1 Chapter 1 Introduction

With the rapid increase of Internet traffic, the workload on servers is increasing dramatically. Nowadays, servers are easily overloaded, especially for a popular web server. One solution to overcome the overloading problem of the server is to build scalable servers on a cluster of servers [1] [2]. A load balancer is used to distribute incoming load among servers in the cluster. Load balancing can be done in different network layers. Web Content Switch is an application level (layer7) switch, which looks all the way into the HTTP header of the incoming request to make the load-balancing decisions, rather than stopping at IP address and TCP port number. By examining the HTTP header, content switch can provide the highest level of control over the incoming web traffic, and make decision on how individual web pages and images get served from the web site. This level of load balancing can be very helpful if the web servers are optimized for specific functions, such as image serving, SSL (Secure Socket Layer) sessions or database transactions.

1.1 Goals and motivation for Content Switch

Traditional load balancers known as L4 switches examine IP and TCP headers, such as IP addresses or TCP and UDP port numbers, to determine how to route connections. Since L4 switches are content blind, they can not take the advantages of the content information in the request messages to distribute the load.

For example, many e-commerce sites use secure connections for transporting private information about clients. Using SSL session IDs to maintain server persistence is the most accurate way to bind all a client’s connections during an SSL session to the same server. A content switch can examine the SSL session ID of the incoming packets, if it belongs to an existing SSL session, the connection will be assigned to the same server that was involved in previous portions of the SSL session. If the connection is new, the web switch assigns it to a real server based on the configured load balancing algorithm(least connections, round rubin…). Because L4 switches do not examine SSL session ID which is in layer 5, so that they can not get enough information of the web request to achieve persistent connections successfully.

Web switches can also achieve URL-based load balancing. URL based load-balancing looks into incoming HTTP requests and, based on the URL information, forwards the request to the appropriate server based on predefined polices and dynamic load on the server

The Content Switching system can achieve better performance through load balancing the requests over a set of specialized web servers, or achieve consistent user-perceived response time through persistent connections (also called sticky connections).

1.2 Related Content Switching Techniques

1.2.1 . Proxy Server

Application level proxies are in many ways functionally equivalent to Content Switches. They classify the incoming requests and match them to different predefined classes, then make the decision whether to forward it to the original server or get the web page directly from the proxy server based on proxy server’s predefined behavior policies. If the data is not cached, the proxy servers establish two TCP connections –one to the source and a separate connection to the destination. The proxy server works as a bridge between the source and destination, copying data between the two connections.

1.2.2 Microsoft NLB

Microsoft Windows2000 Network Load Balancing (NLB) distributes incoming IP traffic to multiple copies of a TCP/IP service, such as a Web server, each running on a host within the cluster. Network Load Balancing transparently partitions the client requests among the hosts and lets the clients access the cluster using one or more “virtual” IP addresses. As enterprise traffic increases, network administrators can simply plug another server into the cluster. With Network Load Balancing, the cluster hosts concurrently respond to different client requests, even multiple requests from the same client. For example, a Web browser may obtain various images within a single Web page from different hosts in a load-balanced cluster. This speeds up processing and shortens the response time to clients.

1.2.3 Linux LVS

Linux Virtual Server(LVS) is a load balancing server which is built into Linux kernel. In the LVS server cluster, the front-end of the real servers is a load balancer (also called virtual server), that schedules incoming requests to different real servers and make parallel services of the cluster to appear as a virtual service on a single IP address. A node (real server) can be added or removed transparently in the cluster. The load balancer can also detect the failures of real servers and always redirect the request to a live real server.

LVS is a transport level load balancer. It is built in Linux kernel in the IP layer. The incoming request comes to the load balancer (Linux Virtual Server) first, the load balancer then forwards the request to one of the real servers based on the existing load balancing algorithm, and use IP address and port number with key word to hash this connection to the hash table. When the following packets of this connection come, load balancer will get the hash entry from their IP addresses and port numbers and redirect the packets to the same real server.

2 Chapter 2 Linux-based content switch design

The Linux Based Content Switch is based on the Linux 2.2-16 LVS[??]. LVS is a Layer 4 load balancer which forwards the incoming request to the real server by examining the IP address and port number using some existing schedule algorithm. Linux Based Content Switch is designed by modifying the LVS source code. The Content Switch examines the content of the request (URL, HTTP header, payload etc.) besides its IP address and port number, and forwards the request to the real servers based on the predefined routing rules. Content Switch rules are content patterns and associated actions.

2.1 The architecture and operation of Content Switch

[image: image1.wmf]Content Switching

Rule Matching Algorithm

Header

Content

Extraction

Packet Classification

Content

Switch

Rules

Packet Routing

(Load Balancing)

CS Rule

Editor

Incoming

Packets

Forward

Packet

To

Servers

Network Path Info

Server Load Status

The Content Switch is designed based on the Redhat 6.2(kernel 2.2-16). The main architecture of the Content Switch is shown on right inside the rectangle in Figure 1.

Figure 1 ?????

-Content switch schedule control module is the main process of the Content Switch which is used to manage the packet follow.

-Routing Decision, INPUT rules, FORWARD rules and OUTPUT rules are all original modules in Linux kernel. They are modified to work with Content Switch Schedule Control module.

-Content Switch Rules module is the redefined rule table. Content switch schedule control module will use this information to control the flow of the packets.

-Connection Hash table is used to hash the existing connection to speed up the forwarding process.

-LVS Configuration and Content Switch Configuration are user space tools used to define the Content Switch server clusters and the Content Switch Rules.

Figure 2 shows the main operations of the Content Switch.

[image: image10.wmf]Transport Layer

Ip

_input

Ip

_forward

Ip

_output

DATALINK Layer

cs

_

infromclient

cs

_

infromserver

local

remote

input

output

Figure 2

-Content switch rules is predefined switch rules such as:

 if (http->cookie==ServID), go to server1;

-Header content extraction is the process to extract http header or content of the request.

-Content Switching Rule Matching Algorithm is the process to match the request to the predefined request rules

-Network path information and server load status is the process which gets the server load status and request statistics information of each server dynamically.

From the figure shown above we can see that the main tasks of the Content Switch are

1. Management of the incoming request, such as extracting http header and content and controlling the packet flow.

2. Rule matching processing, like how to define the routing rules and how to search rules to make routing process faster.

2.2 TCP Delayed Binding

2.2.1 The connections in TCP Delayed Binding

The transport control protocol (TCP) three-way handshake is:

Step 1: The client first sends a SYN message to the server

Step 2: After the Server receives the SYN request, It replies a SYN/ACK message

Step 3: After receiving the SYN/ACK from the server, the client then sends back an ACK to respond server’ SYN/ACK. Then TCP connection is established.

As shown in Figure 2, any request from clients is sent to the Content Switch first to determine its real server. Because the first SYN request from client to the Content Switch does not contain any requesting data, the Content Switch needs to complete the three-way handshake with the client in order to get the requesting data. After receiving the requesting data, the Content Switch determines the best real server for the request based on the content of the request, and then begins to set up another connection with the chosen server. This process is called TCP Delayed Binding. The connections among client, Content Switch and real server are shown as below:

Step 1: Set up connection between the client and the Content Switch. When the Content Switch get requesting data, it makes a routing decision.

Step 2: Set up connection between the Content Switch and the chosen server.

Step 3: Content Switch forwards all the packets from one side to the other side.

The processes of Content Switch is different from application layer proxy in Step 3, the proxy server remains on the data path and copy data between the two connections. In Content Switch, the processor splices the two TCP connections. The splicing of the connections requires re-writing TCP sequence number, IP address and port number of the packet instead of copying the whole data from one side to the other side.

2.2.2 The sequence number change in TCP Delayed Binding

Because the client established the connection with the Content Switch, it can only recognizes the sequence number, IP address and port number of the Content Switch. So when the packets come from real server to client, Content Switch must change their sequence numbers to the ones that client expects. Similarly, the packets from client to server are also changed by Content Switch. By doing the packet rewriting, the Content Switch “fools” both the client and real server, and they communicate with each other without knowing the Content Switch is playing the middleman.

The more detailed sequence number rewriting process is shown below in Figure3.

[image: image2.wmf]client

content switch

server

step1

step2

SYN(CSEQ)

SYN(DSEQ)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(DSEQ+1)

step3

step4

step5

step6

step7

step8

SYN(CSEQ)

SYN(SSEQ)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(SSEQ+1)

DATA(SSEQ+1)

ACK(CSEQ+

lenR

+1)

DATA(DSEQ+1)

ACK(CSEQ+

lenR

+1)

ACK(DSEQ+

lenD

+1)

ACK(SSEQ+

lenD

+1)

lenR: size of http request.

lenD: size of return document

.

Figure 3 ????

Step1-Step3: The process is standard TCP three way handshake.

Step4: The Content Switch forwards the original SYN request to the chosen server.

Step5: The server replies its SYN/ACK including the server’s initial sequence number (SSEQ).

Step6: The data is forwarded from the Content Switch to the server. The original sequence number is kept, the ACK sequence number is changed from acknowledging the Content Switch (DSEQ+1) to acknowledging the server (SSEQ+1).

Step7: For the data from the server to the client, the sequence number needs to be changed to the associated that of the Content Switch.

Step8: For the packet from the client to the Content Switch, the ACK sequence is changed from acknowledging the Content Switch to acknowledging the server.

Delayed Binding is the major technique used in Content Switch design. To maintain correct connection between the client and the server, the Content Switch must adjust the sequence number for each side because of Delayed Binding. This requests that all the transmitting packets must go through the Content Switch to get their sequence number changed. As many other existing Content Switch products, the content switch design presented in this thesis uses NAT(Network Address Translation) approach

2.3 Handle Multiple Requests in a Keep-Alive Session

Most browsers and web servers support the keep-alive TCP connection. It allows a web browser to request documents referred by the embedded references or hyper links of the original web page. It’s possible that different requests from the same TCP connection are routed to different web servers based on their content. The challenge here is how the Content Switch merges the multiple responding data from different web servers to the client transparently in one TCP connection. Figure 3 shows the situation where different requests from one TCP connection go to different web servers through Content Switch.

[image: image3.png]WAN

Content Switch }eﬂ

{Semvr paal

Server

coming packet

Outgoing packet

Serverz Serverd Serverd |

Routing | —wFORWARDRULES| =
Decision I i
INPUT RULES [™| |——p| OUTPUTRULES
le—]
Content || Content Switch
Switch Schedule [—
] [Connection
Rules Control Module [~ ™| tash table
Kernel space - -
User space
v v
Ve Cortent Switch
(Configuration Configuration

Figure 3 ????

The client requests three http requests within one TCP connection and the Content Switch routes these requests to three different web servers based on their contents.

2.3.1 The Simplified Case

The easiest case of multiple requests within one TCP keep-alive connection is that each request comes right after the response of the previous request has completed. So at any time, only one server connects with the client. Then the Content Switch only need to remember the sequence number of the new chosen server, and change the sequence of the each packet coming from the new server. From the client’s perspective, the connection is still sequential, even though the data is from different real sever. Figure 4 shows the sequence number changed between the Content Switch and the real servers.

[image: image4.wmf].

.

.

client

uccs

.

jpg

rocky.mid

home.

htm

Index.

htm

Content

Switch

server1

server2

server9

Figure 4
In Figure 4, CSEQ is the sequence number of the client; DSEQ is the sequence number of the Content Switch; SSEQ1 and SSEQ2 are the sequence numbers of server1 and server2; lenD1 and lenD2 are the length of the first and the second data; lenR1 and lenR2 are the length of the first and second requests.

Step1-Step8: These steps are the same as those in Figure 3. The assumptions are that the responding data for the first request has finished after Step8.

Step9: When another request comes from the client, the Content Switch chooses server2 to respond to the second request.

Step10-12: three-ways handshake with server2.

Step13: the data from server2 goes to the client through the Content Switch. The Content Switch will change the sequence number of to the next expected number of the client.

Step14: ACK sequence number will be changed to the associated ACK to the server2.

In this simplified case, because only one active server involves in the connection at any given time, the Content Switch can use the single request solution to handle multiple request case by changing the packet sequence number to the next expected number.

2.3.2 The Next Request Comes When the Previous Request Has not Completed.

As an example of the case shown in Figure4, the client requests uccs.jpg, which is routed to server 2 by the Content Switch. The server 2 starts sending data to the client through the Content Switch. Then the client requests rocket.mid, which should be routed to server3. At this time, sever 2 is still sending data to the client. If we still use the above approach that is to let sever 2 and server3 send data concurrently and change their sequence number based on their initial sequence number difference with the Content Switch, the final sequence number to the client will be wrong. This process is shown in Figure 6.

[image: image5.wmf]client

Content Switch

Server1

Server2

SYN(CSEQ)

SYN(DSEQ)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(DSEQ+1)

SYN(CSEQ)

SYN(SSEQ1)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(SSEQ1+1)

DATA(SSEQ1+1)

ACK(CSEQ+lenR1+1)

DATA(DSEQ+1)

ACK(CSEQ+lenR1+1)

ACK(DSEQ+lenD1+1)

ACK(SSEQ1+lenD1+1)

DATA(CSEQ+lenR1+1)

SYN(CSEQ+lenR1)

SYN(SSEQ2)

ACK(CSEQ+lenR1+1)

DATA(CSEQ+lenR1+1)

ACK(SSEQ2+1)

DATA(SSEQ2+1)

ACK(CSEQ+lenR1+lenR2+1)

DATA(DSEQ+lenD1+1)

ACK(CSEQ+lenR1+lenR2+1)

ACK(DSEQ+lenD1+lenD2+1)

ACK(SSEQ2+lenD1+lenD2+1)

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

Figure 6 ?????

In Figure 6 setp15, server1 keep sending back datagram with sequence number SSEQ1+lenD1+1. The Content Switch changes its sequence number by adjusting the difference of them, and the result should be DSEQ+lenD1+1. But in step13, the client already received a datagram with sequence number DSEQ+lenD1+1. So the result is incorrect.

There are several solutions to this problem:

Approach1 Discard the previous connection.

With approach1, if the second request comes while the previous data is still in transmission, the Content Switch simply discards the first data transmission by sending a FIN message to the first server. This will ensure that only one web server is transferring [image: image6.wmf]client

Content Switch

Server1

Server2

SYN(CSEQ)

SYN(DSEQ)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(DSEQ+1)

SYN(CSEQ)

SYN(SSEQ1)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(SSEQ1+1)

DATA(SSEQ1+1)

ACK(CSEQ+lenR1+1)

DATA(DSEQ+1)

ACK(CSEQ+lenR1+1)

ACK(DSEQ+lenD1+1)

ACK(SSEQ1+lenD1+1)

DATA(CSEQ+lenR1+1)

SYN(CSEQ+lenR1)

SYN(SSEQ2)

ACK(CSEQ+lenR1+1)

DATA(CSEQ+lenR1+1)

ACK(SSEQ2+1)

DATA(SSEQ2+1)

ACK(CSEQ+lenR1+lenR2+1)

DATA(DSEQ+lenD1+1)

ACK(CSEQ+lenR1+lenR2+1)

ACK(DSEQ+lenD1+lenD2+1)

ACK(SSEQ2+lenD1+lenD2+1)

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

DATA(SSEQ1+lenD1+1)

ACK(CSEQ+lenR1+1)

DATA(DSEQ+lenD1+1)

ACK(CSEQ+lenR1+1)

WRONG

data to the client at a given time. Figure 7 shows the process of this approach.

Figure 7 ?????

In Figure 7, step10 is added to discard the connection with server1. This will guarantee that only one server connects with client at a given time.

This approach is relatively easy to implement and compatible with current web brower. In the Netscape browser, when the second web data is requested during the first request is still in transmission, the browser stops the data transmission and begins to handle the second request. When go back to the first uncompleted web page afterwards, the browser will send a new request to get the previous web page. In this case, if the Consent Switch cancels the first request data transmission when the second request comes, it will not affect the client performance, because the browser will send a new request anyway if the first request is re-submitted.

Approach2 Out of Order Deliver

[image: image7.wmf]client

Content Switch

Server1

Server2

SYN(CSEQ)

SYN(DSEQ)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(DSEQ+1)

SYN(CSEQ)

SYN(SSEQ1)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(SSEQ1+1)

DATA(SSEQ1+1)

ACK(CSEQ+lenR1+1)

DATA(DSEQ+1)

ACK(CSEQ+lenR1+1)

ACK(DSEQ+lenD1+1)

ACK(SSEQ1+lenD1+1)

DATA(CSEQ+lenR1+1)

SYN(CSEQ+lenR1)

SYN(SSEQ2)

ACK(CSEQ+lenR1+1)

DATA(CSEQ+lenR1+1)

ACK(SSEQ2+1)

DATA(SSEQ2+1)

ACK(CSEQ+lenR1+lenR2+1)

DATA(DSEQ+lenD1+1)

ACK(CSEQ+lenR1+lenR2+1)

ACK(DSEQ+lenD1+lenD2+1)

ACK(SSEQ2+lenD1+lenD2+1)

s1

s2

s3

s4

s5

s6

s7

s8

s9

s11

s12

s13

s14

s15

s10

FIN

In this approach, each chosen web server transfers data to the client concurrently. The Content Switch needs to know the expected sequence number (next sequence number to be received) of the client at any moment. The Content Switch then changes the sequence number of packet from each real server based on the expected sequence number of the client instead of the difference of their initial sequence number. The sequence number adjusting is shown in Figure 8

Figure 8 ?????

In Figure 8 step15, the sequence number of data from server1 is adjusted to the client expected number, which is DSEQ+lenD1+lenD2+1. Using approach2 data from different real servers can be transmitted correctly. But the problem is that it mixes the data from different request together. Because the data is from different servers, the window size of client might mess up.

Approach3 Preserve the Request

There are two methods in this approach:

1. The Content Switch buffers the second responding data until the first request has completed, and sends the buffered data to the client. This method needs to consider timeout and buffer size issues.

2. The Content Switch adjusts the data sequence number of the second request if it comes before the first request has completed. The content switch calculates the document size left of the first request, and assigns the sequence number for the second request by adding the size. This will make the data from different servers to the client in the right order.

Approach 3 can make multiple requests work correctly in the Content Switch. In Method1, the Content Switch needs to consider the timeout and buffering size issues. With Method2, the Content Switch needs to have the knowledge of each responding document size to preserve the sequence for it, and also needs to scale the TCP window size.

By analyzing the different approaches, we decide to use approach1.

2.4 Packet Filtering Process

The content switch model is inserted in Linux kernel 2.2-16 IP layer

[image: image8.wmf]client

Content Switch

Server1

SYN(CSEQ)

SYN(DSEQ)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(DSEQ+1)

SYN(CSEQ)

SYN(SSEQ1)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(SSEQ1+1)

DATA(SSEQ1+1)

ACK(CSEQ+lenR1+1)

DATA(DSEQ+1)

ACK(CSEQ+lenR1+1)

ACK(DSEQ+lenD1+1)

ACK(SSEQ1+lenD1+1)

DATA(CSEQ+lenR1+1)

SYN(CSEQ+lenR1)

SYN(SSEQ2)

ACK(CSEQ+lenR1+1)

DATA(CSEQ+lenR1+1)

ACK(SSEQ2+1)

DATA(SSEQ2+1)

ACK(CSEQ+lenR1+lenR2+1)

DATA(DSEQ+lenD1+1)

ACK(CSEQ+lenR1+lenR2+1)

ACK(DSEQ+lenD1+lenD2+1)

ACK(SSEQ2+lenD1+lenD2+1)

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

DATA(SSEQ1+lenD1+1)

ACK(CSEQ+lenR1+1)

DATA(DSEQ+lenD1+lenD2+1)

ACK(CSEQ+lenR1+1)

RIGHT

The input/output process in IP layer looks like this:

Figure 9 ????

[image: image9.wmf]Transport protocol

Network Interface

Ip

_input

Ip

_forward

Ip

_output

Ip

packet queue

input

output

Local packet

Remote packet

TCP layer

IP layer

DATALINK layer

The input output processing with Content Switch in IP layer is:

Figure 10 ????

In Figure 20, cs_infromclient manages the packet from the client to the Content Switch; cs_infromserver handles the packet from the server to the client.

2.5 The Content Switch Rule Design

Content Switch Rule is content pattern matching and its associated action. In the existing Content Switch products, there are two main kinds of rule syntax:

1. The rules are written as command line, the syntax are similar to the CICSO ACL (access control list)[] convention.

2. Using a special language to specify the pattern and describe the action of the service.

An example of a command line rule can be seen in Cisco Content Engine 2.20 [14] (CE). Cisco CE can support HTTP and HTTPS proxy server

rule no-cache url-regex\.*cgi-bin.*

This rule configures that the incoming packets with the url matching the pattern “*cgi-bin*” will not be forwarded to the proxy servers.
An example of case 2 is Intel IX-API SDK[],. It uses network classification language (NCL) to classify the incoming traffic and describe the action of the packet. The rule syntax is presented as

Rule <name of the rule> {predicate} {action_method()}

The predicate part of the rule is a Boolean expression that describes the conditions. A packet must have the specified action performed. The action part of the rule is a name of an action function to be executed when the predicate is true, and performs some actions upon the incoming packet. For example,

Rule check_src {IP.src==10.10.10.30} {action_A()}

The meaning of this rule is that if source IP address is 10.10.10.30, then the action function action_A() is excuted

For the design presented in this thesis, an approach similar to case 2 is employed. The rules are defined using C functions. The syntax of the defined rules is as follows:

If (condition) then (action), examples,

If ((iph->saddr==128.198.192.194)&&(tcph->dport==80)&&(iph->protocol=tcp))

dest_server=schedule_1(NONSTICKY)

This is the combined condition. The schedule_1() is the action subroutine written in C. The argument NONSTICKY is a flag, which determines if this connection is a sticky connection (all the requests from one TCP connection go to the same server).This rule defines that if the packet IP source address is 128.198.192.194, port number is 80 and the protocol is TCP, then configure this connection as a non-sticky connection, and use schedule_1() to schedule a new web server for it.

2.6 Content Switch Rule Matching Algorithm

Rule matching algorithm directly affects the performance of the Content Switch. In a layer 4 switching, the switch only exams the IP address and port number of the packet which are in the fixed field. So the rule matching process can be speed up by easily using a hash function. In Content Switch, deeper content information is needed. These information such as URL, HTTP header or XML tag are not from the fixed fields and have different length, so it is hard to build a hash data structure to speed the searching process. In content switch, the rule-matching algorithm should deal with following issues:

1. How to speed up the rule matching process

2. Are there any specific orders where subsets of rules should be searched, can some of the rules be skipped in some conditions.

3. The rule may be contradicting with each other (one packet matches more than one rule), how to handle the conflicting of the rules.

By analyzing the requirement of a Content Switch rule matching algorithm, we defined our rule matching algorithm to use Brute Forced Sequential Execution like if-then-else statement. The advantages are as below;

1. With this approach, preceding rules has higher priority. So it is easy to solve the conflict problem.

2. It is easy to handle complicated relationship of each rule, because we can use condition to describe the relationship and make the rule structure very clear.

3. Using flags which are set after content extraction to skip some rule matching. This can speed up the searching process. For example, if the incoming request XML document, the matching function can skip all the process that matches HTTP header and directly goes to XML matching part.

4. Using compiler-optimization techniques to speed up the set of rules.

5. The matching routine can be done as a kernel module, this makes it easy to add or delete a rule dynamically.

6. This approach is easy to handle the relationship between this module and other load balancing algorithm module. For instance the modules for collecting network and server status.

2.7 Content Switch Load Balancing Algorithm

The Content Switch we designed distributes the incoming web request based on URL, HTTP header, XML tags, source IP address and port number. When a request comes, its URL, HTTP header and XML tags(if any) will be parsed. Another matching process issues is with the sticky or nonstick connection, so based on the content parsed and the sticky flag the load balancing algorithm is as below;

1. If the request is the first request of a connection, it is routed to a real sever based on its content.

2. If the request is not the first request, for a sticky connection, it is routed to the same server as the first request; otherwise, the request is routed to a new server based on the new content the request.

3. If the request doesn’t match any rules, distribute the request using LVS load balancing algorithm. Those are Round Robin, Weighted Round Robin, Least Connection and weighted Least Connection.

Reference

[1].
“ Windows 2000 clustering Technologies: Cluster Service Architecture”, Microsoft White Paper, 2000. http://www.microsoft.com.

[2].
“Network Load Balancing Technical Overview”, Micosoft White Paper, 2000. http://www.microsoft.com.

[3] “Linux Virtual Server”, http://www.linuxvirtualserver.org
[4]
George Apostolopoulos, David Aubespin, Vinod Peris, Prashant Pradhan, Debanjan Saha, “ Design, Implementation and Performance of a Content-Based Switch”, Proc. Infocom2000, Tel Aviv, March 26 - 30, 2000,
http://www.ieee-infocom.org/2000/papers/440.ps

[5].
Pankaj Gupta 1 and Nick McKeown, “Dynamic Algorithms with Worst-case
Performance for Packet Classification”, Proc. IFIP Networking, May 2000, Paris, France.

http://www-cs-students.Stanford.edu/~pankaj/paps/ifip00.pdf

[6]
Anja Feldmann S. Muthukrishnan “Tradeoffs for Packet Classification”, Proceedings of Gigabit Networking Workshop GBN 2000, 26 March 2000 - Tel Aviv, Israel
http://www.comsoc.org/socstr/techcom/tcgn/conference/gbn2000/anja-paper.pdf
[7]
Thomas Woo, “A Modular Approach to Packet Classification: Algorithms and Results”, Proc. Infocom2000, Tel Aviv, March 26 - 30, 2000,
http://www.ieee-infocom.org/2000/papers/609.ps
[8]
Pankaj Gupta and Nick McKcown, “Packet Classification on Multiple Fields”, Proc. Sigcomm, September 1999, Harvard University.
http://www-cs-students.Stanford.edu/~pankaj/paps/sig99.pdf
[9]
Pankaj Gupta and Nick McKeown, “Packet Classification using Hierarchical Intelligent Cuttings”, Proc. Hot Interconnects VII, August 99, Stanford. Also in
IEEE Micro, pp 34-41, Vol. 20, No. 1, January/February 2000.
http://www-cs-students.Stanford.edu/~pankaj/paps/hoti99.pdf
[10] V. Srinivasan S. Suri G. Varghese, “Packet Classification using Tuple Space Search”, Proc. Sigcomm99, August 30 - September 3, 1999, Cambridge United States, Pages 135 - 146
http://www.acm.org/pubs/articles/proceedings/comm/316188/p135-srinivasan/p135-srinivasan.pdf
[11] Andrew Begel, Steven McCanne and Susan L. Graham, “BPF+: exploiting global data-flow optimization in a generalized packet filter architecture” Proc. Sigcomm99, August 30 - September 3, 1999, Cambridge United States, Pages 123 - 134
http://www.acm.org/pubs/articles/proceedings/comm/316188/p123-begel/p123-begel.pdf
[12] T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet forwarding using efficient multi-dimensional range matching”, Proceedings of the ACM SIGCOMM '98, August 31 - September 4, 1998, Vancouver Canada Pages 203 - 214
http://www.acm.org/pubs/articles/proceedings/comm/285237/p203-lakshman/p203-lakshman.pdf
[13] “Intel IX-API”. http://www.intel.com/design/IXA/whitepapers/ixapi.html.

[14]”Release Notes for Cisco Content Engine Software”. http://www.cisco.com”.

[15] “Network-Based Application Recognition Enhancements”. http://www.cisco.com.

[16] Gregory Yerxa and James Hutchinson, “Web Content Switching”, http://www.networkcomputing.com.

_1040668917.doc

client

content switch

server

step1

step2

SYN(CSEQ)

SYN(DSEQ)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(DSEQ+1)

step3

step4

step5

step6

step7

step8

SYN(CSEQ)

SYN(SSEQ)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(SSEQ+1)

DATA(SSEQ+1)

ACK(CSEQ+

lenR

+1)

DATA(DSEQ+1)

ACK(CSEQ+

lenR

+1)

ACK(DSEQ+

lenD

+1)

ACK(SSEQ+

lenD

+1)

lenR: size of http request.

lenD: size of return document

.

