Dynamic Load Balancing of Virtual Web Servers

by

Shawn M. Emery

Master Thesis Proposal

Advisor: Dr. Chow

October 29, 1997

�
Introduction

With today’s emerging web centric applications and data the need for low latency web server transfers has increased. The following diagram depicts the traditional web client-server model. As you can see by the model there is a central point of access/failure for the web server resource.

�����

�

�

�

One way to improve the reliability/speed between the web browser and server is to have redundant servers or virtual web servers. The servers are logically grouped into a host specific URL (Universal Resource Locator). The client machines resolve the web server host IP address via a naming service, such as DNS [Mock87, Albi97]. One simple way to improve the load balance among the web servers is to use Round-Robin DNS (RRDNS) where DNS returns the IP addresses of the web servers in a round-robin fashion. The DNS can also be modified to collect information about the loads of web servers and serve the name requests according to the loads. The IP address of a lightly loaded server will be returned by DNS more frequent. As a result the load will be evenly distributed among the web server. The following diagram describes the proposed schema:

����

��

���

�

��

�

�

Agents gather system data and web data related to the performance of the system

Daemon collects data sent by web server agents

Daemon uses a prediction algorithm to weight each web servers

Web client requests resolution of web server’s IP address

Naming service returns the best web server from it’s weighted list

Web client requests data from IP address returned by naming service

 �Colajani, Wu and Diaz [Cola97] observed that due to name caching, the requests from a highly populated local gateway will select a specific web server during the Time-To-Life (TTL) of the name entry in their local name server and thus results in unbalance load among the web servers. They performed a simulation study and found that a two-tier round-robin DNS scheduling scheme (RR2-DNS), which estimates the server load by computing an estimate volume of requests from specific local gateways and adjusts the name mapping according to the overload alarm reports from the web servers, performs very well. One surprising simulation result was that the RR2-DNS scheduling scheme which use the detailed information from the web server, such as queue length, does not perform as well that using the simple overload alarm reporting. They however did not go over the detail of the simulation assumptions and results.

The goal of this study is to investigate the web status collecting mechanisms, to design a modified DNS with scheduling algorithms based on web status reporting, and to analyze the importance of status parameters, the effectiveness of the DNS scheduling algorithms, and the performance of the load balancer for virtual web servers based on such an enhanced DNS.

Methodology

This thesis will require the use of several machines for running/testing the implementation. The following resources will be used:

	Hardware: 7 Pentium PC’s

		1 Used as the naming service, collector, and web server.

		2 Used primarily as web servers.

		4 Used as client machines, requesting data.

	Network: Web servers: HP 100 VG AnyLAN.

		 Clients: 10 Base T Ethernet.

	Operating System: Linux [Welsh95,Kirch95].

	Web Servers: Apache [Laurie97]

	Web Benchmark: WebStone [Chow: Need a reference here]

This thesis study will be performed in six phases.

Single Web Server Benchmarking

The first phase is to measure the performance of web client-server latency of web client requests made to a single web server. This can be modeled to for up to N web servers. By using virtual servers I’m not expecting a performance increase greater than having logically separated web servers. WebStone would be the benchmarking tool used for both the single and virtual web servers.

Web Server Agents

The second phase is to create the web server agents that run on the web servers. These agents are responsible for gathering local system statistics such as CPU usage, runnable queue lengths, pages being swapped out of physical memory, and network latency to a particular gateway. The web server agents will be written in Perl [Srini96, Wall96].

Note that there are two basic way to collect server load information: internal reporting or external probing. Some servers such as Apache web server can be configured to provide status reporting periodically through web page access. The statistics reported by Apache web server include CPU load, the number of spare servers, the byte transferred. There is no report on the queue length and the sizes of web pages to be transferred. There are web server such as the Microsoft IIS that supports the SNMP query on the status. But the dynamic status information provided is rather limited. The web server agent can also send request to the web server and measure the response time. But this approach is rather intrusive and generates additional load.

Collector Daemon

The third phase consists of creating a daemon that collects the statistics gathered by the web server agents via socket application coding. The daemon associates the host to it’s respective statistics and saves the information to file for other processes to access.

Prediction Algorithm

This phase involves the prediction algorithm that rates each web server and assigns a corresponding weight to the server. The predictions are made according to the current statistics gathered and the analysis of data collected in the past.

Enhanced DNS scheduling

This final phase in implementation involves the mechanism in which the client resolves the web servers IP address. This could be done using a naming service such as DNS. The application would simulate DNS messaging. This would allow the naming service to return the IP address of the best web server picked by the prediction algorithm. [Chow: say a few words on lbnanmed [Sche95] and how you are going to use it]

Virtual Web Server Benchmarks

During this phase, measurements are made with the newly tooled implementation. The analysis consists of the single web server results with the virtual web server results. The benchmarking tool would be WebStone.

Expected Results

A statistics gathering, prediction algorithm, and naming service implementation will be created in order to verify the idea of an efficient/dynamic client-server model specifically for web server technologies. An analysis of efficiency/improvements will be made. A comparison between the single model and virtual model will also be made.

Bibliography

Books:

[Albi97]	Albitz, Paul and Cricket Liu. DNS and BIND. 2nd Edition. Sebastopol: O’Reilly & Associates, Inc., 1997.

[Kirch95]	Kirch, Olaf. Linux Network Administrator’s Guide. Sebastopol: O’Reilly & Associates, Inc., 1995.

[Laurie97] 	Laurie, B and P. Laurie, Apache: The Definitive Guide, O’Reilly & Associates, 1997.

[Srini96]	Srinivasan, Sriram. Advanced Perl Programming. Sebastopol: O’Reilly & Assoiates, Inc., 1996

[Wall96]	Wall, Larry, Tom Christiansen, and Randal L. Schwartz. Perl. 2nd Edition. Sebastopol: O’Reilly & Assoiates, Inc., 1996.

[Welsh95]	Welsh, Matt, and Lar Kaufman. Running Linux. Sebastopol: O’Reilly & Associates, Inc., 1995.

Articles:

[Cola97] 	M. Colajanni, P. S. Yu, and D. M. Dias, Scheduling Algorithms for Distributed Web Servers, Proc. Of 17th International Conf. On Distributed Computing Systems, pp. 169-75, 1997.

[Schem95]	Schemers, Roland J., “lbnamed: A Load Balancing Name Server in Perl.” 1995 LISA IX. September 17-22, 1995.

[Mock87]	P. Mockapetris, “RFC 1035: Domain Names - Implementation and Specification.” Network Working Group. November 1987.

Signatures

This proposal was approved by

Thesis Advisor:											

					
