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Introduction

With the rapid increase of Internet traffic, the workload on servers is increasing dramatically.  Nowadays, servers are easily overloaded, especially for a popular web server. One solution to overcome the overloading problem of the server is to build scalable servers on a cluster of servers [1] [2].  A load balancer is used to distribute incoming load among servers in the cluster.  With network Load Balancing, the cluster hosts concurrently respond to different client requests, even multiple requests from the same client.  Load balancing can be done in different network layers.  The web content switch is an application level (layer7) switch [19].  Instead of stopping at the IP address and TCP port number, it looks all the way into the HTTP header of the incoming request to make the load-balancing decisions.  By examining the HTTP header, content switch can provide the highest level of control over the incoming web traffic, and make decision on how individual web pages and images get served from the web site. This level of load balancing can be very helpful if the web servers are optimized for specific functions, such as image serving, SSL (Secure Socket Layer) sessions or database transactions [17].

1.1 Goals and motivation for Content Switch

Traditional load balancers known as L4 switches examine IP and TCP headers, such as IP addresses or TCP and UDP port numbers, to determine how packets are routed [3].  Since L4 switches are content blind, they can not use the content information in the request messages to distribute the load.  

For example, many e-commerce sites use secure connections for transporting private information about clients.  When a client connects to a server using an encrypted SSL(secure socket layer) session, a unique SSL  session ID is assigned.  Using SSL session IDs to maintain server persistence is the most accurate way to bind all client’s connections during an SSL session to the same server.  A content switch is able to examine the SSL session ID of the incoming packets.  If it belongs to an existing SSL session, the connection will be assigned to the same server that was involved in previous portions of the SSL session.  If the connection is new, the content switch assigns it to a real server based on the configured load-balancing algorithm, such as least connections and round robin.  Because L4 switches do not examine SSL session ID which is in layer 5, they can not get enough information of the web request to achieve persistent connections successfully [19]. 

Besides SSL connections, content switches can also provide sticky connections by examining the cookie value in HTTP header.  With cookie-based session, the web switch sends the first incoming request to the most available server.  The server modifies the cookie and inserts its IP address.  Based on this information, the web switch can read the entire cookie value of the subsequence request and forward it to the same server.  L4 load balancers also make sticky connections using IP source address and TCP port number.  This becomes an issue if the user is coming through a mega-proxy server, in which any number of clients can use the same source IP address.  Beside that, the source IP address can unexpectedly change if the proxy server dies and a backup server is used, or if a route-change event has forced the use of a new proxy server.  So the only reliable way to maintain sticky connections is to use cookies to identify individual customers.  Because the IP header itself is not a reliable way of identifying an individual client, thus the traditional load-balancing products do not have enough information to reliably connect the user to the same server throughout the life of the transaction [19].

Web switches can also achieve URL-based load balancing [16][18][19].  URL based load-balancing looks into incoming HTTP requests and, based on the URL information, forwards the request to the appropriate server based on predefined polices and dynamic load on the server.  Figure 1 shows an URL based load-balancer.
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Figure 1 URL based load-balancer

In a large e-publishing site, graphic images (GIF and .JPG) and script files (.cgi, .bin and .exe) are on separate servers.  The static files are stored on a separate server farm under the /product, /company and /information directories.  The web switch can check the incoming HTTP request and forward it to the appropriate server based on predefined routing policies.

XML are proposed to be the language for describing the e-commerce request.  A web system for e-commerce application should be able to route requests based on the values in the specific tag of a XML document.  It allows the requests from a specific customer, or purchase amount to be processed differently.  The capability to provide different services is the major function provided by the web switch.  Intel XML distributor is such an example, it is capable of routing the request based on the URL and the XML tag sequence [13].

By examining the content of the request, the content switching system can achieve better performance through load balancing the requests over a set of specialized web servers, or achieve consistent user-perceived response time through persistent connections (also called sticky connections).

1.2 How a content switch can be used.

Load Balancing. A content switch can be configured as a Load Balancing system, which can distribute the incoming request based on HTTP meta header, URL, or even payload to the back end servers in the server cluster.

Firewall. It also can be configured as a firewall, which can look deep into content of the incoming request and make accepting or rejecting decision based on theses information.

Bandwidth control. By examining the content of the incoming packets, a content switch can assign the outbound bandwidth for different kind of packets.

1.3 Related Content Switch Techniques

1.3.1 Proxy Server

Internet Proxy Server [7] is a technique used to cache requested Internet objects on a system closer to the requesting site than to the source.  A client requests an Internet object from a caching proxy; if the object is not already cached, the proxy server fetches the object (either from the server specified in the URL or from a parent or sibling cache server) and delivers it to the client.  Otherwise the proxy server returns the data to the client directly.  

Application level proxies are in many ways functionally equivalent to content switches. They classify the incoming requests and match them to different predefined classes, then make the decision whether to forward it to the original server or get the web page directly from the proxy server based on proxy server’s predefined behavior policies.  If the data is not cached, the proxy servers establish two TCP connections –one to the source and a separate connection to the destination.  The proxy server works as a bridge between the source and destination, copying data between the two connections. 
1.3.2 Apache/Tomcat/Java Servlet

JavaTM Servlet [11] is the Java platform technology for extending and enhancing Web servers.  Servlet provides a component-based, platform-independent method for building Web-based applications.  The JavaTM Servelet, along with the Apache™ JSservlet engine can be very useful for web server load balancing, achieving the persistent connection by identifying the cookie value of the request.  Once a connection is established, a session is bound to one particular JServ.  The JServ then sets the cookie for the client including its own identifier.  When the next request comes (in the same http session), the cookie is used to identify Jserv which sets it.  Then the request can be sent to the same server 

The Proxy Server and Apache™ JSservlet are also similar to web content switch.  They are application layer switches.  When processing request, they establish separate connections between source and destination and copy the data from one side to the other.

Microsoft NLB

Microsoft Windows2000 Network Load Balancing (NLB) [2] distributes incoming IP traffic to multiple copies of a TCP/IP service, such as a Web server, each running on a host within the cluster.  Network Load Balancing transparently partitions the client requests among the hosts and lets the clients access the cluster using one or more “virtual” IP addresses.  As enterprise traffic increases, network administrators can simply plug another server into the cluster.  With Network Load Balancing, the cluster hosts concurrently respond to different client requests, even multiple requests from the same client.  For example, a Web browser may obtain various images within a single Web page from different hosts in a load-balanced cluster.  This speeds up processing and shortens the response time to clients.

1.3.3 Linux LVS
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Linux Virtual Server(LVS) [3] is a load balancing server which is built in Linux kernel.  In the LVS server cluster, the front-end of the real servers is a load balancer (also called virtual server), which schedules incoming requests to different real servers and make parallel services of the cluster to appear as a virtual service on a single IP address.  A node (real server) can be added or removed transparently in the cluster.  The load balancer can also detect the failures of real servers and always redirect the request to an life real server.  The architecture of LVS cluster is shown in Figure 2.

Figure 2 Architecture of a LVS Cluster

LVS is a transport level load balancer.  It is built in the IP layer of the Linux kernel.  The incoming request comes to the load balancer (Linux Virtual Server) first.  The load balancer then forwards the request to one of the real servers based on the existing load balancing algorithm, and uses IP address and port number with key word to hash this connection to the hash table.  When the following packets of this connection come, the load balancer will get the hash entry from their IP addresses and port numbers and redirect the packets to the same real server. 

Existing Virtual Server Techniques

There are three existing IP load-balancing techniques (packet forwarding methods) in the Linux Virtual Server.

· Virtual server via NAT(Network Address Translation).  When a user accesses the service provided by the server cluster, the request packet destined to the virtual IP address arrives at the load balancer. The load balancer chooses a real server from the cluster using a scheduling algorithm, and the connection is added into the hash table which record the established connection. Then, the destination address and the port of the packet are rewritten to those of the chosen server, and the packet is forwarded to the server. When the incoming packet belonging to this connection and the chosen server can be found in the hash table, the packet will be rewritten and forwarded to the chosen server.  When the reply packets come back, the load balancer rewrites the source addresses and ports of the packets to those of the virtual service.  After the connection terminates or timeouts, the connection record will be removed in the hash table.

· Virtual server via IP tunneling. IP tunneling is a technique to encapsulate the IP datagram within the IP datagrams, which allows datagrams destined for one IP address to be wrapped and redirected to another IP address.  When a packet destined for virtual IP address arrives, the load balancer chooses a real server from the cluster according to a connection scheduling algorithm, and the connection is added into the hash table which records connections. Then, the load balancer encapsulates the packet within an IP datagram and forwards it to the chosen server.  When the real server receives the encapsulated packet, it decapsulates the packet and processes the request, finally returns the result directly to the user according to its own routing table

· Virtual server via direct routing. The LVS direct routing works similarly to the LVS IP tunneling.  The only difference between them is that LVS direct routing puts incoming IP datagram inside a link layer packet and routes it to the chosen real server.  For IP tunneling, the IP datagram is put inside another IP datagram.  In a LVS direct routing, the packets coming from the client go to the real server through load balancer which schedules a real server for them, and the response data goes to the client directly from the real server.

The Load Balancing Algorithms:

· Round-Robin Scheduling.  Round-robin scheduling algorithm directs the network connections to different servers in a round-robin manner.  It treats all real servers the same regardless of the number of connections or response time. 

· Weighted Round-Robin Scheduling.  The weighted round-robin scheduling can treat real servers of different processing capacities.  Each server can be assigned a weight, an integer value that indicates the processing capacity.

· Least-Connection Scheduling.  The least-connection scheduling algorithm directs network connections to the server with the least number of established connections. 

· Weighted Least-Connection Scheduling.  The weighted least-connection scheduling is a superset of the least-connection scheduling, in which you can assign a performance weight to each real server.  The servers with a higher weight value will receive a larger percentage of live connections at any one time.

1.3.4 Linux Netfilter

Linux Netfilter [5] is a piece of software inside Linux kernel 2.4 IP Layer which looks at the header of incoming packets as they pass through, and decides the fate of the entire packet.  It might decide to Drop the packet, Accept the packet or something more complicated.  In Linux2.4, the iptables tool in the user space inserts and deletes rules from the kernel's packet filtering table.  The kernel starts with three lists of rules in the `filter' table; these lists are called firewall chains.  The three chains are called INPUT, OUTPUT and FORWARD. 

Figure 3 Packet traveling in Netfilter[image: image5.wmf]client
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In Figure 3, the three rectangles represent the three chains mentioned above.  When a packet reaches a chain in the diagram, that chain is examined to decide the fate of the packet.  If the chain needs to DROP the packet, the packet is killed there.  But if the chain needs to ACCEPT the packet, the packet continues to traverse the diagram. 

A chain is a checklist of rules.  Each rule follows the format- if the packet header looks like this, then here is what to do with the packet.  If the rule doesn't match the packet, then the next rule in the chain is consulted.  Finally, if rules are exausted, then the kernel consults the chain policy to decide what to do. In a security-conscious system, this policy usually tells the kernel to DROP the packet.  This is how Linux Kernel 2.4 Netfilter processes when the packet comes in:

· If it's destined to this machine, the packet passes downwards in the diagram to the INPUT chain. If it passes this, any processes waiting for that packet will receive it. 

· Otherwise, if forwarding is enabled, and the packet is destined for another network interface, then the packet goes rightwards on the diagram to the FORWARD chain.  If it is accepted, it will be sent out. 

· Finally, a program running on the machine can send network packets.  These packets pass through the OUTPUT chain immediately:  if the chain decides to “accept”, then the packet continues to whatever interface it is destined for. 

Linux Netfilter can provide nice interface for packet processing.  For example you can develop a new chain to achieve load balancing.  Microsoft NLB and Linux LVS are all transport layer load banlancers.  Comparing with Proxy Servers, they establish two connections in between the client and the server, and forward the packets to the detonations instead of copying the data from one side to the other side.

1.4 Existing Web Switch Products

F5 Networks's Big-IP Content Switch [16] is a new product of F5 released in June 2000. Big-IP is designed to intelligently manage large amount of Internet content and traffic at a high speed.  It is built on Intel’s IXP 1200 Network Processor [13].The IXP1200 Network Processor provides the scalable performance and programmability for designing a wide variety of intelligent, upgradable network and telecommunications equipment, such as multi-service switches, firewalls, gateways, and web switch appliances 

Big-IP can support cookie persistence, URL switching, HTTP header switching and SSL persistence.  When the request comes, Big-IP extracts HTTP header information from the request and populates variables that are more conveniently used in creation of a URL rules, then apply the rule upon these variables to determine the best server for this request.  Rule is content pattern matching and its associated action.  With Big-IP, the content switching rules can be defined by using a C- or Java-like syntax, each rule makes use of recognizable if-then-else statements to determine which server gets the request Figure 4 shows how Big-IP is used in a server cluster.
Figure 4 F5's BIG-IP[image: image6.png]



ArrowPoint Content Smart Web Server [17] provides web content delivery by selecting the best site and server based on full URL, cookie, and resource availability information. Figure 5 shows its network service. 

Figure 5. [image: image7.png]User

Internet/Intranet

Real Server 1

. RealServer2

Virtual Server N

Real Servern



ArrowPoint Content Smart Web Server
As shown in Figure 5, based on the requested content’s full URL as well as the user cookie and extensive resource verification information, the Web Network Service software knows who is the user, what the user wants to do, and how best to serve the user’s request within a global Web infrastructure.

Foundry Networks' ServerIron Family [18] of Internet traffic and content management switches provide Layer 2 through 7 switching, enabling network managers to control and manage web transaction, web application and e-commerce traffic flows. 

ServerIron supports the ability to select a server based on a URL string and cookie at the same time. First, the ServerIron looks for a user-specified cookie in the HTTP request.  If the cookie is found with a valid server identifier, the ServerIron forwards the request to that server.  Otherwise, the ServerIron selects the group of servers based on the URL rule and selects a server within that group based on the selected load balancing metric.
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Using URL switching, web site designers can use web switches to direct traffic to specific servers based on the URL in the HTTP request.  A URL switching allows the 

Figure 6 Foundry ServerIron

web site to place different web content on different servers.  For example, as shown in Figure 6, JPEG files are put on one group of servers and CGI applications on another group.  Information in the URL string determines the server group to which the ServerIron sends HTTP requests.

Linux-Based Content Switch Design
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The Linux Based Content Switch (LCS) is based on the Linux 2.2-16 kernel and related LVS package [3].  LVS is a Layer 4 load balancer which forwards the incoming request to the real server by examining the IP address and port number using some existing schedule algorithm.  LVS source code is modified and extended with new content switching functions. LCS examines the content of the request, e.g., URL in HTTP header and XML payload, besides its IP address and port number, and forwards the request to 

Figure 7 LCS architecture
the real servers based on the predefined content switching rules.  Content switch rules are expressed in term of a set of simple if statements.  These if statements include conditions expressed in terms of the fields in the protocol header or pattern in the payload and branch statements describing the routing decisions.  Detailed of the content switching rules are presented in 2.6.
1.5 The architecture and operation of LCS

-Content switch schedule control module is the main process of the Content Switch which is used to manage the packet follow.

-Routing Decision, INPUT rules, FORWARD rules and OUTPUT rules are all original modules in Linux kernel. They are modified to work with Content Switch Schedule Control module.

-Content Switch Rules module is the predefined rule table. Content switch schedule control module will use this information to control the flow of the packets.

-Connection Hash table is used to hash the existing connection to speed up the forwarding process.

-LVS Configuration and Content Switch Configuration are user space tools used to define the Content Switch server clusters and the Content Switch Rules.

Figure 8 shows the main operations of the content switch.
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Figure 8 LCS operations

-Content switch rules is predefined switch rules such as:

if ((match(url, “process.pl”) && (xml.purchase/totalamount >5000))


routrTo(FastServers)

-Header content instruction is the process to extract http header or content of the request.

-Content Switching Rule Matching Algorithm is the process to match the request to the predefined request rules.  This process will use the information of Content switch rules and Header content instruction to match the request.

-Network path information and server load status is the process which gets the server load status and bandwidth information of each server dynamically.  The output of this operation together with the result of Content Switching Rule Matching Algorithm are used by content switch to choose the best real server for the request.  

-Packet routing forwards packet to the chosen real server and handles the packet re-writing process.  Some header information of the packet needs to be changed by content switch in order to allow transparent data exchange between client and real server.

The main tasks of the Content Switch are:

1. Management of the incoming request, such as extracting http header and content and controlling the packet flow.

2. Rule matching processing, such as defining the routing rules and searching rules to make the routing process faster.

1.6 TCP Delayed Binding 

1.6.1 [image: image10.wmf]TCP Three way handshake

Figure 9 TCP three way handshake
Many upper layer protocols utilize TCP protocol for reliable orderly message delivery. The TCP connection will be established via a three-way handshake and the client will not deliver the upper layer information until the three-way handshake is complete.  Figure 9 shows a TCP three way handshake.  When a client requests to connect with a server, the TCP three-way handshake is applied as follow:

Step 1: The client first sends a SYN message to the server, which contains an initial sequence number (CSEQ) of the client.

Step 2: After the Server receives the SYN request, it replies a SYN/ACK message which contains its initial sequence number (SSEQ), and the ACK sequence number responding to the client’s SYN which is the received SYN sequence number plus 1(CSEQ+1).

Step 3: When client receives the SYN/ACK from the server, it then sends back an ACK to response server’ SYN/ACK.  At this time the TCP connection is established.

After TCP connection is established, the client begins to send its first request data to the server.  The data transmission between the client and the server continues until the client side sends a FIN message (terminating the connection or timeout).

1.6.2 The connections in TCP Delayed Binding

In order to get the requesting packet from the client, the content switch needs to complete the three way handshake with the client.  Then, a real server is chosen for the request based on the content of the requesting data.  The content switch establishes another connection with the chosen server and relays the packets between the client and the chosen server.  This process is called Delayed Binding [4].  The connections among client, Content Switch and real server are shown in Figure 10.
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Figure 10 TCP delayed binding connections

Phase 1: Set up connection between the client and the content switch.  When the content switch gets requesting data, it makes a routing decision.

Phase 2: Set up connection between the content switch and the chosen server.

Phase 3: The content switch forwards all the packets from one side to the other side.

The processes in phase 1 and 2 are similar to that of the application layer proxy.  In phase 3, the proxy server remains on the data path and copies data between the two connections.  In the content switch, the processor gets out of the data path by splicing the two TCP connections.  The splicing of the connections requires re-writing TCP sequence number, IP address and port number of the packet instead of copying the whole data from one side to the other side.  

1.6.3 The message exchange sequence in TCP Delayed Binding

Because the client establishes the connection with the content switch, it only accepts the sequence number chosen by the content switch.  When the packets come from the real server to the client, content switch must change their sequence numbers to the ones that the client expects.  Similarly, the packets from the client to the server are also changed by the content switch.  Besides the sequence number changing, the client only deals with a virtual IP address (content switch’s IP), therefore, all subsequent packets from the client will go through the content switch to get to the real server.  The content switch also changes the destination or source IP address of each packet.  By rewriting the packet, the content switch “fools” both the client and real server, and they communicate with each other without knowing the content switch is playing the middleman. 
The packet rewriting includes:

· Incoming packet from the client to the content switch

1. Change the destination IP, port number to those of the chosen server.

2. Change the ACK sequence number to acknowledge the chosen server instead of acknowledging the content switch.

· Outgoing packet from the server to the client

1. Change the source IP and port number to those of the content switch.

2. Change the sequence number to the associated sequence number of the content switch.

The more detailed sequence number rewriting process is shown below in Figure11.
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Figure 11 Sequence number change in TCP delayed binding

Step1-Step3:  The process is similar to that shown in Figure 9.  These steps constitute phase 1 in Figure 10.

Step4:  The content switch forwards the original SYN request to the chosen server.

Step5:  The server replies its SYN/ACK including the server’s initial sequence number (SSEQ). This completes phase 2.

Step6: At this step, phase 3 starts. The data is forwarded from the content switch to the server.  The original sequence number is kept, the ACK sequence number is changed from acknowledging the content switch (DSEQ+1) to acknowledging the server (SSEQ+1).

Step7:  For the returned data from the server to the client, the sequence number needs to be changed to the associated sequence number of the content switch.  This is because in step4, the SYN is forwarded to the server with the original sequence number of the client (CSEQ).  This will guarantee that the ACK sequence number of a packet from the server to the client is just what the client expects.

Step8:  For the packet from the client to the content switch, the ACK sequence is changed from acknowledging the content switch to acknowledging the server. 

Delayed Binding is the major technique used in content switch design.  To maintain correct connection between the client and the server, the content switch must adjust the sequence number for each side because of Delayed Binding.  This requests that all the transmitting packets must go through the content switch to get their sequence number changed.  As many other existing content switch products, the content switch design presented in this thesis uses NAT(Network Address Translation) approach.

Linux LVS can use NAT, IP tunnel as well as IP direct routing because LVS is a transport level switching.  It only checks the IP address and port number of the packet which are all included in the IP and TCP header.  When the first SYN request is received, LVS can get all the information needed to choose the real server and forward the packet to the real server.  There is only one TCP connection established between the client and the server.  LVS is only used to determine the real server and forward the packet to the real server and does not need to change the sequence number of the packet.  So the responding data from the server can go to the client directly by IP tunnel or IP direct routing techniques.

1.7 Handle Multiple Requests in a Keep-Alive Session

Many browsers and web servers support the keep-alive TCP connection.  It allows a web browser to request documents referred by the embedded references or hyper links of the original web page through this existing TCP keep-alive connection.  It is a concern that different requests from the same TCP connection maybe routed to different web servers based on their content.  The challenge here is how the content switch merges the multiple responding data from different web servers to the client transparently in one TCP connection.  Figure 12 shows the situation where different requests from one TCP connection go to different web servers through the content switch.
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Figure 12 Content switch multiple requests handling

The client requests three http requests within one TCP connection and the content switch routes these requests to three different web servers based on their contents.  It is possible that the returned document of those requests will arrive at the content switch out of order.  There are several approaches for the content switch to handle this situation.  

1.7.1 Hold the later request until the previous response is completed

One approach to handle the multiple requests in one TCP connection is that the content switch holds the second request if the request is routed to another real server and the responding data from the first request is still transmitting.  When the first responding data is completed, the content switch then establishes a TCP connection with the new chosen server and forwards the request data to the server.  The content switch needs to perform following tasks in this approach.

1. Save the request if there is an existing data transmission from the same connection.
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Set up a new connection with the new chosen web server when the previous data transmission is done.

Figure 13 Sequence number change in multiple requests

3. Rewrite the packet from the new server based on the information of the new server.

4. Deal with the ACK messages from the client.  The content switch must be able to forward the ACK messages from the client to the identified real server.

From the client’s perspective, the connection is still sequential, even though the data is from different real severs.  The difficulty is to identify ACK messages from the client.  The content switch must maintain the sequence number of the last responding packet from each real server.  By comparing this sequence number and the ACK sequence number, the content switch can identify which server this ACK should go to.  However, sometimes, the client may need to combine many acknowledging messages into one.  If the combined ACK containing acknowledging messages for different real servers are sent to the content switch, it is difficult for the content switch to separate the combined ACK messages and sends them to the servers they belong to.  Figure 13 shows the sequence number changed between the content switch and the real servers.

In Figure 13, CSEQ is the sequence number of the client; DSEQ is the sequence number of the content switch.  SSEQ1 and SSEQ2 are the sequence numbers of server1 and server2.  lenD1 and lenD2 are the length of the first and the second data; lenR1 and lenR2 are the length of the first and second requests. 

Step1-Step8: These steps are the same as those in Figure 12.  The assumptions are that the responding data for the first request has finished after Step8.

Step9: When another request comes from the client, the content switch chooses server2 to respond to the second request. 

Step10: The content switch sends a SYN to server2, and uses the current sequence number of the client minus one to be the SYN sequence. This can guarantee that in Step12 the content switch can forward the request data to server2 using the current sequence number of the client. 

Step11-12: three-ways handshake with server2.

Step13: The data from server2 goes to the client through the content switch.  The content switch will change the sequence number of the packet to the next expected number of the client.

Step14: ACK sequence number will be changed to the associated ACK to the server2.

1.7.2 Discard the first request data transmitting 

With this approach, if the second request comes while the previous data is still in transmission, the content switch simply discards the first data transmission by sending a FIN message (TCP terminating message) to the first server.  This will ensure that only one web server is transferring data to the client at a given time.  Figure 14 shows the process of this approach.
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Figure 14 Sequence number change in discarding previous request approach

In Figure 14, step10 is added to discard the connection with server1.  This will guarantee that only one server connects with client at a given time.

This approach is relatively easy to implement and compatible with current web browser.  In the Netscape browser, when the second web data is requested during the first request is still in transmission, the browser stops the data transmission and begins to handle the second request.  When goes back to the first uncompleted web page afterwards, the browser will send a new request to get the previous web page.  In this case, if the consent switch cancels the first request data transmission when the second request comes, it will not affect the client performance, because the browser will send a new request anyway if the first request is re-submitted.

1.7.3 Buffer the responses at the content switch

One possible solution is to buffer the responses at the content switch so that they return in the same order as their corresponding requests.  The drawback is that it significantly increases the memory requirement of the content switch. 

1.7.4 Adjust the response data sequence number

The other solution is to calculate the size of the return documents and adjust the sequence number accordingly.  It avoids the buffer requirement and the later requests will be sent with the starting sequence number that leaves space for those slow return documents.  The drawback here is that the content switch needs to have the directory information of the server and mapping between the requests and the actual path of the file system.

With each approach discussed above, the content switch needs to deal with scaling the TCP window size on the new established connection.

1.7.5 Keep-alive connections in Netscape browser and Microsoft IE browser

After investigating the usage of keep-alive connections in Netscape browser (version 4.75) and Microsoft IE browser (IE version 5.01), we found both browsers only send one request at a time over a keep-alive connection.  The response must be received before another request can be sent.  The Netscape browser creates separate keep-alive TCP connections for each embedded reference in a web page.  These keep-alive TCP connections are then used in a round robin fashion for the subsequence requests or their embedded references.  The IE5.01 we used only open up two keep-alive connections. Several embedded references of a web page may be sent over a single keep-alive connection.

This thesis presents single request in one keep-alive TCP connection.  It will support multiple requests of keep-alive connection using Netscape browser from the client.  Some above ideas can be added to support the IE5.01 multiple requests in keep-alive connection.

1.8 Packet input and output Process

The content switch model is inserted in Linux Kernel 2.2-16 IP layer.  Figure 16 shows the process of the packet in IP layer.
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Figure 15 IP packet input and output process in kernel

Ip_input is the main function in the IP layer.  It inputs the packet from the IP packet queue.  It delivers the packet to the upper layer if the packet is for local, otherwise forwards it to the remote host.

The content switch is developed in IP layer because the it is to examine the content of the request and forward it to the real server.  Some existing resources such as FORWARD, INPUT, and OUTPUT in IP layer can be leveraged.  In TCP layer, there are a lot of resource handling socket, retransmission and TCP protocol which are not used by content switch.  Resources might be wasted if the content switch is implemented in TCP layer. 

[image: image16.wmf]Figure 16 shows the packet input/output process after the content switch module is inserted in IP layer.

Figure 16 Input/output process in LCS

In Figure 16, cs_infromclient manages the packet from the client to the content switch; cs_infromserver handles the packet from the server to the client.  The functions of these two modules are explained as below:

· cs_infromclient:

1. If the input packet is a SYN request, it is delivered to the upper layer to let the upper layer send back a SYN/ACK.  And the SYN requested is queued, then a hash table is created for this connection.

2. If the first request is received from the client, a real server is chosen by the rule-matching algorithm.  The header of the dequeued SYN from the client is modified, then the packet is sent to the chosen server. This processes TCP Delayed Binding.

3. For the following packets of the same connection from the client, the IP address, TCP port number and sequence number are changed as discussed above, and packets are forwarded to the real server. 
· cs_infromserver

1. If the packet is the SYN/ACK from the real server to acknowledge the received SYN, the initial sequence number of the real server is remembered.  And the content switch discards this SYN/ACK.  Then the saved request packet from the client is forwarded to the server after its headers is modified.

2. For the other packet, the content switch modifies its header and forwards it to the chosen real server.

1.9 The Content Switch Rule Design
Content switching rules are typically expressed in terms of content pattern or conditions that cover the class of packets to be matched and its associated action.  In the existing content switch products, there are two basic ways to specify a rule:

1. The rules are entered using the command line interface. The syntax are typically similar to that of CICSO ACL [14] (access control list) convention.

2. Using a special language to specify the pattern and describe the action of the service.

An example of approach 1 can be seen in FoundryNetwork Server Iron [18]. 

ServerIron(config)#url-map gifPolicy

ServerIron(config-url-gifPolicy)#method suffix

ServerIron(config-url-gifPolicy)#match “gif”1

ServerIron(config-gifPolicy)#default 2

ServerIron(config-gifPolicy)#exit
This rule specifies that if the suffix of a URL in the incoming packet is GIF, it is routed to server group 1, otherwise to server group 2. 

An example of approach 2 is Intel IX-API SDK[13],. It uses network classification language (NCL) to classify the incoming traffic and describe the action of the packet.  The rule syntax is presented as

Rule <name of the rule> {predicate} {action_method()}

The predicate part of the rule is a Boolean expression that describes the conditions.  A packet must have the specified action performed.  The action part of the rule is a name of an action function to be executed when the predicate is true, and performs some actions upon the incoming packet. For example:

 Rule check_src {IP.src==10.10.10.30} {action_A()}
The meaning of this rule is that if source IP address is 10.10.10.30, then the action function action_A() is executed.  The action part is a function and can be created by writing C or C++ function.  By allowing multiple terms with Boolean and relational operator in the predicate,  it allows rules to be specified very precisely and easy to understand.  The action part can be a user-defined program.

1.9.1 LCS content switch Rule

LCS follows an approach similar to approach 2.  The rules are defined using C functions. The syntax of the defined rules is as follows:

RuleLabel: If (condition)  {action1}  [else  {action2}].

Examples, 

R1:     if (xml.purchase/totalAmount > 52000) { routeTo(server1, STICKY_IP_PORT); }

R2:    if (strcmp(xml.purchase/customerName, "CCL") = = 0) {

routeTo(server2, NONSTICKY); }

R3:    if (strcmp(url, "gif$") = = 0) { routeTo(server3, NONSTICKY); }

R4:    if (srcip = = “128.198.60.1” && dstip = = “128.198.192.192” &&

dstport = = 80) { routeTo(LBServerGroup, STICKY_ON_IP_PORT); }

R5:    if (match(url, “xmlprocess.pl”)) { goto R6; }

R6:   if(xml.purchase/totalAmount > 5000){routeTo(hsServers, NONSTICKY);}

else {routTo(defaultServers, NONSTICKY); }

The rule label allows the use of goto and make referencing easier.  We have implemented match() function for regular expression matching and xmlContentExtract() for XML tag sequence extraction in content switching rule module.

1.9.2 The Rule actions

The function routeTo() mentioned above is the action of each rule.  The first parameter is the name of the chosen server or server group.  The second parameter is the option related to sticky connections.  There are three options for sticky connections.
1. Option for sticky connection based on the source IP address.

Example: If(source_ip==128.198.192.194) { routeTo(server2, STICKY_ON_IP);}

The condition of this rule is the source IP address.  The action inside routeTo() will assign the real server2 to the connection, and add this connection to the sticky connection database.  When the new connection comes, the rule matching process will look for the data entry with the same IP address in the sticky database first, if the data entry is found, the connection will be routed to the same server directly without carrying out the rule matching.

2. Option for sticky connection based on source IP address and TCP port number.

Example: If((source_ip==128.198.192.194)&&(source_port==9872)) {

routeTo(server4, STICKY_ON_IP_PORT);}

The condition of this rule includes the source IP and port number.  This rule is for multiple requests in one TCP keep alive connection.  The action process will add this entry to the keep alive connection hash table using the IP address and port number with the hash key.  If the new request arrives from the same connection, the request will be routed to the same server without rule matching.

3. The Rule for non-sticky connection.

Example: If (URL==”*jpg”) { RouteTto(imageServer, NON_STICKY);}

This rule specifies the connection to be a non-sticky connection.  So either the request from the same connection or the new connection needs to process the rule matching to choose the real server.

1.10 Content Switch Rule Matching Algorithm

Rule matching algorithm directly affects the performance of the Content switch.  It is related to the packet classification techniques [11,12.13].  In a layer 4 switching, the switch only exams the IP address and port number of the packet which are in the fixed field.  So the rule matching process can be speed up by easily using a hash function.  In the content switch, higher layer content information is needed.  These information such as URL, HTTP header or XML tag are not from the fixed fields and have different length, so it is hard to build a hash data structure to speed up the searching process.  In content switch, the rule-matching algorithm needs to deal with following issues:
1.
How to speed up the rule matching process.

2.
Are there any specific orders where subsets of rules should be searched?  Can some of the rules be skipped under certain conditions.

3.
The rule may be contradicting with each other (one packet matches more than one rule), how to handle the rule conflicting.

By analyzing the requirement of a content switch rule matching algorithm, we to use Brute Forced Sequential Execution like if-then-else statement to define our rule.  The advantages are as below;

1. With this approach, preceding rules has higher priority.  It helps to solve the conflict problem.

2. It helps to handle complicated relationship of each rule.  Conditions can be used to describe the relationship inside the rule.

3. Using flags which are set after content extraction to skip some rule matching.  This can speed up the searching process.  For example, if the incoming request XML document, the matching function can skip all the process that matches HTTP header and directly goes to XML matching part.

4. The matching routine can be done as a kernel module, this makes it possible to add or delete a rule dynamically. 

5. This approach is very efficient to handle the relationship between this module and other load balancing algorithm module.  For instance the modules for collecting network and server status.

1.11 Content Switch Load Balancing Algorithm

The content switch we designed distributes the incoming web request based on URL, XML tag value, source IP address and TCP port number.  The source IP address and port number load balancing is an existing feature of LVS.  When a request comes, its URL, and XML tag value (if any) will be parsed.  Another matching process issues is with the sticky or nonstick connection.  If the connection is configured as sticky connection, the following request from the same client should be routed to the same server.  Based on the content parsed and the sticky flag, the load balancing algorithm is as below;

1. If the request belongs to a sticky connection, it is routed to the same real sever based on the entry in sticky database.

2. Otherwise the extracted content value of the request is applied by rule matching process, and a real server is chosen for this request.

3.  If the request does not match any rules, LVS load balancing algorithms are used to distribute the request to a real server.  Those load balancing algorithms are Round Robin, Weighted Round Robin, Least Connection and weighted Least Connection.

4. If the request is rejected, an ICMP rejecting message is sent to the client to notify the rejection.
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Figure 17 The content switch network configuration

Figure 17 shows the network set up used to test the performance of the content switch.

Hardware:
Content switch:  HP Vectra work station.



Servers:
   HP Vectra work station.

Domain name and host IP address:



Content switch: bilbo.uccs.edu.  VIP:128.198.192.192.



Server 1
vinci.uccs.edu       IP:128.198.192.193.



Server 2
gandalf.uccs.edu   IP:128.198.192.194.



Server 3
obili.uccs.edu       IP:128.198.192.195.



Server 4
ace.uccs.edu
    IP:128.198.192.198.

Network:
HP 100 VG LAN Ethernet.

Each real server configures the content switch (bilbo.uccs.edu) as its default gateway.

Operating System:
Content switch: Linux 2.2-16.




Real Server:
 Linux2.2-16 or Linux 2.2-22.

Web Server:
  Apache 1.3.

The client on the other subnet uses LWP package to request data from the content switch and gets the response time.  Following script is used to configure LCS and LVS service and insert LCS rule matching module.

echo "1">/proc/sys/net/ipv4/ip_forward

echo "1">/proc/sys/net/ipv4/ip_always_defrag

/sbin/ipchains -A forward -j MASQ -s 128.198.192.0/24 -d 0.0.0.0/0

/usr/sbin/ipvsadm -A -t 128.198.192.192:80 -s rr

/usr/sbin/ipvsadm -a -t 128.198.192.192:80 -r 128.198.192.193 –m

/usr/sbin/ipvsadm -a -t 128.198.192.192:80 -r 128.198.192.194 -m

/usr/sbin/ipvsadm -a -t 128.198.192.192:80 -r 128.198.192.195 -m

/usr/sbin//ipvsadm -a -t 128

.198.192.192:80 -r 128.198.192.198 -m

/sbin/insmod rule.o

And rule.o module can be unloaded using rmmod rule.
1.13 Testing result

Test 1.  In this test, requests for different sizes of documents are used to measure the response time for these requests.  The tests were conducted under three different cases:

· Request is sent to the content switch, and forwarded to Server1.

· Request is sent to LVS, and forwarded to Server1.

· Request is sent directly to Server1.

Table 1 shows the measured response time for different document sizes for these three cases.  Figure 18 is the graphical representation of the experimental result. 

Table 1 Response time vs. different document sizes
	Size(Bytes)
	CS(10R) Time(seconds)
	LVS Time(seconds)
	Single Time(seconds)



	481
	0.008985
	0.007944
	0.005372

	1532
	0.010823
	0.010915
	0.006303

	4000
	0.01522
	0.013937
	0.007388

	5292
	0.017211
	0.017325
	0.008384

	8600
	0.021461
	0.020788
	0.009745

	9913
	0.024559
	0.022883
	0.010632

	34237
	0.05655
	0.054815
	0.021803

	37986
	0.060126
	0.058645
	0.022958

	38284
	0.062737
	0.059324
	0.022859

	47880
	0.075911
	0.072957
	0.027528

	69144
	0.104982
	0.096136
	0.037891
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Figure 18 Response time vs. document size

As can be seen from the data and figure, the single server has the lowest response time.  One reason is that server1 is not busy, the load balancing has high performance when the web server is heavily loaded.  Another reason is the request sent is single request, ?????and is forwarded to the single server, they can not take the advantage of load balancer, which distributes the multi requests to different servers and achieves parallel service.  The content switch has higher response time than the LVS because the content switch has more overhead, such as TCP delayed binding, rule matching process, and sequence number changing.  LVS has scheduling algorithm overhead.  In this test, the content switch has ten rules.  From the following test results, we will see the performance of the content switch is affected by the number of rules and some other factors.

Table 2 Response time vs. document size

	Size(Bytes)
	CS(10R) Time(seconds)
	CS(100R) Time(seconds)
	CS(1000R) Time(seconds)

	481
	0.008985
	0.015034
	0.052208

	1532
	0.010823
	0.020811
	0.061094

	4000
	0.01522
	0.030086
	0.056325

	5292
	0.017211
	0.033674
	0.061801

	8600
	0.021461
	0.033115
	0.070495

	9913
	0.024559
	0.039785
	0.069941

	34237
	0.05655
	0.077112
	0.12382

	37986
	0.060126
	0.092454
	0.155094

	38284
	0.062737
	0.097547
	0.149452

	47880
	0.075911
	0.125519
	0.185995

	69144
	0.104982
	0.151725
	0.215248

	85838
	0.138004
	0.214398
	0.253508


Test 2.  The content switch uses if-then-else sequential rule matching process (2.5.1).  In this test, the response times for content switch with different number of rules (10, 100, 1000) were measured and the measured data are tabulated in Table 2.  Figure 19 graphically shows the different response times for those cases.
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Figure 19 Response time vs. document size

In Figure 19, the bottom line is the responses time vs. document sizes when the content switch contains ten rules.  The middle line is the response time with 100 rules and the top line is the response time with 1000 rules.  It is clearly shown that the response time will be higher when the content switch contains more rules.

Test 3.  In this test, same requests as that in test1 are sent to the content switch.  Figure 20 shows the time used to process rule matching for these requests.  The time is measured inside the kernel. 

Figure 20 Rule-matching process time vs. document size [image: image20.png]Internet





As shown in Figure 20, the time used for processing rule matching is almost independent of the document size.  The retrieved document and different requests do not affect the rule matching process time.  The reason is that the rule matching process parses the URL and header of the packet to choose the real server.  If the request does not contain the XML document.  URL and header are all in the fixed filed, so the time used will not change much for different requests.

Test 4.  Figure 21 shows the measured response time for rule matching process inside the content switch kernel when different number of rules.  As shown in Figure 21, larger number of rules in the content switch require more process time.  This is because the larger number of rules will take longer time to search.are used for the same request.
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Figure 21 Rule matching process time vs. rule numbers
Test 5.  Figure 20 shows that the rule process time does not change much for different request.  But if the request contains an XML document, the process time will vary with the  XML document size.  Figure 22 shows the rule matching process time changes when the XML document size varies.  The reason is that the rules are defined to choose the real server based on XML tag values, and rule matching process requires parsing XML request.  Because the XML parsing process uses recursive algorithm, it is very time consuming when the document size are large.

Figure 22 Rule-matching process time vs. XML document size

From the experimental results we can see that the main factors that affects the performance of the content switch are the number of rules and XML document size if the request contains an XML document.  Some existing related products use hardware to support rule-matching process, therefore and speed up the content switch.
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Lesson Learnt

1.14 Linux Kernel

The LCS is implemented in the Linux Kernel 2.2-16 IP layer.  Understanding the linux kernel is the basic requirement and critical task for conducting this thesis work.  A lot of time and effort have been spent on reading and understanding the Linux Kernel source code. Since Linux is a relatively new operating system, not many reference books are available to speed up the learning curve.  A Linux source code browsing tool (LXR)[24] is found to be very useful.  It is written in Perl, links all the source code and establishes all the references.  Some books and on line documentation [21-26] are also helpful in understanding the Linux Kernel.  The book <<TCP/IP Illustrated>> Volume 2 by Richard Stevens talks about Unix kernel networking source code in details.  Although Linux is different from Unix, the network data structure and behavior are similar.  This book is very helpful to understand TCP/IP protocol, packet passes from lower layer to the upper layer etc. Debug tool are also found useful in understand the source code.

Extreme care should be taken when modifying Linux Kernel.  Linux Kernel is very sensitive with memory allocation.  Using static variables, even though might be less efficient, is a good choice for novice kernel programmers.  Inside kernel, kernel resource should be used whenever possible instead of using user space resource.  For example, use kalloc() instead of  malloc(), kfree() instead of free(), and printk() instead of printf().  Some functions of the user space can be used in kernel, such as string functions.  This is because these functions are redefined inside kernel.  Most user space lib resources are not allowed in kernel.

1.15 Linux Kernel Debug

Debugging in kernel is not in the user space.  One kernel debugging function is printk.  It functions like printf in the user space.  The difference is that printk has one more parameter to classify the message which is called loglevel.  The system loglevel can be set with a command.  Only the message in printk with the loglevel less than the system loglevel can be printed.  The printk function writes the messages into a circular buffer.  If klogd process is running, it retrieves kernel messages and dispatched them to syslogd, which appends the messages to /var/log/message.

Another kernel debugging method is using /proc Filesystem. The function inside kernel can register the /proc Filesystem by giving its /proc directory entry, and the function name which is used to print out the messages. The /proc filesystem will call the output function registered periodically and write the message to the /proc Filesystem in the registered directory entry.  The kernel messages can be checked in /proc directory.

1.16 Build the Kernel Module

Linux kernel module is a part of kernel code which is loaded (unloaded) dynamically at kernel run time. The content switch rule matching function is designed as a kernel module.  So when the routing rule is changed, only the rule matching module needs to be modified, and the kernel does not need to be recompiled. Follows are what I learnt to create a kernel module.

· Every module must include header files <linux/config>, <linux/module.h>, <linux/kernel.h>.  And it should include at least two functions, module_init() and module_cleanup().

· Module is compiled with “-D__KERNEL__ -DMODULE” command to define the source as a kernel module.

· Module can be inserted in command line with “insmod module name” or by calling request_module() inside kernel.

· Kernel should export all the functions and variables which are used by any module. And the module should export all the resource that might be used by the other modules.

· The MOD_INC_COUNT should be at the beginning of the module, and MOD_DEC_COUNT should be used at the end of the module.  This can avoid removing the module when it is in using.

Conclusion and Future Directions

In this thesis, several load-balancing techniques are studied.  First, transportation layer load balancing techniques such as LVS, Microsoft NLB are studied and analyzed.  These load-balancing techniques route the incoming traffic content blindly.  For those applications such as e-commerce that requires strict security management, these load-balancing techniques are not applicable.  Second, application level load-balancing techniques such as JavaTM Servlet, Proxy server can check the content of the incoming traffic.  Because these techniques are implemented in the application level, they require all the packets being copied from the source to the destination through the switches.  There are increased overhead in this packet copying process.  Content switch is a new generation load balancing technique and implemented in the IP layer.  Unlike other load balancing techniques, content switch checks the contents of the incoming traffic to make the routing decision, and forward the data in between the client and server.  In this thesis, we present the design of a Linux-based content switch, discuss ways for improving the TCP delay binding and the lessons learnt from the implementation of the content switch.  A content switch routes packets based on their headers in the upper layer protocols and the payload content. We discuss the processing overhead and the content switch rule design. Our content switch can be configured as the front end dispatcher of web server cluster and as a firewall. By implementing the http header extraction and xml tag extraction, the content switch can load balancing the request based on the file extension in the url and routes big purchase requests in XML to faster servers in e-commerce system.  The rules and their content switching rule matching algorithm are implemented as a module and hence can be replaced without restarting the system.  Extensive measurements and verification have been done for this implementation.  The experimental results agree with the design expectation.  The measurements reveal that different implementation of content switch results in different performance.  There are some parameters that will affect the performance of the content switch, such as the number of rules, XML document sizes.  In order to improve the performance of the content switch, one approach is to speed up the rule matching process.  Some existing products uses hardware to support this process, for example, F5’s BIG IP content switch uses Intel IXP network processor to increase the performance of the content switch.

Another overhead of the content switch is due to TCP delayed binding.  The content switch presented in this paper uses NAT (Network Address Translation) approach.  This is because the content switch must adjust the sequence numbers for each side to maintain a correct connection between the client and the server due to TCP delayed binding. This requests that both the request and the response packets all need to go through the content switch.  The overhead of the content switch can be reduced if the response packet returns to the client directly without going through the content switch. TCP delayed binding can be improved by allowing the content switch to guess the real server assignment based on the history information, and IP address and port number in the TCP SYN packet. If the guess is right, all subsequent packets do not require sequence number modification. The sequence number modification process can also be moved from the content switch to a platform closer to the real server or as a process running on the same platform of the real server. It will enable the return document to be routed directly to the client. The content switch processing can also be improved by having several connections pre-established between the content switch and the real servers. The above mentioned tasks will be the topics for future work. 
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