

NAI Labs Report #02-005

Intruder Detection and Isolation Protocol (IDIP) Message Layer Protocol Definition

Active Networks Intrusion Detection and Response Program

Technical Information Report

February 2002

Prepared Under Contract N66001-00-C-8602 for

SPAWARSYSCEN San Diego

53560 Hull Street
San Diego, California 92152-5410

Prepared By:

Kelly Djahandari
Dan Schnackenberg

Brett Wilson
Travis Reid

Jason Thorpe

NAI Labs
Boeing Phantom Works

Network Associates, Inc.
MS 88-12

3060 Washington Road
PO Box 3999

Glenwood, Maryland 21738
Seattle, Washington 98124-2499

Abstract

This technical report documents the Message Layer of the Intruder Detection and Isolation Protocol (IDIP) developed under DARPA’s Dynamic, Cooperating Boundary Controllers program, Adaptive System Security Policy program, and Automatic Response to Intrusion program. These programs developed and tested concepts for automated intrusion response, including IDIP. The focus of the Dynamic, Cooperating Boundary Controllers contract was to validate that using IDIP for automated intrusion response enables systems to track network intruders back to their origin and dynamically change network-level access control policies in response to network-based attacks. The Adaptive System Security Policy program extended the original concepts to develop mechanisms that allow optimal response for various network-based attacks. The response mechanisms adapt to changing threat environments. The Automatic Response to Intrusion program advanced the original concepts by integrating diverse access control, intrusion detection, and network management components into an intruder response system.

IDIP consists of two distinct layers: the Application Layer and the Message Layer. This layer construct is based on the OSI Protocol Layer Model. The Message Layer is the lower layer and acts, in part, as the transport layer. It is used to provide secure, reliable, multicast messaging for IDIP applications. This document details the objectives, specification, and operations of the IDIP Message Layer.

1INTRODUCTION
1

1.1Protocol Overview
2

1.1.1Neighborhood Management
2

1.1.2Cryptographic Extensions
2

1.1.3Reliable Delivery
2

1.1.4Timing Synchronization
2

1.2IDIP Message Layer Objectives
3

1.3IDIP Protocol Dependencies
3

2IDIP ARCHITECTURE
5

2.1Architectural Layering
5

3PROTOCOL SPECIFICATION
7

3.1IDIP Syntax
7

3.1.1IDIP Header Syntax
7

3.1.2HELLO Packet Syntax
9

3.1.2.1HELLO Header Syntax
10

3.1.2.2HELLO Entry Syntax

11

3.2Procedures
12

3.2.1Outbound Message Processing
13

3.2.23.2.2
Inbound Message Processing
14

3.2.2.1HELLO Data
15

3.2.2.2NKID Data
16

3.2.2.3Credential Data
16

3.2.2.4Startup Data
16

3.2.2.5Application Data
16

3.2.2.6ACK Packet
16

3.2.3Forwarding IDIP Messages
16

3.2.4IDIP Process Communications
17

3.2.4.1Mailbox Message Format
17

3.2.5Layer Communication
18

3.2.5.1Registration/ Deregistration Message Format
18

3.2.6Time Mechanism
19

4REFERENCES
20

Figure 1. IDIP Protocol Layering
5

Figure 2. IDIP Header
7

Figure 3. IDIP Flag Field Values
8

Figure 4. IDIP Next Type Values
8

Figure 5. IDIP Option Header
9

Figure 6: HELLO Protocol Layering
10

Figure 7. Device Types
11

Figure 8. HELLO Entry
11

Figure 9. Mailbox Message Format
18

Figure 10. COMM Header
18

Figure 11. COMM Message Types
19

API
Application programmer’s interface

ACK
Acknowledgment

DNS
Domain Name System

ICMP
Internet Control Message Protocol

IDIP
Intruder Detection and Isolation Protocol

IP
Internet Protocol

IPSEC
IP Security

LAN
Local area network

SYN
TCP’s synchronization flag

TCP
Transmission Control Protocol

TTL
Time-to-live

UDP
User Datagram Protocol

WAN
Wide area network

OSI
Open Systems Interconnection

1 INTRODUCTION

The Intruder Detection and Isolation Protocol (IDIP) Message Layer is used by IDIP applications to provide secure, reliable, multicast messaging between neighbors in an IDIP neighborhood. An IDIP neighborhood is a collection of IDIP components that have no other IDIP components topologically between them (i.e., they can directly communicate).

The IDIP Message Layer is designed to minimize the dependencies of IDIP applications on the system infrastructure to maximize survivability during system attack. This is accomplished through use of UDP at the transport layer, with very simple reliability mechanisms above UDP.

The IDIP Message Layer protocol has been designed to be relatively independent of the other IDIP protocols. These protocols are described in references The Boeing Company. Neighborhood Key Information Distribution (NKID) Protocol (Draft), Boeing Document Number D658-10818-1, February 1998. through NAI Labs and Boeing Phantom Works. Intruder Detection Isolation Protocol (IDIP) Application Layer, NAI Labs Report #02-006, February 2002.. (These describe the individual protocol components of what was originally documented in The Boeing Company. Protocol Definition - Intruder Detection and Isolation Protocol Concept, Boeing Document Number D658-10732-1, January 1997..) This document defines the IDIP Message Layer.

The IDIP Message Layer provides the following services–

1. Multicast. It provides a simple interface for IDIP Applications to send multicast messages. It allows IDIP applications to send a message to its neighborhood, independent of whether the component has multicast features or not.

2. Privacy and integrity/authentication. It uses the IDIP Authentication Header (IDIP AH) and Encapsulating Security Payload (IDIP ESP) (references Trusted Information Systems, Inc. Intruder Detection Isolation Protocol (IDIP) Authentication Header (AH), TIS Report Number 0699D, November 1997., Trusted Information Systems, Inc., Intruder Detection Isolation Protocol (IDIP) Encapsulating Security Payload (ESP), TIS Report Number 0698D, November 1997., Trusted Information Systems, Inc., IDIP AH with Hashed Message Authentication Codes (HMAC)-SHA-1, TIS Report Number 0700D, November 1997., and Trusted Information Systems, Inc., IDIP ESP with SKIPJACK Cipher Block Chaining (CBC), TIS Report Number 0701D, November 1997.) to provide privacy and integrity/authentication mechanisms.

3. Reliability. It compensates for the lack of reliability in UDP by providing message retransmission and duplicate removal.

4. Time synchronization. It provides a neighbor time service that can be used by an application to determine the time delta between the local clock and a neighbor’s clock.

1.1 Protocol Overview

The IDIP Message Layer provides a simple, secure, reliable multicast mechanism for IDIP applications. This is done through several mechanisms. Neighborhood Management keeps track of who the neighbors are and the operational state of each one. Security is provided through the IDIP AH and IDIP ESP. Reliability and Time synchronization are handled in a similar fashion as TCP/IP.

1.1.1 Neighborhood Management

The IDIP neighborhood management function identifies which IDIP nodes are neighbors and maintains the state of each neighbor. This is used to determine which neighbors are operational. With this information, the message layer can provide multicasting. By using a multicast group address or sending several unicast messages (which ever is available), this layer provides a simple API for applications to send messages to all of its neighbors.

1.1.2 Cryptographic Extensions

There are several possible threats to an IDIP network, which include falsification of data and eavesdropping. Allowing another component to act as an IDIP component, or to spoof IDIP messages would undermine the work of IDIP applications. There are several requirements that are necessary for any set of cryptographic extensions. It must be efficient, provide multicast support (including multicast key distribution), minimally affect the IDIP size, be available on several platforms, and key change traffic should not noticeably affect normal IDIP message flow. IDIP provides this functionality with the IDIP Transport Security Protocol.

1.1.3 Reliable Delivery

UDP has been selected as the mechanism for the transportation layer (OSI Layer Model). Since UDP is unreliable, the Message Layer provides reliable delivery. There are two features that provide this service for the Message Layer: acknowledgements and duplicate removal. ACK packets are acknowledgements that a specific packet is received. If an ACK packet is not received in a certain amount of time the Message Layer retransmits. The other feature of providing reliable delivery is the removal of duplicate packets. This is accomplished by each message providing a sequence number. The sequence number keeps the packets in order and allows the node to resend individual packets rather than all packets sent after the missed one.

1.1.4 Timing Synchronization

IDIP applications require synchronized time information from their neighbors. These applications use the sending node’s time to exchange time-related values. The message header time-stamp field allows the Message Layer to maintain the time delta for each neighbor. The application simply requests the time delta between the local and sending node, to translate the time delta. Through this mechanism, IDIP applications nodes can synchronize their times.

1.2 IDIP Message Layer Objectives

The primary IDIP Message Layer objective was simplicity to minimize the likelihood that the mechanisms would fail during system attack. Beyond simplicity we had the following objectives.

1. Minimal dependence on network infrastructure to improve system survivability. This is supported by using UDP rather than TCP, and by using IP addresses in application-layer node identification fields to minimize reliance on DNS. Both TCP and DNS are vulnerable to attack. Support for application-layer routing further reduces the support required from the network infrastructure.

2. Minimal performance impact on the protected system. The IDIP Message Layer adds very little overhead for each message. The use of multicast (in networks where multicast is supported) reduces the message traffic required for IDIP messages. The use of UDP minimizes the consumption of local host resources. With the potential for many neighbors in a neighborhood, using TCP would have potentially consumed many of the network resources required for applications.

1.3 IDIP Protocol Dependencies

IDIP message layer depends on the IDIP HELLO protocol for building each neighborhood, which is the IDIP term for a multicast group. IDIP HELLO identifies when neighbors are active or inactive, so that the IDIP message layer knows which neighbors should be currently included in IDIP multicasts. The IDIP message layer also notifies the IDIP HELLO protocol when a neighbor appears to be unreachable, so that the IDIP HELLO protocol can determine whether the neighbor is down.

The IDIP cryptographic services are optional modules that can be used by the IDIP Message Layer to provide protection against eavesdropping, message modification, spoofing, tardy delivery, and message replay. If cryptographic services are used, the IDIP Message Layer depends on the Neighborhood Key Information Distribution (NKID) Protocol for distributing keys between neighbors and the IDIP Transport Security Protocol (TSP) [9] to provide the privacy and integrity/authentication functionality. The IDIP TSP uses IDIP Encapsulating Security Payload (IDIP ESP) [4], Trusted Information Systems, Inc., IDIP ESP with SKIPJACK Cipher Block Chaining (CBC), TIS Report Number 0701D, November 1997. and IDIP Authentication Header (IDIP AH) [3], [5].

IDIP AH provides integrity and authentication protection for IDIP datagrams. The IDIP AH is modeled on the Internet Protocol Security (IPSEC) IPv4 AH. IDIP ESP provides the functionality necessary to support confidentiality protection in an intra-neighborhood environment (i.e., hop-to-hop). The IDIP ESP is modeled on the IPSEC IPv4 ESP transport mode.

The IDIP Neighborhood Key Information Distribution (NKID) Protocol [2] is used to create and distribute key information, which is used to protect IDIP messages between neighbors in an IDIP neighborhood. The key information may be either a set of keys, or a seed value from which the keys can be generated. Each node within the neighborhood generates its own key information and provides this key information to the node’s neighbors. The node’s IPv4 address is bound to the node’s public keys through IDIP credentials or X.509v3 certificates that are signed by a credential authority.

2 IDIP ARCHITECTURE

IDIP is used within an Internet Protocol (IP) network. IDIP nodes (i.e., those devices that participate in the IDIP) only need to know about their Discovery Coordinator, their “neighboring” IDIP nodes, and location of a credential database (when needed). Neighbors may be on the same local area network (LAN) or wide area network (WAN), or separated by multiple intermediate networks. The IDIP Message Layer assumes that these neighborhoods are managed through some other mechanisms (e.g., the IDIP neighborhood management (or HELLO) protocol).

Once an IDIP node knows its neighbors, typical communication is with either those neighbors or a centralized network management component called a Discovery Coordinator.

2.1 Architectural Layering

IDIP comprises the following protocol components: (1) IDIP applications, which perform application-specific processing and policy-related functions (e.g., auditing and blocking); (2) NKID, which provides neighborhood key exchange; (3) HELLO, which manages the IDIP neighborhoods; and (4) IDIP Message Layer, which provides reliable exchange of IDIP messages across the UDP transport-layer protocol. This layering is shown in Figure 1.

Internet Protocol Suite Layer

IDIP Protocol Entity

Application

IDIP Application

IDIP Message (includes NKID and HELLO protocols)

Transport

UDP

Network

IP

Figure 1. IDIP Protocol Layering

IDIP applications use the IDIP Message Layer to exchange IDIP messages in a standard format. NKID and HELLO also use the IDIP Message Layer format, but not all of the Message Layer services, to perform their functions. This document specifies the details of the IDIP Message Layer.

The IDIP Message Layer is responsible for managing the IDIP Message Layer header fields, as well as providing reliable message delivery and neighborhood multicasting. The IDIP application layer manages the IDIP message content and interfaces to the component’s auditing and access control functions. The IDIP application layer is also responsible for interpreting the attack descriptions and determining appropriate actions to be taken.

The IDIP Message Layer provides the following services.

1. Protocol initialization.

2. Reliable message transmission, including retransmission and acknowledgment.

3. Maintenance of round-trip latency and mean deviation values for the retransmission algorithm and time synchronization.

4. Calculation of time deltas for each neighbor that enable applications to adjust for time deltas between the local clock and each neighbor’s clock.

5. Generation of unique message IDs to be used by the applications.

6. Managing the time-to-live (TTL) field.

7. Multicast and unicast message transmission.

8. Forwarding messages.

9. Source authentication, integrity, and privacy for IDIP messages.

Discovery Coordinator communication may be either direct or proxied. Some firewall systems are not able to forward IDIP messages to the Discovery Coordinator addressed at the IP layer. In that case, the firewall must be an IDIP node to act as a proxy for messages between the Discovery Coordinator and devices behind the firewall. Because IDIP nodes send messages frequently to the Discovery Coordinator, the Message Layer maintains routing information for the Discovery Coordinator.

3 PROTOCOL SPECIFICATION

The following sections describe the message format for the IDIP Message Layer headers and options. Section 3.1 describes the IDIP message formats, and Section 3.2 describes the procedures for processing these messages.

3.1 IDIP Syntax

Throughout this protocol specification, all fields are in network byte order. All headers and lists are 32-bit aligned. Application data must also be 32-bit aligned (zero padded). Throughout this protocol specification, all pad fields are set to 0 on transmission and ignored on receipt. IP address fields used in the specification are in the IP version 4 format.

3.1.1 IDIP Header Syntax

Figure 2 shows the IDIP header format. The subsequent text describes the use of each field specified.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Version
Flags
Length

Next Type
Pad
Checksum

Sequence Number (4 octets)

Time-Stamp (4 octets)

Priority (4 octets)

Destination Address (4 octets)

Destination Process ID Number (4 octets)

Destination Boot Time (4 octets)

Pad (4 octets)

Figure 2. IDIP Header

· Version:
Identifies the version of this protocol. This is set to 0x01 for version 1.

· Flags:

Used in the ACK message. The following flags are valid.

Value
Name
Description

0x01
ACK
Specifies that this is an acknowledgment to a neighbor’s request and message was processed.

0x02
ACK - Not Delivered
Specifies that this message was received by the IDIP Message Layer, but could not be delivered because of lack of resources (input queue was full).

0x04
ACK - No Crypto Index
Specifies that this message was received by the IDIP Message Layer, but could not be delivered because the specified cryptographic index is not currently valid.

0x08
ACK – No Route
Specifies that this message was received by the IDIP Message Layer, but could not be forwarded because there was no valid route.

0x10
ACK - Not neighbor
Specifies that this message was sent from a node that was not a neighbor.

0x11
ACK – No Crypto
Specifies that the crypto options were not configured on the receiving node.

Figure 3. IDIP Flag Field Values

· Length:

Specifies the total IDIP message length in octets, including the header.

· Next Type

Specifies the type of the next Message Layer option. If there is no option, then the Next Type is Application Data, HELLO Data, NKID Data or Credential Data. Message Layers options are IDIP ESP and IDIP AH. The following types are valid.

Value
Name
Description

0x01
Application Data
Specifies that the common application header should determine the data type. (See NAI Labs and Boeing Phantom Works. Intruder Detection Isolation Protocol (IDIP) Application Layer, NAI Labs Report #02-006, February 2002.).

0x02
HELLO Data
Specifies that the payload is for the HELLO protocol.

0x03
NKID Data
Specifies that the payload is for the NKID protocol. (See The Boeing Company. Neighborhood Key Information Distribution (NKID) Protocol (Draft), Boeing Document Number D658-10818-1, February 1998..)

0x05
Credential Data
Specifies that the payload contains an IDIP get or set credential request. (See The Boeing Company. Neighborhood Key Information Distribution (NKID) Protocol (Draft), Boeing Document Number D658-10818-1, February 1998..)

0x06
Startup Data
Specifies that the payload contain the startup request/response.

0x32
IDIP ESP
Specifies an IDIP Encapsulating Security Payload (i.e., privacy) cryptographic option. (See Trusted Information Systems, Inc., Intruder Detection Isolation Protocol (IDIP) Encapsulating Security Payload (ESP), TIS Report Number 0698D, November 1997. and Trusted Information Systems, Inc., IDIP ESP with SKIPJACK Cipher Block Chaining (CBC), TIS Report Number 0701D, November 1997..)

0x33
IDIP AH
Specifies an IDIP Authentication Header (i.e., integrity/authentication) cryptographic option. (See Trusted Information Systems, Inc. Intruder Detection Isolation Protocol (IDIP) Authentication Header (AH), TIS Report Number 0699D, November 1997. and Trusted Information Systems, Inc., IDIP AH with Hashed Message Authentication Codes (HMAC)-SHA-1, TIS Report Number 0700D, November 1997..)

Figure 4. IDIP Next Type Values

· Checksum:

The standard 16-bit checksum algorithm used by TCP across the entire IDIP message, prior to application of cryptographic mechanisms (i.e., privacy and authentication transforms).

· Sequence number:
Used to eliminate duplicates and support acknowledgment.

· Time-Stamp:

Specifies the time (UTC) at which the message was transmitted.

· Priority:

Specifies the priority of this message.

· Destination Address:
Identifies the destination IP address for this message.

· Destination Process ID Number:
Identifies the process id of the process.

· Destination Boot Time:

Identifies the time the system booted.

The IDIP header is followed by zero or more options. Except for the IDIP ESP option, each option has the format shown below.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Next Type
Length
Option-Specific Data

Figure 5. IDIP Option Header

· Next Type:

Specifies the type of the next Message Layer option. If there is no next option, then the Next Header is one of Application Data, HELLO Data, NKID Data, Credential Data or Startup Data. The valid Next Header values are described above.

· Length:

Specifies the total option length in 32-bit words, including the type and length fields.

· Option-Specific Data:
Description for each option is in the following sections.

At this time, the only IDIP Message Layer options are cryptographic services (described in references Trusted Information Systems, Inc. Intruder Detection Isolation Protocol (IDIP) Authentication Header (AH), TIS Report Number 0699D, November 1997. through Trusted Information Systems, Inc., IDIP ESP with SKIPJACK Cipher Block Chaining (CBC), TIS Report Number 0701D, November 1997.). The IDIP ESP option uses a trailer field, as well as a special header.

3.1.2 HELLO Packet Syntax

Following is a description of the syntax for a HELLO packet. A HELLO packet consists of the HELLO header, followed by one or more HELLO entries, and cryptographic signature (if any).

3.1.2.1 HELLO Header Syntax

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Flags
Pad
Length

Crypto Offset
Proxy
Dev Type

Comm Type
Timestamp (4 octets)

Hello ID (4 octets)

Interface 1 (4 octets)

…

 Interface 6 (4 octets)

Figure 6: HELLO Protocol Layering

· Flags:

HELLO flags, currently not being used.

· Pad:

Pad of 0’s

· Length:

Length of payload.

· Crypto Offset:

Identifies where the cryptographic signature of the message starts.

· Proxy:

Identifies if sending node is a proxy or not.

· Device Type:

Bit field describing the type of device. A node can be a combination of these device types. The valid bit values are found below.

Bit Value
Name
Description

0x01
DC
Device is a Discovery Coordinator.

0x02
End System
Device is an end system.

0x04
Router
Device is a network router.

0x08
Application Proxy
Device is an application proxy.

0x16
Network IDS
Device is a network intrusion detection system.

0x32
Remote DC
Device is a remote Discovery Coordinator.

0x64
Edge
Device is an IDIP edge node.

Figure 7. Device Types

· Comm type:

Type of communication, multicast or unicast.

· Timestamp:

Timestamp given by sending node.

· Hello id:

Unique identifier of a HELLO message. Incremented with each HELLO message sent.

· Interface(s):

Interfaces used. There are six entries total for interfaces.

3.1.2.2 HELLO Entry Syntax

There is one HELLO entry representing each neighbor of the sender. A HELLO message holds space for up to 16 HELLO entries. The following diagram displays the HELLO entry syntax.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Identity (4 octets)

Time Delta (4 octets)

Signed
Alive
Proxy
Dev Type

Comm Type

Figure 8. HELLO Entry

· Identity:
Identity of neighbor (IP address).

· Time Delta:
Difference between the sender and receiver’s time.

· Signed:
Non-zero if the message is signed.

· Alive:

Specifies if the sender believes the neighbor is alive or not.

· Proxy:

Identifies if neighbor is a proxy to the DC.

· Device Type:
Bit field describing the type of device. A node can be a combination of these device types. The valid bits are found in Figure 7. Device Types.

· Comm Type:
Type of communication, multicast or unicast of neighbor.

3.2 Procedures

The following sections describe the detailed processing of IDIP Message Layer messages. Along with each node performing the following processing, each node is responsible for maintaining state information that includes–

· Node-level configuration–

· Tardy message notification enabled/disabled

· Tardiness limit

· Device type

· Whether the node is proxy to the Discovery Coordinator and/or to the CA

· Whether the node participates in encryption

· Whether the node is a Discovery Coordinator

· Whether the node is a CA

· For each node that has sent this node IDIP messages–

· Round-trip propagation delay

· Mean deviation for round-trip propagation delay

· Last received sequence number

· Time delta

· For each interface–

· IP address and IDIP port number (IDIP currently uses UDP port number 0xdcbc (hexadecimal) as its well-known port
.)

· Port number for accepting application requests, 0x

· Discovery Coordinator address

· Credential Database address

· Address for proxy to the Discovery Coordinator

· Address for proxy to the Credential Database

· Last used sequence number

· For each transmitted message requiring reliable delivery–

· List of recipients that have not yet acknowledged the message

· Current retransmission timeout duration

· Number of retransmissions

In addition, the Message Layer maintains a timer for detecting lost messages..

3.2.1 Outbound Message Processing

When the application requests IDIP message transmission, it specifies whether this is a unicast or multicast message, the next header type, and whether the message requires cryptographic protection. The IDIP message layer builds the header. Building the header includes–

· Setting the version number to 1.

· Setting the control byte to 0.

· Setting the next header to the header type specified by the application.

· Selecting a new sequence number by incrementing the last used sequence number.

· Setting the destination to the application provided value.

· Computing and setting the total message length, which is the application-specified length plus the header length.

· Generating the current time value and setting the timestamp in the message header to that value.

· Generating and inserting the header checksum, if required. If the header checksum is not used, then this field is set to 0. The header checksum is required if no cryptographic integrity mechanism is to be applied to the message and the underlying transport layer does not provide a checksum.

If cryptographic mechanisms are to be used, the Message Layer calls the cryptographic privacy and authentication mechanisms. Those mechanisms apply the configured cryptographic algorithms (if any) and return the cryptographically protected message to the Message Layer for transmission.

For multicast IDIP messages, when an IDIP node is ready to transmit an IDIP message, the sending IDIP node–

· Records the list of recipients (either the destination for unicast messages or the list of neighbors for multicast messages).

· Resets the count of retransmissions.

· Sets the retransmission timeout duration.

· Starts its timer.

· Transmits the message

· Waits for an acknowledgment or for timeout

When an acknowledgement is received, the acknowledging node is removed from the list of recipients for the acknowledged message. If the recipient is the last one on the list for this message, then the message structure is deallocated and the corresponding timer disabled.

If the timer expires, the sender–

· Increments the count of retransmissions, and if this count exceeds the maximum, deallocates the per message structure.

· Updates the retransmission timeout duration based on the standard TCP algorithm.

· Starts its timer.

· Retransmits the message either through a single multicast transmission if multicast is being used, or through a series of unicasts to each remaining recipient if multicast is not being used.

· Waits for an acknowledgment.

The sender tries up to some specified maximum number of retries to send the message. The default number of maximum retries is 5. The timer value computation shall use the standard algorithm used for TCP transmission time-outs, which uses approximate average round-trip latency and mean deviation recorded for each neighbor. The default initial timer value is 5 seconds. Note that the default values for retransmission timer and number of retransmission attempts can be modified to accommodate local network configurations.

If a message to an IDIP node goes unacknowledged through the maximum number of retries, then the HELLO protocol is notified of each node that did not acknowledge the message so that the HELLO protocol can determine if the node should be removed from the IDIP neighbor table.

3.2.2
Inbound Message Processing

The specific processing depends on the type of data. There are steps, however, that are applied to each message. When a message is received, it must record the time the message arrives and validate the header.

· If the version number is not the proper number, the message is discarded.

· If the header checksum is non-zero, validate the checksum. If the checksum is invalid, discard the message.

· If the header checksum is zero and the header checksum is required, discard the message.

· If the next header is HELLO Data, NKID Data, Credential Data, or Startup Data, reply to the sender using the same IDIP header, with no data, and the control field set to ACK. This acknowledgment is used to provide protocol reliability.

· If the message contains application data (Application, or Message Layer options - IDIP ESP or IDIP AH – followed by Application Data) and the last received sequence number is less than the current number, then this message is considered a new message so the node updates the last received sequence number for the source indicating successful reception of the message’s sequence number. (This mechanism relies on notification from the HELLO protocol when a neighbor resets so that the last received sequence number can be reset to 0.) If the message is a duplicate, it is discarded.

· If the next header is a Message Layer option, process the option as follows–

· If the next header is either IDIP ESP or IDIP AH, the Message Layer calls the cryptographic authentication and privacy mechanisms to authenticate and decrypt the message. Those mechanisms apply the configured cryptographic algorithms (if any), and if the message is valid with a current cryptographic context, return the clear-text protected message to the Message Layer for processing.

· If the message is valid application data or a valid duplicate message, reply to the sender using the same IDIP header, with no data, the control field set to ACK, and IDIP authentication option. This avoids spoofing of acknowledgements by the intermediate components.

· If the node is configured for tardy message notification and the message timestamp exceeds the local time, minus the remote node’s time delta, plus an application-specified tardiness limit, then notifies the application layer of tardy message delivery.

3.2.1.1 HELLO Data

If the message contains HELLO Data, it must be processed by the local node. HELLO messages are never forwarded. Note that these messages do not include any Message Layer options.

· If the message includes a signature, it is passed to the cryptographic mechanisms for processing.

· Following cryptographic validation, the message is delivered to the HELLO protocol for processing.

3.2.1.1.1 HELLO Protocol Processing

When processing the HELLO message, first it is verified to have at least the size of the header and has the required fields filled in appropriately. If the device type field of the message indicates that the source is a DC, the node checks to see if it already has the source node labeled as a DC. If that is the case, the source node is added to the DC list, the current node sets itself as a proxy to that DC and sets an indicator to send HELLO messages to all of its neighbors.

Next, the receiving node checks to see if the source node is listed as a neighbor. If it is, it does two things. (1) If the receiving node has the setting node listed as not active, it modifies its record to show that the source node is an active neighbor. Then it refreshes the timing values for the node. (2) It verifies that the sequence number in the HELLO message is unique. If it is unique, it updates its own record of the source’s neighbor list (the source sends a copy of its neighbor list in the HELLO message). Then it sets an indicator to send HELLO message to the neighbor. It updates its own records about the source node, including the new sequence number, the source’s device type field, comm type field, proxy field and updates the time delta field.

If the source node is not in the neighbor list and there is room to add another neighbor, the source is added as a neighbor (there is a maximum to the number of neighbors a node can have). The neighbor information is set neighbor record. Then it sets an indicator to send HELLO messages to all of its neighbors.

3.2.1.2 NKID Data

If the message contains NKID Data, the local node must process it. NKID messages are never forwarded. Note that these messages do not include any Message Layer options.

· If the message includes either credentials or a signature, it is passed to the cryptographic mechanisms for processing.

· Following cryptographic validation (if any), the message is delivered to the NKID protocol for processing. See the NKID protocol document for the processing description The Boeing Company. Neighborhood Key Information Distribution (NKID) Protocol (Draft), Boeing Document Number D658-10818-1, February 1998..

3.2.1.3 Credential Data

If the message contains Credential Data, the Message Layer is delivered to the NKID protocol for processing. Credential Data messages do not use the cryptographic options. See the NKID protocol document for the processing description The Boeing Company. Neighborhood Key Information Distribution (NKID) Protocol (Draft), Boeing Document Number D658-10818-1, February 1998..

3.2.1.4 Startup Data

If the message contains Startup Data, it may be processed by the local node or forwarded to another node.

· If the message is not addressed to the local node, it is forwarded to the destination.

· If the message is addressed to the local node and the message contains a request, the startup data is processed to determine the file requested. The file is retrieved and sent to the originating node.

· If the message is addressed to the local node and the message contains a response, the local node processes the file received in the message.

3.2.1.5 Application Data

If the message contains Application Data, the Message Layer delivers the message to the application layer process following the general processing. See the Application Layer document for the processing description NAI Labs and Boeing Phantom Works. Intruder Detection Isolation Protocol (IDIP) Application Layer, NAI Labs Report #02-006, February 2002..

3.2.1.6 ACK Packet

The ACK packet is the acknowledgement packet of a packet received by the node. The acknowledgement packet has the same header as the packet it is acknowledging. The difference is that one of the ACK flags is set in the IDIP header and that there is no IDIP payload.

3.2.2 Forwarding IDIP Messages

The current IDIP cryptographic services involve key exchange only with neighbors. Thus, any message requiring cryptographic protection from the Message Layer can only be sent to neighbors. To send the message beyond the current neighborhood, IDIP nodes set the destination address to the eventual destination, but transmit the message with an IP address of the neighbor on the path to the destination.

The IDIP Message Layer maintains route information to non-neighbor IDIP nodes. To send to a non-neighbor IDIP node, the node sets the Destination IP Address field of the IDIP header to the destination IP address and sends the message to the first IDIP node on the path to that destination.

On receipt of a message with a destination not itself, an IDIP node forwards the message to the destination by either (1) sending the message to the Destination IP Address in the IDIP header if the destination is a neighbor or (2) sending the message to the next hop on the path to the destination.

On failed transmission of a message to the destination, the sender discards the message.

3.2.3 IDIP Process Communications

The IDIP Message Layer consists of two processes, the sender process and the receiver process. Local socket “message mailboxes” are used to communicate between the two processes. The following describes these mailboxes.

· ACK Mailbox - When the receiver process receives an ACK packet, it is sent to the ACK mailbox to be read and processed by the sender process.

· RCV Mailbox – When the receiver process receives an IDIP packet with the destination of the local host or neighborhood, it is sent to the RCV mailbox to be read and processed by the sender process. The sender process delivers the message to all of the applications that have registered for delivery of messages of that class type.

· FWD Mailbox – When the receiver process receives an IDIP packet with the destination not the local host or neighborhood, it is sent to the FWD mailbox to be read and processed by the sender process. The sender process forwards the message to the destination or the next hop to the destination.

· SND Mailbox – When a process wants to send a message, it is sent to the SND mailbox to be read and processed by the sender process. If the destination is the local host, the sender process delivers the message to all of the applications that have registered for delivery of messages of that class type. If the destination is not the local host, the sender process forwards the message to the destination or the next hop to the destination.

3.2.3.1 Mailbox Message Format

A mailbox message consists of a mailbox header, an IDIP header and the payload. The Mailbox Message header has the following format:

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Total (unsigned integer)

Interface (4 octets)

PID (unsigned integer)

Source (4 octets)

Figure 9. Mailbox Message Format

Total:

Total length of IDIP message, including the IDIP header.

Interface:

Interface to send message.

PID:

Process ID of the sender.

Source:

IP address of the sender.

3.2.4 Layer Communication

The IDIP Application Layer communicates with the IDIP Message Layer through a local stream socket on port 0xc1df. This socket handles registration and deregistration with the IDIP Message Layer. After registration this socket is used for applications to send data to and receive data from the Message Layer.

The sender process listens on port 0xc1df for connections from applications. When an application connects to the port, the sender receives a registration message. The registration message includes the IDIP classes of messages the application wants to receive. When the sender process receives a message on the RCV Mailbox, it sends the message to the application using the socket connection.

3.2.4.1 Registration/ Deregistration Message Format

Registration to the Message Layer is handled using COMM messages. A COMM message has the following format:

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Length (4 octets)

Type (4 octets)

PID (4 octets)

Boottime (4 octets)

COMM Payload (variable length)

Figure 10. COMM Header

Length:

Length of payload.

Type:

Type of COMM packet. The following is a list of the valid types:

Value
Name
Description

0x02
Bind
Specifies that the application request is to bind to a specified port and multicast address (registration). The payload is the addresses to be used for multicast.

0x03
Restrict
Specifies that the application request is to restrict delivery of messages to only those messages of the specified classes. The payload is the GIDO classes [7].

0x04
Close
Specifies that the application request is to close the inter-process pipe. There is no payload.

Figure 11. COMM Message Types

PID:

Process ID of the application.

Boottime:

Start time of the application process.

COMM Payload:
The payload varies, depending on the type of message being sent. See the COMM Message Types field descriptions.

3.2.5 Time Mechanism

IDIP applications require synchronized time information from their neighbors. These applications use the sending node’s time (in UTC format) to exchange time-related values. There are multiple reasons why the standard time mechanisms cannot be used, including (1) time is difficult to synchronize, (2) standard time protocols do not currently work across firewalls, and (3) if the IDIP nodes are in different administrative domains, it is unlikely that the separate administrators would permit the other domains to control local time. The IDIP Message Layer provides a mechanism for local IDIP applications to adjust application-layer time values to local time to compensate for time drift or components whose clocks are not correctly set.

The message header time-stamp field allows the Message Layer to maintain the time delta for each neighbor. (The time-stamps used by the neighborhood management protocol also help maintain these time deltas.) When an application must translate the sender’s time reference into local time, the application requests the time delta between the local node and the sender’s node through the IDIP Message Layer API.

Using this approach, if a message traverses several IDIP nodes, each node’s application layer adjusts time references to account for differences from the sender’s time to local time. Thus, we can achieve time synchronization on an IDIP node hop-by-hop basis.

The IDIP Message Layer uses the recorded round-trip latency for each neighbor (collected to support retransmission mechanism), plus the time-stamps to maintain the time deltas. When the IDIP Message Layer receives and message from a neighbor, it updates these values depending on the state of the neighbor.

4 REFERENCES

[1] The Boeing Company. Protocol Definition - Intruder Detection and Isolation Protocol Concept, Boeing Document Number D658-10732-1, January 1997.

[2] The Boeing Company. Neighborhood Key Information Distribution (NKID) Protocol (Draft), Boeing Document Number D658-10818-1, February 1998.

[3] Trusted Information Systems, Inc. Intruder Detection Isolation Protocol (IDIP) Authentication Header (AH), TIS Report Number 0699D, November 1997.

[4] Trusted Information Systems, Inc., Intruder Detection Isolation Protocol (IDIP) Encapsulating Security Payload (ESP), TIS Report Number 0698D, November 1997.

[5] Trusted Information Systems, Inc., IDIP AH with Hashed Message Authentication Codes (HMAC)-SHA-1, TIS Report Number 0700D, November 1997.

[6] Trusted Information Systems, Inc., IDIP ESP with SKIPJACK Cipher Block Chaining (CBC), TIS Report Number 0701D, November 1997.

[7] Trusted Information Systems, Inc., Intruder Detection and Isolation Protocol (IDIP) Transport Security Protocol Interface, TIS Report Number 0697D, November 1997.

[8] NAI Labs and Boeing Phantom Works. Intruder Detection Isolation Protocol (IDIP) Application Layer, NAI Labs Report #02-006, February 2002.

 Integrated Technology Solutions, Inc. 8775 Cloudleap Ct, Suite 200, Columbia, MD 21045.

�	We are using port number 0xdcbc for the purposes of demonstrating this technology. Once the technology is determined viable, we will request an official port number.

20

