
A Routing Underlay for Overlay Networks

Akihiro Nakao, Larry Peterson and Andy Bavier
Department of Computer Science

Princeton University

ABSTRACT
We argue that designing overlay services to independently probe
the Internet—with the goal of making informed application-specific
routing decisions—is an untenable strategy. Instead, we propose a
shared routing underlay that overlay services query. We posit that
this underlay must adhere to two high-level principles. First, it must
take cost (in terms of network probes) into account. Second, it must
be layered so that specialized routing services can be built from a
set of basic primitives. These principles lead to an underlay design
where lower layers expose large-scale, coarse-grained static infor-
mation already collected by the network, and upper layers perform
more frequent probes over a narrow set of nodes. This paper pro-
poses a set of primitive operations and three library routing services
that can be built on top of them, and describes how such libraries
could be useful to overlay services.

1. INTRODUCTION
Overlays are increasingly being used to deploy network services

that cannot practically be embedded directly in the underlying In-
ternet [21, 22]. Examples include file sharing and network-embedded
storage [18, 27, 13], content distribution networks [34], routing and
multicast overlays [28, 9, 12], QoS overlays [33], scalable object
location [10, 26, 32, 24], and scalable event propagation [14].

One common characteristic of these overlay services is that they
implement an application-specific routing strategy. For example,
object location systems construct logical topologies using distributed
hash tables, multicast overlays build distribution trees that mini-
mize link usage, and robust routing overlays attempt to find alter-
natives to Internet-provided routes. These overlays often probe the
Internet, for example using ping and traceroute, in an effort to
learn something about the underlying topology, thereby allowing
them to construct more efficient overlay topologies. Some overlays
also employ active measurement techniques in an effort to contin-
uously monitor dynamic attributes like bandwidth and loss. Even
overlays that construct purely logical topologies probe the Internet
to select logical neighbors that are also physically nearby.

While having a single overlay probe the Internet in an attempt
to discover its topology is not necessarily a problem, the strategy

is not likely to scale. This is for two fundamental reasons. First,
aggressive probing mechanisms that monitor dynamic attributes do
not scale in the number of nodes that participate in the overlay.
For example, the designers of RON [9] indicate that their approach
does not scale beyond roughly 50 nodes. Second, when multiple
overlays run on a single node (as is the case in an overlay-hosting
platform like PlanetLab [22]) or on the same subnet (as might be
the case if a site participates in multiple overlay services) it is not
uncommon to see a measurable fraction of the traffic generated by
a node being ping. On PlanetLab, for example, we recently mea-
sured 1GB-per-day of ping traffic (outbound only), corresponding
to a little over one ping per second per node across approximately
125 nodes. Although it is difficult to quantify how many concurrent
overlays a network could support—or what percentage of overall
traffic should be allowed to be ping—having every overlay inde-
pendently probe the network is difficult to defend architecturally.

The advantage that broad-coverage services like the ones cited
above gain over traditional client-server applications is that, by be-
ing geographically distributed over the world, they have multiple
vantage points of the network from which they are able to construct
application-specific packet forwarding strategies. It should not be
forgotten, however, that the network itself already has the advan-
tage of these multiple viewpoints, and already has a fairly complete
picture of the network. It is redundant for a single overlay network
to re-discover this information for itself. It is architecturally silly
for each overlay to duplicate this effort.

In response to this problem, we propose a new architectural ele-
ment—a routing underlay—that sits between overlay networks and
the underlying Internet. Overlay networks query the routing under-
lay when making application-specific routing decisions. The un-
derlay, in turn, extracts and aggregates topology information from
the underlying Internet. In addition to making a case for the rout-
ing underlay, this paper sketches one possible underlay design and
evaluates its feasibility.

2. ARCHITECTURE
This section motivates our routing underlay architecture by first

observing that many existing overlays could be implemented on top
of a shared set of topology discovery services. It does not attempt
to define a comprehensive set of services, sufficient to support all
overlays, but rather, it identifies the kinds of high-level operations
that overlays might effectively employ. The section then proposes
a set of low-level primitives that an underlay would need to support
to implement these operations. The section concludes by sketching
a layered architecture suggested by this discussion.

2.1 Useful Services
Looking at the problem from the top-down, we observe that many



recently proposed overlay services use similar approaches to topol-
ogy discovery and self-organization, and for this reason, could ben-
efit from a shared routing underlay. Such an underlay might also
help some overlays take more scalable approaches to resource dis-
covery. Below, we discuss a few representative overlays and iden-
tify some underlay services that they could exploit.

The RON routing overlay [9] aims to discover good-quality paths
through an overlay of routing nodes, as well as to quickly fail-over
to an alternate path when the current path goes down or becomes
congested. RON organizes the N participating nodes into a clique
and probes each of the N2 edges to discover its latency; it then
runs a link-state routing algorithm over the fully-connected logi-
cal topology to discover the lowest-cost routes through the overlay.
However, the authors report that this approach does not scale for
N > 50 nodes due to the amount of probes generated. A rout-
ing underlay could help the situation by providing RON with a
sparsely connected routing mesh of overlay nodes; probing a mesh
instead of a clique could reduce the total probing cost by an order
of N . Alternatively, RON could be redesigned to probe the net-
work at connection setup time, that is, on-demand. The underlay
could return some (constant) number of disjoint paths through the
network between the ingress and egress RON nodes for the con-
nection, and RON could probe just these paths to select the best
one. Since the paths would be disjoint, their performance should
be independent; periodic probes of each path would allow RON to
switch paths should the performance of one decline.

An end-system multicast (ESM) overlay [12, 11] organizes end-
hosts into a mesh and then runs a minimum spanning tree algo-
rithm on the mesh to produce a multicast tree. ESM would benefit
from an underlay operation that allowed it to find the overlay nodes
that are the nearest neighbors to a given node prior to building the
mesh. Alternatively, the underlay could provide a ready-built rout-
ing mesh based on knowledge of the underlying network topology,
with ESM then pruning this mesh if necessary before running the
MST algorithm. Nodes in peer-to-peer systems like file sharing
networks are also interested in finding their nearest neighbors in
order to peer with them. Conversely, a fault-tolerant P2P file sys-
tem may want to find a far-away neighbor for data replication, in
order to ensure that local disasters do not affect all copies.

The three candidate underlay services that we have suggested—
finding the nearest neighbors to a node, finding disjoint paths be-
tween two nodes, and building a routing mesh—are by no means
the only ones that could be shared among a wide number of over-
lays. However, we believe that they represent an interesting initial
set from which to explore the space.

2.2 Topology Discovery
Looking at the problem from the bottom-up, we ask ourselves

what can be known about the underlying network topology. This
question is immediately complicated by the fact that the underlying
network topology is often nested, with a link at one level actually
implemented by a multi-link path at another level. It is likely that
different overlays will need to see the topology at different reso-
lutions. For example, one overlay might be satisfied to know that
two nodes are connected to different autonomous systems (AS),
while another overlay might need to know that two physical links
between a pair of nodes do not go through the same harbor tunnel.

Although we would like to claim that we can justify a set of
primitives for discovering network topology from first principles,
the truth is that we can only propose an initial candidate set based
on our experiences to-date. This set is also influenced by what we
understand how to implement using the raw topology information
already available in the underlying Internet. With these caveats in

Service Overlay Networks

Library of Routing Services

Topology Probing Kernel

...raw topology information...

Primitives

Figure 1: Structure of the Routing Underlay

mind, we propose three primitives that the routing underlay should
support:

• it should provide a graph of the known network connectivity
at a specified resolution (e.g, ASes, routers, physical links)
and scope (e.g., the Internet, some AS, everything within a
radius of N hops);

• it should expose the actual route (path) a packet follows from
one point to another, again at a specified resolution (e.g., a
sequence of ASes, routers, or links);

• it should report topological facts about specific paths be-
tween a pair of points, according to a specified metric (e.g.,
AS hops, router hops, measured latency).

Keep in mind that these primitives represent an ideal interface;
a real underlay implementation may not be able to provide all of
it. Some information may be unavailable or incomplete. For exam-
ple, the administrator of a particular domain may be unwilling to
provide a feed from their BGP router to our underlay, and so the un-
derlay cannot have knowledge of AS-level paths originating in that
domain. Similarly, a carrier might not be willing to reveal the fact
that seemingly independent links are carried in the same bundle.
We could attempt to collect this information for ourselves, for ex-
ample using network tomography [30, 19, 29], but such techniques
are designed to drive simulation models rather than enable routing
decisions, and may be too expensive. We have to deal with the re-
ality that gathering more accurate topological information comes
with a cost.

2.3 Layered Routing
Combining these top-down and bottom-up perspectives, we pro-

pose a layered approach to constructing the routing underlay. The
primary feature of this approach is cost-consciousness: our under-
lay uses infrequent probes of the entire network at lower layers, and
higher layers reduce the scope of the probes while increasing their
frequency. Our hope is that a service overlay making application-
specific routing decisions using our underlay will consider only a
small, fixed-sized subset of the total set of overlay nodes. Typi-
cally, this means that lower layers use static information about the
network (i.e., that needs to be probed infrequently) while upper
layers probe dynamically changing network conditions.

Figure 1 depicts the structure of our routing underlay, which we
summarize as follows:

• The bottom-most layer, which we label the topology probing
kernel, provides the underlay primitives described in Sec-
tion 2.2 using the raw topology information that is already
available in, or can be directly extracted from, the underly-
ing Internet. This layer hides the fact that probes are sent
to remote sites, and it caches the results of previous probes.
Note that while there is a cost to retrieve raw topology in-
formation from a remote site, we assume that accessing this



information from within the local site is free since the in-
formation is already being collected as part of the Internet’s
normal operation.

• The second level provides a library of routing services. These
services answer higher-order questions about the overlay it-
self, such as those discussed in Section 2.1, using the primi-
tives exported by the topology probing layer. Our prototype
library uses heuristics that are inexpensive in terms of probes,
robust in the face of incomplete information provided by the
primitives, and produce good results. In other words, the
topology probing layer provides the small set of “facts” that
the underlay has learned about the Internet’s topology, while
the routing services library represents the higher-level “con-
clusions” one might derive based up on those facts. Of course
a wide range of library services are possible to support the
special needs of different overlay networks.

• The overlay services themselves represent the top-most layer.
They are primarily distinguished from library services in that
they are typically used directly by application programs rather
than by other services.

Note that we have used the terms “kernel” and “library” to denote
the fact that we assume a single topology probing layer running
on each node (thus sharing state across a set of overlays), while we
expect different library services to be linked into each overlay (thus
not sharing state between overlays). There may be value in sharing
topology library state among overlays, but we do not pursue this
question any further in this paper.

The interesting question is whether we can actually enforce the
use of the routing underlay, or if overlay applications will bypass
the topology discovery primitives and directly probe the Internet
themselves. On an infrastructure-based overlay like PlanetLab, we
can enforce use of the underlay by implementing the probing layer
in the OS kernel, and in doing so, pace the rate and limit the range
of various probes. For pure end-system overlays, universal kernel
enforcement is not likely, so we must fall back to two incentive-
based arguments. First, the services offered by the routing under-
lay are so convenient that application writers will choose to use
them, implying that the primary reason they currently use ping and
traceroute is that these are the only tools available. Second, to
the extent excessive probing traffic becomes a widely-recognized
problem, the same social pressures that encourage the use of TCP-
friendly congestion control will encourage the use of a sane routing
underlay. In fact, this “encouragement” is likely to take the form
of ISPs and network administrators blocking ping and traceroute
traffic in an effort to limit excess probing. We can only hope to
introduce an acceptable probing layer into the architecture before
this happens.

3. TOPOLOGY PROBING KERNEL
The topology probing layer supports a set of primitive opera-

tions that report connectivity information about the Internet. We
envision these primitives being supported on every overlay node.
Much of the information exported by this layer is at the granularity
of autonomous systems (AS), and is relatively static. This section
identifies three such primitives, briefly sketches their implementa-
tion, and discusses their costs.

For the sake of this discussion, we assume each overlay node has
access to the BGP routing table at a nearby BGP router. For multi-
homed sites, a BGP speaker within the site could provide this rout-
ing table. For single-homed sites, we assume the routing table is

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30 35

N
um

be
r 

of
 d

is
tin

ct
 e

dg
es

 in
cl

ud
ed

Cumulative number of vantage points

distinct edges in BGP table
edges each vantage point contributes

Figure 2: Number of distinct edges in PG as a function of van-
tage points, using RouteViews data set.

retrieved from the site’s ISP since the local table is likely to be un-
interesting. Both are possible by configuring the router to treat the
overlay node as a read-only peer. The relevance of the site being
multi-homed (as opposed to single-homed) is that the routing table
on a multi-homed router contains roughly 120k prefixes, spanning
the roughly 15k autonomous systems in the Internet. This table,
therefore, can be treated as a source-rooted tree of autonomous sys-
tem (AS) paths to every other AS in the Internet.

3.1 Peering Graph
The first primitive returns the peering graph (PG) for the Inter-

net.

PG = GetGraph()

This graph represents the coarse-grain (AS-level) connectivity of
the Internet, where each vertex in PG corresponds to an AS, and
each edge represents a peering relationship between ASes. The
Internet does not currently publish the complete PG, but it is easy to
construct an approximation of the PG by aggregating BGP routing
tables from multiple vantage points in the network, as is currently
done by sites like RouteViews [6] and FixedOrbit [1]. That is, an
edge exists between any two vertices X and Y in PG if some BGP
routing table contains a path in which ASes X and Y are adjacent.

Given access to a modest number of BGP routing tables, this
approximation contains nearly all the vertices (ASes) but is likely
to be incomplete in the number of edges (peering relationships) it
contains. For example, RouteViews aggregates BGP tables from
64 sites. One snapshot of BGP tables obtained from RouteViews
contains roughly 120k routes, from which we are able to produce
a PG with 14,381 vertices and 59,988 edges (29,944 bi-directional
edges). Since a BGP table contains downstream AS paths—i.e. AS
paths from the local router to arbitrary destinations—our strategy
to construct PG is to add bi-directional edges between X and Y

whenever we detect a path in either direction.
Although we could implement the GetGraph primitive by hav-

ing all the overlay nodes send the BGP table they acquire to a cen-
tralized aggregation point (similar to RouteViews), and then down-
load the result, it is possible for each overlay node to construct its
own version of PG independently, simply by exchanging its PG
with a small set of neighbors. As suggested by Figure 2—coupled
with our knowledge of the full RouteViews data set and the total
number of ASes in the Internet—aggregating BGP routing infor-
mation from 30-35 vantage points results in a fairly complete peer-
ing graph. This argues that the PG can be constructed using a fixed



number of probes, independent of the number of overlay nodes in
the network. In addition, since the PG is only an approximation
and peering relationships change infrequently, this exchange can
be done with very low frequency, on the order of once a week.

3.2 Path Probe
A path between a pair of nodes in the PG represents a possible

route that packets might traverse from one AS to another, but only
one such path is actually selected by BGP routers. The second
primitive

Path = GetPath(src, dst)

returns the verified AS path traversed by packets sent from IP ad-
dress src to IP address dst. Note that this primitive maps a pair
of network prefixes to the sequence of AS numbers that connect
them, much like a BGP routing table maps a network prefix to an
AS path. Also, as will be seen shortly, we must limit the src and dst
to addresses of overlay nodes because we need a point-of-presence
within an AS in order to resolve this query.

Determining the actual AS path takes advantage of the BGP table
we assume is exported by the underlying Internet. A node consults
the local BGP table to answer queries for the case where src resides
in the local AS. In case the local AS is so large that it has several
BGP routers that use different BGP tables, src needs to be resolved
into clusters sharing the same BGP table. For a src that does not
reside in the local AS, the node forwards the query to an overlay
node in the corresponding AS that contains src. This has the cost of
a single probe. The local node also caches the reply for subsequent
requests.

In both cases, we need to translate IP addresses to AS num-
bers. This can be done by selecting the route in the BGP table
that matches a given IP address, and then inferring that the last AS
number on the path in that route is the AS that contains the node
with the given address.

3.3 Distance Probe
The final primitive reports the distance from the local node to

some remote node target:

Distance = GetDistance(target, metric)

This query can report the latency using one of three metrics. First,
based on the locally available BGP table it can respond with the
number of AS hops from the local node to the remote node. Count-
ing AS hops is weakly correlated with actual latency [20], but it
may also be appropriate for applications that want to minimize
peering points traversed. Plus, it can be implemented at no cost.
Second, the local node can run traceroute to the target node (or
consult a Rocketfuel-generated network map) and report the num-
ber of router hops. The value in doing this is that router hop count is
more strongly correlated with latency than is AS hop count. Third,
the local node can ping the target node, and return the correspond-
ing round-trip time. The last two operations have the cost of one
probe, although the result can be cached and used to respond to
subsequent queries. Thus, this primitive is useful for discriminat-
ing among a set of nodes, but it may not be suitable for measuring
the instantaneous round-trip time.

3.4 Remarks
Note that the GetDistance primitive is parameterized to reflect

the resolution (accuracy) of the desired response: AS-hop-count,
router-hop-count, or RTT. Similar generalizations are also possi-
ble for the GetGraph and GetPath primitives. For example, Get-
Graph could be parameterized by both resolution (possible values

are AS-level, router-level, and physical-level) and scope (possi-
ble values are root, AS, and network). Our prototype implementa-
tion supports only the AS-level resolution and root scope, although
an implementation that exploited ISP mapping tools like Rocket-
fuel might be able to do better [29].

Similarly, GetPath could be parameterized by resolution, with
the same possible values as for GetGraph. In this case, the kernel
might take advantage of traceroute to implement the router-level
resolution. There is currently no good way to implement GetPath
with resolution at the physical-level.

The rest of this paper assumes AS-level resolution, with the goal
of understanding how much can be accomplished by exploiting the
BGP information already collected by the Internet.

4. LIBRARY OF ROUTING SERVICES
This section suggests three library services that can be built on

top of the topology probing layer. These services should be inter-
preted as representative examples, not a complete set. In particular,
we elect to focus on services that can be provided at relatively low
cost, where the interesting question to ask is how much information
they provide at little cost. We believe that these services provide a
useful foundation for a variety of overlay networks, as described in
Section 2.1.

4.1 Finding Disjoint Paths
Our first routing service finds AS paths between two nodes that

do not share a peering point with the default Internet route between
the nodes. More specifically,

PathSet = DisjointPaths(u, v, N , k)

for a given pair of overlay nodes u and v and a set of candidate
intermediate nodes N , the service returns k paths between u and
v that (1) are edge-disjoint with respect to the default AS path be-
tween nodes u and v, and (2) pass through one of the intermediate
nodes in N . We refer to these k paths simply as disjoint paths. Dis-
joint paths can provide both resilience and performance to higher-
level overlay services, since it is unlikely that a disjoint path would
share a bottleneck or a single point of failure with the default AS
path. Additionally, paths involving a smaller number of AS hops
should be more resilient to BGP failure or route changes so our
service favors these paths over longer ones.

Note that, consistent with the results reported in [9], our expe-
rience is that single hop indirection gives us a good opportunity to
find disjoint paths without complicating both disjoint path search
and actual routing. That is, using multiple intermediate nodes al-
most always resulted in longer paths.

4.1.1 Implementation
Our service implementation involves three phases: inferring AS

hop counts for indirect paths, trimming indirect paths that are not
disjoint based on local information, and querying remote nodes to
verify the inferences. Our goal is to minimize the number of queries
to a small subset of candidate nodes based on the results of earlier
phases.

First, we use the graph returned by GetGraph to guess the short-
est disjoint paths (u, w, v), i.e., the paths from u to v through some
node w such that w ∈ N . We assume that the route chosen by BGP
always has the shortest number of AS hops. This is not always true
due to the administrative policy of each BGP router [25], but we
will correct for this later. However, we do make up a little for it
at PG level, by excluding illegal paths using peering relationship
inference [15], which basically says a customer AS does not carry



0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25

O
cc

ur
re

nc
e 

D
is

tr
ib

ut
io

n 
 (

%
)

Number of Shortest Disjoint Paths

Figure 3: Distribution of shortest disjoint paths

traffic for its provider AS. For each node w ∈ N , we concatenate
the AS sequences from the shortest AS path (u, w) and the short-
est AS path (w, v) into the path (u, w, v). We sort the list of these
composite paths by the AS count.

Second, we discard any intermediate nodes w for which we know
that the path (u, w) is not edge-disjoint from the default AS path
(u, v). We use the GetPath primitive to ensure that the sequence
of ASes on the AS path (u, v) does not share two consecutive ASes
(and hence a peering point) with the AS path (u, w); otherwise we
drop the path from consideration.

Finally, we verify our inference about the path (w, v) by invok-
ing GetPath(w, v). Since node w has access to its local BGP
information, it can return the actual AS path (w, v) in response to
this query. At this point we know all of the AS hops along the
path (u, w, v), and can verify our inference about the AS sequence
along the path, as well as discard all w such that (w, v) and (u, v)
share a peering point.

Note that the algorithm just described selects k paths from the
candidate set based on AS hop count. One could further discrim-
inate among (or order) the candidates based on actual round-trip
latency, that is, using the GetDistance with the RTT metric. This
could be done at a cost of k probes.

4.1.2 Evaluation
We first try to get a feel for how many disjoint paths exist be-

tween two ASes using RouteViews [6], which approximates a fully
implemented GetGraph primitive. One observation is that there
is no disjoint path available if either of two end ASes are single-
homed, i.e peer with only a single ingress/egress AS. Therefore, in
our analysis we consider only multi-homed ASes.

The RouteViews router listens to BGP updates from 64 vantage
points and stores them in its own BGP table. This means that the
RouteViews BGP table should contain 64 entries for each network
prefix. We use the NextHop field of each entry to match up entries
with actual vantage points, and thus extract the local BGP table at
that vantage point. This enables us to construct a clique of AS paths
between 42 vantage points (the remaining 22 had incomplete BGP
tables). For each pair of vantage points u and v, we then construct
indirect paths (u, w, v) through every other vantage point w and
check whether these paths are edge-disjoint with the direct path
(u, v).

Among 1722 (=42 × 41) possible direct paths, we discard 374
paths due to inconsistencies, and another 113 because one of the
endpoints is in a single-homed AS. Among the remaining 1235 di-
rect paths, we find that 1157 (93.7%) have at least one disjoint path

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
 (

%
)

Number of Candidates

random
our method

Figure 4: Cumulative distribution of disjoint paths found as a
function of the number of probes.

through an intermediate node.
Next, we evaluate how often our heuristic can find a disjoint path

with the same number of AS hops as the direct path. Most of the
direct paths have several such shortest disjoint paths, as shown by
Figure 3. For instance, 17.4% have one shortest disjoint path, 6.0%
have two, and so on. Figure 4 shows the cumulative distribution of
direct paths for which our heuristic finds at least one of its shortest
disjoint paths within a given number of queries. The plot com-
pares our heuristics and a random scheme where we randomly pick
a node and examine if that gives us a shortest disjoint path. As Fig-
ure 4 shows, we find a shortest disjoint path for 90% of the direct
paths for which one exists within 5 probes.

4.2 Finding Nearest Neighbors
Our second library service finds the nearest overlay nodes in

terms of distance:

Nodes = NearestNodes(N , k)

Relative to the local overlay node and a given set of candidate
neighbor nodes N , this library returns k nodes in N that are closest
to the local node, while minimizing the number of probes.

4.2.1 Implementation
The implementation of this service is relatively simple. As in the

disjoint path service, we use information from the peering graph to
narrow down the set of potential candidates before actively prob-
ing the network. First, we use GetPath to sort the list of candidate
nodes by increasing number of hops from the source; this has no
cost. It has been observed that latency and AS hop count are cor-
related [20], although with high variance, so we expect that nodes
near the top of the list should enjoy better latency from the source.
Next, we refine the result by invoking GetDistance on the top j

nodes in the list, where j ≥ k, and we choose the k with the lowest
latency. The key is choosing the right value of j to send out as few
probes as possible but still get a good result for k.

4.2.2 Evaluation
We evaluate the heuristic using 81 nodes (34 PlanetLab [22]

nodes and 47 randomly selected public traceroute servers [17]).
We also suggest a method for choosing the value j, the number
of nodes to probe to find the best k.

First, we compare our heuristic against random guessing when
trying to find the neighbor with the smallest latency. Figure 5(a)



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Number of Candidate Nodes

Using AS Path Length
Random

(a) Number of probes required to find smallest latency
neighbor (k=1)

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 E
rr

or
 (

m
se

c)

Number of Candidates

k=1
k=2
k=5

k=10

(b) Absolute average error (msec) after a given number
of probes

Figure 5: Evaluation of heuristic to find the k smallest-latency neighbors

shows the number of candidates j that were probed before find-
ing the one that had the absolute lowest latency (i.e., k = 1), for
both our heuristic and a random solution. Not surprisingly, we see
that our method performs significantly better than random guess-
ing. For example, about 50% of the nodes were able to find their
optimal neighbor within 10 probes using our method, while ran-
dom guessing requires 40 probes on average to achieve the same
result. 1

Second, we evaluate the quality of the result returned by the
heuristic after probing j candidates and returning the top k. Fig-
ure 5(b) presents the results for k = 1, 2, 5 and 10. We note that
even when our heuristic does not return the k best nodes, usually
it can find k neighbors that have close to optimal latency with a
small number of probes. For instance, to find k neighbors within
10 msec of the optimal latency required 7 probes on average for
k = 1, 11 probes for k = 2, 18 probes for k = 5, and 27 probes
for k = 10. Based on these observations, it appears possible to im-
plement a table within our service that could translate the number
of desired neighbors k and the error tolerance e to the number of
probes j that the service needs to perform. More investigation is
required to confirm this intuition.

4.3 Building a Representative Mesh
Our third example routing service constructs a mesh that is phys-

ically representative of the underlying Internet, but with far fewer
edges than the fully connected Internet allows. Specifically,

Mesh = BuildMesh(N )

Given a set of overlay nodes N , the BuildMesh call returns the
local node’s neighbor set in a mesh. Our mesh-building strategy is
to identify and remove topologically redundant edges (virtual links)
between overlay nodes, or said another way, retain only those edges
that we can determine to be independent in the underlying physical
network. Each overlay node performs this analysis independently
using the GetPath primitive. The entire mesh could be formed
by aggregating the neighbor sets; however, many routing overlays,
such as RON and ESM, maintain only immediate neighbor sets at
each node.
1The CDF curves reach 100% at less than 80 nodes because we had to exclude some
paths due to invalid traceroute results.

AS V

AS Y

AS W

AS X

AS U

uu vv

ww

(a) Topology A

AS V

AS Y

AS W

AS X

AS U

uu vv

ww

(b) Topology B

Figure 6: Black dots u, v, and w denote overlay nodes and the
white dots denote routers. Virtual link (u, v) is redundant and
can be removed from the mesh, since edges (u, w) and (w, v)
connect u to v.

Our approach is limited to edges that can be removed without
building a global picture of the network. An alternative strategy
would be for a central authority to collect global network informa-
tion, build the entire mesh, and distribute it throughout the overlay.
We opt for a localized approach for reasons of scalability and cost,
though the resulting mesh may not be as sparse as that produced by
a centralized algorithm. One could imagine building a more sparse
mesh on top of the one we build, for example by lowering the de-
gree of each node by discriminating among the edges according to
latency or throughput. Doing so would require a distributed algo-
rithm to ensure that the resulting mesh does not become partitioned.

4.3.1 Implementation
Our algorithm prunes an edge from the local node u to remote

node v if the AS path from u to v includes AS W , such that there is
a node w ∈ N that is located within AS W . This scenario is illus-
trated in Figure 6(a). We call the pruned edge (u, v) a virtualized
edge. The simplest version of our algorithm prunes an edge (u, v),
only when we find an intermediate node w such that both (u, w)
and (w, v) are not virtualized before pruning. Note that these edges
may become virtualized later by pruning other edges during the
course of the algorithm. In order to examine this condition, the lo-
cal node u must keep track of which edges are virtualized to verify
the first half of the spliced connection (u, w) and also to answer



0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

R
ed

uc
tio

n 
(%

) 
in

 th
e 

nu
m

be
r 

of
 e

dg
es

Number of nodes

algorithm1
algorithm2

Figure 7: Reduction in the total number of edges in the peering
graph after pruning

the queries for this local information from others. For example, u

needs to ask the intermediate node w about the virtualization of the
second half (w, v), which is local to the node w. Therefore, this
library must implement a protocol to query candidate intermediate
nodes about their current virtualization.

In addition, we can elect to prune edge (u, v) should an interme-
diate node w reside in an AS that is directly connected to the path
from u to v, as illustrated in Figure 6(b). When the links into and
out of the AS that contains w are poor, our algorithm may prune
a better direct edge from u to v. In order to avoid this situation,
we optionally probe the network to find out more precise informa-
tion. For example, we examine latency from u to w and from u to
v, and do not prune the edge if the difference is greater than some
threshold.

Although each node u runs this algorithm locally, it does not
build a disconnected mesh since it prunes the edge (u, v) only when
it finds a physically similar alternate path to reach v. In order to
select an intermediate node w for a virtual edge (u, v), local node
u first gets the AS path from u to v, and then consults PG to collect
all the ASes along the path or one AS hop away from the path. It
only needs to check nodes w that live in one of these ASes, hence
does not need to know the entire topology of the network.

4.3.2 Evaluation
We evaluate this strategy by measuring the percentage of the

edges it prunes from the fully connected graph among the N over-
lay nodes. Our evaluation involves the following steps.

First, we combine BGP tables from RouteViews [6] and the BGP
feeds at six PlanetLab locations to construct a peering graph with
15,396 ASes and 69,496 peering edges. We assume that BGP paths
are the shortest (symmetric) paths in this peering graph for the sake
of simplicity, while we acknowledge that this does not precisely
reflect reality due to BGP’s administrative policies [25]. Second,
we take a sample of 1,000 potential overlays nodes, each of which
resides in a distinct AS. Although the degree distributions of these
sample nodes is roughly the same as the entire set, it is unclear
if this condition alone ensures that these 1,000 nodes are topolog-
ically representative of the entire Internet. Third, we generate a
sequence of these sample nodes and then in each round of the algo-
rithm, we add one additional node from the sequence to the overlay
network, thus incrementing the number of overlay nodes N . This
allows us to evaluate mesh sparseness as a function of overlay size.

We evaluate two mesh-building algorithms. Algorithm 1 only
virtualizes edges (u, v) for which there exists an intermediate over-

lay node w as shown in Figure 6(a). Algorithm 2 virtualizes these
edges as well, and tries to further reduce the mesh sparsity by vir-
tualizing edges (u, v) that resemble Figure 6(b).

Figure 7 shows the reduction in the total number of edges from
the fully connected graph for the two algorithms, using a random
sequence of sample nodes. As the plot shows, Algorithm 1 reduces
the number of edges by 70% for an overlay with a large number of
nodes (i.e., our mesh has only 30% of the edges in the fully con-
nected graph). The virtualized paths from Algorithm 1 contain only
2 node-hops on average, and the number of AS-hops is always the
same as the original path. As we expected, Algorithm 2 is even
more aggressive and achieves over 90% reduction. This additional
savings comes at a cost, as Algorithm 2 leads to longer virtualized
paths, both in terms of nodes and ASes. On average, the virtual-
ized paths produced by Algorithm 2 (with N = 1, 000) contain
20 node-hops, and ten times as many AS-hops as the original BGP
path, and the maximum number of node-hops and AS-hops along a
virtualized path is anomalously high. We should note that the plots
vary depending on the sequence of nodes we use, although we al-
ways use the same set of 1,000 sample nodes. For instance, when
we sort the nodes by ascending degree, the curves rise up sharply
and saturate with a small number of nodes. When we sort the nodes
by descending degree, the curves do not climb until a large number
of nodes are added.

We believe this preliminary result shows that a physically rep-
resentative mesh can assist overlays like RON to scale by reduc-
ing topologically redundant probing. We are currently investigat-
ing other mesh-building strategies, as well as additional metrics for
evaluating them.

5. DISCUSSION
Based on our experience to-date, we make three observations

about how Internet routing (and BGP in particular) might be changed
to better support overlays. First, as described in Section 3, BGP
speakers need to export their routing tables to overlay networks.
Without this coarse-grain connectivity information, bootstrapping
the routing underlay is problematic. Second, while ASes that cor-
respond to end-sites are easy to model, transit ASes are much too
diverse to be accurately modeled as a single vertex/hop, forcing
us to use latency probes rather than depend on AS hop counts.
The underlay would benefit from more explicit information about
how peers cluster at POPs. Ideally, coarse-grain topology infor-
mation about the internal structure of long-haul ISPs would also
be exposed. Third, our approach argues against pushing any dy-
namic capability into BGP [7, 8, 3, 4, 5]. Our position is that BGP
should continue to provide only connectivity information, with dy-
namic functionality moved to higher layers of the routing under-
lay, thereby allowing us to define value-added routing services in
a cleaner way, and avoid introducing route instability problems.
On the other hand, we actually prototyped our topology probes in
Zebra [2], an open-source implementation of BGP, meaning that
primitives like GetPath can rightfully be viewed as extensions to
BGP.

Our strategy for building a routing underlay is based on the sim-
ple observation that the accuracy of a routing mechanism comes at
some cost, and hence, we would be well-served by doing a more
careful cost/benefit analysis. On the cost side of the equation, one
could evaluate an overlay routing mechanism in terms of the num-
ber of probes it performs, perhaps reported as the product of the
scope of its probes (e.g., all N nodes in the overlay or just k neigh-
bors) and the frequency of those probes (e.g., at configuration time,
on a per-connection basis, or continuously). The benefit side of
the equation is much more difficult to quantify since, ultimately,



we would like to compare the route selected for each packet to the
route that a global oracle would have selected in order to optimize
some metric. When evaluating routing mechanisms, however, we
typically assume that one mechanism represents the desired behav-
ior, and are simply trying to find a way to lower the cost without
losing too much fidelity. Note that while we focus on the probing
costs of routing, there are other potential costs, such as the over-
utilization of popular links due to overlays being selfish [23].

Several primitives to support routing in overlay networks have
recently been proposed. For example, Jannotti [16] defines two
router primitives—path reflection and path painting—that are used
to replicate multicast packets and to create an overlay topology that
resembles the underlying network. Jannotti’s approach focuses on
how routers incrementally (and locally) improve how they map vir-
tual links onto the underlying network topology. In contrast, our
approach is to provide a more global picture of the underlying con-
nectivity. Another example, the Internet Indirection Infrastructure
(i3) [31], proposes indirection as a more flexible communication
abstraction than traditional IP forwarding. One could view i3 as a
generalized form of source routing overlaid on top of the Internet.
Just as source routing often needs to identify way-points that result
in the most appropriate path to the destination, i3 also benefits from
a topology discovery service. In other words, i3 is designed mainly
for the forwarding aspect of overlay routing, while our underlay ar-
chitecture is designed to enable cost-effective topology discovery.
We believe that i3 and our underlay could complement each other
as an infrastructure for building routing overlays.

6. CONCLUSIONS
The main thesis of this paper is that allowing overlay networks

to independently probe the Internet—with the goal of making in-
formed application-specific routing decisions—is not a tenable strat-
egy in the long run. Instead, we propose a shared routing underlay
that overlay networks query. Although we acknowledge that the
exact form this underlay takes is not yet well-understood, we posit
that it must adhere to two high-level principles. First, it must take
cost (in terms of number of network probes) into account. Sec-
ond, the underlay will most likely be multiple-layered, with lower
layers exposing coarse-grain static information at large-scale, and
upper layers performing more frequent probes over an increasingly
narrow set of nodes.

The paper proposes a set of primitive operations, along with an
example library of routing services that can be built on top of the
primitives. A preliminary evaluation suggests that a library of low-
cost services is feasible, and we are currently deploying the services
on PlanetLab. Given ISP and hosting site pressure on PlanetLab to
limit the number of traceroutes and pings each node performs, it
is likely that we will need to restrict overlay services to using such
a shared facility in the near future.

Acknowledgments
We would like to thank the anonymous reviewers and Jon
Crowcroft, our shepherd, for helping us improve the clarity and
focus of the paper. This work was supported in part by NSF grant
ANI-9906704, DARPA contract F30602-00-2-0561, and Intel Cor-
poration.

7. REFERENCES
[1] Fixed Orbit. http://www.fixedorbit.com/.
[2] GNU Zebra. http://www.zebra.org/.
[3] netVmg. http://www.netVmg.com.
[4] Opnix. http://www.opnix.com.
[5] Proficient Networks. http://www.proficientnetworks.com.

[6] Route Views Project. http://antc.uoregon.edu/route-views/.
[7] RouteScience. http://www.routescience.com.
[8] Sockeye Networks. http://www.sockeye.com.
[9] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient

Overlay Networks. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP), pages 131–145, Chateau Lake Louise, Banff,
Alberta, Canada, October 2001.

[10] M. Balazinska, H. Balakrishnan, and D. Karger. INS/Twine: A Scalable
Peer-to-Peer Architecture for Intentional Resource Discovery. In Proceedings
of Pervasive 2002 - International Conference on Pervasive Computing, Zurich,
Switzerland, August 2002.

[11] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling Conferencing
Applications on the Internet using an Overlay Multicast Architecture. In
Proceedings of the ACM SIGCOMM Conference, pages 1–12, August 2001.

[12] Y.-H. Chu, S. G. Rao, and H. Zhang. A Case For End System Multicast. In
Proceedings of the ACM SIGCOMM Conference, pages 1–12, June 2000.

[13] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with CFS. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP), Chateau Lake Louise, Banff, Alberta,
Canada, October 2001.

[14] P. Druschel, M. Castro, A.-M. Kermarrec, and A. Rowstron. Scribe: A
large-scale and decentralized application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communications, 20, 2002.

[15] L. Gao. On Inferring Autonomous System Relationships in the Internet. In
Proceedings of IEEE Global Internet Symposium, November 2000.

[16] J. Jannotti. Network Layer Support for Overlay Networks. In Proceedings of the
5th International Conference on Open Architectures and Network Programming
(OPENARCH), June 2002.

[17] T. Kernen. Traceroute.org. http://www.traceroute.org.
[18] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An Architecture for Global-Scale Persistent Storage. In
Proceedings of the Ninth international Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2000), Nov. 2000.

[19] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Inferring Link Weights
Using End-to-end Measurements. In Proceedings of the Internet Measurement
Workshop, pages 231–236, Marseille, France, November 2002.

[20] P. R. McManus. A Passive System for Server Selection within Mirrored
Resource Environments Using AS Path Length Heuristics, June 1999.
AppliedTheory Communications, Inc.

[21] National Research Council. Looking Over the Fence at Networks. National
Academy Press, Washington D.C., 2001.

[22] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for Introducing
Disruptive Technology into the Internet. In Proceedings of the HotNets-I, 2002.

[23] L. Qiu, R. Y. Yang, Y. Zhang, and S. Shenker. On Selfish Routing in
Internet-Like Environments. In Proceedings of the ACM SIGCOMM
Conference, August 2003.

[24] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-Aware
Overlay Construction and Server Selection. In Proceedings of the IEEE
INFOCOM Conference, New York, NY, June 2002.

[25] Y. Rekhter and T. Li. A Border Gateway Protocol 4, March 1995. RFC 1771.
[26] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems. In Proceedings of the 18th
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware 2001), Heidelberg, Germany, November 2001.

[27] A. Rowstron and P. Druschel. Storage Management and Caching in PAST, A
Large-Scale Persistent Peer-to-Peer Storage Utility. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP), pages 188–201,
Chateau Lake Louise, Banff, Alberta, Canada, October 2001.

[28] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The End-to-end
Effects of Internet Path Selection. In Proceedings of the ACM SIGCOMM
Conference, Cambridge, MA, September 1999.

[29] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies with
Rocketfuel. In Proceedings of the ACM SIGCOMM Conference, pages
133–145, August 2002.

[30] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A facility for distributed
internet measurement. In Proceedings of the 4th USITS Symposium, Seattle,
WA, March 2003.

[31] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet Indirection
Infrastructure. In Proceedings of the ACM SIGCOMM Conference, pages
73–85, August 2002.

[32] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
Peer-to-Peer Lookup Service for Internet Applications. In Proceedings of the
ACM SIGCOMM Conference, San Diego, CA, September 2001.

[33] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz. OverQoS: Offering
Internet QoS Using Overlays. In Proceedings of HotNets-I, October 2002.

[34] L. Wang, V. Pai, and L. Peterson. The Effectiveness of Request Redirection on
CDN Robustness. In Proceedings of the 5th Symposium on Operating System
Design and Implementatio (OSDI), Boston, MA, December 2002.


