
COMPILATION FOR INTRUSION DETECTION SYSTEMS

A thesis presented to

the faculty of

the College of Engineering and Technology of Ohio University

In partial fulfillment

of the requirements for the degree

Master of Science

Andrew Lydon

March 2004

This thesis entitled

COMPILATION FOR INTRUSION DETECTION SYSTEMS

BY

ANDREW LYDON

has been approved for

the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology by

Carl Bruggeman

Assistant Professor of Electrical Engineering and Computer Science

R. Dennis Irwin

Dean, Russ College of Engineering and Technology

LYDON, ANDREW. M.S. March 2004
Electrical Engineering and Computer Science

Compilation for Intrusion Detection Systems (231 pp.)

Director of Thesis: Carl Bruggeman

Within computer security, intrusion detection systems (IDSs) are the subject of

extensive and varying research. Distributed IDSs have additional research problems.

This thesis contributes a way of using compilation of a multi-layered language to

simultaneously solve multiple issues confronting distributed IDSs. The target of the

compilation is the configuration of existing IDSs with run time support. The language

for compilation has two layers: a lower layer for signature and other computationally

limited matching including anomaly based matching and a higher layer for general

computations. This compiler is implemented and shown to be sufficient to produce

arbitrary IDSs using existing IDSs for input rather than custom system software.

Graceful degradation and reasonable performance during denial of service attacks

have been added on top of existing IDSs using this framework.

Approved:

Carl Bruggeman

Assistant Professor of Electrical Engineering and Computer Science

4

TABLE OF CONTENTS

Page

ABSTRACT . 3

LIST OF TABLES . 7

LIST OF FIGURES . 8

TRADEMARKS . 12

1 Introduction . 13

1.1 Organization . 15

2 Background . 16

2.1 IDS Evaluation . 16

2.2 Classification Schemes . 19

2.3 Implemented Distributed IDSs . 21

2.4 Network Layer IDS . 24

2.5 Specification Based IDSs . 25

2.6 Rule and Finite Automata Based IDS 28

2.7 Database Approaches . 31

2.8 Miscellaneous Detection Methods . 32

2.9 Application Sensors . 33

2.10 Autonomous Agents . 34

2.11 Data Fusion . 37

2.12 Plan Recognition . 39

2.13 Intrusion Tolerance . 41

3 Proposed Solution . 44

3.1 General Goal of Solution . 45

5

3.2 Problems to Address and Avoid . 47

3.3 Proposed Solution Overview . 49

3.4 Model Choice . 51

3.4.1 Model Categories as a Stable Concept 51

3.4.2 Effective Limits on Computational Space and Time 52

3.4.3 Categorization of IDS models 62

3.4.4 Desirable Model Properties 67

3.4.5 Choice of Core Model for Solution 68

3.5 Proposed Solution Details . 69

3.5.1 General Statistical Techniques 69

3.5.2 Feeding Signature Rules into the Statistical Framework 69

3.5.3 Sufficiency of Framework . 70

3.5.4 Run Time Support . 71

3.5.5 Other Language Features . 74

3.6 Properties of This System . 75

3.7 Disadvantages of This System . 77

4 Implementation Results . 79

4.1 General Structure . 79

4.2 Booting and System Configuration 84

4.3 Treatment of Time . 91

4.4 Data Collection . 92

4.5 Resource Limited Structures . 97

4.6 SOM Input Generation . 98

4.7 Translation of Snort to N-Code . 101

5 Conclusion . 111

5.1 Conclusions . 111

5.2 Future Work . 111

BIBLIOGRAPHY . 115

6

APPENDIX

A Prototype Details . 124

A.1 General Structure . 126

A.1.1 Message Pipes . 126

A.1.2 Input Port Encapsulation . 128

A.1.3 Parsing . 129

A.1.4 Booting . 141

A.1.5 Configuring Statistical Rules 148

A.1.6 Treatment of Time . 149

A.1.7 Event Queues . 150

A.2 Resource Limited Structures . 153

A.3 Data Collection . 158

A.4 Self Organizing Map Inputs . 158

B Snort Language . 170

C Compiler . 203

C.1 Overview . 203

C.2 Main Compilation Procedure . 204

C.3 Mandatory Options . 209

C.4 Options with Common Language Features 211

C.5 Options with Special Languages . 219

C.6 Content Option . 224

7

LIST OF TABLES

Table Page

4.1 Snort Options for Compilation . 104

A.1 Snort Rules With Parsing Difficulties . 139

B.1 Snort Options Used in Stable Rules Collection 172

B.2 References in Snort Rules . 202

8

LIST OF FIGURES

Figure Page

3.1 System Run Time View . 70

A.1 Main System Loop . 127

A.2 General Message Pipe . 128

A.3 Scheme Standard Input Message Pipe 129

A.4 Snort Message Pipe . 130

A.5 Statistical Node Message Pipe . 130

A.6 Line Buffered Input Encapsulation . 131

A.7 Scheme Input Parsing . 132

A.8 Token Splitting Routines . 133

A.9 Inverse of Splitting Routine . 134

A.10 Snort Output Configuration Strings . 134

A.11 Example Snort Outputs . 135

A.12 Parsing Snort Output . 135

A.13 Example of Snort Output Parsing . 135

9

A.14 Accessing Snort Alert Data . 136

A.15 Snort Rule Parsing . 138

A.16 Example of Parsed Snort Rule . 141

A.17 Snort Rule Encapsulation . 142

A.18 Snort Variable Encapsulation . 143

A.19 Snort Configuration File Parsing . 145

A.20 Fixing Snort Relative Path Includes . 146

A.21 Snort Rule Transformation . 146

A.22 Writing Snort Configuration Files . 147

A.23 Older System Configuration Encapsulation 148

A.24 Example of Older Booting Configuration 148

A.25 Newer Booting Configuration . 149

A.26 Booting Scheme Based Nodes . 150

A.27 Statistical Rule Database Object . 151

A.28 Example Usage of Statistical Rule Database 152

A.29 Usage of Rule Database in the System 153

A.30 UNIX System Call Helper . 154

A.31 Scheme System Time . 155

10

A.32 Assorted Scheme System Library Calls 155

A.33 Event Queue . 156

A.34 Indefinitely Processing an Event Queue 157

A.35 Resource Limited List . 159

A.36 Example Usage of Resource Limited List 161

A.37 Alert Collector . 163

A.38 Alert Collector Output Subroutine . 164

A.39 Alert Collector During Ping Flood . 164

A.40 Computing SOM Input Values for a TCP Connection 166

A.41 TCP Connection Demultiplexing . 168

C.1 Stages of Compilation Example . 205

C.2 Regrouping Snort Options . 208

C.3 General Regrouping . 209

C.4 Compiling Stream Assemble . 210

C.5 Compiler Output Processing . 211

C.6 Main Compilation Loop . 212

C.7 Reversing Directions . 215

C.8 Example of Bidirectional Rule Compilation 216

11

C.9 Compiling Network Addresses . 217

C.10 Parsing Snort Network Address Ranges 217

C.11 Compiling Port Ranges . 218

C.12 Parsing Snort Port Ranges . 218

C.13 Compiling Numerical Comparison Operations 219

C.14 Compiling Strings from Snort to N-Code 220

C.15 Compiling TCP Flags . 221

C.16 Compiling IP Fragmentation Flags . 221

C.17 Compiling Bit-Flag Fields . 222

C.18 Bit-Flag Examples . 223

C.19 Compiling the Snort IP Option Field . 223

C.20 Compiling the Snort Flow Option . 224

C.21 Compiling the URI-Content Field . 225

C.22 Example Rule Compilation with URI-Content Field 226

C.23 Compiling the Snort Content Option . 229

C.24 Helper Function for Content Compilation 231

12

TRADEMARKS

Chez Scheme is a trademark of Cadence Research Systems.

N-Code is a trademark of NFR Security, Incorporated.

UNIX is a registered trademark of UNIX System Laboratories, Incorporated.

13

1. Introduction

Computer security is filled with hype. Many movies, books, and newspaper articles

paint doomsday scenarios created by a lack of computer security. The trade press

describes computer security as one of the current boom areas, which may be true from

a perspective of the money flowing into the field. The reality of computer security is

not as glamorous. A study using the data from CERT indicated that for the years

1989-1995, the frequency of attacks relative to the number of machines on the Internet

was rather rare and falling [27]. Yet despite this study published in 1997, the media

hype has continued.

Much of the interesting computer security research was performed in the 1970s

as part of operating system research. Intrusion detection is considered to have been

started by either Andersen’s 1980 paper [4] or Denning’s work [18, 17]. Intrusion

detection became a hot field in the mid to late 1990s and judging by a large bibliog-

raphy of intrusion detection papers [38], has undergone an exponential expansion in

terms of number of papers written and work spent developing IDS systems.

The intrusion detection field can be divided into several subfields. Efficiency and

fast IDS work consumes a considerable portion of the energies of the implementors.

Many researchers try every feasible approach to IDS detection cores. Producing

more accurate detection is an important open problem, but research papers tend to

only discuss the core approach. Data fusion between multiple alerts is an important

subfield, but only a few solid contributions have been made to it. These are the

central problems to producing IDS systems with increased usability.

Distributed and heterogeneous IDS systems have additional areas of research.

14

Heterogeneous systems of IDSs produce syntax and semantic issues for output com-

patibility. The syntax issue has been extensively analyzed as part of various stan-

dardization efforts. Configuration compatibility has been examined as part of IDS

language issues along with the theoretical aspects of the IDS configuration languages.

Distributed systems produce the standard questions of scalability, reliability, and error

tolerance. All of these problems are important for producing an effective distributed

heterogeneous IDS system.

This thesis contributes a language for distributed heterogeneous IDS systems that

solves the semantic issues for output compatibility. This language is examined with

respect to computability. It contains sufficient abstraction to facilitate the incorpora-

tion of work in the efficient IDS, data fusion, and site configuration intrusion detection

subfields. A compiler has been constructed that includes features to automate signif-

icant portions of the system administration functions necessary for distributed IDS

systems. Furthermore, the language is sufficient for developing new types of single

node IDS systems without resorting to system programming.

Rather than proceeding from an examination of the existing literature, this thesis

can be viewed as an analysis of common computer science questions with respect

to intrusion detection. These common computer science questions are: how does the

system scale?; what happens under high load?; how to distribute the system?; is there

an easier way to program them?; and is there an easier way to use them?.

Compared with existing approaches to IDS model translation like LAMBDA [14]

, this system is substantially more general and allows for more general translation. It

automates configuration tasks to a greater extent than Vigna, Kemmerer, and Blix’s

work [67]. It sidesteps the semantic alert problem by a more useful method than

Porras, Fong, and Valdes’s approach [47].

15

1.1 Organization

This thesis is organized as follows: Chapter 1 contains a brief introduction; Chap-

ter 2 contains a survey of the background; Chapter 3 contains an outline of the

problem, proposed solution and theoretical aspects of the solution; Chapter 4 details

implementation results; and Chapter 5 contains the conclusion and suggestions for

future work.

16

2. Background

This chapter contains background information for placing the contributions of this

thesis in context. It does not cover every possibly relevant paper and approach. One

incomplete bibliography of intrusion detection papers from 1980 to 2001 includes over

600 entries, so it is not feasible to research every slightly relevant paper or approach

[38].

The sections of this chapter and the approaches detailed therein are somewhat un-

related. This reflects the trend in intrusion detection research. The field of intrusion

detection is sufficiently large that researchers can explore many different questions.

Contributions are made to many different aspects of intrusion detection simultane-

ously. Unfortunately, many contributions are often lost as they are not directly related

to the next researcher’s area of interest.

This chapter starts with a section on the evaluation of IDS efforts. After deal-

ing with classification schemes, it discusses different IDS approaches including imple-

mented distributed IDSs, network layer IDSs, specification based IDSs, rule and finite

automata based IDSs, and database based and miscellaneous detection methods. The

remainder of the chapter discusses other trends in IDS research including application

sensors, autonomous agents, data fusion, plan recognition, and intrusion tolerance.

2.1 IDS Evaluation

Evaluation of the field is important to accurately gauge progress and the current

state. Evaluations of IDS systems have found that they do not detect novel attacks

well or at all. A second consequence of the evaluations is the importance of the false

positive rate. Initially the false positive rate was not advertised for marketing reasons,

17

but in practical operations, it is very important to an effective deployment of IDS

sensors.

An objective IDS benchmark is difficult to obtain. Somewhat similar to processor

benchmarks, there are many ways of tuning systems to perform well on the bench-

marks by making unreasonable assumptions that only hold for the benchmarks [52].

Ignoring the false positive rate or controlling the traffic characteristics are popular

ways of obtaining unrealistic benchmark scores.

MIT Lincoln Laboratories performed evaluations of IDSs for DARPA that are

considered to be the most complete and objective that have been performed and

published [35, 26, 30, 15, 32]. These evaluations were performed in both 1998 and

1999. Many of the failures of IDSs identified in the evaluations have not been fully

addressed.

The MIT evaluations effectively took stock of the field, then were discontinued.

One conjecture as to why they were discontinued is that by providing a reasonably

objective evaluation, it was harder to market IDSs and claim huge gains in research.

Basically, because the IDS systems were doing poorly, the evaluations were discontin-

ued. In any case, these evaluations significantly advanced the field by clarifying and

standardizing some of the methods of evaluating IDS systems. They also pointed out

the large areas for research without placing the blame for failure in those areas on

individual vendors.

For the MIT evaluations, a model US Air Force base’s computer network was

created that was intended to be representative of the network traffic on a real air

force base. In particular, the following were made to be statistically similar:

“1. The overall traffic level in connections per day. 2. The number

of connections per day for the dominant TCP services. 3. The identity

of many web sites that are visited from internal users. 4. The average

time-of-day variation of traffic as measured in 15-minute intervals. 5. The

18

general purpose of telnet sessions. 6. The frequency of usage of UNIX

commands in telnet sessions. 7. The use of the UNIX time command to

obtain an accurate remote time reference. 8. The frequency of occurrence

of ASIM (An air force network security monitor) keywords in telnet ses-

sions, mail messages, and files downloaded using FTP. 9. The frequency

of occurrence of users mistyping their passwords. 10. Inclusion of an SQL

database server that starts up automatically after a user telnets to remote

server. ”[35, p. 166]

Attacks were generated as part of the traffic. The 1999 data included three weeks

of training data for training AI based approaches. The first two weeks of training data

did not have any attacks or probes. This was to allow for training anomaly based

IDSs. Most of the traffic was generated by automatic software. Some of the attacks

were run by humans due to the complexity of writing a fully automated attack. See

[26] for more details.

The attacks generated for 1999 included many of the 1998 test data attacks and

new attacks for 1999. Attacks against Windows NT machines were added in 1999 and

were not detected well by any of the IDSs [32]. In 1999, stealthy versions of many

attacks present in the 1998 data were added. These were not detected well by any of

the systems either. The new attacks developed for 1999 were not detected by any of

the evaluated IDS systems [15].

The MIT data has been critiqued for insufficient bandwidth per day when the

evaluation results are applied to other sites [37]. The IDSs were evaluated according

to generating ten or less false alarms per day. When traffic is scaled up to levels

seen at other sites, more false alarms may be generated than may be acceptable. A

moderate to low bandwidth model was chosen for the MIT evaluation so that the

network data would be of a size manageable for transmission over the Internet.

The proceedings of RAID 2000 published an article critiquing the MIT evaluations

19

[37]. Although many of the complaints concerning the MIT IDS evaluations are valid,

the lack of effective alternatives reduces the impact of the criticism. For example, the

MIT evaluation used Receiver Operating Characteristics (ROC) to generate a metric

that accounted for the false positives in the detection rate. ROC is significantly more

complicated than what is used in practice. Whether or not it is a good metric is a

debatable question. Simply critically reading the results of the MIT evaluation should

produce a reasonable amount of caution in using the criteria. Pressuring the MIT

evaluators to release more information about their tests is the main contribution of

this article, but even in this sense it may not have been successful. It appears that

this article along with similar complaints by industry have lead to a cancellation of

the MIT IDS evaluation efforts.

2.2 Classification Schemes

Classification schemes have been promulgated for the classification of attacks and

the classification of IDSs. Attack classification can be done on either the bugs that

are exploited or the mechanisms involved in the attack. Classification of IDS systems

are useful for familiarization with the state of IDS research.

The result of classifying the attacks by the bugs that are exploited produces insight

into the types of software failures that can be avoided by systematic engineering

strategies. For example, buffer overflow attacks do not occur for languages like JAVA

that do bounds checking on every access. It illustrates that in at least this aspect

of security, choosing JAVA for the programming language will prevent the problem

from occurring in practice.

Classification by exploited bugs is useful for improving the software that is ex-

ploited, but it is not as useful as other classifications of security bugs for the use of

intrusion detection. The limitation is that even when the system bugs stem from

similar software bugs they may need different techniques for detecting their exploita-

tion. For example, corner cases may have been improperly handled in two system

20

areas. Detecting one of the corner case exploits may require a host based IDS while

detecting the other may require a network based IDS to examine the traffic. From

a software engineering perspective, both bugs are very similar. But from a intrusion

detection perspective, the bugs are dissimilar.

As part of the 1998 DARPA IDS evaluation, a large number of computer attacks

were categorized to both classify the performance of IDS systems on these attacks

and ensure a realistic distribution of attack types. The attack classification taxonomy

was used by Kristopher Kendall to give an attack database of sufficient size for the

DARPA evaluation. The taxonomy is based on four factors: first, the privilege levels

involved in the attack; second, the “methods of transition or exploitation”; third, the

“transitions between privilege levels”; fourth, the actions of the attacker [30, 69].

John Howard produced a taxonomy that was used to classify several thousand

actual intrusions using the CERT data. His taxonomy uses five characteristics to

classify the attack: type of attackers, tools used, type of access, result of attack, and

the objective of the attack. This taxonomy is useful for examining entire intrusions

rather than single attacks. The taxonomy is based on the process of the attack

rather than the specific computer mechanism used in the attack. This is a broader

criteria than is needed for the analysis of computer weaknesses, but is very useful

when examining the context and effects on corporations and people. His work also

includes a discussion of some of the other taxonomies used for attacks [27].

Stefan Axelsson has an extensive classification of intrusion detection systems [7].

His taxonomy for IDSs first differentiates IDSs by the detection technique, then it

differentiates by particular system characteristics. The system characteristics used

for secondary differentiation are near real time detection, batch or continuous data

processing, source of audit data, response type to intrusions, locus of data processing

and data collection, security of the IDS itself, and the interoperability with other

IDSs. This taxonomy is useful for both choosing an IDS and examining the IDS field

for the techniques that have been attempted [7].

21

2.3 Implemented Distributed IDSs

Implemented distributed IDSs give a picture of the state of large scale intrusion

detection. If a highly effective reasonably priced distributed IDS could be developed,

many problems in large scale intrusion detection could be addressed once for the

system. As implemented distributed IDSs relate to this thesis, the problem of a

lack of standardized semantics for alerts does not have to be addressed if only one

system is used. Thus producing a single distributed IDS system is in some ways a

simpler problem. Commercial companies have a significant stake in ensuring that

for distributed IDS systems, their single system is chosen. This section discusses the

common but crucial shortcomings of these systems then briefly discusses some of the

most advanced implemented research distributed IDS systems.

The common shortcomings of these systems are in the interconnections between

nodes and the resources used by the system. Some systems try to only give an

interface, but do not specify the topology of the system. The topology has a significant

impact on the reliability of the system and on the network resources that are used

by the system. Without specifying a topology further analysis cannot be performed.

Some systems specify a hierarchical tree topology, which if the internal nodes do

not have a way of consolidating the alerts, can lead to a DOS of the root node.

The network resources and scalability of distributed IDS systems has rarely been

addressed. If an implemented system is to scale well, the scalability should be planned

for in the design.

The interconnections for a system that attempts to correlate attacks across mul-

tiple sensors are a critical design decision. It requires trade-offs or at least carefully

documented engineering. If the relevant data is sent, then all of the attacks may be

able to be detected, but at the possibility of a bottleneck. If it is not sent, then there

are holes in the system coverage. Many of the research approaches chose to take the

bottleneck over the possibility of incomplete coverage.

EMERALD [48, 41, 64, 65, 47] from SRI International is the latest generation of

22

distributed IDS in the development of IDES and NIDES. EMERALD is arguably the

most complete advanced intrusion detection system. Much of the professional team

has extensive experience in intrusion detection. It uses both signatures in an expert

system and statistics to detect attacks. Considerable portions of EMERALD have a

well defined API with multiple modules. Indeed, the EMERALD software has been

significantly developed and even deployed in a few instances. EMERALD has been

used as the core IDS for later research resulting in IDS software by SRI. For example,

the alert correlation research performed by SRI was added to the EMERALD software

for testing.

The architecture of EMERALD is relatively straightforward compared to many of

the other architectures proposed for distributed IDS. This has several benefits: easier

for implementation, easier to analyze and predictable.

EMERALD addresses scalability by facilitating interoperability. It predated the

IETF intrusion detection standardization effort and later was modified to be com-

patible. Although the connection mechanism is defined, the connection topology is

left unspecified. Most likely existing deployments configure it as a hierarchy. Distri-

bution of messages in an EMERALD system is subscription based. A subscription is

configured at start up time by the node. The detection framework is claimed to be

general enough to be used to operate with the output from other nodes, hence is a

meta-level framework. It is not clear if it is ever actually configured to be used as a

meta-level framework, or if this were an option that they wanted at system creation

time that turned out to not be useful.

CARDS [72] is the implementation of ideas in “Abstraction based Intrusion De-

tection in Distributed Environments” [44]. The main idea in this signature based

approach is to automatically break the signature down into smaller components that

can be distributed and recombined to match the signature.

The approach is interesting, but the technical treatment is difficult to follow.

It may be a promising approach, when and if many issues get resolved. It is not

23

yet sufficiently developed to facilitate an analysis of network performance or other

distributed performance issues. It is not clear how it performs for denial of service

attacks or other overload attacks. The implementation as described does not appear

to be complete, indeed a paragraph in the back of the CARDS paper implies that it

is only underway, but not finished. The interconnections between nodes are glossed

over.

GrIDS [59] is a graph based IDS. It attempts to fuse together the information

from various nodes into a graph of the entire activity of the system. This allows

large scale attacks to be easily noticed. Because of the similarity of this approach to

network management, it can have an easy to understand user interface and would be

straightforward to integrate with network visualization and monitoring tools. Unfor-

tunately, the framework is not powerful enough to build an IDS with a high level of

coverage. Nor is it useful for most automated monitoring tasks, with a few exceptions:

the detection of worms, the detection of network scans, and the detection of telnet

chains. Extensive scalability has not been explicitly addressed.

JiNao [29] is an IDS system that is designed for use with OSPF network rout-

ing. It attempts to determine both when a router has been compromised and which

router has been compromised. It uses both misuse detection and anomaly detection.

Automatic responses based on this information have been partially implemented.

As the JiNao is described in paper [29], it is not clear that it is an airtight solution.

It seems to rely on a process not getting compromised, but if someone chooses to read

data from that process, then the security features may be overridden. Assuming that

it works properly, it is another way of detecting intrusions in routers combined with

some avoidance mechanisms.

Snort has been modified to perform as a distributed intrusion detection system as

part of a masters thesis [22]. It was modified so it sent out IETF standard intrusion

detection messages. A primitive central monitoring and collection system was added.

24

The goal of the project was to produce a useful system, rather than perform pure

research.

ASAX was an early host based IDS system. It ran on SunOS under the C2

security logging level. The implementation is described in detail and appears to be

fairly complete. It has distributed data collection. As described in [40], only a few

rules were specified to scan for and the rules were of a restricted scope. Although

these limits on the rules limit the initial usefulness of the system, they probably

significantly contributed to easing the implementation effort, which was completed

[40].

Although not describing an individual distributed IDS system, the research in

“Designing a Web of Highly Configurable Intrusion Detection Sensors” [67] deals

with some of the problems in distributed intrusion detection systems. The system

described in the paper aims to simplify dynamically configuring a large number of

intrusion detection sensors. This is a useful task for the system administrator. The

crux of the system is modeling the dependencies of the IDSs in a database. Then

when a configuration is proposed or changes are proposed, it can be checked to ensure

its validity and generate an ordering for the activation of the sensors.

2.4 Network Layer IDS

The fastest network IDS systems only process the network layer. By not recon-

structing TCP and often not even examining the payloads of the packets, it is possible

to build IDS systems that can keep up with very high data rates. Finite automata,

neural networks, and other AI techniques have been used for the core detection engine.

A particularly high performance network IDS is described in [56]. The results that

are claimed in this paper need to be carefully quantified. For example, it is claimed

that the system has “real-time performance at up to 500 Mbps even when run on a

standard PC.” Later the result is qualified out to be “only the time spent within the

intrusion detection system.” Qualitatively, this means that I/O takes the majority

25

of the time, hence a speedup by even a factor of two cannot be obtained by further

optimizing the IDS with respect to pattern matching assuming that the same data is

needed in a similar order.

The approach to the specification of rules is interesting. The rules are regular

expressions that are compiled into finite automata. Rather than build the knowledge

of the protocols into the compiler which outputs C++, it is left to be specified in the

rule files. Although it is claimed that this makes it easily extensible, this makes the

specification of rules depending on TCP stream reassembly difficult to impossible.

In particular, all of the rules specified in their implementation are low level network

attacks.

INBOUNDS is a network based IDS system developed at Ohio University in

Athens, Ohio. [62, 10, 51, 9, 50, 12] INBOUNDS stands for the “Integrated Network-

Based Ohio University Network Detective Service.” Although INBOUNDS is techni-

cally a framework for detection modules, currently the core detection module is an

anomaly detector using self organizing maps (SOM). A self organizing map is an AI

technique that involves training a function for data clustering. The data that the

system examines are the length and timings of individual TCP sessions.

SRI has a Bayes network based approach to intrusion detection at the TCP trans-

mission level [64]. It does not reconstruct the TCP session, but does examine the

TCP headers. The results of the component against the MIT data indicated that

although the system proved effective against DNS, it is only “moderately effective

against stealthy probe attacks”.

2.5 Specification Based IDSs

Specification based IDSs work by specifying the allowable system calls for every

executable file. Each actual system call is checked against the allowable parameters

to determine if an unallowable behavior has taken place or to prevent it from taking

place. For example, it may be specified that in.fingerd cannot exec /bin/sh.

26

Either at run time when in.fingerd attempts to exec /bin/sh, it is prevented and

an alarm is generated or through later log post processing it is found that exec

/bin/sh by in.fingerd took place and an alarm generated.

These approaches require the specifications of abnormal behavior to be specified

in advance, usually by the application developer. For run time specification based

systems, which are the most interesting, each system call is checked against these

specifications before the call is processed. For example, it may be specified that the

ps command cannot exec /bin/sh. At run time this is supposed to be verified.

The advantage of this approach is that some internal bugs that cause security

flaws can be detected and contained on software that the system administrator may

not have the source to. It may also be simpler to implement for some cases, assuming

that the framework for this method has already been implemented.

The disadvantages of specification based IDSs are more prominent. Checking

specifications on every system call would slow the system down. Although it may

be an insignificant amount for a short list of specifications, a long list could prove to

be a significant bottleneck. Considering the level of detail of some of the proposed

specifications, for example the process can not write to /etc/passwd, the specification

list has a large potential to bloat.

Furthermore, not all attacks can be specified with most of the proposed specifi-

cation languages. For example, exploiting race conditions, like the binmail exploit,

cannot be done in these stateless specification languages. The addition of state would

significantly increase the complexity of the specifications.

Often it would be simpler to have the application developers simply test their soft-

ware for the possible failure points. One advocate of specification based IDS states

that reasonable specifications can be developed in the tens of man-hours for most ap-

plications. In this same amount of time, automated tests for corner cases and manual

tests for possible security failure points could be developed. If the specifications are

too loose, more security holes are possibly left uncovered, but if the specifications are

27

too tight, the application cannot work as desired. In any case, some types of security

flaws fall closer to misuse. For example, a text editor should not be banned from

editing /etc/passwd. It is more likely to be a system administrator rather than a

cracker.

Uppuluri and Sekar built a specification based IDS and tested it in both the 1999

DARPA on-line evaluation and against the 1999 off-line DARPA/MIT Lincoln Labs

data set [63]. Their system could not detect all of the attacks. Some of the attacks

could not be detected due to falling under misuse rather than violations. For example,

attempts to try the default guest account were considered to be within the normal

operation of telnet, but according to the standard interpretation of the MIT data,

were to be considered attacks. This was remedied by the questionable method of

adding specifications to disallow this normal behavior. Their system did not suffer

from any false positives when run over the test data. It has been conjectured by

multiple researchers that specification based IDS will have a low false positive rate.

But this is probably only true when the specifications are carefully drawn up by an

expert.

The specification language developed for their IDS uses regular expressions with

negation. The “string” is matched by matching events in a temporal fashion. Their

paper includes examples and their development methodology for producing specifica-

tions [63].

Calvin Ko and others attempted to make the specifications more general than the

form that they often currently take [31]. The large area of concern that they intend

to address is the generality of attacks. For example, Snort signatures are strings that

are matched against the data in network packets or in a reassembled TCP stream in

more recent versions. The signature that is published is representative of the most

common compilation of the attack. If the cracker were to insert extraneous assembler

instructions or use different registers, the string would not match. This is common for

28

virus software, but is relatively new for intrusion detection [57]. His implementation

does not seem to significantly vary from other specification based approaches [31].

2.6 Rule and Finite Automata Based IDS

The Ph.D. thesis of Sandeep Kumar is considered to be the seminal exponent

of a signature based IDS [34]. In this work, Kumar classifies many of the types

of signatures for detectable intrusions with respect to the complexity of the pattern

matching used. By giving examples he illustrates that the classification is meaningful.

He is explicit in his treatment of time.

His hierarchy is

1. Existence (for example, SUID with poor permissions)

2. Sequence (for example, race conditions)

3. Regular expressions

4. Other

His work includes a method for quickly matching signatures up to regular expres-

sions that was fully developed by other graduate students at Purdue into the IDIOT

IDS.

Related to Kumar’s work is the approach of Alessandri to use the features of the

attacks to classify IDSs [2]. This classification is used to analyze where the strengths

and weaknesses in the system are. Then it is proposed to use multiple diverse IDS

systems to blend together coverage. Other failure points of IDSs are discussed, for

example rate overload, but not addressed in the evaluation language.

A fast IDS for audit trail analysis is described in [66]. The emphasis of the

approach is on resource usage and speed. The rules are coded in a limited pattern

matching language which is then translated to C and compiled. The processing of

the logs is done on each machine and then fed into a server which groups them.

The implementation is in a prototype stage after the successful completion of some

feasibility tests. It is an open source project and like other open source projects, it

29

is not clear if it will get to the point at which it can successfully approach the state

of the art. It looks to be the development of a limited tool. That is certainly not

anything bad, but does not really qualify as research.

Kruegel and Toth distribute signatures among many nodes to obtain fault toler-

ance in the IDS. Their approach does remove many node failure points, but network

bottlenecks and scalability are not addressed [33].

Kruegel and Toths approach may fall prey to the same scalability problem as

CARDS. Toward the end of the paper are both theoretical and experimental results

pointing toward the failure points in scalability [33]. Judging by their network traffic

formulas, their decentralized solution will consume an enormous amount of traffic

for complex patterns. They claim that the patterns are usually very simple, which

may be a correct claim, but it will be difficult to tell unless one attempts to make

a reasonably complete set of patterns. Even assuming simple patterns, it would

probably exacerbate a DOS attack. They have a term for the number of network

messages that is quadratic in the number of events per day or other time segment.

This would cause intensive network congestion from even a small DOS attack designed

to trigger this. It is unclear how the system would be able to recover.

LAMBDA is an attempt to generically model signature attack rules [14, 39]. More

specifically, it is the first attempt described by the authors, to put forth a declarative

language that can model attacks in an overarching manner. The examples indicate

that there is a considerable amount of art involved in choosing the signatures and

rules for modeling an attack. In particular, it will probably give worse performance

than if the rules were developed for a single IDS. Current IDS performance indicates

that the rules are a problem area. Too many false alarms indicates that the rules must

address fewer cases. The failure of many of the rules on slow and stealthy attacks as

indicated by the MIT evaluation data shows that the rules need to be broadened in

some aspects.

The language in LAMBDA is built by combining primitives by temporal and

30

boolean operators. Clock skew is not addressed with the temporal operators. The

goal of the signatures is to model the pre-conditions and post-conditions of an attack,

but the examples indicates that everything but the final result of the attack is inserted

into the pre-conditions of the attack. Thus in practice, this is nothing but waiting

for a match of all of the pre-conditions. Hence this boils down to a restriction to

existence or possibly regular expression based signatures.

Later modifications to LAMBDA concentrate on technical aspects of the language.

They do not attempt to broaden the language to model more, but rather attempt to

more exactly encapsulate the current attacks with respect to the optimizations that

can be performed for their detection [39].

Another approach to an overarching declarative signature based language is de-

scribed in Pouzol and Ducasse [49]. “This article firstly proposes Sutekh, a declarative

signature language providing a combination of functionalities at least as complete as

the union of what is offered by other declarative systems.... Sutekh provides sequence,

alternative, partial order, negation, event correlation by logical variables, condition

verification and alert triggering” [49, p. 1-2]. The paper goes on to give ways to

translate these signatures for use by other systems, in particular ASAX and P-BEST,

which is the expert system in EMERALD. Although all of these rules can be trans-

lated to other systems, the converse is not true. In particular, since P-BEST is an

expert system, the order of the rules is important. This aspect is not explicitly cap-

tured in Sutekh. Furthermore, Sutekh appears to only be glorified regular expressions.

The diagrams for the translation into the various languages incidentally illustrate this

point.

If it is assumed that all attack signatures can be represented as a regular expres-

sion, then this is a promising approach. Unfortunately, this point is debatable to state

the least. Anomaly based approaches resist representation as regular expressions with

a reasonable number of terms due to the numeric expressions involved. Even a true

expert system based approach can not be represented as a regular expression.

31

2.7 Database Approaches

Databases have been employed in network intrusion detection to record all of the

packets for later study and processing. This has several advantages. First, all of

the suspicious data is present for later manual analysis. Second, by relaxing the real

time constraints, the detection mechanisms do not have to deal with as much partial

matching state problems. Normally, if a partial match is detected, the remainder

of the match must be searched against as new data appears. This is a source of

significant complexity for detection engines. Third, after an intrusion is detected,

all traffic from the attacking machine to the monitored network can be examined

to determine the sequence of the attack and other possible targets identified during

the probe. Finally, after an intrusion has been detected through other means, the

network traffic can be analyzed to improve the IDS configuration.

Stephen Northcutt advocates this approach. His book Network Intrusion Detection:

An Analyst’s Handbook[45] is based on the systems he has deployed. His approach is

to use signature based sensors and to tune the sensors to the site to reduce the false

positive rate. A database of all of the traffic for two to three days and a database

of selected header information for two to three months are kept. By building indi-

cies overnight, these can be quickly searched to reconstruct and analyze an attack

sequence.

The size of the data to be stored is the main disadvantage of database approaches.

This usually requires a dedicated machine with a small RAID array.

A second trade off of the database based approaches is that they do not run in real

time. This is a limiter for using these approaches for automatic response. Northcutt

claims that for human responses, this is only a marketing problem. IDSs are sold

with quick reporting as a feature, but after the first few weeks it is apparent that low

false positives is more important [45].

32

2.8 Miscellaneous Detection Methods

This section contains miscellaneous approaches to intrusion detection. It should

increase the perception that people are working on most things related to intrusion

detection and are willing to examine anything.

Staniford-Chen of University of California at Davis describes an approach to trac-

ing intruders in his computer science master’s thesis [58]. It attempts to produce

thumb prints of interactive TCP sessions. These thumb prints both provide privacy

in that the actual information in the session is not revealed and they provide a way

to attempt to determine if two TCP sessions are the same. The issue of determining

which TCP sessions may be the same is a way of attempting to trace back telnet

chains.

At MIT, a system was built to try to identify the source code of user to root attacks

[13]. The system attempts to detect source code that increases privileges by feeding

statistics on the occurrence of keywords within the code and within the comments

and strings of the code into a neural network. First the code was characterized as C

code, shell or other. Then the code was categorized into the non-mutually exclusive

categories of comments, strings, code without strings, and code. Then the occurrence

of various keywords, (regular expressions), from each category was tabulated and

normalized to account for the length of the file. This was the output that was fed

into the neural network, at first for training and later for testing. The keywords were

partially chosen one at a time due to what best characterized the training set after

accounting for the current keywords.

This system was effective in characterizing the outputs when applied to the test

set. At a less than or equal to 10% miss probability, the false positive probability was

less than or equal to 10% for C code. For shell code the results were still good, but

not nearly as good as the case for C code. Unfortunately for future work following

on this approach, this detection mechanism can be easily defeated by modifying the

source code for the attack to obtain desired statistics.

33

2.9 Application Sensors

A natural trend from network and host based intrusion detection is to increase

the sources of data to be fed into the IDS. One way of doing this is to integrate the

security reporting into the applications themselves. This has the advantage that for

data relevant to the application, the application is easily aware of its’ internal state,

so can more easily judge whether or not the attack constitutes a serious event or not.

There are several disadvantages to the application sensor approach. One promi-

nent disadvantage is the large increase in complexity of the IDS. An IDS that took

data from many application would be costly to build and troublesome to keep up-

dated with changes in the application software. A second large disadvantage is the

probability of significantly slowing down the applications due to the need to report

every event. Interprocess communication is not particularly quick and if the data

must be sent before further processing to ensure it reaches the IDS even if the process

is compromised it would significantly slow down the application.

SRI has tried this approach as detailed in [3]. The implementation was to add

security monitoring to the Apache web server and integrate the messages into the

EMERALD framework.

The advantages of this approach are that more data is available, the data can be

of a finer granularity and the interpretation of the data by the application is more

likely to be known. For example, the internal data in encrypted sessions may be

available to the security module if it lies in the application. The SRI researchers

state that this is an advantage for security reasons. It may be a disadvantage for

privacy reasons and may generate additional security bugs. The interpretation of the

data is a major advantage, for example in monitoring a web server, the HTTP escape

sequence decoding is already done. The state of the application need not be guessed

as it can be directly inferred by the security module.

One disadvantage of this approach is that it could slow down the application.

Syslog is notoriously slow and logging to the IDS system may not be faster. Further-

34

more, it would require significant development efforts to integrate it with the major

applications. Their implementation of a module for Apache did not cause a significant

slowdown under light loads. This was due to performing the security analysis in a

different process with buffers between the two. This architecture potentially intro-

duces a facility to crash the IDS via disobeying locking and semaphore conditions on

the shared data segment. Even assuming the development of an IDS with the ability

to handle potentially disruptive data in the shared data segment, ensuring that the

IDS saw the security data in the event of an intrusion within the application would

require the IDS to copy the data for the event before the application processes to the

point of losing control to the potential security event. This requirement would force

the application to cede run time to the IDS every time a message is placed in the

queue for the IDS, which will significantly slow down the application. It may be the

case that the designers of application based IDS are willing to ignore these interesting

and particularly hard cases in the hope that things will just happen to work out most

of the time.

A similar approach to the SRI work is described in [70], but they integrate all

of the information into their own IDS. Implementation is “still volatile and likely to

be reworked, parts of it have been running...” They have implemented an Apache

module and a modified ftp server.

2.10 Autonomous Agents

Autonomous agents are a framework for a solution to a distributed task. This

framework has developed as a general Artificial Intelligence (AI) technique. Fun-

damentally, an agent is just a program. To be precise, one AI textbook defines an

agent as “something that perceives and acts”[55, p. 7]. An autonomous agent is an

agent with the ability to learn [55]. The AI community represents this program by

the agent abstraction so they can distinguish the architectures in which these agents

fit together, often through biological analogies. The biological analogy is applied to

35

build the solution to the problem, rather than through classical computer science

driven architecture.

Often the agents have some way to communicate with each other. The architecture

in which to communicate is usually specified, but the decision on which agent to

communicate with is left to the agent itself. Hence an agent based approach can be

very general while leaving many important implementation details unspecified. The

agent based approaches to distributed IDSs often fall victim to this short coming.

The COAST laboratory at Purdue has done considerable work to advance the

autonomous agent based approach to intrusion detection [8, 25]. This approach offers

the prospect of eliminating many of the failure points and bottlenecks of hierarchical

approaches. Their implementation of agent based approaches are still in a preliminary

stage. In particular, data reduction and the usage of network bandwidth have not

been examined.

The first paper from COAST describing autonomous agents for intrusion detection

is [8]. This paper describes the proposed architecture, which has the agents send

all of their data through a hierarchical communication network. In the next paper

describing their improvements to this architecture, the agents send their interests

through the hierarchical communication network, rather than sending all of their

data [25]. After transmitting their interests, the communication is then conducted in

a peer to peer fashion. This paper is a proposal to build an implementation, rather

than a description of an attempted implementation. Some critical details are rather

fuzzy, for example, it would be useful if more detail were given in how to determine

the interests of the agents.

It is not clear that either of these architectures are effective. In particular, it is not

clear that the second proposed architecture addresses the hierarchical limitations of

the system. In the second proposed architecture, the data is now not constrained by

the hierarchy, but the interest requests may consume just as much network bandwidth.

Furthermore, without constraints, it could be possible to overload one of the nodes by

36

having it send too much data. This fix to the overload problem likely suffers from the

same shortcomings as it was intended to fix. It is not clear that having autonomous

agents without specifying communication mechanisms and movement determination

algorithms for mobile agents really solves anything. It is a lot of terminology, but it

leaves the fundamental engineering problems unaddressed.

The Intrusion Detection Agent (IDA) [5] system attempts to gain distributed scal-

ability by delegating the detection of intrusions to autonomous agents. Scalability

concerns from this approach have been dismissed in favor of the basic work of getting

the approach working. Unfortunately, scalability may be both hard to analyze and

difficult to achieve with the fully distributed autonomous agent approach. Further-

more, as only highly limited sets of detection criteria have been implemented, it is

not clear that this approach is feasible for a more complete system.

Once taking the autonomous agent approach, the researchers concentrate on im-

plementing a system. Their system as described in this paper is still in a very basic

form, but it does seem to be an attempt to do what they claim.

As for the scalability, it seems to scale worse in some aspects than both the cen-

tralized and the fully distributed approaches. A rough guess is that it is hierarchical

with respect to the output of the agents, so it will have the output of the agents as

the bottleneck. There are also many potential problems with the “Tracing Agent”

and “Information-gathering Agent”. The architecture is similar to the architecture

of Morris’s 1985 Internet worm. With agents going everywhere, it remains to be seen

how it keeps from exhausting the resources of the hosts and network.

“Mobile Agents in Intrusion Detection and Response” [28] examines the benefits

and security problems of using mobile agents for intrusion detection. The analysis of

a security problem introduced by mobile agents is a useful contribution of this paper.

Because they have not attempted an implementation, rather than build upon this

work, others will probably rework it from scratch when exploring different designs for

trade-offs.

37

Some researches use the biological analogy rather than computer science to try to

drive the research. For example, “A Distributed Intrusion Detection and Response

System based on Mobile Autonomous Agents using Social Insects Communication

Paradigm” [21] is pushing the boundaries in exporting the biological analogy. The

interactions and topology described follow an analogy with an ant farm controlled by

pheromones. Although much of the system has been built in TK/TCL, some highly

critical components have not been implemented. Nor has it been partially tested

in practice. Furthermore, it is unclear how the intrusion detection modules, which

have not been implemented, will be able to use the qualities of this framework to

effectively perform intrusion detection better than they could if they were employed

as non-connected site monitors. Although the analogy is somewhat interesting, there

is nothing gained by the analogy.

The US Air Force had a project in Dayton, Ohio that used the human immune

system as an analogy for an IDS system. “CDIS (Computer Defense Immune System)

is a multi-agent, hierarchical, distributed computational immune system modeled

after the biological archetypes of the immunological process.”[71, p. 118] Typical

of computational biological (genetic) attempts to handle large amounts of data, the

process uses a tremendous amount of computation time to handle a task. It is trained

to do attack analysis at the network layer.

2.11 Data Fusion

Data fusion is an important area of research for building large scale systems of

IDSs. Practical large scale IDSs can generate thousands of alerts per day, even when

not subject to denial of service attacks. Fusing alerts together can substantially

reduce the number of alerts seen by the operator, which is something of commercial

interest especially when operator time is specified as an expense. More common than

an actual denial of service attack, rules to detect the current Microsoft worm of the

month would generate immense amounts of alerts.

38

One of the most interesting data fusion approaches was attempted by Robert

Goldman and others at Honeywell [24]. They attempt to address the problem of data

fusion among multiple IDS employed as a distributed IDS. One of the key premises of

their approach is that each site has different security priorities, therefore should have

a different kind of data fusion. Much of the data fusion system must be configured

by the site administrator. The heart of the intrusion report aggregation system is

storing the components of the signatures in a hierarchical manner. A prototype has

been built.

SRI implemented an effective alert correlation mechanism as part of an addition

to the EMERALD system [65]. It uses Bayes inference and a database of constants

for feature similarity to attempt to hierarchically correlate alerts as part of the same

attack. By correlating the alerts, the operator has less overall messages to deal with

and can get a better picture of the attack. The system nearly gave an order of

magnitude drop in number of alerts that the operator saw during an attack. “We

realize a reduction of one-half to two-thirds in alert volume in a live environment, and

approach a fifty fold reduction in alert volume in a simulated attack scenario.” [65,

p. 67] The alert mechanism was defined as an extension to the IETF/IDWG proposed

standard. There were also constants to cut off partial matches.

Another approach to alert correlation is described in a RAID paper by Debar and

Wespi [16]. The approach is a framework for hierarchical aggregation of intrusion

detection alerts. The framework builds off existing commercial software for commu-

nication (CORBA) in distributed systems. It builds wrappers around the IDS sensors

that are not already directly integrated into the framework. The messages in the sys-

tem were developed by an OO approach that is still evident in the paper. These

wrappers and the higher level nodes can switch to providing a summary of how many

alerts have taken place to prevent the overloading of the higher level nodes.

The correlation that takes place in this system is rather primitive. “There are

currently two kinds of correlation relationships between events: duplicates and con-

39

sequences.” [16, p. 95]. The aggregation that takes places is to aggregate the security

levels.

2.12 Plan Recognition

Plan recognition is attempting to infer the goals of the attacker at various stages

of the attack. This is often viewed as useful to determine the potential severity of the

attack outside of the technical severity due to what was compromised. For example, a

hacker simply trying to gain access to as many machines as possible is a substantially

less severe corporate threat than an attacker who is trying to gain access solely to

the accounting databases for the purpose of financial gain. Yet from the technical

point of view the hacker simply trying to gain access is a more severe problem. Plan

recognition attempts to address this disjuncture by accounting for the inferred plan

of the attacker in determining the severity of the attack. Furthermore, it attempts to

guess the probable actions of the attacker by using the inferred plan.

Automatic plan recognition is widely considered to be desirable, but is not au-

tomated in practice. Manual heuristic plan recognition is performed by system and

security administrators routinely. They examine an attack and attempt to judge what

the goal of the attack was. This is done as part of the attack reconstruction. Both

automatic plan recognition and manual plan recognition have shortcomings.

Automatic plan recognition is subject to two main shortcomings. The first short-

coming is that the data on the system must be interpreted. Specifically, if an attacker

is examining data in a users home directory, the access to that data must somehow be

interpreted within the attackers plan. This would either require the system adminis-

trator to somehow inform the automatic plan recognition software of the relevance of

the data or it would require the plan recognition software to make judgments on coarse

attributes of the data. The second shortcoming is that the plans to be recognized

are often of a coarse granularity to deal with the first shortcoming. When a coarse

granularity is used, the plans returned by the software are not as useful. Specifically,

40

if the plan is very general, it does not assist in either attack reconstruction or action

prediction. In addition, if plan recognition were used for attack prediction, the initial

portion of the attack could be modified so that it would appear to have a different

plan than intended.

The main shortcoming of manual plan recognition is the time it takes for a system

administrator to perform it. This system administration time is highly significant.

It is often the case that rather than throughly investigate an attack, the system

administrator will close the security hole and reinstall the OS and software on the

systems compromised. This implies that potentially useful data is lost due to the

time required to recover it. Manual plan recognition may be used in the rare cases

where the attacker is actually caught, so that some degree of severity can be assigned

to the attack. In many cases where the attacker is caught, it is likely that regardless

of the plan of the attacker, the corporation will pursue the maximum charges or fines

allowed, so plan recognition does not help in this instance except where it implies

that the attacker was planning to do significantly more damage than they actually

did.

One advantage of manual plan recognition over automatic plan recognition is that

it more easily allows human factors to be taken into consideration. For example, an

attacker that is having trouble using attack scripts can clearly be manually differ-

entiated from an attacker that forms complicated UNIX command line pipes. This

allows easily inferring the degree of knowledge of the attacker, which gives insight

into the severity of the attack. Furthermore, motivation is difficult to pin down even

for humans, so its automatic determination would probably be useless.

Robert Goldman formerly employed at Honeywell constructed a plan recognition

system that is described in “Plan Recognition in Intrusion Detection Systems”[23].

The main shortcoming with this system is that the plans recognized are of only a

high level of granularity. The coarseness of plans to attempt to be detected were on

the order of “get root”, “steal info”, “deface web site”, etc. This information is not

41

particularly useful, yet developing a plan recognition system that works at a level of

detail that is useful is a more difficult task than building a more comprehensive IDS.

Other authors have discussed adding plan recognition systems to IDSs, but have not

detailed the workings of such a system nor have they implemented one.

2.13 Intrusion Tolerance

The goal of intrusion tolerance is to produce systems that are dependable despite

intrusions. Often, the author will state that intrusions will always be present, hence

the need to develop systems that incorporate IDS alerts into resource management

software so that the system will be resistant to the inevitable intrusions.

It is debatable whether or not intrusions will always be present. Certainly with

the current code development practices exercised by Microsoft, intrusions may occur

in any OS and networked application they develop. With code developed by others,

it is not as clear. One of the BSD systems has gone for multiple years without finding

a buffer overflow problem. With respect to bug testing, it is ceded that it cannot be

known that the tests are completely comprehensive because there may be a bug in the

tests, but it may be the case that they are actual completely comprehensive. Likewise,

even a proof of the security of a system is subject to human errors in interpretation

and specification, so it is impossible to conclude with mathematical certainty that

the proof is correct. But regardless of the limits of demonstrability to humans of

the security of the system, the system itself may in fact be secure. Thus a properly

designed OS or application can be without security bugs. Reality is often far from

this ideal case, hence the desire to create intrusion tolerant systems.

SITAR is an attempt at “a scalable intrusion-tolerant architecture for distributed

services”[68]. The architecture uses both an IDS and voting to rule out possibly

compromised responses. The prototype implementation is designed around the task

of serving web pages.

It seems that the SITAR architecture has a lot of shortcomings. For starters,

42

it seems to fail to work for tasks that have state in them. Distributing tasks that

have state is a known problem, but it is the more interesting problem because the

stateless problem is so much easier. Furthermore, this system will probably not work

if more than some fraction of the machines are compromised, which has a decent

likelihood since it is likely that all of the machines will be similar types with the same

software load. The implementation results that were published are disappointing.

They indicated that even the preliminary prototype has not been built.

Experimental results from an approach to automatic responses to DDOS attacks is

described in “Autonomic Response to Distributed Denial of Service Attacks” [60]. It

uses the previously developed Cooperative Intrusion Traceback and Response Archi-

tecture (CITRA) and the Intrusion Detection and Isolation Protocol (IDIP). These

works describe an implemented framework for attempting to trace back denial of

service attacks. The framework works in the obvious manner, on the routers and

switches, it determines which interface the attack is coming in on and sends a mes-

sage to the upstream switch if the switch has implemented the system. If the switch

is not part of the system, it simply firewalls or rate limits the traffic. Internal Secu-

rity mechanisms of CITRA and IDIP are not discussed in this paper. Commercial

software to do a similar function has been developed by other companies and is on

the market.

The experimental results from this paper are not interesting in themselves. The

main point of the experimental results is that the system has been built and functions

to some degree. The scalability of this system is questionable. Running additional

filtering applications on routers and switches could cause unacceptable network slow-

downs. The communication in the protocol was not explicitly designed to be scalable,

which will probably slow down their attempts to make it scalable.

IBM Zurich has developed an approach to shutting down services for security

reasons [53]. The intent of the system is to automate the disabling of services like

the automatic updating of software. The system has not been implemented. Some

43

security implications of the scheme and the practical problem of naming are discussed.

Considering the automatic updating of software is not widely implemented for valid

reasons, it is unlikely that this scheme will come to fruition except at possibly a

small number of sites. Fully automatic software updating is often not used because

software updates sometimes break the software or temporarily make the software

unusable. Microsoft is particularly bad in this regard. Several of the security patches

released by Microsoft have broken the software that they were supposed to fix. The

result has been that security administrators often do not apply the Microsoft patches

unless there is a worm or virus that exploits the bug. In any case, automatic software

patching has its own authentication problems due to the necessary administrative

permissions and functionality of the patching software. The approach to shutting

down services for security reasons can have the advantage that the remainder of the

services may still be available, while on the flip side it may unnecessarily shut down

services if the attack detection is too aggressive.

44

3. Proposed Solution

Intrusion detection research often attempts to answer one of the following questions:

how to make IDSs faster?; how to produce more accurate results?; how to fuse alert

reports?; and how to apply other AI methods to intrusion detection?. Distributed

intrusion detection is subject to additional research problems. These problems are:

how to make it scale with respect to data, computation, and network transmission?;

how to organize the topology?; and how to break down the components of an alert

match for matching across multiple nodes?

The overall approach of this thesis is to introduce a compiled language that at-

tempts to simultaneously either directly address or facilitate the incorporation of

solutions to many of these problems. It aims to directly address the scalability with

respect to data, computation, and network transmission problems. The topology is

explicitly configured to facilitate approaches to the topology problems. It aims to

facilitate the incorporation of solutions to the speed issue, the accuracy problem,

the data fusion problem, and ease the application of other AI methods to intrusion

detection.

This chapter is divided into sections that attempt to answer the following ques-

tions: from a general perspective, what to develop? (section 1) given the general

goal of what to develop, what are the large problems to address and avoid? (section

2) what are the details of the proposed solution and how does it address and avoid

these large problems? (sections 3, 4, and 5) what are the properties and advantages

of the proposed solution? (section 6) and what are the disadvantages of the proposed

solution? (section 7).

45

3.1 General Goal of Solution

The replacement of assembly programming with higher level programming lan-

guages for software development has yielded an enormous improvement in produc-

tivity. Data comparing assembly with third generation languages from Brooks [11]

indicates a several fold increase in productivity over assembly. Furthermore, pro-

gramming languages facilitate portability of code and some orthogonality between

non-asymptotic efficiency and the application code. These large gains from program-

ming languages for application development give an analogy for a goal for easing the

development of large scale IDSs: a compiler for IDSs may have the same advantages.

Currently, each type of IDS is given its own set of rules and configuration in

a manner particular to that IDS and intended host. Then the alerts generated by

the IDS are post processed by hand or fed into a database for manual search and

examination. This has several inefficiencies: for attacks generating many alerts, all

of the alerts have to be logged; even versions of IDSs change with later versions often

allowing more efficient versions of the same rules; each configured IDS must disregard

the traffic that it sends on its behalf to prevent loops, thus should have a host specific

configuration if it is to report over the network; and unless the IETF output mode

is used to ensure standard syntax with considerable overhead, each IDS has its own

output format.

Application programming language compilers usually target assembly or machine

code for the machine architecture. For a programming language for use with large

scale IDSs, the target would be the configuration of IDSs and the IDS post processing

system. Here the post processing system may be running at the same time as the

IDS to process the outputs directly in soft real time. It is important to note that it

is proposed to target multiple existing IDSs rather than one specific IDS or develop

a custom IDS in an application programming language.

By introducing a separate language, the semantics and efficiency can be split.

Considering that there has been a large division between those who are trying to

46

make limited IDSs very fast and those who are trying to make IDSs very functional,

a division between semantics and efficiency allows efficiency to be pursed without

forcing the user to change their rule sets to conform to whatever is the most efficient

IDS of the day. Furthermore, for most users, it may represent a gain in efficiency by

allowing the software to choose an efficient way of representing the rule for the IDS

in question.

This software has two useful stages. The first stage represents each rule by a

symbol. Then when generating the configuration files for each type of IDS, the corre-

sponding rule for this IDS is simply looked up in a specified table. By the introduction

of this substitution, it allows the abstraction for multiple IDSs to take place. While

the substitution may seem to be a trivial operation, constructing the appropriate run

time systems involve some work. In any case, this stage gives most of the benefits

of the compiler without the extensive work involved in constructing a full fledged

multi-target compiler.

The second useful stage is a compiler from one full specification to the various

IDSs. This differs from the first stage in that when a rule is not specified in a library

file for a particular IDS, it can translate from a rule specification into a rule for the

target IDS. This has the advantage that with many types of target IDSs, one can

simply write one general rule and be assured that it will be translated to work with

the various types of IDSs.

This solution effectively merges with the existing trends in IDS software. One of

the most important trends is an increase in the complexity of IDS systems. A version

of Snort from a year ago was about 40,000 lines of code. This years version is over

85,000 lines of code. Because of this complexity, it is easier for a contribution to be

used if it does not involve re-engineering the existing IDS systems. Another important

trend is the increase in utilities for alert post processing. The commercial IDSs put

these in their user interface. The free IDSs supply separate tools for this use. Either

way, it is recognized that alert post processing needs considerable attention.

47

This solution provides a basis for further extensions for secure and reliable systems.

One natural extension is to integrate the output of the IDS system with resource

management software. Further work toward this goal is mostly independent of the

remainder of this thesis, thus will be excluded from consideration.

3.2 Problems to Address and Avoid

Some of the major problems addressed in this work are areas of concern for dis-

tributed and large scale IDS systems. These areas are failure under high load, imple-

mentation complexity for both the software engineer and the system administrator

and the efficiency of post node processing software.

Failure under high load needs to be addressed to build systems that are resistant

to denial of service attacks. In addition, the necessity of working reasonably at high

load implies an attention to the failure mode, rather than simply attempting to make

the IDS run faster.

Implementation complexity for the software engineer is a concern due to the quick

revisions of the software needed, the necessity of reasonably secure security software

and the need to handle an ever increasing number of attacks to detect.

Implementation complexity for the system administrator is particularly important

when attempting to run systems of IDS sensors. Simply configuring these sensors by

hand would be very time consuming. Furthermore, for effective analysis of attack

data, the state of the system must be known at the time the attack occurred.

It is desirable, but beyond the scope of this work, to integrate the results of network

IDS monitoring with data representing the configuration of the network and machines

on the network. For example, a recent project by Marty Roesch, who wrote Snort,

is to do just this. Automated responses to intrusions will also require integrating the

system state with the IDS knowledge.

The fast pace of IDS research indicates that for a proposal to be effective, it

must be fully implementable in a relatively short time frame of at most three to four

48

years. To achieve this from a research project, attention must be paid so that most

additional work can be added in an orthogonal manner.

Some of the major problems to be avoided for this work to be practical to un-

dertake are the failure of the IETF standardization effort to standardize semantics,

the alert correlation problem and the implementation of fast secure IDSs. These are

important problems for IDS research. Yet solving either of these problems effectively

has not been done by anyone in the field. Many attempts have been made for the

alert correlation problem as it is so important for large scale IDSs. Still, no standard

approach has emerged. Thus choosing an mechanism for alert correlation should be

independent of the system developed to allow for both further research into alert

correlation and adoption of arbitrary alert correlation methods.

The failure of the IETF standardization effort to standardize the semantics of

intrusion alerts has several consequences. The first consequence is that the IDS

systems are not transparently replaceable. To replace a node of a large scale IDS

with another IDS, it is necessary that the replacer node be configured to possibly

generate the same reports as the replaced node. The second consequence is that

for alert correlation, separate rules must be written for every rule and every type of

IDS because the syntactically similar alerts generated by different IDSs mean different

things. SRI took exactly this approach for a recent large scale IDS correlation project.

They put separate rules for every type of IDS that was part of the large scale IDS

[47].

Related to the failure of the IETF standardization effort to produce standardized

semantics is the lack of a standard model for intrusion detection. This is a natural

failure, if there is no need to produce standard semantics, there is no need to stan-

dardize the way of producing alerts. In any case, since many fundamentally different

approaches have been attempted, it is natural that there is no standard way. This

implies that many models will need to either be incorporated or ignored to produce

a single model for a large scale IDS system.

49

The implementation of a fast secure IDS requires a large amount of effort. Version

2.0.0 of Snort, which still leaves much to be desired, is about 85,000 lines of C code.

Certainly, this complexity in terms of lines of code could be reduced by using an

application development language with more features than C. As one measure of the

overall complexity though, it indicates that the development of a fast secure IDS is

an interesting problem by itself. Thus this problem will be avoided to keep the overall

solution within reasonable limits such that it may be accomplished by the resources

at hand.

3.3 Proposed Solution Overview

Lest it seem that the following section on model categorization and design choices

seem unrelated to the practical problems to address and avoid, this section gives a

general overview of the solution. A more complete description is in a later section.

The solution is a multi-layered language. This language corresponds has two

portions that correspond to two different models. The lower layer corresponds to

signature based modeling. The higher layer is a Turing machine with the data flow

of the alerts generated by the lower layer.

Having a lower layer corresponding to signature based rules allows for the under-

lying IDSs to be used to generate this output. This is what allows the creation of

another IDS to be avoided. To allow the usage of many IDSs for the second stage

of this software, the transformation between function for different IDSs will need to

be programmed. As this transformation is not always possible remaining within the

confines of the IDSs languages, this transformation can be completed by adding code

to the upper Turing Machine level to “glue” together simpler alerts. Although this

transformation may produce inefficient ways of matching on a target IDS, it allows

the matching of rules that would normally be unable to be matched with that IDS.

On the other hand, when the transformation can be performed to the target

IDS without gluing together separate alerts, it leaves the efficiency problem up to the

50

target IDS, which is presumed to be reasonably efficient. For language considerations,

the more features allowed in the lower layer language, the more efficient the generated

system provided that the glue can be avoided. Unfortunately, adding more features

to the lower layer languages increases the odds that some feature cannot be matched

against the target IDS. This problem is avoided in the first version of the software

because the rules for the target IDS must be specified by the user or in a library. For

the second version, the lower layer language must be chosen carefully to prevent the

user from having to use this version of the software in a way that is similar to the

first version.

The language choice for the lower layer language of the translation version (second

version) of this system needs an evaluation criteria to effectively judge the design

trade-offs between the most suitable languages. As the syntax does not need to be

specified yet, there is only the need to consider the underlying models.

A vital characteristic of the lower level language should be that regardless of

the data seen on the network, the IDS should not hang, crash, dump core, etc.

The requirement that the IDS should not hang implies that computationally the

lower level model cannot be as powerful as a Turing Machine. From a practical

perspective, taking 280 computations is hanging, thus the theoretical perspective given

in the examination of the choice for the model differs from the classical theoretical

examination by the inclusion of practical limits on space and time.

The lower level language should be able to produce output for some common and

easily available IDSs. If it was only capable of producing output for a custom IDS or

just a few rare IDSs, this would not likely be adopted for large scale systems of IDSs.

In addition, the output from the IDS configured by the lower level language must

be sufficient to allow the construction of arbitrary IDSs. This allows the language to

encapsulate a generic network IDS over some target IDSs. In particular, using this

framework any new IDS could be built directly on other IDSs, thus saving considerable

amounts of work.

51

3.4 Model Choice

To make an informed choice for the model for the solution, the existing IDSs

models are categorized in this section. These categories are explored to address

their stability up to small changes and the practical computational consequences of

remaining within those category. The criteria to choose a model for the solution is

given and the core elements of the model are chosen according to that criteria.

3.4.1 Model Categories as a Stable Concept

Every IDS relies on some core matching engine to determine when to generate

an alarm. Often this is a regular expression match, but a whole gamut of artificial

intelligence techniques have been proposed and used including expert systems, neural

networks, and various statistical techniques including Bayesian systems. For the

purposes of this thesis, this matching engine will be referred to as the core of the IDS

under inspection.

The models of IDS yield a different classification than the normal classification

of computational objects into finite automata, pushdown automata, and Turing ma-

chine. The reasoning behind using a different classification is to draw forth two

important variations which are not treated in most computational theory - access to

vital data flows and effective limits on computational space and time.

Access to vital data is important for properly detecting intrusion events. Clearly,

if the intrusion event happens in data that the sensor does not see, it should not be

detected. Detecting it would be generating a false positive.

One example of the lack of access to vital data would be a web server attack

embedded in an escaped URI. An IDS with string matching that does not include a

URI unescaping pass (after TCP reconstruction in case it is scattered within several

packets), should not be able to detect the attack. Here it assumed that all ways of

encoding it as a URI are not given as strings to match. Because there are only finitely

many ways of encoding it as an URI, the restriction on space needs to be imposed to

52

prevent an attempt to match it by giving every possible combination to the IDS to

match.

A second example of the lack of access to vital data would be trying to detect

a host based user to root attack on a machine across the network. If the attack

scripts or code has been encrypted for transmission, the network IDS may not be

able to distinguish an attack from normal system operation. A host based IDS that

monitored Solaris BSM logs could probably distinguish it, but this is another data

flow which the network IDS does not have access to.

3.4.2 Effective Limits on Computational Space and Time

The goal of putting effective limits on computational space and time is to allow

a classification that ignores small running time or space differences but still provides

a categorization useful for practical bounds on space and time. In particular, it will

be used to classify IDS models by their computational power. This is important to

ensure that the lower levels of the IDS do not hang due to possible unpreventable

problems. This subsection is concerned with exploring the concept of effective limits

on computational space and time. The application of these concepts is in the next

subsection.

A useful and exact definition for reasonable limits on computational space and

time is non-trivial to obtain. There are four somewhat obvious definitions to choose

from. The first definition is in terms of actual system running time. The second defi-

nition is in terms of some number of predefined basic operations. The third definition

restricts operations that lead to exponential space or exponential time rather than

forcing a counting of every operation. The fourth definition examines the scalability

of the system over the length of the input.

The initial definition in terms of system running time has the clearest applica-

tion. Its specification is the requirement that the operation return in a given amount

of time. This definition suffers from the problems involved in timing any piece of

software. Until the software is written and tested, it is very hard to predict the

53

timing beyond some constant factor. Even when it is written and tested, other sys-

tem processes, caching and paging issues make an exact timing difficult to obtain.

Furthermore, it is highly desirable to do an analysis of a proposed piece of software

without having to write the software. Even once the software is written, it can be ex-

pected to undergo variations due to life cycle changes, thus the current timing might

not reflect the timing of the software to be deployed.

A second definition that avoids some of the problems of the system running time

definition is to define the time requirement in terms of some fixed number of ele-

mentary operations. This allows for an analysis of the algorithms without writing

the software. This is the same choice as the analysis of algorithms proceeding from

general operations rather than the timing of specific instructions on a particular chip.

Often the bound will be on the order of 230 operations.

The operations to be assumed to be part of the system must be specified to

eliminate time variances due to the emulation of a missing operation on a simpler

machine. This presents a problem when trying to apply this approach to obtain a

time bound for a particular machine. It is tempting to choose a set of operations that

is what the particular machine can perform quickly. But if this is done, it will require

the analysis of algorithms to be reworked for the machine in question up to two cases.

If its operations are a superset of the operations assumed for the algorithm analysis,

any algorithm that is shown to run within the bounds on the more limited machine

will run within the bounds on the more powerful machine. Likewise, if a lower bound

for an algorithm is obtained on a more powerful machine, then that lower bound holds

for a less powerful machine. Since the intended application is concerned with upper

bounds, it is better to choose a limited machine description on which to perform the

analysis of algorithms.

The requirements on space and time using either of the first two definitions must

be fixed in advance. This has a large shortcoming. The large disadvantage is that

even a small addition to the code may push the algorithm over the fixed bounds.

54

Thus the set of algorithms satisfying the reasonable bounds is not closed under the

addition of even minor operations. In particular, it is not closed by the concatenation

of two algorithms, (run one then the other). The concatenation of algorithms for

DFAs is not the same as the concatenation of regular expressions.

The practical way around this shortcoming is to simply count every operation

and track this count in addition to whether or not it meets the current bounds on

operations and space. This is also reasonable from the perspective that the current

bounds on time and space are arbitrary, hence an analysis of the algorithm should

not depend on the current bounds. Naturally, these examinations are probably not

exact due to the difference in effort between giving a good but approximate count

and giving an exact count with the software and test cases to demonstrate that the

count is exact. As the bounds are likely to be met by a large margin or exceeded by

a large margin, good approximate counts are usually sufficient.

A third definition of the effective limits on space and time relaxes the counting

required in the analysis. Because it is commonly a power set operation that pushes

a proposed IDS operation over the limits on space and time, these operations will be

restricted to sets of size less than some arbitrary amount. Power set operations can

be used to skirt restrictions on inequivalence due to lack of memory. For example,

the construction of a deterministic finite automata (DFA) from a non-deterministic

finite automata (NFA) involves taking the power set of the possible states that the

NFA can be in. A more IDS specific power set operation is on a DFA that does not

have an additional specification of external memory to store a number can avoid this

restriction by simply adding states for every possible value of the number. If the

number is up to x bits long, it will add at least 2x more states (times the number

of states in which the number needs to be stored). This is not a realistic operation

to perform in practice, hence the exclusion of this. Thirty is an appropriate upper

bound on the size of a set to do a power set operation upon that is consistent with

the other arbitrary amounts chosen.

55

Using the definition restricting the power set operations, limited operations on

an algorithm meeting the bounds gives an algorithm that is still within the bounds.

Even the concatenation of two algorithms meeting the specified bounds is still within

the bounds. This closure of the time and space restricted algorithms with respect to

concatenation brings forth a flaw in this definition. Since it is closed with respect to

binary concatenation, it is closed with respect to finite concatenation (via any choice

of binary grouping of the finite terms). Since there are not any limits on this finite

concatenation, the original power set operations to be avoided can be performed by

the following construction: for each algorithm to be concatenated, have it test for a set

equivalence of elements and do the corresponding code then return. This is the power

set operation, yet has been constructed from algorithms that are clearly within this

definitions restrictions. One way of overcoming this restriction is to track the total

length of the algorithm expression rather than operations used. This will prevent the

power set construction with finite concatenation because the finite concatenation is

now subject to the limitation of expression length.

Likewise, tracking all of the ways to do a power set operations involves considerably

more effort than tracking individual places where the power set construction is used.

Time-wise, nested loops have a running time of at least the time spent in one iteration

of the inner loop times the number of times through the inner loop for each time

through the outer loop times the number of times through the outer loop. If there

are four loops of 28 = 256 iterations each it would exceed a 230 limit. To deal with

this problem, it would be necessary to have an estimate on the number of operations

used by the algorithm to be iterated so that the total number of iterations can still

be limited. To deal with every possible case for the closure and limits of the class of

time and space limited algorithms under this definition would degenerate into a chart

of the ways in which the time and space bounds could be exceeded by composition

of similar functions. As little would be gained from such a chart, this definitions

usefulness is limited to heuristics rather than as a basis for a solid classification.

56

A fourth definition continues on the asymptotic definition trend. It specifies the

maximum allowable asymptotic growth of the collection of computational elements

with respect to the size of the input. Similar to the definition of a circuit family, the

computational elements to be considered are considered as a separate computational

element for every size of the input.

Allowing separate computational elements for every size of the input can enforce

the need for reasonable restrictions on time and space by restricting the size of the

element to a linear function of the input size. By picking a different computational

element for every size of the input, any arbitrary function from {0, 1}∗ → {0, 1} can

be computed, which includes some functions that are uncomputable by Turning Ma-

chines. This is prevented in the uniform circuit family definition by the log space

bounded Turing Machine circuit description program requirement. The size of the

computational elements for an arbitrary function grow with the inputs at an exponen-

tial rate of 2n, so a restriction on the size of the computational elements will exclude

the choice of an arbitrary function.

Unfortunately, the restriction of the size of the computational elements to even

a linear function of the input is not sufficient to exclude uncomputable functions as

the following example illustrates. Consider the set of functions fi with i > 1 to take

the value 0 if either i is not of the form k ∗ 2k, the input is not of the form c2k

0 c2k

1 ...c2k

k

for cj in {0, 1}, the input is not a Turing machine description bit doubled k repeated

times (can just check to see that the selection of every 2k bit is a Turing machine

description) or this input is a Turning machine description bit double k repeated times

that either returns 0 or does not halt on the empty input. Conversely and simpler to

state, this set of functions fi returns 1 when i = k ∗ 2k and the input is a Turning

machine description bit doubled k repeated times which halts and returns 1 on the

empty input. The size of the computational elements only grows linearly with the

size of the input because there are at most 2k strings of this form and 2k < k ∗ 2k = i,

thus the lookup (and bit count checking) can be encoded via a finite automata with

57

less than c∗k∗2k states. This function is uncomputable by a Turing Machine because

it would be an oracle for the halting problem.

The halting problem has some related consequences for Turing Machines with

restrictions on space and time. Often for IDS inputs, the Turing Machine or other

computational element will be run only on fixed size input. For fixed size input with

exponential bounds on space, it is tempting to declare all computational elements

equivalent. The strategy would be to determine the result of the computation and

rather than perform the computation again, simply look up the result. The reason

that this strategy does not work is that the halting problem prevents the determi-

nation of all of the results of the computations. Thus even though it is logically

and mathematically determined whether or not the given input will halt, the trans-

formation cannot be computed in any bounded amount of space and time. Hence

even restricted to fixed (but sufficient) size finite input, Turing Machines and Finite

Automata are not equivalent.

For the application to IDS systems, computations involving unbounded space

and time are not practical. Consistent with the earlier proposed definitions, an up-

per bound on space and time can be imposed, beyond which the computation can

be said to have effectively crashed. Using this upper bound, the results of Turing

machine handling fixed size finite input can be stored in a finite automata by a

computable transformation. When the Turing Machine does not return within the

specified bound, this is stored rather than the result if it were to return under a longer

bound because in practice the Turing Machine would exceed the bounds.

The effective limits on computational space impinge on this proposed transforma-

tion from Turing Machines fixed space to finite automata through the space needed

to store the states of the finite automata. Similar to the lack of a transformation

from a NFA to a DFA, under the restrictions of space, there is not a transformation

from a Turing Machine down to a DFA. The same example for the transformation

will work, namely the language {a, b}∗a{ab}k takes at least 2k states on a DFA, but

58

can be recognized in less than k + 2 states on a NFA or with less than k + 2 mem-

ory cells on a Turing Machine. By the normal embedding, Turing Machines are still

computationally stronger than NFAs, which are computationally stronger than DFAs.

The language akbkck still separates Turing Machines from NFAs. Here the analysis

of push down automaton has been neglected due to the lack of IDS systems that use

them for computation.

One way to fix the fourth definition is to include the requirement from circuit fam-

ilies of the specification of the description by log space bounded Turing machines. For

the family of computational elements, this requirement will often not be explicating

checked.

Although not computationally equal under these definitions, the standard state

simulation of an n-state NFA by a DFA with n additional memory cells representing

the possible states of a NFA is often a reasonable computation. This simulation slows

down the running time by a factor of n, giving a total running time O(|states|∗|input|).

The advantage gained by this slow down is the handling of regular expressions. Con-

catenation of regular expressions expressed as DFAs is significantly more difficult than

of NFAs. One consequence of the trade off involved in allowing NFAs for time and

space limited computational elements is that the number of states must be given a

much smaller bound to prevent the running time from increasing by a large factor.

The inputs to a computational element are traditionally a string either seen one

character at a time or preloaded onto a tape. For IDS usage, TCP streams and binary

numbers stretch the limits of the traditional input. TCP streams have a beginning,

but there is not a requirement for the stream to ever end. Furthermore, the IDS is

usually not allowed to hold the entire stream in memory. One way of viewing the

stream in the traditional framework is by a preloaded tape that is possibly infinite

in one direction. Since measuring the size of the input gives a possibly infinite value,

the computational size should be limited by a different criteria.

Binary numbers can be handled by the traditional representation as a string,

59

but their representation matters for computational elements without memory that

are presented the number one character at a time. For example, if the number is

presented starting from the least significant digit, then the result of adding one to

the number can be written on the output using a finite automata without additional

storage. But if the number is presented starting from the most significant digit, this

is not possible.

One way of fixing the numerical representation problem is to introduce a fixed

finite amount of storage to accompany the DFA. If the DFA can read, examine, and

write to the storage, then it is a Turing Machine with fixed bounded space.

Obtaining a computational element useful with numbers but weaker than a Turing

machine involves additional structure. One approach is to start with a DFA and add

numerical operations and storage to it. If the DFA cannot examine the storage, then

it prevents the DFA from turning into a Turing Machine. A motivating example is

the computation of a trained neural network. If it is assumed that the DFA has prim-

itive numerical operations of +, ∗, and threshold, along with storage for the partial

results then the neural network can be computed without a further examination of

the contents. A more general motivation is to encapsulate numerical computations

which do not depend on the inputs in a computational element less powerful than a

Turing Machine.

The encapsulation of numerical computations that do not depend on the input

in a computational element less powerful than a Turing machine will allow for the

examination of much better bounds than are possible with a Turing Machine. A

space bounded Turing Machine with x binary memory cells and an input of length

n can have a running time as bad as 2(x+n). A DFA with memory cells which it

cannot examine but can perform numerical operations upon has a worst case running

time O(n). Likewise, simulating a NFA with the same additional specification has a

running time of O(n ∗ |states|).

Unless the precision of the numbers is specified, many numerical operations will

60

need to be given to the DFA that normally could be constructed from other more

primitive numerical operations. For example, division can be constructed with the

normal algorithm without control conditionals by using multiplication, subtraction,

and a sign compare with zero that returns one on positive and zero on negative.

However, this division algorithm still must know the number of digits in the number

to produce, otherwise it will not know when to stop.

Arbitrary precision would cause considerable complexities for the use of numerical

operations by finite automata. For the construction of some operations for arbitrary

precision out of other operations, the time required for each place of precision may

grow faster than linear. This is undesirable. Furthermore, the space required to be

reserved may be proportional to the size of the input, thus violating the finite number

of memory cells requirement.

Indefinite precision would cause even worse complexities for the use of numerical

operations by finite automata. First, indefinite precision can be represented in finite

space and time by objects like streams with thunks that give a promise of delayed

computation. Like the arbitrary precision case, the running time for number of digits

computed may grow at a faster than linear rate.

A difference common to both non-fixed precision cases is the dependence on the

operations given. For the fixed precision case, it has been noted that if a linear time

algorithm is given, then in most cases it is equivalent under the restrictions of space

and time, with the proviso of the examination of the increase in number of states. For

operations without a linear time algorithm, the addition of the operation produces

a finite automata that is more powerful even without the restriction on equivalence

of limited space and time. Naturally, it is realistic to assume that there is some

algorithm for the numerical operations added. Otherwise, a solution to the halting

problem could be added to the finite automata, which would clearly be unconstructible

in practice.

Computability in limited space without restrictions on time or the number of

61

states in the computational element is the domain of context sensitive languages.

A Turing Machine with the restriction that moving the tape head past the original

input is considered to be crashing is called a linear-bounded automaton (LBA). The

nomenclature linear-bounded is applied rather than constant-bounded because the

encoding of a n-tape Turing Machine onto a n-tape Turing machine allows an increase

in the size of space by a constant factor to be used at the cost of a constant exponential

increase in the number of states in the Turing Machine. The languages recognized by

LBAs, called context sensitive, are more extensive than the context free grammars,

but less extensive than the recursive languages [36].

The exponential increase in the number of states in the transformation from n-

tape Turing Machines to 1-tape Turing Machines may be unacceptable if there is a

limitation on the number of states in the Turing Machine. In this case, the class of

languages recognized by the LBA split into a series of categories depending on the

number of states allowed in the Turing Machine. There is a partial order among

the categories from the partial order induced upon the 2-tuples of partially ordered

bounds.

Like the limit on the transformation from n-tape Turing Machines to 1-tape Turing

Machines due to space considerations, there is a limit on the transformation between

k-FAs and 1-FAs. A k finite automata (k-FA) is a series of k deterministic finite

automata each of whose output is a string that is fed into the next finite automata

[46]. Functionally, l ∈ L ⇐⇒ fk(fk−1(...f0(l))) = 1. Without restrictions on

the number of states, there is an equivalence between k-FA and a more complicated

finite automata. But this equivalence involves the number of states raised to the kth

power, hence will often be excluded under the restrictions on space and time. K-FA

are reasonable to compute since their impact on running time is a factor of k, but

they will not be treated in this thesis as they introduce additional complexity.

For fixed precision numbers, multiplication can be allowed. For arbitrary length

numbers, multiplication can produce results that are computationally too powerful.

62

The problem is that by repeated squaring of a number, a number with length expo-

nential in the length of the input can be constructed. Then these exponential length

numbers can be used for parallel processing. Even without control based compar-

isons, the result of the parallel processing could still be stored in the output. Thus

it is desired to specify the precision of all of the numbers involved. It will also be

assumed to adopt some rounding convention for operations whose results cannot be

exactly specified with the chosen precision or with finite precision.

From the classical computation theory standpoint, computation of fixed precision

numbers is trivially done by a finite automata with a lookup table, hence no need

to include special numerical operations or memory. From the practical standpoint of

limits on space and time, a lookup table of 264 elements is too big. The desirability

of special numerical operations over general memory due to time bounding concerns

has already been noted. Another advantage of fixed precision is that some functions

which are not computable by finite automata for arbitrary length numbers are now

computable. For example, for fixed precision the representations of 2x 3 x ∈ N in

base 10 is recognizable for up to finite precision using at most dlog2 10e∗|input| states.

For arbitrary precision this collection of numbers is unrecognizable by finite automata

[46].

With the precision specified, operations like square root and division can be per-

formed without additional support. Error handling can be performed by adding a

special error number which when computed upon always returns the error number.

This is necessary to prevent control exceptions for division by zero or the square root

of a negative number while still returning valid results.

3.4.3 Categorization of IDS models

For the purpose of building a complier integrating several IDS systems, it is useful

to categorize the IDS models by model features rather than the categorizations of

Kumar [34] or Alessandri [2] which are classified by the attacks that the IDS can

detect.

63

Some IDSs give Turing complete programming languages. For example, N-Code

within NFR is Turing complete. If the IDSs with Turing complete programming

languages have sufficient access to the network data flow, then these clearly belong

in their own category as network IDSs capable of recognizing any attack which any

network IDS can properly recognize.

If the access to data in NFR were slightly more restricted, it would belong in

a different category. Within NFR, to access part of the TCP header, one uses the

variable for the field to access. Unfortunately, many of the fields are not defined as

variables, so to access an unnamed field, one has to grab the payload of the level

below and parse the fields themselves using byte and bit operations. If NFR did

not support examining the lower levels or did not support byte and bit operations it

would not be able to properly recognize any attack which some network only IDS can

properly recognize.

Many interesting signature based IDSs are not even computational finite au-

tomata. For example, Snort cannot even handle regular expressions. Neural net-

work approaches tend to have a training phase, then when running, are a function

whose computability is fixed and does not depend on the input. Hence when these

approaches are running, they are not even able to successfully distinguish languages

which finite automata can distinguish.

The languages recognized by the current payload examination features of Snort

are more difficult than most regular languages to describe as a regular expression due

to the byte jump option. Prior to the introduction of the byte jump option for Snort,

the languages that the payload examination features of Snort could decide were of

the form α{a0,b0}c0α
{a1,b1}c1...α

{an,bn}cn where α matches on any single character, ci

matches on one specified character or optionally one case insensitive character, n is

fixed and ai and bi are optional but fixed. Although Snort has a regexp field, the

most recent documentation indicates that it is still under development and any actual

usage of it is considered to be an error. These languages do not include all of the

64

regular languages. For example, (01)∗ is not of this form. Hence Snort is not as

computationally powerful as a programmable finite automata.

With the introduction of the byte jump option, the languages that the payload

examination features of Snort can recognize are more complex to describe. The

byte jump option allows a numerical test of <, > or = to be performed on a conversion

of the input as little or big endian binary of a given length in bytes or as a string

conversion from a specified base. Then once the numerical conversion is performed,

the string matching can resume either at a given non-negative offset from the current

match, which is equivalent to αn or at a non-negative offset specified from the number

converted. To view the offset specified from the number converted and tested as a

regular expression, it would be necessary to give every possible instance which it could

encounter. This is possible because the length of the conversion is fixed to be less

than or equal to four bytes. Naturally, this makes the regular expression unwieldy and

unnatural. For human viewing, a variable with a specified range could be introduced,

but for machine viewing, all c∗232 possibilities would have to be written out. Without

the imposition of reasonable restrictions on space, this would be computationally

weaker than programmable finite automata. But with the imposition of reasonable

restrictions on space, it is neither strictly weaker nor strictly more powerful than a

finite automata. In practice, all of the Snort rules considered by the Snort website to

be stable only use small fixed offsets to resume matching from.

The remaining non-content fields in a Snort rule form a logical ‘and’ for the con-

sideration of when a rule matches. The matching of the non-content Snort fields can

be accomplished via bit bashing with extracting the proper information from the rel-

evant predefined structures. For example, the TCP flags field specifies a bit-mask, a

matching operation of exact, any or all, and the flags. The flags are a human readable

way of specifying a bit offset in a TCP header that is significant for the TCP protocol

in that it is normally referred to as the TCP flags. The matching operation can be

65

transformed into binary or, and, or equal thus reducing the match for the field into

some specified bit bashing and checking against zero.

Expert system based systems can be viewed as a special case of search based

systems. Although search is a powerful operation from a computational point of view,

the search question must be properly phrased. In particular, lacking operations to

transform the data, the computational power of search is limited to the questions that

can be phrased by the untransformed data. Depending on the operations available,

this may imply that except for the questions that can be phrased by the untransformed

data, the computational core of the IDS can still be quite weak computationally.

The order of search is important to modeling search based systems. Due to the

limits on computational time, even if there is an answer, not every search based system

may be able to find it. Hence the order of search will dictate that some systems may

be able to find the answer, but others will not be able to find it even in some time

that is c∗αn times the time of a system that found it for reasonably small α. Related

to the search order, the specification of rules for search based system is often order

dependent. For example, in PROLOG, the rules are added in the order specified in

the file, so the base case for recursive search must be specified first to prevent infinite

loops. Any language that attempts to model a search based system should deal with

this order dependence. Naturally, the direction of search is important.

One way of simplifying this is to assume that the search order and direction are

specified in the rules. Then there is only one general search, hence only one model

is needed. From an implementation point of view, this solution may need additional

aspects to form a complete solution. Production systems often have ways of turning

on and off rules, which will need to be incorporated into the general model. In any

case, the computational categorization of search based IDSs will still depend on what

questions can be phrased to the search engine.

After training, the self organizing map (SOM) for INBOUNDS suffers from a

data flow limitation that does not allow it to recognize all of the languages contained

66

within the packet payloads that can be recognized by DFAs. Considering that the

inputs to the SOM are six numbers, it is not surprising that it cannot distinguish

on payload properties. Since the data flows within the packets are not examined, it

cannot differentiate attacks that differ only by within packet data.

Given the input of six numbers, a finite automata without numerical operations

would run into the reasonable limits on space restriction. Simply testing the Euclidean

distance for six 32 bit numbers would push the number of states required to over

232. A finite automata with numerical operations can compute the function needed

to detect a match for the self organizing map. Even viewed from the input of six

numbers, the SOM is not as computationally powerful as a finite automata with

numerical operations. Specifically, a finite automata with numerical operations can

match the language where all six integers are of even parity or where all six floating

point numbers have even parity for their coefficients of 2−x for 1 <= x <= 40 with at

most 1000 states. To do this with the SOM would require more than 232 states (a state

is the center of a trained point) which exceeds the reasonable bounds. Therefore, the

SOM is computationally weaker than a finite automata with numerical operations.

The input module for the SOM suffers from the same numerical operations prob-

lem. If a limited set numerical operations are allowed, then it can be modeled with a

finite state machine. It certainly is not as strong as a normal finite state machine be-

cause of not examining the packet payloads. Among the numerical operations needed

for the input module, addition and subtraction can be implemented without extra

support on a finite automata. However, division cannot be implemented without ex-

tra support on a finite automata, hence the requirement of extra support for this to

be put into an order with the normal categories. It is not asserted that the input

module alone suffices for an IDS model. Clearly both the trained SOM and the input

module are needed to fully model the SOM module to INBOUNDS.

Neural networks have been used as the central model for IDSs. Trained fixed

depth and size neural networks are also subject to the number handling problem

67

with respect to the operations of addition, multiplication, and threshold. Allowing

these operations, the size of the expression represented by the neural network is

subject to blow up by the exponent of the depth of the network. Rephrasing this,

neural networks can be computed by a fixed expression that involves (width)depth

terms. Thus for reasonably small width and depth, neural networks are easy to

compute. When the size of this expression exceeds the reasonable size requirement,

the neural network can be computed by a finite automata with 2width ∗ size states.

After that bound exceeds the reasonable size requirement, a neural network should

be computed with a Turing machine. Considering that there is a transformation

from circuit simulation (acyclic circuits as opposed cyclic circuits) to specified neural

networks and that acyclic circuit simulation is P-complete, it is not surprising that

the computation of reasonably sized neural networks requires using a Turing machine.

3.4.4 Desirable Model Properties

Models of attacks have been developed that depend on the attack itself, rather

than the detection of the attack. These methods of modeling produce attack tax-

onomies that are easy for humans to understand. They usually provide a categoriza-

tion of the attacks that include a classification of the severity of the attack and the

type of bug that allowed such an attack to occur.

In most cases examined, the criteria produced by classifying the type of attack

rather than the type of attack detection, is not of sufficient depth to fully characterize

the attack for automatic detection. Often the models lack sufficient depth to allow

for automatic detection, even in cases where sufficient depth is given, the translation

from an attack model to a detection rule via a generic method is an open problem.

Therefore, the strategy of basing the model on the attack itself is not pursued here.

Expert systems and statistical anomaly based IDSs find intrusions in fundamen-

tally different ways. This is due to having fundamentally different matching engines.

Hence, it is unreasonable or at least beyond the scope of this document to produce

one model for a detection in both IDSs.

68

For feasibility and software engineering reasons, it would be desirable to develop

one model of a single attack. To do this, it is necessary to limit the number of

IDS matching engines that are examined. So which methods of matching should be

chosen?

3.4.5 Choice of Core Model for Solution

The core elements of the model are the key design choice for the language to be

built. The choice here determines what can and cannot be simulated in this language

and also determines if effective bounds can be placed on the running time. For the

language to be developed, rather than syntax without semantics, something must be

chosen.

Signature based and statistical anomaly matching stand out for encompassing

most existing systems and having many desirable qualities. Signature based matching

is finite automata matching. Statistical anomaly matching can be viewed as based

on finite automata with numerical operations.

Signature matching allows for rules with very low false positive rates. As Axelson

[6] has pointed out, when scaling up to large scale traffic from the data rates in the

MIT DARPA evaluation, the false positive rate with respect to traffic examined must

be very small to allow for a reasonable probability that the alarm is indeed an attack.

Signature based matching with appropriately tailored signatures can satisfy extremely

low false positive rates while still providing considerable amounts of coverage.

Signature matching is also used in many low level IDS systems. Much of the re-

search on fast IDSs has used signature based systems. Many of the deployed IDSs are

likely to be signature based system, of which Snort stands out as the most likely IDS

to be deployed currently. Northcutt mentions several signature based IDS systems as

the common IDSs which were deployed in his experience [45].

Statistical anomaly matching is a promising area of IDS research. Systems have

been built that find many intrusions that would be hard to characterize in signature-

based systems while keeping an acceptable false positive rate on reasonable data sizes.

69

As noted in the theoretical section, finite automata with numerical operations can

still have linear upper bounds placed upon their running time.

Finally, as many of the high level IDS components are unspecified, the final layer

of the system is chosen to be a Turing Machine. It is asserted that at the highest layer,

the application developer should not be limited by computational restrictions. Given

an interface to other programming languages, computational restrictions within the

language would serve little purpose as they could easily be skirted.

3.5 Proposed Solution Details

By effectively combining signature matching with statistical anomaly matching,

many of the engineering challenges can be addressed. Two ideas make this combina-

tion particularly useful.

3.5.1 General Statistical Techniques

The first idea is to consider statistical anomaly matching from the computational

point of view. From this point of view, a statistical anomaly matching automata can

be computed with a numerical finite automata with reasonable limits on space and

time. It is not asserted that every statistical function can be computed this way,

rather it is asserted that most statistical functions used for IDS anomaly detection

can be computed in this fashion.

Taking statistical anomaly computations from the computational point of view

has the advantage that computations not normally considered to be anomaly based

IDS can be performed with this layer. For example, counters can be implemented

under this computational framework and applied in a fashion that is not anomaly

detection. This is useful to track the number of times an alert has been triggered.

3.5.2 Feeding Signature Rules into the Statistical Framework

The second idea is to force the signature framework to feed into the statistical

framework. Because of the importance of signature based intrusion detection, a way

of ensuring that it is possible to extract all of the alerts from the signature framework

70

IDS
Signature

Statistical

IDS
Signature

Statistical

Statistical

Statistical

Host 1 Host 2 ...

... ...

Operator

Figure 3.1: System Run Time View

if necessary is desirable. Doing so is easy. The identity statistical rule - an occurrence

of one is an event - is sufficient to ensure that the statistical framework can be

configured to pass through individual signature alerts without loosing data.

As noted in the last subsection, the statistical framework is computationally pow-

erful enough to implement counters. Counters are important for preventing a denial of

service (DOS) attack from propagating past the nodes that are under attack through

generating a massive number of alerts.

3.5.3 Sufficiency of Framework

Signature based detection with reporting of the actual packet feeding into a Turing

Machine is sufficient to detect any attack that can be detected by an other network

IDS. This is because of the ability of the Turing Machine layer to examine every packet

if the signature based IDS is set to alarm on everything and the statistical layer is

set to pass through every alarm. This shows that this system is sufficient to detect

71

every type of attack that any other network IDS can detect. This sufficiency implies

that other IDSs can be built upon this framework rather than a custom application

reading raw network data in an application programming language.

Detection by examination of everything in the Turing Machine layer does not

effectively use the IDS layer to filter or process data. If the IDS layer were used

to filter out most of the data or were used directly for processing, then this would

show that this is sufficient in practice for most cases. Moreover, if the operations of

interest to the Turing Machine layer can be filtered for at the IDS layer, which is

often possible, then this framework is almost as efficient as using the Turing Machine

layer directly upon the raw network data. Unless the implementor of another Turing

Machine IDS does as good as or better job of filtering low level data, this framework

will be as efficient in cases where the ratio of alerts to packets is small, which is

usually the case.

3.5.4 Run Time Support

This general framework should be supplemented with an appropriate run time

architecture. The basic requirements of the framework are to handle booting, tear

down, interaction with the user, layer input parsing, and the running of the high level

Turing Machine code. More complicated, but useful features could be dynamic recon-

figuration of nodes and the system, multiuser display, and interaction and integration

with resource management software.

Booting and tear down of the system are required for basic usability. Although

not particularly complex to implement for a tree based hierarchy, they save a tremen-

dous amount of time for the system administrator. A proper boot of the system may

involve writing a configuration file for every IDS system that includes a pass rule for

the traffic that constitutes part of this IDS system. This is sometimes necessary to

prevent infinite loops due to reporting on the traffic that the IDS is generating. Boot-

ing by hand would be particularly frustrating as there is a partial order in which the

IDSs must be brought up. In any case, the sockets between each process must be es-

72

tablished. For the tree based case with subnodes corresponding to subprocesses, this

is straightforward. Each node in the tree creates processes to handle the subnodes. Of

subnodes sometimes correspond to superprocesses, then having the subprocess some-

times start the superprocess is a convenient way of booting the system. If the system

configuration is not a tree, the problem is significantly more complex. Specifically

synchronization and connection to existing nodes must occur to properly configure

the system.

Tear down of the system implies a requirement to track the existing state of the

configured system. Then any one of the various tear down schemes can be used. The

implementation uses the scheme where each node tells the subnodes that it created

to tear down, then tears down itself.

Input parsing is needed to handle the output of the various components. This is

part of the run time code, but does not need to change dynamically.

Interaction with the user for control of the system is a software project by itself.

The ease of user interaction requirements have been ignored in favor of a primitive

interface that allows the user to perform arbitrary functions on the run time system.

For this project to be used by less technical users, an easy to use descriptive interface

could be developed over the technical interface. This has not been done because it is

not central to showing the efficacy of the system.

Multiuser interaction creates two problems: first, it creates the problem of dupli-

cating the alert data and second, it requires synchronization of the commands issued

to the IDS system. The duplication problem involves trade offs to ensure that a

node does not overflow with data. To do this effectively, data must be dropped in

some matter if one of the higher level nodes cannot keep up. The synchronization of

concurrent commands to the IDS system has various solutions. The easiest solution

to implement is to leave it up to the user to try to avoid concurrent commands or

live with the consequences. The next easiest solution is to group all of the commands

together and order them before issuing them. This requires designating a central

73

control machine to solve the concurrency problem. Solving this problem without a

central control machine is more difficult and is not addressed here because it more

properly belongs to the development of distributed resource management software.

The integration of the IDS system with resource management software is an ap-

proach that can yield an increase in security for the resource managed system. If the

IDS system allows dynamic reconfiguration, it may be possible to control the coverage

of the IDS reporting and the resources it takes by automatic software. This is not

examined here because of complications involved with automatic control. Specifically,

with automatic control it is possible to DOS the system via false alarms.

Dynamic node and system reconfiguration are desirable for several reasons. The

first reason is that the system should not have to be restarted every time a new rule

is to be added. Restarting the system usually involves a brief time gap in coverage.

The second reason is that a large scale system will often have dynamic events, like

network, software, and power failure that should be addressed without a reboot of the

system. The third reason is for the integration with automatic resource reallocation

software. The fourth reason is to allow for upgrades of the software at individual

nodes without rebooting the entire system. Finally, the fifth reason is that dynamic

node reconfiguration is desirable to increase and decrease the level of examination of

a node when either it is under a DOS attack or there is suspicion of some type of

attack ongoing but few alarms so far.

The dynamic features require the language in which these components are con-

trolled to have some features. Specifically, it must allow for either interpreted or

dynamically linked compiled code to be used if parts are to be reconfigured at run

time. Although this can be done with the standard system programming language

C, it is much easier to do it with a higher level language with garbage collection and

an interpreter. Furthermore, because of the current development state of this work,

it is appropriate to use a high level language that speeds system development time.

74

Scheme was chosen as the Turing Machine and implementation language for these

reasons.

3.5.5 Other Language Features

The standard object oriented techniques of classes and inheritance are a substan-

tial tool in coping with the complexity of the configuration. Thus it is proposed that

the language include these mechanisms.

Another feature of the language that should be addressed is the handling of time.

For distributed systems, this is usually problematic. Even using a synchronization

mechanism like network time protocol (NTP), the system clocks are only synchro-

nized up to some bound. This implies that within the system, the timestamps do

not form equivalence classes. Specifically, it is not transitive: if events A and B hap-

pened within some time difference bound and events B and C happened within that

same time difference bound, it does not imply that events A and C happened within

that same time difference bound. This creates problems when attempting to corre-

late separate events into one alarm. Rather than address this problem, the current

implementation of the language gives a representation of time, but does not address

synchronization problems.

One feature that is particularly useful for this system is the ability to base a

configuration off an existing configuration for an IDS. Specifically, functions were

implemented to take an existing Snort configuration and turn it into a configuration

of a single node for this system. This eases the transition from the hand configuration

of IDSs to the use of this system.

Resource limited structures were introduced to increase the functionality of the

statistical framework. These structures can generate alerts to the next level of the

system and continue to function in a transparent but more limited manner when their

finite bounds are exceeded. Moreover, by a proper encapsulation with limitations on

examination, their usage by the numerical finite automata does not extend the bounds

on running time.

75

The rules for the non-signature based nodes of the system were stored in databases.

It was originally thought that this would increase the orthogonality of the system,

but in implementation it did not help a lot.

3.6 Properties of This System

Translating from the general framework to the IDS and run time system configura-

tion yields a system with many desirable properties. Some of the desirable properties

in which the system can handle particularly easily are reasonable failure under high

load, systematic nomenclature, distributed configuration, and options for dynamic

reconfiguration.

Acceptable failure under high load is handled particularly easily in this framework.

Each signature-based rule can have a corresponding rule in the first layer of statistical

detectors that counts the number of times that the rule has been activated and reports

the total at a fraction of the rate that the rule is triggered. This would limit the data

flow and post node processing time to a fraction of the original time. It would not

impact the data collection, only the latency of the reporting.

Under high load or a DOS attack, the nodes of the system would be DOS due

to load of the IDS before reporting are still DOS. Without dynamic reconfiguration,

this does not increase the speed at which individual IDSs process the data. What it

does solve is preventing nodes with high loads from overloading the nodes to which

they report. By counting exponential or other back off of the number of alerts can be

obtained. This prevents the IDS from significantly increasing the load on the network

or forcing the node to which they report to become overloaded as well. Moreover, it

does so without losing important data.

A second method of grouping alerts for data reduction under high load would

be to put in the security priority of each rule and report the overall security state

as the most insecure of the insecurity violations detected. This could be done at

76

each distributed node before transmission over the network, thus saving considerable

amounts of network resources.

Another consequence of this architecture is how it supports rule correlation via

a systematic nomenclature while simultaneously easing the configuration problem.

These are supported by compiling the configuration, complete with all signature and

statistical based rules, to a configuration of the running system.

This compilation step solves the systematic nomenclature problem by pushing the

nomenclature efforts to library files. It is hoped that through the efforts needed to

effectively correlate rules and the common components used by many rules, common

interfaces will emerge that can eventually be standardized. In any case, without at

least one relatively complete implementation, it is too early to attempt to standardize.

By layering the system on top of existing signature-based systems, significant

amounts of implementation effort can be saved. Snort is quickly becoming the de-

facto standard for network signature-based IDS. By using it to feed into statistical

based detection, it can be used in many different anomaly based IDSs. The complexity

of developing a signature-based system as fast and configurable as Snort would be a

highly substantial addition to the overall system complexity that should be avoided.

Furthermore, by using the existing systems to do the bulk of the computational

work, this system is efficient. Since most of the processing time is spent on the lower

levels, the use of existing IDSs forces much of the efficiency problem onto these IDSs.

By allowing the integration of existing IDS system configurations into this system,

it allows existing IDS configurations to be used in a backward compatible manner.

This is useful to ease a transition to this system. Because existing IDSs are at the

lower level of this system, it ensures that work done to improve the lower level IDSs

will be taken advantage of in this system.

The automation of configuration, booting, and tear down is a considerable gain

for system administrators. Considerable work is saved for them by using this system

instead of doing these things by hand. Also, if all alert post processing is done by

77

this system, the underlying data need not be stored, hence many privacy concerns

can be avoided by restricting the operations allowed for printing and examination of

the data.

Finally, this system is implementable within reasonable time frame. It can be

built before it becomes obsolete. The first useful stage of this software gives many of

the advantages while avoiding much of the implementation complexity.

3.7 Disadvantages of This System

Some of the advantages of this system have corresponding disadvantages. Using

a language for translation and system configuration introduces yet another language.

Added a layered system on top of existing IDSs increases the overall complexity of

the IDS system. Using rule translations increases the ability of the user to specify

inefficient rules for the underlying IDSs.

The introduction of another language necessary for use by system administrators

may be a disadvantage for two reasons. First, the proposed system will not have a

language that is one of the standard system and system administration languages,

C/C++, shell or Perl. Hence to make significant changes to the system, the sys-

tem administrator must learn the language offered by the system. Second, the alert

correlation routines must either be written in this language or interfaced in this lan-

guage. For highly complex alert correlation, interfacing to another set of routines is

probably desirable to allow the alert correlation to be written in whatever is most

convenient. Unfortunately, the standard language for IDSs seems to be C or C++,

so the programmer will need to learn how to interface with this particular language.

The disadvantage is not that the interface is difficult, but that it is not exactly what

the programmer will likely be used to.

The addition of this framework over existing IDSs adds another layer of complex-

ity. This may be significant for small systems of IDSs whose overall configuration

78

and post processing complexity is low. It also introduces another point for bugs to

be introduced by mistranslation or errors in the run time post processing framework.

Using compilation for IDS may allow using inefficient options. This is a common

disadvantage to giving users a more powerful language. It is easier to force the lower

levels to do time consuming work for little gain. In particular, when translating IDS

rules, the translated rule may be inefficient to run on the target IDS. It will still run,

but may slow down the IDS by an unacceptable amount.

79

4. Implementation Results

This chapter describes the implemented system and individual implementation tests

to demonstrate the claimed advantages. It describes major design choices and states

where a further determination of a proper design choice would involving solving a

substantial problem in itself. The major demonstrations are of graceful failure under

denial of service attacks, construction of a substantially different anomaly IDS using

primarily the lower level language, and translation between two different signature

based IDS systems.

This chapter is organized as follows: section 1 discusses the general structure of

the implemented system; section 2 discusses booting and the configuration of the

system; section 3 discusses the treatment of time; section 4 discusses methods for

handling DOS attacks; section 5 discusses additional useful data structures for the

low level language; section 6 discusses the construction of an anomaly based IDS

using this system; section 7 discusses the translation between two signature based

IDS systems.

4.1 General Structure

This section describes the general structure of the system. It discusses the im-

plementation language choice, the communication between nodes, and the general

internal structure of a node.

The system has been developed using the Scheme programming language. This

allowed for rapid development due to high order programming language features

and garbage collection. These often allowed one general procedure that took sub-

procedures as arguments to be written instead of many separate procedures. Fur-

80

thermore, use of primitives like map sped development. It is commonly the case for

the code structure that an encapsulation gives both functions and data. Here it is

convenient that the functions and data are in the same name-space, unlike in common

LISP. Although data and function encapsulation can be performed in C++ or other

object oriented languages, it requires significantly more code to do so in C++.

Garbage collection was a highly useful feature. Without it, almost twice as much

development time would have been needed to handle every instance of memory alloca-

tion, deallocation, and error checking. With C, this trend is particularly pronounced.

With C++, the complexity of memory self management is still present, but often

hidden by the encapsulation. In any case, a lack of garbage collection would have

hindered using intermediate results for computational convenience. As bounds have

been placed on the memory requirements for low level computations and high level

computations may need an arbitrary amount of memory, even for production code

the advantages of proper memory self management are small and far outweighed by

the disadvantages. As the goal of the implementation was to produce a function-

ing prototype, there was nothing to be gained by not using garbage collection and a

substantial amount to be gained by using it.

Other reasons for choosing Scheme were access to a good compiler, same language

as another IDS system under development at OU, and extensive knowledge of Scheme

and the compiler by the adviser of this thesis, Carl Bruggeman.

The Chez Scheme compiler was used for the development. It quickly produced

code that qualitatively ran reasonably fast. This implied that little time was lost due

to using Scheme rather than a more traditional language like C. Thus the executable

produced probably ran within a small constant factor of the time an executable

written in a language like C would have produced. Furthermore, as it is a prototype,

the increases in speed should be due to algorithmic changes, not small optimizations.

In any case, the fact that the speed penalty was not a factor was helpful. Most other

81

implementations of Scheme are interpreters, which tend to be an order of magnitude

or more slower.

Chez Scheme has also been used for the development of a Scheme based IDS

called Network Monitoring Language (NML) by Carl Bruggeman. At points during

the implementation, it has been proposed to add configuration for this system to the

outputs of the translator. By choosing Scheme, both applications are written in the

same programming language, making the integration particularly easy.

A final reason for choosing Scheme was the extensive knowledge of the compiler

and programming language by the adviser of this thesis. Although it was not relied

upon, it is always helpful to have expertise close by to answer questions in case of

difficulties with the language or compiler.

Chez Scheme has several language additions to Scheme that are useful for this

project. One feature particular to Chez Scheme is the foreign procedure interface.

This interface makes it easy to use C library calls and C procedures to interface with

the system calls. This simplified the development of process manipulation (kill) and

time based procedures (usleep). Furthermore, it already has a subprocess interface

which was used extensively to spawn subprocesses for the generation of components.

Since the Scheme programming standard is rather lacking in Input/Output (I/O) and

file system operations, Chez Scheme has primitives for these [20, 19].

The general structure of the configured system is based on message passing. Each

leaf node is an IDS that can issue alerts that are printed on standard output and

are line terminated. The non-leaf nodes have a collection of pipes, each of which

have their own parser and interpretation of the returned data. Specifically, if the

subnode is a leaf, it will be configured to have a parser for that systems IDSs loaded

for processing that message pipe. If the message pipe is standard input, the parser

is a line terminated Scheme read and the interpreter is Scheme ‘eval’, resulting in

a message pipe that simply evaluates the code passed to it. If the subnode is not a

leaf node, then the parser is line based and examines the first whitespace separated

82

symbol on the line to determine the syntax and semantics of the remainder of the

line. This allows each type of internal message to use its own syntax and semantics

if necessary. The output to the user, which is the output on standard output of the

root node, is formatted for human readability.

One advantage of using standard input and standard output for the node commu-

nication is that is particularly easy for any function to generate an alarm. This can

be used for reporting by resource limited structures when their finite resources limits

have been reached. Another advantage is that it is easier to implement than adding

another socket. The Chez Scheme ‘process’ function generates the socket pair and

after the fork, reopens standard input and standard output to be one end of the socket

pair. The output module used with Snort only needed a minor modification to work

with standard output rather than a file.

Furthermore, by using standard input and standard output, the remote process

control can be accomplished by sending the commands and receiving the output

through ssh, which is particularly easy for remote procedure calls and network trans-

mission. The alternatives are substantially more involved and should invoke some

secure method of network transmission like the secure socket layer (SSL). These also

produce synchronization issues. Specifically, one machine must begin listing on a port

then tell the other machine the port, which involves either threads or even worse, mul-

tiple processes.

Ssh has other advantages for the network connection. It solves the authentication

problem for remote process invocation. It is a reasonably well tested piece of software,

hence is unlikely to introduce many more security holes. It has been ported to many

types of hardware and software, so its use is not specific to the OS in use.

The core loop of the interior nodes uses polling I/O over all of the connected

subprocesses, the superprocess or user, and the run queue to determine if there is

a new message to process. Blocking I/O with threads would be more efficient, but

more difficult to implement. To implement it with blocking I/O, several approaches

83

could be taken. The easiest approach is to use semaphores to count the messages

and mutexs to give all of the messages to process to one thread. This approach

limits the data that is accessed concurrently to the data necessary to read messages,

manage memory, and place the messages in a queue for use by a thread to process

them sequentially. Other approaches could do more processing in each thread, but at

significantly increased complexity as the processing would happen concurrently. The

approach taken is to avoid the concurrency issue by using polling I/O. This lightly

loads the CPU when no data is being generated, but this load should be relatively

small due to the waiting using ‘usleep’ (micro-second sleep). For the demonstration

of the effectiveness of this system, polling I/O is sufficient.

Message passing was also used internally as an encapsulation method. Rather

than define a data structure and have separate accessor procedures, the definition of

a data structure encapsulated the accessor procedures. For example, to get the head

of a resource limited list l, one uses (l ’head) rather than (limited-list-get-head

l). This encapsulation method is highly effective but has a drawback when used for

data structures which are transmitted across processes. For the transmission across

processes, it is necessary to print the state of all of the variables that are encapsulated.

For restricted definitions involving only one level of scope, a special form could be used

which would bind var-names to a list of the local variables of the expression. This

was not done due to the effort involved versus simply writing out the few instances

in the constructed code.

The rules for the interior nodes were stored in a database. The rule could be

entered into the database as applying either to a list of alerts or applying as a default

to all of the alerts. It turned out that this rule database was not as helpful as originally

envisioned. Combining the rules for one alert together to form a meaningful action

to do is the weak point of this approach. The solution taken in the implementation

was to simply do the first rule returned by the database. Since the database returns

84

the local rules first, this in effect produced a substitution of the local rules for the

generic rules whenever a local rule had been added.

An approach where every rule was performed for the alert was attempted. This

did not produce desirable results. Specifically, some rules were designed to group

together alerts. When these were intended to be used, the generic rules were used

also which defeated some of the purpose of the special rules. Whereas the system

that was constructed had only a few rules, the loss of orthogonality was not severe.

There are several alternatives for treatment of this problem, but as sufficient numbers

of meta-level alerts will need to be written to effectively test the proposed solutions,

this problem is left for further research.

For ease of prototype implementation, the lower level computational framework

was left to be an exposed version of Scheme. To implement it properly, an interpreted

or translated version of Scheme restricted to the numerical and finite automata oper-

ations and declarations should be developed. Then when rules are declared for this

level of the system, the language is restricted such that the computational claims

hold. This was not done because the only user of the prototype system was the au-

thor of this thesis. Hence for prototyping, it was simpler to leave the entire Turing

Machine language exposed and manually check that the code would be acceptable to

the restricted language. For a production version, the language should be restricted

so that the computational claims are enforced.

4.2 Booting and System Configuration

The trade-offs of allowing non-tree based configurations have been discussed in

chapter 3. This section discusses the run time system control, configuration language,

and the configuration itself.

As noted in the general system overview, each interior node has a message pipe

from the parent. This message pipe calls the Scheme parser on lines, then uses the

Scheme ‘eval’ on the result. This is equivalent to interpreting the message as a

85

Scheme program. This mechanism allows the parent to tell the child to perform

arbitrary actions. For example, to tear down the system, the user tells the root

Scheme process “(*clean-up*)”, this function is already loaded by the nodes. It

tells each non-terminal child node to “(*clean-up*)”, then it performs local exiting

code, then flushes and closes the open sockets and exits. If the child node is an IDS,

it tells the IDS to exit, often via SIGTERM. Since each node has its hostname bound to

a specific variable, it is possible for the user to give commands to a node or collection

of nodes via “(broadcast ’(if (equal? hostname "fire") (do-function)))”.

This mechanism almost, but not quite, allows dynamic reconfiguration. The prob-

lem with dynamic reconfiguration is that the Snort terminal nodes do not support

dynamic reconfiguration. Although Snort will respond to SIGHUP by rereading its

configuration file, the code actually just closes everything and re-execs Snort. Thus

the data that is currently accepted but not processed will be lost. Even though this

is a reconfiguration, since it is equivalent to tearing everything down and restarting,

it does not suffice for effective dynamic reconfiguration. If the Scheme control mes-

sage pipe mechanism were to be used for reconfiguration of the network transmissions

paths for alerts, a mechanism for accepting connections to an existing node would

need to be added. It is not difficult to add such a mechanism, it simply falls outside

of the goals of this thesis.

Each leaf node needs a configuration file for the IDS running at that leaf. This

system supports different configurations for each leaf node. This may be desirable

if a set of rules significantly slows down the detection or if a set of rules will never

match due to the placement of the IDS behind a firewall. In these cases, it may be

desirable to have multiple IDS configurations for one type of IDS. Another case is

when the rules have been compiled from another IDS or are the inputs to a processing

module for some other IDS. In these cases also, the generation of these alerts is not

desirable on every leaf IDS, thus the desire to implement different configuration files

for different nodes. Without modification, Snort cannot read its configuration file

86

from standard input, so files must be generated. The interior nodes of the system

read their configuration from standard input by the same mechanism used to tear

down the system.

Another reason to write a configuration file for every host node IDS is to deal

with the possibilities of source feedback loops. If the IDS is set to generate an alert

on every packet or packet within a suspicious connection, the IDS can get stuck in a

loop reporting alerts for every time it sees its own output. This gives an inadvertent

self DOS. One way to fix this is to add a pass rule in the node IDS configuration file

specific to the connection which the alerts are transmitted out on. If more than the

one connection is added, it may exclude more data from monitoring than is desirable,

hence doing this correctly involves writing the configuration after the connection has

been established. This has been handled in the constructed system by ignoring it.

The configuration language had two components. The first component specified

the types of nodes that were to be configured. The second component specified how

the nodes were to be arranged in a tree.

The elements of the first component took several possible forms. The first form

was a specific IDS system and a function to generate the configuration file for the IDS

system. In effect, this is a function to generate a running target IDS. As implemented,

the function took a list of rules and had a mechanism to read existing rules from a

configuration file for the target IDS. This allowed the user of this system to add rules

not present in the configuration file or to remove undesirable. The reading of the

target IDS configuration file facilitates backward compatibility with existing target

IDS installations.

The parsing of the target IDS configuration file adds some complexity to the

configuration code. The file is in the configuration language specific to the target

IDS. For Snort, this is line terminated file with comments and the keywords are

the first word on the line. During parsing file inclusion via the “include” keyword

must be handled and the filename lookup must be by the Snort semantics, which

87

are slightly different than the standard UNIX semantics. Variable definition and

substitution must also be handled to use the rules as they are written.

Since Snort allows variable substitution, this must be simulated according to the

Snort semantics. Snort treats variables as textual substitution and allows variables

substitution to include other variable substitution in a non-recursive fashion. A recur-

sive substitution would lead to an infinite loop because of a lack of control statements .

The exact substitution model is not defined in the manual. In particular, if a variable

is defined multiple times, it is not defined which definition has precedence or if this

is an error. Some tests were constructed to determine how the variable substitution

actually occurs. These indicated that a variable may be defined multiple times and

the substitution of the most recently defined value occurs during each line of parsing.

Substitution needs to occur during parsing to handle substitutions within filenames

to include at that point in the input. A test was constructed to determine if all of

the substitution happens recursively when the variable is substituted like “=” in the

standard UNIX make utility or if the substitution within variables happens during

the definition of the variable. Since the substitution happens during the definition

of the variable, it is simulated this way. It is hoped that the variable substitution

methods in Snort do not change. Since the details of the method have not been doc-

umented, there is little assurance that they will not change. In practice, judging by

the complicated example configuration on the snort.org website, these fine points of

variable substitution are not used. Each variable is defined once and is defined before

it appears anywhere else.

The requirement that variable substitution happens where the variable appears

in the file limits the use of generic variables in the parsed version of Snort. If the

substitution is simulated truthfully, then the parsed Snort rules from the configuration

file will have the variables already substitutions into. This is not desirable from a

perspective of attempting to generate signature rules that are generic with respect to

the underlying system. Variable substitution is useful especially for host and network

88

addresses. One way around this is to break with the Snort substitution model by

delaying the substitution of Snort variables except for “include” statements. Then

the variables can be accessed according to operators in the generic language in the

system. These variables can be set to values determined by the system, rather than

by the Snort file. This is how Snort variable substitution occurs in the constructed

system.

Another complication involved in reading Snort configuration files is that some

slight transformations had to be performed upon the rules. These transformations

encoded additional information in the message field of the rules. Since this field

was printed when an alert was generated, this was parsed to associate the additional

information with the alert. This solved a shortcoming of the call parameters of the

output module used for Snort which was passed the string to print, but not the Snort

identification number (SID) which corresponded to the rule. Hence the message to

print field was transformed to include an identifier and the SID.

Sadly, despite only modifying a very small number of lines of an output module

for Snort, several bugs were detected and corrected. These included a string that was

not terminated properly in case of overflow and an improper string to check an output

argument against. This was not a confidence inspiring experience for the security and

robustness of Snort.

The second form of specifying the types of nodes was a specification of the interior

nodes. This specification was a database of rules to run. The individual rules were

specified in Scheme according with either the restriction to numerical finite automata

or no restriction, hence a Turing Machine. As noted earlier, the restriction to the

numerical finite automata language was left to the user in the system that was built.

Having a separate language for numerical finite automata facilitates a possible

optimization. Some IDS systems including Snort have a module interface. Using

this interface, C code can be developed to do arbitrary computations within Snort.

In particular, code to interpret the numerical finite automata could be developed,

89

hence the processing of this level of rules would occur inside of Snort which would

be considerably more efficient due to a decrease in I/O for many types of alerts. In

particular, the alerts used as input to the numerical finite automata set of rules for the

generation of SOM inputs tend to generate a lot of alerts that are grouped together

by the numerical finite automata. If these were handled in Snort instead, it should

become nearly as efficient as the TCPTRACE module used with INBOUNDS. This

optimization can also be performed without C code in IDS languages that are Turing

Machines. For example, a numerical finite automata interpreter could be written for

N-Code.

This optimization technique is not limited to numerical finite automata. Using a

module interface, it is possible to embed a Scheme interpreter for the Turing Machine

levels of this framework within Snort. Multiple inputs will cause problems, but oth-

erwise, if the Turing Machine level only uses the output of the one node, it should be

able to run within Snort. This disadvantages of putting this framework with Snort

are that an entire Scheme interpreter is significantly more complex than a numerical

finite automata interpreter and that Turing Machine code does not have a guaranteed

upper bound on running time or space.

Once each rule was defined, they were inserted into a rule database. These rule

databases constituted a configuration type for the interior nodes. Since each interior

node is in a separate process space, there is no interaction between instances of the

various databases. As noted in the section on general structure, these databases were

not as helpful as anticipated for the organization of rules. Although they did present

a uniform and systematic way of registering rules, the problem of combining rules

together to form a configuration is more involved than just listing the rules to be run.

Some rules need to be deactivated when a rule than applies to a more specific class of

alerts is added and some rules should not be deactivated in this same case. The rule

databases were helpful, but not sufficient by themselves to solve the organizational

problems of grouping rules into node configurations.

90

The second component of the configuration language was a list that specified how

the nodes were to be arranged into a tree. The assumption that the nodes can be

arranged into a tree implies that the nodes can be written in a collection of nested

lists such that each node appears once and appears as a list that is placed within the

supernodes list of subnodes. For example, (n1 (n2) (sn1 (sn2) (sn3))) would

correspond to node n1 having subnodes n2 and sn1, node sn1 having subnodes sn2

and sn3, and nodes n2, sn2, sn3 having no subnodes. Since the type of node must

also be specified, the syntax used in the list is (hostname type subnodes...). For

the common case of one IDS configuration and one interior node configuration, a

special syntax without the types specified can be used by calling a different function.

This is then syntax transformed into the standard syntax.

An early version of the system used a symbol based syntax instead. Each node

would define a symbol that would be used for representing it when it was a subnode.

Then this system of symbols was transformed into a tree for booting. This had the

advantage that non-tree based configurations could be declared, but not used. It had

the disadvantages of being more complicated and less clear, thus was abandoned.

One implementation issue is checking dependencies beyond the node configuration.

Some interior rules should also have data dependencies which should be checked at

compile time. For example, the SOM interior node module requires the addition of

rules to the IDS subnode to generate the input for processing. If these rules are

not added, then the SOM module will not function. As the system is currently

implemented, only booting of the subnode is checked, not the configuration of the

subnode. This could be fixed by adding an option for specification of dependency

requirements to the declaration of interior rules. Then the dependencies of the rules

could also be checked before booting the system.

91

4.3 Treatment of Time

The difficulties involved with the treatment of time have been noted in chapter

3. This section details which design decisions were taken. It discusses the internal

structure of the representation of time, a time based internal queue and the external

interface of the time representation.

Internally, time is represented as the number of microseconds since the Epoch

(00:00:00 UTC, January 1, 1970) according to the standard POSIX method. Equiv-

alently, this is the number of microseconds returned by the gettimeofday UNIX

system call. Clock skew problems imply that the machine on which the time was

recorded should also be recorded; this was not performed. Furthermore, it is conve-

nient that the clocks obtain a modest level of synchronization before booting of the

system to avoid possible clock warp issues. Most IDSs report the time at which a

packet generating an alert was detected. This time was reported to the system which

used this time rather than the time at which the system saw the alert.

The interface to this internal representation is correspondingly primitive. A proper

interface would hide the internal representation in favor of a representation that is

easier for the programmer to understand. Because of the simplicity of having one

fundamental unit - the microsecond, the system simply lets the programmer use

microseconds for everything. This design decision forces the programmer to use mi-

croseconds even if the programmer would desire different units. It often requires the

programmer to carefully count to ensure the correct number of zeros in time argu-

ments. An advantage of this design decision is that it forces the rounding problems

and inexactness problems onto the user of the system. By requiring the number of mi-

croseconds to be an integer, rounding issues are now the problem of the programmer.

Furthermore, the integer number of microseconds is an equivalence relation. Some

support for approximate time operations has been provided to the programmer, of

which get the current time is particularly useful.

A time based priority queue is part of the running structure of this system. This is

92

useful for rules that give output at some delayed time. For example, the proposed real

time extensions to the input module for the SOM report the status of a connection

every 60 seconds. To simulate this, an alarm is needed every 60 seconds to generate

the output. The time based priority queue can also be used for data collectors that

flush the total number of alerts recently seen if there has not been an alert in some

configurable number of seconds.

The implementation of a priority queue keyed on time is straightforward. It has

features to add events at a given offset from the current time in addition to at an

absolute time. The integration of the priority queue is taken to be a special case of

a message pipe. Although it could be taken to be a normal message pipe, when used

with polling I/O, the time until the next message from this is known, so the time

for the usleep for the core interior node loop is the minimum of this time and the

standard usleep value is taken instead. This reduces the latency for elements of the

priority queue due to the sleep. For blocking I/O with threads, it is unnecessary to

treat the priority queue as a special case.

This priority queue is mainly intended for use with the Turing Machine layers

of this framework. If this priority queue is used for numerical finite automata based

layers of this framework, the interface to the queue must be a delay action that causes

the current finite automata to be suspended and resumed after the given delay. If

instead simply registering a separate function with the priority queue were allowed

(and multiple registrations by one computational element were allowed), the priority

queue could be used for recursion, thus violating the restrictions on computational

finite automata.

4.4 Data Collection

Data collectors were constructed to improve the frameworks handling of DOS

attacks. A data collector runs on an interior node and simply takes the incoming

alerts and sends on summaries with an exponential back-off. These summaries are

93

collected by the higher level data collectors and the sub-results resummarized for

reporting. This section discusses how the data collectors were built, the computational

requirements for data collectors, the testing of the implemented data collectors and

the trade offs for other design choices for data collectors.

The data collectors were constructed by one generic numeric finite automata with

some additions. The collectors are registered in the rule database as applying as a

default rule. So they will be called on every non-control alert that does not have a

more specific rule. The collector then examines the trigger symbol, which is parsed by

the parser particular to the message pipe type. The trigger symbol will differentiate

output from another collector and a regular alert. If the output is from another

collector at a subnode, then the number of rules counted is increased by the count

given by the other collector. Likewise, other data structures like resource limited

lists representing the alert types or the IP address to which they are connecting are

also updated using the data supplied by the other collector. If the output is from

a regular alert, then it is counted and the additional structures are updated. If the

count exceeds an exponential threshold, implemented as twice the last threshold, then

an alert is generated.

As implemented, only generating an alert after detecting the exceedince of the

threshold uses an operation banned from use in numerical finite automata. Specifi-

cally, to do this an examination of the value for control switching purposes must be

made. This was banned from the numerical finite automata because of the computa-

tional problems introduced by allowing this to happen.

To rectify the alert generation problem two approaches can be taken. The first

approach is use data collectors in the Turing Machine layer instead. This is reasonable

when the future work of integrating data collectors into dynamic sub-level reconfig-

uration is considered. Data collectors that involve multiple inputs may already be

running at the Turing Machine layers of the system. If multiple inputs are involved,

the node is unlikely to be integrated into the IDS for optimization reasons.

94

The second approach to rectifying this problem is to attempt to make the opera-

tions available to the numerical finite automata even more powerful without destroy-

ing the linear time bound. The alert generation option is where this will attempt to

be added. It is required that node cannot send alerts to itself. This requirement is

to prevent using the alert mechanism to produce recursion. In the Turing Machine

layer, sending alerts to the node on which they originate is still allowed. It can also be

required that a node which receives one alert cannot call the generate alert function

more than once in the finite automata code. Encapsulated alert generation, from

resource limited structures for example, can be given an exception as long as they

generate at most an additional bounded number of alerts.

Now that the requirements to extend the numerical finite automata have been

stated, the way of proceeding is to allow non-looping control statements that can

examine the numerical operations within the alert generation function. The banning

of control numerical operations was intended to prevent looping, the allowance of

control numerical operations will allow looping here. The requirements placed upon

the entrance of this code imply that it can only do one pass through a loop for every

alert that it sees. Assuming fixed precision numbers, this preserves the linear running

time requirement. As it does not allocate additional space, it does not impact the

space requirement. Computationally, there is now an additional subtlety involved.

There must be a distinction drawn between functions that can now be computed

with one alert and functions that require multiple passes, hence multiple alerts.

The implemented data collectors were tested for performance in a DOS attack.

The target IDS used for the tests was Snort. The stable Snort rule configuration

given on the www.snort.org website was used for the Snort nodes. This configuration

includes rules that cover ICMP and localhost traffic. Two of the rules were used for

generating alerts. One rule detected ICMP pings that had 127.0.0.x as the originat-

ing IP address. Pings with these addresses would crash pre-1998 unpatched Solaris

95

machines. The second rule was a restriction on traffic intended for the machine on

which it is originating on.

106 pings that triggered this alert were generated using ping -l 1000000, which

sends the pings as fast as they can be generated. This causes the monitoring IDS to

send out alerts as fast as it can. With this rate of alerts, many of the ping packets

are dropped by the IDS. The net result is that the IDS attempts to generate several

times the amount of traffic that the pings generate for an interval of time starting

with the beginning of the attack and ending once the attack has finished and the IDS

has finished processing and outputting all of the data that it has not dropped. If

this output is sent over the network, it makes the DOS problem considerably worse.

Furthermore, if it is grouped together at one node, the node will need to deal with a

multiplier of this amount of traffic, which makes it more likely that the system will

be DOS to the users. It also makes it the case that the DOS may spread to machines

and links beyond the initial path of the DOS via DOS through alert processing rather

than the ICMP packets.

Using the data collectors, the output from the node under the DOS was only ten

alerts, each of which gave a count of the number of alerts seen by the node. This

prevented a significant increase in network traffic and processing by the higher levels

of the system. Even though the target IDS was still dropping data at approximately

the same rate, it was not extending the DOS past that node.

This was then tested with two nodes both receiving 106 pings. The collectors

on each node outputted no more than ten alerts each. These were fed into a higher

level collector on the root node, which output no more than eleven alerts. This

demonstrated the ability to collect the data from the sublevels without losing the

counting information.

Addressing the DOS at the target IDS is beyond the scope of this thesis. It is

assumed that if the target IDS is DOS, then the data collectors only prevent the target

IDS from generating many alerts. Except for the difference is speed of reporting,

96

which should be a large difference if the data collector is compiled to run within the

IDS, nothing is done to address the DOS of the target IDS.

Only tracking the number of alerts seen is of limited use. Since there are at a

fixed finite number of possible alerts, the alerts that were seen were also tracked.

This information was included in the output and state of the alert collectors. The

collectors which have other collectors as input include the list of types of alerts seen

by the collectors lower in the tree.

Tracking offending IP addresses is also useful, but must be done in a limited fash-

ion. An attacker capable of transmitting packets with source addresses not originating

on their subnet can cycle through a large number of source IP address. Tracking all

of the source IP address could potentially involve 232 addresses for IPv4, which is

too many for the system to track. The solution taken for the implemented system

was to use a resource limited list. If the number of address to track exceeded some

bound, the additional address would not be tracked. Resource limited structures are

discussed in the next section.

There are several options for the data collectors whose additions are debatable.

These options are the reporting of overflow of resource limited structures, resetting

the count and other data structures after no activity in some given time period and

additional reporting when information is added to some structures.

The resource limited structures often have the configuration option to generate an

alert when the first time additions are attempted past the fixed limit. The generation

of this alert was not configured because the additional information gained seemed

of little use for real time analysis. Instead, whether or not additions past the fixed

limit had been attempted was included in the output of some versions of the data

collectors.

Collecting the alerts before generating an alert to the parent node introduces a

latency problem. Under the current implementation, the following somewhat unde-

sirable behavior happens. If the collector sees 106 alerts then nothing for several

97

days, it will not report on even 105 new alerts unless the system is reset. Similarly,

during an ongoing DOS attack, the rate of alert generation continues to decrease by

an exponential rate even at very low alert generation rates.

One way of fixing this is to flush the total and reset the counter if it has not

seen any new alerts in some given number of seconds. Another similar approach is

to exponentially decrease the threshold if no alerts has been generated in some given

amount of time. This second approach should produce an alert at a relatively constant

time interval for systems under a continuous DOS attack. Since there are trade-offs

to each approach, it is not particularly important which one is chosen, only that one

of them is chosen. In the implementation, the latency problem was not addressed.

4.5 Resource Limited Structures

Resource limited structures were introduced to increase the operations that could

be performed using limited resources. They are used at two levels. With numerical

finite automata, if the printing and handling of the contents is restricted to the alert

generation function, then resource limited structures can be allowed with the impact

on running time corresponding to the running time of the operations on the structures.

This gives a substantial improvement in the information that can be returned by the

numerical finite automata. For example, a resource limited hash table of IP addresses

can be tracked by the numerical finite automata and printed upon generation of

an alert. With the Turing Machine levels, resource limited structures are only a

convenience to the programmer.

For example, ordinary list operations allow or give the allusion of allowing arbi-

trary length lists, whose usage is undesirable for resource limited computation. Arbi-

trary length lists can clearly exceed the reasonable bounds on space. Still, the usage

of these operations is more convenient than treating everything as a preallocated fixed

length array. Furthermore, if things are treated as a preallocated array, counters of

what has been used must be kept, which add a substantial number of states to the

98

finite state machine if the counters must be treated as separate states. Adding this

number of states may push the number of states over the reasonable limits. If the

counters are treated as numbers to do numerical operations upon for the numerical

finite automata, it would also allow a number to be used as an index into memory,

which probably increases the computational ability of the numerical finite automata.

It is not necessarily undesirable, only more difficult to analyze. If numbers are to

be used as indexices into memory, memory access must be range checked because

the checking of bounds cannot be done by the numerical finite automata without

examining the number. Instead of allowing the indexing of memory by numbers, it is

proposed to give access to a list interface that handles the bound checking problem

itself. This also simplifies the code for the numerical finite automatas.

A resource limited list was implemented. It had the option of configuring whether

or not to generate an alert the first time that the finite configurable bound was

exceeded. It was used by one version of the alert collector to store the list of which

alerts were generated. Operations like union and intersection were defined on the

limited list structure.

4.6 SOM Input Generation

The inputs to the SOM for INBOUNDS were generated as an extended numeri-

cal finite automata to demonstrate the practical sufficiency of this framework. The

original input module for the SOM for INBOUNDS is written as a C-module for real

time TCPTRACE, which is a network connection analysis tool that reads its data

from libpcap, a tcpdump file or other network dump file formats. The demonstration

of the input module for SOM as an extended numerical finite automata shows several

things: first, it is an example of the sufficiency of basing higher computations on

signature IDS alerts; second, it shows that the extended numerical finite automata

are powerful enough to compute some useful output; third, since extended numerical

finite automata are straightforward to optimize into IDSs that have a module inter-

99

face, it shows that this method can be made close to as fast as the original C-module

for real time TCPTRACE with a considerable gain in programmer efficiency.

The inputs needed for the SOM are six values per connection. The SOM is

trained to recognize anomalies in these values when they are reported at the close of

a connection. These values are detailed in [50, 51, 9, 43]. Their computation can be

done on a per connection basis by storing the time of initiation of the connection along

with the sum so far of the unnormalized variables and the direction of the last nonzero

length transmission. At the close of the connection, these un-normalized values are

normalized against the duration of the connection or the number of question-answer

response cycles.

If the incoming packets are separated by connection, then a separate numerical

finite automata for each connection can handle the generation of the inputs for the

SOM. Since this is not explicitly allowed by the system, there are at least two ways of

integrating it into the system. The first way is to recognize the importance of TCP

based connections and allow special code to run to sort and deal with individual

connections. Many IDSs do this and it seems to be a reasonable approach to deal

with the TCP reconstruction problem. The second way of allowing these operations

in the system is to allow the extended numerical finite automata to use a resource

limited hash table. Then the connection data can be stored in a limited hash table and

no special TCP code needs to be written. The slight drawback of this approach is that

access to a hash table can be slower than constant time. Since the size of the hash

table is limited, if the hash table is constructed using trees, the maximum lookup

time will be logarithmic in the limited on the number of entries. Thus giving the

extended finite automata access to hash tables solves this problem without excessively

destroying the computational time bounds. This second approach was used by the

implementation.

The inputs to the module for the inputs for the SOM were alerts generated by

the IDS. The IDS used in the implementation was Snort. The different alerts were

100

generated for TCP packets with different TCP flags combinations. One feature par-

ticular to Snort was used, when multiple rules match, Snort chooses the rule with the

lowest Snort ID (SID). All of the rules that fed into the SOM were given larger SIDs

than the other signature rules so that the remaining signature rules would still match

if other misbehavior was detected. The rules for the generation of the input for the

SOM input module had a slight order dependence. It was preferred to generate alerts

for the reset TCP-flag over the FIN TCP flag if both were set. This is consistent with

the interpretation of the reset TCP flag by TCP stacks [61].

The trained SOM itself was not embedded within the implemented system as it

falls outside of the scope of this project. Only the inputs to be fed into the trained

SOM were generated. Training the SOM is also outside of the scope of this project.

It is not argued that the SOM cannot be embedded within this framework.

The development effort for this module measured in lines of code was considerably

less than for the module running in real time TCPTRACE. The C code module is

approximately 1000 lines of code, the Scheme module for this system is approximately

200 to 250 lines of code. Some of the reduction in lines of code is to be expected due

to the language change before compensating for the changed interface. In general,

the code necessary for memory allocation and deallocation in C and explicit bounds

checking for every table access tend to consume a considerable proportion of the

overall effort. Some of the reduction in lines of code may be due to a reduction in

bit-bashing because the bit fields are handled in the IDS rules which feed into the

module.

It was not needed to reconstruct TCP to deal with the generation of the inputs to

the SOM. The implementation did not discard TCP session that had silently timed

out. This can lead to a cluttering of the connection monitoring hash table if there

are many missed FIN packets. One way of solving this is to introduce timers. The

way to introduce timers without discarding the restrictions placed on the extended

numerical finite automata is to treat the time as a number to be placed in a time

101

based priority queue. When a new alert is being processed, a constant fixed number of

these can be examined and removed if they are sufficiently old. This further expands

the restriction on conditional number testing to include one constant length section

per incoming alert.

Examples involving highly skewed test data were run to verify that the developed

module produced accurate numbers. This test data was generated with standard

UNIX utilities and various network services. For example, a test was constructed

using the echo port and a script that generated one character per second. This was

then run through the system to verify that the module produced the expected output.

4.7 Translation of Snort to N-Code

As noted in Chapter 3, the software has two usable stages. In the first stage, low

level IDS components are referred to by symbols and need to have a corresponding

instance for the target IDS. In the second stage, one generic low level representation

is sufficient. Once the generic low level language is added, this system will form a

complete language for IDS work. The complete second stage of the software was not

implemented. Instead, an extended prototype intended to explore the possibilities of

this lower level language was built.

Unlike existing work on intrusion signature modeling and translation, this work

uses the higher layers of the system to fuse together lower level output that may not

be directly translatable. LAMBDA only outputs rules for the signature based system,

so any fundamental incompatibility cannot be dealt with [14]. As a prototype, this

is intended as a translator between existing systems, rather than a translator from a

distinct modeling language that does not correspond directly to any IDS.

This compiler was implemented as a translator from Snort to N-Code. N-Code

is the language for the Network Intrusion Detection System from NFR Security, In-

corporated. Prior to 1997, versions of this system were available for free. Internet

postings indicate that in 1997, NFR Security stopped distributing the free version

102

but stated that they would license it free for research usage. Unfortunately, currently

it is not free for academic research usage.

There are neither multiple input nor multiple output modules for this compiler, so

the complexity of translation to and from a system independent representation needed

for retargetable compilation was saved. Furthermore, as N-Code is Turing Complete

and allows access to the complete data stream, the output of the translation of Snort

code could be almost completely in N-Code without the need for the generation of

additional patch code running at the Turing Machine layer of the system to patch

together the output of the N-Code alerts into the Snort alerts. The exception, which

is the resolution of Snort alerts when multiple alerts can be generated for one packet,

could be handled within N-Code at a substantial increase in complexity and running

time.

The reverse translation from N-Code to Snort was not implemented. To do this

translation requires interpreting the N-Code computations within either a Snort mod-

ule or within the Turing Machine layers of this system. Building a N-Code interpreter

is not particularly desirable because of the shortcomings of the N-Code language.

The compiler was implemented for a set of rules likely to be representative of Snort

rules used in practice. The manual often differs from what is allowed in practice, so

to do the compiler correctly, the actual behavior must be determined. In many cases,

these language options are a superset of the options described in the manual. In some

cases, the description in the manual is for a set of options that are not likely to be

used in practice.

The stable rules collection from the www.snort.org website were used as a standard

from which to gauge what and how options were used in practice. There were 1994

rules in the stable rules collection on the website. These rules were used to gauge the

coverage of the compiler and to check for how the Snort options were used in practice.

Of these rules, 1785 were able to be compiled. The RPC option accounted for 95 rules

103

which were not compiled. The byte test and byte jump options accounted for 105

rules. The remaining nine rules that were not compiled had parsing problems.

The byte test and byte jump options were purposefully not implemented. They

are straightforward to implement, but complicate the content checking code. Since

the content checking code was already reasonably complicated, it was decided to

delay the implementation of the byte test and byte jump options until after the

content checking code was debugged in actual tests. The byte jump option differs

from the byte test option only by specifying an optional positive displacement to

resume matching at.

The RPC option decodes remote procedure call (RPC) traffic. It is straight-

forward to implement, but was not done because of implementor time considera-

tions. In practice, there were only two distinct configurations of this Snort option:

‘‘rpc:100009,*,*’’ and ‘‘rpc:100000,*,*’’. The number represents the RPC

application.

The nine rules that had parse errors were not deemed a sufficient number to war-

rant the effort involved in changing the parser. On page 16 of the Snort manual

[54], it declares that the semicolon is used to separate the options. But in the docu-

mentation for the content rule, it declares that the semicolon can be used in strings

provided that it is escaped by a backslash. To parse this properly, each option must

be completely parsed before parsing the next option. One shortcut would be to just

recognize strings or to use a parser generation tool. Since this system was imple-

mented in Scheme, it was easiest to simply split the option field at the semicolon that

the manual declared was the field separator. In practice, this failed for the nine rules

that had escaped semicolons.

Snort process each rule by calling a registered function that then parses the argu-

ments for that rule. This means that the Snort language is actually spread through

the modules registered for each option. This explains the varied and unsystematic

set of operations and arguments allowed for the different functions. Even worse, sub-

104

options like the nocase option are placed in the fields like full options, yet apply to

the last content or uricontent option. This is a major shortcoming of the Snort

language.

Despite each option calling its own parser and having its own language, Snort is

progressing toward some standard option field arguments. As the table 4.1 indicates,

some fields have common languages. The Snort documentation describes each of

these fields separately, [54] but the usage within these fields of more general language

features often occurs. Specifically, the Snort manual may declare that only exact

numeric values may appear as an argument, but some of the stable rules will specify

a greater than or equal numeric comparison. It has been chosen to be liberal in

what the compiler accepts rather than following the documentation. In every case,

this allowed for accepting both the language as specified in the documentation and

additional language features. The common languages for the Snort option fields

were string arguments, bit field arguments, numeric test arguments, exact numeric

arguments, and the null argument. The remainder of the Snort option fields were

handled with special parsers. Often these performed a translation of a string into a

numeric value for equality testing.

Table 4.1: Snort Options for Compilation

Snort Superoption Language Comments

Option

ack Numerical test TCP ack number

byte jump Special Not implemented

byte test Special Not implemented

content-list Special Not used in stable rules.

content String

105

Table 4.1: Continued

Snort Superoption Language Comments

Option

depth content Fixed integer Maximum search depth.

dest. addr Network addr. Mandatory

dest. port Port Mandatory

direction Special Mandatory

distance content Fixed integer Minimum distance between two

content matches

dsize Numerical test

flags Bit field TCP flags

flow Special Direction of flow

fragbits Bit field IP fragmentation bits

fragoffset Numerical test Not used in stable rules.

icmp id Numerical test ICMP echo ID

icmp seq Numerical test ICMP echo sequence number

icode Numerical test ICMP code field

id Numerical test Fragment ID

ipoption Special Record route, etc.

ip proto Numerical test Names are not implemented in

Snort

itype Numerical test ICMP type

msg String Message printed on alert

nocase content,

uricontent

None

offset content Fixed integer

protocol Special Mandatory

106

Table 4.1: Continued

Snort Superoption Language Comments

Option

rawbytes None Preprocessor option, Not imple-

mented

react Not used in stable rules.

regex Special Not used in stable rules.

resp Not used in stable rules.

rpc Special Not implemented

sameip Numerical test src ip == dest ip

seq Numerical test TCP sequence

session Not used in stable rules.

source IP Network addr. Mandatory

source port Port Mandatory

stateless None Not used in stable rules.

tag Not used in stable rules.

tos Numerical test Not used in stable rules.

ttl Numerical test

uricontent String Only matches in URI field of

HTTP request

within content Fixed integer Maximum distance between two

content matches

String arguments were specified in a slightly different way in Snort and N-Code.

Snort has a byte code escape character |, which is not present in N-Code. In N-

Code each byte of the byte code sequence must be specified by \xff, where ff is the

107

hexadecimal representation of the byte. It is straightforward to translate the strings

including the byte-code sequences.

Bit field arguments had bits that were particular to the option field to match. It

was implemented as a generic bit field compiler that took in a function to lookup

the bit specified by the character in question. All of the bit fields took +, ∗ or no

additional argument to specify whether to match on all of the flags, any of the flags

or exactly the flags specified. An optional bit-mask field was provided that used the

same translation of characters into bits as the bit field. For example, for the TCP bit

field, “SR*” would match if either the syn flag or the reset flag were set in the packet.

The bit flags field also took an optional beginning ! which inverted the match.

Numeric test arguments tested the given numeric value against the value specified

by the field. One compiler that took in how to specify the value of the field was

created. It handled the Snort not “!” option and the comparisons < and >.

Some Snort option fields were actually sub-options of other options. For example,

the within keyword was a sub-option of the content option. The semantics of

within imply that it can only take an exact numeric value. It was handled by

grouping via tree transformation all of the sub-options of content and uricontent

into their respective super-option fields before compiling. Then the within keyword

was handled within the compilation of the content option.

The content option is the most important and complex Snort option. It matches

string patterns in the payload or TCP stream. When multiple content options are

specified in one Snort rule, it is interpreted that each content rule must match on

the payload or stream in turn separated by either an arbitrary number of characters

or a number of characters bounded by within and distance. It is used by 1828 of

the 1994 stable rules. The compilation of the content option requires state to handle

stream based matches. These matches take place over many packets, so the partial

matches must be stored along with a relative offset in the stream for the distance

and within sub-options. A list of the partial matches suffices for state.

108

Snort rules have six mandatory fields. These fields specify the protocol, source

IP address or netmask, destination IP address or netmask, source port, destination

port, and direction of traffic. The protocol field specifies the stream type to watch:

TCP, UDP, ICMP or IP. This field must be extracted to set some global flags for the

compiler. The language that specifies the IP addresses and netmasks allows for non-

nested lists and negation. The language that specifies the ports allows for possibly

open ended ranges, but not lists of ports. For example, to watch ports 80 and 8080,

it must be declared to watch all of the ports from 80 to 8080, rather than just the

two ports. This will probably be fixed in upcoming versions of Snort.

Regular expressions are not handled by Snort except when they are encoded as a

collection of content options. The Snort manual declares a regexp option, but states

on page 31 that it “should not be used in production rule sets. As such, it will trigger

an error condition if alerts are set using it” [54]. This is preferable to the approach

taken by N-Code, which uses the operating system regular expression library with

the OS syntax, rather than a system independent syntax.

Reconstructing TCP requires a considerable amount of state. If an attacker were

to purposefully overflow the advertised buffer and the IDS did not monitor the send

window advertisement or assumed that some acknowledgments were lost, then the

IDS could be force to hold an arbitrary amount of data from a theoretical stand-

point. Some engineering decisions must be made to deal with this worst case. The

implemented TCP reconstruction assumes that all of the segments will be seen, but

not necessarily in the correct order.

The implemented TCP reconstruction code does not run on an extended numerical

finite automata. If the TCP reconstruction code sees a missing segment, it will

produce output that may be many times as long as its input. Several fixes to this

may be attempted. The first fix would be to join segments together as they are

inserted into the pending segment queue. Then each segment would be processed in

only about twice the join time. If the join is actually copying the segments, then

109

this may still produce an arbitrary slowdown, so the solution is to just keep pointers.

If only pointers are kept, the string matching code must be modified to handle this

representation of streams.

After repeated emails, NFR Security indicated to the author of this thesis after

about two months that they were no longer distributing a version of NFR to academics

for free. Thus the compiled code could not be tested directly in N-Code. Although a

N-Code interpreter could be built inside NML with only a moderate effort, this would

not be an effective test of the code. The bugs in the code are likely to be due to manual

ambiguity and interpretation problems, which would be faithfully modeled in a N-

Code interpreter. Hence it would not test the major category of errors. Furthermore,

there are a number of facets of the N-Code interpretation that are not specified by

the manual, so would need to be explored using the actual product.

N-Code has several other limitations that make it undesirable as a general IDS

programming language. The parser was implemented as easily as possible and lacks

features desired in real programming languages. For example, the N-Code manual

states on page 4-1 that N-Code does not have operator precedence. It even gives an

example that in N-Code “1 + 2 ∗ 3 + 4 evaluates as 13, not 11” [42]. As a source

for the output of a compiled language, this precedence shortcoming is not important.

N-Code has a list type, but does not allow the user to take a sublist. This seriously

weakens the usefulness of N-Code lists. Since N-Code support associative arrays,

these were used instead of lists.

Except for the rules containing parse problems or unimplemented Snort options,

the remainder of the rules compile to N-Code. This is 1785 rules that compiled out

of 1994 total rules. Each option was manually checked by itself against the N-Code

documentation for bugs.

A slight inequivalence is introduced due to the resolution of ambiguous alerts in

Snort. If one packet can generate two alerts, Snort appears to generate the alert

with the lower Snort ID. In the compiled code in N-Code, each rule is in its own

110

environment and generates alerts independently of the other rules. If the order to

run the compiled rules could be specified, then this could be solved by a global

variable. As it is, this was left as an implementation bug.

111

5. Conclusion

5.1 Conclusions

This thesis has shown a feasible higher level language system for distributed intru-

sion detection. The implementation results indicate that the system has the proposed

properties of sufficiency of the language, efficacy of the language, usefulness for the

administration of distributed systems, and attention to performance under load. Fur-

thermore, the implementation results show that the system can be built. A useful first

version has been outlined that gives many of the advantages of the system without

the engineering complexity of constructing the full system.

This system obtains a measure of independence from the underlying IDS systems

involved. This implies that configurations developed for this system can be unchanged

despite optimizations or variations on the compiled configuration. This leads to a

significant area to perform efficiency research and reap the benefits without impacting

the usability.

Attention has been paid to ensure that the language features used for the low

levels of the system are computationally reasonable for the indented purpose. This

adds a degree of robustness despite the possibly dumb configurations added by users.

It prevents whole classes of bugs that could hang or severely slow the lower levels of

the system.

5.2 Future Work

This work lays the basis for many areas of future work. The most direct areas

are the integration with resource management software, the expansion of the single

112

language to include more run time topologies, more specifications, more target IDSs,

and the optimizations for Snort or other module based IDS system.

The integration of this system with resource management software is a reasonably

straightforward piece of research. It becomes interesting when the dynamic features

are used to reconfigure the system on the fly. Many of the research questions in-

volved in integrating the IDS systems with the resource management software are

not particular to this system.

The expansion of the single language is an area of future research that is particular

to this system. If it were expanded to include more primitive specifications, then it

could be optimized further for the various IDS system. For example, N-Code does not

have a primitive for matching on a pattern. The result is that each rule writer writes

their own version, usually in the obvious but slow way of checking each string for a

string match via strcmp. There are quicker ways of checking for string matching, but

they are more effort than an individual rule write would like to expend. Now that each

rule writer has used their own way of content matching, this cannot be automatically

detected and the faster way substituted. Snort took the approach of using a content

keyword, which probably initially used the slower method of matching, but now uses

faster methods. Because the keyword was a distinct specification, they were able to

substitute the functions.

Language features and run time mechanisms could be added to this system to

support non-tree based run time configurations. This may have some usefulness

when the network topology is known or when multiple output methods are desired,

but at the present time it only adds to the engineering complexity.

The addition of more IDS systems for target configuration generation will further

the usefulness of the system. This has two advantages. The first advantage is that

the system can be used with more target IDSs. The second advantage is that by

generating the output to more types of IDSs, aspects that are IDS dependent will

become clearer.

113

Optimizations for Snort and other module based IDS systems are a useful area for

further research. These optimizations would show significant speed ups for running

the system for generating non-signature based analysis. By writing the interpreter

for the lower level language, it would show that it is neither too complex nor too

powerful.

Finally, using this system in practice would probably uncover more aspects that

could use further examination. If the system proved to be highly useful, the language

could eventually be made systematic and standardized.

BIBLIOGRAPHY

115

BIBLIOGRAPHY

[1] Abelson, H., Sussman, G. J., and Sussman, J. Structure and Interpre-
tation of Computer Programs, Second ed. MIT Press, Cambridge, MA, USA,
1996.

[2] Alessandri, D. Using Rule-Based Activity Descriptions to Evaluate Intrusion-
Detection Systems. In Recent Advances in Intrusion Detection: 3th International
Workshop; proceedings (RAID 2000) (Toulouse, France, October 2-4, 2000 2000),
H. Debar, L. Me, and S. F. Wu, Eds., vol. 1907 of Lecture Notes in Computer
Science, Springer, Berlin, pp. 183–196.

[3] Almgren, M., and Lindqvist, U. Application Integrated Data Collection
for Security Monitoring. In Recent Advances in Intrusion Detection: 4th Inter-
national Symposium; proceedings (RAID 2001) (Davis, CA, USA, October 10 -
12, 2001 2001), W. Lee, L. Me, and A. Wespi, Eds., vol. 2212 of Lecture Notes
in Computer Science, Springer, Berlin, pp. 22–36.

[4] Anderson, J. Computer Security Threat Monitoring and Surveillance. Tech.
rep., James P. Anderson Company, Fort Washington, Pennsylvania, USA, 1980.

[5] Asaka, M., Taguchi, A., and Goto, S. The Implementation of IDA: An
Intrusion Detection Agent System. In Proceedings of the 11th Annual FIRST
Conference on Computer Security Incident Handling and Response (FIRST’99)
(1999).

[6] Axelsson, S. The Base-Rate Fallacy and Its Implications for the Difficulty
of Intrusion Detection. In ACM Conference on Computer and Communications
Security (1999), pp. 1–7.

[7] Axelsson, S. Intrusion Detection Systems: A Taxonomy and Survey. Tech.
Rep. 99-15, Chalmers University of Technology, Goeteborg, Sweden, March 2000.

116

[8] Balasubramaniyan, J. S., Garcia-Fernandez, J. O., Isacoff, D.,

Spafford, E. H., and Zamboni, D. An Architecture for Intrusion Detec-
tion Using Autonomous Agents. Tech. Rep. TR 98-05, COAST Laboratory,
Department of Computer Sciences, Purdue University, West Lafayette, Indiana,
1998.

[9] Balupari, R. Real-Time Network-Based Anomaly Intrusion Detection. Mas-
ter’s thesis, Ohio University, Athens, Ohio, June 2002.

[10] Balupari, R., Tjaden, B., Ostermann, S., Bykova, M., Tong, L., and

Mitchell, A. Real-time Network-Based Anomaly Intrusion Detection. Jour-
nal of Parallel and Distributed Computing Practices 4, 2 (June 2001). Special
Issue(Real Time Security).

[11] Brooks, F. P. The Mythical Man-Month: Essays on Software Engineering,
anniversary ed. Addison-Wesley, 1995.

[12] Bykova, M., Ostermann, S., and Tjaden, B. Detecting Network Intru-
sions via a Statistical Analysis of Network Packet Characteristics. In Proceedings
of 33rd Southeastern Symposium on System Theory, SSST 2001 (Ohio Univer-
sity, Athens, Ohio, USA, March 2001).

[13] Cunningham, R. K., and Stevenson, C. S. Accurately Detecting Source
Code of Attacks That Increase Privilege. In Recent Advances in Intrusion Detec-
tion: 4th International Symposium; proceedings (RAID 2001) (Davis, CA, USA,
October 10 - 12, 2001 2001), W. Lee, L. Me, and A. Wespi, Eds., vol. 2212 of
Lecture Notes in Computer Science, Springer, Berlin, pp. 104–116.

[14] Cuppens, F., and Ortalo, R. LAMBDA: A Language to Model a Database
for Detection of Attacks. In Recent Advances in Intrusion Detection: 3th Inter-
national Workshop; proceedings (RAID 2000) (Toulouse, France, October 2-4,
2000 2000), H. Debar, L. Me, and S. F. Wu, Eds., vol. 1907 of Lecture Notes in
Computer Science, Springer, Berlin, pp. 197–216.

[15] Das, K. J. Attack Development for Intrusion Detection Evaluation. Master’s
thesis, Massachusetts Institute of Technology, June 2000.

[16] Debar, H., and Wespi, A. Aggregation and Correlation of Intrusion-
Detection Alerts. In Recent Advances in Intrusion Detection: 4th International
Symposium; proceedings (RAID 2001) (Davis, CA, USA, October 10 - 12, 2001
2001), W. Lee, L. Me, and A. Wespi, Eds., vol. 2212 of Lecture Notes in Computer
Science, Springer, Berlin, pp. 85–103.

[17] Denning, D. E. Cryptography and Data Security. Addison-Wesley, Reading,
Massachusetts, 1982.

117

[18] Denning, D. E. An Intrusion-Detection Model. Tech. Rep. SRI-CSL-87-5,
Computer Science Laboratory, SRI International, Menlo Park, CA, June 1987.

[19] Dybvig, R. K. The Scheme Programming Language, 2nd ed. Prentice Hall,
Upper Saddle River, NJ, 1996.

[20] Dybvig, R. K. Chez Scheme User’s Guide. Cadence Research Systems, 1998.

[21] Fenet, S., and Hassas, S. A Distributed Intrusion Detection and Response
System Based on Mobile Autonomous Agents Using Social Insects Communica-
tion Paradigm. In Proceeding of the 1st International Workshop on Security of
Mobile Multiagent Systems (2001). Held at the Fifth International Conference
on Autonomous Agents (Autonomous Agents’2001).

[22] Fyodor, Y. ’Snortnet’ - A Distributed Intrusion Detection System. Kyrgyz
Russian Slavic University, Bishkek, Kyrgyzstan. June, 2000.

[23] Goldman, R. P., and Geib, C. W. Plan Recognition in Intrusion Detection
Systems. In Proceedings of the DARPA Information Survivability Conference
and Exposition (DISCEX) (June 2001).

[24] Goldman, R. P., Heimerdinger, W., Harp, S. A., Geib, C., and Vi-

craj, T. Information Modeling for Intrusion Report Aggregation. In Proceed-
ings of the DARPA Information Survivability Conference and Exposition (June
2001), IEEE Computer Society, IEEE, pp. 329–342.

[25] Gopalakrishna, R. A Framework for Distributed Intrusion Detection Using
Interest Driven Cooperating Agents. Paper for qualifier II examination, Depart-
ment of Computer Sciences, Purdue University, West Lafayette, Indiana, May
2001.

[26] Haines, J. W., Lippmann, R. P., Fried, D. J., Zissman, M. A., Tran,

E., Boswell, S. B., and 62”, G. 1999 DARPA Intrusion Detection Eval-
uation: Design and Procedures. Tech. Rep. 1062, Massachusetts Institute of
Technology Lincoln Laboratory, Lexington, Massachusetts, February 2001.

[27] Howard, J. D. An Analysis of Security Incidents on the Internet 1989-1995.
PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, April 1997.

[28] Jansen, W., Mell, P., Karygiannis, T., and Marks, D. Mobile Agents
in Intrusion Detection and Response. In 12th Annual Canadian Information
Technology Security Symposium (Ottawa, Canada, 2000).

118

[29] Jou, Y., Gong, F., Sargor, C., Wu, X., Wu, S., Chang, H., and Wang,

F. Design and Implementation of a Scalable Intrusion Detection System for
the Protection of Network Infrastructure. In DARPA Information Survivability
Conference and Exposition 2000 (January 2000), vol. 2, pp. 69–83.

[30] Kendall, K. A Database of Computer Attacks for the Evaluation of Intrusion
Detection Systems. Master’s thesis, Massachusetts Institute of Technology, June
1999.

[31] Ko, C., Brutch, P., Rowe, J., Tsafnat, G., and Levitt, K. Sys-
tem Health and Intrusion Monitoring Using a Hierarchy of Constraints. In Re-
cent Advances in Intrusion Detection: 4th International Symposium; proceedings
(RAID 2001) (Davis, CA, USA, October 10 - 12, 2001 2001), W. Lee, L. Me,
and A. Wespi, Eds., vol. 2212 of Lecture Notes in Computer Science, Springer,
Berlin, pp. 190–203.

[32] Korba, J. Windows NT Attacks for the Evaluation of Intrusion Detection
Systems. Master’s thesis, Massachusetts Institute of Technology, June 2000.

[33] Kruegel, C., and Toth, T. Distributed Pattern Detection for Intrusion
Detection. In Network and Distributed System Security Symposium Conference
Proceedings: 2002 (1775 Wiehle Ave., Suite 102, Reston, Virginia 20190, U.S.A.,
2002), Internet Society.

[34] Kumar, S. Classification and Detection of Computer Intrusions. PhD thesis,
Purdue University, West Lafayette, Indiana, 1995.

[35] Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., and Das, K.

Analysis and Results of the 1999 DARPA Off-Line Intrusion Detection Evalua-
tion. In Recent Advances in Intrusion Detection: 3th International Workshop;
proceedings (RAID 2000) (Toulouse, France, October 2-4, 2000 2000), H. Debar,
L. Me, and S. F. Wu, Eds., vol. 1907 of Lecture Notes in Computer Science,
Springer, Berlin, pp. 162–182.

[36] Martin, J. C. Introduction To Languages and the Theory of Computation,
2nd ed. McGraw-Hill, 1997.

[37] McHugh, J. The 1998 Lincoln Laboratory IDS Evaluation (A Critique). In
Recent Advances in Intrusion Detection: 3th International Workshop; proceed-
ings (RAID 2000) (Toulouse, France, October 2-4, 2000 2000), H. Debar, L. Me,
and S. F. Wu, Eds., vol. 1907 of Lecture Notes in Computer Science, Springer,
Berlin, pp. 145–161.

[38] Me, L., and Michel, C. Intrusion Detection: A Bibliography. Tech. Rep.
SSIR-2001-01, Supelec, September 2001.

119

[39] Michel, C., and M, L. ADeLe: an Attack Description Language for
Knowledge-based Intrusion Detection. In Proceedings of the 16th International
Conference on Information Security (IFIP/SEC 2001) (June 2001), pp. 353–365.

[40] Mounji, A., Charlier, B. L., Zampunieris, D., and Habra, N. Dis-
tributed Audit Trail Analysis. In Proceedings of the Internet Society Symposium
on Network and Distributed System Security (ISOC ’95) (San Diego, California,
February 1995), IEEE.

[41] Neumann, P. G., and Porras, P. A. Experience with EMERALD to Date.
In First USENIX Workshop on Intrusion Detection and Network Monitoring
(Santa Clara, California, apr 1999), pp. 73–80.

[42] NFR Security. NFR Network Intrusion Detection System N-Code Guide.
Rockville, Maryland, 2001.

[43] Nguyen, B. V. Self Organizing Map (SOM) for Anomaly Detection. Spring
2002.

[44] Ning, P., Jajodia, S., and Wang, X. S. Abstraction-Based Intrusion Detec-
tion in Distributed Environments. Information and System Security 4, 4 (2001),
407–452.

[45] Northcutt, S., and Novak, J. Network Intrusion Detection: An Analyst’s
Handbook, 2nd ed. Prentice Hall, 2000.

[46] Perrin, D. Handbook of Theortical Computer Science, vol. B: Formal Models
and Semantics. MIT Press, 1990, ch. 1: Finite Automata.

[47] Porras, P. A., Fong, M. W., and Valdes, A. A Mission-Impact-Based
Approach to INFOSEC Alarm Correlation. In Recent Advances in Intrusion De-
tection: 5th International Symposium, RAID 2002, Proceedings (Zurich, Switzer-
land, October, 2002 2002), A. Wespi, G. Vigna, and L. Deri, Eds., vol. 2516 of
Lecture Notes in Computer Science, Springer, Berlin, pp. 95–114.

[48] Porras, P. A., and Neumann, P. G. EMERALD: Event Monitoring En-
abling Responses to Anomalous Live Disturbances. In 1997 National Information
Systems Security Conference (oct 1997).

[49] Pouzol, J.-P., and Ducasse, M. From Declarative Signatures to Misuse
IDS. In Recent Advances in Intrusion Detection: 4th International Symposium;
proceedings (RAID 2001) (Davis, CA, USA, October 10 - 12, 2001 2001), W. Lee,
L. Me, and A. Wespi, Eds., vol. 2212 of Lecture Notes in Computer Science,
Springer, Berlin, pp. 1–21.

120

[50] Ramadas, M. Detecting Anomalous Network Traffic With Self-Organizing
Maps. Master’s thesis, Ohio University, Athens, Ohio, November 2002.

[51] Ramadas, M., Ostermann, S., and Tjaden, B. Detecting Anomalous Net-
work Traffic with Self-Organizing Maps. In Proceedings of the 6th International
Symposium on Recent Advances in Intrusion Detection, RAID 2003 (Pittsburgh,
PA, USA, September 8-10 2003).

[52] Ranum, M. J. Experiences Benchmarking Intrusion Detection Systems. Tech.
rep., NFR Security, 2001.

[53] Riordan, J., and Alessandri, D. Target Naming and Service Apoptosis. In
Recent Advances in Intrusion Detection: 3th International Workshop; proceed-
ings (RAID 2000) (Toulouse, France, October 2-4, 2000 2000), H. Debar, L. Me,
and S. F. Wu, Eds., vol. 1907 of Lecture Notes in Computer Science, Springer,
Berlin, pp. 217–226.

[54] Roesch, M., and Green, C. Snort Users Manual, July 2003.

[55] Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach.
Prentice Hall, Upper Saddle River, NJ 07458, 1995.

[56] Sekar, R., Guang, Y., Verma, S., and Shanbhag, T. A High-
Performance Network Intrusion Detection System. In ACM Conference on Com-
puter and Communications Security (1999), pp. 8–17.

[57] Stallings, W. Network Security Essentials. Prentice Hall, Upper Saddle River,
NJ, 2000.

[58] Staniford-Chen, S. Distributed Tracing of Intruders. Master’s thesis, Uni-
versity of California at Davis, 1995.

[59] Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank,

J., Hoagland, J., Levitt, K., Wee, C., Yip, R., and Zerkle, D. GrIDS
– A Graph-based Intrusion Detection System for Large Networks. In Proceedings
of the 19th National Information Systems Security Conference (1996).

[60] Sterne, D., Djahandari, K., Wilson, B., Babson, B., Schnackenberg,

D., Holliday, H., and Reid, T. Autonomic Response to Distributed Denial
of Service Attacks. In Recent Advances in Intrusion Detection: 4th International
Symposium; proceedings (RAID 2001) (Davis, CA, USA, October 10 - 12, 2001
2001), W. Lee, L. Me, and A. Wespi, Eds., vol. 2212 of Lecture Notes in Computer
Science, Springer, Berlin, pp. 134–149.

[61] Stevens, W. R. TCP/IP Illustrated: the Protocols, vol. 1. Addison Wesley
Longman, 1994.

121

[62] Tjaden, B., Welch, L., Ostermann, S., Chelberg, D., Masters,

M., Werme, P., Marlow, D., IV, P. I., Chapell, B., Balupari, R.,

Bykova, M., Mitchell, A., Lissitsyn, D., and Tong, L. INBOUNDS:
The Integrated Network-Based Ohio University Network Detective Service. In
Proceedings of the 4th World Multiconference on Systemics, Cybernetics and In-
formatics, SCI 2000 and The 6th International Conference on Information Sys-
tems, Analysis and Synthesis, ISAS 2000 (Orlando, Florida, USA, July 2000).

[63] Uppuluri, P., and Sekar, R. Experiences with Specification-Based Intrusion
Detection. In Recent Advances in Intrusion Detection: 4th International Sympo-
sium; proceedings (RAID 2001) (Davis, CA, USA, October 10 - 12, 2001 2001),
W. Lee, L. Me, and A. Wespi, Eds., vol. 2212 of Lecture Notes in Computer
Science, Springer, Berlin, pp. 172–189.

[64] Valdes, A., and Skinner, K. Adaptive, Model-based Monitoring for Cy-
ber Attack Detection. In Recent Advances in Intrusion Detection (RAID 2000)
(Toulouse, France, October 2000), H. Debar, L. Me, and F. Wu, Eds., no. 1907
in Lecture Notes in Computer Science, Springer-Verlag, pp. 80–92.

[65] Valdes, A., and Skinner, K. Probabilistic Alert Correlation. In Recent Ad-
vances in Intrusion Detection: 4th International Symposium; proceedings (RAID
2001) (Davis, CA, USA, October 10 - 12, 2001 2001), W. Lee, L. Me, and
A. Wespi, Eds., vol. 2212 of Lecture Notes in Computer Science, Springer, Berlin,
pp. 54–68.

[66] Vigna, G. Inspect: a Lightweight Distributed Approach to Automated Audit
Trail Analysis.

[67] Vigna, G., Kemmerer, R. A., and Blix, P. Designing a Web of Highly-
Configurable Intrusion Detection Sensors. In Recent Advances in Intrusion De-
tection: 4th International Symposium; proceedings (RAID 2001) (Davis, CA,
USA, October 10 - 12, 2001 2001), W. Lee, L. Me, and A. Wespi, Eds., vol. 2212
of Lecture Notes in Computer Science, Springer, Berlin, pp. 69–84.

[68] Wang, F., Gong, F., Trivedi, K., and Coseva-Popstojanova, K.

SITAR: A Scalable Intrusion-Tolerant Architecture for Distributed Services. In
2nd Annual IEEE SMC Information Assurance Workshop (New York, 2001).

[69] Weber, D. A Taxonomy of Computer Intrusions. Master’s thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1998.

122

[70] Welz, M., and Hutchison, A. Interfacing Trusted Applications with Intru-
sion Detection Systems. In Recent Advances in Intrusion Detection: 4th Inter-
national Symposium; proceedings (RAID 2001) (Davis, CA, USA, October 10 -
12, 2001 2001), W. Lee, L. Me, and A. Wespi, Eds., vol. 2212 of Lecture Notes
in Computer Science, Springer, Berlin, pp. 37–53.

[71] Williams, P. D., Anchor, K. P., Bebo, J. L., Gunsch, G. H., and Lam-

ont, G. D. CDIS: Toward a Computer Immune System for Detecting Network
Intrusions. In Recent Advances in Intrusion Detection: 4th International Sympo-
sium; proceedings (RAID 2001) (Davis, CA, USA, October 10 - 12, 2001 2001),
W. Lee, L. Me, and A. Wespi, Eds., vol. 2212 of Lecture Notes in Computer
Science, Springer, Berlin, pp. 117–133.

[72] Yang, J., Ning, P., Wang, X. S., and Jajodia, S. CARDS: A Distributed
System for Detecting Coordinated Attacks. In Proceedings of Sixteenth Annual
Working Conference on Information Security (SEC 2000) (August 2000), S. Qing
and J. H. P. Elof, Eds., Kluwer Academic, pp. 171–180.

APPENDIX

124

A. Prototype Details

The appendices to this thesis give details on the prototype software, such that the

prototype system could easily be reconstructed. When in doubt as to whether or not

a prototype detail or prototype design decision detail is necessary for the construction

of another prototype system, the detail has been included. Hence, these appendices

lean toward the specification of the prototype in greater detail than is necessary for

reconstruction.

Appendix A contains general information about the prototype, but does not in-

clude information on the Snort to NFR N-Code compiler. As may be noted from the

title of this thesis “Compilation for Intrusion Detection Systems”, the emphasis in

this thesis has been on the process of compilation, not on the language to compile.

This emphasis on the semantic aspects of the language, rather than the syntax is both

for software engineering reasons and as a direct response to the failure of the reverse

approach of the IETF standardization effort. For software engineering reasons, it is

necessary to specify the semantic aspects of the language before specification of the

syntax. This thesis does not contribute the full semantics for the proposed language,

so any syntax given for the language is premature. The thesis does contribute indi-

cations that such a language is possible. Indeed, the prototype is a demonstration

of such a system. As this demonstration relates to appendix A, the whole system is

detailed, as this is the proposed context for the language.

Appendix B contains the justification for the design choices in the compilation of

the Snort rule language. It contains a table of example rules which cover most of the

cases of the actual usage of Snort. This table is used as justification for the generation

125

of a well defined Snort language used by the compiler. This Snort language differs

from the language described in [54]. In any case, commonalities between option fields

were exploited to simplify the task of compilation of Snort rules.

Appendix C contains details about the implemented prototype compiler from

Snort to N-Code. It includes examples to demonstrate how various components work.

The shortcomings of the prototype compiler are noted both in appendix C and in

section 4.7.

The inclusion of the Scheme code in the figures is meant to complete the details of

the descriptions. In choosing between space in this thesis and describing exactly how

the prototype works, usually, but not always, describing exactly how the prototype

works was preferred. This choice of preferring to describe implemented functionality is

consistent with the goals of demonstrating the prototype and easing the task of future

implementors. Since the code for the system was written in a powerful programming

language, the code is not very long, especially considering the functionality. If the

prototype system were written in a more traditional programming language like ‘C’ or

‘C++’, the code would be at least a factor of two longer than it is. These appendices

do not include an introduction to the programming language Scheme. The reader

looking for more information about Scheme is invited to consult Dybvig [19] or

Abelson [1].

The constructed system was a prototype, not a refined product. The code was

intended to construct sufficient functionality of the system so that the implementation

based tests could function. Much of this prototype should not be used as a basis for

a more extensive system. It is a common software engineering mistake to attempt

to turn a prototype system into a full featured maintainable system. The goals in

developing the two systems are different, specifically, for the prototype, every corner

possible is cut to attempt to resolve the critical questions, whereas for a full featured

maintainable system extensive corner cutting is counterproductive. The code that

appears in the figures in these appendices should be treated as prototype code. The

126

figures show one way of constructing the system with the goal of minimizing the

initial software development time. Lest this code be criticized for aesthetic or software

engineering reasons, the last point is repeated: the goal during the development of the

prototype capable of demonstrating basic functionality of the system was to minimize

software development time, not to produce a full featured maintainable system.

Appendix A is organized as follows: section A.1 discusses the general structure of

the system with subsections on specific aspects of the system; section A.2 discusses the

implementation of resource limited structures; section A.3 discusses the implemention

of an alert collector for DOS attacks; section A.4 discusses the generation of inputs

for the self organizing map intrusion detection module.

A.1 General Structure

Figure A.1 is the main loop for the run time system. It iterates through the data

and control streams checking for new data or commands to process. When it finds

new data or a new command, it dispatches the processing function associated with

that data or command stream. In addition, it defines the tear-down procedure that

is called by this node to tear-down this node and this node’s sub-nodes of the system.

As noted in section 4.1, this prototype was constructed using polling I/O.

Message passing is used in this system as an object oriented encapsulation tech-

nique. For example, in figure A.1, different types of message pipes will perform

different operations for ’do-msg, but they are all called by the same mechanism. In

addition, message passing enforces the encapsulation. For example, proc-msg-pipes

can not access the internal data of a message pipe because only the function interface

is exposed. Furthermore, functions are not mutable in Scheme.

A.1.1 Message Pipes

The message pipe abstraction encapsulates a data stream along with the corre-

sponding processing mechanisms. Figure A.2 lists the general encapsulation. The

data stream is input-port , which is further encapsulated by make-line-buffer . The

127

(define (proc-msg-pipes pipes) ; pipes could also stand to be global
(set! ∗clean-up∗ (lambda ()

(map (lambda (p) (p ’close)) pipes)
(exit)))

(let loop ((l pipes)
(did-one #f))

(cond

[(null? l)
(if (not did-one) (sleep-usec 20000))
(loop pipes #f)]
[((car l) ’msg-ready?)
((car l) ’do-msg)
(loop (cdr l) #t)]
[else (loop (cdr l) did-one)])))

Figure A.1: Main System Loop

processing mechanisms are parser and eval-f . The external interface only takes the

commands ’msg-ready?, ’do-msg, and ’close. Figures A.3, A.4, and A.5 list the imple-

mented types of message pipes. A message pipe type for NFR was not implemented,

as an actual copy of NFR was not obtained, section 4.7 contains more details on the

failure to obtain a copy of the NFR IDS.

As may be noted in figure A.4, this version of the system bases the configured

system on an existing Snort configuration file. This Snort configuration file is parsed

and transformed into a configuration file for Snort. The transformation of Snort

rules is necessary to include additional information in the reporting of Snort alerts

using the chosen output module. It is detailed in figure A.21. This version of the

system does not support multiple distinct Snort configurations. Section 4.2 details

reasons for supporting a distinct Snort configuration file for every Snort node. An

earlier version of the system required the Snort rules to be given in a parsed form

as an argument to make-snort-msg-pipe. Although allowing make-snort-msg-pipe to

accept lists of rules is more useful than only accepting Snort configuration filenames,

128

(define make-msg-pipe
(lambda (input-port parser eval-f close-f . l)

(assert (input-port? input-port)) ; may want one reading
; from a local structure...

(let ((l-buf (make-line-buffer input-port)))
(if (and (not (null? l)) (procedure? (car l))) ; boot procedure

((car l) l-buf))
(lambda (cmd)

(case cmd
[(msg-ready?) (l-buf ’line-ready?)]
[(do-msg) (eval-f (parser (l-buf ’get-line)))]
[(close)
(close-f)
(l-buf ’close)]
[else (error ’msg-pipe "Unknown cmd ˜s" cmd)])))))

Figure A.2: General Message Pipe

make-snort-msg-pipe was changed to accepting Snort configuration filenames instead

because this is how the system was normally used.

Section 4.2 briefly discusses the method by which this system performs a tear-

down. Snort nodes are sent a SIGKILL signal by their parent nodes. Statistical

nodes, which are all interior nodes, send their subnodes the (∗clean-up∗) command

before closing their data streams and exiting. These functions can be observed as

an argument to make-msg-pipe in figures A.4 and A.5. Any broadcast to all of the

nodes could be done by a similar method. A general broadcast mechanism was not

implemented because ∗clean-up∗ was the only command that was broadcast in this

prototype.

A.1.2 Input Port Encapsulation

Figure A.6 shows the encapsulation of input streams into line buffered input.

The encapsulation eases system development because the messages are line delim-

ited. This is one way of handling this in a generic way for all of the input types.

The interface commands are ’eof?, ’line-ready?, ’peek-line, ’get-line, and ’close. The

129

(define (make-stdin-msg-pipe)
(make-msg-pipe (current-input-port)

parse-scheme-line
eval
(lambda () #t)))

Figure A.3: Scheme Standard Input Message Pipe

current implementation is not as fast as possible due to the unnecessary translations

of string representations between a buffer of characters and a list of characters by

make-line-buffer and other functions. Optimizations like avoiding string representa-

tion translations are not important to the proof of concept given by the prototype.

Buffer overflows attacks against this system are not an issue due to the checking of

memory bounds by the Scheme run time system. There are valid reasons to limit the

input buffer size. If one message is greater than 10MB, it would seriously degrade

the system to handle it. Code could be added to the make-line-buffer routine for a

way to limit the inputs for every message type.

A.1.3 Parsing

The parsing of Scheme is the easiest of the data streams to parse, so that is

treated first. Next, utilities for parsing other input methods are detailed, followed

by the parsing of alerts generated by Snort with an example. Next, section 1 covers

parsing of the Snort rules. Finally, in section 2 the parsing of Snort configuration files

is treated.

Figure A.7 details the parsing of Scheme for the input to a node. Unsurprisingly,

it simply calls the underlying Scheme mechanism for parsing Scheme input.

The parsing of other data streams was handled in a top down fashion with a

simple utility routine. Strings were split based upon some token. This splitting on

various tokens was powerful enough to handle the configuration files and all but nine

of the rules for Snort. Section 4.7 details the rational behind this choice for parsing

130

(define make-snort-msg-pipe
(lambda () ; no args yet, eventually hostname, config

(let ((proc (process
(string-append
"exec "

snort-bin
" -i "
snort-ether-interface
" -c "

(existing-snort-conf->idsds snort-config ".fixme host")
" 2> /dev/null"))))

(and (list? proc) (eqv? 3 (length proc)) (<= 1 (caddr proc))
(make-msg-pipe (car proc)

parse-csv
∗ids-msg-eval∗
(lambda ()

(kill ’SIGTERM (caddr proc))))))))

Figure A.4: Snort Message Pipe

(define (make-stat-msg-pipe)
(let ((proc (process

(string-append
"exec "

scheme-bin
" "

this-file
" 2> /dev/null"))))

(and (list? proc) (eqv? 3 (length proc)) (<= 1 (caddr proc))
(make-msg-pipe (car proc)

parse-scheme-line
∗stat-msg-eval∗
(lambda () (fprintf (cadr proc) "˜s˜n"

’(∗clean-up∗)))
(make-boot-stat (cadr proc) ’(do-two-snort))))))

Figure A.5: Statistical Node Message Pipe

131

; line buffered IO
(define make-line-buffer

(lambda (port)
(let∗ ((l ’())

(eof? #f)
(is-line?
(lambda z

(let ((x (if (null? z) l (car z))))
(and (pair? x) (not (null? x)) (eqv? (car x) #\newline)))))

(peek-line ; no peeking at unfull lines
(lambda ()

(list->string (reverse (cdr l)))))
(buffer-read-char
(lambda ()

(let ((c (read-char port)))
(if (eof-object? c)

(set! eof? #t)
(set! l (cons c l))))))

(line-ready? ; returns false on EOF w/o a line
(lambda ()

(let loop ()
(cond

[(is-line?) #t]
[eof? #f]
[(char-ready? port)
(buffer-read-char)
(or (is-line?) (loop))]
[else #f])))))

(lambda (cmd)
(case cmd

[(eof?)
(and (not (line-ready?))

eof?
; (null? l) - drop unfinished lines
)]

[(line-ready?)
(line-ready?)]

Figure A.6: Line Buffered Input Encapsulation

132

[(peek-line)
(peek-line)]
[(get-line)
(assert (line-ready?))
(let ((r (peek-line)))

(set! l ’())
r)]

[(close)
(close-input-port port)]
[else (printf "missed case")]
)))))

Figure A.6: Continued

(define parse-scheme-line
(lambda (s)

(let∗ ((p (open-input-string s))
(x (read p))) ; how does this handle blank lines?

(close-input-port p) ; unnecc.
x)))

Figure A.7: Scheme Input Parsing

the Snort rules. The splitting routine and a helper routine for the splitting routine

are detailed in figure A.8. An inverse of the splitting routine, which is used at some

points in the system, is detailed in figure A.9.

A.1.3.1 Parsing Snort Output

The parsing of Snort uses the splitting routine to parse alerts from a specific Snort

output module. The output module used for Snort running in this system prints fields

for the alert in a comma separated list. The output module is called ‘csv’ for comma

separated values. A few minor modifications were made to the ‘C’ Snort code for the

output module consisting of minor bug fixes, enabling the output module to write

to standard output, and the addition of the option for the output of an additional

field. The default output configuration string and the output configuration string

133

(define (split token str)
(map list->string

(letrec
((token-ref-loop

(lambda (l ref)
(cond

[(null? l) #f]
[(eqv? (car l) token) ref]
[else (token-ref-loop (cdr l) (+ 1 ref))])))

(token-ref
(lambda (l)

(token-ref-loop l 0))))
(let loop

((x (string->list str)))
(let ((r (token-ref x)))

(if r
(let ((y (split-at-ref x r)))

(cons (car y) (loop (cddr y)))) ;cddr deletes the token
(list x)))))))

; split-at-eq? would make it clearer
(define (split-at-ref l ref) ; slow implementation

(cond

[(< ref 0) (error ’split-at-ref "bad argument")]
[(zero? ref) (cons ’() l)]
[(null? l) (error ’split-at-ref "reference longer than argument")]
[else
(let ((r (split-at-ref (cdr l) (− ref 1))))

(cons (cons (car l) (car r)) (cdr r)))]))

Figure A.8: Token Splitting Routines

134

(define (unsplit token l) ; undoes split
(cond

[(null? l) ""]
[(null? (cdr l)) (car l)]
[else
(string-append (car l)

(string token)
(unsplit token (cdr l)))]))

Figure A.9: Inverse of Splitting Routine

;tcpln is a bug and typo in Snort CSV output module
(define csv-default-output-string

(string-append ; broken into substrings for display in thesis
"timestamp,msg,proto,src,srcport,dst,dstport,ethsrc,ethdst,ethlen,"
"tcpflags,tcpseq,tcpack,tcpln,tcpwindow,ttl,tos,id,dgmlen,iplen,"
"icmptype,icmpcode,icmpid,icmpseq"))

(define csv-output-string
"msg,timestamp,usectime,src,srcport,dst,dstport,iplen,tcplen,dgmlen")

Figure A.10: Snort Output Configuration Strings

used by this system is shown in figure A.10. Example output from Snort configured

with these output configuration strings is shown in figure A.11.

The comma separated values from Snort are further parsed by splitting the lines

at the commas. Then the output field names are associated with the field values to

form an association list. This code is shown in figure A.12 and an example is shown

in figure A.13.

The parsed Snort output is accessed through functions that deal with extracting

the relevant data when the relevant data does not directly correspond to an output

field. For example, the size of a TCP segment is not given as an output field, so it is

computed from the entire IP datagram size minus the IP header size minus the TCP

header size. Figure A.14 shows details.

135

With csv-default-output-string configured:

12/01-10:05:24.746579 ,sid 528 BAD-TRAFFIC loopback traf-
fic,ICMP,127.0.0.1,,127.0.0.1,,0:0:0:0:0:0,0:0:0:0:0:0,0x62,,,,,,64,0,0,84,20,8,0,,

With csv-output-string configured:

sid 528 BAD-TRAFFIC loopback traffic,12/01-10:16:37.949747
,1070291797949747,127.0.0.1,,127.0.0.1,,20,,84

Figure A.11: Example Snort Outputs

(define (parse-csv csv-line)
(apply map cons (map (lambda (l) (split #\, l))

(list csv-output-string csv-line))))

Figure A.12: Parsing Snort Output

With csv-output-string configured:

(("msg" . "sid 528 BAD-TRAFFIC loopback traffic")
("timestamp" . "12/01-10:16:37.949747 ")
("usectime" . "1070291797949747")
("src" . "127.0.0.1")
("srcport" . "")
("dst" . "127.0.0.1")
("dstport" . "")
("iplen" . "20")
("tcplen" . "")
("dgmlen" . "84"))

Figure A.13: Example of Snort Output Parsing

136

(define (get-alert-field field alert)
(let ((x (assoc field alert)))

(and x (cdr x)))) ; or if/then

(define (get-alert-sid alert)
(let ((x (get-alert-field "msg" alert)))

(and x (string->number
(cadr (split #\space x)))))) ;eventually do something fancier.

(define (get-alert-tcpseg-size alert)
(let ((f (lambda (x) (let ((y (get-alert-field x alert)))

(if y (string->number y) 0)))))
(− (f "dgmlen")

(+ (f "iplen") (f "tcplen")))))

Figure A.14: Accessing Snort Alert Data

A.1.3.2 Parsing Snort Configuration Files

Parsing Snort configuration files involves recognizing the Snort configuration file

syntax and properly interpreting the Snort variables. Variable interpretation is nec-

essary at the parsing level to deal with locating files that are included in the Snort

configuration file. Snort configuration files are line based, with a minor exception of

the specification of the output for a new output module, which has been ignored for

the purpose of this system. A line starting with a ‘# ’ character is considered to be a

comment line. Otherwise, a non-blank line is required to start with a space delimited

string that states the type of option to specify. For example, lines that include other

files start with the include keyword.

According to the Snort manual [54], Snort rules start with the string “alert”

followed by six mandatory space delimited fields followed by the option fields in

parenthesis. The option fields are delimited by semicolons and use a single colon to

separate the field name from the optional field argument. The parser shown in figure

A.15 uses these assumptions to parse a snort rule. An example rule along with its

parsed form is shown in figure A.16. As noted in section 4.7, for nine Snort rules

137

this method of parsing did not work due to escaped semicolons. The nine rules for

which this method of parsing did not work are listed in table A.1. The parsed Snort

rules are encapsulated by an association list of fields and their arguments. For the

preservation of the semantics of multiple content options, it is necessary that the

order in which they appear in the alert Snort string be preserved. The parsed Snort

rule encapsulation and related functions are detailed in figure A.17.

Snort has its own system of variables and substitution. Snort substitutions are

textual substitution. Extensive documentation on programming language aspects

of the use of these variables is not found in the manual [54]. All Snort variables

are of global scope and are defined for the remainder of the configuration file. It is

unspecified in [54] whether the same variable can be defined multiple times and if so,

what value to take. Also unspecified in [54] is how to disambiguate multiple possible

variable substitutions. For example, if a variable A is defined to be D and variable AB

is defined to be E, then the value of $AB may be DB or E.

Figure A.18 details the encapsulation of Snort variables and substitutions in this

system. One design for variable encapsulation would be to perform all of the sub-

stitutions during the reading of the Snort configuration file. This design choice has

the disadvantage that the internal rules cannot change the values of the variables

before writing the configuration file for the running system. Changing the values of

the variables before writing the configuration file for the running system is a desir-

able property, especially as host and network information are commonly specified in

variables. In the implemented prototype, the substitutions are delayed until either

an attempt is made to compile the rule into an N-Code rule or a configuration file

for Snort is written, at which point the variables and their values are written to the

configuration file. For prototyping and debugging reasons, this implementation de-

sign choice of delaying substitution was ignored for variables whose value depends on

the value of other variables. In the constructed prototype system, the substitutions

138

(define (parse-snort-rule s) ; s is a string
(letrec

((split-line ; space delimited for first 7 fields only
(lambda (s)

(let ((x (split-at-ref (split #\space s) 7)))
(cons (car x) (unsplit #\space (cdr x))))))

(parse-misc-field
(lambda (s)

(filter (lambda (x) (or (null? x) (eqv? (car x) "")))
(map (lambda (f) (map remove-leading-spaces

(split #\: f)))
(split #\;

(substring s 1 (− (string-length s) 1))))))) ; kill “()”
(parse-line
(lambda (s)

(let ((l (split-line s)))
(make-snort-rule (car l) (parse-misc-field (cdr l)))))))

(parse-line s)))

(define (remove-leading-spaces s)
(remove-leading (lambda (c) (eqv? c #\space)) s))

(define remove-leading ; inefficient.
(lambda (r? s)

(let loop ((x (string->list s)))
(cond

[(null? x) ""]
[(r? (car x)) (loop (cdr x))]
[else (list->string x)]))))

Figure A.15: Snort Rule Parsing

139

Table A.1: Snort Rules With Parsing Difficulties

SID Problem Snort Rule
326 \; alert tcp any any -> 10.1.1.0/24 79 (msg:"sid 326

FINGER remote command \; execution attempt";
flow:to server,established; content:"|3b|"; reference:cve,CVE-
1999-0150; reference:bugtraq,974; reference:arachnids,379;
classtype:attempted-user; sid:326; rev:5;)

975 \; alert tcp any any -> 10.1.1.0/24 80 (msg:"sid 975
WEB-IIS .asp\; flow:to server,established; uricon-
tent:".asp|3a3a|$DATA"; nocase; reference:bugtraq,149;
reference:url,support.microsoft.com/default.aspx?scid=kb\;
EN-US\; q188806; reference:cve,CVE-1999-0278; refer-
ence:nessus,10362; classtype:web-application-attack; sid:975;
rev:8;)

1321 Other alert ip any any -> 10.1.1.0/24 any
(msg:"sid 1321 BAD-TRAFFIC 0 ttl"; ttl:0;
reference:url,www.isi.edu/in-notes/rfc1122.txt; refer-
ence:url,support.microsoft.com/default.aspx?scid=kb\; EN-
US\; q138268; sid:1321; classtype:misc-activity; rev:6;)

1333 \; alert tcp any any -> 10.1.1.0/24 80 (msg:"sid 1333 WEB-
ATTACKS id command attempt"; flow:to server,established;
content:"\; id"; nocase; sid:1333; classtype:web-application-
attack; rev:4;)

1565 \; alert tcp any any -> 10.1.1.0/24 80 (msg:"sid 1565
WEB-CGI eshop.pl arbitrary commane execution attempt";
flow:to server,established; uricontent:"/eshop.pl?seite=\; "; no-
case; reference:cve,CAN-2001-1014; classtype:web-application-
attack; sid:1565; rev:4;)

1815 \; alert tcp any any -> 10.1.1.0/24 80 (msg:"sid 1815
WEB-PHP directory.php arbitrary command attempt";
flow:to server,established; uricontent:"/directory.php";
content:"dir="; content:"\; "; reference:bugtraq,4278;
reference:cve,CAN-2002-0434; classtype:misc-attack; sid:1815;
rev:2;)

140

Table A.1: Continued

SID Problem Snort Rule
1865 \; alert tcp any any -> 10.1.1.0/24 80 (msg:"sid 1865

WEB-CGI webdist.cgi arbitrary command attempt";
flow:to server,established; uricontent:"/webdist.cgi"; no-
case; content:"distloc=\; "; nocase; reference:bugtraq,374;
reference:cve,CVE-1999-0039; reference:nessus,10299;
classtype:web-application-attack; sid:1865; rev:1;)

1947 \; alert tcp any any -> 10.1.1.0/24 8888 (msg:"sid 1947 WEB-
MISC answerbook2 arbitrary command execution attempt";
flow:to server,established; uricontent:"/ab2/"; content:"\; ";
distance:1; classtype:web-application-attack; sid:1947; rev:2;)

2054 \; alert tcp any any -> 10.1.1.0/24 80 (msg:"sid 2054
WEB-CGI enter bug.cgi arbitrary command attempt";
flow:to server,established; uricontent:"/enter bug.cgi"; nocase;
content:"who="; content:"\; "; distance:0; reference:cve,CAN-
2002-0008; classtype:web-application-attack; sid:2054; rev:2;
)

of variable references in variable value strings happen at the variable define time as

may be seen in the code for define-var! in figure A.18.

Snort configuration files are line based. Each line can either be a comment, define

an alert rule, define a variable, include another file, configure a preprocessor, configure

an output module or define a class of alerts. A comment line is either completely

whitespace or starts with the # character. The remaining lines start with the keyword

for the type of operation. A listing of how this system handles the snort configuration

files is provided in figure A.19. In the prototype code, recursive file includes are not

checked against. The path to files with a relative path specification in their Snort

include string is relative to the command line Snort configuration file, not the current

working directory as is the default in UNIX. The code to fix this idiosyncrasy is listed

in figure A.20.

A slight transform is preformed upon incoming Snort rules by the code in figure

141

Snort Rule:
alert tcp $HTTP SERVERS $HTTP PORTS -> $EXTERNAL NET any
(msg:"ATTACK-RESPONSES command completed"; content:"Command com-
pleted"; nocase; flow:from server,established; classtype:bad-unknown; sid:494;
rev:6;)"

Parsed Snort Rule:

(("alert" "alert")
("proto" "tcp")
("src-net" "$HTTP SERVERS")
("src-port" "$HTTP PORTS")
("dir" "->")
("dst-net" "$EXTERNAL NET")
("dst-port" "any")
("msg" "\"ATTACK-RESPONSES command completed\"")
("content" "\"Command completed\"")
("nocase")
("flow" "from server,established")
("classtype" "bad-unknown")
("sid" "494")
("rev" "6"))

Figure A.16: Example of Parsed Snort Rule

A.21. This transformation puts the SID into the message string so that the SID is

printed when an alert is generated. The interface for the output module does not

allow for the easy modification of the output module to facilitate printing the SID

unless it is inside of the message field already. A regeneration of Snort files for use

in this system along with the total transformation procedure for an existing Snort

configuration file is shown in figure A.22.

A.1.4 Booting

In the first version of this prototype, each item necessary for booting was defined

on a separate line. Then this list of lines was transformed into a tree for booting. To-

ward this end, the encapsulation detailed in figure A.23 was developed. Although this

encapsulation has the advantage that non-tree based systems can have a configuration

142

(define snort-main-field-list
’("alert" "proto" "src-net" "src-port" "dir" "dst-net" "dst-port"))

(define make-snort-rule
(lambda (m o)

(append (map list
snort-main-field-list
m)

o)))

(define snort-rule-main
(lambda (l)

(map (lambda (k) (cadr (assoc k l))) snort-main-field-list)))

(define snort-rule-options
(lambda (l)

(filter (lambda (x) (member (car x) snort-main-field-list))
l)))

(define (snort-rule->string r)
(apply
string-append
(append (apply append

(map (lambda (s) (list s " "))
(snort-rule-main r)))

’("(")
(apply append

(map (lambda (l) (cons (car l)
(if (null? (cdr l))

’("; ")
(list ":" (cadr l) "; "))))

(snort-rule-options r)))
’(")"))))

Figure A.17: Snort Rule Encapsulation

143

(define (make-snort-var-env)
(letrec

((v ’())
(get-var
(lambda (x)

(let ((y (assoc x v)))
(if y (cdr y) #f))))

(define-var!
(lambda (var val)

(let loop
((x val))

(let ((y (snort-sub x))) ; snort manual claims all are resolvable.
(if (equal? x y)

(if (assoc var v)
(set-cdr! (assoc var v) y)
(set! v (cons (cons var y) v)))

(loop y))))))
(defined?

(lambda (x) (assoc x v)))
(var-strings
(lambda ()

(let loop
((l v)
(r ’()))

(if (null? l)
r
(loop (cdr l)

(cons (string-append "var " (caar l) " " (cdar l)) r))))))
(assoc-pred
(lambda (p? l)

(cond

[(null? l) #f]
[(p? (caar l)) (car l)]
[else (assoc-pred p? (cdr l))])))

Figure A.18: Snort Variable Encapsulation

144

(superstring?
(lambda (s x)

(if (< (string-length s) (string-length x))
#f
(let ref-loop

((n (string-length x))
(i 0))

(cond

[(>= i n) #t]
[(equal? (string-ref s i) (string-ref x i))
(ref-loop n (+ i 1))]
[else #f])))))

(snort-var-sub
(lambda (s)

(let ((v (assoc-pred (lambda (key) (superstring? s key)) v)))
(if v

(string-append (cdr v) (substring s
(string-length (car v))
(string-length s)))

(string-append "$" s))))) ; no variable found
(snort-sub
(lambda (s)

(let ((x (split #\$ s)))
(apply string-append

(car x)
(map snort-var-sub (cdr x)))))))

(lambda (cmd . l)
(case cmd

[(get get-var val) (apply get-var l)]
[(define define-var! set-var! add-var!) (apply define-var! l)]
[(defined?) (apply defined? l)]
[(var-strings) (var-strings)]
[(sub) (apply snort-sub l)]))))

Figure A.18: Continued

145

(define (parse-snort-rule-file f-in)
(let ((env (make-snort-var-env)))

(let file-loop
((f f-in))

(let∗ ((in-p (open-input-file f))
(in-buf (make-line-buffer in-p))
(lines
(let line-loop

()
(if (in-buf ’eof?)

’()
(let∗ ((l (in-buf ’get-line))

(s (split #\space l)))
(case-equal (car s)

[("alert")
(cons (snort-rule-transform l) (line-loop))]
[("var")
(env ’define-var! (cadr s) (caddr s))
(line-loop)]
[("#" "" " ") ; doesn’t need to be "# "

(line-loop)]
[("include")
(append (cdr (assoc ’lines

(file-loop
(snort-filename-translate
(env ’sub (cadr s))))))

(line-loop))]
[("preprocessor" "output" "config")
(cons l (line-loop))]
[else

;(error ’snort-config-line-processor "Unknown line type ˜a˜n" (car s))
(line-loop)]))))))

(list (cons ’env env) (cons ’lines lines))))))

Figure A.19: Snort Configuration File Parsing

146

(define (snort-filename-translate f) ; handle some ugly assumptions of Snort
(if (member #\/ (string->list f))

f
(string-append snort-config-dir "/" f))) ; not necessarily working dir.

Figure A.20: Fixing Snort Relative Path Includes

(define (snort-rule-transform l)
(let∗ ((x (parse-snort-rule l))

(s (assoc "sid" (snort-rule-options x)))
(m (assoc "msg" (snort-rule-options x))))

(set-cdr! m (list (string-append
"\"sid "

(cadr s)
" "

(substring (cadr m) 1 (string-length (cadr m))))))
(snort-rule->string x)))

Figure A.21: Snort Rule Transformation

specified, this representation is more difficult than necessary for an implementation

restricted to trees. For the purpose of booting, the representation was transformed

into a tree. Figure A.24 is an example of a system configuration using this initial

implementation.

The second attempt at the language for system configuration simply specifies in a

tree the hostnames as strings or as symbols whose values are the hostname as a string.

If the node is a leaf node, then it is assumed to run the configured version of Snort on

that node. If the node is an interior node, it is assumed to run the statistical node type

with the ∗default-rules∗ rule database. The transformation for the tree is preformed

by expanding the tree so that each node starts with a configuration type. Figure

A.25 details the code to do the transformation along with an example. The example

in figure A.24 is ("fire" "fire" "agent") in the newer language. From a language

development standpoint, further transformations may be useful. For example, it is

147

(define (print-snort-rule-file x f-out)
(let∗ ((out-p (and f-out

(begin

(if (file-exists? f-out)
(delete-file f-out))

#t)
(open-output-file f-out)))

(var-lines ((cdr (assoc ’env x)) ’var-strings))
(l (append var-lines (cdr (assoc ’lines x)))))

(fprintf out-p
"˜a"
(apply string-append

(let loop
((y l))

(if (null? y)
’()
(cons (car y)

(cons "\n"
(loop (cdr y))))))))

(close-output-port out-p)))

(define (existing-snort-conf->idsds f suffix)
(let ((x (string-append f suffix)))

(print-snort-rule-file (parse-snort-rule-file f) x)
x))

Figure A.22: Writing Snort Configuration Files

common to run a signature based IDS on every interior node. It may be useful to

specify a default host based IDS for the purpose of running by default on interior

nodes.

As a shortcut for system development, the implemented prototype only used one

type of configuration for statistical or signature nodes. For many smaller systems

this implementation shortcoming is an irrelevant limitation. This shortcut saves the

development of the aspects of the language dealing with specification of individual

148

(define get-node-name car)
(define get-node-type cadr)
(define get-node-host caddr)
(define get-node-depend cadddr)

(define (find-node-user l)
(find-abstract (lambda (n) (eq? ’node-user (get-node-type n))) l))

(define (find-node-named name l)
(find-abstract (lambda (n) (eq? name (get-node-name n))) l))

Figure A.23: Older System Configuration Encapsulation

((root node-user "fire" fire-stat)
(fire-stat stat "fire" fire-sig agent-sig)
(fire-sig snort "fire")
(agent-sig snort "agent")))

Figure A.24: Example of Older Booting Configuration

signature or statistical based types. A complete version of the language needs a way

of specifying different individual signature and statistical configurations.

For booting, Scheme nodes are loaded with the code for the entire system, then

sent their configuration commands through standard input. Figure A.26 details the

boot procedure for statistical nodes. The full current booting procedure is not as

refined as possible and should be cleaned up by those wishing to advance this system

further.

A.1.5 Configuring Statistical Rules

As noted in section 4.1, a database object was constructed to manage the organi-

zation of rules for interior nodes. This way of interior rule management did not prove

as useful as expected. Although it provided a way of systematically organizing and

retrieving rules, additional work is suggested so that operations other than simply

applying the first rule retrieved or applying all of the rules retrieved can be accom-

149

(define (ids-config-short->long x) ; expands syntatic sugar
(cond

[(list? x)
(cons ’stat

(cons (car x)
(map ids-config-short->long (cdr x))))]

[(or (string? x) (symbol? x)) ; these symbols should evaluate to strings
(list ’snort x)]
[else (error ’ids-config-snort->long)]))

> (ids-config-short->long ’(h1 h1 (sn1 sn2 sn3 sn4)))

(stat h1
(snort h1)
(stat sn1 (snort sn2) (snort sn3) (snort sn4)))

Figure A.25: Newer Booting Configuration

plished while maintaining reasonable complexity of rule management. This problem

is significant for systems with many interior rules and is not adequately solved in the

prototype system. Figure A.27 lists the rule database encapsulation. In this encapsu-

lation, rules can either be global and apply to all of the alerts or they can be specific

to a single alert type. Figure A.28 shows an example usage of the rule database. Fig-

ure A.29 shows how the database is used by the default Snort and Statistical nodes

of the system.

A.1.6 Treatment of Time

As noted in section 4.3, time synchronization issues were avoided for the construc-

tion of the prototype. Internally, time is represented as the number of microseconds

returned by the gettimeofday UNIX system call. For both performance and ease

of system development reasons, this time representation was stored as a 64 bit inte-

ger rather than as a string representing the formatted time. Figure A.30 details the

C system call code. Figure A.31 details the Scheme code for interfacing with the C

helper functions. Other Scheme UNIX system library calls are detailed in figure A.32.

150

(define make-boot-stat
(lambda (out-port cmd)

(lambda (l-buf)
(fprintf out-port "˜s˜n" ’(set! ∗human-reader∗ #f))
(grab-n-lines 3 l-buf)
(printf "Sending scheme subprocess the command ˜s˜n" cmd)
(fprintf out-port "˜s˜n" cmd))))

(define (grab-n-lines n x)
(if (<= n 0)

’()
(let loop () ; TODO: line buffers should also do blocking IO

(if (x ’line-ready?)
(cons (x ’get-line) (grab-n-lines (− n 1) x))
(loop)))))

;proc-msg-pipes is the main loop
(define (snort-node hostname)

(proc-msg-pipes (list (make-stdin-msg-pipe) (make-snort-msg-pipe hostname))))

(define (config-stat-node sub-nodes)
(proc-msg-pipes (cons (make-stdin-msg-pipe)

(map ids-config
sub-nodes))))

Figure A.26: Booting Scheme Based Nodes

A.1.7 Event Queues

Event queues were created as part of the prototype. The event queue was intended

to allow for the computation of time averaging components. As noted in section 4.3,

real time INBOUNDS can display the vector of SOM input values every 60 seconds

during the duration of a connection. To model this displaying, it would be easy to

put a callback in a time based event queue for 60 seconds later every time the vector

of SOM input values is printed or the connection is opened. With a possibly large

latency, the 60 second interval updated values for the vector of SOM input values

can be computed upon arrival of a new packet. Unfortunately for this method of

151

(define (make-stat-rule-db)
(letrec ((singles ’())

(globals ’())
(rule-put
(lambda (rule l)

(cond

[(null? l)]
[(list? l) (map (lambda (x) (rule-put rule x)) l)]
[(number? l)
(let ((x (assoc l singles)))

(if x
(set-cdr! x (cons rule (cdr x)))
(let ((y (cons (cons l (list rule)) singles)))

(set! singles y))))]
[(eq? l ’global)
(set! globals (cons rule globals))]
[else (error ’stat-rule-db "Unknown put command ˜s" l)])))

(rule-get
(lambda (n)

; ordering will matter - this may change
(append (let ((x (assoc n singles)))

(if x (cdr x) ’()))
globals))))

(lambda (cmd . l)
(case cmd

[(put)
(apply rule-put l)]
[(put-local)
(apply rule-put l)]
[(put-global)
(rule-put (car l) ’global)]
[(get)
(apply rule-get l)]
[(empty)
(set! singles ’())
(set! globals ’())]
[else
(error ’stat-rule-db "Unknown command")])))))

Figure A.27: Statistical Rule Database Object

152

(define ∗default-rules∗ (make-stat-rule-db))

(∗default-rules∗ ’put-global (make-collector))

(define pass-rule
(lambda (trigger arg)

(if ∗human-reader∗
(printf “Pass-rule − ˜d ˜s˜n” trigger arg)
(printf “˜s˜n” (list ’stat-alert ’pass trigger arg)))))

(∗default-rules∗ ’put-local
pass-rule
’(2000001 2000002 2000003 2000004 2000005))

> (∗default-rules∗ ’get 123)

(#<procedure>)

> (∗default-rules∗ ’get 2000001)

(#<procedure pass-rule> #<procedure>)

Figure A.28: Example Usage of Statistical Rule Database

computing these values without an event queue, the timeout of a TCP session must

still be handled without inspecting new traffic. Hence, for at least the handling of

TCP timeouts, a time based event queue is useful.

As the prototype was constructed, the time based event queue was not integrated

into the lower levels of the system. It was determined that the current SOM module

does not use the 60 second updates. Anomalies on partial connection information is

an area for future work on the INBOUNDS project. Because the event queue allows

for adding events to be executed in the same time period, it allows recursion, which

would destroy the computational claims for the lower levels of the system. For these

two reasons, the time based event queue was not integrated into the prototype. Figure

A.33 details the event queue encapsulation. Figure A.34 details how to process the

153

(define make-ids-msg-eval
(lambda (rule-db get-trigger)

(lambda (msg)
(let∗ ((trigger (get-trigger msg))

(rules (and trigger (rule-db ’get trigger))))
(if rules

; (begin (map (lambda (r) (r trigger msg)) rules))))))) ; do all the rules
((car rules) trigger msg)) rules)))) ; just do the first rule

(define make-snort-msg-eval
(lambda (rule-db)

(make-ids-msg-eval rule-db get-alert-sid)))

(define make-stat-msg-eval
(lambda (rule-db)

(make-ids-msg-eval rule-db
(lambda (stat-msg)

(and (pair? stat-msg)
(eq? (car stat-msg) ’stat-alert)
(cadr stat-msg))))))

(define ∗stat-msg-eval∗ (make-stat-msg-eval ∗default-rules∗))
(define ∗ids-msg-eval∗ (make-snort-msg-eval ∗default-rules∗))

Figure A.29: Usage of Rule Database in the System

event queue indefinitely. It is straightforward to change the process event queue code

so that it has a message pipe interface, hence could be used by the nodes.

A.2 Resource Limited Structures

As noted in section 4.5, a resource limited list was implemented. A version of

the implemented resource limited list is detailed in figure A.35. This version of the

implementation quietly ignores attempts to add past the end of the list. An earlier

version would print out an alert by the resource limited list encapsulation itself if

the resource bounds were exceeded. It was intended to be useful to the user to know

that the bounds were exceeded. Although the exceedence of bounds can be useful

information, generating a separate alert for exceeding the bounds was later thought

154

���������
	���
< ��������� �������� >���������
	���
<
������ �����

>���������
	���
< ��� ���
����� >���������
	���
< !���� �� � ��� >

/* Rather than figure out how to return structs in Scheme,
* use local state */

int gettimeofdayhelper (int n)
{

static struct timeval x;

assert(4 == sizeof(long));

switch (n) {

case 0:
if (gettimeofday(&x, NULL) < 0) {

perror(__FILE__);
exit(-1);

}

return x.tv_sec;
break;

case 1:
return x.tv_usec;
break;

default:

exit(-1);
}

}

Figure A.30: UNIX System Call Helper

155

; make C lib helper.so by gcc -fPIC -shared
(load-shared-object "/lib/libc.so.6") ; linux specific
(load-shared-object "./C lib helper.so")

(define C-gettimeofdayhelper
(foreign-procedure "gettimeofdayhelper" (integer-32) integer-32))

(define (get-time-of-day) ; returns usec
(let∗ ((sec (C-gettimeofdayhelper 0))

(usec (C-gettimeofdayhelper 1)))
(+ (∗ 1000000 sec) usec)))

Figure A.31: Scheme System Time

(define C-usleep
(foreign-procedure "usleep" (unsigned-32) void)) ; may be different arg

; length on sparc.

(define (sleep-usec x)
(if (< 0 x)

(C-usleep x)))

;The name collision doesn’t seem to be a problem.
(define (kill signal pid)

(define sys-signals
’((SIGHUP 1)

(SIGKILL 9)
(SIGTERM 15)))

(let∗ ((x (assoc signal sys-signals))
(r (and x (C-kill pid (cadr x)))))

(if (not x) ; ignore other errors
(error ’kill "bad signal %s%n" signal))))

(define C-kill
(foreign-procedure "kill" (unsigned-32 integer-32) integer-32))

Figure A.32: Assorted Scheme System Library Calls

156

(define make-event-queue
(lambda ()

(let ((q ’(∗head∗)))
(define get-time car)
(define get-events cdr)
(define set-events! set-cdr!)
(define make-time-events cons)
(define (get-first-chain)

(cadr q))
(define (remove-first-element!)

(if (null? (cdr (get-events (get-first-chain))))
(set-cdr! q (cddr q))
(set-events! (get-first-chain)

(cdr (get-events (get-first-chain))))))
(define (add-element! abs-time element)

(let loop
((l q))

(if (null? (cdr l))
(set-cdr! l (list (make-time-events abs-time (list element))))
(let∗ ((y (cadr l)) ; next chain

(x (get-time y)))
(cond

[(< abs-time x)
(set-cdr! l (cons (make-time-events abs-time (list element))

(cdr l)))]
[(equal? abs-time x)
(set-events! y (cons element (get-events y)))]
[else (loop (cdr l))])))))

(lambda (cmd . l)
(case cmd

[(get-first-element) ;peek
(car (get-events (get-first-chain)))]
[(get-first-time)
(get-time (get-first-chain))]
[(remove-first-element!) (remove-first-element!)]
[(empty?) (null? (cdr q))]

Figure A.33: Event Queue

157

[(add-element!)
(add-element!
(case (car l)

[(now) (get-time-of-day)]
[(delta-usec) (+ (get-time-of-day) (cadr l))]
[(abs) (cadr l)])

(if (eqv? (car l) ’now)
(cadr l)
(caddr l)))]

[(dump) ; for debugging
(pretty-print q)]
[else (error ’event-queue "Unknown operation ˜s˜n" cmd)])))))

Figure A.33: Continued

(define process-event-queue ; assume events are functions w/ zero args
(lambda (q)

(if (not (q ’empty?))
(let∗ ((x (q ’get-first-time)) ; order matters

(y (get-time-of-day)))
(if (<= x y)

(let ((e (q ’get-first-element)))
(q ’remove-first-element!)
(e)) ; e can add elements

(sleep-usec (− x y)))
(process-event-queue q)))))

Figure A.34: Indefinitely Processing an Event Queue

158

to not be the best way to handle it. Instead, a predicate ’limit-ever-exceeded? with

a corresponding count ’times-exceeded was added to the encapsulation. Using this

predicate and count, the alert generation routines in the rule which uses the resource

limited structure can handle the reporting of resource bounds exceedence. An example

usage is shown in figure A.36.

A.3 Data Collection

A version of the data collector mentioned in section 4.4 is detailed in figure A.37.

This collector is written to take output either from Snort processes or another collector

as a subnode. When fed information from a collector as a subnode, this collector will

use the counts seen by the subnode to increase the count of alerts seen. The code

has been written directly in Scheme instead of the proposed computationally limited

language. This code constitutes a test for verification that the semantics of the

proposed language are sufficiently powerful. The output routine print-number-list

detailed in figure A.38 will take time proportional to the length of the list, so to

implement this with proper bounds on time and space, it is necessary to either have

a reasonable number of alert types or to use a resource limited list for which-rules.

As the current number of alerts is bounded by 3,000, the enforcement of a tighter

bound on running time by further resource limiting of the which-rules list was not

performed. An example output of this data collector from a ping flood is shown in

figure A.39. If the ping flood were used to mask an attack, the new alert would show

up as an additional alert type reported in the printing of which-rules. As the code is

currently written, an event including a new alert type does not automatically produce

an alert.

A.4 Self Organizing Map Inputs

To compute the inputs for the SOM, special Snort rules that alarmed on the

various types of normal TCP traffic depending on the TCP flags were added to a Snort

159

; A resource limited list. To be fully proper, should not expose underlying
; list, but to be practical, it is useful to do so.

(define (make-limited-list limit . opts)
(let∗ ((opt-l (apply a-list opts))

(l (assoc-default ’initial-list opt-l ’()))
(n (assoc-default ’times-exceeded opt-l 0))
(len (assoc-default ’internal-len opt-l (length l))) ; only use this internally
(check-limit
(lambda ()

(if (< limit len)
(let ((x (− len limit)))

(set! l (cdr-N x l))
(set! n (+ n x))
(set! len limit)))))

(copy-limited-list ; underlying list is not copied
(lambda ()

(make-limited-list limit ’initial-list l ’times-exceeded n ’internal-len len))))
(check-limit)
(lambda (cmd . args)

(case cmd
[(head list) l]
[(length) len]
[(times-exceeded) n]
[(limit-ever-exceeded?) (not (zero? n))]
[(limit) limit]
[(set-list!)
(set! l (car args))
(set! len (length l))
(check-limit)]
[(set-limit!)
(set! limit (car args))
(check-limit)]
[(add-front!)
(set! l (append args l))
(set! len (+ len (length args)))
(check-limit)]

Figure A.35: Resource Limited List

160

[(pop-front!)
(if (zero? len)

(error ’limited-list "tried to pop on an empty list")
(let ((x (car l)))

(set! l (cdr l))
(set! len (− len 1))
x))]

[(add-front) ; non-destructive
(let ((x (copy-limited-list)))

(apply x ’add-front! args)
x)]

[(peek-front)
(if (zero? len)

(error ’limited-list "tried to peek at the front of an empty list")
(car l))]

[else (error ’limited-list
"Unknown command issued to a limited list: ˜s˜n"
cmd)]))))

Figure A.35: Continued

configuration. Then the alarms from these rules were correlated at the statistical layer

of the system to compute the input values for the SOM.

A separate FSM object to compute the SOM value was attached to each TCP

connection. This FSM object is detailed in figure A.40. It is assumed that the

direction of the TCP connection can be specified as an examinable input to the FSM,

while the numerical values should not be examined by a FSM in this system. As

an implementation shortcut, the criteria of not examining numerical values was not

explicitly enforced. As there is very little explicit state in this numerical FSM, a

diagram has not been provided. FSMs have many ways of being specified. The

prototype used explicit FSM programming in Scheme because that was easiest FSM

specification to implement.

Section 4.6 discusses the trade-offs in different strategies for dealing with TCP

reconstruction. Non-integrated TCP reconstruction can be difficult to do while main-

161

(define x (make-limited-list 3))

(define print-info
(lambda (x)

(map (lambda (cmd) (printf "˜s ˜s˜n" cmd (x cmd)))
(list ’head ’length ’limit ’limit-ever-exceeded? ’times-exceeded))))

(define try
(lambda (x . l)

(let ((y (apply x l)))
(print-info x)
y)))

> (try x ’add-front! 5)

length 1
limit-ever-exceeded? #f
times-exceeded 0
limit 3
head (5)

> (try x ’add-front! 3 4 5)

length 3
limit-ever-exceeded? #t
times-exceeded 1
limit 3
head (4 5 5)

> (try x ’set-limit! 2)

length 2
limit-ever-exceeded? #t
times-exceeded 2
limit 2
head (5 5)

Figure A.36: Example Usage of Resource Limited List

162

> (try x ’pop-front!)

length 1
limit-ever-exceeded? #t
times-exceeded 2
limit 2
head (5)
5

> (define y (try x ’add-front 6))

length 1
limit-ever-exceeded? #t
times-exceeded 2
limit 2
head (5)

> (try y ’peek-front)

length 2
limit-ever-exceeded? #t
times-exceeded 2
limit 2
head (6 5)
6

Figure A.36: Continued

taining the bounds on running time of the FSM doing the reconstruction. Specifically,

the TCP reconstruction code needs helper functions that handle the cases where the

connection has not be created yet and where the connection sees a TCP FIN. For

these cases, either the FSM or the helper function must examine the state stored in

the connection hash table. In theory, this gives the FSM access to at least as many

bits for computational storage as the size of the hash table. This would increase the

bounds on running time by 2size(hash table) which is unacceptable. There may be

solutions to the problem of reconstructing TCP while preserving running time which

involve preventing the examination of other parts of the data. Because an acceptable

163

; collector should be identity for first occurrence
(define (make-collector) ; all rules only act by side effects (print)

(let ((x 0)
(y 0)
;(full-rules? #f)
(which-rules ’()) ; or use a resource limited list
;(max-num-rules 3)
;(full-nodes? #f)
;(which-nodes? ’())
)

(lambda (trigger arg)
(if (eq? (car arg) ’stat-alert) ; or rewrite collector properly

(set! arg (cddr arg)))
(cond

[(eq? trigger ’collector) ; collector is input
(set! x (+ x (car arg)))
(set! which-rules (union which-rules (cadr arg)))]
[else
(set! x (+ x 1))
(if (not (memv trigger which-rules))

(set! which-rules (cons trigger which-rules)))])
(if (> x (∗ 2 y)) ; exp back off

(begin

(set! y x)
(if ∗human-reader∗

(begin

(printf "Collected ˜d alarms including rules " x)
(print-number-list which-rules)
(printf "˜n"))

(printf "˜s˜n" (list ’stat-alert ’collector x which-rules))))))))

Figure A.37: Alert Collector

164

(define (print-number-list l)
(cond

[(null? l)]
[(number? (car l))
(printf " ˜d" (car l))
(print-number-list (cdr l))]
[else (error ’print-number-list "Not a number ˜s˜n" (car l))]))

Figure A.38: Alert Collector Output Subroutine

> (do-one-snort)

Collected 1 alarms including rules 528
Collected 3 alarms including rules 528
Collected 7 alarms including rules 528
Collected 15 alarms including rules 528
Collected 31 alarms including rules 528
Collected 63 alarms including rules 528
Collected 127 alarms including rules 528
Collected 255 alarms including rules 528
Collected 511 alarms including rules 528
Collected 1023 alarms including rules 528
Collected 2047 alarms including rules 528

(∗clean-up∗)

[root@trotsky idsds]#

Figure A.39: Alert Collector During Ping Flood

165

solution can be obtained by integrating custom TCP reconstruction, these other pos-

sible solutions were not explored. The code listed in figure A.41 is how the prototype

deals with TCP reconstruction. The TCP reconstruction code in the prototype could

use additional work to make it into a reliable resource bounded portion of the sys-

tem. Specifically, connection timeouts and mechanisms to deal with lost data could

be added. These additions were not vital to the computation of SOM inputs, so were

not done for the prototype.

166

; Another way to compute this (on the fly) would be to attach a rule
; processor to every rule instance, then have it do the partial
; compilation followed by returning the new rule to attach (or
; modifying the state of the rule). Need a new stat object for every
; connection.

(define (make-connection-state)
(let

((one-fin #f)
(size-src-dst 0)
(size-dst-src 0)
(n-src-dst 0) ; actually ”questions”
(n-dst-src 0) ; ditto
(idle-src-dst 0)
(idle-dst-src 0)
(dir ’begin)
(ts-start #f)
(p-ts #f))

(lambda (cmd . l)
(let ((do-packet

(lambda (q-dir q-seg-len q-ts)
(if (not ts-start)

(set! ts-start q-ts))
(if (and (not (zero? q-seg-len))

(not (eq? dir q-dir))) ; dir change
(begin

(set! dir q-dir)
(if (eq? dir ’src-dst)

(begin

(set! n-src-dst (+ n-src-dst 1))
(set! idle-src-dst (+ idle-src-dst (− q-ts p-ts))))

(begin

(set! n-dst-src (+ n-dst-src 1))
(set! idle-dst-src (+ idle-dst-src (− q-ts p-ts)))))))

(cond ; handle ’begin also
[(eq? dir ’src-dst)
(set! size-src-dst (+ size-src-dst q-seg-len))]
[(eq? dir ’dst-src)
(set! size-dst-src (+ size-dst-src q-seg-len))])

(set! p-ts q-ts))))

Figure A.40: Computing SOM Input Values for a TCP Connection

167

(case cmd
[(add-packet) (apply do-packet l)]
[(compute-stats)
(if (or (eq? dir ’begin) (not ts-start) (not p-ts))

’(0 0 0 0 0 0)
(let ((time (/ (− p-ts ts-start) 1000000.0)))

(if (zero? time)
’(0 0 0 0 0 0)
(list
(/ n-src-dst time) ; Inter
(if (zero? n-src-dst) 0 (/ size-src-dst 1.0 n-src-dst))
(if (zero? n-dst-src) 0 (/ size-dst-src 1.0 n-dst-src))
(/ idle-src-dst 1000000.0 time)
(/ idle-dst-src 1000000.0 time)
time))))]

[(seen-one-fin?)
one-fin]
[(seen-one-fin!) (set! one-fin #t)])))))

Figure A.40: Continued

168

; Don’t use this concurrently, locking is not implemented
(define (make-tcp-stats-obj conn-table)

(letrec
((get-connection

(lambda (alert)
(map (lambda (f)

(get-alert-field f alert))
’("src" "srcport" "dst" "dstport"))))

(reverse-connection
(lambda (x)

(append (cddr x) (list (car x) (cadr x)))))
(action-rule ; load this only for the special rules.
(lambda (trigger alert)

(let∗
;standard TCP processing...

((c (get-connection alert))
(c-r (reverse-connection c))
(seg-length (get-alert-tcpseg-size alert))
(ts (string->number (get-alert-field "usectime" alert)))
(trigger-type
(cdr (assoc trigger ’((2000001 . syn)

(2000002 . syn-ack)
(2000003 . rst)
(2000004 . fin)
(2000005 . no-flags)))))

(t1
(let ((x (conn-table ’get c)))

(if x
(cons ’src-dst x)
(let ((x (conn-table ’get c-r)))

(if x
(cons ’dst-src x)
#f)))))

(conn-dir (and t1 (car t1)))
(conn-info (and t1 (cdr t1)))

Figure A.41: TCP Connection Demultiplexing

169

(finish-conn
(lambda ()

(let ((r (conn-info ’compute-stats)))
(conn-table ’remove c)
(if ∗human-reader∗

(printf "SOM input ˜s˜n" r)
(printf "˜s˜n" (list ’som-input r)))))))

(case trigger-type
[(syn) #t] ; ignore or just count.
[(syn-ack)
(set! conn-info (make-connection-state))
(conn-table ’add c conn-info)
(conn-info ’add-packet ’src-dst seg-length ts)]
[(rst fin no-flags)
(if conn-info

(begin

(conn-info ’add-packet conn-dir seg-length ts)
(cond

[(eq? trigger-type ’rst)
(finish-conn)]
[(eq? trigger-type ’fin)
(if (conn-info ’seen-one-fin?)

(finish-conn)
(conn-info ’seen-one-fin!))])))])))))

(lambda (cmd)
(case cmd

[(rule) action-rule]))))

Figure A.41: Continued

170

B. Snort Language

Table B.1 is relevant to this work for multiple reasons. Table B.1 is an examination of

how Snort is used in practice. The specification for the Snort language determined by

these examples differs for some options from the specification of the Snort language

as defined in the Snort manual [54]. Furthermore, the specification of the Snort

language given in [54] is an ad-hoc approach. It would involve considerable effort to

build a compiler from this ad-hoc language specification. In any case, the examples

generated by this table were the justification for the choice of specifications for the

Snort language interpreted by the compiler. Specifically, the determination of general

language options shown in table 4.1 was determined by an exhaustive examination of

common examples similar to table B.1. Table B.1 gives a rather comprehensive view

of the usage of one network based IDS at a large reduction in data to comprehend.

Table B.1 lists almost all of the ways that the Snort options were used in the 1985

parseable stable rules for Snort. Technically, when an option is used multiple times

in a single rule, only the first way of using the option was examined for table B.1 is

counted. Examining only the first way of using the option rather than all of the ways

saved both space in the table and time to create the table.

Snort options denoted with an asterisk have had their examples truncated to only

the first example to save space in table B.1. This was done to the Snort options

content, uricontent, icode, itype, and offset. For example, the content Snort

option only shows one example, yet content appears with 1060 different arguments in

the Snort rules. Similarly, uricontent appears with 664 different arguments in the

stable Snort rules. Offset appears with 26 different integer arguments ranging from

171

0 to 300. Icode appears with all integer values from 0 to 15 inclusive. Itype appears

with all integer values from 0 to 40. The examples for itype are more interesting

than those for icode, but are still not included due to space considerations.

The following Snort options do not appear as elements in table B.1: classtype,

msg, rev, reference, and sid. These options are intended for human rather than

machine usage. In particular, they do not specify semantic objects that require compi-

lation. A table of the base URL values referenced in the reference option is provided

in table B.2.

The six mandatory Snort fields do not appear as elements in table B.1. These

mandatory fields are protocol, source address, source port, direction, desti-

nation address and destination port. The description in the Snort manual [54] is

accurate except for stating the /etc/services style strings are allowed for port

specification. In any case, many of these fields are site configuration dependent.

Table B.1: Snort Options Used in Stable Rules Collection

Snort Ways Used Example Rule
Option
ack 0 alert tcp $EXTERNAL NET 10101 -> $HOME NET any (msg:"SCAN myscan";

ttl:>220; ack:0; flags:S; reference:arachnids,439; classtype:attempted-recon;
sid:613; rev:1;)

101058054 alert tcp $EXTERNAL NET 80 -> $HOME NET 1054 (msg:"BACKDOOR
ACKcmdC trojan scan"; seq:101058054; ack:101058054; flags:A,12; refer-
ence:arachnids,445; sid:106; classtype:misc-activity; rev:4;)

byte jump 4,20,relative,align alert tcp $EXTERNAL NET any -> $HOME NET 32771:34000 (msg:"RPC
kcms server directory traversal attempt"; flow:to server,established; con-
tent:"|00 00 00 00|"; offset:8; depth:4; content:"|00 01 87 7D|"; off-
set:16; depth:4; byte jump:4,20,relative,align; byte jump:4,4,relative,align;
content:"/../"; distance:0; reference:cve,CAN-2003-0027; refer-
ence:url,www.kb.cert.org/vuls/id/850785; classtype:misc-attack; sid:2007;
rev:5;)

4,4,relative,align alert tcp $EXTERNAL NET any -> $HOME NET 111 (msg:"RPC
portmap tooltalk request TCP"; flow:to server,established; con-
tent:"|00 00 00 00|"; offset:8; depth:4; content:"|00 01 86 A0|";
offset:16; depth:4; content:"|00 00 00 03|"; distance:4; within:4;
byte jump:4,4,relative,align; byte jump:4,4,relative,align; content:"|00
01 86 F3|"; within:4; reference:cve,CAN-2001-0717; reference:cve,CVE-
1999-0003; reference:cve,CVE-1999-0687; reference:cve,CAN-1999-1075;
reference:url,www.cert.org/advisories/CA-2001-05.html; classtype:rpc-portmap-
decode; sid:1298; rev:10;)

Table B.1: Continued

Snort Ways Used Example Rule
Option
byte test 1,>,0,0,relative,string alert tcp $EXTERNAL NET any -> $HOME NET 110 (msg:"POP3 DELE

negative arguement attempt"; content:"DELE"; depth:4; nocase; content:"-
"; distance:1; byte test:1,>,0,0,relative,string; classtype:misc-attack; refer-
ence:bugtraq,7445; reference:bugtraq,6053; sid:2121; rev:1;)

1,>,6,2 alert udp $EXTERNAL NET any -> $HOME NET 67 (msg:"MISC bootp hard-
ware address length overflow"; content:"|01|"; offset:0; depth:1; byte test:1,>,6,2;
reference:cve,CAN-1999-0798; classtype:misc-activity; sid:1939; rev:2;)

1,>,7,1 alert udp $EXTERNAL NET any -> $HOME NET 67 (msg:"MISC bootp
invalid hardware type"; content:"|01|"; offset:0; depth:1; byte test:1,>,7,1;
reference:cve,CAN-1999-0798; classtype:misc-activity; sid:1940; rev:1;)

2,>,1024,0,relative,little alert tcp $EXTERNAL NET any -> $HOME NET 139 (msg:"NETBIOS SMB
trans2open buffer overflow attempt"; flow:to server,established; content:"|00|";
offset:0; depth:1; content:"|ff|SMB|32|"; offset:4; depth:5; content:"|00
14|"; offset:60; depth:2; byte test:2,>,1024,0,relative,little; reference:cve,CAN-
2003-0201; reference:url,www.digitaldefense.net/labs/advisories/DDI-1013.txt;
classtype:attempted-admin; sid:2103; rev:4;)

2,>,4000,0 alert tcp $EXTERNAL NET any -> $HOME NET 873 (msg:"MISC rsyncd over-
flow attempt"; flow:to server; byte test:2,>,4000,0; content:"|00 00|"; offset:2;
depth:2; classtype:misc-activity; sid:2048; rev:1;)

4,>,100,0,relative alert udp $EXTERNAL NET any -> $HOME NET any (msg:"RPC STATD UDP
stat mon name format string exploit attempt"; content:"|00 00 00 00|"; offset:4;
depth:4; content:"|00 01 86 B8|"; offset:12; depth:4; content:"|00 00 00 01|";
distance:4; within:4; byte jump:4,4,relative,align; byte jump:4,4,relative,align;
byte test:4,>,100,0,relative; reference:cve,CVE-2000-0666; reference:bugtraq,1480;
classtype:attempted-admin; sid:1913; rev:7;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

4,>,1000,28,relative alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"RPC CMSD
TCP CMSD INSERT buffer overflow attempt"; flow:to server,established;
content:"|00 00 00 00|"; offset:8; depth:4; content:"|00 01 86
E4|"; offset:16; depth:4; content:"|00 00 00 06|"; distance:4;
within:4; byte jump:4,4,relative,align; byte jump:4,4,relative,align;
byte jump:4,0,relative,align; byte test:4,>,1000,28,relative; reference:cve,CVE-
1999-0696; reference:url,www.cert.org/advisories/CA-99-08-cmsd.html;
classtype:misc-attack; sid:1909; rev:6;)

4,>,1024,0,relative alert udp $EXTERNAL NET any -> $HOME NET any (msg:"RPC CMSD UDP
CMSD CREATE buffer overflow attempt"; content:"|00 00 00 00|"; offset:4;
depth:4; content:"|00 01 86 E4|"; offset:12; depth:4; content:"|00 00 00 15|";
distance:4; within:4; byte jump:4,4,relative,align; byte jump:4,4,relative,align;
byte test:4,>,1024,0,relative; reference:cve,CVE-1999-0696; reference:bugtraq,524;
classtype:attempted-admin; sid:1907; rev:7;)

4,>,1024,20,relative alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"RPC
snmpXdmi overflow attempt TCP"; flow:to server,established; con-
tent:"|00 00 00 00|"; offset:8; depth:4; content:"|00 01 87
99|"; offset:16; depth:4; content:"|00 00 01 01|"; distance:4;
within:4; byte jump:4,4,relative,align; byte jump:4,4,relative,align;
byte test:4,>,1024,20,relative; reference:bugtraq,2417; reference:cve,CAN-
2001-0236; reference:url,www.cert.org/advisories/CA-2001-05.html;
classtype:attempted-admin; sid:569; rev:9;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

4,>,128,0,relative alert udp $EXTERNAL NET any -> $HOME NET any (msg:"RPC RQUOTA
getquota overflow attempt UDP"; content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 86 AB|"; offset:12; depth:4; content:"|00 00 00 01|";
distance:4; within:4; byte jump:4,4,relative,align; byte jump:4,4,relative,align;
byte test:4,>,128,0,relative; reference:cve,CVE-1999-0974; reference:bugtraq,864;
classtype:misc-attack; sid:1963; rev:6;)

4,>,2048,12,relative alert tcp $EXTERNAL NET any -> $HOME NET 111 (msg:"RPC portmap
proxy integer overflow attempt TCP"; flow:to server,established; content:"|00
00 00 00|"; offset:8; depth:4; content:"|00 01 86 A0 00|"; offset:16; depth:5;
content:"|00 00 00 05|"; distance:3; within:4; byte jump:4,4,relative,align;
byte jump:4,4,relative,align; byte test:4,>,2048,12,relative; reference:cve,CAN-
2003-0028; reference:bugtraq,7123; classtype:rpc-portmap-decode; sid:2093; rev:2;
)

4,>,512,0,relative alert udp $EXTERNAL NET any -> $HOME NET 500: (msg:"RPC AMD
UDP amqproc mount plog overflow attempt"; content:"|00 00 00 00|"; offset:4;
depth:4; content:"|00 04 93 F3|"; offset:12; depth:4; content:"|00 00 00 07|";
distance:4; within:4; byte jump:4,4,relative,align; byte jump:4,4,relative,align;
byte test:4,>,512,0,relative; reference:cve,CVE-1999-0704; reference:bugtraq,614;
classtype:misc-attack; sid:1905; rev:5;)

4,>,512,4,relative alert udp $EXTERNAL NET any -> $HOME NET any (msg:"RPC
sadmind UDP NETMGT PROC SERVICE CLIENT DOMAIN over-
flow attempt"; content:"|00 00 00 00|"; offset:4; depth:4; con-
tent:"|00 01 87 88|"; offset:12; depth:4; content:"|00 00 00 01|"; dis-
tance:4; within:4; byte jump:4,4,relative,align; byte jump:4,4,relative,align;
byte jump:4,124,relative,align; byte jump:4,20,relative,align;
byte test:4,>,512,4,relative; reference:cve,CVE-1999-0977; reference:bugtraq,866;
classtype:attempted-admin; sid:1911; rev:6;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

4,>,64,0,relative alert udp $EXTERNAL NET any -> $HOME NET any (msg:"RPC yppasswd
old password overflow attempt UDP"; content:"|00 00 00 00|"; offset:4;
depth:4; content:"|00 01 86 A9|"; offset:12; depth:4; content:"|00 00 00 01|";
distance:4; within:4; byte jump:4,4,relative,align; byte jump:4,4,relative,align;
byte test:4,>,64,0,relative; classtype:rpc-portmap-decode; sid:2027; rev:3;)

5,<,65537,0,relative,string alert ip $HOME NET any -> $EXTERNAL NET any (msg:"ATTACK-
RESPONSES id check returned userid"; content:"uid=";
byte test:5,<,65537,0,relative,string; content:"gid="; distance:1; within:15;
byte test:5,<,65537,0,relative,string; classtype:bad-unknown; sid:1882; rev:7;)

5,>,256,0,string,dec,relative alert tcp $EXTERNAL NET any -> $HOME NET 143 (msg:"IMAP login lit-
eral buffer overflow attempt"; flow:established,to server; content:" LOGIN ";
content:" {"; distance:0; nocase; byte test:5,>,256,0,string,dec,relative; refer-
ence:bugtraq,6298; classtype:misc-attack; sid:1993; rev:3;)

content∗ " –use-compress-program" alert tcp $EXTERNAL NET any -> $HOME NET 21 (msg:"FTP tar pa-
rameters"; flow:to server,established; content:" –use-compress-program" ; no-
case; reference:bugtraq,2240; reference:arachnids,134; reference:cve,CVE-1999-
0202; classtype:bad-unknown; sid:362; rev:7;)

depth 1 alert tcp $EXTERNAL NET 31790 -> $HOME NET 31789 (msg:"BACKDOOR
hack-a-tack attempt"; content:"A"; depth:1; reference:arachnids,314; flags:A+;
classtype:attempted-recon; sid:614; rev:2;)

2 alert udp $EXTERNAL NET any -> $HOME NET 2140 (msg:"BACKDOOR
DeepThroat 3.1 Connection attempt"; content:"00"; depth:2; classtype:misc-
activity; sid:1980; rev:1;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

3 alert tcp $EXTERNAL NET any -> $HOME NET 33270 (msg:"BACKDOOR
trinity connection attempt"; flow:to server,established; content:"|21 40
23|"; offset:0; depth:3; reference:nessus,10501; reference:cve,CAN-2000-0138;
classtype:attempted-admin; sid:1843; rev:3;)

4 alert tcp $HOME NET any <> $EXTERNAL NET 1863 (msg:"CHAT MSN mes-
sage"; flow:established; content:"MSG "; depth:4; content:"Content-Type\; con-
tent:"text/plain"; distance:1; classtype:misc-activity; sid:540; rev:8;)

5 alert tcp $EXTERNAL NET any -> $HOME NET 873 (msg:"MISC rsyncd mod-
ule list access"; flow:to server,established; content:"|23|list"; offset:0; depth:5;
classtype:misc-activity; sid:2047; rev:1;)

6 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"OTHER-IDS
SecureNetPro traffic"; content:"|00 67 00 01 00 03|"; offset:0; depth:6;
flow:established; classtype:bad-unknown; sid:1629; rev:3;)

7 alert tcp $EXTERNAL NET any -> $HOME NET 22 (msg:"EXPLOIT ssh
CRC32 overflow"; flow:to server,established; content:"|00 01 57 00 00 00
18|"; offset:0; depth:7; content:"|FF FF FF FF 00 00|"; offset:8; depth:14;
reference:bugtraq,2347; reference:cve,CVE-2001-0144; classtype:shellcode-detect;
sid:1327; rev:3;)

8 alert tcp $HOME NET 749 -> $EXTERNAL NET any (msg:"ATTACK-
RESPONSES successful kadmind buffer overflow attempt";
flow:established,from server; content:"*GOBBLE*"; depth:8; reference:cve,CAN-
2002-1235; reference:url,www.kb.cert.org/vuls/id/875073; classtype:successful-
admin; sid:1900; rev:3;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

9 alert udp $EXTERNAL NET any -> $HOME NET 1900 (msg:"SCAN UPnP ser-
vice discover attempt"; content:"M-SEARCH "; offset:0; depth:9; content:"ssdp\;
classtype:network-scan; sid:1917; rev:4;)

10 alert tcp $EXTERNAL NET any -> $HOME NET 79 (msg:"FINGER cy-
bercop query"; content:"|0A| "; flow:to server,established; depth:10; ref-
erence:arachnids,132; reference:cve,CVE-1999-0612; classtype:attempted-recon;
sid:331; rev:6;)

11 alert tcp $EXTERNAL NET any -> $HOME NET 3389 (msg:"MISC MS Ter-
minal server request (RDP)"; content:"|03 00 00 0b 06 E0 00 00 00 00
00|"; offset:0; depth:11; flow:to server,established; reference:cve,CAN-2001-0540;
classtype:protocol-command-decode; sid:1447; rev:4;)

12 alert tcp $HTTP SERVERS $HTTP PORTS -> $EXTERNAL NET any
(msg:"ATTACK-RESPONSES 403 Forbidden"; flow:from server,established; con-
tent:"HTTP/1.1 403"; depth:12; classtype:attempted-recon; sid:1201; rev:7;)

13 alert tcp $HOME NET 5631 -> $EXTERNAL NET any (msg:"MISC Invalid
PCAnywhere Login"; flow:from server,established; content:"Invalid login"; off-
set:5; depth:13; classtype:unsuccessful-user; sid:511; rev:4;)

14 alert udp $EXTERNAL NET any -> $HOME NET 35555 (msg:"BACKDOOR
win-trin00 connection attempt"; content:"png []..Ks l44"; offset:0; depth:14;
reference:cve,CAN-2000-0138; reference:nessus,10307; classtype:attempted-admin;
sid:1853; rev:3;)

15 alert tcp $EXTERNAL NET any -> $HOME NET 79 (msg:"BACKDOOR
CDK"; flow:to server,established; content:"ypi0ca"; nocase; depth:15; refer-
ence:arachnids,263; classtype:misc-activity; sid:185; rev:4;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

16 alert tcp $EXTERNAL NET 1024: -> $HOME NET 2589
(msg:"BACKDOOR - Dagger 1.4.0 client connect"; flow:to server,established;
content:"|0b 00 00 00 07 00 00 00|Connect"; depth:16; refer-
ence:url,www.tlsecurity.net/backdoor/Dagger.1.4.html; reference:arachnids,483;
sid:104; classtype:misc-activity; rev:5;)

17 alert tcp $HOME NET 512 -> $EXTERNAL NET any (msg:"ATTACK-
RESPONSES rexec username too long response"; flow:from server,established;
content:"username too long"; offset:0; depth:17; classtype:unsuccessful-user;
sid:2104; rev:2;)

18 alert tcp $EXTERNAL NET any -> $HTTP SERVERS
$HTTP PORTS (msg:"WEB-MISC bad HTTP/1.1 request, Po-
tentially worm attack"; flow:to server,established; content:"GET
/ HTTP/1.1|0d 0a 0d 0a|"; offset:0; depth:18; refer-
ence:url,securityresponse.symantec.com/avcenter/security/Content/2002.09.13.html;
classtype:web-application-activity; sid:1881; rev:4;)

22 alert tcp $HOME NET any -> $EXTERNAL NET any (msg:"BACKDOOR
SubSeven 2.1 Gold server connection response"; flow:from server,established;
content:"connected. time/date\; depth:22; content:"version\; distance:1;
classtype:misc-activity; sid:2100; rev:1;)

32 alert tcp $HOME NET 6789 -> $EXTERNAL NET any (msg:"BACKDOOR
Doly 2.0 access"; flow:established,from server; content:"Wtzup Use"; depth:32;
reference:arachnids,312; sid:119; classtype:misc-activity; rev:4;)

36 alert tcp $EXTERNAL NET any -> $HTTP SERVERS $HTTP PORTS
(msg:"WEB-MISC PCCS mysql database admin tool access";
flow:to server,established; content:"pccsmysqladm/incs/dbconnect.inc"; no-
case; depth:36; reference:arachnids,300; classtype:web-application-attack; sid:509;
rev:5;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

40 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"INFO Outbound
GNUTella client request"; flow:established; content:"GNUTELLA OK"; depth:40;
classtype:misc-activity; sid:558; rev:5;)

50 alert udp $EXTERNAL NET any -> $HOME NET 9 (msg:"DOS Ascend Route";
content:"|4e 41 4d 45 4e 41 4d 45|"; offset:25; depth:50; reference:bugtraq,714;
reference:cve,CVE-1999-0060; reference:arachnids,262; classtype:attempted-dos;
sid:281; rev:2;)

70 alert tcp $HOME NET 902 -> $EXTERNAL NET any (msg:"OTHER-IDS ISS
RealSecure 6 event collector connection attempt"; flow:from server,established;
content:"6ISS ECNRA Built-In Provider, Strong Encryption"; nocase; offset:30;
depth:70; classtype:successful-recon-limited; sid:1760; rev:2;)

100 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"ICMP PING
speedera"; content:"|3839 3a3b 3c3d 3e3f|"; depth:100; itype:8; sid:480;
classtype:misc-activity; rev:2;)

128 alert ip $EXTERNAL NET any -> $HOME NET $SHELLCODE PORTS
(msg:"SHELLCODE x86 NOOP"; content:"|90 90 90 90 90 90 90 90 90 90 90
90 90 90|"; depth:128; reference:arachnids,181; classtype:shellcode-detect; sid:648;
rev:5;)

750 alert tcp any 110 -> any any (msg:"Virus - Possible PrettyPark Trojan"; con-
tent:"\\CoolProgs\\"; offset:300; depth:750; reference:MCAFEE,10175; sid:772;
classtype:misc-activity; rev:4;)

distance 0 alert tcp $HOME NET any <> $EXTERNAL NET 1863 (msg:"CHAT MSN
file transfer request"; flow:established; content:"MSG "; depth:4; con-
tent:"Content-Type\; nocase; distance:0; content:"text/x-msmsgsinvite"; nocase;
distance:0; content:"Application-Name\; content:"File Transfer"; nocase; dis-
tance:0; classtype:policy-violation; sid:1986; rev:1;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

1 alert ip $HOME NET any -> $EXTERNAL NET any (msg:"ATTACK-
RESPONSES id check returned userid"; content:"uid=";
byte test:5,<,65537,0,relative,string; content:"gid="; distance:1; within:15;
byte test:5,<,65537,0,relative,string; classtype:bad-unknown; sid:1882; rev:7;)

3 alert tcp $EXTERNAL NET any -> $HOME NET 111 (msg:"RPC portmap
proxy integer overflow attempt TCP"; flow:to server,established; content:"|00
00 00 00|"; offset:8; depth:4; content:"|00 01 86 A0 00|"; offset:16; depth:5;
content:"|00 00 00 05|"; distance:3; within:4; byte jump:4,4,relative,align;
byte jump:4,4,relative,align; byte test:4,>,2048,12,relative; reference:cve,CAN-
2003-0028; reference:bugtraq,7123; classtype:rpc-portmap-decode; sid:2093; rev:2;
)

4 alert tcp $EXTERNAL NET any -> $HOME NET 111 (msg:"RPC
portmap tooltalk request TCP"; flow:to server,established; con-
tent:"|00 00 00 00|"; offset:8; depth:4; content:"|00 01 86 A0|";
offset:16; depth:4; content:"|00 00 00 03|"; distance:4; within:4;
byte jump:4,4,relative,align; byte jump:4,4,relative,align; content:"|00
01 86 F3|"; within:4; reference:cve,CAN-2001-0717; reference:cve,CVE-
1999-0003; reference:cve,CVE-1999-0687; reference:cve,CAN-1999-1075;
reference:url,www.cert.org/advisories/CA-2001-05.html; classtype:rpc-portmap-
decode; sid:1298; rev:10;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

13 alert udp $HOME NET 500 -> $EXTERNAL NET 500 (msg:"MISC isakmp login
failed"; content:"|10 05|"; offset:17; depth:2; content:"|00 00 00 01 01 00 00 18|";
distance:13; within:8; classtype:misc-activity; sid:2043; rev:1;)

33 alert tcp $EXTERNAL NET any -> $HOME NET 512 (msg:"RSERVICES rexec
password overflow attempt"; content:"|00|"; content:"|00|"; distance:33; con-
tent:"|00|"; distance:0; classtype:attempted-admin; sid:2114; rev:2;)

240 alert udp $EXTERNAL NET any -> $HOME NET 67 (msg:"MISC bootp host-
name format string attempt"; content:"|01|"; offset:0; depth:1; content:"|0C|";
distance:240; content:"%"; distance:0; content:"%"; distance:1; within:8; con-
tent:"%"; distance:1; within:8; reference:bugtraq,4701; classtype:misc-attack;
sid:2039; rev:1;)

dsize 0 alert udp $EXTERNAL NET any -> $HOME NET 161 (msg:"DOS Bay/Nortel
Nautica Marlin"; dsize:0; reference:bugtraq,1009; reference:cve,CVE-2000-0221;
classtype:attempted-dos; sid:279; rev:2;)

1 alert tcp $EXTERNAL NET any -> $HOME NET 6789:6790 (msg:"DOS DB2 dos
attempt"; flow:to server,established; dsize:1; classtype:denial-of-service; sid:1641;
rev:4;)

10 alert tcp $EXTERNAL NET any -> $HOME NET 21 (msg:"FTP large
PWD command"; flow:to server,established; content:"PWD"; nocase; dsize:10;
classtype:protocol-command-decode; sid:1624; rev:3;)

11 alert tcp $EXTERNAL NET any -> $HOME NET 79 (msg:"FINGER cybercop
redirection"; flow:to server,established; content:"@localhost|0A|"; dsize:11; refer-
ence:arachnids,11; classtype:attempted-recon; sid:329; rev:6;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

20 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"ICMP
Nemesis v1.1 Echo"; dsize:20; itype:8; icmp id:0; icmp seq:0; con-
tent:"|00|"; reference:arachnids,449;
classtype:attempted-recon; sid:467; rev:1;)

4 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"ICMP Broad-
scan Smurf Scanner"; itype:8; icmp id:0; icmp seq:0; dsize:4; classtype:attempted-
recon; sid:478; rev:1;)

408 alert ip $EXTERNAL NET any -> $HOME NET any (msg:"DOS Jolt at-
tack"; fragbits:M; dsize:408; reference:cve,CAN-1999-0345; classtype:attempted-
dos; sid:268; rev:2;)

8 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"ICMP PING
LINUX/*BSD"; dsize:8; itype:8; id:13170; reference:arachnids,447; sid:375;
classtype:misc-activity; rev:4;)

<25 alert ip $EXTERNAL NET any -> $HOME NET any (msg:"MISC Tiny Frag-
ments"; fragbits:M; dsize:< 25; classtype:bad-unknown; sid:522; rev:1;)

<5 alert tcp $EXTERNAL NET any -> $HTTP SERVERS $HTTP PORTS
(msg:"WEB-MISC whisker tab splice attack"; dsize:<5; flow:to server,established;
content:"|09|"; reference:arachnids,415; classtype:attempted-recon; refer-
ence:url,www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html; sid:1087;
rev:6;)

>1 alert icmp 255.255.255.0/24 any -> $HOME NET any (msg:"BACKDOOR
SIGNATURE - Q ICMP"; itype:0; dsize:>1; reference:arachnids,202; sid:183;
classtype:misc-activity; rev:3;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

>100 alert tcp $EXTERNAL NET any -> $HOME NET 21 (msg:"FTP com-
mand overflow attempt"; flow:to server,established,no stream; dsize:>100; refer-
ence:bugtraq,4638; classtype:protocol-command-decode; sid:1748; rev:4;)

>1000 alert tcp $EXTERNAL NET any -> $HOME NET 8080 (msg:"EXPLOIT dele-
gate proxy overflow"; flow:to server,established; content:"whois|3a|//"; nocase;
dsize:>1000; reference:arachnids,267; classtype:attempted-admin; sid:305; refer-
ence:bugtraq,808; reference:cve,CVE-2000-0165; rev:5;)

>1023 alert tcp $EXTERNAL NET any -> $HOME NET 3372 (msg:"DOS MS-
DTC attempt"; flow:to server,established; dsize:>1023; reference:bugtraq,4006;
classtype:attempted-dos; sid:1408; rev:5;)

>1092 alert tcp $EXTERNAL NET any -> $HOME NET 143 (msg:"IMAP EXPLOIT
partial body overflow attempt"; flow:to server,established; content:" x PARTIAL
1 BODY["; dsize:>1092; reference:bugtraq,4713; classtype:misc-attack; sid:1780;
rev:5;)

>120 alert tcp $EXTERNAL NET any -> $SMTP SERVERS 25 (msg:"VIRUS
Klez Incoming"; flow:to server,established; dsize:>120; content:"MIME"; con-
tent:"VGhpcyBwcm9"; classtype:misc-activity; sid:1800; rev:3;)

>128 alert udp $EXTERNAL NET any -> $HOME NET 123 (msg:"EXPLOIT ntpdx
overflow attempt"; dsize:>128; reference:arachnids,492; reference:bugtraq,2540;
classtype:attempted-admin; sid:312; rev:2;)

>1445 alert tcp $EXTERNAL NET any -> $HOME NET 617 (msg:"DOS arkiea
backup"; flow:to server,established; dsize:>1445; reference:bugtraq,662;
reference:cve,CVE-1999-0788; reference:arachnids,261; classtype:attempted-
dos; sid:282; rev:4;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

>200 alert tcp $EXTERNAL NET any -> $TELNET SERVERS 23 (msg:"TELNET
bsd exploit client finishing"; flow:to client,established; dsize:>200; content:"|FF
F6 FF F6 FF FB 08 FF F6|"; offset:200; depth:50; classtype:successful-admin;
sid:1253; reference:bugtraq,3064; reference:cve,CAN-2001-0554; rev:7;)

>258 alert tcp $EXTERNAL NET any -> $HTTP SERVERS $HTTP PORTS
(msg:"WEB-FRONTPAGE rad overflow attempt"; uricontent:"/fp30reg.dll";
nocase; dsize:>258; flow:to server,established; classtype:web-application-
attack; reference:arachnids,555; reference:bugtraq,2906; reference:cve,CAN-2001-
0341; reference:url,www.microsoft.com/technet/security/bulletin/MS01-035.asp;
sid:1246; rev:8;)

>259 alert tcp $EXTERNAL NET any -> $HTTP SERVERS $HTTP PORTS
(msg:"WEB-FRONTPAGE rad overflow attempt"; uricontent:"/fp4areg.dll"; no-
case; dsize:>259; flow:to server,established; reference:cve,CAN-2001-0341; refer-
ence:bugtraq,2906; classtype:web-application-attack; sid:1247; rev:7;)

>500 alert tcp $EXTERNAL NET any -> $HOME NET 32000 (msg:"MISC Xtra-
mail Username overflow attempt"; flow:to server,established; dsize:>500; con-
tent:"Username\; nocase; reference:cve,CAN-1999-1511; reference:bugtraq,791;
classtype:attempted-admin; sid:1636; rev:3;)

>512 alert tcp $EXTERNAL NET any -> $HOME NET 119 (msg:"NNTP Cassan-
dra Overflow"; flow:to server,established; content:"AUTHINFO USER"; no-
case; dsize:>512; depth:16; reference:cve,CAN-2000-0341; reference:arachnids,274;
classtype:attempted-user; sid:291; rev:6;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

>6 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"BAD-
TRAFFIC data in TCP SYN packet"; flags:S,12; dsize:>6; refer-
ence:url,www.cert.org/incident notes/IN-99-07.html; sid:526; classtype:misc-
activity; rev:6;)

>720 alert tcp $EXTERNAL NET any -> $HOME NET 32772:34000 (msg:"EXPLOIT
cachefsd buffer overflow attempt"; flow:to server,established; dsize:>720; con-
tent:"|00 01 87 86 00 00 00 01 00 00 00 05|"; classtype:misc-attack;
reference:cve,CAN-2002-0084; reference:bugtraq,4631; sid:1751; rev:3;)

>800 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"ICMP Large
ICMP Packet"; dsize:>800; reference:arachnids,246; classtype:bad-unknown;
sid:499; rev:3;)

>999 alert tcp $EXTERNAL NET any -> $HOME NET 32771:34000 (msg:"RPC
EXPLOIT ttdbserv solaris overflow"; content:"|C0 22 3F FC A2 02 20
09 C0 2C 7F FF E2 22 3F F4|"; flow:to server,established; dsize:>999;
reference:url,www.cert.org/advisories/CA-2001-27.html; reference:bugtraq,122;
reference:cve,CVE-1999-0003; reference:arachnids,242; classtype:attempted-
admin; sid:570; rev:6;)

flags 0 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"SCAN NULL";
flags:0; seq:0; ack:0; reference:arachnids,4; classtype:attempted-recon; sid:623;
rev:1;)

A alert tcp any any -> any 139 (msg:"Virus - Possible QAZ Worm Infection"; flags:A;
content:"|71 61 7a 77 73 78 2e 68 73 71|"; reference:MCAFEE,98775; sid:732;
classtype:misc-activity; rev:3;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

A+ alert tcp 255.255.255.0/24 any -> $HOME NET any (msg:"BACKDOOR Q ac-
cess"; flags:A+; dsize:>1; reference:arachnids,203; sid:184; classtype:misc-activity;
rev:3;)

A,12 alert tcp $EXTERNAL NET 80 -> $HOME NET 1054 (msg:"BACKDOOR
ACKcmdC trojan scan"; seq:101058054; ack:101058054; flags:A,12; refer-
ence:arachnids,445; sid:106; classtype:misc-activity; rev:4;)

F,12 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"SCAN FIN";
flags:F,12; reference:arachnids,27; classtype:attempted-recon; sid:621; rev:2;)

FPU,12 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"SCAN nmap
XMAS"; flags:FPU,12; reference:arachnids,30; classtype:attempted-recon;
sid:1228; rev:2;)

PA alert tcp any any -> any 25 (msg:"Virus - Successful eurocalculator execution";
flags:PA; content:"funguscrack@hotmail.com"; nocase; sid:736; classtype:misc-
activity; rev:4;)

PA12 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"SCAN cybercop
os PA12 attempt"; content:"AAAAAAAAAAAAAAAA"; depth:16; flags:PA12;
reference:arachnids,149; classtype:attempted-recon; sid:626; rev:2;)

S alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"DOS Land attack";
id:3868; seq:3868; flags:S; reference:cve,CVE-1999-0016; classtype:attempted-dos;
sid:269; rev:3;)

S+ alert tcp any any -> [232.0.0.0/8,233.0.0.0/8,239.0.0.0/8] any (msg:"BAD-
TRAFFIC syn to multicast address"; flags:S+; classtype:bad-unknown; sid:1431;
rev:5;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

S,12 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"BAD-
TRAFFIC data in TCP SYN packet"; flags:S,12; dsize:>6; refer-
ence:url,www.cert.org/incident notes/IN-99-07.html; sid:526; classtype:misc-
activity; rev:6;)

SA,12 alert tcp $HOME NET 5714 -> $EXTERNAL NET any (msg:"BACKDOOR
WinCrash 1.0 Server Active" ; flags:SA,12; content:"|B4 B4|"; refer-
ence:arachnids,36; sid:163; classtype:misc-activity; rev:4;)

SF alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"SCAN synscan
portscan"; id:39426; flags:SF; reference:arachnids,441; classtype:attempted-recon;
sid:630; rev:1;)

SF,12 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"SCAN SYN FIN";
flags:SF,12; reference:arachnids,198; classtype:attempted-recon; sid:624; rev:2;)

SF12 alert tcp $EXTERNAL NET any -> $HOME NET 80 (msg:"SCAN cybercop
os probe"; flags:SF12; dsize:0; reference:arachnids,146; classtype:attempted-recon;
sid:619; rev:1;)

SFP alert tcp $EXTERNAL NET any -> $HTTP SERVERS $HTTP PORTS
(msg:"SCAN cybercop os probe"; content:"AAAAAAAAAAAAAAAA";
flags:SFP; ack:0; depth:16; reference:arachnids,145; classtype:attempted-recon;
sid:1133; rev:6;)

SFPU alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"SCAN nmap fin-
gerprint attempt"; flags:SFPU; reference:arachnids,05; classtype:attempted-recon;
sid:629; rev:1;)

SFU12 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"SCAN cybercop
os SFU12 probe"; content:"AAAAAAAAAAAAAAAA"; depth:16; flags:SFU12;
ack:0; reference:arachnids,150; classtype:attempted-recon; sid:627; rev:2;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

SRAFPU,12 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"SCAN XMAS";
flags:SRAFPU,12; reference:arachnids,144; classtype:attempted-recon; sid:625;
rev:2;)

U+ alert tcp $EXTERNAL NET any -> $HOME NET 135:139 (msg:"DOS Win-
nuke attack"; flags:U+; reference:bugtraq,2010; reference:cve,CVE-1999-0153;
classtype:attempted-dos; sid:1257; rev:4;)

flow established alert tcp $HOME NET any <> $EXTERNAL NET 1863 (msg:"CHAT MSN mes-
sage"; flow:established; content:"MSG "; depth:4; content:"Content-Type\; con-
tent:"text/plain"; distance:1; classtype:misc-activity; sid:540; rev:8;)

established,from server alert tcp $HOME NET 749 -> $EXTERNAL NET any (msg:"ATTACK-
RESPONSES successful kadmind buffer overflow attempt";
flow:established,from server; content:"*GOBBLE*"; depth:8; reference:cve,CAN-
2002-1235; reference:url,www.kb.cert.org/vuls/id/875073; classtype:successful-
admin; sid:1900; rev:3;)

established,to client alert tcp $EXTERNAL NET 80 -> $HOME NET any (msg:"CHAT ICQ forced
user addition"; flow:established,to client; content:"Content-Type\; content:"[ICQ
User]"; reference:bugtraq,3226; reference:cve,CAN-2001-1305; classtype:misc-
activity; sid:1832; rev:3;)

established,to server alert tcp $EXTERNAL NET any -> $HOME NET 27665 (msg:"DDOS Trin00\;
flow:established,to server; content:"betaalmostdone"; reference:arachnids,197;
classtype:attempted-dos; sid:233; rev:2;)

from client,established alert tcp $EXTERNAL NET any -> $HOME NET 21 (msg:"INFO FTP No
Password"; content:"PASS"; nocase; offset:0; depth:4; content:"|0a|"; within:3;
reference:arachnids,322; flow:from client,established; classtype:unknown; sid:489;
rev:5;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

from server,established alert tcp $HOME NET any -> $EXTERNAL NET any (msg:"ATTACK-
RESPONSES directory listing"; content:"Volume Serial Number";
flow:from server,established; classtype:bad-unknown; sid:1292; rev:7;)

to Server,established alert tcp $EXTERNAL NET any -> $HOME NET 21 (msg:"POLICY FTP
’MKD ’ possible warez site"; flow:to Server,established; content:"MKD "; nocase;
depth:5; classtype:misc-activity; sid:547; rev:5;)

to client alert tcp $AIM SERVERS any -> $HOME NET any (msg:"CHAT AIM receive
message"; flow:to client; content:"|2a 02|"; offset:0; depth:2; content:"|00 04 00
07|"; offset:6; depth:4; classtype:policy-violation; sid:1633; rev:4;)

to client,established alert tcp $EXTERNAL NET 6666:7000 -> $HOME NET any (msg:"CHAT IRC
dns response"; flow:to client,established; content:"\; offset:0; content:" 302 "; con-
tent:"=+"; classtype:misc-activity; sid:1790; rev:2;)

to server alert tcp $EXTERNAL NET any -> $HOME NET 873 (msg:"MISC rsyncd over-
flow attempt"; flow:to server; byte test:2,>,4000,0; content:"|00 00|"; offset:2;
depth:2; classtype:misc-activity; sid:2048; rev:1;)

to server,established alert tcp $EXTERNAL NET 27374 -> $HOME NET any (msg:"BACKDOOR
subseven 22"; flow:to server,established; content:"|0d0a5b52504c5d3030320d0a|";
reference:arachnids,485; reference:url,www.hackfix.org/subseven/; classtype:misc-
activity; sid:103; rev:5;)

to server,established,no stream alert tcp $EXTERNAL NET any -> $HOME NET 21 (msg:"FTP USER overflow
attempt"; flow:to server,established,no stream; content:"USER "; nocase; con-
tent:!"|0a|"; within:100; reference:bugtraq,4638; reference:cve,CAN-2000-0479;
reference:cve,CAN-2000-0656; reference:cve,CAN-2000-1035; reference:cve,CAN-
2000-1194; reference:cve,CAN-2001-0794; reference:cve,CAN-2001-0826;
reference:cve,CAN-2002-0126; reference:cve,CVE-2000-0943; classtype:attempted-
admin; sid:1734; rev:7;)

Table B.1: Continued

Snort Ways Used Example Rule
Option
fragbits M alert ip $EXTERNAL NET any -> $HOME NET any (msg:"DOS Jolt at-

tack"; fragbits:M; dsize:408; reference:cve,CAN-1999-0345; classtype:attempted-
dos; sid:268; rev:2;)

M+ alert ip $EXTERNAL NET any -> $HOME NET any (msg:"DOS IGMP dos at-
tack"; content:"|02 00|"; depth:2; ip proto:2; fragbits:M+; reference:cve,CVE-
1999-0918; classtype:attempted-dos; sid:272; rev:2;)

MD alert ip $EXTERNAL NET any -> $HOME NET any (msg:"BAD-TRAFFIC bad
frag bits"; fragbits:MD; sid:1322; classtype:misc-activity; rev:5;)

R alert ip $EXTERNAL NET any -> $HOME NET any (msg:"BAD-TRAFFIC ip
reserved bit set"; fragbits:R; sid:523; classtype:misc-activity; rev:4;)

icmp id 0 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"DDOS tfn2k icmp
possible communication"; itype:0; icmp id:0; content:"AAAAAAAAAA"; refer-
ence:arachnids,425; classtype:attempted-dos; sid:222; rev:1;)

123 alert icmp $HOME NET any -> $EXTERNAL NET any (msg:"DDOS TFN
server response"; itype:0; icmp id:123; icmp seq:0; content:"shell bound to port";
reference:arachnids,182; classtype:attempted-dos; sid:238; rev:4;)

456 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"DDOS TFN
client command BE"; itype:0; icmp id:456; icmp seq:0; reference:arachnids,184;
classtype:attempted-dos; sid:228; rev:1;)

666 alert icmp 3.3.3.3/32 any -> $EXTERNAL NET any (msg:"DDOS Stacheldraht
server spoof"; itype:0; icmp id:666; reference:arachnids,193; classtype:attempted-
dos; sid:224; rev:2;)

667 alert icmp $HOME NET any -> $EXTERNAL NET any (msg:"DDOS
Stacheldraht server response"; content:"ficken"; itype:0; icmp id:667; refer-
ence:arachnids,191; classtype:attempted-dos; sid:226; rev:3;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

668 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"DDOS Stachel-
draht client check gag"; content:"gesundheit!"; itype:0; icmp id:668; refer-
ence:arachnids,194; classtype:attempted-dos; sid:236; rev:3;)

669 alert icmp $HOME NET any -> $EXTERNAL NET any (msg:"DDOS Stachel-
draht gag server response"; content:"sicken"; itype:0; icmp id:669; refer-
ence:arachnids,195; classtype:attempted-dos; sid:225; rev:3;)

1000 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"DDOS Stachel-
draht client spoofworks"; content:"spoofworks"; itype:0; icmp id:1000; refer-
ence:arachnids,192; classtype:attempted-dos; sid:227; rev:3;)

6666 alert icmp $EXTERNAL NET any <> $HOME NET any (msg:"DDOS
Stacheldraht agent->handler (skillz)"; content:"skillz"; itype:0; icmp id:6666;
reference:url,staff.washington.edu/dittrich/misc/stacheldraht.analysis;
classtype:attempted-dos; sid:1855; rev:2;)

6667 alert icmp $EXTERNAL NET any <> $HOME NET any (msg:"DDOS
Stacheldraht handler->agent (ficken)"; content:"ficken"; itype:0; icmp id:6667;
reference:url,staff.washington.edu/dittrich/misc/stacheldraht.analysis;
classtype:attempted-dos; sid:1856; rev:2;)

9015 alert icmp $EXTERNAL NET any <> $HOME NET
any (msg:"DDOS Stacheldraht handler->agent (niggah-
bitch)"; content:"niggahbitch"; itype:0; icmp id:9015; refer-
ence:url,staff.washington.edu/dittrich/misc/stacheldraht.analysis;
classtype:attempted-dos; sid:1854; rev:2;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

51201 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"DDOS - TFN
client command LE"; itype:0; icmp id:51201; icmp seq:0; reference:arachnids,183;
classtype:attempted-dos; sid:251; rev:1;)

icmp seq 0 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"DDOS TFN
client command BE"; itype:0; icmp id:456; icmp seq:0; reference:arachnids,184;
classtype:attempted-dos; sid:228; rev:1;)

icode∗ 0 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"ICMP PING";
itype:8; icode:0; sid:384; classtype:misc-activity; rev:4;)

id 242 alert udp $EXTERNAL NET any -> $HOME NET any (msg:"DOS
Teardrop attack"; id:242; fragbits:M; reference:cve,CAN-1999-0015;
reference:url,www.cert.org/advisories/CA-1997-28.html; reference:bugtraq,124;
classtype:attempted-dos; sid:270; rev:2;)

413 alert tcp $EXTERNAL NET any <> $HOME NET any (msg:"DOS
NAPTHA"; flags:S; seq:6060842; id:413; reference:cve,CAN-2000-
1039; reference:url,www.microsoft.com/technet/security/bulletin/MS00-
091.asp; reference:url,www.cert.org/advisories/CA-2000-21.html; refer-
ence:url,razor.bindview.com/publish/advisories/adv NAPTHA.html; refer-
ence:bugtraq,2022; classtype:attempted-dos; sid:275; rev:4;)

666 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"ICMP icmpenum
v1.1.1"; id:666; dsize:0; itype:8; icmp id:666 ; icmp seq:0; reference:arachnids,450;
classtype:attempted-recon; sid:471; rev:1;)

678 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"DDOS
TFN Probe"; id:678; itype:8; content:"1234"; reference:arachnids,443;
classtype:attempted-recon; sid:221; rev:1;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

3868 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"DOS Land attack";
id:3868; seq:3868; flags:S; reference:cve,CVE-1999-0016; classtype:attempted-dos;
sid:269; rev:3;)

13170 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"ICMP PING
LINUX/*BSD"; dsize:8; itype:8; id:13170; reference:arachnids,447; sid:375;
classtype:misc-activity; rev:4;)

39426 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"SCAN synscan
portscan"; id:39426; flags:SF; reference:arachnids,441; classtype:attempted-recon;
sid:630; rev:1;)

ipopts lsrr alert ip $EXTERNAL NET any -> $HOME NET any (msg:"MISC source
route lssr"; ipopts:lsrr; reference:bugtraq,646; reference:cve,CVE-1999-0909; ref-
erence:arachnids,418; classtype:bad-unknown; sid:500; rev:2;)

lsrre alert ip $EXTERNAL NET any -> $HOME NET any (msg:"MISC source route
lssre"; ipopts:lsrre; reference:bugtraq,646; reference:cve,CVE-1999-0909; refer-
ence:arachnids,420; classtype:bad-unknown; sid:501; rev:2;)

rr alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"ICMP Tracer-
oute ipopts"; ipopts:rr; itype:0; reference:arachnids,238; sid:455; classtype:misc-
activity; rev:5;)

ssrr alert ip $EXTERNAL NET any -> $HOME NET any (msg:"MISC source route
ssrr"; ipopts:ssrr ; reference:arachnids,422; classtype:bad-unknown; sid:502; rev:1;
)

ip proto !1 alert ip $EXTERNAL NET any -> $HOME NET any (msg:"BAD TRAFFIC
Non-Standard IP protocol"; ip proto:!1; ip proto:!2; ip proto:!6; ip proto:!47;
ip proto:!50; ip proto:!51; ip proto:!89; classtype:non-standard-protocol; sid:1620;
rev:3;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

2 alert ip $EXTERNAL NET any -> $HOME NET any (msg:"DOS IGMP dos at-
tack"; content:"|02 00|"; depth:2; ip proto:2; fragbits:M+; reference:cve,CVE-
1999-0918; classtype:attempted-dos; sid:272; rev:2;)

>134 alert ip $EXTERNAL NET any -> $HOME NET any (msg:"BAD-
TRAFFIC Unassigned/Reserved IP protocol"; ip proto:>134;
reference:url,www.iana.org/assignments/protocol-numbers; classtype:non-
standard-protocol; sid:1627; rev:3;)

itype∗ 0 alert icmp 255.255.255.0/24 any -> $HOME NET any (msg:"BACKDOOR
SIGNATURE - Q ICMP"; itype:0; dsize:>1; reference:arachnids,202; sid:183;
classtype:misc-activity; rev:3;)

nocase alert tcp $HTTP SERVERS $HTTP PORTS -> $EXTERNAL NET any
(msg:"ATTACK-RESPONSES command completed"; content:"Command com-
pleted"; nocase; flow:from server,established; classtype:bad-unknown; sid:494;
rev:6;)

offset∗ 0 alert tcp $HOME NET 512 -> $EXTERNAL NET any (msg:"ATTACK-
RESPONSES rexec username too long response"; flow:from server,established;
content:"username too long"; offset:0; depth:17; classtype:unsuccessful-user;
sid:2104; rev:2;)

rawbytes alert tcp $EXTERNAL NET any -> $HTTP SERVERS $HTTP PORTS
(msg:"WEB-MISC ///cgi-bin access"; flow:to server,established; uricon-
tent:"///cgi-bin"; nocase; rawbytes; classtype:attempted-recon; sid:1143; rev:5;
)

Table B.1: Continued

Snort Ways Used Example Rule
Option
rpc 100000,*,* alert tcp $EXTERNAL NET any -> $HOME NET 111 (msg:"RPC portmap

listing"; flow:to server,established; rpc:100000,*,*; reference:arachnids,429;
classtype:rpc-portmap-decode; sid:596; rev:5;)

100009,*,* alert udp $EXTERNAL NET any -> $HOME NET 111 (msg:"RPC portmap re-
quest yppasswdd"; rpc:100009,*,*; reference:bugtraq,2763; classtype:rpc-portmap-
decode; sid:1296; rev:4;)

sameip alert ip any any -> any any (msg:"BAD-TRAFFIC same SRC/DST";
sameip; reference:cve,CVE-1999-0016; reference:url,www.cert.org/advisories/CA-
1997-28.html; classtype:bad-unknown; sid:527; rev:4;)

seq 0 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"SCAN NULL";
flags:0; seq:0; ack:0; reference:arachnids,4; classtype:attempted-recon; sid:623;
rev:1;)

3868 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"DOS Land attack";
id:3868; seq:3868; flags:S; reference:cve,CVE-1999-0016; classtype:attempted-dos;
sid:269; rev:3;)

6060842 alert tcp $EXTERNAL NET any <> $HOME NET any (msg:"DOS
NAPTHA"; flags:S; seq:6060842; id:413; reference:cve,CAN-2000-
1039; reference:url,www.microsoft.com/technet/security/bulletin/MS00-
091.asp; reference:url,www.cert.org/advisories/CA-2000-21.html; refer-
ence:url,razor.bindview.com/publish/advisories/adv NAPTHA.html; refer-
ence:bugtraq,2022; classtype:attempted-dos; sid:275; rev:4;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

101058054 alert tcp $EXTERNAL NET 80 -> $HOME NET 1054 (msg:"BACKDOOR
ACKcmdC trojan scan"; seq:101058054; ack:101058054; flags:A,12; refer-
ence:arachnids,445; sid:106; classtype:misc-activity; rev:4;)

674711609 alert tcp $HOME NET any <> $EXTERNAL NET any (msg:"DDOS shaft syn-
flood"; flags:S,12; seq:674711609; reference:arachnids,253; classtype:attempted-
dos; sid:241; rev:3;)

1958810375 alert tcp $EXTERNAL NET any -> $HOME NET any (msg:"SCAN ipEye
SYN scan"; flags:S; seq:1958810375; reference:arachnids,236; classtype:attempted-
recon; sid:622; rev:2;)

ttl 0 alert ip $EXTERNAL NET any -> $HOME NET any (msg:"BAD-
TRAFFIC 0 ttl"; ttl:0; reference:url,www.isi.edu/in-notes/rfc1122.txt; ref-
erence:url,support.microsoft.com/default.aspx?scid=kb\; EN-US\; q138268;
sid:1321; classtype:misc-activity; rev:6;)

1 alert icmp $EXTERNAL NET any -> $HOME NET any (msg:"ICMP tracer-
oute"; ttl:1; itype:8; reference:arachnids,118; classtype:attempted-recon; sid:385;
rev:3;)

>220 alert tcp $EXTERNAL NET 10101 -> $HOME NET any (msg:"SCAN myscan";
ttl:>220; ack:0; flags:S; reference:arachnids,439; classtype:attempted-recon;
sid:613; rev:1;)

uricontent∗ "#filename=*.asp" alert tcp $EXTERNAL NET any -> $HTTP SERVERS $HTTP PORTS
(msg:"WEB-IIS asp-srch attempt"; flow:to server,established; uricon-
tent:"#filename=*.asp"; nocase; classtype:web-application-attack; sid:998;
rev:5;)

Table B.1: Continued

Snort Ways Used Example Rule
Option
within 1 alert tcp $EXTERNAL NET any -> $HOME NET $HTTP PORTS

(msg:"WEB-MISC Lotus Notes .csp script source download attempt";
flow:to server,established; uricontent:".csp"; content:".csp"; content:"."; within:1;
classtype:web-application-attack; sid:2064; rev:2;)

2 alert tcp $EXTERNAL NET 80 -> $HOME NET any (msg:"MULTIMEDIA
Windows Media audio download"; flow:from server,established; content:"Content-
type\; content:"|0a|"; within:2; classtype:policy-violation; sid:1437; rev:3;)

3 alert tcp $EXTERNAL NET any -> $HOME NET 21 (msg:"INFO FTP No
Password"; content:"PASS"; nocase; offset:0; depth:4; content:"|0a|"; within:3;
reference:arachnids,322; flow:from client,established; classtype:unknown; sid:489;
rev:5;)

4 alert tcp $EXTERNAL NET any -> $HOME NET 111 (msg:"RPC
portmap tooltalk request TCP"; flow:to server,established; con-
tent:"|00 00 00 00|"; offset:8; depth:4; content:"|00 01 86 A0|";
offset:16; depth:4; content:"|00 00 00 03|"; distance:4; within:4;
byte jump:4,4,relative,align; byte jump:4,4,relative,align; content:"|00
01 86 F3|"; within:4; reference:cve,CAN-2001-0717; reference:cve,CVE-
1999-0003; reference:cve,CVE-1999-0687; reference:cve,CAN-1999-1075;
reference:url,www.cert.org/advisories/CA-2001-05.html; classtype:rpc-portmap-
decode; sid:1298; rev:10;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

8 alert udp $EXTERNAL NET any -> $HOME NET 67 (msg:"MISC bootp host-
name format string attempt"; content:"|01|"; offset:0; depth:1; content:"|0C|";
distance:240; content:"%"; distance:0; content:"%"; distance:1; within:8; con-
tent:"%"; distance:1; within:8; reference:bugtraq,4701; classtype:misc-attack;
sid:2039; rev:1;)

10 alert tcp $EXTERNAL NET any -> $HOME NET 110 (msg:"POP3 CAPA
overflow attempt"; flow:to server,established; content:"CAPA"; nocase; con-
tent:!"|0a|"; within:10; classtype:attempted-admin; sid:2108; rev:1;)

15 alert ip $HOME NET any -> $EXTERNAL NET any (msg:"ATTACK-
RESPONSES id check returned userid"; content:"uid=";
byte test:5,<,65537,0,relative,string; content:"gid="; distance:1; within:15;
byte test:5,<,65537,0,relative,string; classtype:bad-unknown; sid:1882; rev:7;)

30 alert tcp $SMTP SERVERS any -> $EXTERNAL NET 25 (msg:"VIRUS
OUTBOUND .pif file attachment"; flow:to server,established; content:"Content-
Disposition|3a|"; content:"filename=|22|"; distance:0; within:30; con-
tent:".pif|22|"; distance:0; within:30; nocase; classtype:suspicious-filename-
detect; sid:721; rev:4;)

50 alert tcp $EXTERNAL NET any -> $HOME NET 110 (msg:"POP3 USER
overflow attempt"; flow:to server,established; content:"USER"; nocase; con-
tent:!"|0a|"; within:50; reference:bugtraq,789; reference:cve,CVE-1999-0494; ref-
erence:nessus,10311; classtype:attempted-admin; sid:1866; rev:5;)

64 alert tcp $EXTERNAL NET 119 -> $HOME NET any (msg:"NNTP return
code buffer overflow attempt"; flow:to server,established,no stream; con-
tent:"200 "; offset:0; depth:4; content:!"|0a|"; within:64; reference:bugtraq,4900;
reference:cve,CAN-2002-0909; classtype:protocol-command-decode; sid:1792;
rev:5;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

100 alert tcp $EXTERNAL NET any -> $HOME NET 21 (msg:"FTP CEL
overflow attempt"; flow:to server,established; content:"CEL "; nocase; con-
tent:!"|0a|"; within:100; reference:bugtraq,679; reference:cve,CVE-1999-0789; ref-
erence:arachnids,257; classtype:attempted-admin; sid:337; rev:5;)

128 alert udp $EXTERNAL NET any -> $HOME NET 1900 (msg:"MISC UPnP
Location overflow"; content:"|0d|Location|3a|"; nocase; content:!"|0a|";
within:128; classtype:misc-attack; reference:cve,CAN-2001-0876; sid:1388; rev:4;
)

150 alert tcp any any -> any 6666:7000 (msg:"EXPLOIT CHAT IRC Etter-
cap parse overflow attempt"; flow:to server,established; content:"PRIVMSG
nickserv IDENTIFY"; nocase; offset:0; content:!"|0a|"; within:150;
reference:url,www.bugtraq.org/dev/GOBBLES-12.txt; classtype:misc-attack;
sid:1382; rev:7;)

255 alert tcp $EXTERNAL NET any -> $HTTP SERVERS $HTTP PORTS
(msg:"WEB-IIS WEBDAV nessus safe scan attempt"; flow:to server,established;
content:"SEARCH / HTTP/1.1|0d0a|Host|3a|"; content:"|0d0a0d0a|";
within:255; reference:cve,CAN-2003-0109; reference:bugtraq,7116; refer-
ence:nessus,11412; classtype:attempted-admin; sid:2091; rev:2;)

256 alert tcp $EXTERNAL NET any -> $HOME NET 109 (msg:"POP2
FOLD overflow attempt"; flow:to server,established; content:"FOLD "; con-
tent:!"|0A|"; within:256; reference:bugtraq,283; reference:cve,CVE-1999-0920;
classtype:attempted-admin; sid:1934; rev:1;)

Table B.1: Continued

Snort Ways Used Example Rule
Option

500 alert tcp $EXTERNAL NET any -> $HOME NET 119 (msg:"NNTP AUTHINFO
USER overflow attempt"; flow:to server,established; content:"AUTHINFO USER
"; nocase; depth:14; content:!"|0a|"; within:500; reference:cve,CAN-2000-0341;
reference:arachnids,274; classtype:attempted-admin; sid:1538; rev:5;)

512 alert tcp $EXTERNAL NET any -> $HTTP SERVERS $HTTP PORTS
(msg:"WEB-MISC long basic authorization string"; flow:to server,established;
content:"Authorization\; nocase; content:!"|0A|"; within:512;
classtype:attempted-dos; reference:bugtraq,3230; sid:1260; rev:6;)

600 alert tcp $EXTERNAL NET 22 -> $HOME NET any (msg:"EXPLOIT SSH
server banner overflow"; flow:established,from server; content:"SSH-"; offset:0;
depth:4; content:!"|0a|"; within:600; reference:bugtraq,5287; classtype:misc-
attack; sid:1838; rev:4;)

1024 alert tcp $EXTERNAL NET any -> $HOME NET 143 (msg:"IMAP rename over-
flow attempt"; flow:established,to server; content:" RENAME "; nocase; con-
tent:!"|0a|"; within:1024; reference:nessus,10374; reference:cve,CAN-2000-0284;
classtype:misc-attack; sid:1903; rev:3;)

202

Table B.2: References in Snort Rules

Reference URL Base
arachNIDS http://www.whitehats.com/info/IDS
bugtraq http://www.securityfocus.com/bid/
cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=
McAfee http://vil.nai.com/vil/content/v
nessus http://cgi.nessus.org/plugins/dump.php3?id=
url http://

203

C. Compiler

This appendix discusses the implementation of the prototype compiler from Snort IDS

rules to NFR N-Code functions. For the reader totally unfamiliar with this compiler,

section 4.7 presents the purposes and an overview of the compiler in a less technical

manner. Furthermore, the results of the prototype implementation which appear in

section 4.7 are not repeated in this appendix. It is generally assumed that the reader

has examined section 4.7 before examining this appendix. Snort language issues are

covered in section 4.7 with extensive justification in appendix B. The reasoning behind

the presentation of prototype code is stated in the introduction to appendix A.

Appendix C is organized as follows: first, section C.1 gives an overview of the

prototype including the outputs with an example; second, section C.2 discusses the

main compilation loop; third, section C.3 discusses the compilation of mandatory

Snort fields; forth, section C.4 discusses the compilation of Snort options with common

language features; fifth, section C.5 discusses the compilation of Snort options with

special language features; and sixth, section C.6 discusses the compilation of the

content Snort option.

C.1 Overview

The compiler from Snort to NFR N-Code discussed in section 4.7 was implemented

as a translator. Since there was only one output module, it was unnecessary to

define a meta-level language representing an arbitrary signature based IDS. As the

prototype was implemented, the parsed Snort rules were used for the tree based

compilation. The Snort rules were transformed in the compiler so that rather than

being an association list, suboptions of the options were grouped with the option.

204

Figure C.1 shows an example Snort rule, its parsed form, its regrouped form and its

compiled form. The compiled form of this rule has a long listing because of the length

of the code needed to handle the content rules.

The option regrouping is detailed in figures C.2 and C.3. During the option

regrouping, the stream-assemble internal compiler option is added to the rule if any

of the options require an examination of the reassembled stream. As the compiler is

written, the compilation of stream-assemble outputs code for TCP re-assembly or

sets the same variables without assembly if it is called on UDP or IP layer signatures.

Figure C.4 shows how the re-assembly code is generated.

The output of the prototype compiler is a N-Code function which will alarm

under the same conditions as the Snort rule. This N-Code function to output is

represented as a string. For ease of internal use, N-Code code is represented as a

tree of strings which are later appended. Figure C.5 shows this process. The string

representation was chosen because it sped the development of a limited compiler.

Another possibility for an internal N-Code representation is an abstract syntax tree

(AST) structure. The AST representation was not used for the prototype because

it involves more software development to reach a point where the same functionality

is present. For the functionality used in the prototype, lists of strings as an N-Code

representation are sufficiently powerful to do an acceptable job.

The interface between the N-Code function and the NFR IDS is not output by this

compiler. This would be a useful function for the compiler to do, but as a version of

the NFR IDS was not available, the generated interface would not have been tested,

hence was not developed.

C.2 Main Compilation Procedure

The main compilation loop is shown in figure C.6. For space reasons, not every

field that is compiled will be remarked upon. As the fields in a Snort rule are con-

sidered to form a logical ‘and’ statement, the compilation loop usually just outputs

205

Snort Rule
alert ip any any -> any any (content:"abc"; nocase; content:"xyz"; within:23;)

Parsed Form

(("alert" "alert")
("proto" "ip")
("src-net" "any")
("src-port" "any")
("dir" "->")
("dst-net" "any")
("dst-port" "any")
("content" "\"abc\"")
("nocase")
("content" "\"xyz\"")
("within" "23"))

Regrouped Parsed Form

(("stream-assemble")
("alert" "alert")
("proto" "ip")
("src-net" "any")
("src-port" "any")
("dir" "->")
("dst-net" "any")
("dst-port" "any")
("content-group"

((("content" "\"abc\"") ("nocase"))
(("content" "\"xyz\"") ("within" "23")))))

Compiled Form
$t1[0] = -1;
$t1[1] = 0;
if ($pm == null)
$pm[-1] = $t1;

$t1 = null;
if ($stream_index == null)
$stream_index = 0;

$buf = $llc.blob;
if (1) {

Figure C.1: Stages of Compilation Example

206

if (1) {

$content_str[0] = ”abc”;
$content_str[1] = ”xyz”;
$min_distance[0] = 0;
$min_distance[1] = 0;
$max_within[0] = (-1);
$max_within[1] = 23;
$nocase[0] = 1;
$nocase[1] = 0;
$offset[0] = 0;
$offset[1] = 0;
$offset[-1] = 0;
$max_within[-1] = -1;
$min_distance[-1] = 0;
$done_content = 0;
$match = 0;
$stream_char_done = 0;
$stream_index_adj = 0;
$s = $buf;
while (!$done_content) {

$i = -1;
while (($i < $n_pm) && (!$match)) {

$x = $pm[$i];
if (($max_within[$x[0]] >= 0)

&& (($x[1] + $max_within[$x[0]]) < $stream_index)) {

$pm[$i] = $pm[$n_pm - 1];
$n_pm = $n_pm - 1;
$pm[$n_pm] = null;
$i = $i - 1;

} else {

if (($stream_index >= $offset[$x[0]])
&& (($x[1] + $min_distance[$x[0]]) >= $stream_index)) {

$submatch = 0;
if ($nocase[$i]) {

if (strcasecomp ($content_str[$x[0]], $s))
$submatch = 1;

} else {

if (strcomp ($content_str[$x[0]], $s))
$submatch = 1;

Figure C.1: Continued

207

}

if ($submatch) {

$next_str_i = ($i) + 1;
if ($next_str_i >= 2) {

$match = 1;
} else {

$pm[$n_pm] =

[$next_str_i, $stream_index + strlen ($content_str[$i])];
$n_pm = $n_pm + 1;

}

} else {

if (strlen ($s) < strlen ($content_str[$x[0]])) {

$insuf_length = 1;
}

}

}

$i = $i + 1;
}

if ($match) {

$done_content = 1;
}

if (strlen ($s) <= 1)
$done_content = 1;

else

$s = substring ($s, 1);
$stream_index = $stream_index + 1;
if ($insuf_length)
$stream_char_done = $stream_char_done + 1;

else

$stream_index_adj = $stream_index_adj + 1;
}

}

$buf = substring ($buf, $stream_index_adj);
$stream_index = $stream_index - $stream_index_adj;
if ($match) {

echo _alert_msg;
}

}

}

Figure C.1: Continued

208

(define snort-group-suboptions
(lambda (parsed-snort-rule)

(comp-add-stream-assemble-field
(snort-group-content
(snort-group-uricontent parsed-snort-rule)))))

(define (comp-add-stream-assemble-field x) ; x is a parsed-snort-rule
(if (ormap (lambda (y) (assoc y x))

’("content-group" "uricontent-group" "uricontent" "content"))
(cons (cons "stream-assemble" ’()) x)
x))

(define (snort-group-content x)
(snort-group-fields
x
"content-group"
’("content")
’("nocase" "distance" "within" "offset")))

(define (snort-group-uricontent x)
(snort-group-fields
x
"uricontent-group"
’("uricontent")
’("nocase")))

Figure C.2: Regrouping Snort Options

an ‘if’ statement with a test for the Snort option field followed by the remainder of

the compilation. The exception to this strategy is the handling of the direction field.

The handling of the direction field is shown at the end of figure C.6 and in figure

C.7. The direction field is handled by a logical ‘or’ with a duplication of the rule with

the directions reversed. A simple example of a compiled rule versus the bidirectional

rule is shown in figure C.8. In figure C.8 the time to live (ttl) field is extracted by

offset from the packet boundary rather than the ttl mnemonic used by Snort. This

is typical of N-Code field matching where the offset into the packet must be specified

rather than a mnemonic.

209

(define snort-group-fields
(lambda (snort-rule group-name group-triggers group-additional-fields)

(if (ormap (lambda (t) (assoc t snort-rule)) group-triggers)
(let outer-loop

((r snort-rule)
(g ’()))

(cond

[(null? r)
(list (list group-name g))]
[(member (caar r) group-triggers)
(let inner-loop

((x (cdr r))
(l (list (car r))))

(cond

[(or (null? x)
(not (member (caar x) group-additional-fields)))

(outer-loop x (append g (list l)))]
[else
(inner-loop (cdr x) (append l (list (car x))))]))]

[else (cons (car r) (outer-loop (cdr r) g))]))
snort-rule)))

Figure C.3: General Regrouping

C.3 Mandatory Options

The handling of network address is shown in figures C.9 and C.10. It is straight-

forward as NFR has functions for determining if an address is within a subnet. Snort

addresses can be lists of addresses, which are easily translatable into a logical ‘or’

statement of tests. It is worth noting that Snort variables can be lists of network

addresses, so they must be substituted for before the compilation to insure that they

get translated. Thus the substitution of Snort variables must happen before compi-

lation. Because the network address field is straightforward to compile, a separate

example of the compilation has not been included.

The handling of port ranges is shown in figures C.11 and C.12. The 2.0 version

of Snort on which this system was developed did not support lists of ports [54]. It is

210

(define (comp-stream-assemble proto uses rest)
(let ((content-inits

’("$t1[0] = -1; $t1[1] = 0; " ; put an initial $pm[-1]=[-1,0]
"if ($pm == null) $pm[-1] = $t1; "
"$t1 = null; "
"if ($stream index == null) $stream index = 0; ")))

(case proto
[(ip)
(list content-inits " $buf = $llc.blob; " rest)]
[(icmp)
(list content-inits " $buf = $ip.blob; " rest)]
[(udp)
(list content-inits " $buf = $udp.blob; " rest)]
[(tcp)
(list

; these two are needed for content matches
"declare $stream index inside tcp.connSym; "
"declare $pm inside tcp.connSym; "
content-inits

" declare $buf inside tcp.connSym; "
"declare $segs inside tcp.connSym; "
"declare $next seq inside tcp.connSym; "
"if ((null == $buf) && (tcp.length > 0)) { "

"$buf = tcp.blob; "
"$next seq = ulong(ip.blob,8) + tcp.length; "

"} else { "

"segs[ulong(ip.blob, 8)] = tcp.blob; "
"$new tcp stream data = 0; "
"while (null != segs[$next seq]) { "

"$new tcp stream data = 1; "
"$buf = cat($buf, segs[$next seq]); "
"$last seq = $next seq; "
"$next seq = $next seq + strlen(segs[$next seq]); "
"segs[$last seq] = null; } "

"if ($new tcp stream data) { "

rest
"}}")])))

Figure C.4: Compiling Stream Assemble

211

(define (flatten-tree l)
(if (list? l)

(apply append (map flatten-tree l))
(list l)))

(define (try-comp-to-string snort-rule)
(apply string-append (flatten-tree (try-comp snort-rule))))

(define snort->n-code
(lambda (snort-rule . l)

(try-comp-to-string
(snort-group-suboptions
(cond

[(list? snort-rule) snort-rule]
[(null? l) (parse-snort-rule snort-rule)]
[else (parse-snort-rule ((car l) ’sub snort-rule))])))))

Figure C.5: Compiler Output Processing

expected that future versions of Snort will support lists of ports. Under the current

version of Snort, to specify both HTTP ports 80 and 8080, it is necessary to specify

all ports from 80 to 8080. The options available to the port range Snort field are

accurately described in the manual [54].

C.4 Options with Common Language Features

Arguments to Snort options which are listed in table 4.1 as using a numerical

field are compiled with comp-numerical-compare shown in figure C.13. As may be

seen from figure C.6, each Snort option using this compilation function passes in the

proper N-Code variable reference for comparison. The example in figure C.8 uses

comp-numerical-compare on the ttl field for an exact comparison. Comp-numerical-

compare is used for the compilation of the following options: ack, dsize, icmp id,

icmp seq, icode, id, ip proto, itype, seq, and ttl.

Arguments to Snort options which are listed in table 4.1 as using a string field

are compiled with snort-content->n-code-content shown in figure C.14. For example,

212

(define try-comp
(lambda (snort-rule)

(let ((proto (string->symbol (cadr (assoc "proto" snort-rule))))
(snort-dir (cadr (assoc "dir" snort-rule))))

(letrec
((loop

(lambda (l dir)
(letrec

((do-pred
(lambda (p)

(list " if ("
p
") { "

(loop (cdr l) dir)
" } ")))

(pre-pred
(lambda (pre x)

(list "if (" pre ") { " x " } ")))
(do-netaddr-pred
(lambda (v)

(do-pred (comp-netaddr-pred v (cadar l)))))
(do-port
(lambda (x)

(let ((f (lambda (x)
(do-pred (comp-port-pred x (cadar l))))))

(case proto
[(tcp)
(f (string-append "tcp." x "port"))]
[(udp)
(f (string-append "udp." x "port"))]
[else (loop (cdr l) dir)]))))) ; no icmp ports

(if (null? l)
’(" echo alert msg; ")

Figure C.6: Main Compilation Loop

213

(case-equal (caar l)
[("src-net")
(do-netaddr-pred "ip.src")]
[("dst-net")
(do-netaddr-pred "ip.dst")]
[("src-port")
(do-port "source")]
[("dst-port")
(do-port "dest")]
[("ttl")
(do-pred (comp-numerical-compare

"byte(ip.blob,8) "
(cadar l)))]

[("sameip")
(do-pred (list "ip.src == ip.dst"))]
[("ip proto") ; only numerics are used
(do-pred (comp-numerical-compare

" ip.protocol "
(cadar l)))]

[("itype")
(do-pred (comp-numerical-compare

"icmp.type"
(cadar l)))]

[("icode")
(do-pred (comp-numerical-compare

"icmp.code"
(cadar l)))]

[("icmp seq")
(do-pred (comp-numerical-compare

"(long(ip.blob,4) & 0xffff)" ; Stevens p74.
(cadar l)))]

[("icmp id")
(do-pred (comp-numerical-compare

"(long(ip.blob,4) >> 16)"
(cadar l)))]

Figure C.6: Continued

214

[("seq") ; (assert (eq? proto ’tcp))
(do-pred (comp-numerical-compare

"(long(ip.blob,4))"
(cadar l)))]

[("id")
(do-pred (comp-numerical-compare

"(long(llc.blob,4) >> 16)"
(cadar l)))]

[("ack") ; (assert (eq? proto ’tcp))
(do-pred (comp-numerical-compare

"(long(ip.blob,8))"
(cadar l)))]

[("dsize")
(do-pred (comp-numerical-compare

"ip.len"
(cadar l)))]

[("flags")
(do-pred (comp-tcp-flags

"((long(ip.blob,12) >> 16) & 0x000001ff)"
(cadar l)))]

[("fragbits")
(do-pred (comp-ip-frag-flags

"(byte(llc.blob,6) >> 5)"
(cadar l)))]

[("ipopts")
(pre-pred

; check length
(list "(((byte(llc.blob,0) & 0x0f) << 2) > 20) ")
(do-pred (comp-ip-opts (cadar l))))]

[("flow")
(do-pred (comp-flow (cadar l) dir))]
[("stream-assemble")
(comp-stream-assemble
proto
(car l)
(loop (cdr l) dir))]

[("content-group")
(comp-content-group (cadar l) (loop (cdr l) dir))]

Figure C.6: Continued

215

[("uricontent-group")
(comp-uricontent (caadar l) (loop (cdr l) dir))]
[else (loop (cdr l) dir)]))))))

(if (equal? snort-dir "<>")
(list
(loop snort-rule ’forward)
(loop (reverse-dirs snort-rule) ’reverse))

(loop snort-rule ’forward))))))

Figure C.6: Continued

(define (reverse-dirs x)
(let∗ ((m (map list snort-main-field-list (snort-rule-main x)))

(f (lambda (y) (cadr (assoc y m)))))
(make-snort-rule
(list "alert"

(f "proto")
(f "dst-net") (f "dst-port")
"<-reverse"
(f "src-net") (f "src-port"))

(snort-rule-options x))))

Figure C.7: Reversing Directions

Snort string "abc|00|efg" compiles to N-Code string "abc\x00efg" , while the invalid

Snort string "|0|" generates a compilation error.

Each Snort field using the bitfield in table 4.1 defined different mnemonics for

the flags, but allow the same masking and test operations with the same syntax.

Because the same syntax was used, a general bitfield compilation procedure called

comp-flags was developed. The mnemonics used for the TCP flag field are shown

in figure C.15 along with the instantiation of the general flag matching compilation

function. Similarly, figure C.16 details comp-ip-frag-flags. The general flag compila-

tion procedure is detailed in figure C.17. Examples of compiling flag fields are shown

in figure C.18.

216

Single Direction Rule: alert udp 1.2.3.4 any -> 5.6.7.8 19 (ttl:0;)

if ((ip.src == 1.2.3.4)) {

if (1) {

if ((ip.dst == 5.6.7.8)) {

if ((udp.destport == 19)) {

if (byte (ip.blob, 8) == 0) {

echo _alert_msg;
}

}

}

}

}

Bi-directional Rule: alert udp 1.2.3.4 any <> 5.6.7.8 19 (ttl:0;)

if ((ip.src == 1.2.3.4)) {

if (1) {

if ((ip.dst == 5.6.7.8)) {

if ((udp.destport == 19)) {

if (byte (ip.blob, 8) == 0) {

echo _alert_msg;
}

}

}

}

}

if ((ip.src == 5.6.7.8)) {

if ((udp.sourceport == 19)) {

if ((ip.dst == 1.2.3.4)) {

if (1) {

if (byte (ip.blob, 8) == 0) {

echo _alert_msg;
}

}

}

}

}

Figure C.8: Example of Bidirectional Rule Compilation

217

(define (comp-netaddr-pred v snort-addr)
(let comp

((l (parse-snort-net-addr-range snort-addr)))
(case (car l)

[(not) (list "! (" (comp (cadr l)) ") ")]
[(net-addr-list)
(if (null? (cddr l))

(list " (" (comp (cadr l)) ") ")
(list " (" (comp (cadr l))

" || " (comp (cons ’net-addr-list (cddr l)))
") "))]

[(any) " 1 "] ; #t
[(netmask-addr) (list " (" v " inside " (cadr l) ")")]
[(ip-addr) (list " (" v " == " (cadr l) ") ")])))

Figure C.9: Compiling Network Addresses

(define parse-snort-net-addr-range
(lambda (s)

(let ((x (string-length s))
(f parse-snort-net-addr-range))

(cond

[(zero? x) (error ’snort-net-addr
"no address specified or list with empty element")]

[(equal? #\! (string-ref s 0))
(list ’not (f (substring s 1 x)))]
[(equal? #\[(string-ref s 0))
(cons ’net-addr-list

(map f (split #\, (substring s 1 (− x 1)))))]
[(equal? s "any") (list ’any)]
[else
(list (if (member #\/ (string->list s))

’netmask-addr
’ip-addr)

s)]))))

Figure C.10: Parsing Snort Network Address Ranges

218

(define (comp-port-pred n-code-name snort-port-string)
(let comp

((l (parse-snort-port-range snort-port-string)))
(case (car l)

[(any) " 1 "]
[(not) (list "! (" (comp (cadr l)) ") ")]
[(upto) (list "(" n-code-name " <= " (cadr l) ") ")]
[(from) (list "(" n-code-name " >= " (cadr l) ") ")]
[(range) (list "(" (comp (list ’from (cadr l))) " && "

(comp (list ’upto (caddr l))) ") ")]
[(exact) (list "(" n-code-name " == " (cadr l) ") ")]
[else (error ’comp-port "unknown parsed snort port type ˜a˜n" (car l))])))

Figure C.11: Compiling Port Ranges

(define parse-snort-port-range ; port lists aren’t currently supported in Snort.
(lambda (s)

(cond

[(< (string-length s) 1) (error ’snort-port-range "no range specified")]
[(equal? #\! (string-ref s 0))
(list ’not (parse-snort-port-range (substring s 1 (string-length s))))]
[(equal? s "any")
(list ’any)]
[else
(if (member #\: (string->list s))

(let∗ ((x (split #\: s))
(from-p (car x))
(to-p (cadr x)))

(cond

[(equal? "" from-p) (list ’upto to-p)]
[(equal? "" to-p) (list ’from from-p)]
[else (list ’range from-p to-p)]))

(list ’exact s))])))

Figure C.12: Parsing Snort Port Ranges

219

(define (comp-numerical-compare v s)
(let∗

((n (string-length s))
(c (if (> n 0) (string-ref s 0) #\0))
(r (substring s 1 n)))

(case-equal c
[(#\> #\<)
(list v " " (string c) " " r)]
[(#\!)
(list "!("

(comp-numerical-compare v r)
")")]

[else (list v " == " s)])))

Figure C.13: Compiling Numerical Comparison Operations

C.5 Options with Special Languages

Fields marked special in table 4.1 each have their own compilation function. Usu-

ally, this is because the field used special mnemonics to specify the argument. For

example, figure C.19 shows that the ipoption field simply has special mnemonics.

Figure C.20 uses an aspect of some special N-Code variables for the compilation of

the flow Snort option.

The uricontent option outputs as significant amount of code when compiled

compared with the other options treated so far, but is still significantly simpler than

the content option. Simply put, the N-Code code for the uricontent option stores

the stream and rejects matches until three whitespace characters have been found.

Then it extracts and decodes the URI field, which is the third field. It compares this

decoded URI with the specified string and decides if a match has occurred. If a match

has not occurred, then the rule cannot match on the string and this state is stored.

Otherwise, the remainder of the tests are run. Figure C.21 lists the code to compile

the uricontent field. Figure C.22 shows a compilation of an example rule with the

uricontent field.

220

(define (snort-content->n-code-content s)
(list->string
(letrec

((char-state
(lambda (l)

(cond

[(null? l) ’()]
[(equal? (car l) #\|)
(byte-code-state (cdr l))]
[(equal? (car l) #\\)
(escaped-char-state (cdr l))]
[else (cons (car l) (char-state (cdr l)))])))

(escaped-char-state
(lambda (l)

(cond

[(null? l)
(cons #\\ ’())]
[(member (car l) ’(#\: #\;))
(cons (car l) (char-state (cdr l)))]
[else ;#\\& #\" also covered.
(cons #\\ (cons (car l) (char-state (cdr l))))])))

(byte-code-state
(lambda (l)

(cond

[(null? l) (error ’compatablity-snort-content
"Mismatched pipes for bytecode delimination")]

[(equal? (car l) #\|)
(char-state (cdr l))]
[(equal? (car l) #\space)
(byte-code-state (cdr l))]
[else (append (list #\\ #\x (car l))

(second-byte-state (cdr l)))])))

Figure C.14: Compiling Strings from Snort to N-Code

221

(second-byte-state
(lambda (l)

(cond

[(null? l) (error ’compatablity-snort-content
"Mismatched pipes for bytecode delimination")]

[(equal? (car l) #\|)
(error ’compatablity-snort-content

"Odd number of hexademical digits in bytecode")]
[(equal? (car l) #\space)
(second-byte-state (cdr l))]
[else (cons (car l) (byte-code-state (cdr l)))]))))

(char-state (string->list s)))))

Figure C.14: Continued

(define (comp-tcp-flags v s)
(comp-flags v s (lambda (c)

(case-equal c
[(#\F) "0x00000001"]
[(#\S) "0x00000002"]
[(#\R) "0x00000004"]
[(#\P) "0x00000008"]
[(#\A) "0x00000010"]
[(#\U) "0x00000020"]
[(#\2) "0x00000040"]
[(#\1) "0x00000080"]
[(#\0) "0x00000000"]
[else "0x00000000"])))) ; not a flag

Figure C.15: Compiling TCP Flags

(define (comp-ip-frag-flags v s)
(comp-flags v s (lambda (c)

(case-equal c
[(#\R) "0x04"]
[(#\M) "0x02"]
[(#\D) "0x01"]
[else "0x00"]))))

Figure C.16: Compiling IP Fragmentation Flags

222

(define (comp-flags v s bit-lookup)
(cond

[(and (>= (string-length s) 1)
(equal? #\! (string-ref s 0)))

(list "!(" (comp-flags v (substring s 1 (string-length s))) ")")]
[(and (>= (string-length s) 1)

(equal? #\space (string-ref s 0))) ; just in case
(comp-flags v (substring s 1 (string-length s)))]
[else
(let∗

((x (split #\, s))
(flags (car x))
(mask (if (null? (cdr x)) "0" (cadr x))))

(letrec
((bits

(lambda (l)
(if (null? l)

(list " 0x00000000 ")
(let ((b (bit-lookup (car l))))

(list "(" b " | " (bits (cdr l)) ")")))))
(exact-test
(lambda (v m c)

(list "(" v " & " m ") == " c)))
(any-test
(lambda (v m c)

(list "(" v " & " m ") & " c)))
(all-test
(lambda (v m c)

(list "((" v " & " m ") & " c ") == " c))))
(let ((l (string->list s)))

((cond

[(member #\+ l) all-test]
[(member #\∗ l) any-test]
[else exact-test])
v
(list "(˜ (" (bits (string->list mask)) "))")
(list " (" (bits (string->list flags)) ") ")))))]))

Figure C.17: Compiling Bit-Flag Fields

223

IP Fragmentation Flags String: RM
(((byte (llc.blob, 6) >> 5) & ((~(((0x00 | (0x00000000))))))) ==

((((0x04 | ((0x02 | (0x00000000))))))))

IP Fragmentation Flags String: RM+
((((byte (llc.blob, 6) >> 5) & ((~(((0x00 | (0x00000000))))))) &

((((0x04 | ((0x02 | ((0x00 | (0x00000000)))))))))) ==

((((0x04 | ((0x02 | ((0x00 | (0x00000000))))))))))

IP Fragmentation Flags String: RM*
(((byte (llc.blob, 6) >> 5) & (~((0x00 | 0x00000000)))) &

((0x04 | (0x02 | (0x00 | 0x00000000)))))

TCP Flags String: SF,12
((((long (ip.blob, 12) >> 16) &0x000001ff) &

((~(((0x00000080 | ((0x00000040 | (0x00000000))))))))) ==

((((0x00000002 | ((0x00000001 | (0x00000000))))))))

Figure C.18: Bit-Flag Examples

(define (comp-ip-opts s)
(list "byte(llc.blob,20) == " ; just check the first option.

(case-equal s
[("rr") "7"] ; src: Stevens, TCP/IP Illustrated
[("lsrr") "0x83"]
[("ssrr") "0x89"]
[else "0"]))) ; or error

Figure C.19: Compiling the Snort IP Option Field

224

(define (comp-flow s dir)
(let ((l (map string-downcase (split #\, s))))

(list
"(tcp.conn) & "

(if (or (and (eq? dir ’forward)
(or (member "to server" l) (member "from client" l)))

(and (eq? dir ’reverse)
(or (member "from server" l) (member "to client" l))))

"(tcp.Dst == ip.dst)"
"(tcp.Dst == ip.src)"))))

Figure C.20: Compiling the Snort Flow Option

C.6 Content Option

The content is the most complicated Snort option to compile. The suboptions

distance, nocase, offset, and within must be handled while compiling the content

option. The code to compile the content option is shown in figure C.23. The com-

plexity of the code is due to the need to store partial matches for later matching

when more of the TCP stream is available while still ensuring that matches which

are matchable with the current portion of the stream are matched now. An example

compilation of a rule involving the content option is shown in figure C.1.

An examination of the desired behavior for the content option is necessary before

discussing the implementation. Section 3.4.3 mentions the formal languages that

can be recognized by Snort content option without the byte jump and byte test

options. The content option attempts to match the specified string against the

TCP stream or the UDP or IP packet payload. When the content option is specified

multiple times, each string in turn must match against a portion of the payload in the

order in which the strings were specified. The distance option specifies a minimum

distance between the match of the specified string and the match on the last specified

string. Similarly, the within option specifies a maximum distance between the match

on the specified string and the match on the last specified string. The offset option

225

(define comp-uricontent
(lambda (opt rest)

(list ; need to do this after tcp reassembly
"declare $did uri inside tcp.connSym; "
"declare $found uricontent inside tcp.connSym; "
"if (null == $did uri) {"
"$found uricontent = 0; "
"if (($i = index($buf, \" \")) > 0) " ; skip http/version
"{ $b2 = substring($buf, $i + 1); "
"if (($i = index($b2, \" \")) > 0) " ; skip command
"{ $b3 = substring($b2, $i + 1); "
"$t = index($b3, \"\\n\"); " ; find end of URI
"$t2 = index($b3, \"\\r\"); "
"if (($t < 0) || (($t2 < $t) && ($t2 >= 0))) { $t = $t2; } "

"$t2 = index($b3, \" \"); "
"if (($t < 0) || (($t2 < $t) && ($t2 >= 0))) { $t = $t2; } "

"$t2 = index($b3, \"\\t\"); "
"if (($t < 0) || (($t2 < $t) && ($t2 >= 0))) { $t = $t2; } "

"if ($t >= 0) " ; URI found
"{ $uri = dehex(substring($b3, 0, $t)); "
"$did uri = 1; "
"while (strlen($uri) > 0) { "

"if ("
(if (assoc "nocase" opt) "strcasecomp" "strcomp")
"($uri,"
(snort-content->n-code-content (cadr (assoc "uricontent" opt)))
")) {"
"$found uricontent = 1; } "

"$uri = substring($uri, 1); }"
"}}}} "

"if ((null != $did uri) && ($found uricontent)) { "

rest
"} ")))

Figure C.21: Compiling the URI-Content Field

226

Snort Rule
alert tcp any any -> any 80 (uricontent:"/edit.pl";)

Compiled Form
declare $stream_index inside tcp.connSym;

declare $pm inside tcp.connSym;

$t1[0] = -1;
$t1[1] = 0;
if ($pm == null)
$pm[-1] = $t1;

$t1 = null;
if ($stream_index == null)
$stream_index = 0;

declare $buf inside tcp.connSym;

declare $segs inside tcp.connSym;

declare $next_seq inside tcp.connSym;

if ((null == $buf) && (tcp.length > 0)) {

$buf = tcp.blob;
$next_seq = ulong (ip.blob, 8) + tcp.length;

} else {

segs[ulong (ip.blob, 8)] = tcp.blob;
$new_tcp_stream_data = 0;
while (null != segs[$next_seq]) {

$new_tcp_stream_data = 1;
$buf = cat ($buf, segs[$next_seq]);
$last_seq = $next_seq;
$next_seq = $next_seq + strlen (segs[$next_seq]);
segs[$last_seq] = null;

}

if ($new_tcp_stream_data) {

if (1) {

if (1) {

if (1) {

if ((tcp.destport == 80)) {

declare $did_uri inside tcp.connSym;

declare $found_uricontent inside tcp.connSym;

if (null == $did_uri) {

$found_uricontent = 0;

Figure C.22: Example Rule Compilation with URI-Content Field

227

if (($i = index ($buf, ” ”)) > 0) {

$b2 = substring ($buf, $i + 1);
if (($i = index ($b2, ” ”)) > 0) {

$b3 = substring ($b2, $i + 1);
$t = index ($b3, ”\n”);
$t2 = index ($b3, ”\r”);
if (($t < 0) || (($t2 < $t) && ($t2 >= 0))) {

$t = $t2;
}

$t2 = index ($b3, ” ”);
if (($t < 0) || (($t2 < $t) && ($t2 >= 0))) {

$t = $t2;
}

$t2 = index ($b3, ”\t”);
if (($t < 0) || (($t2 < $t) && ($t2 >= 0))) {

$t = $t2;
}

if ($t >= 0) {

$uri = dehex (substring ($b3, 0, $t));
$did_uri = 1;
while (strlen ($uri) > 0) {

if (strcomp ($uri, ”/edit.pl”)) {

$found_uricontent = 1;
}

$uri = substring ($uri, 1);
}

}

}

}

}

if ((null != $did_uri) && ($found_uricontent)) {

echo _alert_msg;
}

}

}

}

}

}

}

Figure C.22: Continued

228

specifies an offset from the start of the TCP stream, UDP packet or IP packet to

begin searching for the first string match. The nocase option specifies that the string

should be matched in a case insensitive manner.

The comp-content-group code is straightforward conceptually. First, it outputs

arrays representing the content strings, the distance options, the within options,

and the nocase options. Although N-Code supports lists, it does not provide sufficient

primitives on these lists so that they can be used in a useful fashion. Thus it was

necessary to use associative arrays, which are supported in N-Code. The code to

output these lists as associative arrays is listed in figure C.24. Once this data has

been output, comp-content-group outputs a fixed procedure with the code for the sub-

tests filled in to preform the content matching. This fixed procedure uses an array of

partial matches. Each partial match in the array represents the index of the string

that it has matched and the place at which to try for the next partial match. By

stepping though the available data, all of the partial matches can be further evaluated.

A variable is set when the data stream should not be advanced further, otherwise the

data stream is advanced by a byte. For more details, consult either the code in figure

C.23 or the example in figure C.1. Because the byte test and byte jump Snort

options are content based matches which interact with the content option, the code

for byte test and byte jump would further complicate the content option code.

The implementation of byte test and byte jump were delayed until after testing the

content option, which has not happened because of the unavailability of the NFR

IDS.

229

(define comp-content-group
(lambda (l rest) ; rest are subtests for the compilation

(let∗ ((n (length l))
(content-l
; string length here != string length in n-code (\x00)
(map (lambda (x)

(snort-content->n-code-content (cadr (assoc "content" x))))
l))

(strmatch
(lambda (c) (if (assoc "nocase" c) "strcasecomp" "strcomp")))

(do-submatch
(lambda (v)

(list
"$next str i = (" v ") + 1; "
"if ($next str i >= " (number->string n) ") { " ;full match?
"$match = 1; } "

"else { "

"$pm[$n pm] = [$next str i, "
"$stream index + strlen($content str[$i])]; "

"$n pm = $n pm + 1; } ")))
)

(list
; declares for stateful variables need to go into TCP reassemble.

(list->n-code-array "$content str" content-l)
(list->n-code-array "$min distance"

(map (lambda (x)
(assoc-default "distance" x "0"))

l))
(list->n-code-array "$max within"

(map (lambda (x)
(assoc-default "within" x "(-1)"))

l))
(list->n-code-array "$nocase"

(map (lambda (x)
(if (assoc "nocase" x) "1" "0"))

l))

Figure C.23: Compiling the Snort Content Option

230

(list->n-code-array "$offset"
(map (lambda (x)

(assoc-default "offset" x "0"))
l))

"$offset[-1] = 0; "
"$max within[-1] = -1; "
"$min distance[-1] = 0; "
"$done content = 0; "
"$match = 0; "
"$stream char done = 0; "
"$stream index adj = 0; "
"$s = $buf; "

"while (!$done content) { " ;depth 1
"$i = -1; "

"while (($i < $n pm) && (!$match)) {" ;depth2

"$x = $pm[$i]; " ; [string index, stream index]
"if (($max within[$x[0]] >= 0) && "

"(($x[1] + $max within[$x[0]]) < $stream index)) {"
; already went too far ;depth3
"$pm[$i] = $pm[$n pm - 1]; "
"$n pm = $n pm - 1; "
"$pm[$n pm] = null; " ; delete
"$i = $i - 1; "
"} else { " ; still in range
"if (($stream index >= $offset[$x[0]]) && "

"(($x[1] + $min distance[$x[0]]) >= $stream index)) { " ;depth4
"$submatch = 0; "
"if ($nocase[$i]) { " ;depth5
"if (strcasecomp($content str[$x[0]],$s)) $submatch = 1; "
"} else { "

"if (strcomp($content str[$x[0]],$s)) $submatch = 1; "
"} " ;depth4
"if ($submatch) { " ;depth5
(do-submatch "$i")
"} else { "

"if (strlen($s) < strlen($content str[$x[0]])) { " ; should really cache these.

Figure C.23: Continued

231

;depth6
"$insuf length = 1;"
"}}} " ;depth3

"$i = $i + 1; "
"}" ;depth2

"if ($match) { $done content = 1; } "

"if (strlen($s) <= 1) $done content = 1; "
"else $s = substring($s, 1); "
"$stream index = $stream index + 1; "
"if ($insuf length) $stream char done = $stream char done + 1; "
"else $stream index adj = $stream index adj + 1; "
"}}" ;depth0

"$buf = substring($buf, $stream index adj); "
"$stream index = $stream index - $stream index adj; "
"if ($match) { " rest " } "

))))

Figure C.23: Continued

(define (list->n-code-array v l)
; "[,,,]" will denote a list in N-Code, not an array
; to initialize an array, must initialize every element.

(let ((n (length l))) ; memoize this
(let loop

((i 0)
(x l))

(if (>= i n)
’()
(list " " v "[" (number->string i) "] = " (car x) "; "

(loop (+ i 1) (cdr x)))))))

Figure C.24: Helper Function for Content Compilation

