Dynamic Load Balancing of Virtual Web Servers

by

Shawn M. Emery

Master Thesis

Advisor: Dr. Chow

October 29, 1997

�� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc404001360 � PAGEREF _Toc404001360 �2��

2. Methodology	� GOTOBUTTON _Toc404001361 � PAGEREF _Toc404001361 �Error! Bookmark not defined.��

2.1. Single Web Server Benchmarking	� GOTOBUTTON _Toc404001362 � PAGEREF _Toc404001362 �4��

2.2. Web Server Agents	� GOTOBUTTON _Toc404001363 � PAGEREF _Toc404001363 �4��

2.3. Collector Daemon	� GOTOBUTTON _Toc404001364 � PAGEREF _Toc404001364 �4��

2.4. Prediction Algorithm	� GOTOBUTTON _Toc404001365 � PAGEREF _Toc404001365 �5��

2.5. Enhanced DNS scheduling	� GOTOBUTTON _Toc404001366 � PAGEREF _Toc404001366 �5��

2.6. Virtual Web Server Benchmarks	� GOTOBUTTON _Toc404001367 � PAGEREF _Toc404001367 �5��

3. Expected Results	� GOTOBUTTON _Toc404001368 � PAGEREF _Toc404001368 �5��

4. Bibliography	� GOTOBUTTON _Toc404001369 � PAGEREF _Toc404001369 �5��

5. Signatures	� GOTOBUTTON _Toc404001370 � PAGEREF _Toc404001370 �6��

��Introduction

With today’s emerging web centric applications and data the need for low latency web server transfers has increased. The following diagram depicts the traditional web client-server model. As you can see by the model there is a central point of access/failure for the web server resource.

�����

�

�

�

One way to improve the reliability/speed between the web browser and server is to have redundant servers or virtual web servers. The servers are logically grouped into a host specific URL (Universal Resource Locator). The client machines resolve the web server host IP address via a naming service, such as DNS [Mock87, Albi97]. One simple way to improve the load balance among the web servers is to use Round-Robin DNS (RRDNS) where DNS returns the IP addresses of the web servers in a round-robin fashion. The DNS can also be modified to collect information about the loads of web servers and return the IP address of the name requests according to the loads. The IP address of a lightly loaded server will be returned by DNS more frequently than the web server that are more heavily loaded. As a result the work load will be evenly distributed among the web servers in their virtual domain. The following diagram describes this schema:

����

��

���

�

��

�

�

Agents gather system data and web server data related to the performance of the system

Daemon collects data sent by web server agents

Daemon uses a prediction algorithm to weight each web server

Web client requests resolution of web server’s IP address

Naming service returns the best web server from it’s weighted list

Web client requests data from IP address returned by naming service

 �Colajani, Wu and Diaz [Cola97] observed that due to name caching, the requests from a highly populated local gateway will select a specific web server during the Time-To-Live (TTL) of the name entry in their local name server and thus resulted in an unbalance load among the web servers. They performed a simulation study and found that a two-tier round-robin DNS scheduling scheme (RR2-DNS), which estimates the server load by computing an estimate volume of requests from specific local gateways and adjusts the name mapping according to the overload alarm reports from the web servers, performs very well. One surprising simulation result was that the RR2-DNS scheduling scheme which uses the detailed information from the web server, such as queue length, does not perform as well using the simple overload alarm reporting. They however did not go over the detail of the simulation assumptions and results.

The goal of this study is to investigate the web status collecting mechanisms, to design a modified DNS with scheduling algorithms based on web status reporting, to analyze the importance of status parameters, the effectiveness of the DNS scheduling algorithms, and the performance of the load balancer for virtual web servers based on an enhanced DNS.

Infrastructure

The underlying system involves a number of hardware and software components. The university was supportive in my efforts to acquire the necessary hardware to perform the thesis. Once the hardware was acquired, I configured the software on all the systems. The components consists of the following:

	Hardware: 7 Pentium 100 MHz PC’s

		1 Used as the naming service, collector, and web server.

		2 Used primarily as web servers.

		4 Used as client machines, requesting data.

	Network: Web servers: HP 100 VG AnyLAN.

		 Clients: 10 Base T Ethernet.

	Operating System: Linux [Welsh95,Kirch95].

	Web Servers: Apache [Laurie97]

	Web Benchmark: WebStone�

Operating System Configuration

The initial step of setting the components was to install Linux (a freely distributed flavor of the Unix operating system). The Linux distribution that was chosen was Debian, due it’s timely updates of new versions of software or packages. Packages allow the management of software in the Linux environment.

The Pentium machines were intended to be shared with Windows95 and MSDOS, so a process of booting to multiple operating systems was needed. In order to do this I did the following:

	Raw-write a boot image to a 3.5” floppy disk (the bootable kernel).

	Raw-write a root image to a 3.5” floppy disk (the root partition for access to the system’s files).

	Repartition the hard-drive using FIPS (a nondestructive file system partition utility).

		Linux needs two partitions one for virtual memory swap and the other for the operating 			system installation.

	Reboot the machine using the Linux boot disk to load the kernel into memory.

	Setup the swap partition and Linux OS partition using Linux’s fdisk.

	Run “setup” in Linux (setups the devices , file systems, mounts root file system).

	Start liloconfig to configure the /etc/lilo.conf file (lilo is the Linux loader that configures the system 			to boot to multiple operating systems).

	Run lilo -r /mnt when booting from floppy drive and the hard drive contains the root device.

After doing this, reboot the machine to Linux. Unfortunately at this point none of the device drivers and specific configurations to the system will be in place. At this point it will be necessary to recompile the Linux kernel. This accomplished by the following commands entered in the /usr/src/linux subdirectory:

	make config (will prompt the user for any device driver and kernel configurations).

	make dep (will determine each dependency of the targets in the makefile).

	make clean (will remove an object files that were previously made through a compile).

	make (will compile the source files and link the various executables).

	make zImage /usr/src/linux (will create the compressed linux kernel image).

	The above places the compressed kernel image in this subdirectory:

		/usr/src/linux/arch/i386/boot/zImage

	In the /etc/lilo.conf file make sure the following is in place:

		image=/<newkernel>

		label=<newkernel>

		read-only

	where <newkernel is the new kernel image that you just created.

	lilo (this will update the Linux loader configurations in /etc/lilo.conf).

	init 6 or reboot (will reboot the machine).

Web Server Configuration

The operating system version used was Debian Linux 1.1 running the 2.0.6 kernel. Once this was installed the next step was to install the web servers on the three Linux machines. Apache was chosen because of it’s performance and accessibility (free). Debian packages were found at www.debian org. The Apache package downloaded and installed was version 1.2.4-1.

Some of the options that are inherent of this version of Apache are inclusive of the 2nd generation web servers. One aspect is the keep-alive protocol, implemented in HTTP/1.1. The keep-alive protocol allows a number of HTTP requests in a single connection. Obviously this is a much more efficient protocol in that a connection does not have to be destroyed and re-established for a single page every time a reference is made. For example, a page that has images and references to other data had to establish a new connection for every image/data that the page referenced. This protocol was implemented in the earlier version of HTTP (HTTP/1.0). For the initial configuration of Apache the KeepAlive variable was set. The KeepAliveTimeout variable was set to fifteen. This the time that that the server will time for another request

Therefore there are a number of servers running (preforked). The configuration used here is to use the dynamic feature of Apache web server processes. The StartServers variable is used initially to fork off the specified number of servers. The number used initially for the thesis was five. Two other variables comprise the dynamic number of servers currently running. The two are MinSpareServers and MaxSpareServers. If the number of servers that are waiting for requests is less than MinSpareServers then a new server is forked until MinSpareServers is reached. The number used initially for the thesis is five. If there are more than MaxSpareServers waiting for requests then the extras will eventually be left to die (time-outs). This variable was initially set to ten. The maximum of web servers running on a single machine was initially set to 150 for the thesis.

Apache does have the option of using Virtual Hosts. Virtual Hosts allow the web server to respond to multiple IP addresses or names. However, the operating most support virtual interfaces as well. Virtual interfaces consists of multiple interfaces that have different IP addresses associated with them. A single machine can respond to multiple IP addresses. Linux does support virtual interfaces. I thought about this option for the implementation, but the nature of the virtual interfaces is that the IP addresses are not dynamic or not very efficiently dynamic. There would be no way of incorporating the dynamic logic with the virtual interfaces and virtual hosts. There still needs to be a way of picking the best host and returning this to the client, this could all be done through DNS. So DNS would send a specific address, there would be no need to have multiple IP addresses associated with each of the web servers.

The above variables are defined in the /etc/apache/httpd.conf file. This file also contains other variables dealing with time-outs, etc.

Web Server Benchmark Configuration

Once one of the Apache web servers was up and running I ran a benchmark on the server using WebStone. WebStone is a benchmarking utility to measure the performance of web servers by accessing various sized files on the web server. WebStone will be talked about in greater detail in Single Web Server Benchmarks.

Once the infrastructure was in place I started on the following six phases of implementation.

Single Web Server Benchmarking

The first phase was to measure the performance of web client-server latency of web client requests made to a single web server. This can be modeled to for up to N web servers. By using virtual servers I didn’t expect a performance increase greater than having logically separated web servers. WebStone is the benchmarking tool used for both the single and virtual web servers.

WebStone’s architecture consists of a master web process and children web processes. The master web process is responsible for reading the command line arguments given to WebStone and the test-bed configuration file used to define the parameters of the benchmark. The master web process then rexecs the web child processes. The web children will read their command line arguments given by the master web process and establish a connection to the master web process. After all the child processes have reported back to the master process the master process signals the children to start the benchmark. the following diagram depicts this architecture:

�

�

�

��

�

�

���

�

The test bed file consists of some of the following parameters:

	Iterations of test

	Minimum number of clients

	Maximum number of clients

	Increment number of clients

	Time per run for each client

	Machine names that each of the clients will run on

WebStone measures connection rate averages (connections per second), average latency (seconds), throughput average for all connections (megabits per second), and number of pages/files retrieved.

To obtain further information refer to www.sgi.com/Products/WebFORCE/WebStone/paper.html.

Web Server Agents

The second phase is to create the web server agents that run on the web servers. These agents are responsible for gathering local system statistics such as CPU usage, runnable queue lengths, pages being swapped out of physical memory, and network latency to a particular gateway. The web server agents implementation were written in Perl [Srini96, Wall96]. Perl is an excellent language for extracting textual information. The information to be extracted in this case is standard out given by the various system statistical collectors and data sent through the network.

System Statistics

One useful utility found on the Unix operating systems, including Linux, is vmstat. Vmstat provides statistical data on the system’s performance relating to processes, memory, swap, IO, system calls, and CPU. Vmstat is invoked by the following command:

vmstat 5 2

where five is the frequency of time to gather the system data and two would be the number of times to gather the system data every five seconds, in this case.

The output produced with the command above would look like the following:

procs����memory���swap��io��system���cpu��r�b�w�swpd�free�buff�si�so�bi�bo�in�cs�us�sy�id��0�0�0�0�980�7924�0�0�0�0�101�9�1�1�99��0�0�0�0�980�7924�0�0�0�0�101�8�1�1�98��

The following sections describe the data produced by vmstat and their importance.

Process Data (procs)

Process data includes the number of processes waiting for run time (r), also know as the runnable queue. These are the processes that are waiting for their time slice in the process queue. This is a good indication of performance of the system. If the system frequently has a number of processes in the runnable queue this means that the system does not have enough computational speed in order to process all requests. The command also produces the number of processes in uninterruptable sleep (b) and the number of runnable processes swapped out of main memory (w). The processes that may be in uninterruptable sleep are those that may be waiting for IO for instance. Processes that are swapped out of main memory are indicative of a heavy system load or system that is crippled by not having enough of main memory.

The solution for problems in this area could be a crippled CPU and a low amount of main memory. Upgrading the CPU or memory maybe a good idea.

Memory Data (memory)

Memory data consists of the amount of virtual memory used in kilobytes (swpd). This is the size of data that is being stored to disk. This a good indication of performance. If there is a large number here then the disk is being used frequently. This equates to slower access times since disks are much slower than main memory. Free memory (free) is the amount of idle memory not being used. Buffer is the amount of memory saved in main memory (buff).

The solution for problems experienced here may be lack of physical main memory. Increasing the size of main memory here would be called for if any problems would occur.

Swap Data (swap)

Swap data consists of two components. One is the amount of memory that is swapped in from disk (si). This measurement is in kilobytes per second. This occurs before a process is executed, new pages associated with the process are paged into memory. The second set of data is the amount of memory swapped to disk (so). This also measured in kilobytes per second. Page outs are caused by having too little memory to hold all the processes memory, therefore the pages are swapped to disk. This causes performance degradation, being that the access time for disks are much greater than that of main memory.

The solution for problems experienced here may be lack of physical main memory. Increasing the size here would be called for.

IO Data (io)

Data corresponding to this are blocks sent to a block device (bi). This is measured in blocks per second. The second set of data is the number of blocks that is received from a block device (bo). A block device consists of hard drives, CDROMs, etc. Every time there is access from the kernel to these devices these data are updated.

System Data (system)

The system data includes the number of interrupts per second (in) and the number of context switches per second (cs). The number of interrupts is including the number of interrupts caused by the clock and the various hardware devices that wish to converse with the operating system. The number of context switches is caused by the number of processes that are being swapped out of execution. An unusual amount of context switching is not good, because the process being swapped out of execution has to save it’s registers, handle memory maps, etc. An unusual amount of interrupts is not too good as well. Every time the operating system receives an interrupt the kernel has to process it.

CPU Data (cpu)

The CPU data consists of the percentage of user time (us), system time (sy), and idle time (id) on the CPU. These data determine how busy the system is currently in. User time the percentage of time spent executing user processes . The system time is the time spent executing system processes. Idle time = (100 - (system time + user time)). A low percentage of idle time indicates that the CPU is constantly busy, meaning there is just a large work load on system.

Network Statistics (ping)

A simple utility to measure latency on a network is ping. Network latency is the round-trip time it takes to send a packet to another host. Ping utilizes ICMP’s echo request and echo response. The following command could be used to get this information:

ping -c 5 <hostname>

where the -c option specifies the number of time to ping the host <hostname>.

The above command would produce the following output:

PING gandalf.uccs.edu (128.198.9.118): 56 data bytes

64 bytes from 128.198.9.118: icmp_seq=0 ttl=248 time=202.3 ms

64 bytes from 128.198.9.118: icmp_seq=1 ttl=248 time=220.0 ms

64 bytes from 128.198.9.118: icmp_seq=2 ttl=248 time=210.0 ms

64 bytes from 128.198.9.118: icmp_seq=3 ttl=248 time=220.0 ms

64 bytes from 128.198.9.118: icmp_seq=4 ttl=248 time=440.0 ms

--- gandalf.uccs.edu ping statistics ---

5 packets transmitted, 5 packets received , 0% packet loss

round-trip min/avg/max = 202.3/258.4/440.0 ms

As you can see with the above output ping lists the individual statistics as it receives packets as well as summary statistic. The summary contains the minimum time a packet took to travel round-trip, the maximum time, and the average time during the five packet spree.

Web Server Statistics

Note that there are two basic ways to collect server load information: internal reporting or external probing. Some servers such as the Apache web server can be configured to provide status reporting periodically through an API (Application Programming Interface) called server-status. The statistics reported by Apache web server include CPU load, the number of spare servers, and bytes transferred. There is no report on queue lengths and web page sizes to be transferred. There are web servers such as Microsoft IIS that supports SNMP queries for status. But the dynamic status information provided is rather limited. The web server agent can also send requests to the web server and measure the response time. But this approach is rather intrusive and generates additional loads.

Web Server Agents

System, network, and web server statistics are gathered through what I call web server agents. The agents are continually running on each virtual web server. An excellent language to parse text generated by the above mentioned statistic gathering commands is Perl [Wall96] (Practical Extraction Language). The following sections explain the implementation of the web server agents in Perl.

vmstat

There is a number of data elements that need to be extracted from vmstat. I define a major routine called processVmstat, as follows (Note comments are delimited by “#”):

sub processVmstat

{

	&processVmString(); # develop

	&processRunnable();

	&processCPU();

	&processSwapOut();

}

Vmstat is executed using the back-tick in Perl, like the following in processVmString:

sub processVmString

{

	$vmString = `vmstat 5 2`

	$vmString =~ s/\D+/\:/g;

	@vmElements = split(/:/. $vmString);

}

Line 4 replaces one or more joined alphas into “:”. Then line 5 splits the sets of digits into an array.

processRunnable, processCPU, and processSwapOut just index into the vmElements array to reference their respective data.

ping

Ping is handled in a similar way as vmstat was. processPing is the procedure that parses the ping output, as follows:

sub processPing

{

	$pingString = `ping -c 5 $gateway`;

	$pingString =~ s/[a-zA-Z]|\=|_|\:|\-|\%|\,|\(|\)//g;

	$pingString =~ s/\// /g;

	@pingElements = split(/\s+/, $pingString);

	$elements = scalar(@pingElements);

	$avgPing = $pingElements[$elements-2];

}

On line 3 $gateway is a reference host that would be the gateway host that connects to the Internet. This provides the localized network traffic indicator. With the “-c 5” ping produces five pings to the gateway machine. Line 4 and 5 replaces unwanted text returned by the ping command. The 6th line puts the separated digits into the pingElements array. Line 7 extracts the number of elements in the array, line 8 indexes the average ping of five in the array, and returns this value to avgPing.

server-status

In order to gather information in regards to web server specific information an API provided by the Apache web server is provided. In order to obtain the data provided by the API a TCP (Transmission Control Protocol) connection must be provided. This accomplished by the following:

sub configureTcpInterface

{

	local ($webServer, $httpPort = @_;

	$sockaddr = ‘S n a4 x8’;

	$clientHost = hostname;

	$clientPort = (getservbyname(‘wlbTcp’,’tcp’)) [2] unless $port =~ /^d+$/;

	$client = pack ($sockaddr, &AF_INET, $clientPort, (gethostbyname($clientHost)) [4]);

	$server = pack ($sockaddr, &AF_INET, $httpPort, (gethostbyname($webServer)) [4]);

	socket (S, &PF_INET, &SOCK_STREAM, (getprotobyname(‘tcp’)) [2]) || die “socket: $!”;

	bind (S, $client) || die “bind: $!”;

	connect (S, $server) || die “connect: $!”;

	select (S);

	$| = 1;

	select(STDOUT);

}

On line 3 $webServer is set to the local host name and $httpPort is set to the traditional 80. $sockaddr is set to ‘S n a4 x8’ on line 4. $clientHost is just assigned the host name of the local machine that web server is running on (line 5). The getservbyname(‘wlbTcp’,’tcp’) on line 6, grabs the port number 7778. This is the port number I arbitrarily assigned as the port number to bind to on the client side (reflected on line 10). The service is defined in the local /etc/services file with the following line:

	wlbTcp	7778/tcp		# web load balance services

Lines 7 and 8 pack the data that is used to bind and connect to the TCP socket, respectively. Lines 10 and 11 bind the client and attempts a connection to the server

After the connection to the TCP socket has occurred the next step is to send an HTTP GET command to the local web server, this is accomplished by the following code:

sub processWebStats

{

	local ($request = “/server-status”);

	print S “GET $request\n”;

	while (<S>)

		{

		$rps = $1 if (m|(\d+.\d+)\ requests/sec|);

		$busy = $1 if (m|(\d+)\ requests\ currently|);

		$idle = $1 if (m|(\d+)\ idle|);

		}

	close (S);

}

On line 3 the $request is the actual API that is executed on the web server. Line 4 sends the HTTP request “GET /server-status” to the Apache web server on the S socket (which we defined above). The following data is retrieved with the HTTP get command:

Apache Server Status for gandalf.uccs.edu

Current Time: Wed Dec 10 00:32:51 1997

Restart Time: Wed Dec 10 00:32:27 1997

Server uptime: 24 seconds

Total accesses: 0 - Total Traffic: 0 kB

CPU Usage: u0 s0 cu0 cs0

0 requests/sec - 0 B/second

1 requests currently being processed, 4 idle servers

____W...

.

.

.

While the above information is to be received on the socket S (line 5) extract the $rps (requests per second), $busy (number of busy servers), and $idle (number of idle servers) on lines 7 through 9.

Collector Daemon

The third phase consists of creating a daemon that collects the statistics gathered by the web server agents via socket application coding. The daemon associates the host to it’s respective statistics along with the calculated weights per server and saves the information to file for other processes to access. The collector daemon runs on the same server as the enhanced DNS server, as the collector daemon writes the data associated with each of the web servers on a local file. The design of the collector daemon is to receive the statistics that the web server agents are pushing. The design is depicted by the following:

�

��

��

�

��

The application is name statAgent.pl. This is the Perl program that is invoked by the following command:

statAgent.pl <gateway> <server> <updates>

where <gateway> is the machine that is considered the gateway to the Internet. This is used to ping in order to determine the local network load.

where <server> is the server that the collector agent runs on. This is server that is used to send the UDP statistics to.

where <updates> is the interval (in seconds) that the statAgent will send updates to the collector agent.

UDP Messaging

UDP (User Datagram Protocol) was chosen over TCP (Transmission Control Protocol) to transmit the statistics to the collector. This decision was made, based on the fact that UDP has less overhead than TCP. I’m also not really concerned about the connection reliability between the web servers and the collector daemon, being that the two constituents are on the same network.

The following code for the web server agents set up the UDP sockets to transmit to the collector agent:

sub configureInterface

{

	$iaddr = gethostbyname(hostname());

	$proto = getprotobyname(‘udp’);

	$port = getservbyname(‘wlb’, ‘udp’);

	$paddr = socketaddr_in(0, $iaddr);

	$socket(SOCKET, PF_INET, SOCK_DGRAM, $proto) or die “socket: $!”;

	$bind(SOCKET, $paddr) or die “bind: $!”;

	$serveriaddr = inet_aton($server) or die “unknown host”;

	$serverpaddr = sockaddr_in($port, $serveriaddr);

}

On line 3 the IP address of the local host that the web server agent is running is on is returned in $idaddr. The protocol id is returned on line 4, in this case the protocol being used is UDP. As in configureTcpInterface services have been set up on the local hosts /etc/services file with the following:

	wlb	7777/udp		# web load balance services

so getservbyname(‘wlb’, ‘udp’) returns 7777.

On line 6 $paddr is assigned an arbitrary port and the $iaddr tuple. Line 7 opens the datagram socket SOCKET to transmit the statistics to the collector. At line 8 the IP address and port tuple are bound to the file descriptor SOCKET. On line 9 the $server variable is converted to binary representation of the IP address. Line 10 takes the IP address and port number, and assigns this to $serverpaddr variable, this is used when I actually send the message to the collector agent. Sending the message is accomplished with the following:

sub sendMsg

{

	($ia, $p) = sockaddr_in($serverpadr);

	defined(send(SOCKET, $messageString, 0, $serverpaddr)) or print STDERR 	\nsend $server: !\n\n”;

}

Line 3 converts the socket address into the tuple of the IP address and the port number. Line 4 sends the $messageString through SOCKET. $messageString was conjured with a simple assign statement, as follows:

$messageString = “$type:cpuUsage:$cpuUsage:avgPing:$avgPing:runQueue:$runQueue:swapOut:$swapOut:rps:$rps:busy:$busy:idle:$idle”;

Prediction Algorithm

This phase involves the prediction algorithm that rates each web server and assigns a corresponding weight to the server. The predictions are made according to the current statistics gathered and the analysis of data collected in the past. The collector agent is the one that actually calculates a weight per server according to the statistics that the statAgents send to the collector agent. The implementation for the collector agent is also written in Perl. The implementation is contained in the file gather.pl. No parameters are necessary for this application.

Receiving Messages

The first step in this process is to configure a UDP socket to listen to messages sent from the various statAgents. This accomplished with the following procedure:

sub configureInterface

{

	$iaddr = gethostbyname(hostname());

	$proto = getprotobyname(‘udp’);

	$port = getservbyname(‘wlb’, ‘udp’);

	$paddr = sockaddr_in($port, $iaddr);

	socket(SOCKET, PF_INET, SOCK_DGRAM, $proto) or die “socket: $!”;

	bind(SOCKET, $paddr);

}

On line 3 the host name is converted to it’s IP address and assigned to $iaddr. The prototype number for UDP is returned and assigned to $proto. Line 5 looks up the wlb/udp service through the operating systems resolver. In the case of my implementation the wlb/udp tuple is resolve in the /etc/services file, as before:

wlb	7777/udp	#web load balance services

On line 6 the IP address and the port number are packed into the socket address $paddr. 7 opens a UDP socket for receiving messages from the statAgents. And on line 8 SOCKET is attached to socket address of $paddr.

After the SOCKET has been configured then the procedure receiveMsg is called to listen to any messages sent to it’s socket, as follows:

sub receiveMsg

{

	$rin = “”;

	local ($done = 0);

	vec($rin, fileno(SOCKET), 1) = 1;

	while (select($rout = $rin, undef, undef, undef) && !$done)

		{

		($clientpaddr = recv(SOCKET, $buff, 128, 0)) or die “recv: $!”;

		($clientport, $clientiaddr) = sockaddr_in($clientpaddr);

		$clientname = gethostbyaddr($clientiaddr, AF_INET);

		&processMsg($clientname, $buff);

		}

}

Line 4 just initializes the $rin variable. On 4 $done is set to 0 (a.k.a. not done). vec sets $rin to the file descriptor returned by fileno(SOCKET) on line 5. Select, on line 6, checks to see if the $rin is ready to receive and not $done. recv blocks until a message is received on SOCKET on line 8. The return value is the socket address of the sender. Line 9 unpacks the senders address using sockaddr_in. The tuple is assigned to $clientport and $clientiaddr. At this point the IP address is resolved to a hostname with gethostbyaddr on line 10. Then a call to processMsg is make to parse the incoming buffer.

Processing the message logic follows:

sub processMsg

{

	local($client, $message) = @_;

	local($weight);

	@messageArray = split(/:/, $message);

	$type = $messageArray[0];

	if($type eq “data”)

		{

		$cpuUsage = $messageArray[2];

		$avgPing = $messageArray[4];

		$runQueue = $messageArray[6];

		$swapOut = $messageArray[8];

		$rps = $messageArray[10];

		$busy = $messageArray[12];

		$idle = $messageArray[14];

		$weight = calcWeight($client, $cpuUsage, $avgPing, $runQueue, 			$swapOut, $rps, $busy, $idle);

		&outputFile($client, $cpuUsage, $avgPing, $runQueue, $swapOut,			$rps, $busy, $idle);

		}

}

On line 3 both $client and $message are parsed from the parameter list of the call of processMsg. Line 5 breaks the $message variable into the elements of @messageArray. The first element is the $type of message that was sent to the collector agent. There are two types that are sent: data and alarm. If the type is data (line 7) then assign separate variables with the index of @messageArray (lines 9 - 15). $weight is returned by calcWeight with the various statistical parameters being passed to calcWeight (line 16). Line 17 writes the statistical values and the calculated weight to an output file.

Calculating Weights

The goal of this procedure is to produce a weight associated with the web server in question. The higher the weight the more likely the web server will be returned as an available web server to the client through DNS. The idea is that the statistical data should be used as a continuos weight, rather than a discrete value. For instance, the average ping is measured in milliseconds, if the average ping is 12 milliseconds then the subtracted weight from the base weight should be based on 12 rather than a threshold, say subtract 5 from weight if time is greater than 10 milliseconds. The following goes over the implementation of calcWeight:

sub calcWeight

{

	local($host, $cu, $ap, $rq, $so, $rps, $b, $I) = @_;

	local($weight);

	$weight = 100;

	$weight -= $rq*10;

	$weight -= (100-$cu)/10;

	$weight -= $ap/10;

	$weight -= (100-$rps)/10;

	$weight -= $so/10;

	$weight -= $b;

	$weight = int $weight;

	return $weight;

}

Local variables are passed to calcWeight on line 3. $weight is initially assigned the base value of 100. On lines 6 through 11 different weights are subtracted from the initial weight according to the importance of each of the statistical data. As you can see $rq is weighted heavily, considering the number of processes in the runnable queue could be very high. CPU idle time ($cu) is subtracted from 100 to find the percentage of CPU usage. The value is then divided by 10 to dampen the chance of high CPU usage (values could be up to 100 percent). The average ping time ($ap) is divided by ten, as ping times could range from (< 1ms to > 100 ms). Requests per second is handled similar to idle CPU percentage. The concept here is that requests per second gives an indication of how fast the web server processes requests per second, so the higher the number the better connection rate. This is why this number is subtracted from 100. The value is then divided by 10 for noise factor. The swap out variable ($so) is also divided by ten, these values could also be vary high therefore the noise factor of 10 is used. The last factor, $b, is the number of busy servers, this weight is very light, being that the number of busy servers is probably at most 10.

Writing to File

The reason to write the statistics/weights to file is that other processes, such as the enhanced DNS will need a way to access this information. The following discusses this issue:

sub outputFile

{

	local($host, $w, $cu, $ap, $rq, $so, $rps, $b, $I) = @_;

	local($found = 0, $cont = 0, $newString = “”);

	open(STATFILE, “</tmp/statFile”) or $cont = 1;

	open(TEMPFILE, “>/tmp/tempFile”) || print STDERR “Can’t open tempFile”;

	while (!$cont && ($line = <STATFILE>))

		{

		chomp ($line);

		$_ = $line;

		if(/$host/)

			{

			$found = 1;

			$newLine = join(“:”, $host, $w, $cu, $ap, $rq, $so, $rps, $b, 				$I);

			$newString .= “$newLine\n”;

			}

		else

			{

			$newString .= “$line\n”;

			}

		}

	if (!$found)

		{

		$newLine = join(“:”, $host, $w, $cu, $ap, $rq, $so, $rps, $b, $I);

		$newString .= “$newLine\n”;

		}

	print TEMPFILE $newString;

	close STATFILE;

	close TEMPFILE;

	rename (“/tmp/tempFile”, “/tmp/statFile”);

}

Local variables are assigned from the respective parameters of outputFile (line 3). Other local variables are defined an initialized on line 4. STATFILE is opened as input (“<“) (line 4). This file contains the weights and statistics for each of the web servers that are running statAgents. TEMPFILE is just a temporary that is used as an output file that is later rewritten to STATFILE. On line 7 the next line of STATFILE is read into $line and a conditional check to see if STATFILE already existed is made. Line 8 takes the newlines from $line, in this case. If there is a matching host entry in STATFILE then $found is set, the data is assembled, and a new string is concatenated onto (lines 11 through 15). Else keep the line the same for STATFILE (line 19). If the host was not found in STATFILE then add new entry data and concatenate this onto a new string (lines 22 through 25). Print the concatenated string to TEMPFILE (line 27). Close the files to update them (lines 28 and 29). Then move the TEMPFILE to the STATFILE for the updated data to be reflected in the new STATFILE.

Enhanced DNS Scheduling

This final phase in implementation involves the mechanism in which the client resolves the web servers IP address. This was done using a naming service such as DNS. The application simulates DNS messaging. This allows the naming service to return the IP address of the best web server picked by the prediction algorithm. lbnamed [Sche95] handles DNS messaging and provides a selection criteria for good logon servers. This application is integrated with my implementation for the sake of lbnamed’s DNS messaging.

***************************DNS background**************************************

DNS Messaging

***************************** BIND Background *******************************

DNS.pm

lbnamed contains four different components. DNS.pm contains the constants and functions necessary for creating/parsing DNS messages. This module contains data types for various resource records. The records include A, CNAME, HINFO, MX, NS, NULL, PTR, and SOA. “A” resource records are used to resolve an IP address by giving name. So a query for gandalf would result in an answer of “128.198.9.118”. The CNAME (canonical name) is used for aliasing a new name to a preexisting one. When a query is made on the canonical name, another lookup is performed by the DNS server to what the alias points to, and this address is then returned. HINFO (host information) represents information relative to the type of host being queried. For instance, if you query on gandalf the response could be: “Pentium” “Linux 2.0.0”. MX (mail exchanger) is responsible for forwarding or processing mail. So if the domain request is uccs.edu the response could be tiger.uccs.edu. NS (name server) records are to specify a name server for a particular domain. In this case if uccs.edu is specified then piglet.uccs.edu would be returned as the name server of the uccs.edu domain. The NULL resource record is an experimental record. PTR (pointer) resource records are the reverse of A records. Given an IP address request, “128.198.9.118”, the response would be the associated name, such as gandalf.uccs.edu. SOA (Start Of Authority) records contain fields such as Serial number, refresh intervals, retry times, expiration times, and TTL (time to live) times. The relevant resource records used in the Thesis are SOA, NS, and A records.

lbnamed

lbnamed is responsible for starting lbnamed.conf, configuring the interfaces for both UCP and TCP connections, and handling requests/responses made to the server. The main function in this Perl 5 module is answer_requests [Sche95]:

sub answer_requests

{

	$done = 0;

	until ($done)

		{

		vec($rin, fileno(DNS_UDP),1) = 1;

		vec($rin, fileno(DNS_TCP), 1) = 1;

		$nfound = select ($rout = $rin, undef, undef, undef);

		if ($nfound > 0)

			{

			&handle_udp_dns_request(*DNS_UDP) if (vec($rout, 				fileno(DNS_UDP), 1));

			&handle_tcp_dns_request(*DNS_TCP) if (vec($rout, 				fileno(DNS_TCP), 1));

			}

		}

}

$rin is set to listen to the two file descriptors of DNS_UDP and DNS_TCP (lines 6 and 7). Line 8 checks to see if either the UDP or TCP file descriptors have input. If input request is made on UDP then process UDP DNS message or if input request made on TCP then process TCP request (lines 11 and 12).

lbnamed.conf

In Roland Schemers implementation this is the only file that needs to be changed. It’s purpose is to initialize some variables and add the static/dynamic resource records that the DNS will respond with. The following section initializes the variables for lbnamed:

BEGIN

{

	$hostmaster = “root.gandalf”;

	$hostIndex = 0;

	%touched = (“gandalf” => 0, “frodo” => 0, “bilbo” => 0);

	$_ = “128.198.9.118”;

	($a, $b, $c, $d) = /(\d+)\.(\d+)\.(\d+)\.(\d+)/;

	$gip = ($a<<24)|($b<<16)|($c<<8)|$d;

	$_ = “128.198.9.117;

	($a, $b, $c, $d) = /(\d+)\.(\d+)\.(\d+)\.(\d+)/;

	$fip = ($a<<24)|($b<<16)|($c<<8)|$d;

	$_ = “128.198.9.116”;

	($a, $b, $c, $d) = /(\d+)\.(\d+)\.(\d+)\.(\d+)/;

	$bip = ($a<<24)|($b<<16)|($c<<8)|$d;

}

The purpose of the BEGIN statement of line 1 is to execute this statement block before anything else is interpreted. The $hostmaster variable is used in SOA resource record. The host master is the mail address that of the person that is responsible for the SOA (line 3). The $hostIndex variable is used for the round-robin implementation of mine, that I’ll explain later (line 4). The %touched associative array is initialized to all zeros (line 5). This variable keeps track of the frequency of referred web servers. Gandalf’s IP address is assigned to the temporary variable $_ (line 6). On line 7, the IP address is separated by it’s dot notation. Then on line 8, the constituent numbers are broken down to octets and assigned to $gip. The same is replicated for frodo’s and bilbo’s IP address on lines 9 through 14.

After initialization of the variables the various resource records are created. The following depicts:

LBDB::add_static(“hobbit”, T_SOA, rr_SOA(hostname, $hostmaster, time, 86400, 86400, 86400, 0));

LBDB::add_static(“hobbit”, T_NS, rr_NS(“gandalf.hobbit”));

LBDB::add_static(“gandalf”, T_A, rr_A($gip));

LBDB::add_static(“frodo”, T_A, rr_A($fip));

LBDB::add_static(“bilbo”, T_A, rr_A($bip));

LBDB::add_static(“118.9.198.128.in-addr.arpa”, T_PTR, rr_PTR(“gandalf”));

LBDB::add_static(“117.9.198.128.in-addr.arpa”, T_PTR, rr_PTR(“frodo”));

LBDB::add_static(“116.9.198.128.in-addr.arpa”, T_PTR, rr_PTR(“bilbo”));

LBDB::add_dynamic(“round.robin.hobbit” => \&handle_round_robin_request);

LBDB::add_dynamic(“best.hobbit” => \&handle_best_request);

Line 1 adds a static resource records for the start of authority of the hobbit domain. The hostname command returns the host name that lbnamed will be running on. This host is the primary server responsible for the domain hobbit. $hostmaster was set to root.gandalf in the initial BEGIN block. time returns the current time on the server. This variable is used as the serial number that identifies the change in the servers data files. Time is a common indicator of the data version. The first 86400 is the number, in minutes that the secondary DNS servers will check to see if their data is current. The second 86400 is number of minutes that the secondary DNS server will retry a connection with the master server if there is a problem in connecting to the master. The third 86400 is the number of minutes that the secondary server will invalidate current data if a connection to the master server cannot be made. The final parameter of rr_SOA is the TTL (time-to-live) variable. This is sent back in a DNS response message, it tells the server how long it can hold the data. The reason that TTL is set to zero is because the dynamic values may change instantaneously therefore the data is expired immediately.

Line 2 adds a name server resource record for gandalf. This indicates the host that acts as the server for the hobbit domain. Lines 3 through 5 add A resource records used in resolving IP address for gandalf, frodo, and bilbo. Lines 6 through 8 are adding static data for PTR resource records. These are used in resolving the hosts names given the IP address for gandalf, frodo, or bilbo.

On line 9 a dynamic record is added for my implementation of a round robin distribution. handle_round_robin is described in the following section.

Round Robin Scheduling

The idea of using a round-robin algorithm for the Thesis is a basis to compare what results multiple web servers have on the benchmarks. This algorithm blindly rotates the servers used.

sub handle_round_robin_request

{

	my($domain, $residual, $qtype, $qclass, $dm) = @_;

	my($the_host, $the_ip, $answer, $qname, $group);

	@hostArray = (“bilbo”, “frodo”, “gandalf”);

	$hostCount = scalar @hostArray;

	%ipArray = (“bilbo” => “128.198.9.116”, “frodo” => “128.198.9.117”, “gandalf” => “128.198.9.116”);

	$qname = $residual;

	if ($qtype == T_A || $qtype == T_MX || $qtype == T_ANY)

		{

		$the_host = $hostArray[$hostIndex];

		&write_log(“Round Robin: Using: $the_host”);

		$hostIndex++;

		if ($hostIndex >= $hostCount) { $hostIndex = 0; }

		$ipaddr = $ipArray{$the_host};

		$_ = $ipaddr;

		($a, $b, $c, $d) = /(\d+)\.(\d+)\.(\d+)\.(\d+)/;

		$the_ip = ($a<<24)|($b<<16)|($c<<8)|$d;

		$the_host .= “.hobbit” if ($the_host !~ /\.hobbit/i);

		$answer = dns_answer(QPTR, T_CNAME, C_IN, 0, rr_CNAME($the_host));

		$answer .= dns_answer(dns_simple_dname($the_host), T_A, C_IN, 3600, rr_A($the_ip));

		$dm->{‘answer’} .= $answer;

		$dm->{‘ancount’} += 2;

	else { $dm->{‘rcode’} = NXDOMAIN;

	return 1;

}

Line 3 assigns the parameters when the add_dynamic object is instanciated. Line 4 contains the local variables for handle_round_robin_request. @hostArray is the hosts that are a part of the virtual web server pool (line 5). Line 6 returns the number of virtual web servers. %ipArray is a variable used to index IP addresses by host names (line 7). $qtype is the DNS query type made to the DNS server, I’m checking to see if the query type is of type A, MX, or ANY (line 9). $the_host is the actual server that is returned from the DNS query. This is indexed by the $hostIndex (line 11). I just keep a log of the selected host returned by the query (line 12). I increment the $hostIndex to point to the next host in the array, for next time the function is called (line 13). If the $hostIndex has exceeded the number of virtual web servers the start the index from 0 (line 14). The IP address of the selected is returned and assigned to $ipaddr (line 15). The IP address of the selected host is then converted to the individual dot notations on lines 16 through 18. Line 19 just appends the hobbit domain name to the host name. On line 20 a DNS $answer string is returned given the parameters that are passed to dns_answer. The line 20 and 21 create the binary DNS message. $dm->{‘answer’} is assigned the binary answer string and the answer count is incremented by 2 (lines 22 and 23). If the query type did not match an A, MX, or ANY record then return NXDOMAIN (line 24). This means that the requested name is not in the domain.

Weighted Scheduling

The weighted scheduling is based upon the work load that each of the web servers have. The calculated weight was performed by the collector agent. All the dynamic DNS function needs to do is sort the web servers by weight and keep track of the web servers that were recently selected.

sub handle_best_request

{

	my($domain, $residual, $qtype, $qclass, $dm) = @_;

	my($the_host, $the_ip, $answer, $qname, $group);

	%ipArray = (“bilbo” => “128.198.9.116”, “frodo” => “128.198.9.117”, “gandalf” => “128.198.9.116”);

	$qname = $residual;

	open(STATFILE, “</tmp/statFile”);

	$i = 0;

	while ($line = <STATFILE>)

		{

		@lineArray = split /:/, $line;

		$host = $lineArray[0];

		$_ = $host;

		$host = $1 if (/^(\w+)\./);

		$hosts[$i] = $host;

		$weight = $lineArray[1];

		$weight -= $touched{$host}*10;

		$weight{$host} = $weight;

		$i++;

		}

	@hosts = sort by_weight @hosts;

	if ($qtype == T_A || $qtype == T_MX || $qtype == T_ANY)

		{

		$the_host = @hosts[0];

		&write_log(“Best: Using: $the_host with $weight{$the_host}”);

		$touched{$the_host} += 1;

		foreach $h (keys %touched)

			{

			if (($h ne $the_host) && ($touched{$h} != 0)) { $touched{$h} -= 1; }

			}

		$ipaddr = $ipArray{$the_host};

		$_ = $ipaddr;

($a, $b, $c, $d) = /(\d+)\.(\d+)\.(\d+)\.(\d+)/;

		$the_ip = ($a<<24)|($b<<16)|($c<<8)|$d;

		$the_host .= “.hobbit” if ($the_host !~ /\.hobbit/i);

		$answer = dns_answer(QPTR, T_CNAME, C_IN, 0, rr_CNAME($the_host));

		$answer .= dns_answer(dns_simple_dname($the_host), T_A, C_IN, 3600, rr_A($the_ip));

		$dm->{‘answer’} .= $answer;

		$dm->{‘ancount’} += 2;

	else { $dm->{‘rcode’} = NXDOMAIN;

	return 1;

}

Line 3 takes the parameters used when the object was instanciated and assigns them to local variables for handle_best_request. The local variables of this function are declared on line 4 of this function. %ipArray is an associative array that is used to correlate an IP address with the host name (line 5). The file that the collector agent has created with the web servers and their associative weights are kept in this file (line 7). Each line of STATFILE is assigned to $line (line 9). Line 11 splits the various fields into the @lineArray. The first element is the host name (line 12). The domain name is stripped off of the host name part and reassigned to host (line 14). The host name is put into an array of host names, @hosts. The weight assigned to the respective host is the second element (line 16). Line 17 weights the host down if the host has been given as a selected host recently. This new weight is placed into the @weight array by host name (line 18). The @hosts array is then sorted by the %weight values (line 21). by_weight looks like the following:

sub by_weight { $weight{$b} <=> $weight{$a}; }

If the query type is of type A, MX, or ANY resource records requests then send a response (line 22). After the @hosts array has been sorted the first element in the array is the one that is actually sent back in the DNS response (line 24). The best host chosen is recorded in a log file, mainly used for debugging purposes (line 25). The host picked is weighted down, or touched (line 26). The remaining host’s touch counts are decremented by one, since they were not the one currently chosen (lines 27 through 30). $the_host’s IP address is returned to $ipaddr (line 31). The IP address of $the_host is converted to octets in order to be encapsulated in the DNS response (lines 32 through 34). $the_host’s domain name is appended to this variable (line 35). The DNS response is formulated in the compressed binary format from the two dns_answer function (lines 36 and 37). The $dm->{‘answer’} associative array is assigned the $answer string and the answer count is incremented by two (lines 39 and 40). If the query type did not match a A, MX, or T_ANY then return NXDOMAIN through the return code variable $dm->{‘rcode’} (line 40).

Virtual Web Server Benchmarks

During this phase, measurements are made with the newly tooled implementation. The analysis consists of the single web server results with the virtual web server results. The benchmarking tool would be WebStone.

Results

A statistics gathering, prediction algorithm, and naming service implementation will be created in order to verify the idea of an efficient/dynamic client-server model specifically for web server technologies. An analysis of efficiency/improvements will be made. A comparison between the single model and virtual model will also be made.

Bibliography

Books:

[Albi97]	Albitz, Paul and Cricket Liu. DNS and BIND. 2nd Edition. Sebastopol: O’Reilly & Associates, Inc., 1997.

[Kirch95]	Kirch, Olaf. Linux Network Administrator’s Guide. Sebastopol: O’Reilly & Associates, Inc., 1995.

[Laurie97] 	Laurie, B and P. Laurie, Apache: The Definitive Guide. Sebastopol: O’Reilly & Associates, 1997.

[Srini96]	Srinivasan, Sriram. Advanced Perl Programming. Sebastopol: O’Reilly & Associates, Inc., 1996

[Wall96]	Wall, Larry, Tom Christiansen, and Randal L. Schwartz. Perl. 2nd Edition. Sebastopol: O’Reilly & Associates, Inc., 1996.

[Welsh95]	Welsh, Matt, and Lar Kaufman. Running Linux. Sebastopol: O’Reilly & Associates, Inc., 1995.

[Beck96]	Beck, M, H Bohme, M Dziadzka, U Kunitz, R Magnus, and D Verworner. Linux Kernel Internals. Harlow: Addison-Wesley, 1996.

[Tanen87]	Tanenbaum, Andrew S. Operating Systems, Design and Implementation. New Jersey: Prentice-Hall, Inc., 1987.

Articles:

[Cola97] 	M. Colajani, P. S. Yu, and D. M. Dias, Scheduling Algorithms for Distributed Web Servers, Proc. Of 17th International Conf. On Distributed Computing Systems, pp. 169-75, 1997.

[Schem95]	Schemers, Roland J., “lbnamed: A Load Balancing Name Server in Perl.” 1995 LISA IX. September 17-22, 1995.

[Mock87]	P. Mockapetris, “RFC 1035: Domain Names - Implementation and Specification.” Network Working Group. November 1987.

Signatures

This thesis was approved by

Thesis Advisor:											

					Signature				 Date

Advisory Committee: 										

					Signature				 Date

Advisory Committee: 										

					Signature				 Date

� WebStone is a benchmarking utility that measures HTTP server performance. Refer to http://www.sgi.com/Products/WebFORCE/WebStone for more information on this benchmark utility.

�PAGE �

�PAGE �21�

Web Server

1.Resolve URL

Web Client

2. HTTP GET for URL

3. Transfer of data (HTML)

4

Web Clients

Naming Service (DNS)

Web Servers

Statistics Agent

2

1

Collector

Predictor

3

5

6

Child Process

HTTP Server

Child Process

Master Process

Child Process

Collector

Web Server Agents

File

