
Autonomic Response to Distributed Denial of
Service Attacks�

Dan Sterne1, Kelly Djahandari1, Brett Wilson1, Bill Babson1,
Dan Schnackenberg2, Harley Holliday2, and Travis Reid2

1 NAI Labs, 3060 Washington Road, Glenwood, MD 21738
{Dan Sterne,Kelly Djahandari,Brett Wilson}@nai.com, wbabson@mindspring.com

2 Boeing Phantom Works, MS 88-12, PO Box 3999, Seattle, WA 98124-2499
{daniel.d.schnackenberg,travis.s.reid,harley.s.holiday}@boeing.com

Abstract. The Cooperative Intrusion Traceback and Response Archi-
tecture (CITRA) [1] and the Intruder Detection and Isolation Protocol
(IDIP) [2] provide an infrastructure that enables intrusion detection sys-
tems, firewalls, routers, and other components to cooperatively trace and
block network intrusions as close to their sources as possible. We present
the results of recent testbed experiments using CITRA and IDIP to
defend streaming multimedia sessions against the Stacheldraht DDoS
toolkit. Experimental data suggests that these technologies represent a
promising approach for autonomic DDoS defense.

1 Introduction

Distributed Denial of Service (DDoS) attacks are a critical threat to the Internet.
Increasingly powerful DDoS toolkits are readily available to potential attackers
and essential systems are ill prepared to defend themselves. For example, in
January 2001, Microsoft’s web sites hosting Hotmail, MSN, Expedia, and other
major services were largely inaccessible for 22 hours because of a DDoS attack.
The security community has long known that DDoS attacks are possible, but
only recently have such attacks become so easy to launch and popular with
hackers.

Although technological advances for DDoS defense are beginning to emerge
([3,4]), the current state of practice relies primarily on expert-labor-intensive
manual procedures by network administrators. These procedures consist primar-
ily of two activities: 1) “input debugging” [5], in which administrators at a router
near the DDoS victim use network traffic probes and statistics to identify the
router’s physical interfaces through which the DDoS flooding traffic enters their
network; and 2) mitigation of network traffic flow through those interfaces by in-
serting packet filtering or rate limiting rules into the associated router. Once the
offending input interfaces are identified, administrators typically contact their
� This research was supported by DARPA/Rome Laboratory Contracts F30602-98-C-
0012, F30602-99-C-0181, and F30602-97-C-0309. Distribution Statement “A”, Ap-
proved for Public Release - Distribution Unlimited.

W. Lee, L. Mé, and A. Wespi (Eds.): RAID 2001, LNCS 2212, pp. 134–149, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Autonomic Response to Distributed Denial of Service Attacks 135

counterparts at upstream organizations from which offending traffic is being
forwarded (e.g., an Internet service provider - ISP). The upstream organiza-
tions’ administrative personnel carry out input debugging and traffic mitigation
procedures on their own routers and contact their upstream counterparts. This
process continues upstream as far as possible until either 1) the flood sources
are identified and extinguished, or 2) no further upstream cooperation can be
obtained.

These procedures have several crucial drawbacks.

– They require immediate availability of highly skilled network administrators,
who are in chronic short supply.

– They are time consuming, even for network gurus. It may take hours or
longer to diagnose and shutdown a DDoS attack, allowing downtime and
associated costs to mount.

– They do not scale. While it is possible to manually trace and mitigate DDoS
attacks from a small number of networks on an infrequent basis, these proce-
dures are impractical for attacks involving hundreds of networks or repetitive
“whack a mole” attacks in which new flooding sources pop up as current ones
are stopped. Increasingly sophisticated attacks like these are likely to become
common as hacker toolkits evolve.

The Cooperative Intrusion Traceback and Response Architecture (CITRA)
and the Intruder Detection and Isolation Protocol (IDIP) on which it is based
provide an infrastructure enabling intrusion detection systems (IDS), firewalls,
routers, and other components to cooperatively trace and block network intru-
sions as close to their sources as possible. By automating the manual attack
traceback and mitigation procedures used today, this infrastructure enables net-
works to respond to intrusions autonomically, and in so doing, addresses the
drawbacks cited above.

CITRA and IDIP were initially developed long before the advent of DDoS
toolkits [6], but were intended to help protect networks against a broad spectrum
of attacks. We have recently adapted CITRA and IDIP for DDoS protection
and subjected them to experimental evaluation in a testbed environment. This
paper describes the results of tests using these technologies to defend streaming
multimedia sessions against the Stacheldraht DDoS toolkit [7].

This paper is organized as follows. Section 2 provides background information
about CITRA and IDIP. Section 3 describes our testbed, test scenario, and
measurement procedures. Sections 4 and 5 present experimental results and the
observations we derived from them. Section 6 discusses related work, and Section
7 provides a summary and conclusion.

2 Background

CITRA is based on IDIP1 [1,2,6], a protocol for reporting intrusion-related events
and coordinating attack traceback and automated response actions. As shown
1 In [2] and earlier reports, “IDIP” is used to refer to both a protocol and an architec-
ture. However, for terminological clarity, the authors recently introduced the term



136 D. Sterne et al.

in Figure 1, CITRA components are organized at two fundamental levels. First,
CITRA communities are administrative domains controlled by a management
component called a Discovery Coordinator (DC). Second, CITRA communities
consist of neighborhoods connected to each other via boundary controllers, i.e.,
routers and firewalls. A CITRA neighborhood is the collection of CITRA-enabled
devices (neighbors) that are adjacent in the sense that no other CITRA nodes
are interposed between them. CITRA utilizes the neighborhood structure to
trace and respond to intrusions; the DC, with human oversight, monitors and
directs activities throughout the community. We are also developing features to
support a third level of organization: cooperation among multiple CITRA com-
munities according to business relationships [1]. Features to support multicom-
munity operation include policy-based restrictions on 1) exchange of traceback
and blocking services, and 2) release and propagation of sensitive information
about perceived attack severity, deployed sensors, and internal topology.

1

2

3

Community

Discovery
Coordinator

(DC)

Neighborhood B

Neighborhood A

Neighborhood C

Boundary
Controller

Boundary
Controllers

Boundary
Controllers

Intrusion
Detection
System

Intrusion
Detection
System

Attack

Fig. 1. Attack Traceback and Mitigation across Neighborhoods within a CITRA Com-
munity

CITRA-enabled devices collect network audit data used in traceback, illus-
trated in Figure 1. If a CITRA-enabled detector detects an attack (step 1),
the detector sends a traceback request to each CITRA neighbor (step 2). Each
boundary controller and host along the potential path of an attack uses its net-
work audit trail to determine if the packets associated with the attack passed
through it. If so, the device sends a traceback request to its neighbors (step 3).

“CITRA” [1] to refer to the architecture, while retaining the use of “IDIP” to refer
to the protocol. We continue that usage here.



Autonomic Response to Distributed Denial of Service Attacks 137

This continues until either the attack is traced back to the source of the attack or
to the edge of the CITRA system. This technique is immune to address spoofing
because it relies on empirical (audit) data rather than the contents of IP source
address fields to determine whether a boundary controller is on the attack path.

At each CITRA component along the attack path, responses are taken in ac-
cordance with CITRA policy mechanisms [1]. For example, at a CITRA-enabled
firewall or router, the policy may specify that the service (port) being attacked
at a host should be blocked for all requests originating from the attacker’s ad-
dress or network for a specified time. For CITRA-enabled hosts, the policy may
specify that the offending process should be killed or the offending user’s account
disabled. The current implementation attempts to use the “narrowest” network
response that stops the current attack, minimizing the negative impact the re-
sponse might have on legitimate system users. A key premise underlying CITRA,
IDIP, and corresponding manual procedures used by network administrators is
that moving attack mitigation actions upstream increases their effectiveness and
minimizes the collateral impact on other traffic.

Autonomous responses by individual components along the attack path are
temporary, e.g., for two minutes; they stop damage immediately and buy time
for the DC to formulate a more reasoned response. As detectors and CITRA
devices respond to traceback requests, each device sends a report to the DC
describing the responses it has taken. This enables the DC to gain a global
view of how the attack and autonomic responses moved through the community.
By combining this view with system topology information, in principle, the DC
can determine an optimal community response, which it orchestrates by sending
directives to each relevant CITRA platform in the community. For example,
the DC can remove redundant responses along the attack path to minimize
the potential negative impact or increase the duration of a response so that it
becomes relatively permanent.

In addition, by collecting intrusion detection and response information at
the DC, CITRA supports community-wide and cross-community aggregation
and correlation of attacks.

CITRA and IDIP are supported by software libraries that facilitate the in-
tegration of existing components. Over the past several years, a variety of IDSs,
boundary controllers, host-based responders, and other components have been
integrated together, including commercial products and research prototypes [2].

3 Experiment: Autonomic Response to DDoS

Given the emergence of DDoS attacks as a critical risk, the authors sought to 1)
investigate the capability of a CITRA-enabled network to defend itself against
DDoS attacks and 2) further explore the premise that these technologies are
applicable to a wide range of network intrusions.

Although some DDoS traffic can be easily distinguished from legitimate traf-
fic, this is not true in the general case. More sophisticated DDoS toolkits generate
traffic that “blends in” with legitimate traffic and therefore cannot be blocked



138 D. Sterne et al.

by router packet filters without simultaneously blocking legitimate traffic. For
such attacks, traffic rate limiting may be more useful than packet filtering. Rate
limiting is an approximate mitigation strategy because it allows some DDoS
traffic through and may inadvertently discard some legitimate traffic2. Never-
theless, if rate limiting parameters are chosen appropriately, rate limiting can
often ensure that enough useful bandwidth is available for legitimate traffic to
allow continuation of critical business activities, albeit at reduced speeds.

With this in mind, the authors integrated a simple rate limiter function on
CITRA-enabled Linux routers so that it could be used as an alternative intrusion
response. The rate limiter utilized token bucket rate limiting services provided
by the netfilter subsystem included in a recent release of the Linux kernel (2.4.0-
test2).

3.1 Objective

The overall objective of the experiment was to provide evidence to support or
refute the premise that CITRA and IDIP, as manifested in recent prototypes,
can defend against DDoS attacks. In particular, the authors sought to determine
whether CITRA’s autonomic activation and upstream propagation of rate lim-
iting could provide sufficient protection during a Stacheldraht v4 [7] attack to
allow resumption of a representative, bandwidth-intensive network application.
We chose Stacheldraht because it is representative of the DDoS hacker toolkits
that emerged in early 2000. Stacheldraht can generate ICMP and UDP floods,
TCP Syn floods, and Smurf attacks. It provides one or more master servers that
issue commands to multiple distributed agents that serve as flooding sources.
Master servers can target floods at arbitrary machines and ports. This allowed
us to configure a DDoS attack that is highly disruptive of streaming media ses-
sions.

3.2 Test Application

We chose streaming audio/video as our representative application in the form of
the RealNetworks’ RealSystem c© server and RealPlayer c© client3. This applica-
tion is one of the most widely used streaming media applications on the Internet.
It provides a number of configuration parameters useful for our experiment in-
cluding choice of transport protocol (TCP, HTTP, or UDP) and audio/video
encoding rates; the latter can be selected according to the bandwidth available
between each client and the server. The RealPlayer client also provides real-
time read-outs of targeted versus actual bandwidth in the form of line graphs or
histograms. We used these to monitor the impact of DDoS attacks.

2 Reliable delivery mechanisms that support legitimate traffic will detect lost packets
and retransmit them.

3 RealSystem and RealPlayer are registered trademarks of RealNetworks, Inc.



Autonomic Response to Distributed Denial of Service Attacks 139

3.3 Experiment Topology and Scenario

The experiment topology is shown in Figure 2. The 100Mbps hub in the center
is intended to loosely represent the Internet or the backbone of some other
large network. It provides connectivity among five other subnets, each of which
represents a different organization’s network. Each of these is represented by an
ethernet switch or hub with attached nodes and is connected to the “Internet” via
a CITRA-enabled Linux router. The network at the bottom center of the figure
represents a server farm and network operations center. The RealSystem server
is attached to this network. The server is used as the DDoS attack’s target. This
configuration models highly-publicized recent DDoS attacks in which internet-
accessible web servers and their surrounding infrastructure were targeted. Figure
2 also shows the primary flow of traffic from the server to each client. Not shown
are control channels that flow in the opposite direction, i.e., from each client
back to the server. A CITRA-enabled network IDS also resides on this network.
The detection system is a simple flood threshold detector based on the public
domain utility iplog. Also connected to this network is the server community’s
DC.

100 Mbps
Switch

Linux
Router 2

Detector

Discovery
Coordinator

RealPlayer
Client 2

100 Mbps
Hub

Master
Controller

RealSystem
Server

Attack Agent Attack Agent Attack Agent Attack Agent Attack Agent Attack Agent

Linux
Router 3

Linux
Router 4

100 Mbps
Switch

100 Mbps
Switch

100 Mbps
Switch

100 Mbps
Hub

RealPlayer
Client 1

RealPlayer
Client 3

Linux
Router 5

Linux
Router 1

Fig. 2. Topology and Streaming Media Sessions

Three RealPlayer clients have been placed on three different networks so that
the effects of the DDoS attack and CITRA’s autonomic response at multiple lo-
cations throughout the experimental topology can be observed and monitored.
RealPlayer Client 1 resides on the same network as the server and is shown ad-
jacent to it. RealPlayer Client 2 resides on the network in the lower left corner



140 D. Sterne et al.

of the figure. The RealPlayer Client 3 resides on the network in the upper center
of the figure, which, unlike Client 2’s network, also includes Stacheldraht flood-
ing agents. Consequently, Client 3’s path to the server is identical to one of the
flooding paths to the server. As test data, we used an 8-minute, 11-second con-
tinuous motion video showing how Boeing 737-300 aircraft are assembled. This
audio/video file was encoded at 200.1 Kbps. We configured RealPlayer to use
the “best quality” playback setting with available bandwidth set to 10 Mbps,
the maximum allowable value, and 5 seconds of data buffering, the minimum
effective value. Using RealPlayer readouts, we observed an average data rate of
316.7 Kbps over the 310 second period during which all of the data was trans-
mitted to the client. The data rate for a single client varied during this period
from 184.9 Kbps to 668.5 Kbps, with bursts apparently associated with periodic
buffer refill requests. We configured RealPlayer/RealMedia to use UDP as the
transport protocol.

100 Mbps
Switch

Linux
Router 2

Detector

Discovery
Coordinator

RealPlayer
Client 2

100 Mbps
Hub

Master
Controller

RealSystem
Server

Attack Agent Attack Agent Attack Agent Attack Agent Attack Agent Attack Agent

Linux
Router 3

Linux
Router 4

100 Mbps
Switch

100 Mbps
Switch

100 Mbps
Switch

100 Mbps
Hub

RealPlayer
Client 1

RealPlayer
Client 3

Linux
Router 5

Linux
Router 1

Rate Limiter
Activation

Flood traffic

Fig. 3. Stacheldraht Flooding and Autonomic Rate Limiting

As shown in Figure 3, Stacheldraht agents reside on the six workstations
on the top row of the figure; one pair of agents resides on each of the three
upper networks. The Stacheldraht master controller resides on the network in
the lower left of the figure. Since the master does not need to communicate with
its agents during the attack, its location during the experiment is not significant.
We selected Stacheldraht’s UDP flooding attack and chose the RealSystem server
as the attack victim. This sends UDP packets to the server having IP headers
that are virtually indistinguishable from the control flow packets sent to the
server by RealPlayer clients. When a flooding attack occurs, it causes sufficient



Autonomic Response to Distributed Denial of Service Attacks 141

congestion to prevent these control packets from reaching the server and data
packets from reaching the client. This in turn causes the video sessions to freeze
after previously buffered data has been exhausted.

Figure 3 also shows the positioning and interaction of the CITRA-enabled
components that participate in the autonomic response. When the detector near
the RealSystem server detects the flood, it sends a traceback and mitigation
request to its CITRA neighbors. Its only neighbor is Linux Router 1, which
determines that it is on the flood path. Consequently, it activates a simple rate
limiter that is applied to all subsequent UDP packets addressed to the server. For
purposes of this experiment, rate limiting parameters were fixed at a maximum
average rate of four packets per second with a burst rate of 10 packets per
second. Router 1 then propagates the traceback and mitigation request to each
of its neighbors, i.e., Linux Routers 2, 3, 4, and 5. Routers 1 through 4 each
determine that they are on the attack path and activate rate limiting using the
same parameters. Router 5, however, determines that it is not on the attack
path and does not activate rate limiting.

3.4 Metrics and Instrumentation

Our objective was to measure the extent to which automated response could en-
able resumption and continuation of RealPlayer sessions during a DDoS attack.
This was measured subjectively by observing the video displayed at each client,
and objectively by measuring the number of packets received at each client. To
obtain this measurement, we ran tcpdump on each client and the server, con-
figured to capture all traffic between the client and server. We processed the
tcpdump data with a simple script that counted the number of packets in each
5 second interval for import into a spreadsheet.

Beyond this instrumentation, we used a packet capture tool to monitor the
server’s LAN segment. This enabled us to monitor the progress of the DDoS
attack and response and ensure that the experiment was working according to
plan.

We performed five test runs each of normal RealPlayer use, RealPlayer under
attack with no response, and RealPlayer under attack with IDIP response. In
each case, we collected the tcpdump data for later analysis.

4 Experimental Results and Interpretation

During normal operation (i.e., no flooding present), RealPlayer clients were able
to complete video data transmission and display with no visible problems. How-
ever, when a Stacheldraht attack was initiated, flooding of the networks and
routers was sufficient to immediately prevent RealPlayer clients from commu-
nicating with the server, freezing their video images shortly thereafter. With
autonomic response enabled, the attack had no perceptible effect on clients,
which continued playback without interruption. Traceback and mitigation re-
quest messages were able to move upstream against the flood, causing CITRA-



142 D. Sterne et al.

enabled routers in the flood path to activate rate limiting, reducing downstream
flooding and enabling resumption of RealPlayer sessions.

Figure 4 shows results from four representative experiment runs. The x axis
represents time in 5 second intervals; the y axis represents the number of packets
received per second at Client 3. Packet rates were nearly identical for all three
clients for each run.

The “Normal” run (Figure 4a) represents the number of packets per second
captured at Client 3 when no flooding is present. During the initial 30 seconds,
RealPlayer clients received about 140 packets per second, to fill playback buffers.
This would taper off to about 50 packets per second after the first 30 seconds,
with occasional bursts of about 140 packets per second, presumably to refill
buffers. This was consistent with the data rates shown on the client statistic
displays. For the three clients together, this would result in about 420 packets
per second initially, with the network load reduced to about 150 packets per
second. Note that although the video was over 8 minutes long, packets arrive
at the client for only a little over 5 minutes. This is because the client caches
the data to ensure smooth operation during short periods of congestion. We
attempted to disable this feature by setting the cache length to 0 seconds, but
this showed no noticeable difference from when the value was set to 5 seconds,
which was the value used in the experiment.

Figure 4b shows that during the “Flood” run, the packet reception rates for
clients drop to zero very quickly after the flood starts (approximately 40 seconds
into the run) and stay at zero for the duration of the run. These measurements
are consistent with the RealPlayer statistics graphs displayed on the clients. The
extent of flooding was confirmed by the packet capture tool on the server’s LAN
segment, which showed data rates on that segment of about 75 Mbps, i.e., at
least 75% loading of the LAN’s 100 Mbps capacity. We also observed congestion
indications on the “Internet” hub connecting the five routers. The packet col-
lision indicator light remained lit continuously, reflecting frequent unsuccessful
transmission attempts. We suspect that the load on the server LAN segment
was artificially constrained by throughput limitations of Router 1, a 200 MHz
Pentium Pro that connected the server LAN to the rest of the network.

When we ran flood attacks with autonomic responses enabled, we observed
two different behavior patterns: (1) full recovery (Figure 4c) and (2) degraded
recovery (Figure 4d). The “Full Recovery” histogram shows a dramatic drop in
packets received at the client for approximately 10-12 seconds beginning around
40 seconds into the run, followed by a packet reception pattern similar to normal
operation. This 10-12 second gap represents the time between the onset of the
attack and the autonomic activation of rate limiting throughout the network. For
full recovery, the client received the same number of total packets as during non-
flood runs and the client displays showed no evidence of an attack, suggesting
that cached data was sufficient to cover the short, flood-induced outage.

The “Degraded Recovery” histogram shows a longer transmission reception
time with lower packet rate and fewer total packets received at the client. The to-
tal number of video packets received at the client decreased dramatically (about



Autonomic Response to Distributed Denial of Service Attacks 143

a. Normal

0

20

40

60

80

100

120

140

160

5 55 105 155 205 255 305 355 405 455
Time

P
ac

ke
ts

pe
r

S
ec

on
d

b. Flood

0

20

40

60

80

100

120

140

160

5 55 105 155 205 255 305 355 405 455
Time

Pa
ck

et
s

pe
r

Se
co

nd

c. FullRecovery

0

20

40

60

80

100

120

140

160

5 55 105 155 205 255 305 355 405 455
Time

Pa
ck

et
s

pe
r

Se
co

nd

d. Degraded Recovery

0

20

40

60

80

100

120

140

160

5 55 105 155 205 255 305 355 405 455
Time

Pa
ck

et
s

pe
r

Se
co

nd

Fig. 4. Rate of Packets Received at Client 3 under Different Test Conditions



144 D. Sterne et al.

1/2) from the full recovery runs, and the duration of transmission spread out
over the full video length (i.e., it appeared as if client caching had been dis-
abled). The RealPlayer client video displays for degraded recovery runs were
visibly choppier. Table 1 shows the differences in time required for video data
transmission for the three different cases where the video ran to completion.

Table 1. Duration of Data Transmission

Mode Seconds to Complete Video
Data Transmission

Normal Operation (No Attack) 310
Autonomic Response with Full Recovery 325
Autonomic Response with Degraded Recovery 475

Examination of the RealSystem server’s log showed that the server had de-
tected congestion and adjusted by reducing video quality thereby lowering its
demand for bandwidth. Thus, if CITRA’s autonomic response did not take effect
sufficiently quickly, RealServer would detect congestion and attempt to make its
own adjustments.

The speed of the detector (a 366 MHz Pentium II in our case) seemed to be a
significant contributor to this mode change. When the detector acted quickly, full
recovery was observed. Because the detector monitors the server’s LAN segment
in promiscuous mode, it may have become overloaded with monitoring when
the flood started. We conjectured that a more efficient detection algorithm or a
faster detector platform would likely produce more consistent results, with full
recovery occurring on every run.

In an attempt to validate these results independently, a research group in
another organization reran the experiment in a different testbed [8]. They used
the same software configuration, however, the hardware platforms differed in
their configuration. In each case, higher performance components were used.
The normal and flood runs produced similar results, however, in each run with
autonomic response enabled, full recovery was observed, supporting our conjec-
ture that detector speed significantly affects the recovery of RealPlayer clients.
With higher speed routers, this testbed was also able to achieve 95% loading of
the server’s LAN segment. In the rerun, CITRA’s autonomic response became
effective less than two seconds after the start of the flood, as compared with the
10-12 seconds observed in our slower testbed, a significant improvement.

5 Observations

As indicated by the data above, CITRA-enabled routers in the experimental
testbed traced and successfully mitigated the Stacheldraht attack much faster
than possible via manual methods. Even though Stacheldraht agents continued
to generate flood packets, the video sessions continued unimpeded.



Autonomic Response to Distributed Denial of Service Attacks 145

These results, while encouraging, are preliminary. They constitute a single
data point in a large, multidimensional space of experimental variables. For
example, if more flooding agents were used, creating greater congestion, IDIP
traceback and mitigation requests would encounter more collisions, delaying the
requests’ propagation upstream. It is for this reason that the IDIP uses UDP as
a transport protocol rather than TCP. Using UDP (augmented with acknowl-
edgements and retransmission) allows a traceback and mitigation request to be
transmitted via a single IP packet. TCP, however, requires the completion of a
three-way handshake first. DDoS congestion might cause the handshake to fail re-
peatedly, adding significant delays to the upstream propagation. IDIP’s timeout
and retransmit algorithm is derived from the cooperative “back off” algorithm
used in TCP. An interesting question for further study is whether IDIP’s ability
to push traceback requests through DDoS attacks could be further improved by
using a more aggressive retransmision algorithm.

Another area for further research concerns the scalability of this technology
to larger and higher speed networks. The CITRA-enabled Linux routers in our
testbed perform traceback by creating audit records for network flows on an on-
going basis and examining them for attack path evidence when presented with a
traceback request. This technique enables routers to trace intrusions that consist
of a single IP packet. For edge routers, such flow auditing may be practical, but
for core routers, it might require maintaining an unacceptable amount of state
or slowing speed-critical packet forwarding operations. (See Sanchez et al [9] for
a differing view.) One approach to improving the scalability and speed of flow
auditing is to enable it selectively, i.e., only for flows currently under suspicion.
While this might result in missing isolated instances of single-packet attacks, it
might still be useful for tracing 1) single packet attacks that are repeated on a
massive scale via hacker scripts, and 2) DDoS floods which, by their very nature,
continue for a period of time. Alternatively, if traceback is sought only for DDoS
attacks, auditing individual flows is probably unnecessary. DDoS attacks can be
traced to neighboring upstream routers simply by sampling input packets for a
few seconds and identifying the input interface from which flood packets entered
and the link layer addresses from which they were sent.

An additional topic for further research is the choice of appropriate rate
limiting parameters. Ideally, these would be chosen in a way that minimizes
negative impact on benign traffic while mitigating a flood sufficiently to permit
resumption of normal or near-normal operation. These parameters should be
recomputed dynamically as a function of flood and normal traffic rates, topology,
effect of upstream mitigation, and other factors. Optimizing the effects over a
significant number of routers and network links while ensuring stability in the
presence of dynamic local adjustments will probably require the application of
control theory.



146 D. Sterne et al.

6 Related Work

The research most closely related to ours is recent work at AT&T Center for
Internet Research at ICSI (ACIRI) called Aggregate-Based Congestion Control
(ACC) and Pushback [10]. This work grew out of ACIRI’s development of con-
gestion control and congestion management techniques for routers. Tradition-
ally, such techniques are meant to stimulate improved behavior of TCP back
off mechanisms in conformant (cooperative) end systems. This is accomplished
by discarding packets en route or sending signals such as Explicit Congestion
Notifications to end points. In [11], ACIRI proposes using similar mechanisms
including Random Early Detection with Preferential Dropping to limit the band-
width utilized by non-cooperating flows such as the high volume aggregate flows
associated with DDoS attacks. Recognizing the limitations of local, self-adjusting
mechanisms in autonomous routers and the need for explicit coordination across
routers, [12] proposes adding an inter-router signaling protocol similar to IDIP.
This protocol allows a router near a DDoS victim to request that upstream
routers apply rate limiting to specified excessive flows. Like IDIP, these requests
propagate upstream as far as possible towards the flooding sources, “pushing
back” the flood.

In effect, the research group at ACIRI has arrived at an approach very sim-
ilar to ours but by an entirely different route. They began with packet discard
mechanisms for congestion management and recently added an upstream signal-
ing protocol. We began with an upstream signaling protocol for attack traceback
and mitigation and recently added packet discard as a form of attack mitigation
specialized for DDoS.

Primary differences between ACIRI’s work and ours are as follows:

– ACIRI’s signaling protocol includes periodic upstream refresh messages to
request continued suppression of DDoS traffic and downstream status re-
ports to determine whether suppression should be terminated. In CITRA,
while the initial response to a DDoS attack is undertaken automatically by
routers, the initial response is only temporary, e.g., for a few minutes. It
is the responsibility of the DC in each administrative domain, potentially
with human administrator oversight, to direct routers within that domain
to continue the response, optimize it4, and terminate it when no longer ap-
propriate.

– Although [12] mentions that a server victimized by a DDoS attack could
request initiation of pushback, [10], [12], and [11] focus on techniques that
would allow congested routers to detect and identify DDoS attacks by an-
alyzing their own packet drop histories. Our approach has been to develop
a generalized intrusion response infrastructure into which a variety of IDSs
(including ones specialized for DDoS) could be inserted to detect attacks
and initiate traceback and mitigation.

– The results published by ACIRI to date are supported by simulations that
describe the potential behaviors of pushback under a variety of conditions.

4 This functionality has not been implemented.



Autonomic Response to Distributed Denial of Service Attacks 147

The results presented here are based on empirical data gathered from a spe-
cific testbed and conditions that include a real DDoS toolkit (Stacheldraht)
and a widely used Internet application (RealPlayer).

Arbor Networks [3] offers a managed service based on a technology that is
purported to monitor router traffic for DDoS-specific anomalies, trace attacks
through neighboring routers, and recommend packet filtering or rate limiting
rules to the router administrator to mitigate attacks. Because Arbor regards its
technology as proprietary, they have published few details. It appears however,
that the technology is intended for use within individual ISPs and end user
enterprises and does not attempt to propagate DDoS defense requests across
administrative domain boundaries.

Recourse Technologies’ ManHunt [4] is purported to “recognize and respond
to DOS attacks in real time by automatically tracking the attack through the
chain of ISPs so that the attack can be cut off at the source.” If an upstream
ISP uses ManHunt, it will be sent a machine readable trace back request which
it will propagate further upstream. If the ISP does not use ManHunt, it will be
sent a human readable advisory.

A number of techniques have been proposed recently for traceback of DDoS
attacks including itrace [13], packet marking [14,15], use of IP Security tunnels
[16], and packet flow logging [17]. Unlike the work described here, these proposals
do not provide automated DDoS attack mitigation.

7 Summary and Conclusion

DDoS attacks are an increasingly critical threat to the Internet. Yet the current
state of practice for DDoS defense relies on the instant availability of expert
administrators and time-consuming manual procedures that cannot scale up.
CITRA and IDIP were designed as a general infrastructure for traceback and
autonomic response to network intrusions. We have recently adapted our existing
CITRA prototype for DDoS by integrating a rate limiting function as an addi-
tional response option for CITRA-enabled Linux routers. The resulting system
has been subjected to informal tests in a laboratory testbed. The results, which
have been replicated in a second testbed by another research organization, show
that under these conditions, the defense provided by CITRA-enabled compo-
nents allowed RealPlayer streaming media sessions to continue operation despite
a network saturation attack launched from the Stacheldraht toolkit. We are cur-
rently developing mechanisms to enforce policy-based restrictions on exchange of
traceback and response services across administrative domain boundaries such
as those that exist between ISPs. Potential future work includes additional effec-
tiveness testing and analysis and potential improvements in traceback speed and
scalability, ability to reliably deliver IDIP traffic over DDoS-congested network
links, and ability to compute optimal rate limiting parameters dynamically.



148 D. Sterne et al.

References

1. D. Schnackenberg, H. Holliday, R. Smith, K. Djahandari, and D. Sterne, “Coop-
erative Intrusion Traceback and Response Architecture (CITRA),” Proceedings of
the Second DARPA Information Survivability Conference and Exposition (DIS-
CEX II), Anaheim, CA, June 2001.

2. D. Schnackenberg, K. Djahandari, and D. Sterne, “Infrastructure for Intrusion
Detection and Response,” Proceedings of the DARPA Information Survivability
Conference and Exposition, Hilton Head, SC, January 2000.

3. Arbor Networks - http://www.arbornetworks.com.
4. Recourse Technologies ManHunt product description -

http://www.recourse.com/products/manhunt/features.html.
5. R. Stone, “CenterTrack: An IP Overlay Network for Tracking DoS Floods,” Pro-
ceedings of the 9th USENIX Security Symposium, Denver, CO, August 14-17,
2000.

6. “Protocol Definition - Intruder Detection and Isolation Protocol Concept, Dynamic
Cooperating Boundary Controllers Interim Technical Report,” Boeing Document
Number D658-10732-1, Boeing Defense & Space Group, Seattle, WA, January 1997
(ftp://ftp.tislabs.com/pub/IDIP/DCBC Interim Report.pdf).

7. CERT c©Advisory CA-2000-01 Denial-of-Service Developments,
http://www.cert.org/advisories/CA-2000-01.html.

8. S. Ying, “IA0126 DDoS Automated Response Re-Run,” presentation given at
DARPA Information Assurance Program Biweekly Meeting, September 29, 2000
(https://ests.bbn.com/dscgi/ds.py/Get/File-2392/ia0126 Brief.ppt or
ftp://ftp.tislabs.com/pub/IDIP/Ying briefing.ppt).

9. L. Sanchez, W. Milliken, A. Snoeren, F. Tchakountio, C. Jones, S. Kent, C. Par-
tridge, and W. Strayer, “Hardware Support for a Hash-Based IP Traceback,” Pro-
ceedings of the Second DARPA Information Survivability Conference and Exposi-
tion (DISCEX II), Anaheim, CA, June 2001.

10. S. Floyd, S. Bellovin, J. Ioannidis, R. Mahajan, V. Paxson, and S. Shenker,
“Aggregate-Based Congestion Control and Pushback,” ACIRI Annual Review, De-
cember 5, 2000 (http://www.aciri.org/floyd/talks/ACIRI-Dec00.pdf).

11. R. Mahajan and S. Floyd, “Controlling High-Bandwidth Flows at the Congested
Router,” AT&T Center for Internet Research at ICSI (ACIRI), Preliminary Draft,
November 20, 2000 (http://www.aciri.org/floyd/papers/red-pd.pdf).

12. R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker, “Con-
trolling High Bandwidth Aggregates in the Network,” AT&T Center for Internet
Research at ICSI (ACIRI), DRAFT, February 5, 2001
(http://www.research.att.com/∼smb/papers/DDOS-lacc.pdf).

13. Steven M. Bellovin, Editor, “ICMP Traceback Messages,” Internet Draft:
draft-bellovin-itrace-00.txt, Mar. 2000.

14. Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson, “Practical Net-
work Support for IP Traceback,” Proceedings of the 2000 ACM SIGCOMM Con-
ference, August 2000.

15. Dawn X. Song and Adrian Perrig, “Advanced and Authenticated Marking Schemes
for IP Traceback,” Report No. UCB/CSD-00-1107, Computer Science Division
(EECS) University of California, Berkeley, California, June 2000.



Autonomic Response to Distributed Denial of Service Attacks 149

16. H. Y. Chang, P. Chen, A. Hayatnagarkar, R. Narayan, P. Sheth, N. Vo, C. L. Wu,
S. F. Wu, L. Zhang, X. Zhang, F. Gong, F. Jou, C. Sargor, and X. Wu, “Design
and Implementation of A Real-Time Decentralized Source Identification System
for Untrusted IP Packets,” Proceedings of the DARPA Information Survivability
Conference & Exposition, January 2000.

17. Glenn Sager, “Security Fun with OCxmon and cflowd,” Presentation at the
Internet-2 Measurement Working Group, November 1998
(http://www.caida.org/projects/ngi/content/security/1198/mt0009.htm).


	Introduction
	Background
	Experiment: Autonomic Response to DDoS
	Objective
	Test Application
	Experiment Topology and Scenario
	Metrics and Instrumentation

	Experimental Results and Interpretation
	Observations
	Related Work
	Summary and Conclusion

