Multiple Path Connection through a Set of Connection Relay Servers

by

Syama S Kosuri
A thesis submitted to the Graduate Faculty of the

University of Colorado at Colorado Springs

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

2005

This thesis for the Master of Science degree by

Syama S Kosuri

has been approved for the

Department of Computer Science

by

Dr. Edward C. Chow

Dr. Jugal K. Kalita

Dr. Sudhanshu K. Semwal

 Date

Chapter 1

Introduction

1.1 Overview

In the last decade we have witnessed huge leap in internet technology. Internet started with the ARPANET in 1969 mainly for providing a way for researchers to exchange information through email and UseNet groups. Before 1990 internet was used mainly for communication. Today internet plays an important role in our day-to-day life right from shopping on the e-commerce websites to increasing awareness in any area that we choose to. According to a research report by IDC[2-7], the premier global market intelligence and advisory firm in the information technology and telecommunications industries, in 2002, the traffic volume was 180 petabits1 per
day. This will increase to 5,175 peta bits per day by 2007 .The amount of information transmitted globally over the Internet will continue to double each year over the next five years.

Multimedia applications, Peer to Peer (P2P) applications like kaaZa, Guntela and high volume expectations of lower size applications like e-mail are the key factors driving the surge in data volume transmitted on Internet and hence requiring huge bandwidth. So the obvious solution is to install more bandwidth in Internet. But this is a very costly affair and time consuming too. The other solution is to research into ways to spread the Internet traffic load evenly and hence effectively optimize the use of existing bandwidth resources. Many approaches have been devised in order to provide a solution to this problem. One solution to reduce the load is to have a paid subscription to one of the Content Delivery Network (CDN) providers such as Akamai [2-8], Speedera [2-9] and Digital Island [2-10]. While this approach helps in reducing the server side bottlenecks by processing some of the requests at the edge routers, they don’t address high volume requirements of applications.

Network traffic between any two network nodes is mostly over a single path; so the amount of bandwidth available is limited to the lowest bandwidth of all links of the network path. This single path connection may under-utilize network resources and does not provide us with a way to completely utilize the network resources especially when an intermediate link is congested or broken.
Multiple path connections are an alternative to single shortest path routing to distribute and alleviate congestion in the networks. In multiple path connections, traffic bound to a destination is split across multiple paths to that destination. In other words, it uses multiple ‘good’ paths instead of a single ‘best’ path for routing.

 The multipath-routing model offers applications the ability to increase their network performance. In multipath-routing, the cost/overhead of calculating multiple paths is incurred once for a particular network topology, and subsequent path changes to avoid congestion are done by end-hosts and thus do not require routing intervention or routing overhead. The model provides a flexible interface to network resources, because of its multi-service paths, multi-option paths, and end-hosts’ freedom to use these paths. The model enables applications with varying network demands to increase their performance.

In general, multipath performance improvements are obtained in two ways. First, multi-service paths allow an application to use paths within a service that best suit the application’s communication needs. Second, multi-option paths provide more network resources per path service, allowing applications to aggregate these path resources. Since network demands vary with applications, the generality of a multi-service path allows a multi-path network to satisfy the needs of different applications.

Recent studies on parallel download [2-11] have shown to significantly decrease the retrieval times of large files, but this approach assumes a geographic distribution of the same data across multiple locations. Figure 1.1 shows parallel download architecture. This approach is not feasible where traffic originates at a single location and reaches a single destination. Different approaches were used in the past to address this problem too. The related work in chapter 2 refers to these approaches. But almost all of these approaches need some kind of system software changes or need tricky configurations or hardware dependent or operating system dependent. So the need is to have a multiple path system that is independent of hardware and system software. Also it should not be requiring any custom modifications to neither client nor server. We should be able to deploy it as quickly as possible and should be able to use any kind of machines.
[image: image23.jpg]Multipath Connections.

i

Dala ik layer Network layer 17) | [Transportiayer (7677 [Fopteatontayer]
Linux mulipath connections | [Proxy Servers Based
inceourglion Multipath Connections

(PSMC)

Wireless ad hoc network

Wired network
[

Table-driven routing Source routing,
algorithms (link state or e

distance vector), eg. MDVA

On demand routing agoritm
MPLS

lez. AODV, SMR

[Table-driven routing algorithms | [Source routing,
(lak state o distance vector), | |ce. DSR, MSR'

Fig: 1.1 Parallel download architecture [2-22]

This thesis is motivated by the parallel download architecture scheme and the goal is to improve the network performance for hosts that are not replicated across the internet. The motivation is to be able to improve the network performance, above the best single path performance, between a single client and a single server transmitting data using internet. We study the performance improvements obtained by transmitting data across multiple parallel paths using intermediate connection relay servers connected to internet. In this scheme, data originating at a single server will be split to travel by multiple parallel paths established by the intermediate connection relay servers and then reach and merge at client. The whole application runs at application layer level and is not dependent on either hardware configuration or system software. Deployment of the application is pretty quick and simple.

[image: image2.emf]Cloud

Server

Client

Client Server

Cloud

Single Path Connection

Multiple Path Connection

Figure 1.2 Single path connection vs. multipath connections
Figure 1.3 illustrates the multiple path connections through connection relay servers (MPCCRS). There are three basic components in a MPCCRS network. Server side proxy, the multipath sender, is responsible to select the best paths, from among the available paths and distribute packets over the selected multiple paths. All the packets will go through the alternate indirect routes via the connection relay servers to the receiver. Client side proxy, the multipath receiver or collector, collects the packets arrived from multiple paths, reassembles them in order and delivers them to the client.

[image: image3.png]Internet

Connection Relay
Server

Connection Relay

Server
Connection Relay %)
9 = L g
3 erver —2
. & |— Connection Relay =P &, Server Proxy
al al
@ Server @
o -)
§ Connection Relay ||~ _,,J,—:g
= Server

Connection Relay
Server

Direct
Connection

MPC-CS

Figure 1.3 Multiple path connections through a set of Connection Relay Servers (MPCCRS)
For convenience, from now on, we refer to our approach of “Multiple path connections through a set of Connection Relay Servers as “MPCCRS”. We use the phrase “direct route” to refer to the network route whereby a packet normally takes when it travels between the client and the server through the internet. The phrase “indirect route” is used to refer to the network route which utilizes the connection relay server (CRS).

MPCCRS provides the following advantages

a) Flexibility: MPCCRS can be easily deployed in various network environments. MPCCRS only requires some feasible changes at the application layer software thereby giving end users more control and flexibility in setting up multiple path connections.

b) Compatibility: MPCCRS utilizes existing TCP/IP, HTTP protocols and network infrastructure to distribute, transport and reassemble packets. This ensures the compatibility with current Internet. It also ensures the performance, efficiency, reliability, and hides the complexity from end-users.

c) Throughput: MPCCRS uses various connections and paths to send packets thereby providing higher throughput than obtained using a single connection.

Chapter 2

Related Work

This chapter surveys the related work of MPCCRS.

The system of multiple path connections is referred to by many names like multiple path routing, alternate path routing and traffic dispersion. And sometimes the same name is used in literature to refer to different ideas.
2.1 Multipath connections

The IBM Systems Network Architecture (SNA) network in 1974 [2-23] is probably the first wide area network which provides multiple paths connections between nodes. However, in the SNA network, only one path is used at a time, and the purpose of multiple paths is to provide fault-tolerance mechanisms. Also, SNA multiple paths are predefined and pre-computed.

N. F. Maxemchuk [2-12] in 1975 used channel sharing to provide multipath connections and reduce queuing delay in store and forward network. He called the technique “dispersity routing”. The research was extended to virtual circuit networks [2-13] and ATM network [2-24] to deal with busty traffic data, where both redundant and non-redundant dispersity routing techniques were described. A literature survey on traffic dispersion was presented in [2-25]. The author illustrated various strategies, such as packet-by-packet or string mode, to give dispersion in different network configurations.

According to the Open System Interconnection (OSI) Network Reference Model [2-26], we differentiate multiple path connections between physical layer, data link layer, network layer, transport layer and application layer based on the network layer. This is only a rough classification. Some approaches might be multiple layers implementation. Figure 2.1 illustrates the classification of multipath connections.

[image: image4]
Figure 2.1: diagram of multipath connections[2-32]
2.1.1 Physical layer

Multipath connections in physical layer are not something that we always want. Signal transmission by multiple paths some times causes, what is called, interference. The most crucial point in signal transmission by multiple paths is to ensure that the pieces of signal are synchronized properly. For example, sometimes FM radio sounds static and bad because of “multipath interference” [2-27]. Multipath (often called picket fencing or flutter) happens when FM signals bounce around between the buildings in a city, or other large obstructions. This bounce causes a reflection and the FM radio tries to lock onto the original signal as well as the reflection!

 2.1.2 Data link layer

Multiple path connections in data link layer has been implemented as Link Aggregation or Trunking, defined in IEEE 802.3ad [2-3]. It is a method of combining multiple physical network links between two devices into a single logical link for increased bandwidth. The upper layer applications or protocols, such as a MAC client, can treat the link aggregation group as if it were a single link. Link Aggregation requires special network interface hardware/software support, for example, Link Aggregation based on Sun Quad Fast Ethernet Adapter Card and Sun Link Aggregation software [2-14]. Therefore, it is only suited for high-end hosts.
.[image: image5.jpg]3* 1000 Mb/s.

0

Figure 2.2: Two servers interconnected by an aggregation of three 1000 Mb/s links[2-32]
2.1.3 Network layer

In network layer, multiple path connections have been studied extensively. It is referred to by multipath routing. Various protocols have been designed for wired networks.

Based on the routing mechanism, they can be differentiated between Table-driven algorithms (link state or distance vector) and Source Routing.

2.1.3.1 Table-driven algorithms
S. Vutukury et al. [2-2] proposed a multipath distance vector routing algorithm, named MDVA that uses a set of loop-free invariants to prevent the count-to-infinity problem. The computed multiple paths are loop-free at every instant.

Johnny Chen, in his Ph.D. dissertation at Rice University [2-3], proposed a complete multiple path network model that includes the following three components: routing algorithms that compute multiple paths, a multipath forwarding method to ensure that data travel their specified paths, and an end-host protocol that effectively use multiple paths.

Other works in similar area include [2-15], [2-16], [2-17], [2-18], [2-19], and [2-20]. These protocols use table-driven algorithms to compute multiple routes. These protocols require fundamental changes on Internet routers and routing protocols.

2.1.3.2 Source Routing

Source Routing [2-4] is a technique whereby the sender of a packet can specify the route that the packet should take when the packet travels through the network. In today’s Internet, when a packet travels through the network, each router will examine the “destination IP address” and choose the next hop to forward the packet to. In source routing, the sender makes some or all of these decisions. If the sender makes only some of these decisions, it is called Loose Source Routing. Source routing could be used to implement multiple path routing. But, because of security concerns of source routing, most routers in today’s Internet have disabled the source routing. J. Saltzer et al. [2-21] implemented source routing in campus-wide network environment.
2.1.3.3 Multi Protocol Label Switching (MPLS)
Multi Protocol Label Switching (MPLS) [2-29] provides a mechanism for engineering network traffic patterns that is independent of routing tables. MPLS assigns short labels to network packets that describe how to forward them through the network. MPLS is independent of any routing protocols and can be used for unicast packets.

In the traditional Level 3 forwarding paradigm, as a packet travels from one router to the next, an independent forwarding decision is made at each hop. The IP network layer header is analyzed, and the next-hop is chosen based on this analysis and on the information in the routing table. In an MPLS environment, the analysis of the packet header is performed just once, when a packet enters the MPLS cloud. The packet then is assigned to a stream, which is identified by a label, a short (20-bit) fixed-length value, at the front of the packet. Labels are used as lookup indexes in the label forwarding table. For each label, this table stores forwarding information. We can associate additional information with a label, such as class-of-service (CoS) values, that can be used to prioritize packet forwarding. MPLS could be used to set up multiple path connections for traffic engineering and quality of service [2-28, 2-29].

2.1.4 Transport layer

Linux has its own implementation of multipath connections [2-5, 2-6]. For convenience, we refer to it as “Linux multiple path connections”. It is a solution for using multiple ISP connections (multi-homing) at the same time. Linux kernel needs to be patched to support “Advance Router” and “Multiple Path Routing” options. The Linux kernel distributes packets between multiple network connections in TCP layer. The solution’s configuration is complicated, and it fails to provide fail-over mechanism in case of failure of a connection. Also, it requires the host machine to have multiple network interfaces with multiple ISP connections.

[image: image6.jpg]il

Sender Receiver

Figure 2.3: Linux multipath connections for multiple ISP connections[2-32]
2.2 Parallel download from multiple mirror sites

A related problem to multiple path connections is the problem of parallel download from multiple mirror sites. Some work has been done on improving performance for mirrored sites. Two Schemes were proposed by Pablo Rodriguez, Andreas Kirpal and Ernst W. Biersack [2-30] using HTTP Byte-Range header field.

2.2.1 History-based TCP parallel access: client specifies which part of the document must be delivered from each of the mirror servers. Size of the part of the document requested is directly proportional to the rate at which server can transmit. To calculate the size of every part, a history based parallel-access uses a database of previous server rates, which is refreshed periodically, e.g. every 10 minutes.

2.2.2 Dynamic TCP parallel access: client partitions a document into small blocks and request one block from each server. When a server finishes the transmission of one block, the client requests another block that has not been requested from any other server.

Above proposed Two Schemes provide

· Faster downloads

· Reliability

The design becomes unfit if there are no mirror sites as the server transmission rate is still a bottleneck. The design works only with mirror sites that contain the document pre-partitioned into blocks. More over changes need to be made to the client browser to take maximum benefit of the proposed techniques.

Dynamic parallel-access achieves significant speedups and has a performance that comes very close to the optimum performance of a parallel-access.

2.3 Proxy Server base Multipath Connection

In [2-31][2-32] Techniques for supporting the proxy server based multipath connection (PSMC) are studied. First, the design and implementation of a proxy server based overlay network using a set of intermediate connection relay servers was studied. The PSMC model was implemented at the IP layer; which helps in supporting various upper layer protocols but suffers from penalties of cost and unreliability if the upper layer protocols are connection oriented like TCP. In order to avoid such huge penalties TCP congestion window control is revised for higher throughput. On the receiver side, the TCP layer is enhanced with a double buffer to solve the persistent reordering problem. The enhancement supports both Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

Chapter 3
[image: image1.jpg]Two peers,
left peer is twice faster

Large Fifle

Design and implementation
One of the objectives of this thesis is to implement multiple path connections without any changes to the system software on the client, server and any of the nodes in between. Most of the implementations, as explained in chapter 2, require changes to the system software or configurations. This requires a lot of set up time to establish the system, because custom changes are required on the machines that will be a part of the multiple path system.

To overcome the above mentioned limitation MPCCRS is implemented at the application layer. By implementing at application layer MPPCRS puts no restrictions on the machines that could be used as intermediate nodes. Also MPCCRS is implemented to transfer data using HTTP protocol. So any standard web client and web server can be used to transmit data over multiple path connections using MPCCRS.
3.1 Components in MPCCRS
1. Client: Web browser
2. Client Proxy: A prefork server capable of handling multiple HTTP requests from multiple clients
3. Server Proxy: A prefork server capable of handling multiple HTTP requests from multiple client proxies and capable of sending data through multiple connection relay servers.
4. Server: A web server capable of handling HTTP requests

5. Connection Relay Server (CRS): A prefork server capable of receiving data from multiple server proxies and capable of sending data to multiple collectors
6. Bandwidth relay server (BWS): A prefork server used to determine the bandwidth of the network between the CRS and client collector and relay that information to the server proxy.
7. Client Collector: A prefork server capable of handling data from many connection relay servers
3.2 Client

[image: image7.emf]Client

HTTP request to

ClientProxy

HTTP Response from

ClientProxy

Fig 3.1 Client communication
Request to get data from a desired web server is initiated by the user using the client. Client browser is set, through the settings option, to route the request through the client proxy, using machine name and port number on which client proxy server software program is running. If the client is not set properly to the client proxy, data will not be transmitted through MPCCRS. Once the request is routed to the client proxy, client sits waiting for the response from client proxy.
3.3 Client Proxy

[image: image8.emf]ClientProxy

(CP)

Forward request to

ServerProxy

Receive Error Response

from ServerProxy

Receive request from

Client

Forward Response to

Client

Fig 3.2 Client Proxy communication
Client proxy receives requests from client. Client proxy does the following:

1. It checks if the requested resource is available in the cache. If the resource was previously accessed through this client proxy, then it would have stored it with a name generated by the MD5 digest using the host name and the URI of the destination. This step is to avoid retransmitting data and hence improve performance. The reason for the resource to have a name generated like this is explained further below in client collector section.
If the resource is available in the cache, client proxy retrieves the data from the file and sends it back to the client and the request will be completed. If the resource is not available in the cache then it creates a unique MD5 digest key, which will be used as the resource name, using the host name and the URI of the destination from the HTTP request header. The purpose of this unique name is explained in the client collector section. Then it forwards the request to the server side proxy, so that the request ultimately reaches the web server.
2. Forward the response, if it receives one, from server side proxy to the client. Client proxy can expect to receive response from the server proxy only if the response contains error message from the web server. Server proxy will not send the successful response data to the client proxy.
3. It starts checking for the MD5 digest key entry, in a key entry text file at fixed intervals. The entry in the key entry text file will be written by the client collector when it has received the last packet and finished writing into the response data file. Client proxy starts reading the file, once the entry is found in the key entry text file. Then the data will be sent to the client.
3.4 Server proxy

[image: image9.emf]ServerProxy

(SP)

Receive request from

ClientProxy

Forward Error Response

to ClientProxy

Forward request to Web

Server

Receive Response from

ServerProxy

Request to Bandwidth

Server

Receive Response from

Bandwidth Server

Data to CRS (1,2,…..n)

Fig 3.3 Server Proxy communication
Server proxy receives the request from the client proxy. It creates a unique MD5 digest key using the host name and the URI of the destination from the HTTP request header. It forwards the request to the web server and waits for the response from the web server.

 If the server proxy receives an HTTP error response from the web server, the response will be sent back to the client proxy. The response ultimately reaches the client through the client proxy and will be displayed on the web client.
If the response is normal from the web server then the data received will be sent over multiple CRS’ to reach the client collector. Server proxy contains the details of the connection relay servers and the bandwidth relay servers. Also through the application configuration settings it knows how many parallel connections it is supposed to use at any given time. When the server proxy is started, it calculates the bandwidth between itself and the client collector (fig 3.7) through each available path using the bandwidth calculation algorithm, explained in section 3.9. It then sorts the network paths in descending order based on bandwidths and selects the number of connections that it is supposed to send data, in parallel, from top. The number of packets to be sent on each connection is decided using load distribution algorithm, explained in 3.10. Server proxy then establishes connections with the CRS’ and starts sending packets. The packets are sent in the determined ratio in a round-robin fashion (for example 5:3:2) on each connection.
Server proxy fills in the information contained in each packet before the packet is sent from the server proxy. The fields contained in each packet’s header are explained in 3.8
3.5 CRS

[image: image10.emf]Connection Relay Server

(CRS)

Data from ServerProxy Data to ClientCollector

Fig 3.4: CRS communication
Each CRS knows, through its application configuration files, the client collector it is supposed to send the data. It receives packets from the server proxy and sends them to the client collector. It is just a server that relays data from one connection to another connection. The basic purpose of a CRS is to break the path between the server proxy and the client proxy into multiples.
3.6 Bandwidth Relay Server

[image: image11.emf]Bandwidth Server

(BWS)

Request from ServerProxy

for bandwidth

Bandwidth to

ServerProxy

Fig 3.5: BWS communication

A BWS is run on the same machine that houses the CRS. So each machine that houses a CRS also houses a bandwidth relay server. A BWS is used to get the bandwidth between the CRS and the client collector (fig 3.7). When the server proxy contacts the bandwidth relay server for the bandwidth information between CRS and the client collector, the BWS runs the “cptest.pl” script with client collector as the destination. It then returns the bandwidth value between the CRS and the client collector to the server proxy.
3.7 Client Collector

[image: image12.emf]ClientCollector

(CC)

Request from Bandwidth

Server

Response to Bandwidth

Server

Data from CRS (1,2,…..n)

Fig 3.6 Client Collector interaction
Client Collector (CC) runs on the same machine that houses client proxy.

Client collector has the following responsibilities:

1) Collect the packets coming from different sources on different connection relay servers

2) Assemble the data bytes coming in each packet from a unique destination in the right order
3) Store the complete data from a unique source

4) Communicate with client proxy at the end of the data collection, so that client collector can retrieve the data and send to the client.

Client collector performs the above steps using the header fields in each packet. For details about packet header fields and the related information, refer to 3.8
3.7.1 Collect packets:

For collecting packets coming from different sources, CC needs to identify the origination of each packet. CC gets this information in the “file_name” packet header field. This field contains the string generated by MD5 digest of host name and the destination URI.

3.7.2 Assemble data bytes:
CC and CP have to have a shared resource so that when CC has completed writing the data into the shared resource, CP should be able to read data from the same source. This is why it is required for CC and CP to run on the same physical machine. For this both CC and CP use the “file_name” packet header field. CC creates a new data file with the file_name and CP reads from the file with the same name. CP has this file name as it was created before CP forwarded the request to SP.

For assembling the data coming on different packets from the same host, CC uses the byte range header field of the packet. The “byte_range” field contains the range of the serial number of the bytes in the original source file. CC assembles the bytes in the same order.
3.7.3 Store complete data:

To do this task CC has to know the arrival of last packet. This information is available in the “connection_status” packet header field. When CC finds a connection close status on any packet, it knows that it is the last packet. But CC can’t stop collecting packets as soon as it receives the last packet. This is because the last packet might have traveled on a better path and arrived early at CC when compared to some other packets that are still on the network.

So how does the CC know when to stop writing data into the shared resource and signal to client proxy that it is available? For this the “packet_number” packet field is used. Each time CC receives a packet from a host it increments the packet counter by one and updates the maximum packet number local variable, if the packet_number in the incoming packet is greater than the existing packet number in the variable. When CC receives all packets the packet counter will match with the value in maximum packet number variable. Hen this condition is satisfied CC stops writing into the shared resource.
3.7.4 Communicate with client proxy:

For this CC and client proxy use a key entry text file. CC writes the file_name entry in the key entry file when it has finished writing into the shared data file. CP, as explained in the client proxy section, will be checking for the file_name entry in the key entry file, at regular intervals. When CP finds file_name entry in the key entry file, it reads the data from the shared data file and sends it back to client.

[image: image13.emf]Client

HTTP request to

ClientProxy

HTTP Response from

ClientProxy

ClientProxy

(CP)

Forward request to

ServerProxy

Receive Error Response

from ServerProxy

ServerProxy

(SP)

ClientCollector

(CC)

Web Server

(WS)

Forward request to Web

Server

Receive Response from

ServerProxy

R

e

c

e

i

v

e

R

e

s

p

o

n

s

e

f

r

o

m

B

a

n

d

w

i

d

t

h

S

e

r

v

e

r

D

a

t

a

t

o

C

R

S

(

1

,

2

,

…

.

.

n

)

+

R

e

q

u

e

s

t

t

o

B

a

n

d

w

i

d

t

h

S

e

r

v

e

r

(

1

,

2

,

…

.

.

n

)

Connection Relay Server +

Bandwidth Server - - set 1

(CRS +BWS)

Data from ServerProxy Data to ClientCollector

Cloud

Receive request from

ClientProxy

Forward Error Response

to ClientProxy

Shared

Resource

Connection Relay Server +

Bandwidth Server - - set 2

(CRS + BWS)

Data from ServerProxy

Connection Relay Server +

Bandwidth Server - - Set n

(CRS +BWS)

Data from ServerProxy

Cloud

B

a

n

d

w

i

d

t

h

t

o

S

e

r

v

e

r

P

r

o

x

y

Bandwidth to

ServerProxy

Bandwidth to

ServerProxy

Data to ClientCollector

Data to ClientCollector

W

r

i

t

e

R

e

a

d

Fig 3.7 Complete interaction diagram for MPCCRS

3.8 Packet Header Fields
Each packet carries the following information:

Data – Information segment coming from the web server

Byte range – This field holds the starting byte number and the ending byte number of the data in the original source file. Web server populates this value on the response header byte range field. Byte ranges are used to reassemble packets by client collector.

File name -- MD5 Digest of host name and the resource URI. Value in this field is used to identify the packets coming from a unique resource and for synchronizing between CC and CP.
Packet number – This field holds the serial number of the packet, as identified by the server proxy. Value in this field is used to countercheck if all expected packets have arrived at the CC.
Connection status – This is a flag containing the status of the connection. This flag is used to identify the last packet by CC.
Fig 3.8 shows the sequence of interactions between components of MPCCRS. When server proxy receives an HTTP error message from server it forwards the message to client proxy. Client proxy forwards that to client and the interaction ends for that request.

[image: image14.emf]ClientProxy

(CP)

ServerProxy

(SP)

Connection Relay Server

(CRS) (1,2,……,n)

Bandwidth Server

(BWS)

ClientCollector

(CC)

HTTP request

Forward request

Forward request

Response to the

 request

If error, forward

Send response to

Client

Request to get

bandwidth

Send bandwidth

Send proportional

amount of data

Pass on data

Shared File

Write to

 file

Read from file when the

file is available

Client Proxy and Client Collector run on the same physical machine

Connection Relay Server and the Bandwidth Server run on the same

physical machine

Fig 3.8 Complete sequence diagram of MPCCRS
3.9 Algorithm for finding network bandwidth:
The algorithm consists of following steps.

1.The server proxy runs the “cptest.pl” (perl script) using the CRS’ address as the destination address. cptest.pl requires a destination address and the number of sampling times.

Cprobe returns the network bandwidth between the host machine and the destination address.
2. Server proxy contacts the bandwidth relay server running on the same machine as CRS. The bandwidth relay server in turn runs the cptest.pl script with a destination address of the machine running the client collector.
Once the bandwidth relay server gets the network bandwidth between the CRS and the client collector, it communicates that value to the server proxy.
3. Now server proxy has the network bandwidths for the two legs (Server proxy to CRS; CRS to client collector) between itself and the client collector. Because a network with multiple legs in series can carry only the minimum bandwidths of all of the legs, the server proxy selects the minimum of the two bandwidths and assigns that value as the network bandwidth between itself and the client collector.

3.10 Algorithm for load distribution on multiple paths

1. Server proxy has the knowledge of the network bandwidths of all the paths over which it can transmit packets.

2. For efficient transmission, each path should be loaded in proportion to its bandwidth so that no one path becomes the bottle neck and affects the performance
3. Assumption: All packets are similar in size and the CRS’ are evenly distributed physically between the server proxy and the client collector, so that the network travel time is same across all paths. This results in the conclusion that the packets should be sent on each path in proportion to the bandwidth ratios.
4. Server proxy determines the ratio of bandwidths and starts sending the packets on each path in that ratio in round robin fashion.

Chapter 4

Data collection and performance evaluation
The test bed was set up exactly like the one shown in the design diagram (fig 3.7) except for one difference. The design diagram shows that various proxy servers are connected to internet. But due to practical limitations, all proxy servers are connected to the University internal network.
The machines used in the test bed are as follows:

	Proxy server
	Physical Machine

	Client Proxy
	NCDCRX1.UCCS.EDU

	Server Proxy
	VINCI.UCCS.EDU

	Client Collector
	NCDCRX1.UCCS.EDU

	Connection Relay Server1
	BLANCA.UCCS.EDU

	Bandwidth Relay server1
	BLANCA.UCCS.EDU

	Connection Relay Server2
	CRESTONE.UCCS.EDU

	Bandwidth Relay server2
	CRESTONE.UCCS.EDU

	Connection Relay Server3
	SANLUIS.UCCS.EDU

	Bandwidth Relay server3
	SANLUIS.UCCS.EDU

	Client
	Mozilla web browser on GANDALF.UCCS.EDU

	Web Server
	CS.UCCS.EDU

Table 4.1 Test bed machines
The configuration of the machines used in test bed setup are given in
Table 4.2

	
	Ncdcrx1
	Vinci
	Sanluis
	Blanca
	Crestone

	CPU
	512 MHz
	1 GHz
	Dual PentiumIII
1.5GHz
	Dual PentiumIII
933.4MHz
	PentiumIII
1.5GHz

	Memory
	512MB
	512 MB
	1.5GB
	1.5GB
	1GB

	Network
	10Mbps
	10 Mbps
	100Mbps
	100Mbps
	100Mbps

	OS
	Redhat 9 Linux Kernel
2.4.20-6
	Redhat 9
Linux Kernel 2.4.21
	Redhat 9 Linux Kernel
2.4.20-31.9smp
	Redhat 9 Linux Kernel
2.4.20-31.9smp
	Redhat 9 Linux Kernel

2.4.20-31.9smp

Table 4.2 Test bed machines’ configuration
The main objective of data transmission through multiple paths is effective utilization of network bandwidth. In other words the goal is to transmit data at higher rates than possible with a single path between client and server. In summary if we can transmit higher amounts of data over multiple paths when compared to the transmission rate on a single path with the same set up, then we have achieved the goal of MPCCRS.
All proxies, client and server in the test bed are connected to the internal network of the University. University internal network runs on a 10 Mbps network. So the effective bandwidth of MPCCRS test bed network is 10 Mbps.

The MPCCRS is written entirely at application layer level and hence the overheads will be much more. Keeping this in mind the MPCCRS can be tested in two ways:

One way is to restrict the network bandwidth either using the hardware controls (router configuration) or using software network bandwidth rate limiters. Either way we have to bring down the bandwidth level such that the network bandwidth becomes a bottle neck when transferring data over direct connection. Once that condition is reached we can test the MPCCRS with multiple paths and measure the performance improvement.

The other way is to run the MPCCRS, set to one path (one CRS), and see what the possible data rate is. In this case either the network could become a bottle neck or the implementation of MPCCRS itself could become the bottleneck. If we get the same effective transfer rate through MPCCRS, when it is set to one path, as we get with a direct connection then the network becomes the bottle neck. And we can expect much higher transfer rates through MPCCRS. If the other ways, then we conclude that the MPCCRS implementation with one path on this network becomes a bottle neck and we should get some performance improvement, relative to MPCCSRS with one CRS, when we run MPCCRS with multiple connections on the same network.

When the above test is performed it is found that the MPCCRS, written entirely on application layer, has become the bottleneck on this 10 Mbps network. So the response times with one proxy connection is used as a bench mark to evaluate the performance of the MPCCRS. The performance is compared with the direct connection performance also.
To evaluate the performance of MPCCRS, response times are collected for transmitting different sizes of data over 1, 2 and 3 connection relay servers respectively. Also response times are collected for transmitting various sizes of data over direct connection. Because MPCCRS uses HTTP to transport data, only image files are used to minimize the variance in the collected test data. Each collected response time is, in reality, the average of more than three samples. This is done to take care of the transient conditions, if any that occur during testing.

The response times are captured using “ethereal” packet analyzer tool. For each request from the client the beginning and end times of the HTTP packets were measured. Then the total response time is the elapsed time between the two events.
The data is tabulated in tables 4.3 thru 4.8
	Size (Kb)
	Response Time (mille sec)
	Avearge transfer rate (Kb/sec)

	98
	183.393
	534.3715

	204
	222.856
	915.3893

	337
	229.941
	1465.593

	434
	272.117
	1594.902

	565
	236.412
	2389.896

	701
	271.673
	2580.308

	816
	291.535
	2798.978

	961
	334.787
	2870.482

	1800
	516.513
	3484.907

	2900
	601.485
	4821.400

	4800
	1399.245
	3430.421

	9100
	1707.091
	5330.706

	15000
	7848.456
	1911.204

Table 4.3 Total response times and average transfer rates over direct connection
	Data Size (Kb)
	Response time (mille sec)

	
	Over 1 CRS
	Over 2 CRS’
	Over 3 CRS’

	103
	1449
	1540
	1323

	192
	2615
	2640
	2492

	233
	3240
	3149
	2700

	369
	5004
	4889
	4335

	733
	9709
	9879
	8542

	1200
	16826
	15695
	13309

	2900
	39397
	33535
	32839

	8600
	122341
	101121
	98306

	15000
	217000
	186498
	175534

Table 4.4 Total MPCCRS response times over 1, 2 and 3 paths
	Data Size (Kb)
	Avg. Transfer Rate (Kb/sec)

	
	Over 1 CRS
	Over 2 CRS’
	Over 3 CRS’

	103
	42.40009221
	43.26167855

	40.7000407

	192
	51.50007376

	49.41817817

	51.16002697

	233
	61.20015339

	64.00096688

	57.58005605

	369
	65.40002127

	67.60619119

	66.88005452

	733
	69.40006344

	71.13065722

	73.34004366

	1200
	66.0000297

	73.78018301

	84.60004272

	2900
	70.80000342

	82.88643729

	86.79002023

	8600
	68.449996

	83.88090005

	86.05000366

	15000
	65.01000092

	80.42989457

	82.03000417

Table 4.5 MPCCRS average transfer rates over 1, 2 and 3 paths
	Data Size (Kb)
	Response time (mille sec)

	
	Over 1 CRS
	Over 2 CRS’
	Over 3 CRS’

	103
	1449
	1540
	1323

	192
	2615
	2640
	2492

	233
	3240
	3149
	2700

	369
	5004
	4889
	4335

	733
	9707
	9879
	8542

	1200
	16826
	15695
	13309

	2900
	39397
	33535
	32839

	8600
	122341
	101121
	98306

	15000
	217000
	186498
	175534

Table 4.6 MPCCRS client collector processing times over 1, 2, and 3 paths
	Data Size (Kb)
	Response time (mille sec)

	
	Over 1 CRS
	Over 2 CRS’
	Over 3 CRS’

	103
	71.08350587
	66.88311688
	77.85336357

	192
	73.42256214
	72.72727273
	77.04654896

	233
	71.91358025
	73.99174341
	86.2962963

	369
	73.74100719
	75.47555737
	85.12110727

	733
	75.51251674
	74.1977933
	85.81128541

	1200
	71.31819803
	76.45747053
	90.1645503

	2900
	73.60966571
	86.47681527
	88.30963184

	8600
	70.29532209
	85.04662731
	87.48194413

	15000
	69.12442396
	80.42981694
	85.45353037

Table 4.7 MPCCRS client collector average process rates over 1, 2, and 3 paths

	Size KB
	ProcessingTime (mille sec)

1 CRS
	Avg Transfer Rate (Kb/sec)

	103
	1033
	99.70958374

	192
	1442
	133.148405

	233
	2167
	107.5219197

	369
	3917
	94.20474853

	733
	8655
	84.6909301

	1200
	15665
	76.60389403

	2900
	38190
	75.93610893

	8600
	121117
	71.00572174

	15000
	215928
	69.46760031

Table 4.8 MPCCRS CRS process times and average transfer rates over 1 path

[image: image15.emf]File size vs Transfer time

0

50000

100000

150000

200000

250000

0 2000 4000 6000 8000 10000 12000 14000 16000

file size (KB)

Transfer Time (milli sec)

1 path

2 paths

3 paths

Chart 4.1 Total MPCCRS response times over 1, 2 and 3 paths
Performance data of MPCCRS over 2 and 3 paths, when compared to transmission over 1 path, is plotted in chart 4.1. Performance data over direct connection is plotted in chart 4.2.
From chart 4.1 it is clear that there is definite performance improvement when the data is transmitted over multiple paths (chart 4.1 and 4.3). However the improvement in performance is not uniform with the increase in the number of paths. There is a sizable improvement in the performance when the data is transmitted over two paths. But then there is a very marginal improvement when the data is transmitted over three paths.

On the other hand from charts 4.1 and 4.2 and data from tables 4.3 and 4.4 it is quite clear that MPCCRS offers very considerable overhead when compared to the direct connection. This can be easily explained by the fact that data has to travel through many layers from bottom to reach the application layer at top in three different proxy servers: Server Proxy, Connection Relay Server, and Client Collector.

[image: image16.emf]Direct route

0

200

400

600

800

1000

1200

1400

1600

1800

98 204 337 434 565 701 816 961 1800 2900 4800 9100 15000

Data Size(Kb)

Response Time(miile sec)

0

1000

2000

3000

4000

5000

6000

Avg. Transfer Rate (Kb/s)

time Avg. Transfer Rate

Chart 4.2 Total response times and average transfer rates over direct connection

In addition to that there is low to medium processing involved in the server application at each of the three nodes. And finally there is an additional overhead in client collector and client proxy in creating and using the shared resources. Both charts could not be combined into one due to huge scale differences.
MPCCRS average transfer rates with multiple paths is shown in the chart below.

[image: image17.emf]File size vs Avg.Transfer Rate

30

40

50

60

70

80

90

0 2000 4000 6000 8000 10000 12000 14000 16000

File size(KB)

average transfer rate KB/sec

1 path

2 paths

3 paths

 Chart 4.3 MPCCRS average transfer rates over 1, 2 and 3 paths
This chart shows that performance was very poor over any number of paths for files below certain size. This could be explained by the overhead involved with the MPCCRS, especially when all the routing is done at application layer. As the file size increases the performance improves across all paths. As noted in the previous chart, again the marginal performance improvement was much better with two paths than when compared with the marginal improvement over three paths. And also the performance starts coming down as the data increases beyond a certain size. The most probable reason could be the server proxy or the client collector, which are the junction points, reaching to their capacity saturation.
To analyze the performance of client collector, the other major overhead in the MPCCRS, the data is plotted as shown in the chart 4.4.

[image: image18.emf]ClientCollector

0

50000

100000

150000

200000

250000

0 2000 4000 6000 8000 10000 12000 14000 16000

File size (KB)

Process Time (milli sec)

1 path

2 paths

3 paths

Chart 4.4 MPCCRS client collector processing times over 1, 2, and 3 paths

It shows similar performance results. Similar to the other chart again the client collector shows better performance with more number of paths. It has shown good amount of performance improvement when transmitting over two paths. But over three paths it is only a marginal improvement.

The other interesting observation from the client collector average transfer rates chart (chart 4.5) is that the average transfer rate is low for smaller sizes which can be explained by the processing overheads. But then the transfer rate increases with increasing data sizes and at certain data size the transfer rate suddenly falls and starts rising again. This is consistent across one to many paths, as the number of requests is increasing, the pre-fork proxy of the client collector creates more number of child processes than required and as the connections stabilize the process rate stabilizes.

[image: image19.emf]ClientCollector

60

65

70

75

80

85

90

95

0 2000 4000 6000 8000 10000 12000 14000 16000

File size (KB)

Process rate(KB/sec)

1 path

2 paths

3 paths

Chart 4.5 MPCCRS client collector average process rates over 1, 2, and 3 paths
To analyze CRS performance, processing times were collected when the data is sent through one CRS only. CRS processing times reflect exactly the same trend in the total processing times. The transfer rates were high from the very beginning except for the smallest data size. The poor performance when the data size is very small is explained by the starting overheads. But then performance improved once data size crossed the initial overhead hurdle. As the data size increased further, performance started coming down due to variable application processing load and other bottlenecks as discussed before.

[image: image20.emf]CRS - File size vs Transfer time

0

50000

100000

150000

200000

250000

0 2000 4000 6000 8000 10000 12000 14000 16000

file size (KB)

Transfer Time (milli sec)

1 CRS

Chart 4.6 MPCCRS CRS average process times over 1 path

[image: image21.emf]CRS - File size vs Avg.Transfer Rate

60

70

80

90

100

110

120

130

140

0 2000 4000 6000 8000 10000 12000 14000 16000

File size(KB)

average transfer rate KB/sec

1 CRS

Chart 4.7 MPCCRS CRS average process rates over 1 path
4.1 Problems faced in testing:

The code uses pearl script (cptest.pl) for measurement of bandwidth between server proxy - CRS and between CRS - client collector links. It has been observed that it was not working satisfactorily. It was showing “0” bandwidth some times, especially during night times. This script uses ICMP packets to measure bandwidth. Blocking of ICMP packets could be the reason for the script to return zero bandwidth.

So I have used a random number generator to simulate different bandwidth paths and used for my testing.

The other problem is using shared machines for setting up test bed. When these machines are used by others for running their applications, naturally the performance gets affected. This is especially important when the majority of the code is running at application level. So to get consistent performance readings I have to stay overnight and collect test data when other applications are not running.
Chapter 5

Future Enhancements
The application can be extended to be able to run applications using multimedia/streaming protocols like RTP, SIP etc. MPCCRS currently is built to run applications using HTTP protocol. It could be extended to run on other protocols also.
The performance of MPCCRS could be studied further to analyze how it can be optimized by using different combination of proxy servers in terms of processing power.

Chapter 6

Lessons Learnt
Designing MPCCRS was a real challenge to me. One of the objectives of this thesis is to transfer data by MPCCRS using HTTP. So I have spent a lot of time understanding HTTP protocol. Also data travels in two different paths in two directions. It took good amount of time figuring out how to synchronize between the two streams of data. Then the management of shared resources is another interesting one. I have learnt a lot about networks in general and TCP/IP and HTTP in particular. And now I feel that there is lot more to know about networks. I have used a lot of socket programming. After working on this thesis I really started to appreciate the complexity involved behind the overly simple appearing network applications.

Chapter 7

Conclusions
This thesis set out to implement a multiple path routing system without having to do any custom software changes to client, server or any of the proxy servers. One of the objectives was to make MPCCRS to run independent of the component machine’s hardware or system software. This object was fulfilled by writing MPCCRS wholly at application layer.

MPCCRS has achieved its objective of improved performance over multiple paths. MPCCRS performance reflected a good amount of overhead. This is attributable to the entire code running at application layer. However setting up MPCCRS is very simple and quick. Also MPCCRS can run on any set of machines irrespective of their hardware configurations or system software they are running upon.
MPCCRS performs poorly when compared to the direct route performance at higher bandwidths. But it definitely shows improvement in performance on multiple CRS paths when compared to performance on one CRS path. Application level overhead is the significant factor behind the poor performance of MPCCRS. The second factor is due to server proxy and client collector/client bottle necks. One way to optimize the performance of MPCCRS is to use more powerful processing machines for server proxy and client collector and less powerful machines for CRS’. When all other variables are held constant, MPCCRS performance increases with increase in the processing power of the proxy servers.

References:
[2-1] Johnny Chen, “New Approaches to Routing for Large-Scale Data Network”, PhD Thesis, 1998.
[2-2] S. Vutukury and J.J. Garcia-Luna-Aceves, “MDVA: A distance-vector multipath routing protocol,” Proceedings of the IEEE INFOCOM, pp. 557–564, 2001.
[2-3] IEEE 802, “IEEE 802.3ad Link Aggregation”, http://grouper.ieee.org/groups/802/3/ad/index.html
[2-4] Information Sciences Institute, “INTERNET PROTOCOL RFC: 791”, http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc0791.html
[2-5] Christoph Simon, “Howto to use more than one independent Internet connection”, http://www.ssi.bg/~ja/nano.txt
[2-6] Julian Anastasov, “linux kernel patches”, http://www.ssi.bg/~ja/

[2-7] www.nwfusion.com/news/2003/0306idcinter.html]
[2-8] Akamai technologies http://www.akamai.com/index_flash.html
[2-9] Speedera http://www.speedera.com/flash_index.html
[2-10] Digitalisland http://www.digitalisland.com/
[2-11] P. Rodriguez, W. Ernst Biersack., "Dynamic Parallel-Access to Replicated Content in the Internet". In IEEE/Transactions on Networking, August 2002 (Also in IEEE/Infocom 2000)

[2-12] N. F. Maxemchuk, “Dispersity Routing in Store and Forward Networks”, Ph.D. thesis, University of Pennsylvania, 1975.
[2-13] N. F. Maxemchuk, “Dispersity Routing in High-Speed Networks”, computer networks and ISDN systems, vol. 25, 1993
[2-14] Sun Microsystems, “Link Aggregation Trunking”, http://grouper.ieee.org/groups/802/3/trunk_study/tutorial/ahtrunk.pdf
[2-15] I. Cidon, R. Rom, and Y. Shavitt, “Analysis of Multi-Path Routing”,IEEE/ACM Transactions on Networking, vol. 7, no. 6, Dec. 1999, pp. 885-896.
[2-16] S. Murthy and J.J. Garcia-Luna-Aceves, “Congestion-Oriented ShortestMultipath Routing”, Proceedings of IEEE INFOCOM'96, San Francisco,CA, Mar. 1996, pp. 1028-1036.
[2-17] R. Ogier, V. Rutenburg, and N. Shacham, “Distributed Algorithms for Computing Shortest Pairs of Disjoint Paths”, IEEE Transactions on Information Theory, vol. 39, no. 2, Mar. 1993, pp. 443-455.
[2-18] D. Sidhu, R. Nair, and S. Abdallah, “Finding Disjoint Paths in Networks”, Proceedings of ACM SIGCOMM'91, Zurich, Switzerland, Sep. 1991, pp.43-51.
[2-19] N. Taft-Plotkin, B. Bellur, and R. Ogier, “Quality-of-Service Routing Using Maximally Disjoint Paths”, Proceedings of IEEE IWQoS'99, London,UK, Jun. 1999, pp. 119-128.
[2-20] W.T. Zaumen and J.J. Garcia-Luna-Aceves, “Loop-Free Multipath Routing Using Generalized Diffusing Computations”, Proceedings of IEEE INFOCOM'
[2-21] Jerome H. Saltzer, David P. Reed, David D. Clark, “Source Routing for Campus-wide Internet Transport”, IFIP Working Group 6.4 Workshop on Local Area Networks in Zurich, 1980.
[2-22] http://research.microsoft.com/~pablo/paraload.aspx

[2-23] J. P. Gray and T. B. McNeill. SNA multiple-system networking. IBM Systems Journal, 18(2):263–297, 1979.
[2-24] N.F. Maxemchuk, “Dispersity routing on ATM networks”, In Proc. IEEE Infocom, volume 1, pages 347-357, 1993.

[2-25] E. Gustafsson and G. Karlsson, “A literature survey on traffic dispersion,” IEEE Network, vol. 11, no. 2, pp. 28–36, March 1997.

[2-26] Cisco, “Open System Interconnection Protocols”, http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/osi_prot.htm
[2-27] Eddie Runner, “Multi Path Interference”, http://www.mmxpress.com/technical/multipath.htm
[2-28] Srinivas Vutukury, “Multipath Routing Mechanisms For Traffic Engineering And Quality Of Service In The Internet”, Ph.D thesis, 2001
[2-29] IETF, “Multiprotocol Label Switching (mpls)”, http://www.ietf.org/html.charters/mpls-charter.html

[2-30] Pablo Rodriguez Andreas Kirpal Ernst W. Biersack, “Parallel-Access for Mirror Sites in the Internet”, Proceeding of Infocom, 2000.

http://www.ieee-infocom.org/2000/papers/65.ps

[2-31] Frank Watson, "ENHANCE TCP PERFORMANCE WITH MULTIPLE PATH ROUTING", http://cs.uccs.edu/~chow/pub/master/fewatson/doc/master.pdf, UCCS, 2005

[2-32] Yu Cai, "On Proxy Server Based Multipath Connection", PhD dissertation, UCCS, 2005
APPENDIX A

SETUP GUIDE

This appendix explains how to setup, configure and run this application to transfer data through multiple path connections from a web browser.

Set up client proxy
The object module client_proxy should be copied to the machine on which user wants to run the client proxy server. When the module is run, it displays the port number to which the server is bound and is ready for receiving the requests. This port number should be used when the client is set to use this proxy.
Configurations:
Set up client collector

Client collector server runs on the same physical machine as the client proxy. The object module client_collector should be copied to the machine on which the client_proxy is running. When the module is run, it displays the port number to which the server is bound and is ready for receiving the requests.
Configurations:

Set up server proxy

The object module server_proxy should be copied to the machine on which user wants to run the web server side proxy server. When the module is run it displays the port number to which it is bound and is ready for receiving the requests.

Server proxy configuration files define the rest of the machines the system will be referring to. If any of the configuration files are changed the source code needs to be recompiled to reflect the changes in the resulting object code.
Set up CRS

The object module CRS_proxy should be copied to all the machines that will be used as connection relay servers. When the module is run on each of those machines, it displays the port number to which the CRS_server is bound and is ready for receiving the requests.

Set up Bandwidth relay server

The object module bw_relay_proxy should be copied to all the machines that will be used to run the bandwidth relay servers. When the module is run on each of those machines, it displays the port number to which the bandwidth relay server is bound and is ready for receiving the requests.
Set up client

The client is the Microsoft’s Internet Explorer web browser running on the user’s machine. The browser needs to be set up to use a proxy server, which should be mapped to our client proxy server. To set up user needs to go to the tools (internet options (connections from the menu bar of the browser. Then click on “LAN settings” and enter the values as shown in the screen shot below. Then click on OK.

“Use a proxy server for your LAN” option should be checked. “Address” field should be filled with the machine name on which the client proxy server is running (for example: ncdcrx1.uccs.edu). “Port” field should contain the port number on which the client proxy server is running (for example: 8080)

[image: image22.png]Fie Edt

Q@

View Favorkes Toos Help

O HEG P e @ @3- LA B

address] aboutibnk

General | Secuty | Privacy | Content| Cornectons | Programs | Advanced

F———.
) 2 e

Diakup and Vitual Pivate Netwark selfings

Add

Remave

Choose Settings you need to configure proxy.

Setings.
server for a connection. =

Never dil a connection
Dial whenever a netwark cannection s not present
Aays il my defauit connection

Current Hore Set Defaut

Local Area Network [LAN) setings

LAN Settings do not apply to diakup connections. [LAN Sefings
Choose Settings above for diabup settings.

Local Area Network (LAN) Settings

Automatic confiquration

‘Automatic configuration may override manual settings, To ensure the
Use of manual settings, disable automatic configuration.

[Automatically detect settings
[use automatic configuration script

Adress

Proxy server

se & proxy server for your LAN (These settings wil not apply to
ik-up or VP connections).

N e

Bypass proxy server for local addresses

Elooe

@ Internet

� one peta bit = 1 million gigabits

PAGE
24

_1176220750.vsd
Server�

Connection Relay Server
(CRS)�

Data from ServerProxy�

Data to ClientCollector�

_1176268251.vsd
ClientProxy
(CP)�

ServerProxy
(SP)�

Connection Relay Server
(CRS) (1,2,��,n)�

Bandwidth Server
(BWS)�

ClientCollector
(CC)�

HTTP request �

Forward request�

Send response to
Client�

Send bandwidth�

Send proportional
amount of data�

Forward request�

Response to the
 request�

If error, forward�

Request to get
bandwidth�

Pass on data�

Shared File�

Write to
 file�

Read from file when the file is available�

Client Proxy and Client Collector run on the same physical machine�

Connection Relay Server and the Bandwidth Server run on the same physical machine�

_1176489671.xls
CP Transferrates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size(KB)

average transfer rate KB/sec

File size vs Avg.Transfer Rate

42.4000922099

43.2616785531

40.7000407

51.5000737631

49.418178168

51.1600269656

61.2001533944

64.0009668816

57.5800560479

65.4000212683

67.6061911881

66.880054519

69.4000634353

71.1306572162

73.3400436638

66.0000297

73.7801830117

84.600042723

70.8000034179

82.8864372923

86.7900202251

68.4499960044

83.880900046

86.0500036571

65.0100009218

80.4298945693

82.0300041693

cc transfer rates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process rate(KB/sec)

ClientCollector

71.0835058661

66.8831168831

77.8533635676

73.4225621415

72.7272727273

77.0465489567

71.9135802469

73.9917434106

86.2962962963

73.7410071942

75.4755573737

85.1211072664

75.5125167405

74.1977932989

85.8112854133

71.3181980269

76.457470532

90.1645503043

73.6096657106

86.4768152676

88.3096318402

70.2953220915

85.0466273079

87.4819441336

69.1244239631

80.4298169417

85.4535303702

cc times

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process Time (milli sec)

ClientCollector

1449

1540

1323

2615

2640

2492

3240

3149

2700

5004

4889

4335

9707

9879

8542

16826

15695

13309

39397

33535

32839

122341

101121

98306

217000

186498

175534

cp transfertimes

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

file size (KB)

Transfer Time (milli sec)

File size vs Transfer time

2429.24

2380.86

2530.71

3728.15

3885.21

3752.93

3807.18

3640.57

4046.54

5642.2

5458.08

5517.34

10561.95

10304.98

9994.54

18181.81

16264.53

14184.39

40960.45

34987.63

33413.98

125639.16

102526.32

99941.89

230733.73

186497.82

182859.92

Sheet1

		

										ClientProxy

																Effective BW

		Size KB		Time 1 path		Time 2 paths		Time 3 path						K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		2429.24		2380.86		2530.71						42.4000922099		43.2616785531		40.7000407

		192		3728.15		3885.21		3752.93						51.5000737631		49.418178168		51.1600269656

		233		3807.18		3640.57		4046.54						61.2001533944		64.0009668816		57.5800560479

		369		5642.2		5458.08		5517.34						65.4000212683		67.6061911881		66.880054519

		733		10561.95		10304.98		9994.54						69.4000634353		71.1306572162		73.3400436638

		1200		18181.81		16264.53		14184.39						66.0000297		73.7801830117		84.600042723

		2900		40960.45		34987.63		33413.98						70.8000034179		82.8864372923		86.7900202251

		8600		125639.16		102526.32		99941.89						68.4499960044		83.880900046		86.0500036571

		15000		230733.73		186497.82		182859.92						65.0100009218		80.4298945693		82.0300041693

										clientcollector

		Size KB		Time 1 path		Time 2 paths		Time 3 path				Size KB		K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		1449		1540		1323				103		71.0835058661		66.8831168831		77.8533635676

		192		2615		2640		2492				192		73.4225621415		72.7272727273		77.0465489567

		233		3240		3149		2700				233		71.9135802469		73.9917434106		86.2962962963

		369		5004		4889		4335				369		73.7410071942		75.4755573737		85.1211072664

		733		9707		9879		8542				733		75.5125167405		74.1977932989		85.8112854133

		1200		16826		15695		13309				1200		71.3181980269		76.457470532		90.1645503043

		2900		39397		33535		32839				2900		73.6096657106		86.4768152676		88.3096318402

		8600		122341		101121		98306				8600		70.2953220915		85.0466273079		87.4819441336

		15000		217000		186498		175534				15000		69.1244239631		80.4298169417		85.4535303702

										CRS

		Size KB		Time 1 path										K/sec 1 path

		103		1033										99.7095837367

		192		1442										133.1484049931

		233		2167										107.5219197047

		369		3917										94.204748532

		733		8655										84.6909300982

		1200		15665										76.6038940313

		2900		38190										75.936108929

		8600		121117										71.0057217401

		15000		215928										69.4676003112

						1 path

		Size KB		CRS		CC		CP		CP-CC

		103		1033		1449		2428		979

		192		1442		2615		3728		1113

		233		2167		3240		3809		569

		369		3917		5004		6447		1443

		733		8655		9707		10553		846

		1200		15665		16826		17922		1096

		2900		38190		39397		40958		1561

		8600		121117		122341		124661		2320

		15000		215928		217000		219448		2448

Sheet2

		

Sheet3

		

_1176561127.vsd
IBM Compatible�

Cloud�

Server�

�

Server�

Client�

Client�

Single Path Connection�

Multiple Path Connection�

_1176564036.xls
direct route

		98		534.3715408985

		204		915.3893096888

		337		1465.5933478588

		434		1594.9021928068

		565		2389.895605976

		701		2580.3079437412

		816		2798.977824275

		961		2870.4818287448

		1800		3484.9074466664

		2900		4821.400367424

		4800		3430.4214058296

		9100		5330.705861609

		15000		1911.2039361627

&A

Page &P

time

Avg. Transfer Rate

Data Size(Kb)

Response Time(miile sec)

Avg. Transfer Rate (Kb/s)

Direct route

183.393

222.856

229.941

272.117

236.412

271.673

291.535

334.787

516.513

601.485

1399.245

1707.091

CP Transferrates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size(KB)

average transfer rate KB/sec

File size vs Avg.Transfer Rate

42.4000922099

43.2616785531

40.7000407

51.5000737631

49.418178168

51.1600269656

61.2001533944

64.0009668816

57.5800560479

65.4000212683

67.6061911881

66.880054519

69.4000634353

71.1306572162

73.3400436638

66.0000297

73.7801830117

84.600042723

70.8000034179

82.8864372923

86.7900202251

68.4499960044

83.880900046

86.0500036571

65.0100009218

80.4298945693

82.0300041693

cc transfer rates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process rate(KB/sec)

ClientCollector

71.0835058661

66.8831168831

77.8533635676

73.4225621415

72.7272727273

77.0465489567

71.9135802469

73.9917434106

86.2962962963

73.7410071942

75.4755573737

85.1211072664

75.5125167405

74.1977932989

85.8112854133

71.3181980269

76.457470532

90.1645503043

73.6096657106

86.4768152676

88.3096318402

70.2953220915

85.0466273079

87.4819441336

69.1244239631

80.4298169417

85.4535303702

CRS transfer rates

		103

		192

		233

		369

		733

		1200

		2900

		8600

		15000

1 CRS

File size(KB)

average transfer rate KB/sec

CRS - File size vs Avg.Transfer Rate

99.7095837367

133.1484049931

107.5219197047

94.204748532

84.6909300982

76.6038940313

75.936108929

71.0057217401

69.4676003112

CRS transfer times

		103

		192

		233

		369

		733

		1200

		2900

		8600

		15000

1 CRS

file size (KB)

Transfer Time (milli sec)

CRS - File size vs Transfer time

1033

1442

2167

3917

8655

15665

38190

121117

215928

cc times

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process Time (milli sec)

ClientCollector

1449

1540

1323

2615

2640

2492

3240

3149

2700

5004

4889

4335

9707

9879

8542

16826

15695

13309

39397

33535

32839

122341

101121

98306

217000

186498

175534

cp transfertimes

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

file size (KB)

Transfer Time (milli sec)

File size vs Transfer time

2429.24

2380.86

2530.71

3728.15

3885.21

3752.93

3807.18

3640.57

4046.54

5642.2

5458.08

5517.34

10561.95

10304.98

9994.54

18181.81

16264.53

14184.39

40960.45

34987.63

33413.98

125639.16

102526.32

99941.89

230733.73

186497.82

182859.92

Data

		

										ClientProxy

																Effective BW						Direct connection

		Size KB		Time 1 path		Time 2 paths		Time 3 path						K/sec 1 path		K/sec 2 paths		K/sec 3 paths				Size KB		time		Kb/sec

		103		2429.24		2380.86		2530.71						42.4000922099		43.2616785531		40.7000407				98		0.183393		534.3715408985		183.393

		192		3728.15		3885.21		3752.93						51.5000737631		49.418178168		51.1600269656				204		0.222856		915.3893096888		222.856

		233		3807.18		3640.57		4046.54						61.2001533944		64.0009668816		57.5800560479				337		0.229941		1465.5933478588		229.941

		369		5642.2		5458.08		5517.34						65.4000212683		67.6061911881		66.880054519				434		0.272117		1594.9021928068		272.117

		733		10561.95		10304.98		9994.54						69.4000634353		71.1306572162		73.3400436638				565		0.236412		2389.895605976		236.412

		1200		18181.81		16264.53		14184.39						66.0000297		73.7801830117		84.600042723				701		0.271673		2580.3079437412		271.673

		2900		40960.45		34987.63		33413.98						70.8000034179		82.8864372923		86.7900202251				816		0.291535		2798.977824275		291.535

		8600		125639.16		102526.32		99941.89						68.4499960044		83.880900046		86.0500036571				961		0.334787		2870.4818287448		334.787

		15000		230733.73		186497.82		182859.92						65.0100009218		80.4298945693		82.0300041693				1800		0.516513		3484.9074466664		516.513

																						2900		0.601485		4821.400367424		601.485

																						4800		1.399245		3430.4214058296		1399.245

																						9100		1.707091		5330.705861609		1707.091

										clientcollector												15000		7.848456		1911.2039361627		7848.456

		Size KB		Time 1 path		Time 2 paths		Time 3 path				Size KB		K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		1449		1540		1323				103		71.0835058661		66.8831168831		77.8533635676

		192		2615		2640		2492				192		73.4225621415		72.7272727273		77.0465489567

		233		3240		3149		2700				233		71.9135802469		73.9917434106		86.2962962963

		369		5004		4889		4335				369		73.7410071942		75.4755573737		85.1211072664

		733		9707		9879		8542				733		75.5125167405		74.1977932989		85.8112854133

		1200		16826		15695		13309				1200		71.3181980269		76.457470532		90.1645503043

		2900		39397		33535		32839				2900		73.6096657106		86.4768152676		88.3096318402

		8600		122341		101121		98306				8600		70.2953220915		85.0466273079		87.4819441336				Size KB		Time		Avg tr rate

		15000		217000		186498		175534				15000		69.1244239631		80.4298169417		85.4535303702				98		183.393		534.3715408985

																						204		222.856		915.3893096888

										CRS												337		229.941		1465.5933478588

																						434		272.117		1594.9021928068

		Size KB		Time 1 path						Size KB		Time 1 path		K/sec 1 path								565		236.412		2389.895605976

		103		1033						103		1033		99.7095837367								701		271.673		2580.3079437412

		192		1442						192		1442		133.1484049931								816		291.535		2798.977824275

		233		2167						233		2167		107.5219197047								961		334.787		2870.4818287448

		369		3917						369		3917		94.204748532								1800		516.513		3484.9074466664

		733		8655						733		8655		84.6909300982								2900		601.485		4821.400367424

		1200		15665						1200		15665		76.6038940313								4800		1399.245		3430.4214058296

		2900		38190						2900		38190		75.936108929								9100		1707.091		5330.705861609

		8600		121117						8600		121117		71.0057217401								15000		7848.456		1911.2039361627

		15000		215928						15000		215928		69.4676003112

						1 path

		Size KB		CRS		CC		CP		CP-CC

		103		1033		1449		2428		979

		192		1442		2615		3728		1113

		233		2167		3240		3809		569

		369		3917		5004		6447		1443

		733		8655		9707		10553		846

		1200		15665		16826		17922		1096

		2900		38190		39397		40958		1561

		8600		121117		122341		124661		2320

		15000		215928		217000		219448		2448

Sheet2

		

Sheet3

		

_1176491119.xls
CP Transferrates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size(KB)

average transfer rate KB/sec

File size vs Avg.Transfer Rate

42.4000922099

43.2616785531

40.7000407

51.5000737631

49.418178168

51.1600269656

61.2001533944

64.0009668816

57.5800560479

65.4000212683

67.6061911881

66.880054519

69.4000634353

71.1306572162

73.3400436638

66.0000297

73.7801830117

84.600042723

70.8000034179

82.8864372923

86.7900202251

68.4499960044

83.880900046

86.0500036571

65.0100009218

80.4298945693

82.0300041693

cc transfer rates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process rate(KB/sec)

ClientCollector

71.0835058661

66.8831168831

77.8533635676

73.4225621415

72.7272727273

77.0465489567

71.9135802469

73.9917434106

86.2962962963

73.7410071942

75.4755573737

85.1211072664

75.5125167405

74.1977932989

85.8112854133

71.3181980269

76.457470532

90.1645503043

73.6096657106

86.4768152676

88.3096318402

70.2953220915

85.0466273079

87.4819441336

69.1244239631

80.4298169417

85.4535303702

CRS transfer rates

		103

		192

		233

		369

		733

		1200

		2900

		8600

		15000

1 CRS

File size(KB)

average transfer rate KB/sec

CRS - File size vs Avg.Transfer Rate

99.7095837367

133.1484049931

107.5219197047

94.204748532

84.6909300982

76.6038940313

75.936108929

71.0057217401

69.4676003112

CRS transfer times

		103

		192

		233

		369

		733

		1200

		2900

		8600

		15000

1 CRS

file size (KB)

Transfer Time (milli sec)

CRS - File size vs Transfer time

1033

1442

2167

3917

8655

15665

38190

121117

215928

cc times

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process Time (milli sec)

ClientCollector

1449

1540

1323

2615

2640

2492

3240

3149

2700

5004

4889

4335

9707

9879

8542

16826

15695

13309

39397

33535

32839

122341

101121

98306

217000

186498

175534

cp transfertimes

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

file size (KB)

Transfer Time (milli sec)

File size vs Transfer time

2429.24

2380.86

2530.71

3728.15

3885.21

3752.93

3807.18

3640.57

4046.54

5642.2

5458.08

5517.34

10561.95

10304.98

9994.54

18181.81

16264.53

14184.39

40960.45

34987.63

33413.98

125639.16

102526.32

99941.89

230733.73

186497.82

182859.92

Data

		

										ClientProxy

																Effective BW

		Size KB		Time 1 path		Time 2 paths		Time 3 path						K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		2429.24		2380.86		2530.71						42.4000922099		43.2616785531		40.7000407

		192		3728.15		3885.21		3752.93						51.5000737631		49.418178168		51.1600269656

		233		3807.18		3640.57		4046.54						61.2001533944		64.0009668816		57.5800560479

		369		5642.2		5458.08		5517.34						65.4000212683		67.6061911881		66.880054519

		733		10561.95		10304.98		9994.54						69.4000634353		71.1306572162		73.3400436638

		1200		18181.81		16264.53		14184.39						66.0000297		73.7801830117		84.600042723

		2900		40960.45		34987.63		33413.98						70.8000034179		82.8864372923		86.7900202251

		8600		125639.16		102526.32		99941.89						68.4499960044		83.880900046		86.0500036571

		15000		230733.73		186497.82		182859.92						65.0100009218		80.4298945693		82.0300041693

										clientcollector

		Size KB		Time 1 path		Time 2 paths		Time 3 path				Size KB		K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		1449		1540		1323				103		71.0835058661		66.8831168831		77.8533635676

		192		2615		2640		2492				192		73.4225621415		72.7272727273		77.0465489567

		233		3240		3149		2700				233		71.9135802469		73.9917434106		86.2962962963

		369		5004		4889		4335				369		73.7410071942		75.4755573737		85.1211072664

		733		9707		9879		8542				733		75.5125167405		74.1977932989		85.8112854133

		1200		16826		15695		13309				1200		71.3181980269		76.457470532		90.1645503043

		2900		39397		33535		32839				2900		73.6096657106		86.4768152676		88.3096318402

		8600		122341		101121		98306				8600		70.2953220915		85.0466273079		87.4819441336

		15000		217000		186498		175534				15000		69.1244239631		80.4298169417		85.4535303702

										CRS

		Size KB		Time 1 path						Size KB		Time 1 path		K/sec 1 path

		103		1033						103		1033		99.7095837367

		192		1442						192		1442		133.1484049931

		233		2167						233		2167		107.5219197047

		369		3917						369		3917		94.204748532

		733		8655						733		8655		84.6909300982

		1200		15665						1200		15665		76.6038940313

		2900		38190						2900		38190		75.936108929

		8600		121117						8600		121117		71.0057217401

		15000		215928						15000		215928		69.4676003112

						1 path

		Size KB		CRS		CC		CP		CP-CC

		103		1033		1449		2428		979

		192		1442		2615		3728		1113

		233		2167		3240		3809		569

		369		3917		5004		6447		1443

		733		8655		9707		10553		846

		1200		15665		16826		17922		1096

		2900		38190		39397		40958		1561

		8600		121117		122341		124661		2320

		15000		215928		217000		219448		2448

Sheet2

		

Sheet3

		

_1176491215.xls
CP Transferrates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size(KB)

average transfer rate KB/sec

File size vs Avg.Transfer Rate

42.4000922099

43.2616785531

40.7000407

51.5000737631

49.418178168

51.1600269656

61.2001533944

64.0009668816

57.5800560479

65.4000212683

67.6061911881

66.880054519

69.4000634353

71.1306572162

73.3400436638

66.0000297

73.7801830117

84.600042723

70.8000034179

82.8864372923

86.7900202251

68.4499960044

83.880900046

86.0500036571

65.0100009218

80.4298945693

82.0300041693

cc transfer rates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process rate(KB/sec)

ClientCollector

71.0835058661

66.8831168831

77.8533635676

73.4225621415

72.7272727273

77.0465489567

71.9135802469

73.9917434106

86.2962962963

73.7410071942

75.4755573737

85.1211072664

75.5125167405

74.1977932989

85.8112854133

71.3181980269

76.457470532

90.1645503043

73.6096657106

86.4768152676

88.3096318402

70.2953220915

85.0466273079

87.4819441336

69.1244239631

80.4298169417

85.4535303702

CRS transfer rates

		103

		192

		233

		369

		733

		1200

		2900

		8600

		15000

1 CRS

File size(KB)

average transfer rate KB/sec

CRS - File size vs Avg.Transfer Rate

99.7095837367

133.1484049931

107.5219197047

94.204748532

84.6909300982

76.6038940313

75.936108929

71.0057217401

69.4676003112

CRS transfer times

		103

		192

		233

		369

		733

		1200

		2900

		8600

		15000

1 CRS

file size (KB)

Transfer Time (milli sec)

CRS - File size vs Transfer time

1033

1442

2167

3917

8655

15665

38190

121117

215928

cc times

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process Time (milli sec)

ClientCollector

1449

1540

1323

2615

2640

2492

3240

3149

2700

5004

4889

4335

9707

9879

8542

16826

15695

13309

39397

33535

32839

122341

101121

98306

217000

186498

175534

cp transfertimes

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

file size (KB)

Transfer Time (milli sec)

File size vs Transfer time

2429.24

2380.86

2530.71

3728.15

3885.21

3752.93

3807.18

3640.57

4046.54

5642.2

5458.08

5517.34

10561.95

10304.98

9994.54

18181.81

16264.53

14184.39

40960.45

34987.63

33413.98

125639.16

102526.32

99941.89

230733.73

186497.82

182859.92

Data

		

										ClientProxy

																Effective BW

		Size KB		Time 1 path		Time 2 paths		Time 3 path						K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		2429.24		2380.86		2530.71						42.4000922099		43.2616785531		40.7000407

		192		3728.15		3885.21		3752.93						51.5000737631		49.418178168		51.1600269656

		233		3807.18		3640.57		4046.54						61.2001533944		64.0009668816		57.5800560479

		369		5642.2		5458.08		5517.34						65.4000212683		67.6061911881		66.880054519

		733		10561.95		10304.98		9994.54						69.4000634353		71.1306572162		73.3400436638

		1200		18181.81		16264.53		14184.39						66.0000297		73.7801830117		84.600042723

		2900		40960.45		34987.63		33413.98						70.8000034179		82.8864372923		86.7900202251

		8600		125639.16		102526.32		99941.89						68.4499960044		83.880900046		86.0500036571

		15000		230733.73		186497.82		182859.92						65.0100009218		80.4298945693		82.0300041693

										clientcollector

		Size KB		Time 1 path		Time 2 paths		Time 3 path				Size KB		K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		1449		1540		1323				103		71.0835058661		66.8831168831		77.8533635676

		192		2615		2640		2492				192		73.4225621415		72.7272727273		77.0465489567

		233		3240		3149		2700				233		71.9135802469		73.9917434106		86.2962962963

		369		5004		4889		4335				369		73.7410071942		75.4755573737		85.1211072664

		733		9707		9879		8542				733		75.5125167405		74.1977932989		85.8112854133

		1200		16826		15695		13309				1200		71.3181980269		76.457470532		90.1645503043

		2900		39397		33535		32839				2900		73.6096657106		86.4768152676		88.3096318402

		8600		122341		101121		98306				8600		70.2953220915		85.0466273079		87.4819441336

		15000		217000		186498		175534				15000		69.1244239631		80.4298169417		85.4535303702

										CRS

		Size KB		Time 1 path						Size KB		Time 1 path		K/sec 1 path

		103		1033						103		1033		99.7095837367

		192		1442						192		1442		133.1484049931

		233		2167						233		2167		107.5219197047

		369		3917						369		3917		94.204748532

		733		8655						733		8655		84.6909300982

		1200		15665						1200		15665		76.6038940313

		2900		38190						2900		38190		75.936108929

		8600		121117						8600		121117		71.0057217401

		15000		215928						15000		215928		69.4676003112

						1 path

		Size KB		CRS		CC		CP		CP-CC

		103		1033		1449		2428		979

		192		1442		2615		3728		1113

		233		2167		3240		3809		569

		369		3917		5004		6447		1443

		733		8655		9707		10553		846

		1200		15665		16826		17922		1096

		2900		38190		39397		40958		1561

		8600		121117		122341		124661		2320

		15000		215928		217000		219448		2448

Sheet2

		

Sheet3

		

_1176319335.xls
CP Transferrates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size(KB)

average transfer rate KB/sec

File size vs Avg.Transfer Rate

42.4000922099

43.2616785531

40.7000407

51.5000737631

49.418178168

51.1600269656

61.2001533944

64.0009668816

57.5800560479

65.4000212683

67.6061911881

66.880054519

69.4000634353

71.1306572162

73.3400436638

66.0000297

73.7801830117

84.600042723

70.8000034179

82.8864372923

86.7900202251

68.4499960044

83.880900046

86.0500036571

65.0100009218

80.4298945693

82.0300041693

cc transfer rates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process rate(KB/sec)

ClientCollector

71.0835058661

66.8831168831

77.8533635676

73.4225621415

72.7272727273

77.0465489567

71.9135802469

73.9917434106

86.2962962963

73.7410071942

75.4755573737

85.1211072664

75.5125167405

74.1977932989

85.8112854133

71.3181980269

76.457470532

90.1645503043

73.6096657106

86.4768152676

88.3096318402

70.2953220915

85.0466273079

87.4819441336

69.1244239631

80.4298169417

85.4535303702

cc times

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process Time (milli sec)

ClientCollector

1449

1540

1323

2615

2640

2492

3240

3149

2700

5004

4889

4335

9707

9879

8542

16826

15695

13309

39397

33535

32839

122341

101121

98306

217000

186498

175534

cp transfertimes

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

file size (KB)

Transfer Time (milli sec)

File size vs Transfer time

2429.24

2380.86

2530.71

3728.15

3885.21

3752.93

3807.18

3640.57

4046.54

5642.2

5458.08

5517.34

10561.95

10304.98

9994.54

18181.81

16264.53

14184.39

40960.45

34987.63

33413.98

125639.16

102526.32

99941.89

230733.73

186497.82

182859.92

Data

		

										ClientProxy

																Effective BW

		Size KB		Time 1 path		Time 2 paths		Time 3 path						K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		2429.24		2380.86		2530.71						42.4000922099		43.2616785531		40.7000407

		192		3728.15		3885.21		3752.93						51.5000737631		49.418178168		51.1600269656

		233		3807.18		3640.57		4046.54						61.2001533944		64.0009668816		57.5800560479

		369		5642.2		5458.08		5517.34						65.4000212683		67.6061911881		66.880054519

		733		10561.95		10304.98		9994.54						69.4000634353		71.1306572162		73.3400436638

		1200		18181.81		16264.53		14184.39						66.0000297		73.7801830117		84.600042723

		2900		40960.45		34987.63		33413.98						70.8000034179		82.8864372923		86.7900202251

		8600		125639.16		102526.32		99941.89						68.4499960044		83.880900046		86.0500036571

		15000		230733.73		186497.82		182859.92						65.0100009218		80.4298945693		82.0300041693

										clientcollector

		Size KB		Time 1 path		Time 2 paths		Time 3 path						K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		1449		1540		1323						71.0835058661		66.8831168831		77.8533635676

		192		2615		2640		2492						73.4225621415		72.7272727273		77.0465489567

		233		3240		3149		2700						71.9135802469		73.9917434106		86.2962962963

		369		5004		4889		4335						73.7410071942		75.4755573737		85.1211072664

		733		9707		9879		8542						75.5125167405		74.1977932989		85.8112854133

		1200		16826		15695		13309						71.3181980269		76.457470532		90.1645503043

		2900		39397		33535		32839						73.6096657106		86.4768152676		88.3096318402

		8600		122341		101121		98306						70.2953220915		85.0466273079		87.4819441336

		15000		217000		186498		175534						69.1244239631		80.4298169417		85.4535303702

										CRS

		Size KB		Time 1 path										K/sec 1 path

		103		1033										99.7095837367

		192		1442										133.1484049931

		233		2167										107.5219197047

		369		3917										94.204748532

		733		8655										84.6909300982

		1200		15665										76.6038940313

		2900		38190										75.936108929

		8600		121117										71.0057217401

		15000		215928										69.4676003112

						1 path

		Size KB		CRS		CC		CP		CP-CC

		103		1033		1449		2428		979

		192		1442		2615		3728		1113

		233		2167		3240		3809		569

		369		3917		5004		6447		1443

		733		8655		9707		10553		846

		1200		15665		16826		17922		1096

		2900		38190		39397		40958		1561

		8600		121117		122341		124661		2320

		15000		215928		217000		219448		2448

Sheet2

		

Sheet3

		

_1176320370.xls
CP Transferrates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size(KB)

average transfer rate KB/sec

File size vs Avg.Transfer Rate

42.4000922099

43.2616785531

40.7000407

51.5000737631

49.418178168

51.1600269656

61.2001533944

64.0009668816

57.5800560479

65.4000212683

67.6061911881

66.880054519

69.4000634353

71.1306572162

73.3400436638

66.0000297

73.7801830117

84.600042723

70.8000034179

82.8864372923

86.7900202251

68.4499960044

83.880900046

86.0500036571

65.0100009218

80.4298945693

82.0300041693

cc transfer rates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process rate(KB/sec)

ClientCollector

71.0835058661

66.8831168831

77.8533635676

73.4225621415

72.7272727273

77.0465489567

71.9135802469

73.9917434106

86.2962962963

73.7410071942

75.4755573737

85.1211072664

75.5125167405

74.1977932989

85.8112854133

71.3181980269

76.457470532

90.1645503043

73.6096657106

86.4768152676

88.3096318402

70.2953220915

85.0466273079

87.4819441336

69.1244239631

80.4298169417

85.4535303702

cc times

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process Time (milli sec)

ClientCollector

1449

1540

1323

2615

2640

2492

3240

3149

2700

5004

4889

4335

9707

9879

8542

16826

15695

13309

39397

33535

32839

122341

101121

98306

217000

186498

175534

cp transfertimes

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

file size (KB)

Transfer Time (milli sec)

File size vs Transfer time

2429.24

2380.86

2530.71

3728.15

3885.21

3752.93

3807.18

3640.57

4046.54

5642.2

5458.08

5517.34

10561.95

10304.98

9994.54

18181.81

16264.53

14184.39

40960.45

34987.63

33413.98

125639.16

102526.32

99941.89

230733.73

186497.82

182859.92

Data

		

										ClientProxy

																Effective BW

		Size KB		Time 1 path		Time 2 paths		Time 3 path						K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		2429.24		2380.86		2530.71						42.4000922099		43.2616785531		40.7000407

		192		3728.15		3885.21		3752.93						51.5000737631		49.418178168		51.1600269656

		233		3807.18		3640.57		4046.54						61.2001533944		64.0009668816		57.5800560479

		369		5642.2		5458.08		5517.34						65.4000212683		67.6061911881		66.880054519

		733		10561.95		10304.98		9994.54						69.4000634353		71.1306572162		73.3400436638

		1200		18181.81		16264.53		14184.39						66.0000297		73.7801830117		84.600042723

		2900		40960.45		34987.63		33413.98						70.8000034179		82.8864372923		86.7900202251

		8600		125639.16		102526.32		99941.89						68.4499960044		83.880900046		86.0500036571

		15000		230733.73		186497.82		182859.92						65.0100009218		80.4298945693		82.0300041693

										clientcollector

		Size KB		Time 1 path		Time 2 paths		Time 3 path						K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		1449		1540		1323						71.0835058661		66.8831168831		77.8533635676

		192		2615		2640		2492						73.4225621415		72.7272727273		77.0465489567

		233		3240		3149		2700						71.9135802469		73.9917434106		86.2962962963

		369		5004		4889		4335						73.7410071942		75.4755573737		85.1211072664

		733		9707		9879		8542						75.5125167405		74.1977932989		85.8112854133

		1200		16826		15695		13309						71.3181980269		76.457470532		90.1645503043

		2900		39397		33535		32839						73.6096657106		86.4768152676		88.3096318402

		8600		122341		101121		98306						70.2953220915		85.0466273079		87.4819441336

		15000		217000		186498		175534						69.1244239631		80.4298169417		85.4535303702

										CRS

		Size KB		Time 1 path										K/sec 1 path

		103		1033										99.7095837367

		192		1442										133.1484049931

		233		2167										107.5219197047

		369		3917										94.204748532

		733		8655										84.6909300982

		1200		15665										76.6038940313

		2900		38190										75.936108929

		8600		121117										71.0057217401

		15000		215928										69.4676003112

						1 path

		Size KB		CRS		CC		CP		CP-CC

		103		1033		1449		2428		979

		192		1442		2615		3728		1113

		233		2167		3240		3809		569

		369		3917		5004		6447		1443

		733		8655		9707		10553		846

		1200		15665		16826		17922		1096

		2900		38190		39397		40958		1561

		8600		121117		122341		124661		2320

		15000		215928		217000		219448		2448

Sheet2

		

Sheet3

		

_1176318730.xls
CP Transferrates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size(KB)

average transfer rate KB/sec

File size vs Avg.Transfer Rate

42.4000922099

43.2616785531

40.7000407

51.5000737631

49.418178168

51.1600269656

61.2001533944

64.0009668816

57.5800560479

65.4000212683

67.6061911881

66.880054519

69.4000634353

71.1306572162

73.3400436638

66.0000297

73.7801830117

84.600042723

70.8000034179

82.8864372923

86.7900202251

68.4499960044

83.880900046

86.0500036571

65.0100009218

80.4298945693

82.0300041693

cc transfer rates

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process rate(KB/sec)

ClientCollector

71.0835058661

66.8831168831

77.8533635676

73.4225621415

72.7272727273

77.0465489567

71.9135802469

73.9917434106

86.2962962963

73.7410071942

75.4755573737

85.1211072664

75.5125167405

74.1977932989

85.8112854133

71.3181980269

76.457470532

90.1645503043

73.6096657106

86.4768152676

88.3096318402

70.2953220915

85.0466273079

87.4819441336

69.1244239631

80.4298169417

85.4535303702

cc times

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

File size (KB)

Process Time (milli sec)

ClientCollector

1449

1540

1323

2615

2640

2492

3240

3149

2700

5004

4889

4335

9707

9879

8542

16826

15695

13309

39397

33535

32839

122341

101121

98306

217000

186498

175534

cp transfertimes

		103		103		103

		192		192		192

		233		233		233

		369		369		369

		733		733		733

		1200		1200		1200

		2900		2900		2900

		8600		8600		8600

		15000		15000		15000

1 path

2 paths

3 paths

file size (KB)

Transfer Time (milli sec)

File size vs Transfer time

2429.24

2380.86

2530.71

3728.15

3885.21

3752.93

3807.18

3640.57

4046.54

5642.2

5458.08

5517.34

10561.95

10304.98

9994.54

18181.81

16264.53

14184.39

40960.45

34987.63

33413.98

125639.16

102526.32

99941.89

230733.73

186497.82

182859.92

Data

		

										ClientProxy

																Effective BW

		Size KB		Time 1 path		Time 2 paths		Time 3 path						K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		2429.24		2380.86		2530.71						42.4000922099		43.2616785531		40.7000407

		192		3728.15		3885.21		3752.93						51.5000737631		49.418178168		51.1600269656

		233		3807.18		3640.57		4046.54						61.2001533944		64.0009668816		57.5800560479

		369		5642.2		5458.08		5517.34						65.4000212683		67.6061911881		66.880054519

		733		10561.95		10304.98		9994.54						69.4000634353		71.1306572162		73.3400436638

		1200		18181.81		16264.53		14184.39						66.0000297		73.7801830117		84.600042723

		2900		40960.45		34987.63		33413.98						70.8000034179		82.8864372923		86.7900202251

		8600		125639.16		102526.32		99941.89						68.4499960044		83.880900046		86.0500036571

		15000		230733.73		186497.82		182859.92						65.0100009218		80.4298945693		82.0300041693

										clientcollector

		Size KB		Time 1 path		Time 2 paths		Time 3 path						K/sec 1 path		K/sec 2 paths		K/sec 3 paths

		103		1449		1540		1323						71.0835058661		66.8831168831		77.8533635676

		192		2615		2640		2492						73.4225621415		72.7272727273		77.0465489567

		233		3240		3149		2700						71.9135802469		73.9917434106		86.2962962963

		369		5004		4889		4335						73.7410071942		75.4755573737		85.1211072664

		733		9707		9879		8542						75.5125167405		74.1977932989		85.8112854133

		1200		16826		15695		13309						71.3181980269		76.457470532		90.1645503043

		2900		39397		33535		32839						73.6096657106		86.4768152676		88.3096318402

		8600		122341		101121		98306						70.2953220915		85.0466273079		87.4819441336

		15000		217000		186498		175534						69.1244239631		80.4298169417		85.4535303702

										CRS

		Size KB		Time 1 path										K/sec 1 path

		103		1033										99.7095837367

		192		1442										133.1484049931

		233		2167										107.5219197047

		369		3917										94.204748532

		733		8655										84.6909300982

		1200		15665										76.6038940313

		2900		38190										75.936108929

		8600		121117										71.0057217401

		15000		215928										69.4676003112

						1 path

		Size KB		CRS		CC		CP		CP-CC

		103		1033		1449		2428		979

		192		1442		2615		3728		1113

		233		2167		3240		3809		569

		369		3917		5004		6447		1443

		733		8655		9707		10553		846

		1200		15665		16826		17922		1096

		2900		38190		39397		40958		1561

		8600		121117		122341		124661		2320

		15000		215928		217000		219448		2448

Sheet2

		

Sheet3

		

_1176220963.vsd
Server�

�

ClientCollector
(CC)�

Request from Bandwidth Server�

Response to Bandwidth Server�

Data from CRS (1,2,�..n)�

_1176226800.vsd
IBM Compatible�

Server�

Cloud�

Client�

HTTP request to ClientProxy�

HTTP Response from ClientProxy�

�

ClientProxy
(CP)�

Forward request to ServerProxy�

Receive Error Response from ServerProxy�

ServerProxy
(SP)�

�

ClientCollector
(CC)�

Web Server
(WS)�

Receive request from ClientProxy�

Forward Error Response to ClientProxy�

Shared Resource�

Forward request to Web Server�

Receive Response from ServerProxy�

Bandwidth to
ServerProxy�

Bandwidth to
ServerProxy�

Bandwidth to
ServerProxy�

Receive Response from Bandwidth Server�

Data to CRS (1,2,�..n) +
Request to Bandwidth Server (1,2,�..n)�

�

Connection Relay Server +
Bandwidth Server - - set 1
(CRS +BWS)�

Data to ClientCollector�

Data to ClientCollector�

Data from ServerProxy�

Data to ClientCollector�

Connection Relay Server +
Bandwidth Server - - set 2
(CRS + BWS)�

Data from ServerProxy�

Connection Relay Server +
Bandwidth Server - - Set n
(CRS +BWS)�

Write�

Data from ServerProxy�

Read�

_1176220802.vsd
Server�

Bandwidth Server
(BWS)�

Request from ServerProxy for bandwidth�

Bandwidth to
ServerProxy�

_1176220621.vsd
Server�

�

ClientProxy
(CP)�

Forward request to ServerProxy�

Receive Error Response from ServerProxy�

Receive request from Client�

Forward Response to Client�

_1176220685.vsd
Server�

ServerProxy
(SP)�

Receive request from ClientProxy�

Forward Error Response to ClientProxy�

Forward request to Web Server�

Receive Response from ServerProxy�

Request to Bandwidth Server�

Receive Response from Bandwidth Server�

Data to CRS (1,2,�..n)�

_1176220402.vsd
IBM Compatible�

Client�

HTTP request to ClientProxy�

HTTP Response from ClientProxy�

