in G,. Such a pair of



Figure 4: Shortest Path Tree

paths can be obtained from the path from s to v in T and a shortest path from s to v in
G, by taking the union of the edges in the two paths, discarding every edge in one path

whose reversal appears in the other, and grouping the remaining edges into two paths.

The execution of the algorithm is demonstrated with the help of an example shown in
figure 4. In the example, B and F are the source and the destination nodes respectively.
First a shortest path tree rooted at the source node B is constructed. The tree edges
are shown as solid lines in the figure 4. The figure 5 shows the edges weights after the
transformation mentioned in step 2 earlier. In figure 6, the direction of the shortest path
from B to F in figure 4, B - D — E — F, is reversed. The shortest path from B
to F in the graph of figure 6 is computed and that pathis B - F - D — H — F.
Using theorem 1 we obtain the pair of disjoint paths whose sum of the path lengths is
the smallest as B—+F — Fand B—-D — H — F.

The MSPP problem can also be solved using a distributed algorithm given in [20].



Figure 5: Graph after transformation of edge weight

Figure 6: Graph after reversal of shortest path



Graph No. | No. of Nodes | Avg. Degree | MinMaxPP | MinSumPP SPP

(approx) PpP| Sp |PP| SP | PP |SP
1 20 15 6 6 5 6 ) 7
2 25 8 9 9 8 9 8 |9
3 40 6 13 13 12 13 12 | 13
4 40 20 6 6 4 6 4 |1 6
5 5Y) 4 21 26 21 26 18 | 30
6 85 4 19 19 14 20 14 | 20
7 85 30 6 6 5 6 5 | 6
8 100 6 24 24 23 24 23 | 24
9 100 18 9 9 6 11 6 | 11
10 100 50 3 3 2 3 2 |3

Table 1: Comparison of MinMax, MinSum and SPP; PP: Primary Path, SP: Secondary
Path

5 Comparison of Exact and Approximate Solution

In this section we present the results of our experimental evaluation of three problems,
(i) Short Path Pair, (ii) MinMax Path Pair and (iii) MinSum Path Pair. We first created
a random graph generator. Taking the number of nodes and the average node degree as
input parameters, the generator creates a random graph. We find the Shortest Path Pair
(SPP) by executing Dijkstra’s shortest path algorithm twice, once on the input graph
and once on the input graph after removal of the edges belonging to the shortest path. As
described in the previous section, the MinSum Path Pair (MinMaxPP) is also computed
by execution of the Dijkstra’s algorithm twice. The MinSum Path Pair (MinMaxPP)
is computed by using the mathematical programming formulation given in section 3.
The integer linear program is executed on a SUN Ultra workstation using CPLEX 6.5
mathematical programming package. The computation time for the problems using the
CPLEX was less than a minute. The lengths of the primary and the secondary paths,
obtained by MinSumPP, MinMaxPP is presented in the table 1.

In this paper we have proven that the backup path length in the MinSum pair will

always be less than two times the backup path length in the MinMax pair. Our exper-



imental results presented in the table 1 shows that the performance of MinSum pair is
even superior. In our experiments the maximum value of the ratio of the backup path
length in the MinSum pair to the backup path length in the MinMax pair was 1.2.

It may observed that the results of the Shortest Path pair is very close to the results
of the MinSum pair. Since the computational complexity of the SP pair is identical
to that of the MinSum pair, this may suggest the use SP pair instead of the MinSum
pair. However, there is a significant difference between the two. The MinMax pair can
guarantee that the length of its backup path will always be less than two times the
backup path length of the MinMax pair. However, the SP pair cannot provide any such
guarantee. We illustrate this with an example. In the graph of figure 7, S and D are the
source and the destination nodes respectively. The weights of the links is shown in the
figure. The SP pair from S to D in this graphisS 4 A—+B—->C —-F—-F -G — D
and S - L — M — D with path lengths 7e and y + 2¢ respectively, and the MinMax
pairis S »>J > F —+F —>G—-Dand S—+H —-B—(C —1— K — D with path
lengths x + 4e and x + 5e and respectively (x,y are any arbitrary numbers and € is an
arbitrarily small number). If y is arbitrarily large in comparison with z, the ratio of the
backup path length in the SP pair (y + 2¢) to the backup path length in the MinMax PP
(x 4+ 5¢) may be arbitrarily large.

Our experiments show that the results produced by the MinSum pair is very close to
the MinMax pair. It is also close to the SP pair. Since the computational complexity
of the MinSumPP is identical to that of the SPP and the MinSumPP can provide a
performance guarantee while the SPP cannot, there is no compelling reason for using the

SPP instead of the MinSumPP as the primary and backup paths in optical networks.



L y
Figure 7: Comparison of Shortest Path pair and MinMax pair

6 Variations of Disjoint Path Problem

In the previous sections, we have discussed the problem of finding a set of £ edge disjoint
paths between a source-destination pair so the length of the longest path is shortest
among all such sets. In WDM networks we are particularly interested in the case k = 2,
where the two disjoint paths correspond to the primary and backup paths respectively.
The techniques presented earlier attempt to minimize the length of the backup path
length (the length of the primary path is always shorter than the length of the backup
path). In the example shown in figure 2, we have the option of choosing a primary path
of length 3¢ and a secondary path of length 2z — 4¢ or a primary and a secondary path,
both of whose lengths are x. In this paper we have argued that the second choice is a
better choice, because the length of the backup path in the first choice may be very long
resulting in an unacceptably high delay. This may be very critical in an QoS constrained
environment. However, the length of the backup path is important only if we assume
that there are occasions when the primary path is not available and the secondary path
has to be used for data transmission. The arguments to support the claim that the first

choice is a better choice is based on the assumption that the reliability of the network



is very high and the backup path, if it is at all used, will be used very rarely. In such
a situation, attention should be paid to minimize the length of the primary path and
not the length of the secondary path, as the primary path is the one responsible for data
transfer for most of the time.

In this section we provide a formulation that minimizes combined primary and sec-
ondary path length. We refer to this problem as the Combined Primary Secondary Path
Pair, CPSPP computation problem. Suppose p is the probability of failure of the primary
path. We are assuming a single fault scenario, which implies that if the primary path is
not operational due to a fault, the secondary (or backup) path is operational (faultfree).

In this case, we minimize a combined path length which is equal to
(1 — p) * (primary path length) + p x (secondary path length)

The variable r is used to identify a path, 1 <7 < 2 (r = 1 corresponds to the primary
path and r = 2 corresponds to the backup path). A binary indicator variable T 18
associated with each link (7, j) of the directed graph G' = (V, E). If the variable 27, = 1,
it indicates that the link (4, j) is a part of the r-th path from the source to the destination

and if 27 ; = 0 then it the link (4, 7) is not a part of such a path.



Minimize Z(i,]-)eE[(l —p) * wi,sz{j + p * wi,jx?ﬂ-]
Subject to the following constraints:

—1 if j is the source node

(4) Z x:] - Z x}"z =141 if j is the destination node
{ilieV} {ilieV'}

0 if j is any other node

\

(i) > wigr;; < D wiTy;

(ij)eE (iJ)eE

(w)zi; = 0/1,Vr, 1<r<2;V(i,j) €l

The CPSPP is a generalization of SPP, MSPP and MMPP problem. With appropriate
choice of the parameter p, and trivial modification of the formulation, all three of them

can be computed using the above set of constraints and objective function.

7 Conclusion

In this paper we have proposed the use of the MinMax Path Pair (MMPP) as the primary
and the backup path in the protection scheme of WDM networks. We have provided a
rationale for using the MMPP instead of the currently practiced the Shortest Path Pair
(SPP) as the primary and the backup paths. We have proved that selection of the MMPP
is an NP-complete problem both in its edge-disjoint and node-disjoint versions. We have
proposed the use of the MinSum Path Pair (MSPP) as an approximation of the MMPP.
Through analysis and simulation, we have shown that the MSPP very closely emulates

the MMPP. In many of the experimental cases, the performance is identical. Since the



computational complexity of the MSPP is very low (it is identical to the complexity of
the SPP), and the MSPP can provide a performance guarantee while the SPP cannot,
there is no compelling reason for using the SPP instead of the MSPP as the primary
and backup paths in optical networks. We also provide a formulation of the Combined
Primary Secondary Path Pair (CPSPP), which is a generalization of the notions of SPP,

MMPP and MSPP.
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