
CMPSCI 601: Recall From Last Time Lecture 21

To prove
�

is NP-complete:

� Prove
� �

NP.
� Prove � � �

, where � is known to be NP-complete.

The following problems are NP-Complete:

� SAT (Cook-Levin Theorem)
� 3-SAT
� 3-COLOR
� CLIQUE
� Subset Sum
� Knapsack (decision version)

1

Knapsack

Given � objects:

object ��� ��� ����� �
	
weight � � � � ����� � 	 �

value � � � � ����� � 	
�

= max weight I can carry in my knapsack.

Optimization Problem:

choose � � �����������������
to maximize ����� � �
such that ����� � � � �

Decision Problem:

Given !� �
!�"� � �$# , can I get total value
� # while total

weight is � �
?

2

Proposition 21.1 Knapsack is NP-Complete.

Proof: Let � � ��� � ��������� 	 ��� � be an instance of Subset
Sum.

Problem: �
	�� � � �������������������� ����� � � � ���

Let �������� ��� � ��������� 	 ��� � ����������� 	 ��� ��� � be an instance
of Knapsack.

Claim: � �
Subset Sum � ������ �

Knapsack

�
	 � � �������������������������� � � � ���
�

�
	 � � �������������������� ����� � � � � � ����� � � � �����

Fact 21.2 Even though Knapsack is NP-Complete there
is an efficient dynamic programming algorithm that can
closely approximate the maximum possible # .

3

CMPSCI 601: Approximability Lecture 21

Fact: NP-complete decision problems are all equiva-
lent.

Belief: NP-complete problems require exponential
time in the worst case.

Fact: Difficulty of NP Approximation problems varies
widely.

4

Definition 21.3
�

is an NP-optimization problem iff

� For each instance � , � � � � �
, � ��� � ����� 	
	 is the

set of feasible solutions. We can test in P whether� � � ��� .
� Each � � � ��� has a cost ��� � �

Z . The cost � � � is
computable in � � P .

For minimization problems,

OPT ��� � � ���� ��� ��� 	
� � �

For maximization problems,

OPT ��� � � �
�� ��� ��� 	
��� � �

5

Definition 21.4 Let � be a polynomial-time algorithm
s.t. on any instance � ,

� ��� � � ���
� is an � -approximation algorithm iff for all � ,

� � ��� ��� �� OPT ��� �
� �
� � OPT ��� � ����� ��� � � �

 � � � �
� � � � is an excellent approximation! Minimization
problems: at most �����	�	 times optimal. Maximization prob-
lems: at least 99 percent of optimal.

� � �� : Minimization problems: no more than twice opti-
mal. Maximization problems: at least half optimal.

� � ��
�
 : not a very good approximation! Minimization
problems: at most 100 times more than optimal; Maxi-
mization problems: at least one percent of optimal.

6

Four Classes of NP Optimization Problems

INAPPROX � no PTIME � -approx alg if P
�� NP

APPROX � �
	 � � � � � � � � � � � � �
exists PTIME � � -approx alg
no PTIME � � -approx alg if P

�� NP

PTAS � ��� ��� exists PTIME � -approx alg

FPTAS � ��� ��� exists uniform � -approx alg
running in time poly(� � ��)

(F)PTAS stands for (Fully) Polynomial-Time Approxima-
tion Scheme.

7

exists P approx alg for

ε

poly in n, 1/ε

ε

some but not all

< 1

all

< 1

< 1

no ε

APPROX

P

FPTAS Knapsack

PTAS ETSP

TSPClique

∆TSPMAX SATVertexCover

INAPPROX

8

CMPSCI 601: Vertex Cover Lecture 21

Input: an undirected graph � � � # ��� .
Output: a minimum size � � # such that � touches
every edge.

Greedy: (nodes of high degree) About ���	� � times opti-
mal, in the example above. (There are about � ���	� � total
nodes. The � fat ones are a vertex cover, but the greedy
algorithm takes most of the others first.)

9

Better: Find a Maximal Matching

1. � � � �

2. while (� �� �
) do �

3. pick ��� � � � �
4. � � � � � ��� ��� �
5. delete � � � from � �

The edges picked are a maximal matching, a disjoint set
of edges to which we can’t add another disjoint edge. If
there are � edges in this matching, we’ve used � � nodes
in � but any algorithm would have to use at least � .
�
�

� � � opt � � � � �� Best known approx ratio

10

A Hamilton circuit for an undirected graph � is a cycle
that starts and ends at some vertex � and visits every other
vertex exactly once.

HC � � � �
� has a Hamilton Circuit �

Fact 21.5 HC is NP-Complete. (Nicest proof is in Sipser.)

TSP � � � � � # ��� � � ��� �
� has a HC of weight � � �

� � � # ��� , � � � # �
, let � � � �� � # � � 	 � � ������ ������� � ,

� � ��� � � �
�����	 ����

� if � � ��� � �
� ��� �� otherwise

Observation 21.6 For any undirected graph � ,

� �
HC � � � � �

TSP

Corollary 21.7 If TSP has a polynomial-time � -
approximation algorithm for any � � � , then P = NP.
Thus, TSP

�
INAPPROX.

11

� � � # ��� , � � � # �
, let � � � � � # � � � � � � ��� � ��� �

� � � � ,
� � ��� ��� �

�����	 ����

��� �
 if ��� � � � �
��� � � otherwise

Let Fair-TSP be the subset of TSP s.t. no edge weight
is more than 0.0001 percent more than any other edge
weight.

Observation 21.8 For any undirected graph � ,

� �
HC � � � � �

TSP � � ��� � � � �	� � TSP

Observation 21.9 Fair-TSP is NP-complete as a decision
problem and as an optimization problem it has a polynomial-
time � �
 � -approximation algorithm.

12

ki

j
�

TSP: TSP where � ��� ��� � � ��� ���
	 � �������

Claim 21.10 Minimum Spanning Tree is a lower bound
for

�
TSP � ��� MST � ��� � TSP .

Proof: Visualize optimal tour:

Delete one edge and we have a spanning tree. �

13

Theorem 21.11 c(MST) � ��� � TSP � � � c(MST)

Proof: The multigraph � � MST, made by taking two copies
of each edge in the tree, is connected and all its nodes
have even degree.

8
1 2 3

1

4

2

3

5
64

5
6

7

8

3

Thus it has an Euler’s tour, providing an � � �� approxi-
mation algorithm. �

14

Aside: A multigraph � � � # ��� is a graph except
that � may be a multiset, i.e., there can be more than one
edge between a certain pair of vertices. An Euler’s Tour
of an undirected multigraph � is a tour that starts and
ends at the same vertex and traverses each edge exactly
once.

Fact: � has an Euler’s tour iff � is connected and each
vertex of � has even degree. If � has an Euler’s tour,
then such a tour can be computed in linear time.

15

Christofides Algorithm (1976)

In the MST, only worry about the odd degree nodes.

There are an even number of vertices of odd degree.

In polynomial time we can find a minimum weight per-
fect matching, � , on the odd-degree nodes.

MST � � is an Eulerian graph.

MST � TSP; � � �� TSP.

Thus, we get a tour at most 1.5 times optimal. � � �
�

16

Euclidean TSP

ETSP: Euclidean distance in plane:

� � ��� ��� � � ��� ����� �� � ��� � � � � 	 ��� � � � �

ETSP has a Polynomial-Time Approximation Scheme (PTAS)
[Arora 1997].

17

CMPSCI 601: Interactive Proofs Lecture 21

random bits

finite

control

x: read-only input

work tape

n

ProofΠ:σ:

Merlin-Arthur games (MA) [Babai]

Decision problem: � ; input string: �
Merlin — Prover — chooses the polynomial-length string�

that Maximizes the chances of convincing Arthur that
� is an element of � .

Arthur — Verifier — “computes” the Average value of
his possible computations on

� � � . Arthur is a polynomial-
time, probabilistic Turing machine.

18

Definition 21.12 We say that � accepts � iff the follow-
ing conditions hold:

1. If � �
� , there exists a proof

�
� , such that � accepts

for every random string � ,� ����� � �
	 � � ��� �� � � � ������ � �
2. If � ��

� , for every proof
�

, � rejects for most of the
random strings � ,

� ����� � � ��� ���� � � �
� ������� � �
�

�

19

Any decision problem �
�

NP has a deterministic, polynomial-
time verifier satisfying Definition ??.

By adding randomness to the verifier, we can greatly re-
strict its computational power and the number of bits of�

that it needs to look at, while still enabling it to accept
all of NP.

We say that a verifier � is � � � � ��� � � -restricted iff for
all inputs of size � , and all proofs

�
, � uses at most� � � � �� random bits and examines at most

� ��� � �� bits
of its proof,

�
.

Let PCP � � � � ��� � �� be the set of boolean queries that are
accepted by � � � � ��� � �� -restricted verifiers.

Fact 21.13 (PCP Theorem) NP � PCP � ��� � � �����
The proof of this theorem is pretty messy, certainly more
than we can deal with here. But we can look at the appli-
cations of the PCP Theorem to approximation problems.

20

MAX- � -SAT: given a 3CNF formula, find a truth as-
signment that maximizes the number of true clauses.

��� ��� � ��� � � � ��� ��� ��� � ��� � � � ��� � ��� ��� � ��� ��� � � � ���
��� � �	� � � � ��� � � � � � ��� � �
�� � � � ��� � �	� � � � � � �	� ��� � �
��
Proposition 21.14 MAX- � -SAT has a polynomial-time
� � �� approximation algorithm.

Proof: Be greedy, set each variable in turn to the better
value. �
You can do better – a random assignment gets 7/8 of the
clauses.

Open for Years: Assuming NP
�� P is there some � , � � � � s.t. MAX- � -SAT has no PTIME � -approximation

algorithm?

21

Theorem 21.15 The PCP theorem (NP � PCP � ���	� � � � �)
is equivalent to the fact that

If P
�� NP, then

For some � , � � � �
,

MAX- � -SAT has no polynomial-time, � -approximation
algorithm.

Fact 21.16 MAX- � -SAT has a PTIME approximation
algorithm with � � �

� and no better ratio can be achieved
unless P � NP.

References:

� Approximation Algorithms for NP Hard Problems, Dorit
Hochbaum, ed., PWS, 1997.

� Juraj Hromkovic, Algorithmics for Hard Problems,
Springer, 2001.

� Sanjeev Arora, “The Approximability of NP-hard Prob-
lems”, STOC 98, www.cs.princeton.edu/ � arora.

22

