
Design and Implementation of A Cooperative, Autonomous

Anti-DDoS Network Using Intruder Detection and Isolation

Protocol
Sarah Jelinek

University of Colorado, Colorado Springs

1420 Austin Bluffs Pkwy.

Colorado Springs, CO USA 80918

sjjelinek@gmail.com

This paper presents a design and implementation of an cooperative, enterprise wide, autonomous
distributed denial of service(DDoS) defense infrastructure using well known DoS technologies
along with a partial implementation of a protocol developed by Boeing Corporation called the
Intruder Detection and Isolation Protocol(IDIP). This work is a follow on to the original autonomous
distributed denial of service network(A2D2) developed by Angela Cearns, University of Colorado,
Colorado Springs[C02]. As a result of the original project name, this project has been dubbed
A2D2V2 and will be referred to by this name for the remainder of this paper.

This paper presents a discussion of DoS, DDoS and DDoS defense mechanisms along with a brief
overview of A2D2. An overview of the IDIP Architecture and guiding principles along with other
emerging technologies will be presented.

For this project a subset of the IDIP implementation was developed and tested in the A2D2V2 test
bed. Along with this, a technique for discovering attacks by cooperating upstream nodes in the IDIP
community was developed. A set of tests were developed to show the benefits of the cooperative
intrusion defense.

There were several goals for A2D2V2:

1. To validate the enterprise effectiveness of the software implementation utilizing IDIP with
regard to attack response.

2. Show that IDIP can provide a cooperative defense that efficiently notifies upstream routers of an
attack.

3. To expand on A2D2 ideas to provide a cooperative defense against DDoS attacks.

4. To try to provide sustained performance for both clients in the A2D2V2 enterprise network with
the full attack mitigation activated.

5. To show that A2D2V2 via IDIP provides a cooperative defense that efficiently notifies upstream
routers of an attack, which enables the containment the attack in a short period of time.

The test results for A2D2V2 show that these goals were met and further show a clear benefit from
using a protocol to communicate and coordinate with other nodes in a network to push back DDoS
attacks.

mailto:sjjelinek@gmail.com

T A B L E O F C O N T E N T S

Introduction...6

1. Denial Of Service Attacks(DoS)...7

2. Distributed Denial of Service Attacks...7
Figure 1.1 Typical DDoS Architecture[C03]...8

3. Defense Against DDoS attacks...8

3.1 Intrusion Detection..8

3.2 Intrusion Prevention..9

3.3 Intrusion Response..9

4. IDIP Protocol – A Technical Primer...10
Figure 4.1 IDIP Nodes[NB02]...10

4.1 IDIP Architecture..11
4.1.1 IDIP Neighborhoods...11

4.1.2 IDIP Communities..12

4.2. IDIP Protocol Definitions ...12
4.2.1 IDIP Message Layer ..12

4.2.1.1 IDIP Hello Protocol...12

4.2.2 IDIP Application Layer ...13

4.3 How IDIP meets the Key Principles...13
4.3.1 An IDIP system must be able to respond to intrusions in real-time...13

4.3.2 An IDIP system must support environments that span multiple administrative domains.......13

4.3.3 An IDIP system must have minimal impact on the systems performance...............................14

4.3.4 An IDIP system must be capable of operating while the system is under attack....................14

4.3.5 The IDIP system components must be capable of responding autonomously to the attack....14

5. Cooperative Intrusion Detection and Traceback Architecture (CITRA), IDIP's

Global Response Architecture...15
Figure 5.1 IDIP Global Response Architecture[NB02]..16

5.1.2 Communication between IDIP communities...16

5.1.3 Multi-Community Policies...17

5.1.4 CITRA Remote Neighborhood Trustworthiness and location.................................17

6. IDIP Software architecture..17
Figure 6.1 IDIP Software Architecture..18

7. A2D2 ..18

7.1 A2D2 Design-Snort Modifications...19
7.1.1 Snort Overview...19

7.1.2 A2D2 Snort Specific Modifications...19

7.2 A2D2 Rate Limiter..20

7.3 Q0S Firewall Rules...20

2

7.4 A2D2 Class Based queueing(CBQ)..21
Figure 7.4.1 A2D2 Implementation[C02]...21

8. A2DV2 Features, Architecture and Implementation..22
Figure 8.1 A2D2V2 Community and Neighborhood Overview...23

8.1 A2D2V2 and IDIP..24

8.1.1 A2D2V2 IDIP IDS Implementation..24

8.1.2 A2D2V2 IDIP Enabled Firewall/Router(s)...29

8.2 A2D2V2 Dynamic Tracing and Enterprise Notification to Achieve cooperation.......34
8.2.1 Considerations For Dynamic Tracing Mechanism ...34

8.2.1.1 IP Link Level Header Parsing and Address Resolution Protocol...34

8.2.1.2 TCPDUMP ..37

8.2.2 Considerations For Discovery of Upstream Routers To Notify When Attack is Discovered.39
8.2.2.1 Traceroute..39

8.2.2.2 Netstat -rn...40

8.2.2.3 Static Routing Configuration Files..41

8.3 A2D2V2 portability..42

9. A2D2V2 Test Bed Specifications and Performance Results43

9.1 test bed Configuration...43
Figure 9.1.1 A2D2V2 test bed...44

9.2 A2D2V2 TEST SCENARIOS..45

9.3 Results Analysis..48
Figure 9.3.1 Client 1 baseline packet rate, Test #1..48

Figure 9.3.2 Client 2 baseline packet rate, Test #1..49

Figure 9.3.3 Client 1 baseline packet rate under attack, no attack mitigation, Test #2................................50

Figure 9.3.4 Client 1 packet rate under attack, 2-LAN full cooperative attack mitigation,Test #3.............51

Figure 9.3.5 Client 1 packet rate under attack, enterprise wide attack mitigation, Test #4, a......................52

Figure 9.3.6 Client 2 packet rate under attack, enterprise wide attack mitigation, Test #4, a......................52

Figure 9.3.7 Client 1 packet rate under attack, enterprise wide attack mitigation, Test #4, b.....................53

Figure 9.3.8 Client 2 packet rate under attack, enterprise wide attack mitigation, Test #4,b.................53

Table 9.3.1 Router response times during attack..56

Table 9.3.2 – iptraf output from S2 server during test run..58

Table 9.3.3a – R102 iptables -v -L output...60

Table 9.3.3b - R99 iptables -v -L output..61

Table 9.3.3c - R97 iptables -v -L output...62

Table 9.3.4 IDIP message output...63

10. Lessons Learned..64
10.1 Network Routing Tables..64

Table 10.1.1.1 R99 Routing Table..64

10.2 iptables FORWARD Chain firewall rules..65

10.3 Linux Class based queuing..65

10.4 IDIP..66

10.5 Snort...66

10.6 Pushback/Tracing Techniques for DDoS attacks...67

11. Future Work..68

3

11.1 Existing Technologies that compete in this Problem Space.......................................68
11.1.1 Intrusion Detection Message Exchange Format(IDMEF)..68

Figure 11.1.1.1 IDMEF Model[GO03]...69

11.1.1.1 XML...69

11.1.1.2 Why IDMEF is implemented in XML...69

11.1.2 Common Intrusion Specification Language (CISL)...70

11.1.3 Intrusion Detection and Exchange Protocol(IDXP)..70

11.1.4 Intrusion Detection and Exchange Architecture...70

11.2 Comparisons..71
11.2.1 IDIP vs. IDMEF..71

11.2.2 IDIP, CISL and CIDF...71

11.3 Future Work recommended..72
11.3.1 Correlation Engine..72

11.3.2 IDIP enhancements...72

11.3.3 Redundant/Cooperative Discovery Coordinators..73

11.3.4 Incorporate OpenSLP...73

11.3.4.1 A more dynamic global response using OpenSLP...74

11.3.5 IDMEF, IDXP, CISL and IDIP..75

11.3.6 CIDF work..75

11.3.7 Performance Enhancements to Firewall Code..75

11.3.8 IDIP Tracing and Real-Time Locating of other IDIP networks...76
11.3.8.1 IP Traceback..77

12. Final Conclusions..78

12.1 Was A2D2V2 a success?..78

12.2 IDIP as a Future Technology..78

12.3 Where the real work lies...78

Bibliography..80

Appendix A..84

A.1 Setup of A2D2V2 test bed Configuration..84
Step 1 – Initial test bed setup...84

Step 2-Routing Table setup...84

Step 3-Firewall rules setup..84

Step 4-Setup For Routers...85

Step 5-Setting up Client tests and traffic monitoring...85

Step 6-Setting Up the Servers..85

Step 7-Setting up Server 1 test and traffic monitoring...86

Step 8 -Setting up the Attackers..86

Step 9 – Starting the attack ...86

A.1.1 The A2D2V2 Attack Setup and run Recipe:..87

A.1.2 What to Look for To Verify Cooperative IDIP Defense..88
Router output:..88

Snort IDS Reporting mechanisms output:...89

Appendix B..91

4

B.1 A2D2V2 Source and build Rules...91
A2D2V2 Source layout and Build Rules..91

Appendix C..92

c.1 Class based Queuing script for A2D2V2 test bed...92

c.2 TCPDUMP script for Dynamic Tracing...98

5

INTRODUCTION

The threat of Distributed Denial of Service (DDoS) attacks on Internet systems has not
diminished. These attacks are insidious and difficult to handle. Research in to handling
them, as well as tracing their inception focuses on both the end system and the infrastruc-
ture. The difficulty lies in distinguishing between an attack and a legitimate large number
of attempted connections over a short period of time. The effect of these two is of course
the same, but the response will most likely be different.

In general, a policy is set and implemented to respond to the DDoS attacks. This policy
cannot always be enforced by the systems being attacked. Some of it requires human
intervention. However, host and infrastructure systems should be configured in a way as
to implement the parts of the response policy that can be enforced by technical means.

While the architecture of a local, private network, can indeed mitigate and sometimes
even stop the DDoS attack, this solution is isolated and does not provide others with help
against the same attack. We need to add the capability to push back the intrusion so that
legitimate clients can continue to receive service.

This report is laid out as follows:

● Section 1 presents an overview of DoS attacks.

● Section 2 presents an overview of DDoS attacks.

● Section 3 discusses possible defenses against DDoS attacks.

● Section 4 gives an overview of IDIP and how it is intended to work

● Section 5 discusses the Cooperative Intrusion and Traceback Architecture
known as CITRA

● Section 6 presents the basic IDIP Software Architecture

● Section 7 discusses this projects precursor, A2D2

● Section 8 presents the A2D2V2 architecture and implementation details

● Section 9 presents the test configuration and detailed analysis of the
performance results gathered

● Section 10 discusses lessons learned during the course of this project

● Section 11 presents ideas for future work in this area

● Section 12 presents the authors final conclusions regarding this project
and cooperative DDoS attack response

● Following Section 12 are the bibliography and appendices

6

1. DENIAL OF SERVICE ATTACKS(DOS)

There are many here are many manifestations of Denial of Service attacks but they
ultimately have the same objective - to deny or degrade a user's ability to legitimately
access network or host based services. DoS attacks accomplish this by exhausting the
limited resources of network bandwidth by packet flooding or exhausting host resources
by consumption of CPU cycles, random memory, static memory or data structures [T02].

DoS attacks can generally be classified as either a Flood Attack or a malformed (or
crafted) Packet Attack. Attacks originate simultaneously from several compromised
sources are classified as Distributed DoS attacks(DDoS).

Fundamental to the IP protocol every packet has a source and destination address field
that is used to determine the originating and destination end points. The process of
forwarding these packets by intermediate routers partly relies on the destination field; the
source address will only be used when a response to the packet is required. This makes
the implementation of DDoS flooding attacks easy to accomplish because fake or
“spoofed” source addresses can be used, and packets will generally be forwarded unchal-
lenged to the specified destination. This allows a DoS or DDoS attack to be carried out
from any location and with total anonymity.

If an attack is underway from a single address then it is possible to arrange for a
“block” of the offending source IP address at the ISP or the border router. However, when
a DDoS attack occurs the problem is not as easy to resolve because packets appear to be
coming from hundreds or even thousands of different hosts, there is absolutely no point
trying to implement temporary Access Control Lists on routing devices or modify the
border firewall rulebase, it is too late - you are left at the mercy of the attack under way.
The types of attack can also take the form of a single “one shot” crafted packet originating
from a single host to thousands of packets per second originating simultaneously from
multiple hosts.

2. DISTRIBUTED DENIAL OF SERVICE ATTACKS

There are many types of DDoS attacks. However they all have the same signature. A
DDoS is a Denial of Service (DoS) attack in which many unwitting participants have been
unknowingly recruited to initiate attacks. The end goal is generally to disrupt the victims
systems such that they are no longer able to provide the service expected.

The normal DDoS attack architecture works upon the basis that the required hosts to
launch the attack from have already been identified and compromised via Trojans or
“backdoors”[B02]. In a DDoS scenario the Intruder (also called the Attacker or Client)
issues control traffic to the Master (also called the Handler) which, in turn then issues
commands to the daemon (also called an Agent, Broadcast program or Zombie). The
daemons that are at the end of this command chain finally initiate the attack traffic against
the Victim. This distributed architecture increases the attack capability many times over
and allows the Intruder the means to remain undetected as shown in figure 11 below.

7

Figure 1.1 Typical DDoS Architecture[C03]

The distributed nature of these attacks makes it extremely difficult to trace and stop
these kinds of attacks. While one attacker will most likely not be able to generate enough
traffic to effectively shut down a large commercial site, the cooperative power of the
diverse set of attack agents can easily make any network inoperable [C02].

3. DEFENSE AGAINST DDOS ATTACKS

In general, DDoS defense is broken down in to three areas: 1) Intrusion Detection 2)
Intrusion Prevention and 3) Intrusion Response.

3.1 INTRUSION DETECTION

“Intrusion Detection (ID) is like chess, or a game of network cat-and-mouse. ID soft-
ware to date commonly analyzes the actions of an attacker in more or less linear terms:

8

Handler
(Middleman)

Agent
(Attacker)

Handler
(Middleman)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

Client
(Attack Commander)

Mastermind
Intruder

Agent
(Attacker)

Agent
(Attacker)

Agent
(Attacker)

“this stream of packets matches a stream known to be a smurf, SYN, or other known
attack signatures.” Signature-based ID systems are adequate to deal with misuse intru-
sions, but can’t deal with out-of-the-box thinkers who pen-test, audit, or attack networks,
purposely thinking non-linearly with the expectation of ultimately discovering code,
policy, and logic flaws. They also can’t adequately deal with anomalous behaviors and
resulting intrusions, e.g., the disgruntled insider who abuses authorized access, the unwit-
ting user who is victimized by a worm, the server that is back-doored.” [T02]

The best defense against DDoS attacks is to prevent initial system compromises.
Generally, this involves installing patches, anti virus software, using a firewall and moni-
toring for intruders. However, even vigilant hosts can become targets because of lesser
prepared, less security aware hosts (especially if these hosts have always-on high-speed
internet connections). Many systems are compromised because patches for vulnerabilities
reported and fixed months beforehand were never installed. Similarly, such systems have
anti-virus software that is not up to date.

3.2 INTRUSION PREVENTION

Intrusion Prevention goes beyond detection. The ultimate aim of Intrusion Prevention
is to neutralize an attack before it reaches the firewall.

It is difficult to specifically defend against becoming the ultimate target of a DDoS
attack but protection against being used as a daemon or master system is more easily
attainable. To this end, the following measures should be met (Gary Flynn, 2000):

 Check for frequent patches and subscribe to automatic vendor notifications

 Attempt to understand the vulnerabilities in your software and configuration

 Disable unnecessary network software

 Only accept program files from trusted sources (or at least be cautious)

Another prevention technique is vulnerability or penetration testing. This is the act of
determining which security holes and vulnerabilities may be applicable to the target
network or hosts. The penetration tester or attacker will attempt to identify machines
within the target network of all open port and the operating systems as well as running
applications including the operating system, patch level, and service pack applied.

The vulnerability testing phase is started after some interesting hosts are identified via
the nmap scans or another scanning tool and is preceded by the reconnaissance phase.
Nmap will identify if a host is alive or not and what ports and services are available even
if ICMP is completely disabled on the target network to a high degree of accuracy.

3.3 INTRUSION RESPONSE

Once an attack has been determined to be in progress, the immediate response is to
identify the source of the attack and block traffic from that source. However, as noted in
section 1.2, in a DDoS attack it is normally quite difficult to determine the true source of
the attack. As a result of this, most Intrusion Response systems do whatever is necessary

9

to mitigate the affect that the attack has on the system resources, and generally do not go
farther to trace the source, or notify others of potential attacks.

Generally the Intrusion Response system must provide a policy by which the affected
systems can tolerate the attack. This is usually a traffic blocker or traffic rate limiting
approach. In this way however, legitimate clients will have their service degraded as well
since it is very difficult to know the true source.

4. IDIP PROTOCOL – A TECHNICAL PRIMER

IDIP was initially developed as part of DARPA's Dynamic, Cooperating Boundary
Controllers program. It was later extended through the Automated Response to Intrusion,
Adaptive System Security Policies, and Multi-Community Cyber Defense Contracts. This
work was done in conjunction with Boeing, Network Associates(NAI labs) and the
University of California, Davis.

Although IDIP was originally intended to be a published, standard protocol, the most
recent efforts for this have been adopted by NAI labs, McAfee and Telcordia and is
currently not available for public viewing. The architectural documents used for this
project during implementation of the protocol were those found as part of the research
done. The date of these documents is February, 2002.

IDIP was developed to support real-time tracking and containment of attacks that cross
network boundaries. IDIP was developed to provide responses in two stages: (1) an initial
immediate response that may be relatively harsh but is relatively short-lived, and (2) a
more reasoned, optimal response that is more effective at meeting the system’s overall
operational needs while attempting to contain the attack.

Figure 4.1 IDIP Nodes[NB02]

Figure 4.1 shows the various components that can participate in an IDIP-based
response. Intrusion Detection components initiate IDIP response messages, and can

10

Intrusion Detection
System

Routers

Firewall

Server Cl ien t

Network Manager
(Discovery Coordinator)

Intrusion Detection
System

Firewall

Firewal l

support damage assessment and recovery within the local environment. Boundary control-
lers provide network based response mechanisms by blocking the intruder’s access to
network resources. A centralized network management component, call the Discovery
Coordinator, receives intrusion reports and audit data from other IDIP nodes, enabling it
to 1) provide administrative personnel with a global picture of the system intrusion status
and 2) coordinate the overall system response to attacks.

4.1 IDIP ARCHITECTURE

The IDIP Architecture was developed with the following principles in mind:

• An IDIP system must be able to respond to intrusions in real-time

• An IDIP system must support environments that span multiple administrative
domains

• An IDIP system must have minimal impact on the systems performance

• An IDIP system must be capable of operating while the system is under attack

• The IDIP system components must be capable of responding autonomously to
the attack

Figure 4.1.1 shows the IDIP enterprise architecture. As part of this architecture several
new terms are important to note and understand.

Figure 4.1.1 IDIP Enterprise Architecture

4.1.1 IDIP NE IG H B OR H O O DS

Each IDIP neighborhood is an administrative domain, with intrusion detection and
response functions managed by a component called the Discovery Coordinator. Each
administrative domain is capable of detection and response as it sees fit, without knowl-
edge of or communication with other IDIP neighborhoods. These neighborhoods are the
collection of components with no other IDIP node between them.

11

Community

Boundary
Controllers

Discovery
Coordinator

Intrusion Detection
System

Neighborhood 2

Intrusion Detection
System

Neighborhood 1

Neighborhood 3

Boundary
Controllers

Boundary
Controller

4.1.2 IDIP CO M M UN I T I E S

Neighborhoods are further organized in to IDIP communities. Each distinct neighbor-
hood in a community are connected to other neighborhoods via boundary control devices.
Boundary control devices are members of multiple IDIP neighborhoods.

The design of the IDIP neighborhood and community response allows for each neigh-
borhood to respond autonomously to an attack. This is an important feature of the IDIP
architecture.

4.2. IDIP PROTOCOL DEFINITIONS

IDIP is actually made up of several protocol definitions. The combination of the
deployment of these protocols comprises a complete IDIP system. There are two distinct
layers in IDIP and as such, the protocol definitions are separate across these layers. The
two layers in IDIP are the Application Layer and the Message Layer.

4.2.1 IDIP ME S S A G E LA Y E R

 The Message Layer is the lower layer, and acts, in part, as the transport layer for
IDIP. The message layer consists of the following protocols:

1. HELLO protocol for neighborhood management[NB02-2]

2. Neighborhood Key information distribution protocol(NKID).[NB02-2]

3. IDIP authentication header-[NB02-2]

4. IDIP encapsulating security payload-[NB02-2]

The Message Layer is designed to provide secure, reliable messaging for IDIP applica-
tions between neighbors in an IDIP neighborhood as well as between IDIP communities.
It is also designed to provide privacy and integrity/authentication. It uses the IDIP
Authentication Header(AH) and Encapsulating Security Payload(ESP) to achieve this.
(The IDIP AH and IDIP ESP protocol definitions are not available for public viewing at
this time.).

The Discovery Coordinator functionality can be embedded within the message layer,
or as a stand-alone entity. Most generally it is embedded as part of the message layer
application.

One other major guiding principle in the IDIP Message Layer design is to have
minimal performance impact on the protected systems. The IDIP Message Layer adds
very little overhead for each message. The use of multicast, in networks where this is
supported, reduces the message traffic for IDIP messages. The use of UDP minimizes the
consumption of local host resources. Since there are potentially many neighbors in an
IDIP neighborhood using TCP could potentially consume many of the network resources
required for an application.

4.2.1.1 IDIP Hello Protocol

The IDIP HELLO Protocol is responsible for requests for inclusion as an IDIP
neighbor in an IDIP neighborhood. Nodes that wish to register as a neighbor send a

12

HELLO message with the appropriate data included. The HELLO Protocol then deter-
mines if the request is valid and updates the neighborhood list appropriately. The HELLO
Protocol maintains the master list of the IDIP neighbors and is the initialization point for
the IDIP protocol.

4.2.2 IDIP AP PL I CA T IO N LA YE R

IDIP’s objective is to share the information necessary to enable intrusion tracking and
containment. The Application Layer defines the messages and procedures used by IDIP
applications to support intrusion isolation and containment. These messages are passed to
neighboring IDIP devices to trace the patch of the intrusion, and provide the information
necessary for each device along the path to determine the appropriate response.

A fundamental guiding principle in the design of IDIP was to minimize the size and
number of messages required to support intrusion response. Application Layer messages
are primarily sent only after an intrusion has been detected. Once the response has been
initiated the Application Layer attempts to only send messages to components that could
have been affected by part of the attack.

There are several types of IDIP Application devices. They are generally intrusion
detection systems(IDS), firewalls and routers. IDIP Applications generally send an IDIP
Trace message when it has determined that the IDIP node it resides on, or set of nodes it
can see, are under attack. This IDIP node at the detector of the potential attack specifies
which type of response is needed. Each IDIP node that gets the trace message can decide
on whether or not to follow the suggested response. An IDIP node can also choose to take
some other node-specific action based on local policy.

4.3 HOW IDIP MEETS THE KEY PRINCIPLES

As noted in Section 4.1 there are several key principles employed with the architecture
of an IDIP system.

4.3.1 AN IDIP S Y S T E M M U ST B E A BL E T O R E S P O N D T O I NT R U SI ON S I N R EA L-T I M E

The potential for a large amount of data to be generated by the tracing and analyzing of
network data by an IDIP node is great. This volume of data must somehow be dissemi-
nated quickly and a response formed appropriately, in real-time, for IDIP to meet this key
principle. There is nothing in the IDIP protocols as they are defined today, that neces-
sarily supports this principle automatically. However, the Discovery Coordinator capa-
bility could easily be modified to include a knowledge engine that could do this work.
One of the key design principles for IDIP was the ability to plug in additional components
to the nodes in an IDIP system. As long as the component communicates using the
defined message format, the inclusion of such is supported.

4.3.2 AN IDIP S Y S T E M M U ST S U P P O R T E N VI R O N M E N T S T H A T S PA N M U L T I P L E

A D M I N IS T RA T IV E D O M AI N S

As noted in section 4.1, and IDIP neighborhood is a single administrative domain. The
ability to span this administrative domain is supported via the inclusion of Boundary

13

Controllers as IDIP nodes. These Boundary Controllers enable the communication across
IDIP neighborhoods and facilitate the ability to stop an attack on a more global scope.

An important thing to note with this design is that the trust from one neighborhood to
another is important to establish and not automatic. The use of the Key Management
protocol as defined for Section 4.2.1 is critical to establishing and maintaining this trust.

The distributed nature of the IDIP architecture deployment ensures that each IDIP
Neighborhood can respond as it chooses and completely autonomously of any other IDIP
Neighborhoods.

4.3.3 AN IDIP S Y S T E M M U ST H A V E M IN I M A L I MP A C T O N T H E S Y S T E M S

P E R F O R M A NC E

As noted in Section 4.2.1, the IDIP Architecture definition specifies that the network
transport that must be used in sending and receiving IDIP messages is the User Datagram
Protocol(UDP). UDP is a connection-less protocol that runs on top of IP networks. It
provides very little in the way of error recovery services. It provides a direct way to send
and receive datagram messages over the network.

The UDP protocol provides a procedure for applications to send messages to other
applications with a minimum of overhead. UDP is transaction oriented, and as such
delivery of messages and duplicate message protection are not guaranteed. However,
UDP places little additional overhead on any system with applications using this as the
transport mechanism.

4.3.4 AN IDIP S Y S T E M M U ST B E C AP A B L E O F O P ER A TI N G WH I L E T H E S Y S T E M I S

U N D E R A T T A C K

The IDIP Message Layer was designed to be simple and to minimize the likelihood
that it would fail in the event of an attack. As a result, the IDIP Message Layer has
minimal dependence on the network infrastructure and uses the User Datagram
Protocol(UDP) rather than the Transmission Control Protocol(TCP) to achieve this. It also
uses IP addresses in application-layer node identification fields to minimize the depen-
dence on DNS. Both TCP and DNS are vulnerable to attack. This design decision forces
the IDIP Message Layer to handle all of the acknowledgment and verification when
sending IDIP messages. This puts some additional overhead on this layer, but ultimately
provides survivability in the event of an attack. As a result of the use of UDP, the IDIP
Message Layer has to incorporate the delivery acknowledgment and duplicate message
functionality in to its functional area. This decision could potentially place a larger load
on a system hosting an IDIP node and must be taken in to consideration when imple-
menting the response capability.

4.3.5 TH E IDIP S Y S T E M C O MP O N E N T S M U S T B E C A P A BL E O F R E S P O N D I N G

A U T O N O M OU S L Y T O T H E A T TA C K

As shown in figure 4.1.1, each IDIP neighborhood is an administrative domain. Each
IDIP node within a neighborhood must have the ability to respond autonomously, regard-

14

less of the status of other the other IDIP nodes. Each IDIP Community must be able to
respond even if another IDIP Neighborhood within the community is compromised in
some way and cannot respond appropriately.

The Discovery Coordinator represents a single point of failure in the IDIP system,
making it a target for DoS attack. If the Discovery Coordinator is not available for
directing an optimal response, IDIP nodes can take increasingly severe responses when
attacks continue following the initial response, reducing the reliance of IDIP on
Discovery Coordinator actions. This is fundamental to and IDIP system continuing its
response in the even that a node or set of nodes have been compromised.

5. COOPERATIVE INTRUSION DETECTION AND

TRACEBACK ARCHITECTURE (CITRA), IDIP'S GLOBAL

RESPONSE ARCHITECTURE

CITRA is a framework for integration of intrusion detection systems, firewalls,
routers, security management systems and other components in to an IDIP System. This
framework enables tracing intrusions across network boundaries, preventing or mitigating
subsequent damage from attacks, consolidating and reporting intrusion activities and
coordination of intrusion responses on a system-wide basis.

Figure 5.1 illustrates how IDIP nodes can cooperate to generate a global response. The
CITRA concept of operations has each response component(IDIP node) independently
deciding on what is an appropriate response. The system's objective is to generate the
response as close to possible to the attacker, minimizing the response impact on the crit-
ical functions of the system under attack. Each component of CITRA has an objective to
allow this optimal response while protecting local resources as well.

CITRA was designed to facilitate low-cost integration of independently developed
components. It was also designed for flexible adaptation of these components capabilities.
IDIP is integral to the CITRA framework. IDIP defines the format of and information
specification that CITRA-enabled components may exchange.

15

Figure 5.1 IDIP Global Response Architecture[NB02]

CITRA was extended under the Multi-Community Cyber Defense (MCCD) contract
from DARPA to allow traceback and response to attacks to continue across multiple IDIP
communities. Previously traceback and response would end when the last IDIP node in
the community along the path of the attack was reached. With the extensions made to
CITRA under MCCD attacks could now be traced into other IDIP communities and those
communities could be requested to respond to attack. For MCCD, there are two terms
that require special definition:

 Remote Neighborhood – A Remote Neighborhood is a collection of adjacent Edge

Boundary Controllers. (I.e., two IDIP nodes are neighbors if they have no IDIP

nodes between them).

 Edge Boundary Controller (EBC) – An Edge Boundary Controller is an IDIP
boundary controller with one or more neighbors belonging to a differing IDIP
community from itself.

5.1.2 COMMUNICATION BETWEEN IDIP COMMUNITIES

Communication between IDIP communities is handled through the edge boundary
controllers. Trace requests are handled by the IDIP agents on the nodes. Messages are
passed from one DC to the other DC through both EBCs using normal IDIP message
layer protocols.

16

DC

Detector

EBC

BC BC

DC

EBC

BC

BC

Reporting

TraceEscalation Escalation

Community 1 Community 2

Sanitizer Translator

DC - Discovery Coordinator (Management Console)

BC - Boundary Controller (Firewalls, Routers, etc.)

EBC - Edge Boundary Controller (e.g., Corporate Firewall)

5.1.3 MULTI-COMMUNITY POLICIES

Inter-Community policies are established for the edge boundary controllers on how
they will handle requests from other edge boundary controllers in their remote neighbor-
hood. This policy determines if the request is continued, ignored or requires a human in
the loop to authorize the request (Escalation). The policy also dictates if outgoing trace
messages should be sanitized and if so which fields require sanitization. The policy spec-
ifies if incoming trace messages should be translated and if so which fields require trans-
lation. The policy also includes whether intrusion alert warnings or correlation events will
be sent to another community.

5.1.4 CITRA REMOTE NEIGHBORHOOD TRUSTWORTHINESS

AND LOCATION

As seen in Figure 5.1, there must be trust established between remote neighborhoods.
This trust is developed using the key management principles and authentication mecha-
nisms described in the IDIP Message Layer Protocol.

How does one remote neighborhood determine where another remote neighborhood
resides? How does a remote neighborhood determine if another node along the network
path is an IDIP Boundary Controller? These questions are not answered specifically in the
CITRA specification. This project does list some possible technologies that could be used
in the aide of answering these questions in Section 11.

6. IDIP SOFTWARE ARCHITECTURE

The IDIP software architecture has two primary objectives: 1) Ease of integration with
various components and 2) flexibility in modifying the generic component behaviors for
specific components. This concept supports the integration of many types of IDIP nodes,
boundary controllers, network and host based IDS systems, clients, servers and network
management components.

The Protocols were designed for portability and the intent was to make them platform
independent. However, there are places where platform differences, particularly in the
area of network interfaces, must be accounted for.

The IDIP software components comprise the IDIP Backplane and IDIP Applications.
Figure 6.1 shows the software architecture intended for an IDIP protocol implementation.
The IDIP Software was designed for portability.

17

Figure 6.1 IDIP Software Architecture

7. A2D2

The Autonomous Anti-DDoS Network (A2D2) was designed and implemented by
Angela Cearns as part of her University of Colorado, Colorado Springs Masters
Thesis[C02]. The goal of the design of A2D2 was to combine various technologies and
make necessary improvements to achieve autonomous attack mitigation similar to that
attained by elaborate expensive architectures. The A2D2 network is specifically designed
to enhance quality of service during bandwidth consumption DDoS attack. The A2D2
design follows four main guiding principles [A02]:

● Affordable

● Manageable

● Configurable

● Portable

To achieve these goals several well known technologies were used that make up the
A2D2 system:

● Open Source Snort Intrusion Detection software

● Linux iptables(8) mechanism

● Linux Class based queuing mechanism

18

IDIP Message Layer
 Reliable Delivery
 Duplicate Removal
 Multicast Support
 Time Management
 Message class
 subscription

Neighborhood Management
 Node status

Key Management

IDIP Cryptographic Services
 Authentication
 Integrity
 Privacy

User Datagram Protocol

Internet Protocol

IDIP Application

IDIP Backplane

This paper will briefly discuss these technologies and the changes made for the A2D2
system.

7.1 A2D2 DESIGN-SNORT MODIFICATIONS

7.1.1 SN O R T OV E R V IE W

Snort is a free, opensource, lightweight network instruction detection system. Snort is
capable of real-time traffic analysis and packet logging on IP networks. It can be used to
detect a variety of attacks and probes and can perform protocol analysis and do content
searching/matching.

Snort uses a flexible rules language to describe traffic it has interest in and employs a
detection engine that supports a modular plug-in architecture. This ability to add new
modules makes Snort very adaptable to new threats. Snort has a real-time alerting mecha-
nism as well. Snort can be used as a packet sniffer, a packet logger or a full intrusion
detection system. Snort is available on multiple operating platforms.

For all of these reasons Snort was chosen as the IDS for this project as well as the
Autonomous Anti-DDoS Network(A2D2) developed by Angela Cearns. The modifica-
tions made in Snort for A2D2 were carried forward for this project. Additional modifica-
tions were made to Snort as well.

More information about Snort can be found at: http://www.snort.org. Details regarding
the changes made to Snort for A2D2V2 are listed in Section 9.1 below.

7.1.2 A2D2 SN O R T SP EC I FI C MO D I F IC A TI O NS

For A2D2, Snort was modified to include new module plug-ins. Of these, there are two
which are important to the discussion of this project. First, a module was added which
detects a generic flooding attack when traffic flooding is occurring, independent of the
type of tool used to generate the flooding. This flood preprocessor evaluates 'x packets
over y time' [C02] to determine if a flood is occurring. The user must set a value for what
the threshold is that will signal an alert to be triggered by Snort with this new module. As
noted in Angela Cearns[C02] thesis, normal traffic thresholds vary based on many things.
As such, it is suggested that the user do some basic traffic analysis prior to setting the
threshold value. The new flood preprocessor capability was added via two files,
spp_flood.c and spp_flood.h

The packet rate is maintained by a linked list introduced with this new module. This
list keeps track of the source IP address, the destination IP address, and connection infor-
mation.

The flood preprocessor is only interested in the type of packet that is being sent, not
the packet payload or contents. The types of traffic that it detects are ICMP, UDP, TCP-
SYN or TCP-SYN-ACK packets. If the number of packets from a specific source, for a
specific period of time exceeds the defined threshold, a flood alert is triggered.

It is important to note that the modifications made to Snort for A2D2 did include
measures to counter IP host spoofing.

19

http://www.snort.org/

Another preprocessor was added to Snort to allow for ignoring packets from certain
hosts in the flood detection. This allows the user to specify a host or set of hosts for exclu-
sion from the general flood detection mechanism. The ability to do this gives the Snort
flood detection mechanism more fine grained control.

7.2 A2D2 RATE LIMITER

 As part of A2D2 a rate limiter configuration file was added that allowed the user to
statically specify rate levels, rate values (number of packets per second) and duration for
each level. This configuration file is used when a Snort Alert is triggered based on the
flood detection, to enable automatic application of these limits. The rate limiter program
applies the limits as part of its work when it receives a flood in progress notification.

To enable this feature, another preprocessor add-on was developed as well as a rate
limiter program which runs on the firewall. After a source surpasses the defined
threshold, an initial flood alert is sent to the firewall. The firewall then applies the rules
that were defined in the configuration file via the rate limiter program. The FloodRate-
Limiters role is to keep track of the incoming packet rate of the host after the rate limiting
is applied. If the rate of incoming packets continues to exceed the threshold set, another
Snort Alert is sent and the rate limiting is moved to the next level as defined by the user.
When the incoming packet rate for a particular host has gone below the threshold limit,
the rate limiting is automatically turned off.

The mechanism used to limit the rate of incoming packets on the firewall is the Linux¹
iptables(8) mechanism. Iptables is used to set and modify the packet filter rules in the
Linux kernel. Several different tables may be defined and each table contains a number of
build-in chains and may contain user defined chains. For A2D2 the built in chains were
used, along with some user defined chains to set the thresholds for the number of allowed
incoming packets at any point in time.

7.3 Q0S FIREWALL RULES

As part of the initial setup there were a set of rules applied to the firewall for the A2D2
network. These rules also utilized the iptables(8) mechanism and allowed certain types of
traffic to be accepted no matter what the state of an attack. This was necessary to ensure
that good traffic was allowed through. It was also done to set up the user defined chains
described in the section above so that traffic from these sources would not be subject to
the limitations applied for attack traffic.

20

7.4 A2D2 CLASS BASED QUEUEING(CBQ)

To enable the firewall to respond to the request from the Snort IDS the Linux CBQ
mechanism was utilized to allow each type of traffic a percentage of the total bandwidth
the system had available. Without the CBQ settings the firewall was so overwhelmed with
incoming packets that it could not respond to the messages being sent by the modified
Snort IDS preprocessor. The details of the rules applied for A2D2 will not be given, but
the utility used to achieve the CBQ settings was tc(8), specifically the qdisc option. qdisc
is short for queueing discipline. This mechanism allows for creation of queues for a
specific interface, and when packets come in they are queued to these as appropriate.
Some qdiscs can't contain classes, which contain further qdiscs-traffic may then be
enqueued in any of the inner qdiscs, which are within the classes. This nesting mechanism
allows for the prioritization of traffic which leads to the CBQ implementation found in
A2D2.

 In figure 7.4.1, the full implementation of the A2D2 network is shown.

Figure 7.4.1 A2D2 Implementation[C02]

21

8. A2DV2 FEATURES, ARCHITECTURE AND

IMPLEMENTATION

A2D2V2 builds on the features provided with A2D2. As noted above, the original
A2D2 design was well suited for a local area network response to a DDoS attack.
A2D2V2 provides an Enterprise wide network response to an attack via earlier attack
detection and IDIP enabled node cooperation.

There are 7 key feature additions to A2D2 that encompass the features provided by
A2D2V2 that will be described in this section:

● IDIP Additions to A2D2V2 Snort IDS

● IDIP enabled firewalls/routers

● Earlier detection and push back of an attack via traffic monitoring on systems not
hosting intrusion detection software

● Notification of upstream routers via IDIP messaging regarding perceived attacks

● Notification to upstream routers of attack mitigation strategies taken by
surrounding neighborhoods via IDIP messaging

● Upstream router response to notification of attack and strategies taken

Figure 8.1 below shows a communication diagram of how A2D2V2 is setup, with the
specific IDIP features on each IDIP enabled node highlighted. The detailed architecture of
A2D2V2 is shown figure 9.1.1.

A2D2V2 implements the enterprise wide attack response and coordination utilizing the
main concepts of the IDIP protocol. As noted in Section 4.1.1 above, an IDIP neighbor-
hood is an administrative domain, with intrusion detection and response functions
managed by a component called the discovery coordinator. Each administrative domain is
capable of detection and response as it sees fit, without knowledge of or communication
with other IDIP neighborhoods. In the implementation of A2D2V2 each neighborhood
has its own discovery coordinator, but in the only neighborhood that actively supports
intrusion detection is Neighborhood 2. This Neighborhood is the one with the Snort IDS
in the 13.x subnet. The other Neighborhoods, 1 and 3, have the ability to respond to IDIP
messages and determine the best response, however they do not have an active intrusion
detection mechanisms enabled for the purposes of testing the A2D2V2 implementation.
They could easily be enabled this way, as the IDIP messaging and IDIP applications are
the same for all Boundary Controllers(noted with BC) in figure 8.1 below.

The A2D2V2 configuration includes a subnet, 15.x, that is not a part of the IDIP
community and is not IDIP enabled. The intent of this setup will be shown later, but the
basic idea was to show that a non-IDIP enabled set of hosts could reap the benefits of
IDIP communities when attacks cross both boundaries.

22

Figure 8.1 A2D2V2 Community and Neighborhood Overview

23

8.1 A2D2V2 AND IDIP

Unfortunately, there was no available open source implementation if the IDIP proto-
cols. As a result, a partial implementation of the IDIP Message Protocol and IDIP Appli-
cation Protocol was done for A2D2V2. For A2D2V2 the following pieces were
completed:

IDIP Message Protocol:

• IDIP Neighborhood Management via the Discovery Coordinator

• Reliable Delivery of IDIP Messages

• All Message formatting

• Protocol Initialization

• Message Forwarding, including trace requests, and rate limiting requests

• Socket communication

IDIP Application Protocol:

• Modifications to Snort for IDIP Application protocol support

• Addition of an IDIP enabled firewall/router application to enable reception of
IDIP messages from Snort IDIP application, initiate tracing of potential
attackers and notification to upstream routers when attacks are discovered

8.1.1 A2D2V2 IDIP IDS IMPLEMENTATION

As seen in figure 7.4.1 the A2D2 architecture makes heavy use of an existing Intrusion
Detection System (IDS) named Snort. A Snort overview was given in Section 7. The
original features added by Angela Cearns work in A2D2 for the Snort IDS, specific to the
flood detection and notification mechanism were left unchanged. These features are still
provided by the flood preprocessor module noted as spp_flood.c. For A2D2V2 the mecha-
nism for receiving the flood alert messages and response to them was modified to be IDIP
enabled.

Any node in a network can become an IDIP node, and as noted above in Section 4 an
IDS can be used as an IDIP Application Node. As with A2D2 the Snort IDS plays a
central part in the intrusion detection feature. However, the actual response to any attack
is now IDIP enabled, which results in a much different outcome than A2D2 provided.
More details on this in Section 9.

The mechanism to intercept and respond to the flood messages sent by the Snort IDS
flood preprocessor was added for A2D2V2 to enable the use of IDIP messages. This
section details this work and highlights the pieces of IDIP that are pertinent to this func-
tionality. It does not provide the full implementation details.

The messages for this new mechanism, which was encapsulated in a module named
report_idip.c, were formatted using the IDIP application message format. Each of these
messages has the appropriate application message header and subsequent application

24

message for use by the upstream IDIP message mechanisms. The definitions of the IDIP
application message header and IDIP application message body follows.

The IDIP Application Message Header format is defined as follows:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Version Class ID
Length (4 octets)

Timestamp (4 octets)
Thread ID (4 octets)

Originator IDIP Address (16 octets)

Flags Pad
Timediff (4 octets)

 Class ID: Class IDs from the CISL and additional IDIP classes. A list of the class
IDs is found in [NB02-1]

 Length: Length of the following IDIP application message

 Version: Identifies the version of protocol.

IDIP Version: 0x0010

CIDF Version: 0x0100

After the IDIP application header comes the IDIP application message. The Class ID
field in the application header corresponds to the message type that follows the header.
For A2D2V2, the supported ClassID types are as follows:

a) Trace
b) Do
c) Undo

Which translated to the following C structure:

/*
 * 3.1 IDIP Application Message Header
 * p.4 Figure 2
 */
struct IDIP_app_msg_hdr {
 uint8_t version;
 uint8_t class_id;
 uint32_t length;
 uint32_t timestamp;
 uint32_t thread_id;
 struct IDIP_app_orig_addr orig_addr;

25

 uint8_t flags;
 uint8_t pad[3];

 };

/*
 * 3.1 IDIP Application Message Header versions
 */
#define IDIP_APP_VERS_IDIP 0x0010
#define IDIP_APP_VERS_CIDF 0x0100

/*
 * 3.1 IDIP Application Message Header Class ID's
 */
#define IDIP_APP_CLASS_TRACE 0x0020
#define IDIP_APP_CLASS_DCUNDO 0x002a
#define IDIP_APP_CLASS_DCDO 0x002e

An IDIP application communicates with the IDIP Message Layer through the socket
on port 0xc1df. The IDIP Message Layer sender process listens on port 0xc1df for
connections from applications. When an application connects to the port, the sender
receives a registration message. The registration message includes the IDIP classes of
messages the application wants to receive. When the IDIP Message Layer receives a
message on the RCV mailbox, it sends the message using the socket connection to all
applications who have registered for this type.

For A2D2V2 attack processing an IDIP enabled message creator and forwarding
program, report_idip.c, was developed which runs on the host running the Snort IDS
systems. This new module a) receives flood notification messages from the Snort IDS, b)
creates and then forwards an IDIP TRACE message request to the IDIP message/DC
coordinator node on the upstream router and c) creates and forwards an IDIP DO Message
to the IDIP message node on the upstream router, requesting a rate limiting of the identi-
fied source address or d) creates and forwards an IDIP UNDO message to the IDIP
message node on the upstream router requesting to shutoff rate limiting for an address or
class of addresses. The decision as to which type of action is taken is dependent on the
data received from the Snort IDS flood preprocessor.

In the new module, report_idip.c the following section of code does the main part of
the work described above.

report_idip.c:

 analyzePacket(Alertpkt *alert, FILE *log, char *hostname, int portno)
{
 Packet *p = NULL; /* This is used for logging data only */
 time_t now;
 int snd;
 int created_trace = 0;
 char *time_string = NULL;
 struct sockaddr_in snd_addr;
 idip_message_t idip_trace_msg; /* request for tracing a source */

26

 idip_message_t idip_do_msg; /* request for rate limiter */
 in_addr_t haddr;

 memset (&idip_trace_msg, 0, sizeof (idip_message_t));
 memset (&idip_do_msg, 0, sizeof (idip_app_msg_t));

 /*
 * main part of code to generate IDIP trace and do requests to send to message
 * receiver on upstream IDIP discovery coordinator firewall/router.
 *
 *
 * When a new attack is discovered, create a new trace message to send to
 * upstream firewall/router IDIP enabled message receiver.
 */
 if ((p != null) && (strstr((char *)alert->alertmsg, "end") == null)) {
 if (create_trace_msg(&idip_trace_msg, (char *)alert->alertmsg,
 inet_ntoa(p->iph->ip_src), hostname, 0) != 0) {
 fprintf(stderr, "failed to create trace request \n");
 return (-1);
 }
 created_trace = 1;
 } else if (strstr((char *)alert->alertmsg, "end") == null){
 if (create_trace_msg(&idip_trace_msg, (char *)alert->alertmsg,
 "192.168.11.2", hostname, 0) != 0) {
 fprintf(stderr, "failed to create trace request \n");
 return (-1);
 }
 created_trace = 1;
 }
 /*
 * send the idip trace message to the firewall. the firewall
 * will then begin a tcpdump process and gather data
 * from the host we have identified in this message.
 * the firewall will notify upstream routers of the attack
 *
 */
 if (created_trace) {
 if (sendto(snd, (idip_message_t *)&idip_trace_msg,
 sizeof(idip_message_t), 0,
 (struct sockaddr *)&snd_addr, sizeof (snd_addr)) < 0) {
 perror("could not send message to idip message layer");
 }
 created_trace = 0;
 }

 /*
 * Create the IDIP 'do' message for the upstream IDIP enabled firewall/router
 * message receiver/ The IDIP enabled application on the firewall/router will then
 * process this request to adjust the rate, and forward this action taken on to the
 * upstream routers for their consideration.
 *

27

 */
 if (p != null) {
 if (strstr((char *)alert->alertmsg, "end")) {
 if (create_do_msg(&idip_do_msg,
 (char *)alert->alertmsg,
 hostname, inet_ntoa(p->iph->ip_src),
 idip_restore_rate) != 0) {
 fprintf(stderr, "failed to create_do_msg \n");
 return (-1);
 }
 } else {
 /*
 * this is a rate limiting request.
 */
 if (create_do_msg(&idip_do_msg,
 (char *)alert->alertmsg, hostname,
 inet_ntoa(p->iph->ip_src),
 idip_limit_rate) != 0) {
 fprintf(stderr, "failed to create_do_msg \n");
 return (-1);
 }
 }
 } else { /* end if p != null */
 if (strstr((char *)alert->alertmsg, "end")) {
 if (create_do_msg(&idip_do_msg,
 (char *)alert->alertmsg,
 hostname,
 "192.168.11.2", idip_restore_rate) != 0) {
 fprintf(stderr, "failed to create_do_msg \n");
 return (-1);
 }
 } else {
 if (create_do_msg(&idip_do_msg,
 (char *)alert->alertmsg, hostname,
 "192.168.11.2", idip_limit_rate) != 0) {
 fprintf(stderr,
 "failed to create_do_msg \n");
 return (-1);
 }
 }
 }

 if (sendto(snd, (idip_message_t *)&idip_do_msg,
 sizeof(idip_message_t), 0,
 (struct sockaddr *)&snd_addr, sizeof (snd_addr)) < 0) {
 perror("could not send message to idip message layer ");
 exit (1);
 }
....
....

28

8.1.2 A2D2V2 IDIP ENABLED FIREWALL/ROUTER(S)

A2D2V2 provides the IDIP message protocol mechanism via a module named
idip_firewall_receiver.c which runs and listens on the appropriate nodes to intercept and
process the IDIP messages sent. In A2D2V2 the basic communication flow is as follows:

Snort IDS ->generates flood report when attack is detected

report_IDIP -> intercepts flood report message

report_IDIP->creates three classes of IDIP messages:

IDIP DO

IDIP UNDO

IDIP TRACE

report_IDIP->forwards IDIP message to upstream firewall/router

IDIP_firewall_receiver->receives IDIP message and processes according to request

The idip_firewall_receiver module is the central IDIP message application module in
A2D2V2. This application is responsible for all of the IDIP message processing. This
section will highlight the IDIP Message Layer source code that was developed for
A2D2V2. The full implementation will not be shown, but the location of the full source
is shown in Appendix B. The IDIP Message Layer application is the central piece in an
IDIP enabled network.

As noted in [NB02-2] the IDIP Message Header is defined to be as follows:

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Version Flags Length
Next Type Pad Checksum

Sequence Number (4 octets)
Time-Stamp (4 octets)

Priority (4 octets)
Destination Address (4 octets)

Destination Process ID Number (4 octets)
Destination Boot Time (4 octets)

Pad (4 octets)

This translated in to the following C structure definition:

struct idip_header {
uint18_t version;

uint8_t flags;
uint16_t length;
uint8_t next_type;
uint8_t pad;

29

uint16_t checksum;
uint32_t seq_num;
uint32_t time_stamp;
uint32_t priority;
uint32_t dest_addr;
uint32_t dest_proc_id;
uint32_t dest_boot_time;
uint32_t pad_extra;

};

Next type field values

#define IDIP_MESSAGE 0x0
#define IDIP_APPLICATION_DATA 0x01
#define IDIP_HELLO_DATA 0x02
#define IDIP_NKID_DATA 0x03
#define IDIP_CRED_DATA 0x05
#define IDIP_STARTUP_DATA 0x06
#define IDIP_ESP 0x32
#define IDIP_AH 0x33

Flag values

#define IDIP_ACK 0x1
#define IDIP_ND_ACK 0x2
#define IDIP_NCI_ACK 0x4
#define IDIP_NR_ACK 0x8
#define IDIP_NN_ACK 0x10
#define IDIP_NC_ACK 0x11

This header information is what is used to determine the appropriate response by the IDIP
Message Layer when it receives an incoming message. The following rules are used for
Inbound Message Processing:

• If the version number is not the proper version number the message is discarded.
For A2D2V2 this version number is static and is not checked

• If the next type is valid application data respond to the sender using the same IDIP
header, with no data, with the control field set to ACK as an acknowledgment.

For outbound message processing when an IDIP Application requests IDIP Message
transmission, the IDIP Message Layer does the following:

• Builds the Header
• Records the list of recipients as specified by source node
• Transmits the message to the list of recipients
• Waits for acknowledgment or time-out from recipients

The IDIP Message Layer consists of two functions, the sender and receiver. For
A2D2V2 both sender and receiver were implemented in one process and communication

30

was managed via sockets. The IDIP protocol allows for making these 2 processes with
multiple mailboxes to manage communication. For A2D2V2 this was not utilized for
testing, only because it was not central to proving the reliability and functional pieces of
this project. This was implemented however, and is a part of the final source found as
noted in Appendix B.

The central message module in A2D2V2, idip_firewall_receiver, listens on the
IDIP_APP_PORT, number noted above, for incoming IDIP messages. As shown below in
figure 9.1.1, the A2D2V2 test bed had 4 routers, 3 of which were IDIP enabled. These
routers served multiple roles as the IDIP Boundary Controllers(BC) between IDIP neigh-
borhoods, firewalls, IDIP application nodes and IDIP Discovery Coordinators. IDIP
allows for the BC's to set policies with regard to acceptance of an processing of incoming
messages from other boundary controllers. In A2D2V2 this policy was set to 'accept' at all
times, that is all IDIP messages incoming to any BC from another BC were accepted and
processed. In a real-life network this would not likely be allowed as all traffic coming in
from other IDIP enabled nodes would have to be validated in some way prior to accep-
tance and processing. Within the A2D2V2 test bed, all traffic from each BC was known
to be legitimate, and thus no additional validation was required.

idip_firewall_receiver has several key areas that implement the capabilities noted
above. Implementation of the message receiving mechanism is done in the main() part of
the module as shown below. It simply listens on the gen_mbx, IDIP_MSG_PORT, for
incoming IDIP message. The process_idip_message() function handles the bulk of the
functionality once a message is received.

IDIP_firewall_receiver.c:

void

main() {

 int length;

 int n;

 idip_message_t i_message;

 struct sockaddr_in toaddr;

 /* set up our listening socket */

 if ((gen_mbx = socket(af_inet, sock_dgram, 0)) < 0) {

 fprintf(stderr, "unable to set up receiver socket.\n");

 perror(strerror(errno));

 return;

 }

 /*

 * listen for messages from any host, on the idip_app_port

31

 */

 (void) memset(&gen_from, 0, sizeof (gen_from));

 gen_from.sin_family = AF_INET;

 gen_from.sin_addr.s_addr = INADDR_ANY;

 gen_from.sin_port = htons(IDIP_APP_PORT);

 if (bind(gen_mbx, (struct sockaddr *) &gen_from,

 sizeof (struct sockaddr_in)) < 0) {

 fprintf(stderr, "%s", "Could not bind to port\n");

 perror(strerror(errno));

 }

 length = sizeof (gen_from);

 if (getsockname(gen_mbx, (struct sockaddr *) &gen_from, &length)) {

 perror("getting socket name");

 exit(1);

 }

 while (1) {

 n = recvfrom(gen_mbx, &i_message,

 sizeof (IDIP_message_t),

 0, (struct sockaddr *)&gen_from, &length);

....

....

 /*

 * Process this message. It is possible that there has

 * been a transmission problem or data is garbled. Move on

 * if this is the case.

 */

 if (process_idip_message(&i_message) != 0) {

 perror("error processing IDIP message");

 continue;

 }

 }

}

32

Processing of the incoming messages depends on the type of data enclosed in the
message as pointed to by the next_type member of the i_hdr.next_type member of the
idip_message_t structure. The class_id member of this structure indicates the type of
application request this message contains. This data tells the message layer module,
idip_firewall_receiver how to handle the message it has just received.

idip_firewall_receiver: process_idip_message():

static int

process_idip_message(idip_message_t *msg)

{

 int error = 0;

 idip_app_msg_t app_msg = msg->p.app_msg;

 if (msg->i_hdr.next_type == IDIP_APPLICATION_DATA) {

 if (msg->p.app_msg.app_hdr.class_id == IDIP_APP_CLASS_TRACE) {

 error = do_trace_request(&(msg->p.app_msg));

 if (error) {

 perror("executing trace request");

 return (-1);

 }

 } else if (msg->p.app_msg.app_hdr.class_id ==

 IDIP_APP_CLASS_DCDO) {

 error = do_request(&(msg->p.app_msg));

 if (error) {

 perror("executing do request");

 return (-1);

 }

 } else if (msg->p.app_msg.app_hdr.class_id ==

 IDIP_APP_CLASS_DCUNDO) {

 error = undo_request(&(msg->p.app_msg));

 if (error) {

 perror("executing undo request");

 return (-1);

 }

 }

 } else {

 printf("Unrecognized app header type\n");

33

 return (-1);

 }

 return (0);

}

As you can see, there are the three types of messages that are recognized and imple-
mented for A2D2V2 DO, UNDO and TRACE message types.

8.2 A2D2V2 DYNAMIC TRACING AND ENTERPRISE

NOTIFICATION TO ACHIEVE COOPERATION

One important feature of A2D2V2 is the ability to dynamically start a proactive
response to a perceived attack farther up in the network hierarchy away from the network
under attack. This is part of the IDIP trace request response implemented in
idip_firewall_receiver.c The idea is that the farther removed from the network under
attack an attack can be detected and mitigated the smaller burden imposed each individual
network within the enterprise.

In A2D2V2 the tracing mechanism used was tcpdump and the push back was achieved
by the IDIP Discovery Coordinator utilizing a static table of upstream router addresses to
send out the messages required to push the response to the attack farther upstream in the
network. There were several choices considered for use as 1st the tracing mechanism and
2nd the discovery of upstream notification of upstream routers for this project. A descrip-
tion of those, along with the implementation details of the tcpdump usage is given in this
section.

 Within a IDIP Neighborhood, multiple hosts can be enlisted to trace the traffic from
incoming sources. This data is then sent to the Discovery Coordinator embedded in the
IDIP Message node for archival. Ultimately, the Discovery Coordinator would formulate
a more fine grained response to an attack based on the data from the trace messages. For
A2D2V2 this capability was limited to one node in the neighborhood and a coarse grained
attack response was implemented in the A2D2 to limit the rate of incoming packets from
those hosts discovered during the tracing exercise. A notification from Snort to the
Discovery Coordinator via the report_idip module triggers a 'Trace' request first, and then
a subsequent 'Do' request to the firewall to begin traffic limiting and bandwidth manage-
ment.

8.2.1 CO N S I DE R AT I ON S FO R DY N A MI C TR A CI N G ME CH A N I S M

8.2.1.1 IP Link Level Header Parsing and Address Resolution Protocol

Within an IP packet there is a header, called the Link Level header, which represents
the data link level information that is available about the source of the packet. The data
link layer in a network is the layer immediately below the IPV4/V6 layer.

The link level header information is obtained with utilities such as tcpdump and
consists of the data link header data that is sent from the data link layer to the protocol

34

layer when packets are transmitted. In the case of A2D2V2 which is an Ethernet based
network, the data link packet would look as follows:

In an Ethernet network the Medium Access Control(MAC) protocol is used to provide
the data link layer of the Ethernet LAN. For the purposes of extracting the header only the
following parts of the above packet are interesting:

The header consists of three parts:

• A 6-byte destination address, which specifies either a single recipient node
(unicast mode), a group of recipient nodes (multicast mode), or the set of all
recipient nodes (broadcast mode).

• A 6-byte source address, which is set to the sender's globally unique node address.
This may be used by the network layer protocol to identify the sender, but usually
other mechanisms are used (e.g. arp). Its main function is to allow address
learning which may be used to configure the filter tables in a bridge. This is the
system MAC address.

• A 2-byte type field, which provides a Service Access Point (SAP) to identify the
type of protocol being carried (e.g. the values 0x0800 is used to identify the IP
network protocol, other values are used to indicate other network layer protocols).
In the case of IEEE 802.3 LLC, this may also be used to indicate the length of the
data part. The type field is also be used to indicate when a Tag field is added to a
frame.

Utilizing a utility like tcpdump and parsing the output from the link level headers to
obtain the system MAC address was considered as the mechanism by which to trace
packets coming in and identify the source of the potential attack. To make use of the
MAC address we would have to then resolve the MAC address in to its known IP address.

When a device needs to send an IP packet to another device on the local network, the
IP software will first check to see if it knows the hardware address associated with the
destination IP address. If it has this data it will simply transmits the data to the destination
system, using the protocols and addressing appropriate for whatever network medium is
used between the two devices. However, if the destination system's hardware address is
unknown, then the IP software must locate it before any data can be sent. At this point IP
will call on the Address Resolution Protocol(ARP) to locate the hardware address of the
destination system. This resolution is achieved by a low-level broadcast onto the network,
requesting that the system that is using the specified IP address respond with its hardware
address. When the requesting system gets an ARP response, it will store the hardware and
IP address pair of the requested device into a local cache. The next time the system needs
to send data it will consult with the local cache first, prior to issuing an ARP request.

You might ask why it would be necessary in A2D2V2 to do this address resolution
when the IP packets coming in to the router have a source IP address specified? IP

35

http://www.erg.abdn.ac.uk/users/gorry/course/lan-pages/vlan.html
http://www.erg.abdn.ac.uk/users/gorry/course/lan-pages/llc.html
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/other-nl.html
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/ip.html
http://www.erg.abdn.ac.uk/users/gorry/course/lan-pages/bridge.html
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html
http://www.erg.abdn.ac.uk/users/gorry/course/lan-pages/mac-vendor-codes.html
http://www.erg.abdn.ac.uk/users/gorry/course/intro-pages/uni-b-mcast.html
http://www.erg.abdn.ac.uk/users/gorry/course/intro-pages/uni-b-mcast.html
http://www.erg.abdn.ac.uk/users/gorry/course/intro-pages/uni-b-mcast.html

addresses are filled in by the application at the time of packet generation. It is easy to
'spoof' IP addresses, that is create a packet which contains an IP address which is really
not the IP address of the source, thus making it difficult to detect the real source of a
packet. In a DDoS attack mitigation scheme this could result in stopping legitimate client
traffic. And, in many DDoS attacks IP spoofing is done to make it more difficult to find
the legitimate sources of the attacks.

With this in mind and with the knowledge that while it is possible to spoof the MAC
address it isn't as likely as spoofing an IP address, so the question became how can we
resolve the MAC level address from an incoming packet to the router to its IP address to
ensure we limited traffic from the appropriate source address? There are 2 possibilities
that were considered for A2D2V2:

The 1st one was to use the Reverse Address Resolution protocol, at the firewall/router
to determine the source IP of an incoming packet. The rarp(8) utility can be used to map
dynamically between the IP and network interface MAC addresses. Machines that boot
over the network use rarp(8) to discovery their own internet protocol address. This mech-
anism can be generalized for use for queries about specific MAC addresses. The main
limitation with this approach is that there must be a Reverse Address Resolution Protocol
server that responds to these requests and can resolve the Ethernet address in to its corre-
sponding IP address. A secondary limitation rarp(8) is not supported in Linux after 2.3
making it difficult to use.

The 2nd possibility explored was to intercept packets coming in to the firewall/routers
and record the <Ethernet address, IP address pair> from those packets utilizing the
tcpdump utility. This list would then be consulted when an attack was detected from a
specified source IP address to find the MAC address corresponding to the specified IP
address. Again, due to IP spoofing we would need to take one additional step to ensure we
had the correct source address, that is to use ARP to send a broadcast on the network to
obtain the correct IP address. There are several drawbacks with this approach:

1. The list of <Ethernet address, IP Address> pairs cannot be infinitely long. During
a heavy attack it is likely that this list would be rolled over many times, resulting
in the high probability of not being able to obtain the Ethernet MAC address for a
specified IP address. This would result in either dropping this IP address as an
attacker or blocking traffic from this address and possibly blocking legitimate
client traffic

2. The time it would take to maintain and consult this list could be significant
depending on attack load, which wold result in a significant delay in attack
response

3. It is important to remember that the scope of ARP is a single IP link, that is the
only address resolution the system is able to maintain would be one link away. If
the network is comprised of many interim routers the use of ARP would not be
sufficient to resolve the IP address of the source. To resolve the source
completely one would have to traverse up the list of addresses that were resolved
until the end was found.

36

8.2.1.2 TCPDUMP

Another way to use tcpdump is to use it to monitor traffic on each interface known on a
system and to record this traffic for a period of time while collecting the incoming source
IP addresses. tcpdump has several options that allow for fined grained control of moni-
toring of incoming traffic. It can be monitored for each individual interface and allowing
for specifications of specific source addresses to be watched. This utility is very flexible
and powerful. The main limitation with using this is something mentioned in the section
above, that is IP source address spoofing. With tcpdump the source IP address is recorded
literally from the IP Packet with no modification. So, if an attacker is spoofing this
address tcpdump does not catch this. Based on all the data from the previous sections and
realizing that even MAC addresses can be spoofed via software the use of tcpdump as the
active tracing mechanism was chosen. tcpdump was used to monitor each known interface
on the firewall/router system, to track the number of packets for the specified period of
time, while also tracking the IP addresses for each of those packets. This decision was
partly based on the decision to reuse the A2D2 Rate limiter program which also has
provisions specifically encoded for IP spoofing issues[C02].

For A2D2V2 tcpdump is invoked when an IDIP Trace request is received from the
IDIP IDS application. The data gathered during this tracing was then used to determine if
an attack was underway and if the IDIP enabled firewall/router should issue an IDIP
message with this attack data to the known upstream routers.

The implementation details of how the dynamic tracing was achieved are shown
below. A set of scripts, utilizing both shell commands and awk(1) pattern and processing
language were developed to achieve the dynamic tracing and subsequent recording and
archiving of this trace data.

tcpdump.sh:

#!/bin/sh

set time limit based on what caller specified. Exec script that will send

SIGTERM to tcpdump to force this script to run the END block. Background

this so it doesn't interrupt gawk processing below.

Invoke tcpdump with options and pipe through gawk to gather data. The

running of tcpdump is limited to the time specified by the caller. I

am only interested in the ip protocol packets. I will get the source

and destination addresses with the ''ip' specifier at $3 and $5 respectively.

Do not track outgoing packets from this host as part of tracing data. This is

achieved by the 'src host not loghost' qualifier.

#

I need to dump on every interface I find on system. so, call ifconfig -a

37

first, to get interface name. Call tcpdump on these.

INTERFACES=`/sbin/ifconfig | gawk ' {

 # Get the interface name

 x = split($1, ifname)

 newif[i]=ifname[1]

 if (match(newif[i], "eth") && newif[i] != "lo") {

 printf("%s ", newif[i])

 }

 i = i + 1

} '`

for i in $INTERFACES

do

for each interface check number of packets , if over threshold, report

./dumper.sh $i $1 > /tmp/o_$i &

done

kill this process in $1 amount of time

./trace_kill $2

sleep 3

/bin/cat /tmp/o_*

#rm /tmp/o_*

This script loops through every known interface on the system, discards the loop back
interface, and calls another shell script named dumper.sh to invoke the actual call to
tcpdump with the appropriate options. The process running the tcpdump command is
killed in a set amount of time based on the original flood message received by the Snort
IDIP enabled IDS.

The dumper.sh script utilizes the awk programing language to keep track of the
number of packets received and which interface the packet arrived on for each source IP
address found. It also invokes the tcpdump utility with the appropriate options and logic
to monitor the interfaces on that system. The code shown below is specific to the R99
router. The rules for each firewall/router differ in the specific configuration.

dumper.sh:

This is the dumper program for host R99. Each of these is slightly different

based on the /etc/hosts file.

/usr/sbin/tcpdump -i $1 -lnq ip src host not loghost and not localhost 2>/dev/null | \

gawk -v threshold=$2 -v interface=$1 '

38

{

 split($3, ip, ".")

 x=sprintf("%d.%d.%d.%d", ip[1], ip[2], ip[3], ip[4])

 source[x,interface] += 1

}

END {

 for (name in source) {

 if (source[name] >= threshold) {

 split(name, ar, SUBSEP);

 printf("%s %s %s\n", ar[1], ar[2], source[name])

 }

 }

} '

8.2.2 CO N S I DE R AT I ON S FO R D I S C O V E R Y O F UP ST R EA M RO U TE R S TO NO T I F Y WH E N

AT TA C K I S D I SC O VE R ED

8.2.2.1 Traceroute

traceroute(8) is an application that tracks the routes packets can take across a TCP/IP
network on their way to a given host. It utilizes the IP protocol time to live (TTL) field
and attempts to elicit a ICMP TIME_EXCEEDED response from each gateway along the
path to the host. The general use of this is from the host you wish to trace packets from,
specifying the host for to which you want to get the packets route. So, for example, if we
wanted to trace a potential route from host 128.198.61.99 to google.com, the command
would look like:

Run on 128.198.61.99:

traceroute google.com

Yields for first run:

traceroute to google.com (64.233.167.99), 30 hops max, 40 byte packets

 1 128.198.60.1 (128.198.60.1) 0.206 ms 0.176 ms 0.175 ms

 2 * * *

 3 * * *

 4 dvr-edge-03.inet.qwest.net (65.121.122.205) 5.577 ms 7.865 ms 8.084 ms

 5 dia-core-02.inet.qwest.net (205.171.10.77) 5.874 ms 6.059 ms 6.023 ms- ******

 6 cer-core-02.inet.qwest.net (67.14.8.22) 30.103 ms 29.992 ms 29.965 ms

 7 chx-edge-01.inet.qwest.net (205.171.139.166) 29.954 ms 30.310 ms 30.328 ms

 8 65.112.69.202 (65.112.69.202) 30.675 ms 29.404 ms 29.970 ms

39

 9 216.239.46.1 (216.239.46.1) 29.482 ms 30.242 ms 29.855 ms

10 66.249.95.121 (66.249.95.121) 29.737 ms 72.14.232.53 (72.14.232.53) 31.438 ms
31.879 ms

11 72.14.232.57 (72.14.232.57) 32.110 ms 30.955 ms 31.013 ms

Yields for 2nd run:

traceroute to google.com (72.14.207.99), 30 hops max, 40 byte packets

 1 128.198.60.1 (128.198.60.1) 0.315 ms 0.198 ms 0.179 ms

 2 * * *

 3 * * *

 4 dvr-edge-03.inet.qwest.net (65.121.122.205) 5.107 ms 4.956 ms 5.379 ms

 5 dia-core-01.inet.qwest.net (205.171.10.33) 5.217 ms 5.540 ms 5.064 ms- ******

 6 svl-core-02.inet.qwest.net (67.14.12.10) 30.848 ms 30.862 ms 31.779 ms

 7 pax-edge-01.inet.qwest.net (205.171.214.34) 32.120 ms 30.820 ms 31.503 ms

 8 72.165.46.18 (72.165.46.18) 31.690 ms 32.369 ms 30.950 ms

 9 66.249.95.66 (66.249.95.66) 33.042 ms 31.844 ms 66.249.94.19 (66.249.94.19)
32.262 ms

10 216.239.46.45 (216.239.46.45) 57.162 ms 56.209 ms 56.852 ms

11 72.14.233.146 (72.14.233.146) 67.170 ms 66.909 ms 67.177 ms

12 66.249.94.94 (66.249.94.94) 67.793 ms 68.030 ms 66.734 ms

13 66.249.94.118 (66.249.94.118) 73.306 ms 72.460 ms 74.715 ms

14 72.14.207.99 (72.14.207.99) 67.639 ms 67.360 ms 67.137 ms

There is one major limitation to note with the use of traceroute(8) as the output above
shows. Note the ******, line 5 for each output. Prior to this, the addresses shown in the
potential route are identical, but beginning with line 4 these addresses diverge, thus
leading to a totally unique route that the packet could take to the specified destination.
The routes shown at any given invocation of traceroute(8) are 'possible' routes, not deter-
ministically probable. Thus utilizing this mechanisms to determine the upstream routers to
notify of an ongoing attack would be non-deterministic. This would result in delayed
attack mitigation response and possibly no mitigation response at all with the upstream
routers.

8.2.2.2 Netstat -rn

netstat(8) is a utility that allows for printing network connections, routing tables and
interface statistics. The -rn options specifically state that we are interested in routing table
information showing numerical addresses instead of the host name. The thought was that
we could use this to see the directly connected upstream routers with this utility.

There are several concerns with using netstat as the mechanism to determine a packets
route. Consider the following example:

40

windom.uccs.edu> netstat -rn

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window i rtt Iface

172.16.29.0 0.0.0.0 255.255.255. U 0 0 0 vmnet8

172.16.223.0 0.0.0.0 255.255.255.0 U 0 0 0 vmnet1

128.198.160.0 0.0.0.0 255.255.224. U 0 0 0 eth0

169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0

0.0.0.0 128.198.160.1 0.0.0.0 UG 0 0 0 eth0

The router default router shown is 128.198.60.1. So, utilizing netstat we would have
chosen this address to send the IDIP messages to for enabling push back of the attack
traffic.

However, in the router, you may have more routing entries such as:

169.100.160.0 0.0.0.0 255.255.224.0 U 0 0 0 eth1

100.198.160.0 0.0.0.0 255.255.224.0 U 0 0 0 eth2

128.198.160.0 0.0.0.0 255.255.224.0 U 0 0 0 eth3

The upstream router 1 may have 169.100.162.33 as IP address as indicated by subnet
169.100.160.0/19 in the entry.

The upstream router 2 may have 100.198.162.33 as IP address as indicated by subnet
100.198.160.0/19 in the entry.

The upstream router 3 may have 128.198.162.33 as IP address as indicated by subnet
128.198.160.0/19 in the entry.

Assume we received an intrusion packet from 12.0.0.10, how can you tell via which
upstream router the packet arrived? We can't determine this exactly and it we would
either have to send the attack notification to all possible upstream routers, or traverse
farther upstream from these routers to try to determine how the 12.0.0.10 host is attached
and how its packets may be routed. This could be potentially time prohibitive and we
could never really be assured we would get the correct router information.

8.2.2.3 Static Routing Configuration Files

With the A2D2V2 test bed as shown in figure 9.1.1, the routing for the 4 routers, R97,
R98, R99 and R102 was setup as static routing tables. For example, the routing tables for
R99 look as follows:

 netstat -rn

Kernel IP routing table

41

Destination Gateway Genmask Flags MSS Window irtt Iface

128.198.61.0 0.0.0.0 255.255.255.128 U 0 0 0 eth2

192.168.16.0 192.168.14.102 255.255.255.0 UG 0 0 0 eth3

192.168.15.0 192.168.14.98 255.255.255.0 UG 0 0 0 eth3

192.168.14.0 0.0.0.0 255.255.255.0 U 0 0 0 eth3

192.168.13.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

192.168.12.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

192.168.11.0 192.168.12.97 255.255.255.0 UG 0 0 0 eth0

169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth3

0.0.0.0 128.198.61.1 0.0.0.0 UG 0 0 0 eth2

Each router in the A2D2V2 test bed has a similar set of static routing defined. With
this in mind it was decide that a file that contained the specific routing information for
each interface on a system would be used to determine where to send the IDIP messages
for attack notification to upstream routers. With no dynamic utility to definitively deter-
mine the exact route a packet has taken this solution seemed like the most efficient and
consistent way to deal with this discovery. In a real world scenario this would likely have
to be changed and is the subject of future work as discussed in section 11.

8.3 A2D2V2 PORTABILITY

All of the initial work for A2D2V2 Snort modifications was done using the Solaris²
Operating System. Every effort was made to ensure that the components introduced in
A2D2V2 were portable to other platforms. To achieve this the same tools used in A2D2
were used with A2D2V2. The compilation and initial testing was done on Solaris.

As a more robust testing criteria was needed the test bed as described in Section 9.1
was developed. All hosts used in this test bed are running Linux and as such a re-compila-
tion and resting was done.

The original A2D2 firewall capability was retained and it is used when the firewall
receives an IDIP message for a rate limit request. The Class Based Queuing(CBQ) portion
of A2D2 was used as well.

Along with the use of open source tools, the IDIP infrastructure as developed for
A2D2V2 was designed with portability in mind so that it could easily be used on any
UNIX³/Linux operating system. It was written in C and uses standard socket interfaces. A
recompile should be all that is necessary to port this to another operating platform. It
could be argued that to make this component even more portable, Java should have been
used for the language of implementation. However, the resident set size and footprint of a
Java Virtual Machine, would make it very difficult to provide for a lightweight, resource
minimal solution, as the IDIP specification notes.

42

 One of the intended outcomes of the A2D2V2 design was to make this system avail-
able in heterogeneous environments. With the exception of Win32, I believe this goal was
met.

9. A2D2V2 TEST BED SPECIFICATIONS AND

PERFORMANCE RESULTS

9.1 TEST BED CONFIGURATION

To test the assumptions of A2D2V2 a specific test configuration was setup to enable a
remote notification scheme with cooperating IDIP firewall/router nodes. The test bed is
presented in figure 9.1.1. There are a total of 11 nodes in the test bed. There are 5-100MB
switches and 1-10MB switch. Routers are denoted with R<number>, attackers are
denoted with A<number> and clients are denoted with C<number>.

7 of the nodes in the test bed are HP Vectra, 600 MHz with 256MB of memory. These
machines are the following:

● A1, A2,, C1, C2, S1, S2, R102

 The 4 remaining nodes are Dell Optiplex GX150's, 1GHz with 512K of memory.
These machines are the following:

● R97, R98, R99 and A3

 Each of them is installed with the Fedora Core 5 release of Linux. In consideration of
the differing capabilities of these machines, specifically the apparently faster machines
used for the routers, it is important to note that this setup was not done this way to try to
skew the performance results in any specific way. These were simply the machines that
were available to me for testing. It is not expected that the difference in machines will
make a discernible difference in the performance results. The faster routers are offset by a
faster attack client, and slow servers. Ultimately the performance measurements do not
come down to a specific packet processing speed but the overall way in which the non-
attack clients themselves recover.

There are 4 LANS in the A2D2V2 test bed, each attached to their own firewall/router.
This setup was done to show the enterprise capability of A2D2V2 in detecting and miti-
gating DDoS attacks. These LAN's are numbered 11.X, 13.X, 15.X and 16.X. DDoS
attackers are contained in both the 11.X LAN and the 16.X LAN. This is done to show the
distributed nature of a DDoS attack, and to show the ability to push back the attacks
detected across this attack distribution.

The IDIP enabled firewall/routers are the R97, R99, R102 routers. R98 is not enabled
with any special software and no pre-set firewall rules or class based queueing applied.
As you may note, the routers in the A2D2V2 test bed are addressed in a non-traditional
way, that is not utilizing the standard router addressing of a .1 or .254 for the last part of
the IP address. The choice to use non-traditional addresses for the A2D2V2 test bed was
done to enable ease in identifying the servers and routers during for setup of the software

43

and test configuration. The naming scheme chosen was to utilize the routers name as the
last part of the IP address.

Figure 9.1.1 A2D2V2 test bed

44

The essential software contained on each node will be listed below on a per node type
basis. This is the general list of software. Each of these have been specifically modified as
needed for the specific host configuration on which they are running. For example, the
cbq.sh script must know which network interfaces that the rules must be applied to. For
each router/firewall in the A2D2V2 test bed configuration this is potentially different.

Router/firewall software, R97, R99, R102:

● idip_firewall_receiver – IDIP message application and discovery coordina-
tion

● tcpdump.sh – dynamic tracing script

● dumper.sh – dynamic tracing script

● trace_kill – script that dumper.sh calls to kill the tcpdump process

● cbq.sh – Class Based Queueing setup and initial firewall rule setup

● rateif.pl – rate limiter perl program

● rateif.conf – rate limiter configuration file

● topo.txt – static router topology file

Server software for S1 only:

● snort v1.8.6 with additional spp_flood.c preprocessor module

● report_idip.c – Flood notice receiver application and IDIP message creator
and forwarding agent

● tcp_snd – basic tcp server software developed to gather performance data.
It streams a message to any client connected.

Clients, C1 and C2:

● tcp_rcv – basic tcp client software developed to gather performance data.
Connects to named server and accepts message sent continuously by
tcp_snd program on server.

● Plot.pl – traffic statistics gathering program

Attackers, A1, A2 and A3:

● Stacheldraht Version 4- attack tool

9.2 A2D2V2 TEST SCENARIOS

Three main test scenarios are deployed to test the feasibility and functionality of the
A2D2V2 system. These are:

1. Normal tcp_rcv traffic running on C1 and C2 and tcp_snd running on S1
with no attack. This is used for baseline packet performance data.

2. Normal tcp_rcv traffic running on C1 and C2, tcp_snd running on S1 with
the TCP SYN flood attack running on A1, A2 and A3 targeting S1,

45

192.168.13.1 and S2, 192.168.15.1. No IDIP or IDS software running nor
class based queueing has been applied. This is to show the affect on the
clients with no DDoS attack mitigation. Results shown are for C1 only. C2
exhibited exact symptoms as C1 in this test scenario, that is the near total
loss of packet transmission.

3. Normal tcp_rcv traffic running on C1 and tcp_snd running on S1 with a 3
1/21 minute non-stop TCP SYN attack running on A1 and A2 with R97 and
R99 running IDIP enabled software, and S1 running IDIP enabled Snort
IDS. Class based queueing and other QoS techniques have been applied to
each participating router/firewall as discussed in Section 8.1.2. This
scenario is intended to show the attack response within 2 LAN's only.
Cooperation happens between the R97 and R99 firewall/routers.

4. Normal tcp_rcv traffic running on C1 and C2, tcp_snd running on S1 and
S2 with the non-stop TCP SYN flood attack running on A1, A2 and A3
targeting both S1 and S2 for 3 ½ minutes, along with the A2D2V2 IDIP
enabled Snort running on S1, and IDIP firewall/router software running on
R97, R99 and R102. Class based queueing and other QoS techniques have
been applied to each participating A2D2V2 router/firewall as discussed in
Section 8.1.2. This is to show the results of a full enterprise wide coopera-
tive DDoS attack response and mitigation scenario. This test was run
several times, with 2 graphs per client being displayed to show the consis-
tency of response for each client.

1 The length of the test runs were determined to be sufficient for proving the capability of

A2D2V2

46

For testing and performance results gathering, C1 was a client of S1 and C2 was a
client of S2. A1, A2 and A3 attacked both S1 and S2 simultaneously. Stacheldraht allows
you to do this by setting the IP addresses of the machines you want to attack. During test
#4 the command to run the TCP SYN attack from Stacheldraht looked as follows:

stacheldraht(status: a!3 d!0)>.showalive

waiting for ping replies...

showing the alive bcasts... ---> shows the active attack agents

192.168.16.1

192.168.11.2

192.168.11.3

alive bcasts: 3

stacheldraht(status: a!3 d!0)>

.msyn 192.168.13.1:192.168.15.1 ---> shows the target addresses for receiving attack

The ICMP and UDP flood tests that were a part of the original A2D2 masters work
were not run as part of the performance analysis done for this project. None of the code
that mitigated these attacks has changed and those attacks are actually managed via the
CBQ and firewall rules applied. One other change from the A2D2 system is that with the
A2D2V2 test bed the attackers are within the same subnet. The A2D2 setup allowed for
full subnet blocking of attack traffic. With A2D2V2 the setup allows for both legitimate
clients and attackers to be within the same subnet. So, full subnet blocking as provided in
A2D2 is not appropriate. This feature was disabled and attackers are blocked on IP
address only. The Stacheldraht attack tool randomly chooses IP addresses as the source of
the attack packets and thus could choose the IP address of a legitimate client in the
A2D2V2 test bed. This was considered and allowed. The performance data does show the
consequence of this decision and it will be discussed below specific to the set of results.

The first three scenarios were run once, and data gathered one time. For the 4th scenario
several sets of runs were performed. It was observed that C1 and C2 reacted consistently
for each run. The data shown below is for 2 of the runs for test #4.

The traffic type that is used and measured for the above scenarios is TCP via the
tcp_snd and tcp_rcv programs developed for this project. TCP was chosen so that both
incoming and outgoing traffic would be measured.

With A2D2 the goal was to minimize the attack affect on the servers, and thus on the
legitimate clients by allowing them to operate at a steady state, but sub-optimal perfor-

47

mance. The test results for A2D2 indicate that this goal was met. For A2D2V2 the goal is
slightly different. There are, in fact, several goals for A2D2V2:

6. To mitigate the attack affect on the legitimate clients much like was seen in
A2D2.

7. To validate the enterprise effectiveness of the A2D2V2, software implementa-
tion utilizing IDIP, with regard to attack response.

8. To show that even clients who are in a subnet with no IDIP enabling and no
attack detection or mitigation mechanism, and that are affected by a DDoS
attack within its path, can reap the benefits of the A2D2V2 enterprise network
cooperation when the attackers are stopped farther up in the network configu-
ration.

9. To try to provide sustained, if sub-optimal performance for both clients in the
A2D2V2 network with the full attack mitigation activated.

9.3 RESULTS ANALYSIS

Figures 9.3.1 – 9.3.8 show the test results per the test scenarios performed above. A
program is run on each client that reads the data from /proc/net/dev/<interface> to read
the number of packets sent and received. This is then calculated every second for the
period of time in the plots shown.

Figure 9.3.1 Client 1 baseline packet rate, Test #1

48

Figure 9.3.2 Client 2 baseline packet rate, Test #1

This test just sets the baseline traffic expected from the client systems in the A2D2V2
network. What is important to note about these is that C1 has a much more stable
sustained rate of about 550 packets per second throughput. Where as C2 is much more
inconsistent even in normal client/server activity. This is likely due to several factors: 1)
C2 appears more slow than C1. This is anecdotal data but it is an observation seen over
many test runs, re-configuration and rebooting of C2 2) The routers that are supporting
the link between C2 and S2 are different in their speed and memory size. R102 is the
older HP Vectra model which is much slower and has much less memory than the other
routers. C1 is on a path with 2 fast routers which helps it sustain a steady rate.

49

Figure 9.3.3 Client 1 baseline packet rate under attack, no attack mitigation, Test #2

The client under attack with no attack mitigation has almost no packet activity at all.

50

Figure 9.3.4 Client 1 packet rate under attack, 2-LAN full cooperative attack

mitigation,Test #3

In this test scenario only R99 and R97 are IDIP enabled, and attacks are only coming
from the 11.x subnet. C1 realizes very little performance degradation. There are short
bursts of small performance losses due the removal of subnet blocking during the
attack,and since 2 of the attackers are within C1's subnet. Overall the client traffic is
running at a reasonably steady state however, lower than the baseline run of 550
pkts/second. This is expected and intentional. With A2D2V2 as with A2D2 the class
based queueing as described in section 7.4 limits the amount of normal traffic coming
through for each interface. The idea is to allow a steady state of performance even during
an attack while not starving out other legitimate clients.

 The performance seen is due to several factors:

1. R99 is only tracing traffic coming in from the 11.x subnet due to the
limited attack, thereby reducing the processing overhead required to do
this tracing.

2. The attack traffic is lessened allowing R99 more general processing time.

3. The cooperative nature of A2D2V2 in notifying R97 thereby pushing
back the attack nearer the source, and the subsequent response by R97 to
limit the packets coming from the attack traffic from within its own
subnet reduces the load on R99 considerably.

51

Figure 9.3.5 Client 1 packet rate under attack, enterprise wide attack mitigation, Test

#4, a

Figure 9.3.6 Client 2 packet rate under attack, enterprise wide attack mitigation, Test

#4, a

52

Figure 9.3.7 Client 1 packet rate under attack, enterprise wide attack mitigation, Test

#4, b

Figure 9.3.8 Client 2 packet rate under attack, enterprise wide attack mitigation,

Test #4,b

53

Clearly the data shows that both clients have some initial and subsequent sustained loss
of performance from baseline during the full attack. Specifically at time t + approx. 20
seconds when the attack was started. C1 shows a longer initial performance degradation
in all runs of a full attack and full A2D2V2 attack mitigation.

There are many reasons for what is observed with regard to C1 during an attack:

1. R99 must do the requested dynamic tracing prior to applying any rate limiting
rules to itself from the time it receives the initial notification that an attack is
underway. It searches the static route table for the routers associated with the
attack traffic, 1st choosing the router that is in the direct line of the initial
attackers, and sends the flood indicated message to each of these routers.
Therefore the upstream router in the direct line of attack will apply any attack
mitigation rules first.

2. R99 has additional processing overhead with the dynamic tracing process
running which limits its ability to respond to attack mitigation rules being sent
from the snort IDS.

3. The attack agent A3 is much faster than the attack agents A1 and A2. It was
observed that A3, thus the 16.x subnet addresses, were almost always first in
terms of a flood being detected by the Snort IDS. With this in mind the R102
router would have been notified first by R99 since it is in the 16.x path, and it
would have applied the rate limiting rules first, therefore resulting in a much
shorter time for the attack to run from the 16.x subnet.

4. There are 2 attack agents in the path of R97, and R99. This results in a higher
number of attack packets going through R97 and R99. Looking at tables
9.3.9a-c below, which show the resultant Linux iptables rules after the test
runs, you will see a higher number of 11.x addresses for which the rate
limiting rules are applied.

Another data point to discuss is the fact that each client continues to experience some
short bursts of performance degradation during the whole attack, although C1 is able to
achieve a more sustained performance. This is likely due to the removal of the subnet
blocking rules that were applied in A2D2, which was intended to better manage a steady
state of client performance. With A2D2V2, as new attackers are found they are stopped
and more of the legitimate traffic is allowed to proceed, even from within the same
subnet. The degradation is not considered to be significant though and good progress is
being made.

C1 is able to achieve approx. 50% of its original performance, which is similar to the
results seen with A2D2. C2 has much higher levels of overall activity which is surprising
given that its speed during normal operations is slower than C1. This is somewhat unex-
pected, but if you look at the shading that is most prominent in the graphs above, you see
that it averages about the same packets per second as C1 during an attack. Some of this
data is unexplained except to note that C2's baseline is also erratic in terms of the number
of packets per second it transmits so this outcome during an attack is not wholly unex-
pected.

54

A critical data point to note is that C2 is being served by S2 which is attached to router
R98. Remember from above that R98 is not IDIP enabled in any way and is not partici-
pating in any of the A2D2V2 attack mitigation strategies. Also, remember that A1, A2
and A3 are attacking both the S1 and S2 servers. S1 is running the IDIP enabled Snort
IDS. S2 does not have any attack detection mechanism running so must bear the full brunt
of any attack coming in.

With the above data in mind, we note that without the cooperative affects of the enter-
prise wide attack response from the A2D2V2 system, C2 would be starved out during the
attack. If R102 was not notified of the attack coming from the 16.x subnet to S1 then all
attack traffic coming from the 16.x subnet would continue to be allowed through R102 to
S2. Even if the local attack response of A2D2 was in place, that is R99 stopped the attack
traffic at its doorstep and S1 was relieved, S2 would still bear the full weight of the attack.
This is a critical point and the main goal of the A2D2V2 system. If we only notified R99
of the attack as was done in the A2D2 system the legitimate client C2 would reap none of
the benefits of the attack response. By also notifying the upstream routers of this attack
other clients can be helped in the event of an attack. The fact that C2 recovers as well as
it does and is able to maintain a state of reasonable performance is the true measure of the
successful outcome of the A2D2V2 system.

The A2D2V2 attack response notifies the upstream routers of attacks to any machine
from any attacker. In this way it is generic, that is R102 responded to the attack notifica-
tion by limiting the rate for the 16.x attackers, with no concern about who they are
attacking. It is simply at attack which is coming from within a subnet it serves. In this
way the attack is stopped in a more generic way than with A2D2. This type of coopera-
tion helps protect networks in an enterprise even if they are not protected from within.

It is important to note that the class based queueing and iptables rules applied to each
router/firewall prior to the attack starting is the reason for the lower initial packet rate
from baseline, seen in the test results above in figures 9.3.5 - 9.3.8.

During the attacks a set of times were taken for each router to determine the average
response times after an attack notification was received and subsequent attack mitigation
started. These were started when router R99 received the first notification from the Snort
IDS that an attack was detected was measured. The measurements were taken as follows:

● Start time when R99 received first notice of attack and started dynamic
tracing

● Time when R99 send out first attack notification message to upstream
router

● Time when each upstream router received first notification of attack

The idea was to get an idea of the average response time for each router during the
attacks. Three separate runs were monitored and these were averaged as shown below in
table 9.3.1 below. However, it is important to note that this data is specific to this test bed.
The result of the time it would take for routers to notify upstream routers of an attack
would vary greatly on the Internet. The amount of traffic, the number of hops between the
victim and the attackers network, and the length of time to trace the source of the attack

55

are all factors in this response time. Since no two computers are in perfect clock sync the
times taken were done using a stop watch.

Time 0 is considered the start time. Subsequent deltas are show as T + X where X indi-
cates the delta in time from time 0.

Event Time

R99 Receives first attack notification and
starts tracing

0

R99 Sends out first attack notification to
upstream router R102

 T + 6 seconds

R102 Receives attack notification from
R99

T + 9 seconds

R99 Sends out first attack notification to
R97

T + 62 seconds

R97 Receives first attack notification from
R99

T + 64 seconds

R99 Applies first attack rule to itself T + 65 seconds

Table 9.3.1 Router response times during attack

Some observations about this data::

1. R99 does not apply any rules to itself until it has done tracing on all inter-
faces and all upstream notifications. This slows down is response time to
itself considerably and accounts for a large part of C1's performance
degradation.

2. The deltas for when R97 receives its first notification of attack from time
0 varied greatly in the 3 runs measured. They were: 56 seconds, 30
seconds and 61 seconds. It is unclear why there is this discrepancy. One
theory is that depending on where in the attack cycle R99 started its
tracing it could take more or less time to trace all interfaces based on the
load it was facing from attack traffic itself. It seemed that when R99
received very early notification of an attack from the Snort IDS the time it
took to do the tracing was minimized thus allowing for faster notifica-
tions. Another thought is simply that the link between R99 and R97
appears to be somewhat less reliable and resulted in delays getting the
notification across the wire. A final thought is that since R97 is on the
route of two of the attackers it had more traffic to deal with initially and
could not respond as quickly to an incoming attack notification from R99.
It is likely a combination of these factors that contributed to this.

These measurements made clear the limitations in the way the dynamic tracing was
implemented for A2D2V2. Blocking R99 from applying rules to itself during the tracing
resulted in much slower attack response on this router. This contributed to the slower
recovery seen by C1 as shown in figure 9.3.7.

56

These measurements also show the ability of the cooperative defense to efficiently
notify upstream routers of an attack, and to contain the attack in a short period of time.
Even the longest interval shown for notifying the last upstream router, in this case, R97,
was only 1 minute, 5 seconds in length on average. It would take much longer for system
administrators to manually intervene to stop attack traffic. Particularly when the attack is
distributed and not necessarily contained within their administrative domain. Automatic
coordination means that the system administrators do not have to try to figure out who to
contact to shut off an attack, or even to trace where the attack is coming from.

Additional supporting data for the C2 client traffic seen above is the iptraf output in
table 9.3.2 below run on S2 when running the full A2D2V2 system:

Wed Jul 5 14:13:05 2006; ******** Detailed interface statistics

started ********

*** Detailed statistics for interface eth0, generated Wed Jul 5

14:18:52 2006

Total: 1565701 packets, 210432861 bytes

 (incoming: 716189 packets, 45786214 bytes; outgoing:

849512 packets, 164646647 bytes)

IP: 1565701 packets, 186996595 bytes

 (incoming: 716189 packets, 34243116 bytes; outgoing:

849512 packets, 152753479 bytes)

TCP: 1565433 packets, 186978371 bytes

 (incoming: 715921 packets, 34224892 bytes; outgoing:

849512 packets, 152753479 bytes)

UDP: 0 packets, 0 bytes

 (incoming: 0 packets, 0 bytes; outgoing: 0 packets, 0

bytes)

ICMP: 268 packets, 18224 bytes

 (incoming: 268 packets, 18224 bytes; outgoing: 0 packets,

0 bytes)

Other IP: 0 packets, 0 bytes

 (incoming: 0 packets, 0 bytes; outgoing: 0 packets, 0

bytes)

Non-IP: 0 packets, 0 bytes

 (incoming: 0 packets, 0 bytes; outgoing: 0 packets, 0

bytes)

Broadcast: 0 packets, 0 bytes

Average rates:

 Total: 4851.48 kbits/s, 4512.11 packets/s

 Incoming: 1055.59 kbits/s, 2063.95 packets/s

 Outgoing: 3795.89 kbits/s, 2448.16 packets/s

57

Peak total activity: 7028.49 kbits/s, 8184.80 packets/s

Peak incoming rate: 2118.14 kbits/s, 4075.20 packets/s

Peak outgoing rate: 5706.25 kbits/s, 4901.00 packets/s

IP checksum errors: 0

Running time: 347 seconds

Wed Jul 5 14:18:52 2006; ******** Detailed interface statistics

stopped *******

Table 9.3.2 – iptraf output from S2 server during test run

The TCP traffic shown above is 849512 packets for 347 seconds. The average TCP
packet rate is 2448 packets per second. This is both incoming and outgoing packets. It is
hard to tell from the graph above, but in looking at the raw output for the plotting data C2
shows a large variation in packets per second. An average of 2448 per second, both
outgoing and incoming is not unreasonable based on this data. A snipped of this log is
included here to show this:

189 1699

190 254

191 441

192 770

193 792

194 404

195 787

196 358

197 191

198 143

199 1153

200 293

201 292

202 213

203 38

204 1085

243 245

244 1183

245 305

246 492

247 387

248 361

249 721

250 524

251 632

252 1659

58

There are several large spikes in packet activity during the test run. It is important to
keep in mind that iptraf logging processes are very resource intensive. This puts load on
the system which could also account for some of the erratic behavior in packet spikes on
C2 during the test run. This data is presented for completeness only but should be viewed
with caution. The results shown in the graphical form above indicate the real performance
of the clients during the non stop attacks.

After each run of the full attack and complete attack mitigation the iptables was
checked to see the rules that were applied.

R102 iptables -v -L after test run,4a:

Chain INPUT (policy DROP 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

0 0 level3 all -- any any 192.168.11.72 anywhere

0 0 level3 all -- any any 192.168.11.48 anywhere

0 0 level3 all -- any any 192.168.11.114 anywhere

0 0 level3 all -- any any 192.168.11.51 anywhere

0 0 level3 all -- any any 192.168.11.18 anywhere

0 0 level3 all -- any any 192.168.11.134 anywhere

3544 450K ACCEPT all -- any any anywhere anywhere

Chain FORWARD (policy DROP 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

0 0 level3 all -- any any 192.168.11.72 anywhere

0 0 level3 all -- any any 192.168.11.48 anywhere

0 0 level3 all -- any any 192.168.11.114 anywhere

0 0 level3 all -- any any 192.168.11.51 anywhere

0 0 level3 all -- any any 192.168.11.18 anywhere

0 0 level3 all -- any any 192.168.11.134 anywhere

1799K 253M ACCEPT all -- any any anywhere anywhere

Chain OUTPUT (policy DROP 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

3487 363K ACCEPT all -- any any anywhere anywhere

Chain level0 (0 references)

pkts bytes target prot opt in out source destination

0 0 DROP all -- any any anywhere anywhere

Chain level1 (0 references)

pkts bytes target prot opt in out source destination

0 0 DROP all -- any any anywhere anywhere

Chain level2 (0 references)

pkts bytes target prot opt in out source destination

0 0 ACCEPT all -- any any anywhere anywhere

59

 limit: avg 50/sec burst 5

0 0 DROP all -- any any anywhere anywhere

Chain level3 (14 references)

pkts bytes target prot opt in out source

destination

1243 1861K ACCEPT all -- any any anywhere anywhere

limit: avg 151/sec burst 5

500 749K DROP all -- any any anywhere anywhere

Table 9.3.3a – R102 iptables -v -L output

The important thing to note from the above output is that there were many rate limited
and dropped packets in the Level 3 chain. The reasons we do not have the L1 and L2
chains populated is that the attack was fairly short in duration(approx. 3 ½ minutes) and
we only have 3 attackers in this test bed attacking 2 servers at one time. Compare that
with 5 attackers targeting one server in the A2D2 network.

Also, important to note pertaining the differences between this output and the output
shown in Table 4 of the A2D2 analysis, is that for A2D2 subnet blocking rules were in
affect during the attack. For A2D2V2 subnet blocking was disabled due to the address
configuration chosen for the A2D2V2 test bed. The A2D2V2 test bed allows for legiti-
mate clients in both of the attack subnets.

R99 iptables -v -L after test run, 4a:

Chain INPUT (policy DROP 25 packets, 3604 bytes)

pkts bytes target prot opt in out source destination

0 0 level3 all -- any any 192.168.11.72 anywhere

0 0 level3 all -- any any 192.168.11.48 anywhere

0 0 level3 all -- any any 192.168.11.114 anywhere

0 0 level3 all -- any any 192.168.11.51 anywhere

0 0 level3 all -- any any 192.168.11.18 anywhere

0 0 level3 all -- any any 192.168.11.134 anywhere

512K 134M ACCEPT all -- any any anywhere anywhere

Chain FORWARD (policy DROP 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

0 0 level3 all -- any any 192.168.11.72 anywhere

0 0 level3 all -- any any 192.168.11.48 anywhere

0 0 level3 all -- any any 192.168.11.114 anywhere

0 0 level3 all -- any any 192.168.11.51 anywhere

0 0 level3 all -- any any 192.168.11.18 anywhere

0 0 level3 all -- any any 192.168.11.134 anywhere

894K 170M ACCEPT all -- any any anywhere anywhere

Chain OUTPUT (policy DROP 1 packets, 52 bytes)

pkts bytes target prot opt in out source destination

286K 102M ACCEPT all -- any any anywhere anywhere

60

Chain level0 (0 references)

pkts bytes target prot opt in out source anywhere

0 0 DROP all -- any any anywhere anywhere

Chain level1 (0 references)

pkts bytes target prot opt in out source destination

0 0 DROP all -- any any anywhere anywhere

Chain level2 (0 references)

pkts bytes target prot opt in out source destination

0 0 ACCEPT all -- any any anywhere anywhere

 limit: avg 50/sec burst 5

0 0 DROP all -- any any anywhere anywhere

Chain level3 (14 references)

pkts bytes target prot opt in out source anywhere 0

0 ACCEPT all -- any any anywhere anywhere

limit: avg 151/sec burst 5

0 0 DROP all -- any any anywhere anywhere

Table 9.3.3b - R99 iptables -v -L output

For R99 there were no drops, and a lot of accepts. The reason for this is straightfor-
ward, the upstream routers R102 and R97 did the bulk of the packet processing once they
were notified of an attack. The rules state that the sustained packet rate for L3 is 151 per
second. We never reached this level once the upstream routers were notified which means
most of the burden to stop the attack was pushed to the routers closest to the source of the
attack.

R97 iptables -v -L after test run, 4a:

Chain INPUT (policy DROP 1 packets, 100 bytes)

pkts bytes target prot opt in out source destination

0 0 level3 all -- any any 192.168.11.115 anywhere

0 0 level3 all -- any any 192.168.11.74 anywhere

0 0 level3 all -- any any 192.168.11.107 anywhere

0 0 level3 all -- any any 192.168.11.139 anywhere

0 0 level3 all -- any any 192.168.11.112 anywhere

0 0 level3 all -- any any 192.168.11.60 anywhere

4643 696K ACCEPT all -- any any anywhere anywhere

Chain FORWARD (policy DROP 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

0 0 level3 all -- any any 192.168.11.115 anywhere

61

0 0 level3 all -- any any 192.168.11.74 anywhere

0 0 level3 all -- any any 192.168.11.107 anywhere

0 0 level3 all -- any any 192.168.11.139 anywhere

0 0 level3 all -- any any 192.168.11.112 anywhere

0 0 level3 all -- any any 192.168.11.60 anywhere

5530K 368M ACCEPT all -- any any anywhere anywhere

Chain OUTPUT (policy DROP 1 packets, 132 bytes)

pkts bytes target prot opt in out source destination

5009 544K ACCEPT all -- any any anywhere anywhere

Chain level0 (0 references)

pkts bytes target prot opt in out source dest

 0 0 DROP all -- any any anywhere anywhere

Chain level1 (0 references)

 pkts bytes target prot opt in out source dest

 0 0 DROP all -- any any anywhere anywhere

Chain level2 (0 references)

 pkts bytes target prot opt in out source destination

0 0 ACCEPT all -- any any anywhere anywhere

 limit: avg 50/sec burst 5

0 0 DROP all -- any any anywhere anywhere

Chain level3 (14 references)

pkts bytes target prot opt in out source destination

2233 3349K ACCEPT all -- any any anywhere anywhere

 limit: avg 151/sec burst 5

766 1149K DROP all -- any any anywhere anywhere

Table 9.3.3c - R97 iptables -v -L output

Again, R97 shows a large number of accepts and drops in the Level 3 chain. This
shows, along with the data for R102, that the attack was pushed to the upstream routers
where the packets were managed.

A general note about the data in the above tables, it clearly shows many IP addresses
are being managed via the iptables mechanism for all routers in the A2D2V2 test bed
during and after an attack. You might ask why we have IP addresses that are not a part of
the original A2D2V2 test bed setup appearing and why IP addresses that are not within
the subnet a router is attached are showing up in that routers iptables? This is due to the
way the Stacheldraht tool mounts an attack an spoofs the source IP addresses as discussed
in section 9.2. This is fully expected behavior with the IP spoofing that Stacheldraht
utilizes during its attack sequences.

62

During each run some of the IDIP Message/Discovery Coordinator output was
captured. Below is some of the output from the R99 IDIP Message/DC run:

idip_firewall_receiver.c do_trace_request: UNDER ATTACK:<-- trace

request being processed

idip_firewall_receiver.c do_trace_request: from source

192.168.16.133

idip_firewall_receiver.c do_trace_request: on interface eth3

idip_firewall_receiver.c do_trace_request: number of packets 308

idip_firewall_receiver.c do_request: message received FLOOD

DETECTED on r993 from 192.168.16.133 (THRESHOLD 50 connections

exceeded in 10 seconds)<--creation of IDIP FLOOD message

idip_firewall_receiver.c do_request: Connected to rate limiter

idip_firewall_receiver.c do_request: Sent msg FLOOD DETECTED on

r993 from 192.168.16.133 (THRESHOLD 50 connections exceeded in 10

seconds) to rate limiter

idip_firewall_receiver.c do_trace_request: alertmsg sent to

192.168.14.102: FLOOD DETECTED on r993 from 192.168.16.133

(THRESHOLD 50 connections exceeded in 10 <-- alertmsg sent to

upstream router, 14.102

seconds)

idip_firewall_receiver.c do_trace_request : Checking for other

upstream routers

to notify

idip_firewall_receiver.c do_trace_request(): alertmsg sent to

192.168.12.97: FLOOD DETECTED on r993 from 192.168.16.133 <--same

message sent to other upstream router, 12.97

Table 9.3.4 IDIP message output

This test run output shows the sequencing of actions when a flood is detected by the
IDIP Snort IDS, and subsequent tracing actions invoked and additional flood detected. It
also shows the discovery of the upstream routers and subsequent notification to those
routers of the newly discovered flood.

63

10. LESSONS LEARNED

During the course of this project I learned a great deal. In the end I have a much better
understanding of routing, DDoS intrusions, Linux firewalls, IDIP, tracing packets, class
based queuing, Snort, network traffic measurement tools and push back of DDoS attacks.

10.1 NE T WO RK RO U TI N G TA BL E S

During setup of the A2D2V2 test bed there was difficulty encountered in setting up the
communication between each of the subnets separated by the firewall/routers systems.
The default routing as defined when the systems were brought up was not sufficient for
all of the hosts to communicate past their router boundaries. This is due to the fact that the
default routers only know about the subnets attached within one link hop on each inter-
face. To manage the complexity of the A2D2V2 test bed manual routing tables needed to
be added for each of the routers in the test bed. With Linux using the 'route add'
command line utility will update the routing tables but this data will not be persistent
across reboot. You must go in the system network utility and manually save the configu-
ration for it to be retained.

The routing table for the R99 router looked like:

[sjelinek@r99 ~]$ netstat -rn

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window

irtt Iface

128.198.61.0 0.0.0.0 255.255.255.128 U 0 0

0 eth2

192.168.16.0 192.168.14.102 255.255.255.0 UG 0 0

0 eth3

192.168.15.0 192.168.14.98 255.255.255.0 UG 0 0

0 eth3

192.168.14.0 0.0.0.0 255.255.255.0 U 0 0

0 eth3

192.168.13.0 0.0.0.0 255.255.255.0 U 0 0

0 eth1

192.168.12.0 0.0.0.0 255.255.255.0 U 0 0

0 eth0

192.168.11.0 192.168.12.97 255.255.255.0 UG 0 0

0 eth0

169.254.0.0 0.0.0.0 255.255.0.0 U 0 0

0 eth3

0.0.0.0 128.198.61.1 0.0.0.0 UG 0 0

0 eth2

Table 10.1.1.1 R99 Routing Table

64

10.2 I PT A BL E S FORWARD CH A IN F IR EW AL L R U L E S

Part of learning about Linux iptables and the subsequent firewall rules had to be done
to understand how A2D2 worked. However, since the test bed setup for A2D2V2 is much
different than that which was used in A2D2 this necessitated a different implementation
of the iptables FORWARD chain rules for setting up the firewalls. Research on iptables
chain rules was done to get a clear understanding of how all of this works.

What is different? In the A2D2 test bed as shown in figure 7.4.1 it had only one
incoming router with one outgoing interface in to the private LAN. This meant that the
firewall rules for the FORWARD chain which allows packets to be forwarded by the
router to destinations within its subnet were only defined on that one output interface.
With A2D2V2 there are several routers with multiple input and output interfaces which
had to be accounted for in the firewall rule setup. For R99 the OUTPUT chain has to
account for two interfaces, both the eth1 and eth3 interfaces. A subset of these rules is
shown:

 Rules for the eth1 interface:

#mark incoming mail traffic from smtp and pop3 with mark value 2

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport smtp -d 0/0 -t

mangle -j MARK --set-mark 2

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport pop3 -d 0/0

-t mangle -j MARK --set-mark 2

...

Rules for the eth3 interface:

#mark incoming mail traffic from smtp and pop3 with mark value 2

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport smtp -d 0/0 -t

mangle -j MARK --set-mark 2

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport pop3 -d 0/0

-t mangle -j MARK --set-mark 2

The full CBQ firewall script for R99 is shown in Appendix C.

10.3 L I N U X CL AS S B A S E D Q U EU IN G

One of the issues discussed in A2D2 was the need for limiting the traffic to a host
based on traffic type. The reason this is needed is that when an attack is started and
directed at a host, the ability for the DDoS system to respond and get legitimate traffic
through to the appropriate hosts is stopped due to the high volume of attack traffic. Class
Based Queuing is a mechanism by which you specify, based on speed of connection, a
percentage of that connections bandwidth to types of traffic. For A2D2 and A2D2V2
several types of traffic were classified and 'marked' as part of the iptables rules setup on
each firewall/router. The classes defined were:

● tcp/syn and icmp – class 1

● smtp and pop3 – class 2

● telnet, ftp and ssh - class 3

65

● www, RealServer and A2D2V2 test server app(on port 7654) – class 4

Each of these classes were marked when a packet came in to the router and this
marking was later used to determine the percentage of total bandwidth they were allowed.
For A2D2V2 each of the above types were allowed the following percentages of band-
width:

● tcp/syn and icmp traffic – 5%

● smtp and pop3 traffic – 15%

● ssh, telnet and ftp traffic – 10%

● www , RealServer and A2D2V2 test server traffic – 70%

 For A2D2V2, as with A2D2, the application hosted by the server was RealServer
along with the tcp_srv application used for testing. The rules applied for class based
queueing reflect this. If this was an ftp download site then it would make sense to allow
more of the bandwidth to be assigned to the ftp traffic. These rules are set per site and per
policy determined by the applications being served.

10.4 IDIP

As detailed in Sections 4, 5 and 6 a lot of time was spent researching IDIP and imple-
menting the pieces of the protocol to enable A2D2V2 cooperative DDoS tracing and push
back. IDIP as a protocol is not difficult to understand, but it is complicated to implement
as it has a number of data structures and rules that must be followed to be compliant with
the protocols.

The location and layout of the source tree and build instructions are shown in
Appendix B. Much of the code for this project is new, in particular the IDIP message and
application layer code. Some of the code developed for this project was modifications to
existing code provided in the A2D2 project. The IDIP code was all written in C to allow
for as much interoperability as possible. However, in heterogeneous environments it is
likely that the building of the source will be different. This has only been fully tested
using the Linux Fedora Core 5 release, but in theory should operate correctly on any
UNIX operating system. The specific implementation of the iptables and class based
queuing is specific to Linux and cannot be used on other UNIX systems unless supported
by them.

10.5 SN O R T

As part of this project I had to learn about how to install, configure and modify Snort
modules. The Snort IDS was used to detect the flood attack and to send the appropriate
IDIP messages. For A2D2 Snort was modified to include a new preprocessor module for
the detection of flood attacks. I enhanced the reporting module to enable the creation and
forwarding of IDIP messages. The initial flood detection message is sent to the UNIX
socket on the IDS host. The additions I made to snort were in the alerting mechanism. I
wrote a standalone program that intercepts the messages sent by the flood preprocessor to
the UNIX socket and formats these messages using IDIP definitions.

66

10.6 PU S H B A C K /TR A C I NG TE CH N I QU E S F O R DDOS A T T A C K S

The technique that I employed for this project with regard to tracing of incoming
traffic was tcpdump. Details of this are in section 8.2.1. With regard to my first imple-
mentation of the tcpdump.sh script, I didn't realize that tcpdump snoops the interfaces it is
monitoring in promiscuous mode, meaning every packet that comes by is counted, even if
the packet isn't intended for that router. I also didn't realize that the traffic coming from
S2 and C2 would be found using tcpdump on R99 via the eth3 interface. The reason for
this is straightforward, but it took my testing and noticing that S2 was showing up as an
attacker on R99 to understand what was happening. R99, R102 and R98 have interfaces
on the same network, the 192.168.14.x network. This means that all packets coming from
the C2 client or S2 server would be seen across that network. Since R99 has eth3 on the
192.168.14.x network, tcpdump running on this interface would see packets from these
two machines, even though they were legitimate client/server communications. In terms
of a packet my tcpdump program would assume this meant an attack was coming from
these machines. The initial testing I did showed both 192.168.15.1(S2) and
192.168.16.1(C2) IP addresses in the iptables for R99, R102 and R97 because of this situ-
ation. This caused anomalous behavior for the C2 client since the router R102 was
blocking some of this traffic in the FORWARD chain.

The implementation of the dynamic tracing for A2D2V2 is autonomous. Once the fire-
wall/router receives the notice that an attack has been detected by the Snort IDS it starts
the dynamic tracing and interprets the results independent of what the Snort IDS has
found. This is critical to the A2D2V2 goals. To move the attack mitigation farther up in
the network away from the attack recipients and closer to the source requires this
autonomy. With this in mind, I had two thoughts with regard to handling this within the
restrictions of the A2D2V2 implementation:

1. I could have left things as they were and allowed the traffic coming from
the legitimate server and client to be counted as attack traffic. This would
have resulted in a larger degradation of performance.

2. I considered adding rules to my tcpdump invocation to ignore these hosts
when counting the number of packets coming to an interface. Thus, they
would not be counted as attack traffic. In the real world this might work,
and could be applied much like the IDS rules are applied with regard to
ignoring specific hosts. This would also result in less performance degra-
dation.

In the end I chose number 2. I added the rule when calling tcpdump to exclude the
192.168.16.1 and 192.168.15.1 IP addresses. See Appendix C for the script that invokes
tcpdump for dynamic tracing. This is an area of much future work however, as discussed
in section 11.3.1 Correlation Engine.

The push back of the attack was implemented by identifying the attackers on the
upstream routing with the dynamic tracing detailed in Section 8.2.2, and then once identi-
fied to consult the static routing information file to identify which router must be notified.
This is a very simplistic approach to a very complicated problem. However, in my
research I learned many things with regard to current research in the area of IP tracing and

67

push back. Much of this research is discussed in Section 11 and is considered a large area
of further research and development. Without accurate, real-time tracing capability effec-
tive push back of the attack is hampered. What this project offers is a proof of concept
that the ability to trace the source of an attack and push back the attack to the source
succeeds in restoring traffic to legitimate clients in a much shorter time frame and more
fully than without it. The analysis of my data in Section 9 discusses this.

11. FUTURE WORK

11.1 EXISTING TECHNOLOGIES THAT COMPETE IN THIS

PROBLEM SPACE

As part of the work on this project, research of existing technologies was done. When
this project was started, many of these technologies were in the beginning stages and were
not available for consideration. With this in mind, a survey of the emerging technologies
that are applicable to this type of application are listed in this section.

11.1.1 IN T RU S IO N DE T EC T IO N ME S S A G E EX C H A N G E FO R MA T(IDMEF)

The purpose of the IDMEF is to define data formats and exchange procedures for
sharing information of interest to intrusion detection and response systems[IDMEF]. It is
intended to standardize the data format that automated IDS systems can use to report
alerts about events of interest. The idea is that this will enable interoperability among
commercial, open source and research IDS's. A mix and match of these systems can be
used to obtain an optimal IDS implementation.

IDMEF can be utilized many ways. For instance, a single database system could store
the results in this standard format for all of the IDS's employed. This would allow the
management and data analysis activities to operate on a more global picture. Another way
to use this would be to deploy an event correlation mechanism that took all of the alert
data, in IDMEF format, from the various IDS systems. This would enable a more sophis-
ticated cross-correlation and cross-confirmation response.

The IDMEF data model is an object oriented representation of the alert data sent by an
IDS. Since alert information is inherently heterogeneous, with many differences in the
data based on the IDS used. The data model allows for these differences. The object
oriented model is naturally extensible.

The IDMEF data model allows for significant flexibility in reporting alert data. Since
operating environments vary within a LAN and across the Internet, this flexibility is crit-
ical.

The goal of the IDMEF data mode was to provide a standard representation of alerts in
an unambiguous manner. The IDMEF implementation was done using the Extensible
Markup Language(XML). The IDMEF model is shown in Figure 11.1.1.1

68

Figure 11.1.1.1 IDMEF Model[GO03]

11.1.1.1 XML

A brief overview of XML will be given in this section.

XML is a simplified version of the Standard Generalized Markup Language(SGML).
SGML is a syntax for specifying text markup defined by the ISO 8879 standard[XML].

XML is a metalanguage and enables an application to define its own markup. XML
allows the definition of custom markup languages for different types of applications. This
is different from HTML in that with HTML there is a fixed set of identifiers with preset
meanings that must be adapted for special use.

XML provides both a syntax for declaring document markup and a structure for
defining elements and attributes, specifying the order in which they should appear, etc.

11.1.1.2 Why IDMEF is implemented in XML

The details about this are important to this paper, as the discussion later in this section
about future work will take this in to consideration.

69

XML based applications are being used or developed for many purposes. EXEMPT's
flexibility makes it a good choice for these disparate applications and that same flexibility
makes it a good choice for IDMEF.

XML allows a custom language to be developed for the purpose of describing intrusion
detection alerts. It also allows for a standard way to extend this language.

Software tools for processing XML are widely available in both commercial and open-
source forms. The ability to parse XML is ubiquitous on any platform.

XML message formats support full internationalization and localization.

XML is free, with no license, no license fees no royalties.

11.1.2 CO M M O N IN T R U S I O N SP E C I F I CA T I O N LA N G U A G E (CISL)

As part of the CIDF, as described in Section 5, a language was developed that could be
used to disseminate analysis results and countermeasure directives among intrusion detec-
tion and response systems. While this is not specifically an emerging technology as it was
available at the time of the start of this project, it is worth noting as a possible alternative
or add on to this work.

Much like IDMEF, CISL is a common language in which to exchange IDS informa-
tion. The idea is that sharing of this information with other IDS systems, potentially in
other networks, could enable the more global response to a perceived attack.

Under the CIDF model many components could be operating at one time, all of whom
are generating important statistical data that should be shared. CISL aims to define a
language that allows for a common understanding and exchange of this data. Much like
IDMEF CISL's intent is to describe this data in an unambiguous way.

CISL's solution to this is similar to that used for English. A general language construct,
called S-expressions are used. S-expressions are simply recursive groupings of tags and
data. S-expressions provide an explicit grouping of two terms. The interpretation of these
is left up to the language definition.

11.1.3 IN T RU S IO N DE T EC T IO N A N D EX C HA N G E PR O T O C O L(IDXP)

IDXP defines a protocol to exchange data between IDS entities. It supports mutual
authentication, integrity and confidentiality over a connection oriented protocol[IDXP].

The specification is a Blocks Extensible Exchange Protocol[IDXP]. It provides for
exchange of IMDEF messages, unstructured data and binary data between IDS systems.
IDXP is an open, published standard.

11.1.4 IN T RU S IO N DE T EC T IO N A N D EX C HA N G E AR C H I T E C T U R E

The intrusion detection and exchange architecture is an opensource project that allows
for interpretation of data from many disparate IDS systems. The source is available on
http://sourceforge.net. This project presents a unified view of the IDS data translated in to
network activity.

XML is used as data transfer and correlation protocol. It is not a standards based solu-
tion and is implemented using Java.

70

http://sourceforge.net/

11.2 COMPARISONS

IDIP was chosen for this project due to the fact that the IDMEF and IDXP efforts were
just beginning at the time this project was started. This said, there are some compelling
reasons to use IDIP and perhaps some for not using it as well.

11.2.1 IDIP V S . IDMEF

Both IDIP and IDMEF define data formats and exchange procedures for sharing data
from IDS systems to other IDS systems. IDIP goes one step further, by allowing the stan-
dardization of the communication between IDS systems and other IDIP nodes. IDIP is a
general protocol for which existing IDS systems can be adapted to conform.

Both IDIP and IDMEF enable interoperability between opensource, commercial and
research IDS systems. IDIP uses a message protocol for transfer of data, IDMEF uses
XML. Both IDIP and IDMEF require additional infrastructure to be placed on each node
that is to be enabled.

IDMEF uses XML. XML is a standards based mechanism, and IDMEF has standard
XML schema's published for use. This standard allows wider adoption of the protocol.

The original intent of IDIP was that it was to be an open, standard protocol. However,
this status changed during the implementation of this project. IDIP is currently being
worked on by Telcordia, Inc. and McAfee Software via Network Associates Incorporated
Labs. This privatization of IDIP makes it less viable as a long term solution.

IDMEF has some correlation protocol definitions. IDIP has none,and only provides for
the ability to send and record trace data. It is important to note that both require a knowl-
edgeable correlation engine to be built to fully utilize the data gathered.

Finally, at the outset of this project, the IDIP documentation was expected to be fully
available. As mentioned above, this expectation was changed mid-stream and the only
documents currently available are those listed in the bibliography. Many of the important
documents, such as the cryptographic extensions and the key distribution protocols are
not available.

11.2.2 IDIP, CISL A N D CIDF

The intent for use of CISL is in conjunction with IDIP and the CIDF mechanism
described in Section 5. CISL appears to be a bit cumbersome to use, and is not as portable
as the IDMEF XML format.

CIDF is an effort to develop protocols and application programming interfaces so that
IDS research projects can share information and resources to enable sharing of IDS
components. In my opinion for a global, distributed and autonomous network DDoS
network it is not sufficient to provide all of the capability required.

IDIP itself provides an easy to understand protocol for exchanging data and initiating
a response. And, for global notification of attacks. This feature is important, but as the
protocol is not fully available, it limits the ability to use this in a real-world application.

71

11.3 FUTURE WORK RECOMMENDED

11.3.1 CO R R E L A T I O N EN G I N E

Regardless of the decision to use IDIP, IDMEF, CISL or a combination thereof, the
most important next step to this work is to develop a correlation engine for disseminating
and understanding the data that becomes available. There are many ways to approach this,
for example using Artificial Intelligence learning techniques. Another way might be to
employ the use of a Java rules based system, called JESS. JESS is a rule engine built in
Java. There are many other types of rule engines available as well, and one could be
developed specifically for this application domain.

Currently, the A2D2V2 IDIP implementation does not include a correlation engine.
This makes the response mechanism coarse and broad, and it really only adopts the same
response as built in to the A2D2 Flood preprocessor rate limiting mechanism. However,
with the addition of IDIP Trace capability, and the inclusion of a comprehensive correla-
tion engine, the IDIP Trace data could be utilized much more effectively.

Some emerging research has begun on the correlation of attack alert data. Dan
Gorton[GO03] talks in this doctoral thesis of the need to correlate data from multiple IDS
systems within a network. This idea could easily be extended to include network IDS
systems that are not contained within the same LAN. Correlation is one of the key
outcomes expected with the CISL language along with the IDXP protocol specification.

Another area that would benefit from correlation is the situation described in section
10.1.6. The ability to gather data autonomously from both the IDS and dynamic tracing
mechanism and then correlate the data would help to better determine legitimate traffic
and reduce the need for specific rules that may allow attack traffic to penetrate.

11.3.2 IDIP E N H A N C E M E N T S

With the current status of the IDIP effort and standardization, the continued use of
IDIP for an application like this is doubtful. However, if IDIP is chosen as the continuing
technology and protocol, an effort must be made for collaboration with Telcordia, Inc.
and McAfee Software, Inc. The push must be made to make IDIP protocols open, stan-
dard and available.

The pieces that are currently unavailable are the cryptographic extensions and the IDIP
key distribution protocol. These two are essential to making any implementation of IDIP
robust.

For this project, there were several areas of the IDIP protocol that were not developed.
These should continue to be developed.

IDIP Message Layer enhancements:

• Full implementation of the IDIP message sequence numbering and timing checks

• Support for proxy Discovery Coordinator

• Retransmission time-out support

• Full versioning support

• Message checksumming

72

• Multicast Message support

IDIP Application Layer Enhancements:

• More Application Message ClassID support

• Response Extension support

• Discovery Coordinator communication support

• Full Edge Boundary Controller implementation

Along with this, standards body work must be done to publish and ratify the IDIP
protocol definitions. Without this, the likelihood of adoption of this protocol is small.

11.3.3 RE D U N D A NT /CO O PE R AT I VE D I SC O VE R Y CO O RD I N A T O R S

Currently the implementation of IDIP in this project has a single point of failure,
namely the IDIP Message Layer/Discovery Coordinator node. The CIDF specification
does not indicate multiple Discovery Coordinator nodes in the architecture published.
However, my opinion is that the ability to failover in the event of a failure is critical to
maintaining the autonomy wanted with an IDIP system. If the Discovery Coordinator
becomes unresponsive, the current action is that all other local nodes will take their own
action to the perceived attack. Without the ability to see the global picture that the
Discovery Coordinator has, this renders this system as effective as a non-IDIP enabled
system.

Redundant and perhaps cooperative Discovery Controllers would reduce the single
point of failure scenario and the potential for cooperation among these Discovery Coordi-
nators could speed up the response effort in the IDIP system. Enabling this feature would
require more protocol definitions as to how the need for a failover is detected, perhaps
just an extension to the already defined IDIP neighbor notification. The cooperation
would require the introduction of a database of some sort that was synchronous with
regard to updates. There are provisions in the IDIP Application protocol for DC to DC
communication. This could be extended to include a cooperative communication protocol.
As it stands today, this protocol only allows for sending and acknowledging messages.

11.3.4 IN C OR P O R A T E OP E NSLP

Service Location Protocol (SLP) is an IETF standards track protocol that provides a
framework to allow networking applications to discover the existence, location, and
configuration of networked services in enterprise networks. Traditionally, in order to
locate services on the network, users of network applications have been required to supply
the host name or network address of the machine that provides a desired service. Ensuring
that users and applications are supplied with the correct information has, in many cases,
become an administrative nightmare. [OpenSLP]

Protocols that support service location are often taken for granted, mostly because they
are already included (without fanfare) in many network operating systems. For example,
without Microsoft's SMB service location facilities, "Network Neighborhood" could not
discover services available for use on the network and Novell NetWare would be unable
to locate NDS trees. Nevertheless, an IETF service location protocol was not standardized

73

until the advent of SLP. Because it is not tied to a proprietary technology, SLP provides a
service location solution that could become extremely important (especially on UNIX)
platforms.

Like all Internet Engineering Task Force (IETF) standards, Service Location Protocol
(SLP) is described in great detail by documents called Request For Comments (RFC).

For these, the reader is referred the following RFCs:

RFC 2608 - Service Location Protocol, Version 2

RFC 2609 - Service Templates and Service Schemes

RFC 2610 - DHCP Options for Service

Location Protocol

RFC 2614 - An API for Service Location Protocol
SLP can eliminate the need for users to know the names of network hosts. With SLP,

the user only needs to know the description of the service he is interested in. Based on this
description, SLP is then able to return the URL of the desired service.

In many cases, SLP can eliminate the need for software applications to prompt users
for host names, or to read host names from configuration files.

SLP is a unicast and a multicast protocol. This means that the messages can be sent to
one agent at a time (unicast) or to all agents (that are listening) at the same time (multi-
cast). A multicast is not a broadcast. In theory, broadcast messages are "heard" by every
node on the network. Multicast differs from broadcast because multicast messages are
only "heard" by the nodes on the network that have "joined the multicast group".

One of the most important parts of the SLP specification is the standard Application
Programmers Interface (API). The SLP API is an interface that allows programmers to
use SLP in their applications to locate services. Without the API, SLP would be little
more than a specification. With the API, developers can easily add SLP based features to
their programs.

11.3.4.1 A MO R E D Y N A MIC G L O B AL R E S P O N S E U S IN G OP E NSLP

At the heart of this suggestion is the combination of IDIP and OpenSLP in to future
project work. The IDIP Discovery Coordinator will assume responsibility for the global
response to the network attack. The Discovery Coordinator will make use of its ability to
communicate with non-IDIP nodes. It will also be modified to support SLP. In this way,
the Discovery Coordinator will be able to dynamically discovery any available proxy
servers that have registered their services with SLP. The services provided by the proxy
servers would be things like IDIP message forwarding services or correlation services.
Upon detection of these servers, the Discovery Coordinator may issue a directive to the
clients or client-DNS servers to redirect traffic through the newly discovered proxy
servers.

This idea is based on research done by Dr. C. Edward Chow, University of Colorado,
Colorado Springs title the Secure Collective Internet Defense Network[C03].

74

http://www.openslp.org/doc/rfc/rfc2614.txt
http://www.openslp.org/doc/rfc/rfc2610.txt
http://www.openslp.org/doc/rfc/rfc2609.txt#RFC 2609
http://www.openslp.org/doc/rfc/rfc2608.txt#RFC 2608

11.3.5 IDMEF, IDXP, CISL A N D IDIP

As noted in Section 11.1, there are a few new technologies and protocols that have
been full developed and published since the start of this project work. In particular, the
IDMEF and IDXP protocols have been published and approved by the IETF body.

Had these alternative choices been available at the start of this project, or even during
its completion prior to the point of no return, the likelihood of the adoption of these in
conjunction with, or in lieu of IDIP would have been fairly great. During the research for
these technologies it has become fairly evident that in particular, IDMEF and IDXP offer
a more stable, approved standardized and ubiquitous way to model and exchange data
between disparate IDS's and even between non-local network entities.

As a result of this work, a suggestion is made to more fully explore the use of IDMEF
and IDXP in the following ways:

1. Add the XML data model support to the existing IDIP protocol. Currently, IDIP
uses CISL, but XML is a more standard way to model and format data. A compar-
ison of these two should be made.

2. Explore the use of IDXP as opposed to IDIP. Since IDXP is fully available and is
standardized the potential for adoption of this is much higher than the current state
of IDIP.

3. Explore extensions to IDXP that would enable a more global, full response to a
perceived attack. One thing that IDIP does well is the ability to request and track
multiple host information and responses during an attack. This ability allows a
system to see the more global view of the attack and in theory should enable a
better, more accurate response.

11.3.6 CIDF W O RK

The intent of A2D2V2 was to show that a more global response mechanism could be
deployed from a DDoS system like A2D2. However, this work is only the beginning of
the cooperative defense against DDoS attacks.

CIDF defines an architecture for cooperative intrusion detection. CIDF relies on IDIP
as the basis for the cooperation. Depending on the future direction of IDIP the actual use
of the CIDF defined architecture may not be appropriate. However, future work more
generally on the cooperative capability of a DDoS attack identification and response
mechanism is important. The ability to stop DDoS attacks more globally would be a huge
win.

11.3.7 PE RF O R M AN C E EN H AN C E ME N T S T O F I RE W A L L CO D E

It was noted many times during test runs that the performance of the dynamic tracing,
and subsequent notification to the upstream routers was poor depending on attack load.
There were many occasions of what appeared to be hung firewalls and slow moving
messages. This contributed to the slow recovery of both clients during attacks. There are
several areas for potential performance work to the IDIP firewall code:

1) Dynamic Tracing Enhancements:

75

● The dynamic tracing is very basic and no performance enhancements
were done. One possibility for improvement in this area is to modify the
code to give the dynamic tracing higher priority and higher bandwidth
than other activity on the firewall/router.

● From the response data in section 9 it is clear that the routers inability to
apply attack rules to itself while running the dynamic tracing results in a
longer sustained performance degradation during attack. One area for
performance improvement would be to modify this to run in the back-
ground while allowing the router to proceed forward with its own
response to the attack by applying the attack rules simultaneously.

● Another possibility is provide multiple threads for tracing, each moni-
toring a separate interface so as to not stall response until all interfaces
have been polled.

IDIP Messaging enhancements:

● The general IDIP messaging mechanisms is also slow during attacks and
could be improved as well. Multiple threads of message queues would
enable a much faster send and response mechanisms than A2D2V2
provides.

11.3.8 IDIP TR A C I N G A N D RE AL-T I ME LO C AT I N G O F O T H E R IDIP N E T W O RK S

As it is today with IDIP Trace requests an audit log is expected to be kept and when an
audit request is received, the IDIP node is to do an audit of the specific traffic from the
indicated source IP address. This data is then sent back to the IDIP Discovery Coordinator
for further correlation and action updates. This scheme relies heavily on the ability of the
Discovery Coordinator to gather the incoming data, correlate it and determine the best
action to take all in near real-time. As noted in Section 11.3.1, a sophisticated correlation
and response engine is clearly an area of need for a full, distributed IDIP architecture to
work.

Beyond the correlation of data and response to the data, the ability to accurately iden-
tify the true source of a packet or set of packets is critical. To notify another IDIP
Boundary Controller with a suggested response for their network based on inaccurate data
is potentially a road block for real IDIP adoption.

IP Spoofing is common in DDoS type attacks. The lack of security features in TCP/IP
specifications facilitates IP Spoofing. In IP Spoofing the source address of an incoming
packet has been updated with an address that is not the true source of the packet. Since the
Internet's routing mechanism is stateless and mostly based on destination addressing no
entity is responsible for ensuring that source addresses are correct.[AL03].

There are several new research avenues being pursued to eliminate or at least minimize
the ability of attackers to add bogus source address data to an IP packet.

76

11.3.8.1 IP Traceback

One of the emerging research areas IP Traceback technology. A2D2V2 utilizes a
static router configuration file to determine the route a specific packet has taken as identi-
fied from the source IP field in the packet. This works well in a well understood test envi-
ronment but provides no dynamic capability to determine the route for any packet on the
network.

There are several areas of research in to how to best achieve accurate IP traceback
data. Current approaches today include link testing which consists of testing network
links between routers to determine the origin of an attackers traffic. Most techniques start
from the router closest to the victim and interactively test its incoming links to determine
which one carries the attack traffic. This continues on recursively until reaching the traf-
fic's source. This is a reactive method and requires the attack to remain active during the
testing. [AL03].

Another approach is to log the packets at key routers throughout the network and then
use a data mining technique to extract information about the attack traffic's source. This
solution can work, but the overhead for storage and processing time is generally thought
too large to make it a viable solution.

ICMP traceback which uses ICMP traceback router generated messages contain path
information that indicates where the packet came from, when it was sent and its authenti-
cation. However, on major drawback to this solution is the fact that in a DDoS attack
when a particular zombie is responsible for only a small amount of the total traffic, the
sampling rate used in this scheme introduces the likelihood that getting an attack packet
has a much lower probability.

Packet marking is one of the newest methods proposed for IP traceback. Traceback
data is inserted in to the IP packet to be traced, thus marking the packet along the way
through the various routers on the network to the destination host. This allows the destina-
tion host machine to use the markings in a particular packet to deduce the path a packet
has taken.

Currently, there are no commercial off-the-shelf products that can perform effective
traceback in real time or across multiple hops. To do this it would mean changes to the
existing routing protocols. This would require new hardware.

From the literature read, it would seem that the most promising solution for IP trace-
back is the packet marking along with a modified logging scheme. The logging could be
achieved with hash buckets of data on the routers, in which the routers log only partial
packet information and only a sampling of packets would get logged.

For IDIP this could be used and incorporated on to the IDIP Boundary Controllers so
that when an IDIP Trace or Request message is received the Boundary Controller could
then make more informed decisions based on the data gathered.

This is clearly an area that requires future work.

77

12. FINAL CONCLUSIONS

As part of this project, the analysis of the data collected has been given in Section 10.3
This section will expand on this analysis and give some conclusions developed as a result
of this analysis for the reader to review.

12.1 WAS A2D2V2 A SUCCESS?

The ability to notify and request response from an outside network is a success for
A2D2V2. The difficulty lies in that the IDIP technology adds a bit more overhead in
general. Along with this, the incomplete documentation available for IDIP makes it diffi-
cult to fully implement and to produce a full, cooperative response system.

However, as the numbers show in Section 9 A2D2V2 has the ability to mitigate traffic
from attack sources and can do so in much less time than it would take a system adminis-
trator. Along with the pushback to the source of the attack as shown, the ideas incorpo-
rated in A2D2V2 prove to be successful.

In the end, the use of IDIP may be proven to be the wrong choice. At the time of the
start of this project it was the only available protocol for cooperative intrusion detection
and response. But, the emergence of the other technologies discussed in Section 11 make
the continued use of IDIP doubtful. A more interoperable choice may exist in the newer
protocols and should be examined in further work.

12.2 IDIP AS A FUTURE TECHNOLOGY

The theory behind the development of IDIP was valid, that is to develop an open, stan-
dard and published set of protocols for use in intrusion detection and response. This is
why IDIP was chosen for use in this project.

Since IDIP has been privatized to some extent, it is my belief that the further use of
IDIP for research in DDoS attack response and detection should be evaluated carefully.
With the emergence of IDMEF and IDXP, IDIP, unless it becomes available generally
very soon, will most likely be adopted as a proprietary solution.

Clearly a standard, published protocol for modeling attack data and exchanging data
between disparate systems is critical. That was the intent of IDIP. Work in this area must
continue.

12.3 WHERE THE REAL WORK LIES

It is obvious from the development and deployment of this project that the real work
lies in the ability to quickly gather, correlate and form a response to a perceived DDoS
attack. This is clearly an areas of deficiency in general for DDoS attacks.

All of the existing protocols do make mention of a centralized coordinator, where all
data will be archived and where all responses to a perceived attack will begin. However,
none of them go in to detail about the functionality for this centralized coordinator. One

78

area of potential revenue is in the development of a sophisticated correlation and response
engine for cooperative DDoS response. It would be important to make this work deploy-
able in multiple types of environments, and to ensure that it follows the standard protocols
adopted by the industry in DDoS defense.

79

BIBLIOGRAPHY

[AL03] Aljifri, Hassan. 2003. IP Traceback: A new Denial-of-Service Deterrent?
http://cs.uccs.edu/~chow/pub/master/sjelinek/doc/iptrace.pdf

[BAL-etal98] Balasubramaniyan, J. et al. 1998. An Architecture for Intrusion Detection

using Autonomous Agents.

https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/98-05.pdf

[BEAN03] Belenky, Andrey & Ansari, Nirwan. 2003. On IP Traceback.

http://web.njit.edu/~ansari/papers/03COMM_belenky.pdf

[B02] Brindley, Adrian. 2002. Denial of Service Attacks and the Emergence of Intrusion

Prevention Systems.

http://www.sans.org/rr/firewall/prevention.php

[BU00] Buchholz, Florian et al. 2000. CERIAS Technical Report. Purdue University.

http://cs.uccs.edu/~chow/pub/master/sjelinek/doc/cerias.ps

[C02] Cearns, Angela. 2002. Autonomous Anti-DDoS Network.

 http://cs.uccs.edu/~chow/pub/master/acearns/doc/angThesis-final.doc

[CHA-etal00] Chang, H. et.all 2000. Towards Hidden Attackers on Untrusted IP

Networks. NCSU, June 2000.

[CHI-etal04] Chien-Lung, W. et al. 2004 On network-layer packet traceback: tracing

denial-of-service (dos) and distributed denial-of-service (ddos) attacks.

http://cs.uccs.edu/~chow/pub/master/sjelinek/doc/research/3112814.pdf

[CHO-etal99] Chong, R. et al. 1999. Deciduous, A Decentralized Source Identification

for Network- Based Intrusions. In 6th IEEE/IFIP International Symposium on Integrated

Network Management (IM '99), M. Sloman, S. Mazumdar, and E. Lupu, eds., Boston,

MA, May 1999, pp. 701-714

[C03] Chow, Edward C. 2003. SCOLD.
http://cs.uccs.edu/~chow/talk/ChowTPACForum.ppt

80

http://cs.uccs.edu/~chow/pub/master/sjelinek/doc/iptrace.pdf
http://cs.uccs.edu/~chow/pub/master/sjelinek/doc/cerias.ps
http://cs.uccs.edu/~chow/pub/master/sjelinek/doc/research/3112814.pdf
http://www.sans.org/rr/firewall/prevention.php
http://web.njit.edu/~ansari/papers/03COMM_belenky.pdf
http://cs.uccs.edu/~chow/talk/TPACForum.ppt
http://cs.uccs.edu/~chow/pub/master/acearns/doc/angThesis-final.doc
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/98-05.pdf

[CIDF] Common Intrusion Detection Framework and Specification Language. 2002.
http://www.ietf.org/html.charters/idwg-charter.html

[DAN00] Daniels, Thomas E., Spafford, Euguene H. Subliminal Traceroute in
TCP/IP. 2000.

http://httpL//cs.uccs.edu/~chow/pub/master/sjelinek/602.pdf

[DAR02] DARPA. 2002. Common Intrusion Detection Framework.

http://www.isi.edu/gost/cidf/

[CRO95] Crosbie, G. et al. 1995. Defending a Computer System using Autonomous

Agents.

http://ftp.cerias.purdue.edu/pub/papers/mark-crosbie/mcrosbie-spaf-NISC.pdf

[DW03] Wilkinson, David. 2003. Enhanced DNS, Masters Thesis.

http://cs.uccs.edu/~chow/pub/dbwilkinson/doc/dwilkinson_thesis.doc

[FE-etal03] Feinstein, Laura et al. 2003. Statistical Approaches to DDoS Attack Detec-

tion and Response. DARPA Information Survivability Conference and Exposition, 2003.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8503

[GH-etal99] Ghosh, A. et al. 1999. Learning Program Behavior Profiles for Instrusion

Detection. Proceedings of the Workshop on Intrusion Detection and Network Monitoring.

USENIX, April, 1999.

http://www.google.com/url?sa=U&start=9&q=http://www.cigital.com/papers/down-
load/usenix_id99.ps&e=15206

[GO-etal01] Goldman, Robert et al. 2001. Information Modeling for Intrusion Report

Aggregation. Honeywell Labs.

http://citeseer.ist.psu.edu/cache/papers/cs/24225/http:zSzzSzwww.geocities.comzSzrp
goldmanzSzpaperszSzdiscex01irm.pdf/information-modeling-for-intrusion.pdf

[GO03] Gorton, Dan. 2003. Extending Intrusion Detection with Alert Correlation and

Intrusion Tolerance. Chalmers University of Technology. Doctoral Thesis.

http://unbolted.llarian.net/ids-docs/extending-ids-with-alert-correlation-and-intrusion-
tolerance.pdf

81

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8503
http://cs.uccs.edu/~chow/pub/dbwilkinson/doc/dwilkinson_thesis.doc
http://ftp.cerias.purdue.edu/pub/papers/mark-crosbie/mcrosbie-spaf-NISC.pdf
http://httpL//cs.uccs.edu/~chow/pub/master/sjelinek/602.pdf
http://www.ietf.org/html.charters/idwg-charter.html
http://www.google.com/url?sa=U&start=9&q=http://www.cigital.com/papers/download/usenix_id99.ps&e=15206
http://www.google.com/url?sa=U&start=9&q=http://www.cigital.com/papers/download/usenix_id99.ps&e=15206
http://unbolted.llarian.net/ids-docs/extending-ids-with-alert-correlation-and-intrusion-tolerance.pdf
http://unbolted.llarian.net/ids-docs/extending-ids-with-alert-correlation-and-intrusion-tolerance.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/24225/http:zSzzSzwww.geocities.comzSzrpgoldmanzSzpaperszSzdiscex01irm.pdf/information-modeling-for-intrusion.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/24225/http:zSzzSzwww.geocities.comzSzrpgoldmanzSzpaperszSzdiscex01irm.pdf/information-modeling-for-intrusion.pdf
http://www.isi.edu/gost/cidf/

[IDMEF] Intrusion Detection Message Exchange Format.

http://www3.ietf.org/proceedings/05nov/IDs/draft-ietf-idwg-idmef-xml-14.txt

[IDXP] Intrusion Detection Exchange Protocol

http://www.ietf.org/internet-drafts/draft-ietf-idwg-beep-idxp-07.txt

[KO02] Kothari, Pravin. 2002. Intrusion Detection Interoperability and Standardization.

2002.

http://www.sans.org/reading_room/whitepapers/detection/356.php

[LY04] Lydon, Andrew. 2004. COMPILATION FOR INTRUSION DETECTION

SYSTEMS. Masters Thesis.

http://www.ohiolink.edu/etd/send-pdf.cgi?ohiou1088179093

[NB02] Network Associates Labs. 2002. Boeing Phantom Works.

http://zen.ece.ohiou.edu/~inbounds/DOCS/reldocs/IDIP_Architecture.doc

[NB02-1] Network Associates Labs. 2002. Boeing Phantom Works.

http://zen.ece.ohiou.edu/~inbounds/DOCS/reldocs/IDIP_Application_Layer.doc

[NB02-2] Network Associates Labs. 2002. Boeing Phantom Works.

 http://zen.ece.ohiou.edu/~inbounds/DOCS/reldocs/IDIP_Message_Layer.doc

[OpenSLP] Open SLP Project.

http://www.openslp.org/

[PA-etal03] Papadopoulos, Christos et al . 2003. COSSACK: Coordinated Suppression

of Simultaneous Attacks.

http://www.isi.edu/~hussain/pubs/Papadopoulos03a.pdf

[PE00] Petkac, M. and Badger, L. Security Agility in Response to Intrusion Detection

http://cs.uccs.edu/~chow/pub/master/sjelinek/research/43.pdf

[QI-VA-SU01] Qui, L., Varghese, G. and Suri, S. 2001. Fast Firewall Implementations

for Software and Hardware-based Routers.

http://www.cs.ucsd.edu/~varghese/PAPERS/ICNP2001.pdf

82

file:///home/cs691/project/masters/final_doc/ http://zen.ece.ohiou.edu/~inbounds/DOCS/reldocs/IDIP_Application_Layer.doc
http://www.ietf.org/internet-drafts/draft-ietf-idwg-beep-idxp-07.txt
http://www3.ietf.org/proceedings/05nov/IDs/draft-ietf-idwg-idmef-xml-14.txt
http://cs.uccs.edu/~chow/pub/master/sjelinek/research/43.pdf
http://www.isi.edu/~hussain/pubs/Papadopoulos03a.pdf
http://www.cs.ucsd.edu/~varghese/PAPERS/ICNP2001.pdf
http://www.openslp.org/
http://zen.ece.ohiou.edu/~inbounds/DOCS/reldocs/IDIP_Message_Layer.doc
http://zen.ece.ohiou.edu/~inbounds/DOCS/reldocs/IDIP_Application_Layer.doc ? %5BNB02-2%5D
http://zen.ece.ohiou.edu/~inbounds/DOCS/reldocs/IDIP_Architecture.doc
http://www.ohiolink.edu/etd/send-pdf.cgi?ohiou1088179093
http://www.sans.org/reading_room/whitepapers/detection/356.php?portal=2ef8326184eb9d5fad37e9bdfafea100

[SC-DJ03] Schnackenberg, Dan and Djahandari, Kelly , Network Associates Labs.

2003. Infrastructure for Intrusion Detection and Response.

http://www.isso.sparta.com/research/documents/iidr_abstract.pdf

[SC-etal01]Schnackenberg, Dan et al. 2001. Cooperative Intrusion Traceback and

Response Architecture (CITRA). Phantom Works, Boeing, Co.

http://cs.uccs.edu/chow/pub/master/sjelinek/doc/research/12120056.pdf

[SPA-ZA00] Spafford, E. and Zamboni, D. 2000. Data Collection Mechanisms for

Intrusion Detection Systems.

http://homes.cerias.purdue.edu/~zamboni/pubs/2000-08.pdf

[ST-etal01] Stern, Daniel et al. 2001. Autonomic Response to Distributed Denial of

Service Attacks. Recent Advances in Intrusion Detection. 4th International Symposium,

RAID 2001 Davis, CA, USA, October 10-12, 2001 Proceedings.

http://cs.uccs.edu/~chow/pub/master/sjelinek/research/22120134.pdf

[TA02] Tanase, Matt. 2002. Barbarians at the Gate: An Introduction to Distributed

Denial of Service Attacks. 2002.

 http://www.securityfocus.com/infocus/1647

[TO02] Toplayer.com. 2002. Intrusion Protection Systems.

http://www.toplayer.com/bitpipe/IPS_Whitepaper_112602.pdf

[WO-DU99] Wood, Bradley J. and Duggan, Ruth A., Sandia National Labs. 1999.

Red Teaming of Advanced Information Assurance Concepts

http://stinet.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA407925&Location=U2&doc=GetTRDoc.pdf

[XML] Extensible Markup Language. W3C.

http://www.w3.org/XML/

83

http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA407925&Location=U2&doc=GetTRDoc.pdf
http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA407925&Location=U2&doc=GetTRDoc.pdf
http://cs.uccs.edu/~chow/pub/master/sjelinek/research/22120134.pdf
http://cs.uccs.edu/chow/pub/master/sjelinek/doc/research/12120056.pdf
http://www.isso.sparta.com/research/documents/iidr_abstract.pdf
http://www.w3.org/XML/
http://www.toplayer.com/bitpipe/IPS_Whitepaper_112602.pdf
http://www.securityfocus.com/infocus/1647
http://homes.cerias.purdue.edu/~zamboni/pubs/2000-08.pdf

APPENDIX A

A.1 SETUP OF A2D2V2 TEST BED CONFIGURATION

ST E P 1 – IN I T I A L T E ST B E D S ET U P

All hosts have been installed with the Fedora Core 5 release of Linux. The hosts are
given private IP addresses, with the exception of the routers, to allow access remotely to
the A2D2V2 test bed for testing and debugging.

ST E P 2-RO U T I N G TA B L E S ET U P

Routing tables must be setup manually,so that all hosts can talk with each other. This
can achieved by developing and running a set of shell scripts to initialize each of the hosts
routing table or by manually updating the routing table information for each router in the
system. The routing table for R97 was setup as:

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface

128.198.61.0 0.0.0.0 255.255.255.128 U 0 0 0 eth1

192.168.16.0 192.168.12.99 255.255.255.0 UG 0 0 0 eth2

192.168.15.0 192.168.12.99 255.255.255.0 UG 0 0 0 eth2

192.168.14.0 192.168.12.99 255.255.255.0 UG 0 0 0 eth2

192.168.13.0 192.168.12.99 255.255.255.0 UG 0 0 0 eth2

192.168.12.0 0.0.0.0 255.255.255.0 U 0 0 0 eth2

192.168.11.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth2

0.0.0.0 128.198.61.1 0.0.0.0 UG 0 0 0 eth1

The setup must include routes to all subnets that need to be accessible by the specified
router. A script can be used to set this up but utilizing this method will not make the
routes permanent so upon reboot all of this data will be lost. To make this data permanent
in the system configuration files you must use the system network modification utilities
and choose to save the configuration.

ST E P 3-F I R E WA L L R UL E S S E T U P

Firewall security is on by default for all the hosts. Clients 1, 2 the Attack agents and
the Server must have firewall security disabled. This is achieved by running the redhat-
config-securitylevel, or system-config-securitylevel tool and selecting the Disable feature.
The name of the tool is dependent on the version of RedHat Linux that is running.

Routers R97, R99 and R102 each have different firewall rules. The appropriate modifi-
cations to the CBQ.sh scripts must be made for the Iptables FORWARD chain on each
router. See Appendix B for this script for the R99 router.

84

http://cs.uccs.edu/~chow/pub/master/sjelinek/doc/LicentiateThesis_03120-1.pdf

ST E P 4-SE T UP FO R RO U TE R S

Each router must have the following installed on the system:

● idip_firewall_receiver

● cbq.sh

● rateif.pl, rateif.conf

● tcpdump.sh

● dumper.sh

To start firewall software it must be done in the following order:

run sh cbq.sh stop – Reset all the existing firewall rules

run perl rateif.pl – Setup the rate limiter and iptables chain rules

run sh cbq.sh start – Start the firewall and CBQ rules

run ./ idip_firewall_receiver – to start IDIP messaging and DC

The system will be in a state ready to accept and process IDIP messages.

ST E P 5-SE T TI N G U P CL IE N T T E S T S A N D T R AF F I C M O N IT O RI N G

To run the testing simple tcp receive program was developed and deployed on C1 and C2.
The source for this is found as noted in Appendix B. Install the tcp_rcv module on each
client.

To enable this:

run ./tcp_rcv

This must be started before the server program, tcp_snd, which is detailed in Step 6.

On both C1 and C2 a traffic monitoring program was deployed to gather the
throughput data. The Perl program used was the same one as provided in A2D2, plot.pl.
This program outputs packets received and sent to standard out, as well as sending this to
a file named data.txt. This data.txt file is then used to produce the plots shown in Section
9. A script is also provided that runs the plot.pl program, runplot.sh.

To invoke:

run sh runplot.sh

This script sets the time to record at 1 second. You can modify this by changing the
option value associated with the -t option in this script. You can also run plot.pl without
the script.

ST E P 6-SE T TI N G UP T H E SE R V E R S

Installation of the Snort IDS was done on Server S1. The HOME_NET value was
changed in the snort.conf file to reflect the 192.168.13.1 network. This is the network that
Snort is to monitor. The rules for the flood-ignorehosts has been changed as well. This
rule indicates which hosts should be ignored in terms of flood traffic. In this scenario,
there are no hosts coming in to this network that should be ignored. In general, you would
want this to be set to the network addresses of legitimate incoming clients.

85

To start Snort:

run ./snort -A UNSOCK.

This enables alerts to be sent to the UNIX socket on this host.

An additional binary is run on Server S1. As noted in A2D2 the alert binary[C02] was
run to intercept the UNIX socket alerts and to enable the rate limiting feature. A similar
scheme was deployed for A2D2V2, only the new binary is called report_idip, and it also
intercepts the alert messages on the UNIX socket, creates the appropriate IDIP messages
and forwards these on to the firewall/router for processing.

To enable the IDIP feature:

run ./report_IDIP -d -h <firewall host ip> -l <logfile name>

Where -d enables debugging so it is not required. -l enables logging which is also not
required.

ST E P 7-SE T TI N G U P SE R V E R 1 T E S T A N D T R AF F I C M O N IT O RI N G

Similar to Step 5, a simple tcp send program was developed and deployed on S1 and
S2. This program sends a continuous stream of tcp packets to C1 and C2. To enable this
you type ./tcp_snd <client ip address>. For multiple clients this must be started individu-
ally.

For traffic throughput monitoring the iptraf tool was used on Server 1. This was
enabled by typing iptraf -d eth0 -t 10 -B.

ST E P 8 -SE T TI N G U P T H E AT T A C K E R S

As noted in Section 10 the Stacheldraht version 4.0 tool was used to deploy the TCP
SYN DDoS attack. This tool was installed on both attackers. Attacker A1 was the master
node, and an agent as well. A2 and A3 were agents in this process.

1) On attacker A1, start the handler process. This is achieved by typing ./mserv.

2) On attackers A1, A2 and A3, start an agent. This is achieved by invoking the td
program contained in the leaf subdirectory of the tool. One small change must be made in
the td.c file to enable this agent for A2D2V2. This file must be rebuilt when after this
change is made. The default master server values must be changed to reflect the current
environment. For A2D2V2 this was modified as follows:

/* default masterservers */

#define MSERVER1 "192.168.11.2"
#define MSERVER2 "192.168.11.2"

The attack agents must know what the address is of the master handler to be able to
connect and send broadcast messages. The invocation of ./td on both attackers starts the
agents.

ST E P 9 – ST A RT I NG T H E A T TA C K

Since attacker A3 is the master handler, this host is used to initiate the TCP SYN
attack. To do this you must use the client program provided in the Stacheldraht version
4.0 tool. This is achieved by invoking the client program from the top level tool directory.

86

run telnetc/client <master handler ip address>.

Once initiated, you should see the following:

telnetc/client 192.168.11.2
 [*] stacheldraht [*]
 (c) in 1999 by randomizer

trying to connect...
connection established.

enter the passphrase :

entering interactive session.

 welcome to stacheldraht

type .help if you are lame

stacheldraht(status: a!3 d!0)>

The passphrase is 'manager'.

The value noted for 'a' indicates the number of alive attack agents. The value for 'd'
indicates those that are no longer responding. To initiate an TCP SYN attack:

 .msyn <host ip address to attack:host ip address to attack:...>

To stop the attack:

 .mstop all.

To limit the attack duration:

 .mtimer <time to limit>.

There are many more available types of attacks. To view the list type .help. To exit the
tool type .quit

A.1.1 TH E A2D2V2 AT T A C K SE T UP A N D R U N RE CI P E:

1. On R97 run the following in this order:

sh cbqr97.sh stop

perl rateifr97.pl start

sh cbqr97.sh start

./idip_firewall_receiver_97

2. On R102 run the following in this order:

sh cbqr102.sh stop

perl rateifr102.pl start

sh cbqr102.sh start

./idip_firewall_receiver_102

3. On R99 run the following in this order:

sh cbqr99.sh stop

perl rateifr99.pl start

87

sh cbqr99.sh start

./idip_firewall_receiver_99

3. On each Client C1 and C2 run in this order:

./tcp_rcv

sh runplot.sh – if you want to monitor packet rates

4. On Server S1 in separate xterms run in this order:

./report_idip -d -l <logname> -h <source ip address>

./snort -A UNSOCK

./tcp_snd 192.168.11.1

5. On Server S2 in separate xterms run in this order:

./tcp_snd 192.168.16.1

6. On A1 run:

./mserv 192.168.11.2

./leaf/td

7. On A2 and A3 run:

./td

8. On A1 run:

./telnetc/client 192.168.11.2

Within the attack tool run:

.showalive – to ensure all 3 attackers are alive

.mtimer 200 – to set attack duration

.msyn 192.168.13.1:192.168.15.1

Attack will be started and data will be gathered on client side

via the plotting program, plot.pl.

A.1.2 WH A T T O LO O K F O R TO VE RI FY CO O P E R A T I V E IDIP DE FE N SE

Router output:

The major observable point for verifying cooperative defense in

action in the A2D2V2 system is at the router. The three IDIP

enabled routers will output a lot of messages during an attack

when attack detection and mitigation has started. You will also be

able to observe some data from the Snort IDS IDIP message

reporting mechanism.

R99 should output messages first as it is the first in line for

notification from the Snort IDS. An example of its output is

shown:

88

idip_firewall_receiver.c: Waiting for incoming idip messages

on firewall

idip_message_receiver: sizeof idip_message_t 2232

idip_message_receiver: n bytes received :2232

idip_message_receiver: message received: spp_flood 101 :rate

FLOOD DETECTED from 192.168.11.190/24 (THRESHOLD 100

connections exceeded in 0 seconds)

idip_message_receiver: received idip_message packet

idip_firewall_receiver.c do_trace_request: thishost is r991

received message spp_flood 101 :rate FLOOD DETECTED from

192.168.11.190/24 (THRESHOLD 100 connections exceeded in 0

seconds)

threshold packets 100

cmd = sh tcpdump.sh 100 3

idip_firewall_receiver.c do_trace_request: UNDER ATTACK:

idip_firewall_receiver.c do_trace_request: from source

192.168.11.187

idip_firewall_receiver.c do_trace_request: on interface eth0

idip_firewall_receiver.c do_trace_request: number of packets

806

Sent msg FLOOD DETECTED on r991 from 192.168.11.187 to rate

limiter

idip_firewall_receiver.c do_trace_request: alertmsg sent to

192.168.12.97:

What this output shows is the initial 'Waiting on incoming...'

message and the subsequent receiving of an alert from the Snort

IDS. This triggers the tracing to being as seen by the

'do_trace_request' output. You then see the subsequent sending of

the new flood detected message to the upstream router.

R97 will have received this message and will output something

like:

idip_message_receiver: message received: FLOOD DETECTED on

r991 from 192.168.11.187

idip_message_receiver: received idip_message packet

idip_firewall_receiver.c process_idip_message: Received DCDO

request

This shows that R97 received the DCDO message from R99 and will be

processing it. R102 will show similar output when it receives a

message.

Snort IDS Reporting mechanisms output:

[Tue Jul 11 21:47:51 2006

89

] spp_floodindi: SubNet FLOOD DETECTED from 192.168.11.27/24 to

192.168.11.27 (THRESHOLD 101 connections exceeded in 0 seconds)

[1]

[Tue Jul 11 21:47:51 2006

] spp_floodindi: SubNet FLOOD DETECTED from 192.168.16.72/24 to

192.168.16.72 (THRESHOLD 104 connections exceeded in 0 seconds)

[2]

[Tue Jul 11 21:47:51 2006

] spp_flood 101 :rate FLOOD DETECTED from 192.168.11.27/24

(THRESHOLD 100 connections exceeded in 0 seconds) [3]

[Tue Jul 11 21:47:51 2006

] spp_flood 101 :rate FLOOD DETECTED from 192.168.16.72/24

(THRESHOLD 100 connections exceeded in 0 seconds) [4]

[Tue Jul 11 21:47:51 2006

] spp_flood 51 :rate FLOOD DETECTED from 192.168.11.27/24

(THRESHOLD 50 connections exceeded in 0 seconds) [5]

[Tue Jul 11 21:47:52 2006

] spp_flood 51 :rate FLOOD DETECTED from 192.168.16.72/24

(THRESHOLD 50 connections exceeded in 1 seconds) [6]

[Tue Jul 11 21:48:13 2006

] spp_flood: End of Flood from 192.168.16.72: TOTAL time(1s)

hosts(1) TCP(0) UDP(0) ICMP(0) [7]

This will just show what the Snort IDS and what the IDIP message

reporting mechanism has sent to the upstream IDIP enabled routers.

90

APPENDIX B

B.1 A2D2V2 SOURCE AND BUILD RULES

A2D2V2 SO U RC E L AY O U T A N D BU IL D RU LE S

The source for this project is located at:

 a2d2v2.csnet.uccs.edu/home/sjelinek/src.tar.gz

Once unzipped and untarred the layout of the source is as follows:

/a2d2-2firewall – all the firewall source files.

idip_firewall_receiver.c, cbq.sh, dumper.sh, rateif/*,tcpdump.sh and topo.txt must

modified as necessary for the appropriate firewall they are running on.

Makefile and build.sh will build this executable.

/idip_common

/idip_message

/idip_include

IDIP source files. Makefiles will build appropriate source

/snort

snort is built as per build rules in INSTALL file

report_idip is built using the build.sh script

/clientserv

Client/server source files and scripts. Makefile builds tcp_srv, tcp_snd targets.

/stach

stacheldrahtv4 attack tool source. Makefiles will build targets.

91

APPENDIX C

C.1 CLASS BASED QUEUING SCRIPT FOR A2D2V2 TEST BED

This is the CBQ and Firewall setup script for the R99 firewall. The other firewall
scripts are similar except that R99 must be setup for the FORWARD chain rules for two
output interfaces. This is due to the fact that R99 has two possible output interfaces, eth1
and eth3 to serve both S1 and S2.

This is the location of the iptables command

IPTABLES="/sbin/iptables"

TC="/sbin/tc"

OUT1="eth1"

OUT1_IP=`/sbin/ifconfig eth1 |grep inet.addr | sed "s/:/ /g" | awk

'{print $3}'`OUT1_BCAST=`/sbin/ifconfig eth1|grep inet.addr | sed

"s/:/ /g" | awk '{print $5}'`

OUT1_MASK=`/sbin/ifconfig eth1 |grep inet.addr |sed "s/:/ /g" |awk

'{print $7}'`echo "INTERFACE: $OUT1 IP: $OUT1_IP BCAST:

$OUT1_BCAST MASK: $OUT1_MASK"

OUT3="eth3"

OUT3_IP=`/sbin/ifconfig eth3 |grep inet.addr | sed "s/:/ /g" | awk

'{print $3}'`OUT3_BCAST=`/sbin/ifconfig eth3|grep inet.addr | sed

"s/:/ /g" | awk '{print $5}'`

OUT3_MASK=`/sbin/ifconfig eth3 |grep inet.addr |sed "s/:/ /g" |awk

'{print $7}'`

case "$1" in

 stop)

 echo "Shutting down firewall..."

 $IPTABLES -F

 $IPTABLES -F -t mangle

 $IPTABLES -F -t nat

 $IPTABLES -X

 $IPTABLES -X -t mangle

 $IPTABLES -X -t nat

 echo "Setting default policy to ACCEPT"

 $IPTABLES -P INPUT ACCEPT

 $IPTABLES -P OUTPUT ACCEPT

 $IPTABLES -P FORWARD ACCEPT

 # Turn off cbq for all interfaces.

92

 echo "Turning off cbq for all interfaces"

$TC qdisc del dev $OUT1 root handle 10:0 cbq bandwidth 10Mbit

avpkt 1000

$TC qdisc del dev $OUT3 root handle 10:0 cbq bandwidth 10Mbit

avpkt 1000

 echo "...done"

 ;;

status)

 echo $"Table: filter"

 iptables --list

 echo $"Table: nat"

 iptables -t nat --list

 echo $"Table: mangle"

 iptables -t mangle --list

 ;;

 restart|reload)

 sh $0 stop

 sh $0 start

 ;;

 start)

 echo "Starting Firewall..."

 echo ""

##---------------Begin Firewall---------------------------------##

Default policy is to drop packets

$IPTABLES -P INPUT DROP

$IPTABLES -P OUTPUT DROP

$IPTABLES -P FORWARD DROP

Reduce DoS'ing ability by reducing timeouts

echo 30 > /proc/sys/net/ipv4/tcp_fin_timeout

echo 2400 > /proc/sys/net/ipv4/tcp_keepalive_time

echo 0 > /proc/sys/net/ipv4/tcp_window_scaling

echo 0 > /proc/sys/net/ipv4/tcp_sack

Allow the kernel to forward packets and prevent ipspoof

echo 1 > /proc/sys/net/ipv4/ip_forward

echo 1 > /proc/sys/net/ipv4/ip_dynaddr

for f in /proc/sys/net/ipv4/conf/*/rp_filter; do echo 1 > $f; done

########### QOS GOES HERE #################

93

The FORWARD chain controls all packets that are not destined for

this

router. The rules below will mark packets with values that are

later used in the QoS rules below starting with the $TC calls

below.

allow icmp & syn traffic mark it with value 1

$IPTABLES -A FORWARD -p icmp -o $OUT1 -t mangle -j MARK --set-mark

1

$IPTABLES -A FORWARD -p tcp --syn -o $OUT1 -t mangle -j MARK --

set-mark 1

#mark incoming mail traffic from smtp and pop3 with mark value 2

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport smtp -d 0/0 -t

mangle -j MARK --set-mark 2

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport pop3 -d 0/0 -t

mangle -j MARK --set-mark 2

#mark incoming telnet, ftp and ssh traffic with mark value 3

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport 21 -d 0/0 -t

mangle -j MARK

--set-mark 3

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport 22 -d 0/0 -t

mangle -j MARK

--set-mark 3

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport 23 -d 0/0 -t

mangle -j MARK

--set-mark 3

#mark incoming www and Real Server traffic with mark value 4

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport 80 -d 0/0 -t

mangle -j MARK

--set-mark 4

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport 443 -d 0/0 -t

mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport 7070 -d 0/0 -t

mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport 554 -d 0/0 -t

mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport 8080 -d 0/0

-t mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport 2687 -d 0/0

-t mangle -j MARK --set-mark 4

#For a2d2v2 testing and data gathering, port 7654 is used to end

packets

#from server to client.

94

$IPTABLES -A FORWARD -p tcp -o $OUT1 -s 0/0 --dport 7654 -d 0/0

-t mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p udp -o $OUT1 -s 0/0 --dport 554 -d 0/0 -t

mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p udp -o $OUT1 -s 0/0 --dport 8080 -d 0/0

-t mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p udp -o $OUT1 -s 0/0 --dport 2687 -d 0/0

-t mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p udp --destination-port 6970:6999 -o $OUT1

-s 0/0 -d 0/0-t mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p udp --dport 6970:6999 -o $OUT1 -s 0/0 -d

0/0 -t mangle -j MARK --set-mark 4

allow icmp & syn traffic mark it with value 1

$IPTABLES -A FORWARD -p icmp -o $OUT3 -t mangle -j MARK --set-mark

1

$IPTABLES -A FORWARD -p tcp --syn -o $OUT3 -t mangle -j MARK --

set-mark 1

#mark incoming mail traffic from smtp and pop3 with mark value 2

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport smtp -d 0/0 -t

mangle -j MARK --set-mark 2

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport pop3 -d 0/0 -t

mangle -j MARK --set-mark 2

#mark incoming telnet, ftp and ssh traffic with mark value 3

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport 21 -d 0/0 -t

mangle -j MARK

--set-mark 3

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport 22 -d 0/0 -t

mangle -j MARK

--set-mark 3

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport 23 -d 0/0 -t

mangle -j MARK

--set-mark 3

#mark incoming www and Real Server traffic with mark value 4

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport 80 -d 0/0 -t

mangle -j MARK

--set-mark 4

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport 443 -d 0/0 -t

mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport 7070 -d 0/0 -t

mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport 554 -d 0/0 -t

mangle -j MARK --set-mark 4

95

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport 8080 -d 0/0

-t mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport 2687 -d 0/0

-t mangle -j MARK --set-mark 4

#For a2d2v2 testing and data gathering, port 7654 is used to end

packets

#from server to client.

$IPTABLES -A FORWARD -p tcp -o $OUT3 -s 0/0 --dport 7654 -d 0/0

-t mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p udp -o $OUT3 -s 0/0 --dport 554 -d 0/0 -t

mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p udp -o $OUT3 -s 0/0 --dport 8080 -d 0/0

-t mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p udp -o $OUT3 -s 0/0 --dport 2687 -d 0/0

-t mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p udp --destination-port 6970:6999 -o $OUT3

-s 0/0 -d 0/0

-t mangle -j MARK --set-mark 4

$IPTABLES -A FORWARD -p udp --dport 6970:6999 -o $OUT3 -s 0/0 -d

0/0 -t mangle -j MARK --set-mark 4

At the end of each of the chains, accept, if not traffic above.

$IPTABLES -A INPUT -j ACCEPT

$IPTABLES -A FORWARD -j ACCEPT

$IPTABLES -A OUTPUT -j ACCEPT

#------End Ruleset------#

add_class() {

$1=parent class $2=classid $3=hiband $4=lowband $5=handle

$6=style

$TC class add dev $OUT1 parent $1 classid $2 cbq bandwidth 10Mbit

rate $3 allot

1514 weight $4 prio 5 maxburst 20 avpkt 1000 $6

$TC qdisc add dev $OUT1 parent $2 sfq quantum 1514b perturb 15

$TC filter add dev $OUT1 protocol ip prio 3 handle $5 fw classid

$2

}

$TC qdisc add dev $OUT1 root handle 10: cbq bandwidth 10Mbit avpkt

1000

$TC class add dev $OUT1 parent 10:0 classid 10:1 cbq bandwidth

10Mbit rate 64kbi

$TC qdisc add dev $OUT3 root handle 10: cbq bandwidth 10Mbit avpkt

1000

$TC class add dev $OUT3 parent 10:0 classid 10:1 cbq bandwidth

96

10Mbit rate 64kbit allot 1514 weight 6.4kbit prio 8 maxburst 20

avpkt 1000 bounded

we will give it a bounded bandwidth of 5% of our total incoming

bandwidth (10240*0.05=5120.0)

add_class 10:1 10:100 512kbit 51.2kbit 1 bounded

second type of traffic SMTP,POP3 will be marked '2' by the

firewalling code

we will give it a bandwidth of 15% of our total incoming

bandwidth (10240*0.15=1536.0)

add_class 10:1 10:200 1536kbit 153.6kbit 2

third type of traffic ssh, telnet, ftp will be marked '3' by the

firewalling code

we will give it a bandwidth of 10% of our total incoming

bandwidth (10240*0.1=1024.0)

add_class 10:1 10:300 1024kbit 102.4kbit 3

last type of traffic is interactive traffic. It will be marked

'4' by the firewalling code

we will give it a bandwidth of 70% of our total incoming

bandwidth (10240*0.70=7168.0)

add_class 10:1 10:400 7168kbit 716.8kbit 4

echo "...done"

echo ""

echo "--> IPTABLES firewall loaded/activated <--"

##-----------------End Firewall---------------------------------##

 ;;

 *)

 echo "Usage: firewall (start|stop|restart|status)"

 exit 1

esac

exit 0

97

C.2 TCPDUMP SCRIPT FOR DYNAMIC TRACING

#!/bin/sh

set time limit based on what caller specified. Exec script that

will send

SIGTERM to tcpdump to force this script to run the END block.

Background

this so it doesn't interrupt gawk processing below.

Invoke tcpdump with options and pipe through gawk to gather

data. The

running of tcpdump is limited to the time specified by the

caller. I

am only interested in the ip protocol packets. I will get the

source

and destination addresses with the ''ip' specifier at $3 and $5

respectively.

Do not track outgoing packets from this host as part of tracing

data. This is

achieved by the 'src host not loghost' qualifier.

#

I need to dump on every interface I find on system. so, call

ifconfig -a

first, to get interface name. Call tcpdump on these.

INTERFACES=`/sbin/ifconfig | gawk ' {

 # Get the interface name

 x = split($1, ifname)

 newif[i]=ifname[1]

 if (match(newif[i], "eth") && newif[i] != "lo") {

 printf("%s ", newif[i])

}

 i = i + 1

} '`

for i in $INTERFACES

do

for each interface check number of packets , if over threshold,

report

./dumper.sh $i $1 > /tmp/o_$i &

done

kill this process in $1 amount of time

./trace_kill $2

sleep 3

/bin/cat /tmp/o_*

98

#rm /tmp/o_*

This is the dumper program for host R99. Each of these is

slightly different# based on the /etc/hosts file.

/usr/sbin/tcpdump -i $1 -lnq ip src host not loghost and not

localhost and not r991 and not r992 and not r993 and not

192.168.13.1 and not 192.168.16.1 and not192.168.15.1 and not

192.168.11.1 2>/dev/null | \

gawk -v threshold=$2 -v interface=$1 '

{

 split($3, ip, ".")

 x=sprintf("%d.%d.%d.%d", ip[1], ip[2], ip[3], ip[4])

 source[x,interface] += 1

}

END {

 for (name in source) {

 if (source[name] >= threshold) {

 split(name, ar, SUBSEP);

 printf("%s %s %s\n", ar[1], ar[2],

source[name])

 }

 }

} '

99

	Introduction
	1. Denial Of Service Attacks(DoS)
	2. Distributed Denial of Service Attacks
	Figure 1.1 Typical DDoS Architecture[C03]

	3. Defense Against DDoS attacks
	3.1 Intrusion Detection
	3.2 Intrusion Prevention
	3.3 Intrusion Response

	4. IDIP Protocol – A Technical Primer
	Figure 4.1 IDIP Nodes[NB02]
	4.1 IDIP Architecture
	4.1.1 IDIP Neighborhoods
	4.1.2 IDIP Communities

	4.2. IDIP Protocol Definitions
	4.2.1 IDIP Message Layer
	4.2.1.1 IDIP Hello Protocol

	4.2.2 IDIP Application Layer

	4.3 How IDIP meets the Key Principles
	4.3.1 An IDIP system must be able to respond to intrusions in real-time
	4.3.2 An IDIP system must support environments that span multiple administrative domains
	4.3.3 An IDIP system must have minimal impact on the systems performance
	4.3.4 An IDIP system must be capable of operating while the system is under attack
	4.3.5 The IDIP system components must be capable of responding autonomously to the attack

	5. Cooperative Intrusion Detection and Traceback Architecture (CITRA), IDIP's Global Response Architecture
	Figure 5.1 IDIP Global Response Architecture[NB02]
	5.1.2 Communication between IDIP communities
	5.1.3 Multi-Community Policies
	5.1.4 CITRA Remote Neighborhood Trustworthiness and location

	6. IDIP Software architecture
	Figure 6.1 IDIP Software Architecture

	7. A2D2
	7.1 A2D2 Design-Snort Modifications
	7.1.1 Snort Overview
	7.1.2 A2D2 Snort Specific Modifications

	7.2 A2D2 Rate Limiter
	7.3 Q0S Firewall Rules
	7.4 A2D2 Class Based queueing(CBQ)
	Figure 7.4.1 A2D2 Implementation[C02]

	8. A2DV2 Features, Architecture and Implementation
	Figure 8.1 A2D2V2 Community and Neighborhood Overview
	8.1 A2D2V2 and IDIP
	8.1.1 A2D2V2 IDIP IDS Implementation
	8.1.2 A2D2V2 IDIP Enabled Firewall/Router(s)
	8.2 A2D2V2 Dynamic Tracing and Enterprise Notification to Achieve cooperation
	8.2.1 Considerations For Dynamic Tracing Mechanism
	8.2.1.1 IP Link Level Header Parsing and Address Resolution Protocol
	8.2.1.2 TCPDUMP

	8.2.2 Considerations For Discovery of Upstream Routers To Notify When Attack is Discovered
	8.2.2.1 Traceroute
	8.2.2.2 Netstat -rn
	8.2.2.3 Static Routing Configuration Files

	8.3 A2D2V2 portability

	9. A2D2V2 Test Bed Specifications and Performance Results
	9.1 test bed Configuration
	Figure 9.1.1 A2D2V2 test bed

	9.2 A2D2V2 TEST SCENARIOS
	9.3 Results Analysis
	Figure 9.3.1 Client 1 baseline packet rate, Test #1
	Figure 9.3.2 Client 2 baseline packet rate, Test #1
	Figure 9.3.3 Client 1 baseline packet rate under attack, no attack mitigation, Test #2
	Figure 9.3.4 Client 1 packet rate under attack, 2-LAN full cooperative attack mitigation,Test #3
	Figure 9.3.5 Client 1 packet rate under attack, enterprise wide attack mitigation, Test #4, a
	Figure 9.3.6 Client 2 packet rate under attack, enterprise wide attack mitigation, Test #4, a
	Figure 9.3.7 Client 1 packet rate under attack, enterprise wide attack mitigation, Test #4, b
	Figure 9.3.8 Client 2 packet rate under attack, enterprise wide attack mitigation, Test #4,b
	Table 9.3.1 Router response times during attack
	Table 9.3.2 – iptraf output from S2 server during test run
	Table 9.3.3a – R102 iptables -v -L output
	Table 9.3.3b - R99 iptables -v -L output
	Table 9.3.3c - R97 iptables -v -L output
	Table 9.3.4 IDIP message output

	10. Lessons Learned
	10.1 Network Routing Tables
	Table 10.1.1.1 R99 Routing Table

	10.2 iptables FORWARD Chain firewall rules
	10.3 Linux Class based queuing
	10.4 IDIP
	10.5 Snort
	10.6 Pushback/Tracing Techniques for DDoS attacks

	11. Future Work
	11.1 Existing Technologies that compete in this Problem Space
	11.1.1 Intrusion Detection Message Exchange Format(IDMEF)
	Figure 11.1.1.1 IDMEF Model[GO03]
	11.1.1.1 XML
	11.1.1.2 Why IDMEF is implemented in XML

	11.1.2 Common Intrusion Specification Language (CISL)
	11.1.3 Intrusion Detection and Exchange Protocol(IDXP)
	11.1.4 Intrusion Detection and Exchange Architecture

	11.2 Comparisons
	11.2.1 IDIP vs. IDMEF
	11.2.2 IDIP, CISL and CIDF

	11.3 Future Work recommended
	11.3.1 Correlation Engine
	11.3.2 IDIP enhancements
	11.3.3 Redundant/Cooperative Discovery Coordinators
	11.3.4 Incorporate OpenSLP
	11.3.4.1 A more dynamic global response using OpenSLP
	11.3.5 IDMEF, IDXP, CISL and IDIP
	11.3.6 CIDF work
	11.3.7 Performance Enhancements to Firewall Code
	11.3.8 IDIP Tracing and Real-Time Locating of other IDIP networks
	11.3.8.1 IP Traceback

	12. Final Conclusions
	12.1 Was A2D2V2 a success?
	12.2 IDIP as a Future Technology
	12.3 Where the real work lies

	Bibliography
	Appendix A
	A.1 Setup of A2D2V2 test bed Configuration
	Step 1 – Initial test bed setup
	Step 2-Routing Table setup
	Step 3-Firewall rules setup
	Step 4-Setup For Routers
	Step 5-Setting up Client tests and traffic monitoring
	Step 6-Setting Up the Servers
	Step 7-Setting up Server 1 test and traffic monitoring
	Step 8 -Setting up the Attackers
	Step 9 – Starting the attack
	A.1.1 The A2D2V2 Attack Setup and run Recipe:
	A.1.2 What to Look for To Verify Cooperative IDIP Defense
	Router output:
	Snort IDS Reporting mechanisms output:

	Appendix B
	B.1 A2D2V2 Source and build Rules
	A2D2V2 Source layout and Build Rules

	Appendix C
	c.1 Class based Queuing script for A2D2V2 test bed
	c.2 TCPDUMP script for Dynamic Tracing

