
CMPSCI 601: Recall From Last Time Lecture 21

To prove
�

is NP-complete:

� Prove
� �

NP.
� Prove � � �

, where � is known to be NP-complete.

The following problems are NP-Complete:

� SAT (Cook-Levin Theorem)
� 3-SAT
� 3-COLOR
� CLIQUE
� Subset Sum
� Knapsack (decision version)
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Knapsack

Given � objects:

object ��� ��� ����� �
	
weight � � � � ����� � 	 � 

value � � � � ����� � 	
�

= max weight I can carry in my knapsack.

Optimization Problem:

choose � � �����������������
to maximize ����� � �
such that ����� � � � �

Decision Problem:

Given !� �
!�"� � �$# , can I get total value
� # while total

weight is � �
?
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Proposition 21.1 Knapsack is NP-Complete.

Proof: Let � � ��� � ��������� 	 ��� � be an instance of Subset
Sum.

Problem: �
	�� � � �������������������� ����� � � � ���

Let �������� ��� � ��������� 	 ��� � ����������� 	 ��� ��� � be an instance
of Knapsack.

Claim: � �
Subset Sum � ������ �

Knapsack

�
	 � � �������������������������� � � � ���
�

�
	 � � �������������������� ����� � � � � � ����� � � � �����

Fact 21.2 Even though Knapsack is NP-Complete there
is an efficient dynamic programming algorithm that can
closely approximate the maximum possible # .

3



CMPSCI 601: Approximability Lecture 21

Fact: NP-complete decision problems are all equiva-
lent.

Belief: NP-complete problems require exponential
time in the worst case.

Fact: Difficulty of NP Approximation problems varies
widely.
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Definition 21.3
�

is an NP-optimization problem iff

� For each instance � , � � � � �
, � ���  � ����� 	
	 is the

set of feasible solutions. We can test in P whether� � � ���  .
� Each � � � ���  has a cost ��� �  �

Z  . The cost � � �  is
computable in � � P  .

For minimization problems,

OPT ���  � � ���� ��� ��� 	
� � � 

For maximization problems,

OPT ���  � � �
�� ��� ��� 	
��� �  �
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Definition 21.4 Let � be a polynomial-time algorithm
s.t. on any instance � ,

� ���  � � ��� 
� is an � -approximation algorithm iff for all � ,

� � ��� ���  �� OPT ���  �
� �
� � OPT ���  � ����� ���    � � �

 � � � �
� � �  � is an excellent approximation! Minimization
problems: at most �����	�	 times optimal. Maximization prob-
lems: at least 99 percent of optimal.

� � �� : Minimization problems: no more than twice opti-
mal. Maximization problems: at least half optimal.

� � ��
�
 : not a very good approximation! Minimization
problems: at most 100 times more than optimal; Maxi-
mization problems: at least one percent of optimal.
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Four Classes of NP Optimization Problems

INAPPROX � no PTIME � -approx alg if P
�� NP

APPROX � �
	 � � � � �  � � � � � � � � 
exists PTIME � � -approx alg
no PTIME � � -approx alg if P

�� NP

PTAS � ��� ���   exists PTIME � -approx alg

FPTAS � ��� ���   exists uniform � -approx alg
running in time poly( � � �� )

(F)PTAS stands for (Fully) Polynomial-Time Approxima-
tion Scheme.
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exists P approx alg for

ε

poly in n, 1/ε

ε

some but not all 

< 1

all 

< 1

< 1

no ε

APPROX

P

FPTAS Knapsack

PTAS ETSP

TSPClique

∆TSPMAX SATVertexCover

INAPPROX
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CMPSCI 601: Vertex Cover Lecture 21

Input: an undirected graph � � � # ���  .
Output: a minimum size � � # such that � touches
every edge.

Greedy: (nodes of high degree) About ���	� � times opti-
mal, in the example above. (There are about � ���	� � total
nodes. The � fat ones are a vertex cover, but the greedy
algorithm takes most of the others first.)
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Better: Find a Maximal Matching

1. � � � �

2. while ( � �� �
) do �

3. pick ��� � �  � �
4. � � � � � ��� ��� �
5. delete � � � from � �

The edges picked are a maximal matching, a disjoint set
of edges to which we can’t add another disjoint edge. If
there are � edges in this matching, we’ve used � � nodes
in � but any algorithm would have to use at least � .
�
�

� � � opt � �  � � �� Best known approx ratio
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A Hamilton circuit for an undirected graph � is a cycle
that starts and ends at some vertex � and visits every other
vertex exactly once.

HC � � � �
� has a Hamilton Circuit �

Fact 21.5 HC is NP-Complete. (Nicest proof is in Sipser.)

TSP � � � � � # ��� � �  ��� �
� has a HC of weight � � �

� � � # ���  , � � � # �
, let � � � �� � # � � 	 � � ������ ������� � ,

� � ��� � �  �
�����	 ����


� if � � ���  � �
� ��� �� otherwise

Observation 21.6 For any undirected graph � ,

� �
HC � � � �  �

TSP

Corollary 21.7 If TSP has a polynomial-time � -
approximation algorithm for any � � � , then P = NP.
Thus, TSP

�
INAPPROX.
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� � � # ���  , � � � # �
, let � � �  � � # � � � � � � ���  � ��� �

� � �  � ,
� � ��� ���  �

�����	 ����

���    �  
 if ��� � �  � �
���    �   � otherwise

Let Fair-TSP be the subset of TSP s.t. no edge weight
is more than 0.0001 percent more than any other edge
weight.

Observation 21.8 For any undirected graph � ,

� �
HC � � � �  �

TSP � � ���  � � � �	� � TSP

Observation 21.9 Fair-TSP is NP-complete as a decision
problem and as an optimization problem it has a polynomial-
time � �
 � -approximation algorithm.
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ki

j
�

TSP: TSP where � ��� ���  � � ��� ��� 
	 � ������� 

Claim 21.10 Minimum Spanning Tree is a lower bound
for

�
TSP � ��� MST  � ��� � TSP  .

Proof: Visualize optimal tour:

Delete one edge and we have a spanning tree. �

13



Theorem 21.11 c(MST) � ��� � TSP  � � � c(MST)

Proof: The multigraph � � MST, made by taking two copies
of each edge in the tree, is connected and all its nodes
have even degree.
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Thus it has an Euler’s tour, providing an � � �� approxi-
mation algorithm. �
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Aside: A multigraph � � � # ���  is a graph except
that � may be a multiset, i.e., there can be more than one
edge between a certain pair of vertices. An Euler’s Tour
of an undirected multigraph � is a tour that starts and
ends at the same vertex and traverses each edge exactly
once.

Fact: � has an Euler’s tour iff � is connected and each
vertex of � has even degree. If � has an Euler’s tour,
then such a tour can be computed in linear time.
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Christofides Algorithm (1976)

In the MST, only worry about the odd degree nodes.

There are an even number of vertices of odd degree.

In polynomial time we can find a minimum weight per-
fect matching, � , on the odd-degree nodes.

MST � � is an Eulerian graph.

MST � TSP; � � �� TSP.

Thus, we get a tour at most 1.5 times optimal. � � �
�
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Euclidean TSP

ETSP: Euclidean distance in plane:

� � ��� ���  � � ��� �����  �� � ��� � � �  � 	 ��� � � �  �

ETSP has a Polynomial-Time Approximation Scheme (PTAS)
[Arora 1997].
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CMPSCI 601: Interactive Proofs Lecture 21

random bits

finite

control

x:  read-only  input

work tape

n

ProofΠ:σ:

Merlin-Arthur games (MA) [Babai]

Decision problem: � ; input string: �
Merlin — Prover — chooses the polynomial-length string�

that Maximizes the chances of convincing Arthur that
� is an element of � .

Arthur — Verifier — “computes” the Average value of
his possible computations on

� � � . Arthur is a polynomial-
time, probabilistic Turing machine.
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Definition 21.12 We say that � accepts � iff the follow-
ing conditions hold:

1. If � �
� , there exists a proof

�
� , such that � accepts

for every random string � ,� ����� � �
	 � � ��� �� � � � ������ � �
2. If � ��

� , for every proof
�

, � rejects for most of the
random strings � ,

� ����� � � ��� ���� � � �
� ������� � �
�

�
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Any decision problem �
�

NP has a deterministic, polynomial-
time verifier satisfying Definition ??.

By adding randomness to the verifier, we can greatly re-
strict its computational power and the number of bits of�

that it needs to look at, while still enabling it to accept
all of NP.

We say that a verifier � is � � � �  ��� � �   -restricted iff for
all inputs of size � , and all proofs

�
, � uses at most� � � � ��  random bits and examines at most

� ��� � ��  bits
of its proof,

�
.

Let PCP � � � �  ��� � ��  be the set of boolean queries that are
accepted by � � � �  ��� � ��  -restricted verifiers.

Fact 21.13 (PCP Theorem) NP � PCP � ��� � � �����
The proof of this theorem is pretty messy, certainly more
than we can deal with here. But we can look at the appli-
cations of the PCP Theorem to approximation problems.
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MAX- � -SAT: given a 3CNF formula, find a truth as-
signment that maximizes the number of true clauses.

��� ��� � ��� � �  � ��� ��� ��� � ���  � � � ��� � ��� ���  � ��� ��� � � � ��� 
��� � �	� � � � ���  � � � � � ��� � �
�� � � � ��� � �	� � �  � � � �	� ��� � �
��
Proposition 21.14 MAX- � -SAT has a polynomial-time
� � �� approximation algorithm.

Proof: Be greedy, set each variable in turn to the better
value. �
You can do better – a random assignment gets 7/8 of the
clauses.

Open for Years: Assuming NP
�� P is there some � , � � � � s.t. MAX- � -SAT has no PTIME � -approximation

algorithm?
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Theorem 21.15 The PCP theorem (NP � PCP � ���	� � � � � )
is equivalent to the fact that

If P
�� NP, then

For some � , � � � � 
,

MAX- � -SAT has no polynomial-time, � -approximation
algorithm.

Fact 21.16 MAX- � -SAT has a PTIME approximation
algorithm with � � �

� and no better ratio can be achieved
unless P � NP.
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