iii
22
ii

[image: image1.wmf]Web Clients vs Throughput

0

10

20

30

40

50

60

20

40

60

80

100

Web Clients

Throughput (Mb/s)

Single Mixed

RR mixed

DYNAMIC LOAD BALANCING

OF VIRTUAL WEB SERVERS
by

SHAWN M EMERY

B.S., Colorado State University, 1993

A thesis submitted to the Graduate Faculty of the

 University of Colorado at Colorado Springs

 in partial fulfillment of the

 requirements for the degree of

Master of Science

Department of Computer Science

2000

[image: image2.wmf]Web Clients vs Throughput

0

10

20

30

40

20

40

60

80

100

Web Clients

Throughput (Mb/s)

Single CGI

RR CGI

This thesis for the Master of Science degree by

Shawn M. Emery

has been approved for the

Department of Computer Science

by

C. Edward Chow, Chair

Dushan Z. Badal
Marijke F. Augusteijn

Date

Emery, Shawn M (M.S., Computer Science)

Dynamic Load Balancing of Virtual Web Servers

Thesis directed by: Professor C. Edward Chow
Increased use of the Internet’s web resources have placed a large work load on the Internet’s network and web servers. Instead of the traditional single web server, with the use of virtual web servers increased through-put and decreased request latencies will occur. Compounded with this, a dynamic approach, in which the client resolves a web server’s IP address according to the work load of the individual server in the pool of web servers, will increase through-put and decrease latencies of the client’s requests.

[image: image3.wmf]Web Clients vs Throughput

40

45

50

55

60

65

20

40

60

80

100

Web Clients

Throughput (Mb/s)

Dynamic Mixed

RR mixed

CONTENTS

CHapter

11.
Introduction

2.
Infrastructure
5
2.1.
System Configuration
7
2.2.
Web Server Configuration
9
2.3.
Web Server Benchmark Configuration
13
3.
Single Web Server Benchmarking
15
3.1.
Single Web Server Results (HTML)
15
3.2.
Single Web Server Results (CGI)
18
3.3.
Single Web Server Results (Mixed)
19
3.4.
Single Web Server Comparisons
20
4.
Web Server Agent Design
22
4.1.
System Statistics
22
4.2.
Network Statistics (ping)
25
4.3.
Web Server Statistics
26
5.
Web Server Agent Implementation
27
5.1.
vmstat
27
5.2.
ping
28
5.3.
server-status
29
5.4.
Invoking web server agent
32
6.
Collector Daemon
33
6.1.
UDP Messaging
33
7.
Prediction Algorithm
74
7.1.
Receiving Messages
75
7.2.
Calculating Weights
81
7.3.
Writing to File
89
8.
Enhanced DNS Scheduling
93
8.1.
DNS Messaging
94
8.2.
Round-Robin Scheduling
108
8.3.
Weighted Scheduling
112
9.
Web Server Benchmarks
118
9.1.
WebStone Modification
120
9.2.
Virtual Web Server Results (Round-Robin)
123
9.3.
Virtual Web Server Results (Dynamic)
134
9.4.
Virtual Web Server Results with Other Work Loads
145
9.5.
Caveats
146
10.
Conclusions and Further Work
74
11.
Bibliography
77
12.
Appendix A
79

TABLEs

table

1Table 1

Table 2
16
Table 3
19
Table 4
20
Table 5
23
Table 6
84
Table 7
125
Table 8
127
Table 9
128
Table 10
135
Table 11
137
Table 12
139
Table 13
70

FIGURES

figure
2Figure 1

Figure 2
3
Figure 3
13
Figure 4
14
Figure 5
21
Figure 6
33
Figure 7
95
Figure 8
96
Figure 9
130
Figure 10
132
Figure 11
133
Figure 12
140
Figure 13
142
Figure 14
144

CODE

Code

27Code Listing 1

Code Listing 2
28
Code Listing 3
28
Code Listing 4
29
Code Listing 5
31
Code Listing 6
34
Code Listing 7
73
Code Listing 8
76
Code Listing 9
78
Code Listing 10
80
Code Listing 11
87
Code Listing 12
91
Code Listing 13
101
Code Listing 14
103
Code Listing 15
106
Code Listing 16
110
Code Listing 17
115
Code Listing 18
122

[image: image4.wmf]Web Clients vs Throughput

25

27

29

31

33

35

37

39

20

40

60

80

100

Web Clients

Throughput (Mb/s)

Dynamic CGI

RR CGI

CHAPTER 1

1. Introduction
With today’s emerging web-centric applications and data the need for low-latency web server transfers has increased. The following indicates the trend in HTTP (Hyper-Text Transfer Protocol) traffic on the NFSnet backbone
:

Month
HTTP
NNTP
FTP(data)
Telnet
SMTP
DNS
Packets x10**9

1994 Jan.
1.5%
8.8%
21.4%
15.4%
7.4%
5.8%
55

1994 Apr.
2.8%
9.0%
20.0%
13.2%
8.4%
5.0%
71

1994 Jul.
4.5%
10.6%
19.8%
13.9%
7.5%
5.3%
74

1994 Oct.
7.0%
9.8%
19.7%
12.6%
8.1%
5.3%
100

1995 Jan.
13.1%
10.0%
18.8%
10.4%
7.4%
5.4%
87

1995 Apr.
21.4%
8.1%
14.0%
7.5%
6.4%
5.4%
59

Table 1
It’s interesting to note that as HTTP traffic increased throughout the years that the traditional protocols for gathering information decreased. Before HTTP, FTP (File Transfer Protocol) and Telnet were one of the few means of getting data.

HTTP is the underlying protocol behind the Web. It is a client-server model that involves simple requests for a specific URL (Universal Resource Locator). The data that is retrieved is HTML (Hyper-Text Markup Language). HTML is typically interpreted and displayed by a web browser on the client side.

The following diagram depicts the traditional web client-server model. As you can see by the model there is a central point of access/failure for the web server resource.

[image: image5.wmf]Web Clients vs Throughput

60

65

70

75

80

85

90

95

20

40

60

80

100

Web Clients

Throughput (Mb/s)

Dynamic HTML

RR HTML

Figure 1
One way to improve the reliability/speed between the web browser and server is to have redundant servers or virtual web servers. The servers are logically grouped into a host specific URL. The client machines resolve the web server host IP address via a naming service, such as DNS (Domain Name System)
. One simple way to improve the load balance among the web servers is to use Round-Robin DNS (RRDNS) where DNS returns the IP addresses of the web servers in a round-robin fashion. DNS can also be modified to collect information about the loads of web servers and return the IP address of the named requests according to the loads. The IP address of a lightly loaded server will be returned by DNS more frequently than web servers that are more heavily loaded. As a result the work-load will be evenly distributed among the web servers in their virtual domain. The following diagram describes this schema:

[image: image6.wmf]Web Clients vs Throughput

0

20

40

60

80

100

20

40

60

80

100

Web Clients

Throughput (Mb/s)

Single HTML

RR HTML

[image: image7.wmf]Web Clients vs Throughput

0

2

4

6

8

10

20

40

60

80

100

Web Clients

Throughput (Mb/s)

HTML

CGI

Mixed

1. Agents gather system data and web server data related to the performance of the system

2. Daemon collects data sent by web server agents

3. Daemon uses a prediction algorithm to weight each web server

4. Web client requests resolution of web server’s IP address

5. Naming service returns the best web server from it’s weighted list

6. Web client requests data from IP address returned by naming service

Figure 2
Colajani, Wu and Diaz observed that due to name caching, the requests from a highly populated local gateway will select a specific web server during the Time-To-Live (TTL) of the name entry in their local name server and thus resulted in an unbalance load among the web servers
. They performed a simulation study and found that a two-tier round-robin DNS scheduling scheme (RR2-DNS), which estimates the server load by computing an estimate volume of requests from specific local gateways and adjusts the name mapping according to the overload alarm reports from the web servers, performs very well. One surprising simulation result was that the RR2-DNS scheduling scheme, which uses the detailed information from the web server, such as the queue length, does not perform as well using the simple overload alarm reporting. They however did not go over the detail of the simulation assumptions and results.

The goal of this study was to investigate the web status collecting mechanisms, to design a enhanced DNS with scheduling algorithms based on web status reporting, to analyze the importance of status parameters, the effectiveness of the DNS scheduling algorithms, and the performance of the load balancer for virtual web servers based on an enhanced DNS.

[image: image8.wmf]Web Clients vs Throughput

60

65

70

75

80

85

90

95

20

40

60

80

100

Web Clients

Throughput (Mb/s)

Dynamic HTML

RR HTML

CHAPTER 2

2. Infrastructure

The underlying system involves a number of hardware and software components. The University was supportive in the efforts to acquire the necessary hardware to perform the thesis. Once the hardware was acquired, the software was configured on all the systems. The initial components consisted of the following:

Hardware:

3 Pentium 100 MHz PCs (16 MB Memory, 32 MB Swap, IDE)

2 Pentium 200 MHz PCs (32 MB Memory, 32 MB Swap, IDE)

1 (Logical) Used as the naming server, collector, and web server.

3 (Physical) Used primarily as web servers.

2 (Physical) Used as client machines, requesting data.

Network:

Web servers: HP 100 VG AnyLAN Ethernet.

Clients: 10 Mb Ethernet.

Operating System:

Servers: Linux 2.0.6
 (Debian 1.1).

Clients: Linux 2.0.30 (viva: Red Hat 4.2) and Linux 2.0.32 (vinci: Red Hat 5.0)

Web Servers: Apache 1.2.4-1

Web Benchmark: WebStone 2.0

Some of the University’s machines had to be returned. As a result the network lab at Sun Microsystems was used for further testing. There were a total of ten machines that were used during these tests. They included the following configurations:

Sparc 5 at 110 MHz work station running Solaris 2.7 (64 MB memory, SBUS)

Role: web server and statAgent

Sparc 5 at 70 MHz work station running Solaris 2.5.1 (32 MB memory, SBUS)

Role: web server and statAgent

Ultra 2 at 2x200 MHz work station running Solaris 2.8 (512 MB memory, SBUS)

Role: web server and statAgent

Ultra 2 at 2x200 MHz work station running Solaris 2.6 (512 MB memory, SBUS)

Role: web client

Ultra 10 at 333 MHz work station running Solaris 2.7 (256 MB memory, PCI)

Role: web client

Sparc 5 at 85 MHz work stations running Solaris 2.6 (32 MB memory, SBUS)

Role: web client

Sparc 5 at 85 MHz work station running Solaris 2.5.1 (32 MB memory, SBUS)

Role: web client

Sparc 4 at 110 MHz work station running Solaris 2.6 (32 MB memory SBUS)

Role: web client

Sparc 5 at 85 MHz work station running Solaris 2.5.1 (32 MB memory, SBUS)

Role: web master and web client

Sparc 5 at 70 MHz work station running Solaris 2.6 (32 MB memory, SBUS)

Role: collector, DNS server, and web client

Network:

Device: Cisco 1900 switch and Sun Switch

Cards: le (lance ethernet for Sparc 4 and 5’s) and hme (high-speed Mb ethernet 10/100 for Ultra 2’s and 10’s)

Web Servers: Apache v1.3.3

2.1. System Configuration

The initial step of setting the components was to install Linux (a freely distributed flavor of the BSD Unix operating system). The Linux distribution that was chosen was Debian and Red Hat, due to it’s timely updates of new versions of software or packages. Packages allow the management and installation of software in the Linux environment. The operating systems were already installed as a result of the previous thesis topic: “Parallel Protocol Engineering on Loosely Coupled Network” by Shawn Emery.

The Pentium machines were shared with Windows95 and Windows NT, so a process of booting to multiple operating systems was needed. In order to do this the following implemented:

Raw-write a boot image to a 3.5” floppy disk (the bootable kernel).

Raw-write a root image to a 3.5” floppy disk (the root partition for access to the system’s files).

Repartition the hard-drive using FIPS (a nondestructive file system partition utility).

Linux needs two partitions one for virtual memory swap and the other for the operating system installation (Linux Native).

Reboot the machine using the Linux boot disk to load the kernel into memory.

Setup the swap partition and Linux OS partition using Linux’s fdisk.

Run “setup” in Linux (sets up the devices , file systems, and mounts the root file system).

Start liloconfig to configure the /etc/lilo.conf file (lilo is the Linux loader that configures the system to boot to multiple operating systems).

Run lilo -r /mnt when booting from floppy drive and the hard drive contains the root device.

After doing this, the machine was rebooted to Linux. Unfortunately, at this point none of the device drivers and specific configurations to the system were in place. At this point it was necessary to recompile the Linux kernel. This was accomplished by the following commands entered in the /usr/src/linux subdirectory:

make config (will prompt the user for any device driver and kernel configurations). The configurations specific to the machines used for the thesis required some of the following defines: CONFIG_NET, CONFIG_PCI, CONFIG_NETDEVICES, CONFIG_NET_ETHERNET, CONFIG_LANCE, CONFIG_NET_ISA, and CONFIG_HP100.

make dep (will determine each dependency of the targets in the makefile).

make clean (will remove an object files that were previously made through a compile).

make (will compile the source files and link the various executables).

make zImage /usr/src/linux (will create the compressed linux kernel image).

The above places the compressed kernel image in this subdirectory:

/usr/src/linux/arch/i386/boot/zImage

In the /etc/lilo.conf file make sure the following is in place:

image=/<newkernel>

label=<newkernel>

read-only

where <newkernel is the new kernel image that you just created.

lilo (this will update the Linux loader configurations in /etc/lilo.conf).

init 6 or reboot (will reboot the machine).

2.1.1. Operating System Architecture

Important information about the Linux 2.0.6, 2.0.32, and 2.0.30 configurations are that the number of maximum requests in the listen queue is set at 128. If the listen queue size is set too low then the web server would stop responding to client requests when the server had large work loads. Older versions of Linux (i.e. 1.2.13) set the listen queue to 5 and would cause the servers to hang under heavy loads.

2.2. Web Server Configuration

The operating system version used initially was Debian Linux 1.1 running the 2.0.6 kernel. Once this was installed the next step was to install the web servers on the three Linux machines. Apache was chosen because of its’ performance and accessibility. Debian packages were found at www.debian org. The Apache package downloaded and installed was version 1.2.4-1.

2.2.1. Web Server Architecture

Some of the options that are inherent of this version of Apache are inclusive of 3rd generation web servers. The evolution of web servers have fallen into the following categories
:

First generation servers: Fork a new web server per each request by a client. Examples of these are CERN and NSCA 1.3. Adrian’s results were 20 accesses per second on a single 75 MHz SPARCstation 20.

Second-generation servers: Web servers are preforked, therefore the overhead is eliminated in that each request made by the client does not require another forked process. Examples of these servers are Netscape Communication Server 1.1 and NCSA 1.4. Running on the same SPARC, the number of accesses per second went to 100.

Third-generation servers: These servers use the keep-alive protocol. This is the protocol that allows a client to send multiple requests per connection. This has the obvious advantage of not reestablishing a connection for each request. These servers are predicted to run 250 to 300 operations per second.

In the future: Web servers are going to take advantage of TCP/IP multiplexing, where multiple clients send their request on one connection. This has the promise of performing at least three times that of third-generation servers.

One aspect of Apache is the keep-alive protocol, implemented in HTTP/1.1. The keep-alive protocol allows a number of HTTP requests in a single connection. Obviously this is a much more efficient protocol in that a connection does not have to be destroyed and re-established for a single page every time a reference is made. For example, a page that has images and references to other data had to establish a new connection for every image/data that the page referenced. For the initial configuration of Apache the KeepAlive variable was set, even though the benchmark application used does not support the keep-alive protocol for the client side. The KeepAliveTimeout variable was set to fifteen seconds as the default. This is the time that the server will wait until another request before dropping the current connection for the client. If the server receives another request before this time the timer is reset.

Another indication that Apache 1.2.4-1 is a third-generation web server is that there are a number of servers running (preforked) by default. The configuration used here is to utilize the dynamic feature of Apache web server process management. The StartServers variable is used initially to fork off the specified number of servers. This variable, also known as directive, is found in the Apache’s /etc/apache/httpd.conf file. This file also contains other directives dealing with time-outs. The number used initially for the thesis was five. Two other variables comprise the dynamic number of servers currently running on a single machine. The two are MinSpareServers and MaxSpareServers. If the number of servers that are waiting for requests is less than MinSpareServers then a new server is forked every second until MinSpareServers is reached. The number used initially for the thesis is five. If there are more than MaxSpareServers waiting for requests then these extras will be killed. This variable was initially set to ten. The maximum number of web servers running on a single machine was initially set to 150 (MaxClients) for the thesis. The reason that this number was set to 150 is to disallow the web server processes from taking over the OS’s time-slices/memory and eventually causing the system to hang. Another interesting directive is MaxRequestsPerChild, which the number of times a web server will handle a request before this server is killed, the default value is 30. The logging mechanisms of Apache were turned off during tests. Having it turned on would allow the webmaster to trace through client access information and is used for debugging. The reason that this is mentioned and the reason why it was turned off for testing is that it compromises performance.

Apache does have the option of using Virtual Hosts. Virtual Hosts allow the web server to respond to multiple IP addresses or names. However, the operating system must support virtual interfaces as well or the client/server must support HTTP/1.1. Virtual interfaces consist of a network hardware interface that has multiple logical IP addresses associated with them. A single machine can respond to multiple IP addresses. Linux does support virtual interfaces. HTTP/1.1 supports virtual hosts also, by including the hostname in the header instead of resolving the host’s IP address
. These options were considered briefly for the implementation, but the mappings are reverse from what virtual web servers are. There needed to be a way of picking the best host and returning this to the client, this being accomplished through DNS. So DNS would send a specific address, there would be no need to have multiple IP addresses associated with each of the web servers. The logical mappings are reverse as the following figure explains:

[image: image9.wmf]Web Clients vs Throughput

0

10

20

30

40

50

60

20

40

60

80

100

Web Clients

Throughput (Mb/s)

Single Mixed

RR mixed

Virtual Host

[image: image10.wmf]Web Clients vs Throughput

0

10

20

30

40

20

40

60

80

100

Web Clients

Throughput (Mb/s)

Single CGI

RR CGI

Virtual Web Server

Figure 3
2.3. Web Server Benchmark Configuration

After the Apache web servers were up and running, tests were made using the WebStone benchmark. WebStone is a benchmarking utility to measure the performance of web servers by accessing various sized files on the web server. WebStone will be talked about in greater detail in Single Web Server Benchmarks.

2.3.1. WebStone Benchmarking Architecture

WebStone’s architecture consists of a master web process and children web processes. The master web process is responsible for reading the command line arguments given to WebStone and the test-bed configuration file used to define the parameters of the benchmark. The master web process then rexecs the web child processes. The web children will read their command line arguments given by the master web process and establish a connection to the master web process. After all child processes have reported back to the master process the master process signals the children to start the benchmark. The following diagram depicts this architecture:

[image: image11.wmf]Web Clients vs Throughput

0

20

40

60

80

100

20

40

60

80

100

Web Clients

Throughput (Mb/s)

Single HTML

RR HTML

Figure 4
The test bed file consists of some of the following parameters:

Iterations of test

Minimum number of clients

Maximum number of clients

Increment number of clients

Time per run for each client

Machine names that each of the clients will run on

A file list that contains an HTML or CGI URL reference along with the weight indicating the probability of the URL to be selected.

[image: image12.wmf]Web Clients vs Throughput

40

45

50

55

60

65

20

40

60

80

100

Web Clients

Throughput (Mb/s)

Dynamic Mixed

RR mixed

CHAPTER 3

3. Single Web Server Benchmarking

The first phase was to measure the performance of web client-server latency and throughput of web client requests made to a single web server. This gives a theoretical upper-limit up to N web servers. By using virtual web servers there wasn’t an expectation for a performance increase greater than having logically separated web servers. There are a number of overhead factors that validate this, such as increased address resolution times by creating more logic on how to resolve the requested address.

WebStone was the benchmarking tool used for both the single and virtual web servers. There are other web server benchmarking tools, such as SPECweb 9X. Unfortunately the education rate for SPECweb was $400.

3.1. Single Web Server Results (HTML)

In order to see the difference of work between a single web server and a set of web servers the WebStone benchmark was performed on a single web server. WebStone has a set of guidelines for running benchmarks in order to maintain a point of reference. Some guidelines are that a specific file set be used. This file set contains the files that each of the web clients will request from the web server. A standard HTML file set that is distributed with WebStone is “filelist.standard”:

/file500.html

350

/file5k.html

500

/file50k.html

140

/file500k.html

9

/file5m.html

1

where “file500.html” is a text file that contains approximately 500 bytes and “350” is the weighted number that the web client has a probability of choosing. The benchmark run should last 10 minutes. And the number of web clients used should range from 20 to 100 with increments of 10. If the system is not heavily loaded at 100 then increment the number of web clients by 100 (i.e. 200, 300, …). The number of client machines used was seven.

The following filelist was used to test all HTML benchmarks:

/file50k.html
140

Using WebStone with one web server (Sparc 5 110 MHz CPU) running Apache the following results were obtained:

Total # of Clients
Connection Rate (Connection/s)
Little’s Load Factor
Average Latency (s)
Error Level (%)
Throughput (MBits/s)

20
21.63
19.93
0.9210
0.0
8.90

30
19.22
29.68
1.5450
0.0
7.91

40
19.35
39.72
2.0530
0.0
7.96

50
20.27
49.66
2.4490
0.0
8.34

60
20.59
59.51
2.8910
0.0
8.47

70
20.84
68.97
3.3100
0.0
8.58

80
20.97
78.78
3.7580
0.0
8.63

90
21.07
88.60
4.2050
0.0
8.67

100
21.12
97.68
4.6250
0.0
8.69

Table 2
WebStone measures connection rate averages (connections per second), average latency (seconds), and throughput average for all connections (megabits per second. These results will be used later in the paper to compare against the virtual web server results.

It is important to realize what these numbers mean to clients that could be using a browser to view content on a web server. Connection Rate indicates the number of HTTP requests that the server can handle per second, a request arrival rate greater than the connection rate could give time-out or “connection refused” errors to the client
. Average Latency is the time, in seconds, that the web server takes to respond to an HTTP request. For instance, this could be construed as the time it takes from the “Waiting for connection from …” to the point of “Connected to …”. This is crucial for the client, because a latency of a second or more seems very slow to the user. Little’s Load Factor is the time ratio of communicating to the server and the time waiting for a response from the server. This number should scale linearly as the number of clients increase. Error level is the percentage of services that were refused by the web server. The symptoms experienced, if the error level percentage is greater than 0%, is “Connection Refused” error messages on the client. Error level is an indication of a web server that is overloaded. Throughput is how much data (Mb) that the server can send to the clients per second. This gives the perception on how fast the server seems to the user. Throughput will be used during the comparisons of implementation, being that this is an indicator of connection rate and response time.

After 200 to 400 webclients were tested the benchmarking started to hang.

3.2. Single Web Server Results (CGI)

Tests were performed on a single web server for CGI as well. WebStone has another file list called “filelist.cgi” that tests the performance of the web server with CGI operations. The lists contains references to CGI URL’s as follows:

Modified sample model; fully dynamic content

/cgi-bin/ws25_cgi?file=/opt/apache/share/htdocs/file500.html
350

/cgi-bin/ws25_cgi?file=/opt/apache/share/htdocs/file5k.html

500

/cgi-bin/ws25_cgi?file=/opt/apache/share/htdocs/file50k.html
140

/cgi-bin/ws25_cgi?file=/opt/apache/share/htdocs/file500k.html
9

/cgi-bin/ws25_cgi?file=/opt/apache/share/htdocs/file5m.html

1

where size=n is the file size that the web server will send to the client.

where 350, 500, 140, 9, and 1 are weighting numbers that the web client has a probability of choosing.

The CGI application takes the file argument, opens the file, reads the file, and writes the contents of the file to STDOUT.

The same standard characteristics as the HTML runs were used for the CGI runs, the only aspect that was different was the file list source:

/cgi-bin/ws25_cgi?file=/opt/apache/share/htdocs/file50k.html
140

The following lists the results of using the CGI benchmarks on a single web server.

Total # of Clients
Connection Rate (Connection/s)
Little’s Load Factor
Average Latency (s)
Error Level (%)
Throughput (MBits/s)

20
8.97
19.93
2.2210
0.0
3.68

30
8.96
29.88
3.3350
0.0
3.68

40
8.89
39.80
4.4760
0.0
3.65

50
8.78
49.67
5.660
0.0
3.60

60
8.78
59.60
6.7870
0.0
3.61

70
8.74
69.51
7.9490
0.0
3.59

80
8.73
79.42
9.0970
0.0
3.58

90
8.67
89.06
10.2720
0.0
3.56

100
8.66
98.87
11.4130
0.0
3.56

Table 3
The web server was loaded heavily for all the number of webclients with CPU idle always at 0%.

3.3. Single Web Server Results (Mixed)

The purpose of this benchmark is to simulate multiple web clients that access both CGI and HTML. Since normal activities for web server resources often use a combination of HTML and CGI this was a necessary test. The following file list contains sample URLs for the benchmark:

/cgi-bin/ws25_cgi?file=/opt/apache/share/htdocs/file500.html
350

/file500.html

350

/cgi-bin/ws25_cgi?file=/opt/apache/share/htdocs/file5k.html

500

/file5k.html

500

/cgi-bin/ws25_cgi?file=/opt/apache/share/htdocs/file50k.html
140

/file50k.html

140

/cgi-bin/ws25_cgi?file=/opt/apache/share/htdocs/file500k.html
9

/file500k.html

9

/cgi-bin/ws25_cgi?file=/opt/apache/share/htdocs/file5m.html

1

/file5m.html

1

The filelist used for all mixed testing was the following:

/cgi-bin/ws25_cgi?file=/opt/apache/share/htdocs/file50k.html
140

/file50k.html

140

After testing with the above file list the following was observed.

Total # of Clients
Connection Rate (Connection/s)
Little’s Load Factor
Average Latency (s)
Error Level (%)
Throughput (MBits/s)

20
15.13
19.94
1.3180
0.0
6.22

30
15.05
29.89
1.9864
0.0
6.19

40
14.87
39.86
2.6812
0.0
6.11

50
14.69
49.80
3.3902
0.0
6.04

60
14.63
59.73
4.0838
0.0
6.01

70
14.43
69.60
4.8248
0.0
5.93

80
14.36
79.55
5.5414
0.0
5.90

90
14.24
89.46
6.2812
0.0
5.86

100
14.29
99.29
6.9454
0.0
5.88

Table 4
One good observation is that there is saturation on throughput once 40 clients are used as noticed by the throughput of ~6.11 from 40 to 100 clients.

3.4. Single Web Server Comparisons

The three types of filelists have been graphed to show the relative throughput for HTML, CGI, and mixed:

[image: image13.wmf]Web Clients vs Throughput

25

27

29

31

33

35

37

39

20

40

60

80

100

Web Clients

Throughput (Mb/s)

Dynamic CGI

RR CGI

Figure 5
From the graph the HTML throughput did not differ by much. Both CGI and mixed worsened slightly as the number of web clients were added to the tests.

[image: image14.wmf]Web Clients vs Throughput

0

2

4

6

8

10

20

40

60

80

100

Web Clients

Throughput (Mb/s)

HTML

CGI

Mixed

CHAPTER 4

4. Web Server Agent Design

The second phase is to create the web server agents that run on the web servers. These agents are responsible for gathering local system statistics such as CPU usage, runnable queue lengths, pages being swapped out of physical memory, and network latency to a particular gateway. The web server agent implementation was written in Perl [Srini96, Wall96]. Perl is an excellent language for extracting textual information. The information to be extracted in this case is standard-out given by the various system statistical commands and web services.

4.1. System Statistics

One useful utility found on the Unix operating systems, including Solaris, is vmstat. Vmstat provides statistical data on the system’s performance relating to processes, memory, swap, IO, system calls, and CPU. Vmstat can be invoked by the following command:

vmstat 5 2

where five is the frequency of time to gather the system data and two would be the number of times to gather the system data every five seconds, in this case.

Some of the data extracted data from the vmstat command would look like the following, this data is described in the following sections:

procs

memory

page

cpu

r
b
w
swap
free
re
mf
pi
po
fr
de
sr
us
sy
id

0
0
0
151748
51636
10
156
151
0
0
0
0
5
11
84

0
0
0
141816
30592
0
1
0
0
0
0
8
0
0
100

Table 5
The following sections describe the data produced by vmstat and it’s importance.

4.1.1. Process Data (procs)

Process data includes the number of processes waiting for run time (r), also know as the run queue. These are the processes that are waiting for their time slice on the CPU. This is one indication of performance of the system. If the system frequently has a number of processes in the run queue this means that the system does not have enough CPU horse power to handle the running processes. The command also produces the number of processes blocked waiting for IO or paging (b) and the number of idle processes swapped out of memory (w). The processes that may be blocked waiting for IO are disk bound or continually paging (low on memory). Processes that are swapped out of memory could be indicative of a system that is crippled by not having enough physical memory.

4.1.2. Memory Data (memory)

Memory data consists of free swap space in kilobytes (swap). Swap space is defined as disk space allocated for swap and unused memory. Free memory (free) is the amount memory on the free list in kilobytes. This essentially indicates the number of pages ready for allocation (4kb page size in Sparc and 8kb in Ultra Sparc architectures).

4.1.3. Paging (page)

Paging data consists of a number of components. One is the amount of pages reused (re). The measurements are in pages per second. This would occur when a process accesses a page and faults. The previously allocated page is taken from the free list (if it’s still there). This is also known as a minor page fault. The page is placed in the processes’ address space. The second set of data is the number of minor page faults incurred (mf). (pi in kb) Page-ins amount to the number of pages per second that are read from the file system after a page major page fault has occurred. This typically occurs when processes access shared library segments. Page-outs (po in kb) occur when the page daemon places the page into the pageout queue, the swapper then writes the pages to swap. Fr (kb freed) amount to the pages put back onto the free list. De is the anticipated short-term memory shortfall. Sr represents the number of pages scanned per second by the page daemon. This gives a good indication of how desperate the kernel is in getting free memory if it thinks that it is running low.

The final implementation grabs paging information, since this is a strong indication of any memory characteristics.

4.1.4. CPU Data (cpu)

The CPU data consists of the percentage of user time (us), system time (sy), and idle time (id) on the CPU. User time is the percentage of time spent executing in user mode. The system time is the time spent executing in kernel mode. Idle time = (100 - (system time + user time)). A low percentage of idle time indicates that the CPU is constantly busy, meaning there is a large work-load on system.

4.2. Network Statistics (ping)

A simple utility to measure latency on a network is ping. Network latency is the round-trip time it takes to send a packet to another host. Ping utilizes ICMP’s echo request and echo response. The following command could be used to get this information:

ping –s <hostname> 64 5

where the -s option specifies that a packet is sent out once a second number.

where <hostname> is the machine to ping.

where 64 is the size of the packet to be sent.

where 5 is the number times to send the packet to <hostname>.

The above command would produce the following output:

PING gandalf.uccs.edu (128.198.9.118): 56 data bytes

64 bytes from 128.198.9.118: icmp_seq=0 ttl=248 time=202.3 ms

64 bytes from 128.198.9.118: icmp_seq=1 ttl=248 time=220.0 ms

64 bytes from 128.198.9.118: icmp_seq=2 ttl=248 time=210.0 ms

64 bytes from 128.198.9.118: icmp_seq=3 ttl=248 time=220.0 ms

64 bytes from 128.198.9.118: icmp_seq=4 ttl=248 time=440.0 ms

--- gandalf.uccs.edu ping statistics ---

5 packets transmitted, 5 packets received , 0% packet loss

round-trip min/avg/max = 202.3/258.4/440.0 ms

As you can see with the above output ping lists the individual statistics as it receives packets as well as summary statistics. The summary contains the minimum time a packet took to travel round-trip, the maximum time, and the average time during the five packet spree.

4.3. Web Server Statistics

Note that there are two basic ways to collect server load information: internal reporting or external probing. The Apache web server can be configured to provide status reporting through an API (Application Programming Interface) called server-status. The statistics reported by Apache web server include CPU load, averaged requests per second, the number of spare (idle) servers, and bytes transferred. There is no report on queue lengths and web page size averages transferred. There are web servers such as Microsoft IIS that supports SNMP queries for status. But the dynamic status information provided is rather limited. The web server agent can also send requests to the web server and measure the response time. But this approach is rather intrusive and generates additional loads.

CHAPTER 5

5. Web Server Agent Implementation

System, network, and web server statistics are gathered through web server agents. The agents are continually running on each virtual web server. An excellent language to parse text generated by the above mentioned statistic gathering commands is Perl [Wall96] (Practical ExtRaction Language). The following sections explain the implementation of the web server agents in Perl.

5.1. vmstat

There are a number of data elements that had to be extracted from vmstat. processVmstat is a major routine that accomplished this.

1. sub processVmstat

2. {

3.
&processVmString();

4.
&processRunnable();

5.
&processCPU();

6.
&processScanRate();

7. }

Code Listing 1
Vmstat is executed using the back-tick in Perl, like the following in processVmString:

1. sub processVmString

2. {

3.
$vmString = `vmstat 5 2`

4.
$vmString =~ s/\D+/\:/g;

5.
@vmElements = split(/:/. $vmString);

6. }

Code Listing 2
Line 4 replaces one or more joined alphas into “:”. Then line 5 splits the sets of digits into an array.

processRunnable, processCPU, and processScanRate just index into the vmElements array to reference their respective data.

5.2. ping

Ping is handled in a similar way as vmstat was. processPing is the procedure that parses the ping output, as follows:

1. sub processPing

2. {

3.
$pingString = `ping -s $gateway 64 5`;

4.
$pingString =~ s/[a-zA-Z]|\=|_|\:|\-|\%|\,|\(|\)//g;

5.
$pingString =~ s/\// /g;

6.
@pingElements = split(/\s+/, $pingString);

7.
$elements = scalar(@pingElements);

8.
$avgPing = $pingElements[$elements-2];

9. }

Code Listing 3
On line 3 $gateway is a reference host that would be the gateway host that connects to the Internet. This provides the localized network traffic indicator. With the “-c 5” ping produces five pings to the gateway machine. Line 4 and 5 replaces unwanted text returned by the ping command. The 6th line puts the separated digits into the pingElements array. Line 7 extracts the number of elements in the array, line 8 indexes the average ping of five in the array, and returns this value to avgPing.

5.3. server-status

In order to gather information in regards to web server specific information an API provided by the Apache web server is provided. In order to obtain the data provided by the API a TCP (Transmission Control Protocol) connection must be made. This is accomplished by the following:

1. sub configureTcpInterface

2. {

3.
local ($webServer, $httpPort) = @_;

4.
$sockaddr = ‘S n a4 x8’;

5.
$clientHost = hostname;

6.
$clientPort = (getservbyname(‘wlbTcp’,’tcp’)) [2] unless $port =~ /^d+$/;

7.
$client = pack ($sockaddr, &AF_INET, $clientPort, (gethostbyname($clientHost)) [4]);

8.
$server = pack ($sockaddr, &AF_INET, $httpPort, (gethostbyname($webServer)) [4]);

9.
socket (S, &PF_INET, &SOCK_STREAM, (getprotobyname(‘tcp’)) [2]) || die “socket: $!”;

10.
bind (S, $client) || die “bind: $!”;

11.
connect (S, $server) || die “connect: $!”;

12.
select (S);

13.
$| = 1;

14.
select(STDOUT);

15. }

Code Listing 4
On line 3 $webServer is set to the local host name and $httpPort is set to the traditional HTTP port 80. $sockaddr is set to ‘S n a4 x8’ on line 4. The ‘S’ represents an unsigned short integer, the ‘n’ is short integer in network order (big-endian), ‘a4’ is a string of four characters (padded by nulls), and ‘x8’ represents 8 null bytes. $clientHost is just assigned the host name of the local machine that web server is running on (line 5). The getservbyname(‘wlbTcp’,’tcp’) on line 6, grabs the port number 7778. The ‘[2]’ on line 6 just returns the 2 element from the list returned by getservbyname. This is the port number arbitrarily assigned as the port number to bind to on the client side (reflected on line 10). The service is defined in the local /etc/services file with the following line:

wlbTcp
7778/tcp

web load balance services

Line 7 packs the &AF_INET (Internet identifier) into ‘S’, $clientPort into ‘n’, and the fourth element in the list returned by gethostbyname($clientHost). Packing converts the data into a binary structure according to the previously defined template of ‘S n a4 x8’. This structure is what bind() expects to use in order to hook up to the intended port(s). Line 8 does the same thing as line 7, except that the IP and port address of the web server is used to create the binary structure. Socket(), on line 9, creates a file descriptor (S) that will be used to communicate to the web server. Line 10 associates the file descriptor (S) with the local client’s port through bind(). Line 11 attempts a connection to the web server via the client’s socket.

After the connection to the TCP socket has occurred the next step is to send an HTTP GET command to the local web server, this is accomplished by the following code:

1. sub processWebStats

2. {

3.
local ($request = “/server-status”);

4.
print S “GET $request\n”;

5.
while (<S>)

6.

{

7.

$rps = $1 if (m|(\d+.\d+)\ requests/sec|);

8.

$busy = $1 if (m|(\d+)\ requests\ currently|);

9.

$idle = $1 if (m|(\d+)\ idle|);

10.

}

11.
close (S);

12. }

Code Listing 5
On line 3 the $request is the actual API that is executed on the web server. Line 4 sends the HTTP request “GET /server-status” to the Apache web server on the S socket (which we defined above). The following is an example of the data that is retrieved from the web server:

Apache Server Status for gandalf.uccs.edu

Current Time: Wed Dec 10 00:32:51 1997

Restart Time: Wed Dec 10 00:32:27 1997

Server uptime: 24 seconds

Total accesses: 0 - Total Traffic: 0 kB

CPU Usage: u0 s0 cu0 cs0

0 requests/sec - 0 B/second

1 requests currently being processed, 4 idle servers

____W...

<more text follows>

While the above information is to be received on the socket S (line 5) extract the $rps (requests per second), $busy (number of busy servers), and $idle (number of idle servers) on lines 7 through 9.

5.4. Invoking web server agent

The application is named statAgent.pl. The Perl program is invoked by the following command:

statAgent.pl <gateway> <server> <updates>

where <gateway> is the machine that is considered to be the gateway to the Internet. This is used to ping in order to determine the local network load during the tests.

where <server> is the server that the collector agent runs on. This is the server that the statistics are sent to.

where <updates> is the interval (in seconds) that the statAgent will send updates to the collector agent.

The quickest possible update times, used during the tests was one second. This was due to the limitations of the commands used to gather the server’s data. For example “vmstat 1 2” takes one second to run and “ping <host name> 1” would take another second to execute. Even with update times of one second the load on the server’s CPU was only 1% or less. Future work would include making the statAgent multithreaded in order to decrease the update intervals or reading data directly from kernel memory.

CHAPTER 6

6. Collector Daemon

The next phase consists of creating a daemon that collects the statistics gathered by the web server agents via socket application coding. The daemon associates the host to its' respective statistics along with calculating weights per server and saves the information to file for other processes to access. The collector daemon runs on the same server as the enhanced DNS server. The design of the collector daemon is to receive the statistics that the web server agents are pushing. The design is depicted in the following diagram:

Figure 6
6.1. UDP Messaging

UDP (User Datagram Protocol) was chosen over TCP (Transmission Control Protocol) to transmit the statistics to the collector. This decision was made, based on the fact that UDP has less overhead than TCP. There was really no concern about the connection reliability between the web servers and the collector daemon, being that the two constituents are on the same network. Secondly TCP goes through a time-out and retransmission. During tests the application did not want old data to be retransmitted to the server since the data being retransmitted would no longer be relevant.

The following code for the web server agents set up the UDP sockets to transmit to the collector agent:

1. sub configureInterface

2. {

3.
$iaddr = gethostbyname(hostname());

4.
$proto = getprotobyname(‘udp’);

5.
$port = getservbyname(‘wlb’, ‘udp’);

6.
$paddr = socketaddr_in(0, $iaddr);

7.
$socket(SOCKET, PF_INET, SOCK_DGRAM, $proto) or die “socket: $!”;

8.
$bind(SOCKET, $paddr) or die “bind: $!”;

9.
$serveriaddr = inet_aton($server) or die “unknown host”;

10.
$serverpaddr = sockaddr_in($port, $serveriaddr);

11. }

Code Listing 6
On line 3 the IP address of the local host that the web server agent is running on is returned in $idaddr. The protocol id is returned on line 4, in this case the protocol being used is UDP. As in configureTcpInterface services have been set up on the local hosts /etc/services file with the following:

wlb
7777/udp

web load balance services

so getservbyname(‘wlb’, ‘udp’) returns 7777.

On line 6 $paddr is assigned an arbitrary port and the $iaddr tuple. Line 7 opens the datagram socket SOCKET to transmit the statistics to the collector. At line 8 the IP address and port tuple are bound to the file descriptor SOCKET. On line 9 the $server variable is converted to the binary representation of the IP address. Line 10 takes the IP address and port number, and assigns this to $serverpaddr variable, this is used when a message is sent to the collector agent. Sending the message is accomplished with the following:

1. sub sendMsg

2. {

3.
($ia, $p) = sockaddr_in($serverpadr);

4.
defined(send(SOCKET, $messageString, 0, $serverpaddr)) or print STDERR
\nsend $server: !\n\n”;

5. }

Code Listing 7
Line 3 converts the socket address into the tuple of the IP address and the port number. Line 4 sends the $messageString through SOCKET. $messageString was conjured with a simple assign statement, as follows:

$messageString = “$type:cpuUsage:$cpuUsage:avgPing:$avgPing:runQueue:$runQueue:swapOut:$swapOut:rps:$rps:busy:$busy:idle:$idle”;

CHAPTER 7

7. Prediction Algorithm

This phase involves the prediction algorithm that rates each web server and assigns a corresponding weight to the server. The predictions are made according to the current statistics gathered and the analysis of data collected in the past. The collector agent is the one that actually calculates a weight per server according to the statistics that the web server agents send to the collector agent. The implementation for the collector agent is also written in Perl. The implementation is contained in the file gather.pl. No parameters are necessary for this application.

7.1. Receiving Messages

The first step in this process is to configure a UDP socket to listen to messages sent from the various web server agents. This is accomplished with the following procedure:

1. sub configureInterface

2. {

3.
$iaddr = gethostbyname(hostname());

4.
$proto = getprotobyname(‘udp’);

5.
$port = getservbyname(‘wlb’, ‘udp’);

6.
$paddr = sockaddr_in($port, $iaddr);

7.
socket(SOCKET, PF_INET, SOCK_DGRAM, $proto) or die “socket: $!”;

8.
bind(SOCKET, $paddr);

9. }

Code Listing 8
On line 3 the host name is converted to it’s IP address and assigned to $iaddr. The prototype number for UDP is returned and assigned to $proto. Line 5 looks up the wlb/udp service through the operating systems resolver. In the case of the implementation the wlb/udp tuple was resolved in the /etc/services file, as before:

wlb
7777/udp
#web load balance services

On line 6 the IP address and the port number are packed into the socket address $paddr. 7 opens a UDP socket for receiving messages from the statAgents. And on line 8 SOCKET is attached to socket address of $paddr.

After the SOCKET has been configured then the procedure receiveMsg is called to listen to any messages sent to it’s socket, as follows:

1. sub receiveMsg

2. {

3.
$rin = “”;

4.
local ($done = 0);

5.
vec($rin, fileno(SOCKET), 1) = 1;

6.
while (select($rout = $rin, undef, undef, undef) && !$done)

7.

{

8.

($clientpaddr = recv(SOCKET, $buff, 128, 0)) or die “recv: $!”;

9.

($clientport, $clientiaddr) = sockaddr_in ($clientpaddr);

10.

$clientname = gethostbyaddr($clientiaddr, AF_INET);

11.

&processMsg($clientname, $buff);

12.

}

13. }

Code Listing 9
Line 4 just initializes the $rin variable. On 4 $done is set to 0 (a.k.a. not done). vec sets $rin to the file descriptor returned by fileno(SOCKET) on line 5. Select, on line 6, checks to see if the $rin is ready to receive and not $done. recv blocks until a message is received on SOCKET on line 8. The return value is the socket address of the sender. Line 9 unpacks the senders’ address using sockaddr_in. The tuple is assigned to $clientport and $clientiaddr. At this point the IP address is resolved to a hostname with gethostbyaddr on line 10. Then a call to processMsg is made to parse the incoming buffer.

Processing the message logic follows:

1. sub processMsg

2. {

3.
local($client, $message) = @_;

4.
local($weight);

5.
@messageArray = split(/:/, $message);

6.
$type = $messageArray[0];

7.
if($type eq “data”)

8.

{

9.

$cpuUsage = $messageArray[2];

10.

$avgPing = $messageArray[4];

11.

$runQueue = $messageArray[6];

12.

$swapOut = $messageArray[8];

13.

$rps = $messageArray[10];

14.

$busy = $messageArray[12];

15.

$idle = $messageArray[14];

16.

$weight = calcWeight($client, $cpuUsage, $avgPing, $runQueue,

$swapOut, $rps, $busy, $idle);

17.

&outputFile($client, $cpuUsage, $avgPing, $runQueue, $swapOut,

$rps, $busy, $idle);

18.

}

19. }

Code Listing 10
On line 3 both $client and $message are parsed from the parameter list of the call of processMsg. Line 5 breaks the $message variable into the elements of @messageArray. The first element is the $type of message that was sent to the collector agent. There are two types that are sent: data and alarm. If the type is data (line 7) then assign separate variables with the index of @messageArray (lines 9 - 15). $weight is returned by calcWeight with the various statistical parameters being passed to calcWeight (line 16). Line 17 writes the statistical values and the calculated weight to an output file.

7.2. Calculating Weights

The goal of this procedure is to produce a weight associated with the web server in question. The higher the weight the more likely the web server will be returned as an available web server to the client through DNS. The idea is that the statistical data should be used as a continuos weight, rather than a discrete value. For instance, the average ping is measured in milliseconds, if the average ping is 12 milliseconds then the subtracted weight from the base weight should be based on 12 rather than a threshold, say subtract 5 from the weight if time is greater than 10 milliseconds.

The thesis never attempts to state that the weight calculations used will provide optimal performance, but rather uses a heuristic approach that out-performs conventional algorithms like round-robin.

The weight of each statistic was based on benchmark runs having just the individual characteristic weighted in order to see the degree of relevance to web performance. . It’s interesting to note that testing with one performance characteristic did not out-perform round-robin. Only when the performance characteristics were combined did the dynamic approach out-perform round-robin. Benchmarks were ran using WebStone with requests being both HTML and CGI. The averages of client throughput were used to gauge the individual statistic characteristic. Throughput is an indication of the effective work performed by a web server and is an indication of the other performance results, such as connection rates and response times.

Each statistics characteristic measurement was for 50 web clients for 20 minutes on each performance characteristic. The tests were ran for a total of 2 hours of testing on HTML and CGI requests. The throughput was then averaged to produce the following results:

Characteristic
Throughput Averages (Mb/s)
Relative Throughput (%)
Approximate Thresholds (positive)
Approximate Thresholds (negative)

Idle web server processes
52.19
19.68
20

CPU idle time
51.92
19.58
100

Run queue
51.98
19.60

30

Requests/s
52.09
19.64
10

Average ping
45.73
17.24

400 ms

Scan rate/s
11.27
4.23

200 pages

Table 6
The average throughputs for each characteristic were summed to produce 265.18. The summed throughput of each characteristic was then divided by each individual average to find the relative percentage for each characteristic.

Approximate thresholds were the worst case measurements that were during the time that the tests were ran. As an example during the benchmarks the highest number of processes in the run queue was 44, this was observed as the threshold.

An example follows:

CPU idle time had an average throughput of 51.92. The sum of averages for the characteristics was 265.18. To find the relevant percentage 51.92/265.18 = 0.1958 = 19.58% was then multiplied by the actual CPU percent idle divided by the approximate threshold (found to be 100% during the benchmarks), to get the weight: <cpu weight> = 19.58*(<actual cpu>/100)

The equation is depicted on line 7 in the procedure calcWeight.

One interesting thing to note is if CPU, network latencies, swapping, run queue, and busy servers are relatively the same among virtual web servers then the cumulative statistic, requests per second, will give an indication of the performance history of that server.

Another interesting thing to note is how little of an indication that the scan rate provided and as expected a lower weight was formulated. This is why the threshold is at 0 pages scanned a second, because the servers were never desperate for memory.

calcWeight describes the algorithm used for the factors that were weighted:

1. sub calcWeight

2. {

3.
local($host, $cu, $ap, $rq, $so, $rps, $b, $i) = @_;

4.
local($weight);

5.
$weight = 0;

6.
if ($rq <= 30) { $weight += 19.6*((30-$rq)/30); }

7.
$weight += 19.58*($cu/100);

8.
if ($ap <= 400) { $weight += 17.24*((400-$ap)/400); }

9.
$weight += 19.64*($rps/10);

10.
if ($so <= 200) { $weight += 4.23 *((200-$so)/200); }

11.
$weight += 19.68*($i/20);

12.
$weight = int $weight;

13.
return $weight;

14. }

Code Listing 11
Local variables are passed to calcWeight on line 3. $weight is initially assigned the base value of 0 (line 5). The weights are then added to create the total score of the web server. The lower the score the worse the web server did, the higher the score the more likely the web server will be chosen for new work.

On lines 6 through 16 different weights are added from the initial weight according to the importance of each of the statistical data. If the run queue happens to exceed 30 then the maximum then weight is thrown out. In another words the current run queue value weight exceeded is threshold therefore its’ weight is not used to add to the web server’s weight. The current $rq (run queue) value is used to produce the relative threshold run queue value (line 6). The 30 denominator is the maximum number of processes in the run queue seen during the benchmark runs. This provides the relative value for a heavily loaded system. This value is then multiplied by the run queue’s weight of 19.6. The “if” statements check to make sure that the current measurement is not greater than the highest possible seen. The rest of the weight calculations used the same concepts.

Line 12 basically rounds the weight to an integer value and line 13 returns this value from the function calcWeight.

7.3. Writing to File

The reason to write the statistics/weights to file is that other processes, such as the enhanced DNS will need a way to access this information. The following discusses this issue:

1. sub outputFile

2. {

3.
local($host, $w, $cu, $ap, $rq, $so, $rps, $b, $I) = @_;

4.
local($found = 0, $cont = 0, $newString = “”);

5.
open(STATFILE, “</tmp/statFile”) or $cont = 1;

6.
open(TEMPFILE, “>/tmp/tempFile”) || print STDERR “Can’t open tempFile”;

7.
while (!$cont && ($line = <STATFILE>))

8.

{

9.

chomp ($line);

10.

$_ = $line;

11.

if(/$host/)

12.

{

13.

$found = 1;

14.

$newLine = join(“:”, $host, $w, $cu, $ap, $rq, $so, $rps, $b,

$I);

15.

$newString .= “$newLine\n”;

16.

}

17.

else

18.

{

19.

$newString .= “$line\n”;

20.

}

21.

}

22.
if (!$found)

23.

{

24.

$newLine = join(“:”, $host, $w, $cu, $ap, $rq, $so, $rps, $b, $I);

25.

$newString .= “$newLine\n”;

26.

}

27.
print TEMPFILE $newString;

28.
close STATFILE;

29.
close TEMPFILE;

30.
rename (“/tmp/tempFile”, “/tmp/statFile”);

31. }

Code Listing 12
Local variables are assigned from the respective parameters of outputFile (line 3). Other local variables are defined and initialized on line 4. STATFILE is opened as input (“<“) (line 4). This file contains the weights and statistics for each of the web servers that are running statAgents. TEMPFILE is just a temporary that is used as an output file that is later rewritten to STATFILE. On line 7 the next line of STATFILE is read into $line and a conditional check to see if STATFILE already existed is made. Line 8 takes the new lines from $line, in this case. If there is a matching host entry in STATFILE then $found is set, the data is assembled, and a new string is concatenated together (lines 11 through 15). Else keep the line the same for STATFILE (line 19). If the host was not found in STATFILE then a new string is concatenated (lines 22 through 25). Print the concatenated string to TEMPFILE (line 27). Close the files to update them (lines 28 and 29). Then move the TEMPFILE to STATFILE for the updated data to be reflected in the new STATFILE.

CHAPTER 8

8. Enhanced DNS Scheduling

The final phase in implementation involved the mechanism in which the client resolves the web servers’ IP address. This was accomplished by using the naming service DNS (Domain Naming System). DNS provided the transparent interface for the resolving on the client systems. The application performed DNS messaging and allowed the naming service to return the IP address of the best web server picked by the prediction algorithm. lbnamed handles DNS messaging and provides a selection criteria for good login servers
. This application was integrated with the thesis’s statistics gathering implementation for the sake of lbnamed’s DNS messaging.

8.1. DNS Messaging

The software aspect of DNS is called BIND (Berkeley Internet Name Domain). This is the software that is responsible for responding to the client requests. A daemon, typically called named, is forked and binds to port 53 listening for requests by clients. The interaction between the client and the server is called messaging. lbnamed performed the messaging for the server daemon. DNS messaging specification is listed in RFC 1035
. The message structure consists of the following:

Header

Question

Answer

Authority

Additional

Figure 7
The header section explains what the rest of the message will contain. The header also indicates that the message is a query or a response. The header section expands to the following:

ID

QR | Opcode | AA | TC | RD | RA| Z | RCODE

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

Figure 8
ID is the sequencer that identifies a query with a response. QR indicates if this message is a query or a response. Opcode indicates which type of query was made by the client. Valid queries are QUERY (a typical query), IQUERY (inverse query), and STATUS (opcode to check the status of the server). The AA field is the authoritative answer bit. If AA is set then the name server is authoritative for the specified domain. TC indicates if the message was truncated in order to fit into the underlying protocols. RD stands for recursion desired and if set the server can perform recursive queries. RA indicates if the server can handle recursive querying. Z is for future use and is not used in the implementation. RCODE is the response code where 0 indicates no error occurred, 1 is format error, 2 is server failure, 3 is name error, 4 is not implemented, 5 is refused, and 6-15 is reserved for future implementation. QDCOUNT indicates the number of question entries in the Question section. ANCOUNT refers the number of resource record entries in the Answer section. NSCOUNT indicates the number of name server resource record entries in the Authority section. ARCOUNT refers to the number of additional resource records in the Additional section.

lbnamed’s responsibility was to create and parse these messages to specification. This allowed a seamless environment for client resolves and allowed no additional software that the clients would need. lbnamed contains four different components.

8.1.1. DNS.pm

DNS.pm contains the constants and functions necessary for creating/parsing DNS messages. This module contains data types for various resource records. The records include A, CNAME, HINFO, MX, NS, NULL, PTR, and SOA. “A” resource records are used to resolve an IP address by giving a name. So a query for gandalf would result in an answer of “128.198.9.118”. The CNAME (canonical name) is used for aliasing a one name to another. When a query is made on the canonical name, another lookup is performed by the DNS server to find the canonical name. This address is then returned. HINFO (host information) represents information relative to the type of host being queried. For instance, if you query on gandalf the response could be: “Pentium” “Linux 2.0.0”. MX (mail exchanger) is responsible for forwarding or processing mail. So if the domain request is uccs.edu the response could be harpo.uccs.edu. NS (name server) records are to specify a name server for a domain. In this case if uccs.edu was specified then piglet.uccs.edu would be returned as a name server of the uccs.edu domain. The NULL resource record is an experimental record. PTR (pointer) resource records are the reverse of A records. Given an IP address request, “128.198.9.118”, the response would be the associated name, such as gandalf.uccs.edu. SOA (Start Of Authority) records contain fields such as the serial number, refresh intervals, retry times, expiration times, and TTL (time to live) times. The relevant resource records used in the implementation are SOA, NS, and A resource records.

8.1.2. lbnamed

lbnamed is responsible for starting lbnamed.conf, configuring the interfaces for both UDP and TCP connections, and handling requests/responses of the server. The main function in this module is answer_requests:

1. sub answer_requests

2. {

3.
$done = 0;

4.
until ($done)

5.

{

6.

vec($rin, fileno(DNS_UDP),1) = 1;

7.

vec($rin, fileno(DNS_TCP), 1) = 1;

8.

$nfound = select ($rout = $rin, undef, undef, undef);

9.

if ($nfound > 0)

10.

{

11.

&handle_udp_dns_request(*DNS_UDP) if (vec($rout,

fileno(DNS_UDP), 1));

12.

&handle_tcp_dns_request(*DNS_TCP) if (vec($rout,

fileno(DNS_TCP), 1));

13.

}

14.

}

15. }

Code Listing 13
$rin is set to listen to the two file descriptors of DNS_UDP and DNS_TCP (lines 6 and 7). Line 8 checks to see if either the UDP or TCP file descriptors have input. If input request is made on UDP then process UDP message or if input request made on TCP then process TCP request (lines 11 and 12).

8.1.3. LBDB.pm

LBDB.pm is a module that contains functions for adding/checking static/dynamic resource records used in lbnamed.conf.

8.1.4. lbnamed.conf

lbnamed.conf initializes some variables and add the static/dynamic resource records that the DNS will respond with. The following section initializes the variables for lbnamed:

1. BEGIN

2. {

3.
$hostmaster = “root.gandalf”;

4.
$hostIndex = 0;

5.
$_ = “128.198.9.118”;

6.
($a, $b, $c, $d) = /(\d+)\.(\d+)\.(\d+)\.(\d+)/;

7.
$gip = ($a<<24)|($b<<16)|($c<<8)|$d;

8.
$_ = “128.198.9.117;

9.
($a, $b, $c, $d) = /(\d+)\.(\d+)\.(\d+)\.(\d+)/;

10.
$fip = ($a<<24)|($b<<16)|($c<<8)|$d;

11.
$_ = “128.198.9.116”;

12.
($a, $b, $c, $d) = /(\d+)\.(\d+)\.(\d+)\.(\d+)/;

13.
$bip = ($a<<24)|($b<<16)|($c<<8)|$d;

14. }

Code Listing 14
The purpose of the BEGIN statement of line 1 is to execute this statement block before anything else is interpreted. The $hostmaster variable is used in the SOA resource record. The host master is the mail-address for the person that is responsible for the domain (line 3). The $hostIndex variable is used for the round-robin implementation of the thesis, this is explained later (line 4). Gandalf’s IP address is assigned to the temporary variable $_ (line 5). On line 6, the IP address is separated by it’s dotted notation. Then on line 7, the constituent numbers are broken down to octets and assigned to $gip. The same is done for frodo’s and bilbo’s IP address on lines 8 through 13. The $gip, $fip, and $bip variables will be used later in the returned messages of the DNS server.

After initialization of the variables the various resource records are created, as the following depicts:

1. LBDB::add_static(“hobbit”, T_SOA, rr_SOA(hostname, $hostmaster, time, 86400, 86400, 86400, 0));

2. LBDB::add_static(“hobbit”, T_NS, rr_NS(“gandalf.hobbit”));

3. LBDB::add_static(“gandalf”, T_A, rr_A($gip));

4. LBDB::add_static(“frodo”, T_A, rr_A($fip));

5. LBDB::add_static(“bilbo”, T_A, rr_A($bip));

6. LBDB::add_static(“118.9.198.128.in-addr.arpa”, T_PTR, rr_PTR(“gandalf”));

7. LBDB::add_static(“117.9.198.128.in-addr.arpa”, T_PTR, rr_PTR(“frodo”));

8. LBDB::add_static(“116.9.198.128.in-addr.arpa”, T_PTR, rr_PTR(“bilbo”));

9. LBDB::add_dynamic(“round.robin.hobbit” => \&handle_round_robin_request);

10. LBDB::add_dynamic(“best.hobbit” => \&handle_best_request);

Code Listing 15
Line 1 adds a static resource record for the start of authority of the hobbit domain. The hostname command returns the host name that lbnamed will be running on. This host is the primary server responsible for the hobbit domain. $hostmaster was set to root.gandalf in the initial BEGIN block. time returns the current time on the server. This variable is used as the serial number that identifies the change in the servers’ data files. Time is a common indicator of the data’s version. The first 86400 is the number, in minutes, that the secondary DNS servers will check to see if their data is current. The second 86400 is the number of minutes that the secondary DNS server will retry a connection with the master server if there is a problem in connecting to the master. The third 86400 is the number of minutes that the secondary server will invalidate current data if a connection to the master server cannot be made. The final parameter of rr_SOA is the TTL (time-to-live) variable. This is sent back in a DNS response message, it tells the server how long it can hold the data in seconds. The reason that TTL is set to zero is that the dynamic values may change instantaneously therefore the data is expired immediately. This forces a new query for each resolve.

Line 2 adds a name server resource record for gandalf. This indicates the host that acts as the server for the hobbit domain. Lines 3 through 5 add A resource records used in resolving the IP address for gandalf, frodo, and bilbo. Lines 6 through 8 are adding static data for PTR resource records. These are used in resolving the host names given the IP address for gandalf, frodo, or bilbo.

On line 9, a dynamic record is added for the implementation of a round-robin distribution. handle_round_robin is described in the following section. The final line adds a dynamic record for the prediction algorithm discussed later in the paper.

8.2. Round-Robin Scheduling

The idea of using a round-robin algorithm for the thesis is a basis to compare what results multiple web servers have on the benchmarks. This algorithm blindly rotates the servers used.

1. sub handle_round_robin_request

2. {

3.
my($domain, $residual, $qtype, $qclass, $dm) = @_;

4.
my($the_host, $the_ip, $answer, $qname, $group);

5.
@hostArray = (“bilbo”, “frodo”, “gandalf”);

6.
$hostCount = scalar @hostArray;

7.
%ipArray = (“bilbo” => “128.198.9.116”, “frodo” => “128.198.9.117”, “gandalf” => “128.198.9.116”);

8.
$qname = $residual;

9.
if ($qtype == T_A || $qtype == T_MX || $qtype == T_ANY)

10.

{

11.

$the_host = $hostArray[$hostIndex];

12.

&write_log(“Round Robin: Using: $the_host”);

13.

$hostIndex++;

14.

if ($hostIndex >= $hostCount) { $hostIndex = 0; }

15.

$ipaddr = $ipArray{$the_host};

16.

$_ = $ipaddr;

17.

($a, $b, $c, $d) = /(\d+)\.(\d+)\.(\d+)\.(\d+)/;

18.

$the_ip = ($a<<24)|($b<<16)|($c<<8)|$d;

19.

$the_host .= “.hobbit” if ($the_host !~ /\.hobbit/i);

20.

$answer = dns_answer(QPTR, T_CNAME, C_IN, 0, rr_CNAME($the_host));

21.

$answer .= dns_answer(dns_simple_dname($the_host), T_A, C_IN, 3600, rr_A($the_ip));

22.

$dm->{‘answer’} .= $answer;

23.

$dm->{‘ancount’} += 2;

24.
else { $dm->{‘rcode’} = NXDOMAIN;

25.
return 1;

26. }

Code Listing 16
Line 3 assigns the parameters when the add_dynamic object is instantiated. Line 4 contains the local variables for handle_round_robin_request. @hostArray is the hosts that are a part of the virtual web server pool (line 5). Line 6 returns the number of virtual web servers. %ipArray is a variable used to index IP addresses by host names (line 7). $qtype is the DNS query type made to the DNS server, this is checking to see if the query type is of type A, MX, or ANY (line 9). $the_host is the actual server that is returned from the DNS query. This is indexed by the $hostIndex (line 11). A log is kept of the selected host returned by the query (line 12). $hostIndex is incremented to point to the next host in the array, for the next time the function is called (line 13). If the $hostIndex has exceeded the number of virtual web servers then assign this index to 0 (line 14). The IP address of the selected host is returned and assigned to $ipaddr (line 15). The IP address of the selected host is then converted to the individual dot notations on lines 16 through 18. Line 19 just appends the hobbit domain name to the host name. On line 20 a DNS $answer string is returned given the parameters that are passed to dns_answer. The lines 20 and 21 create the binary DNS message. $dm->{‘answer’} is assigned the binary answer string and the answer count is incremented by 2 (lines 22 and 23). If the query type did not match an A, MX, or ANY record then return NXDOMAIN (line 24). This means that the requested name is not in the domain.

8.3. Weighted Scheduling

The weighted scheduling is based upon the work load that each of the web servers have. The calculated weight was performed by the collector agent. All the dynamic DNS function needs to do is sort the web servers by weight.

1. sub handle_best_request

2. {

3.
my($domain, $residual, $qtype, $qclass, $dm) = @_;

4.
my($the_host, $the_ip, $answer, $qname, $group);

5.
%ipArray = (“bilbo” => “128.198.9.116”, “frodo” => “128.198.9.117”, “gandalf” => “128.198.9.116”);

6.
$qname = $residual;

7.
open(STATFILE, “</tmp/statFile”);

8.
$i = 0;

9.
while ($line = <STATFILE>)

10.

{

11.

@lineArray = split /:/, $line;

12.

$host = $lineArray[0];

13.

$_ = $host;

14.

$host = $1 if (/^(\w+)\./);

15.

$hosts[$i] = $host;

16.

$weight = $lineArray[1];

17.

$weight{$host} = $weight;

18.

$i++;

19.

}

20.
@hosts = sort by_weight @hosts;

21.
if ($qtype == T_A || $qtype == T_MX || $qtype == T_ANY)

22.

{

23.

$the_host = @hosts[0];

24.

&write_log(“Best: Using: $the_host with $weight{$the_host}”);

25.

$ipaddr = $ipArray{$the_host};

26.

$_ = $ipaddr;

27.

($a, $b, $c, $d) = /(\d+)\.(\d+)\.(\d+)\.(\d+)/;

28.

$the_ip = ($a<<24)|($b<<16)|($c<<8)|$d;

29.

$the_host .= “.hobbit” if ($the_host !~ /\.hobbit/i);

30.

$answer = dns_answer(QPTR, T_CNAME, C_IN, 0, rr_CNAME($the_host));

31.

$answer .= dns_answer(dns_simple_dname($the_host), T_A, C_IN, 3600, rr_A($the_ip));

32.

$dm->{‘answer’} .= $answer;

33.

$dm->{‘ancount’} += 2;

34.
else { $dm->{‘rcode’} = NXDOMAIN;

35.
return 1;

36. }

Code Listing 17
Line 3 takes the parameters used when the object was invoked and assigns them to local variables for handle_best_request. The local variables of this function are declared on line 4 of this function. %ipArray is an associative array that is used to correlate an IP address with the host name (line 5). The file that the collector agent has created with the web server and their associative weights are kept in this file (line 7). Each line of STATFILE is assigned to $line (line 9). Line 11 splits the various fields into the @lineArray. The first element is the host name (line 12). The domain name is stripped off of the host name part and reassigned to $host (line 14). The host name is put into an array of host names, @hosts. The weight assigned to the respective host is the second element (line 16). This new weight is placed into the @weight array by host name (line 17). The @hosts array is then sorted by the %weight values (line 20). by_weight looks like the following:

sub by_weight { $weight{$b} <=> $weight{$a}; }

If the query type is of type A, MX, or ANY resource records requests then send a response (line 21). After the @hosts array has been sorted the first element in the array is the one that is actually sent back in the DNS response (line 23). The best host chosen is recorded in a log file, mainly used for debugging purposes (line 24). $the_host’s IP address is returned to $ipaddr (line 25). The IP address of $the_host is converted to octets in order to be encapsulated in the DNS response (lines 26 through 28). $the_host’s domain name is appended to this variable (line 29). The DNS response is formulated in the compressed binary format from the two dns_answer functions (lines 30 and 31). The $dm->{‘answer’} associative array is assigned the $answer string and the answer count is incremented by two (lines 32 and 33). If the query type did not match an A, MX, or ANY record then return NXDOMAIN through the return code variable $dm->{‘rcode’} (line 34).

CHAPTER 9

9. Web Server Benchmarks

During this phase, measurements were made with the newly tooled implementation. The analysis consists of contrasting the round-round algorithm and weighted load-balancing algorithm results. The benchmarking tool used was WebStone.

One caveat found with the WebStone benchmark utility is that each set of web clients per machine does only one gethostbyname in order to resolve the IP address of the web server. This means the whole set of web clients on one machine have resolved to the same address. This, of course, does not take into consideration that the IP address of the web server could be dynamic. So each web client process will go through its’ suite of tests using the same web server. In the dynamic load balancing algorithm the IP address does change. The ideal situation is to simulate unique clients, each client in turn would resolve the web server’s IP address individually.

The second caveat is that all clients must resolve at the same instance when the benchmark first starts. During the one or two seconds that the resolves take place the dynamic algorithm will return one server’s IP address. Modifications were made to make the benchmarks use round-robin the first set of requests.

9.1. WebStone Modification

In order to simulate unique clients that must perform their own resolves the WebStone benchmark had to be rewritten. The way that WebStone was initially designed was to resolve the web server’s IP address once and use this value for the rest of the benchmark. In order to prevent this the implementation was changed to perform resolves at pseudo-random intervals:

1. ...

2. time_t lasttime, current, diff = 0;

3. struct timeval *time;

4. int rn, procs = 0, firsttime = 1;

5. struct hostent *hostName;

6. ...

7. time = (struct timeval *) malloc(sizeof(struct timeval));

8. gettimeofday(time, NULL);

9. lasttime = time->tv_sec;

10. srand(getpid());

11. rn = rand();

12. procs = (rn%(numclients*7)) + 1;

13. if (procs < ((numclients*7)/2)) {procs =+ ((numclients*7)/2);}

14. if (strcmp(webserver, “best.hobbit”)) {firsttime = 0;}

15. hostName = gethostbyname(origwebserver);

16. while (INFINITY)

17. { …

18. gettimeofday(time, NULL);

19. current = time->tv_sec;

20. diff = current – lasttime;

21. if (!firsttime)

22. {

23. if (diff > procs)

24. {

25. lasttime = current;

26. hostName = gethostbyname(origwebserver);

27. strcpy(webserver, hostName->h_name);

28. }

29. }

30. else

31. {

32. hostName = gethostbyname(“round.robin.hobbit”);

33. strcpy(webserver, hostName->h_name);

34. firsttime = 0;

35. }

36. /* Make work-load */

37. ...

38. }

Code Listing 18
On line 11 the rn variable is assigned by using a random seed given by the PID of the webclient process. Line 12 calculates a random number between 1 and the total number of webclients for this run, inclusively. Line 13 increases this random number so that low values are not used. If low values were used the resolves would overwhelm the name server as it tried to handle upwards to 43 requests per second. Line 14 looks to see if the web server is “best.hobbit”. If not firsttime is then set to 0. On line 15 a resolve is forced for the webclient to use. Line 16 loops forever. In line 20 the lapse in time is taken to find out if another resolve is in order. Line 21 just checks to see if firsttime is set. If so then resolve as normal if a time-out has occurred (line 23) else “best.hobbit” is the web server and resolve with “round.robin.hobbit” the first time through (line 32-34). The random number implementation was used during tests of both round-robin and the dynamic prediction algorithm. As the multiple webclients perform multiple GET requests the more likely the GET requests will be received at different times. The idea is to have the clients do another resolve after some pseudo-random time. The code forces a resolve by name on line 26. This allows a dynamic lookup for the web server’s IP address. Line 27 just copies the address to the variable webserver.

9.2. Virtual Web Server Results (Round-Robin)

The round-robin results were used in order to have a control sample to compare against the dynamic algorithm. Round-robin is not reactionary, it is blindly choosing the next server in the list, therefore the results expected showed better results when using the dynamic prediction algorithm. The tests that were ran used HTML, CGI, and a combination of both (mixed). The following sections describe these results.

9.2.1. Round-Robin Results (HTML)

The HTML benchmark runs were used with the same configurations as described in the single web server benchmarks for HTML. The following lists the results for round-robin:

Total # of Clients
Connection Rate (Connection/s)
Little’s Load Factor
Average Latency (s)
Error Level (%)
Throughput (Mbits/s)

20
151.27
19.92
0.1320
0.0
62.26

30
169.13
29.90
0.1770
0.0
69.61

40
175.78
39.85
0.2270
0.0
72.35

50
183.98
49.80
0.2710
0.0
75.73

60
190.66
59.79
0.3140
0.0
78.47

70
190.77
69.71
0.3650
0.0
78.52

80
196.10
79.71
0.4060
0.0
80.71

90
200.53
89.65
0.4470
0.0
82.53

100
204.31
99.60
0.4870
0.0
84.09

Table 7
Notice the rate of increase of connections per second lessened as the number of web clients increased. A gradual rate decrease in through-put and increase in latency was also observed as the number of web clients were added. Little's load did increase as the number corresponding clients grew, due to the fact that the web servers were spending more time processing requests made by the web clients. No error levels were reported, meaning that none of the web clients timed out waiting for requests made to the web servers.

9.2.2. Round-Robin Results (CGI)

The benchmarks were ran with the CGI filelist and the following was observed:

Total # of Clients
Connection Rate (Connection/s)
Little’s Load Factor
Average Latency (s)
Error Level (%)
Throughput (Mbits/s)

20
69.38
19.93
0.2870
0.0
28.49

30
78.68
29.92
0.3800
0.0
32.31

40
83.08
39.90
0.4800
0.0
34.12

50
86.54
49.85
0.5760
0.0
35.54

60
87.94
59.81
0.6800
0.0
36.11

70
88.32
69.76
0.7900
0.0
36.27

80
89.34
79.66
0.8920
0.0
36.69

90
89.75
89.64
0.9990
0.0
36.85

100
88.76
99.48
1.1210
0.0
36.45

Table 8
The connection rate increased as the number of clients increased, as expected. At 100 web clients the overall performance started to degrade in connections per second, latencies, and throughput.

9.2.3. Round-Robin Results (Mixed)

The combination of CGI and HTML benchmarks were also used to measure web server performance as follows:

Total # of Clients
Connection Rate (Connection/s)
Little’s Load Factor
Average Latency (s)
Error Level (%)
Throughput (Mb/s)

20
101.66
19.92
0.1960
0.0
41.79

30
115.18
29.91
0.2600
0.0
47.35

40
122.83
39.85
0.3240
0.0
50.50

50
125.68
49.81
0.3960
0.0
51.67

60
129.84
59.77
0.4600
0.0
53.38

70
130.97
69.72
0.5320
0.0
53.84

80
134.02
79.65
0.5940
0.0
55.10

90
134.51
89.60
0.6660
0.0
55.30

100
137.99
99.50
0.7210
0.0
56.73

Table 9
As the data indicates using the default filelist the work placed upon the virtual web servers did not overload these servers. This is seen by looking at the through-put and connection rate. They never lowered as the clients were increased.

9.2.4. Round-Robin Comparisons

It is interesting to observe the performance increase of round-robin with three virtual web

servers as opposed to the single web server.

Figure 9
The results show that the single web server was loaded as the performance never increased. Where as the virtual web server set increased as the number of web clients increased.

The next figure compares the differences of round-robin and single web server bench marks for CGI.

The difference is less for CGI than HTML. This is due to the fact that the web server is doing more work processing CGI than HTML. Notice the plateau of the round-robin server results as the web clients increase to 80 and then dips at 100.

Figure 10
The following graph depicts the results of combining HTML and CGI.

Figure 11
The mixture of HTML and CGI created a smaller difference than just HTML, because of the introduction of CGI requests. The single server is loaded much more than the three virtual servers as the results dip after 20 web clients.

9.3. Virtual Web Server Results (Dynamic)

After the repetitive tweaking of the dynamic algorithm the benchmark performances increased significantly. These following sections list the various WebStone benchmarks performed when using the dynamic algorithm.

9.3.1. Dynamic Results (HTML)

The results that follow were from tests using the HTML filelist as the single and round-robin results used, the performance increase is noticeable even when comparing HTML benchmarks.

Total # of Clients
Connection Rate (Connection/s)
Little’s Load Factor
Average Latency (s)
Error Level (%)
Throughput (MBits/s)

20
164.60
19.91
0.1210
0.0
67.75

30
181.49
29.87
0.1648
0.0
74.70

40
189.21
39.82
0.2106
0.0
77.88

50
200.84
49.77
0.2479
0.0
82.67

60
206.16
59.71
0.2898
0.0
84.86

70
208.47
69.57
0.3348
0.0
85.80

80
216.84
79.55
0.3671
0.0
89.25

90
216.04
89.38
0.4146
0.0
88.92

100
219.12
99.36
0.4541
0.0
90.19

Table 10
When compared to the round-robin the results are significant, ~5 - 9 Mbs difference in throughput. As expected, latency was less for dynamic than round-robin (~0.01 – 0.03s). The connection rate is increased at ~13-19 connections per second more for the dynamic algorithm.

9.3.2. Dynamic Results (CGI)

The CGI filelist used in both the single and round-robin benches were used again to test the dynamic algorithm. The following are the results of these tests:

Total # of Clients
Connection Rate (Connection/s)
Little’s Load Factor
Average Latency (s)
Error Level (%)
Throughput (MBits/s)

20
77.82
19.92
0.2566
0.0
31.96

30
84.59
29.88
0.3544
0.0
34.73

40
89.82
39.84
0.4438
0.0
36.88

50
91.28
49.77
0.5451
0.0
37.48

60
92.26
59.73
0.6474
0.0
37.88

70
92.24
69.65
0.7551
0.0
37.88

80
93.05
79.57
0.8551
0.0
38.21

90
92.96
89.48
0.9626
0.0
38.17

100
93.46
99.32
1.0607
0.0
38.45

Table 11
With CGI benchmarking, a noticeable performance increase is made when compared to the round-robin results. The throughput had an increase even when 100 web clients were benched, unlike the round-robin results, which slumped after 100 clients. Connections per second increased approximately 5 – 8 and throughput increased 2 to 3 Mbs. Latency also decreased for CGI tests by 0.03 – 0.06 seconds when compared to round-robin.

9.3.3. Dynamic Results (Mixed)

Again, tests were performed using the same mixed (CGI and HTML) filelist used for the single and round-robin web servers. The following depicts the results of using the mixed filelist:

Total # of Clients
Connection Rate (Connection/s)
Little’s Load Factor
Average Latency (s)
Error Level (%)
Throughput (MBits/s)

20
112.36
19.90
0.1770
0.0
46.19

30
123.78
29.84
0.2420
0.0
50.89

40
132.35
39.80
0.3010
0.0
54.42

50
139.21
49.72
0.3575
0.0
57.23

60
142.15
59.67
0.4195
0.0
58.44

70
143.71
69.58
0.4840
0.0
59.09

80
145.20
79.48
0.5475
0.0
59.70

90
145.08
89.34
0.6160
0.0
59.64

100
147.01
99.28
0.6755
0.0
60.44

Table 12
Connections per second increased ~9-10 when compared to round-robin. Latency decreased ~0.02 - ~0.05 seconds and throughput increased ~4 Mbs when comparing the two.

9.3.4. Dynamic Load Balancing Comparisons

The following graphs compares round-robin with the dynamic algorithm.

Figure 12
As the above graph depicts the dynamic approach consistently out performs the RR (round-robin) approach. It’s obvious to note that the faster server (CPU, network, etc) as opposed to the slower servers was chosen more often during the tests.

The following graph depicts the results when testing CGI for round-robin and the dynamic algorithm.

Figure 13
The results from CGI was noticeably different in performance when compared to RR after 80 clients. As the graph indicates RR diminishes where as the dynamic algorithm still increases in performance.

The mixed benchmarks comparisons were observed between round-robin and the dynamic algorithm.

Figure 14
The results between the dynamic and round-robin algorithms mirror each other in the above results. They both jump initially and then start tapering off as the number of web clients increase.

9.4. Virtual Web Server Results with Other Work Loads

Tests were also performed that would stress particular machines while other machines were not stressed. The stress tester used was Byte Unix benchmarks. As expected the dynamic load-balancing algorithm outperformed the round-robin implementation. The idea was that round-robin would pay heavily for always choosing the machine(s) that were loaded.

During the Byte benchmarks the following was observed:

Dhrystones: Affects runnable queue by ~3, CPU idle time ranges from 94 to 0%, page-outs ranged from 126 to 0.

Shells (1 concurrent): Runnable queue ~2, CPU idle time was only changed in the single digits, and page-outs were between 98 to 0.

Shells (4 concurrent): Affected the runnable queue by ~15, CPU idle time ranged about 30%, and page-outs were greater than 100.

Shells (8 concurrent): The runnable queue got up to 16, CPU ranged by 30%, page-outs were greater than 100, and processes blocked waiting for IO were around 30.

Since the dynamic algorithm did observe and take into consideration these performance characteristics the algorithm didn’t pick the systems that had extreme values.

9.5. Caveats

There were a number of caveats during the benchmarks of the software that produced failure of the system, application, and poor performances by the dynamic algorithm.

One interesting behavior was the fact that the tests were ran originally by having multiple nameservers declared in resolv.conf:

domain hobbit

nameserver 128.198.2.209

nameserver 128.198.1.250

nameserver 128.198.9.118

This had the affect of rolling over to the campus’s name servers if a time-out occurred for the locally enhanced DNS server. The time-outs are described as follows
:

Retry
Name Server Configuration

1
2
3

0
5s
(2x)5s
(3x)5s

1
10s
(2x)5s
(3x)3s

2
20s
(2x)10s
(3x)6s

3
40s
(2x)20s
(3x)13s

Total
75s
80s
81s

Table 13
With three DNS servers configured the resolver would try to resolve to the enhanced nameserver entry, but the server was busy during the benchmarks and did not respond in time. A time-out would occur 5 seconds later, according to the table. After the time-out the resolver would resolve to the campuses DNS secondary server. The resolve of gandalf would result in a query response of gandalf.uccs.edu instead of gandalf.hobbit. This caused the benchmark to hang and return various error messages. The solution was to comment out the nameserver entries with semi-colons:

domain hobbit

;nameserver 128.198.2.209

;nameserver 128.198.1.250

nameserver 128.198.9.118

This kept the resolver from returning inconsistent host names and benchmark hangs.

Another problem arose after making modifications to the benchmark to allow more than one resolve. As an example, when running a benchmark with 100 web clients the current number of resolves was over 3,000 per minute or 50 a second. This was overwhelming the enhanced DNS server, as a result the resolves by the multiple clients were timing out. The side-affect is that the client resolver was not resolving with a gethostbyname() at all. The error was that the host name was not found and the benchmark would again fail. The solution was to reduce the number of resolves made by the web clients. The amount of resolves previously made was not advantageous, being that the statistical data of the web servers was not being updated within a fraction of second, but approximately every second. The solution was the random resolves described in section 9.1. This behavior cut back the number of resolves by ten times. The enhanced DNS server was not timing out after the modifications and the benchmark was working properly.

Initially there were only three machines for use in the thesis. The web clients and the web servers were on the same machine. The problem is that there is a dependency between the web client processes and the web server processes. Each one is competing for the same time slices on the same CPU. Compounded with this is the fact that the web clients sometimes were requesting services from the same web server on the same machine. In another words the requests were not going over the physical network. This did not emulate a real world environment which usually has the web clients separated from the web server. The web clients were placed on to seven separate machines as they became available at Sun’s network laboratory.

Another caveat observed early in benchmarking was the result of running an X windows manager (fvwm) on the systems when performing benchmarks at the University and when running benchmarks through telnet sessions from home (remotely). The performances greatly diminished at campus as compared to running them from home. The problem is that the window manager and its' components took around 5 MB. The web servers were hampered by only having 16 MB of physical memory therefore the additional 5 MB caused the OS to swap to disk more frequently than not having the window manager running. When running the benchmarks from the University the solution was to not start up the window manager and just run the benchmarks from a console login.

During the benchmarks on the Sun systems problems were encountered with the benchmark application hanging. Later it was discovered that the webmaster code was running out of open file descriptors. The solution was to increase the current number of file descriptors from 64 to 128 by setting kernel variables in /etc/system and rebooting the system:

set rlim_fd_cur=128

set rlim_fd_max=1024

The benchmark worked without hanging after this.

Another problem that was encountered while running the benchmarks on the Sun boxes was that the web server logging and DNS logging was quickly filling partitions on the drive causing file systems to reach 100% capacity. The disk access in order to update these log files would also slow the benchmark results. The logging was deactivated during the tests.

The versions of OS running on the Sun boxes also had a naming service caching daemon (nscd) running by default. The cache contains entries such as host entries, password, and group records. The cached host entries would be populated with the host name and IP address pair. If the host entry is found in cache the resolver would return the associated IP address in cache. As a result the resolver would not go out onto the network to resolve the dynamic IP address from lbnamed. The solution was to kill the nscd processes so that the host caches would not be used.

Since these machines were shared during normal working hours with fellow Sun employees, a mechanism was needed to back out their changes and replaced with the changes for running the thesis. Scripts were made to install and uninstall these configurations.

Initially the WebStone test results were very erratic. During certain run times the connection rates were low, response times were high, and through-put were low during the times in which larger pages were selected more frequently than the smaller to mid-size pages. WebStone randomly selects weighted pages to use. For instance one complete set test results between round-robin and the dynamic algorithm yielded the selection of an additional 138 5.2 MB pages to be selected for the dynamic test runs. So an additional 138 * 5.2 MB = ~692 MB was requested from dynamic as opposed to round-robin. Hence the performance degradation of the dynamic test results. To alleviate this behavior a single mid-size page was used in order to keep the selected page size consistent during round-robin and dynamic test runs. As a result the test results were consistent

CHAPTER 10

10. Conclusions and Further Work

A statistics gathering, prediction algorithm, and naming service implementation was created in order to verify the idea of an efficient/dynamic client-server model specifically for web server technologies. An analysis of efficiency/improvements was made. A comparison between the round-robin model and dynamic model was also made.

The dynamic model out-performed round-robin for every type of requests and any number of web clients used. The advantage of dynamic is clearly seen in that it adjusts it’s decision in which web server is least loaded and considers past performance characteristics, thus greatly improving client’s response times, through-put, and connection rates.

Future work would include the reimplementation from Perl to C or some other compiled language. Since Perl is an interpreted language the speed of execution is much slower than a traditional compiled language, such as C. This would allow more updates without affecting system performance as an interpreted language would.

In order to optimize the statistic retrievals the modified application should read the statistics directly from kernel’s memory. This is more efficient than forking processes such as vmstat. This would produce less work for the system, the advantage would be that the collector agents could obtain more frequent statistics with decreased overhead. The timely statistics could produce more current states of the system.

Future implementations would include the use of more machines. The ideal situation would use clients off of different networks over LAN and WAN with the web servers off of a shared segment or switch. This scenario would allow internetwork simulations rather than intranetwork. With the new topology, network bandwidth bottlenecks would show and process bottlenecks would diminish.

Certain operating systems such as Solaris allow TCP stack configurations on the fly. Settings like tcp_rexmit_interval_min, tcp_rexmit_interval_initial, tcp_conn_req_max_q, and tcp_close_wait_interval could be tuned specifically for bursty HTTP traffic. Along with the different systems, different web servers would also be used. The dynamic load balancing algorithm would not assume that the servers are equal in performance unlike RR.

Another step to take would be to develop an algorithm that calculates the HTTP connection request queue on the system. The web server statistics gathered for the thesis only gave the immediate data.

In order to speed up the update intervals for the statAgents this application could be rewritten using multiple threads. This would allow the application to get different statistics simultaneously. Therefore reducing the latency between web server updates.

A more adaptive implementation would use a stimulate-response algorithm such as simulated annealing or a genetic algorithm to recalculate the weights dynamically. This would be highly advantageous when switching the algorithm to new environments.

Future work would also include the integration of DNS and load balancing as described in RFC 1794.

Also the implementation of a disk IO performance measurement mechanism would glean information on systems that are IO bound.

11. Bibliography

Books:

Albitz, Paul and Cricket Liu. DNS and BIND. 2nd Edition. Sebastopol, CA: O’Reilly & Associates, Inc., 1997.

Beck, M, H Bohme, M Dziadzka, U Kunitz, R Magnus, and D Verworner. Linux Kernel Internals. Harlow, England: Addison-Wesley, 1996.

Kirch, Olaf. Linux Network Administrator’s Guide. Sebastopol, CA: O’Reilly & Associates, Inc., 1995.

Laurie, B. and P. Laurie. Apache: The Definitive Guide. Sebastopol, CA: O’Reilly & Associates, 1997.

Srinivasan, Sriram. Advanced Perl Programming. Sebastopol, CA: O’Reilly & Associates, Inc., 1996.

Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Reading, MA: Addison-Wesley Publishing Company, 1994.

Stevens, W. Richard. TCP/IP Illustrated, Volume 3. Reading, MA: Addison-Wesley Publishing Company, 1996.

Tanenbaum, Andrew S. Operating Systems, Design and Implementation. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1987.

Wall, Larry, Tom Christiansen, and Randal L. Schwartz. Perl. 2nd Edition. Sebastopol, CA: O’Reilly & Associates, Inc., 1996.

Welsh, Matt, and Lar Kaufman. Running Linux. Sebastopol, CA: O’Reilly & Associates, Inc., 1995.

Wright, Gary R. and W. Richard Stevens. TCP/IP Illustrated, Volume 2. Reading, MA: Addison-Wesley Publishing Company, 1995.

Articles:

M. Colajani, P. S. Yu, and D. M. Dias, “Scheduling Algorithms for Distributed Web Servers.” Proceedings Of The 17th International Conference On Distributed Computing Systems. 169-75, 1997.

P. Mockapetris, “RFC 1035: Domain Names - Implementation and Specification.” Network Working Group. November 1987.

Schemers, Roland J., “lbnamed: A Load Balancing Name Server in Perl.” 1995 LISA IX. September 17-22 1995.

Dahlin, Michael, “Interpreting Stale Load Information.” UTCS Technical Report TR98-20

12. Appendix A

To run the WebStone benchmark with enhanced DNS:

First, start the lbnamed process on your DNS primary (gandalf):

~smemery/thesis/lbnamed-1.1/perl5/lbnamed.rc

This is will start lbnamed and will listen to port 53 for any DNS requests.

Second, setup the web client machines to resolve to the local

primary DNS server (gandalf):

In the /etc/resolv.conf file:

domain uccs.edu

nameserver 128.198.2.209

nameserver 128.198.1.250

nameserver 128.198.9.118

Change "uccs.edu" to "hobbit": this searches the hobbit domain by default.

Comment out the other nameserver entries by using ";", if gandalf is the enhanced DNS server then leave this uncommented.

After this resolv.conf should contain the following:

domain hobbit

;nameserver 128.198.2.209

;nameserver 128.198.1.250

nameserver 128.198.9.118

Third, start the gatherer agent on the same machine that the DNS primary

is on:

~smemery/thesis/wlb/gather.pl

Fourth, start the collector agents on each of the web servers:

~smemery/thesis/wlb/statAgent.pl <gateway> <server> <updates>

where <gateway> is a host point of reference for network latencies.

where <server> is the host that is running the gatherer daemon.

where <updates> is the number in seconds, of reporting frequency.

Fifth, configure the Web Stone benchmark to test the dynamic algorithm:

For ~smemery/WebStone/conf/testbed it should look like the following:

BENCHMARK PARAMETERS -- EDIT THESE AS REQUIRED

ITERATIONS="1"

MINCLIENTS="20"

MAXCLIENTS="20"

CLIENTINCR="20"

TIMEPERRUN="10"

SERVER PARAMETERS -- EDIT AS REQUIRED

PROXYSERVER=""

SERVER="best.hobbit"

PORTNO=8080

SERVERINFO=dmesg

#OSTUNINGFILES="/var/sysgen/master.d/bsd"

OSTUNINGFILES=""

WEBSERVERDIR="/usr/doc/apache/examples"

WEBDOCDIR="/var/www"

WEBSERVERTUNINGFILES="$WEBSERVERDIR/httpd.conf"

WE NEED AN ACCOUNT WITH A FIXED PASSWORD, SO WE CAN REXEC

THE WEBSTONE CLIENTS

CLIENTS="bilbo frodo gandalf"

CLIENTACCOUNT=guest1

CLIENTPASSWORD=password1

CLIENTINFO=dmesg

TMPDIR=/tmp

Possibly system-specific

RCP="rcp"

RSH="rsh"

The important variables to notes here are:

SERVER: This should refer to "best.hobbit" when using the dynamic algorithm.

"round.robin.hobbit" when refering to the round-robin algorithm.

A single host name can also be specified when testing a particular host.

PORTNO: This specifies the port number that the web servers

are listening on.

CLIENTS: This should list all the web clients used in the bechmark.

Another configuration file to modify is:

~smemery/WebStone/conf/filelist

This file will contain the URLs that the benchmark will run against:

Modified sample model; fully dynamic content

/cgi-bin/smemery/cgi-send?size=500 350

/cgi-bin/smemery/cgi-send?size=5125 500

/cgi-bin/smemery/cgi-send?size=51250 140

/cgi-bin/smemery/cgi-send?size=512500 9

/cgi-bin/smemery/cgi-send?size=2624000 1

/cgi-bin/smemery/cgi-send?size=5248000 1

cgi-send is the CGI application that takes the size parameter for the

file size to transfer to the client. The last column lists the ratio

that the web client will pick that particular entry.

Once the configuration files have been modified and the web servers running then the webstone benchmark can be invoked with:

~smemery/WebStone/webstone

Once the bencmark is completed the benchmark will list it's results.

Results can be listed from previous runs by using:

~smemery/WebStone/webstone -results

Web Client

(Browser)

Web Server

2. HTTP GET for URL

via TCP (port 80)

1.Resolve URL

3. Transfer of data

(HTML text)

Web Client

(Browser)

2. HTTP GET for URL

via TCP (port 80)

3. Transfer of data

(HTML text)

1.Resolve URL

4

Web Clients

Web Servers

Statistics Agent

1

Naming Service (DNS)

Collector

Predictor

2

3

5

6

Web Server

Web Server

Web Server

Machine

Machine

Machine

Machine

Web Server

Master Process

Child Process

Child Process

Child Process

HTTP Server

Web Server Agents

Collector

File

� EMBED MSGraph.Chart.8 \s ���

� EMBED MSGraph.Chart.8 \s ���

� EMBED MSGraph.Chart.8 \s ���

� EMBED MSGraph.Chart.8 \s ���

� EMBED MSGraph.Chart.8 \s ���

� EMBED MSGraph.Chart.8 \s ���

� EMBED MSGraph.Chart.8 \s ���

� W. Richard Stevens, TCP/IP Illustrated, Volume 3 (Reading, MA: Addison-Wesley Publishing Company, 1996), 161.

� , Paul Albitz, et al. DNS and BIND. 2nd ed. . (Sebastopol, CA: O’Reilly & Associates, Inc., 1997), 4.

� M. Colajani, et al. “Scheduling Algorithms for Distributed Web Servers”, Proc. Of 17th International Conf. On Distributed Computing Systems (1997): 169-175.

� Matt Welsh, et al. Running Linux. (Sebastopol, CA: O’Reilly & Associates, Inc., 1995), 1.

� B. Laurie, et al. Apache: The Definitive Guide. (Sebastopol, CA: O’Reilly & Associates, 1997), 1.

� WebStone is a benchmarking utility that measures HTTP and CGI server performance. Refer to http://www.mindcraft.com/webstone for more information on this benchmark utility.

� http://www.sun.com/sunworldonline/swol-03-1996/swol-03-perf.html

� Apache, the Definitive Guide, p. 46.

� http://eunuch.ddg.com/LIS/CyberHornsS96/j.rubarth-lay/PAPER.html

� Roland J. Schemers. “lbnamed: A Load Balancing Name Server in Perl.” 1995 LISA IX (September 17-22 1995): 1.

� http://www.faqs.org/rfcs/rfc1035.html

� DNS and Bind, p. 101.

iii

_1014663856

_1015272374

_1015681351

_1014896114

_1014661774

_1014661786

_1014661681

