

NAI Labs Report #02-008

Cooperative Intrusion Traceback and Response

Architecture (CITRA)

DDoS Tolerant Networks Program

Technical Information Report

February 2002

Prepared Under Contract N66001-01-C-8048 for

Space and Naval Warfare System Center (SSC)
San Diego, California 92152-5000

Prepared By:

Dan Schnackenberg
Kelly Djahandari

Travis Reid
Brett Wilson

Boeing Phantom Works
NAI Labs

MS 88-12
Network Associates, Inc.

PO Box 3999
3060 Washington Road

Seattle, Washington 98124-2499
Glenwood, Maryland 21738

Abstract

This report documents the Cooperative Intrusion Traceback and Response Architecture (CITRA). CITRA’s protocol (Intruder Detection and Isolation Protocol - IDIP) was initially developed under the Dynamic Cooperating Boundary Controllers project, which developed the initial version of IDIP. IDIP and CITRA were extended through the Automatic Response to Intrusion, Adaptive System Security Policies, and Multi-Community Cyber Defense contracts. CITRA is an architecture to provide an infrastructure for intruder tracking and containment. This report describes the CITRA architecture and provides an overview of IDIP protocol.

11.
INTRODUCTION

2.
IDIP OVERVIEW
3
2.1
IDIP Application-Layer Protocol
9
2.2
IDIP Message Layer
11
2.2.1
Neighborhood Management
11
2.2.2
Key Distribution
11
2.2.3
Cryptographic Extensions to the Message Layer
12
3.
IDIP SOFTWARE ARCHITECTURE
14
3.1
IDIP Backplane
14
3.2
IDIP Applications
16
3.2.1
IDIP Generic Agent
16
3.2.2
Custom IDIP Responders
19
3.2.3
Discovery Coordinator Applications
19
4.
IDIP INFORMATION SPECIFICATION LANGUAGE
24
5.
POLICY MECHANISMS
26
5.1
Requirements
26
5.2
IDIP Nodes and Roles
26
5.3
Parameters Used for Response Policy
27
5.4
Concepts
28
5.5
Cost Models
29
5.5.1
Generic IDIP Agent Cost Model Implementation
29
5.5.2
Detector Agent Model
29
5.5.3
Response Agent Model
31
5.5.4
Cost Model Implementation in the Discovery Coordinator
31
6.
MULTI COMMUNITY CYBER DEFENSE
34
6.1
Concepts
34
6.2
Communication Between IDIP Communities
35
6.3
Multi-Community Policies
35
6.4
Cooperative Negotiation
35
7.
REFERENCES
37

2Figure 1‑1.
IDIP Nodes

Figure 2‑1.
IDIP Community
4
Figure 2‑2.
Attack Scenario
5
Figure 2‑3.
IDIP Local Neighborhood Response
6
Figure 2‑4.
IDIP Remote Boundary Controller Response
6
Figure 2‑5.
IDIP Remote Boundary Controller Response (Continued)
7
Figure 2‑6.
IDIP Intrusion Reporting
7
Figure 2‑7.
IDIP Discovery Coordinator Optimal Response
8
Figure 3‑1.
IDIP Backplane Architecture
15
Figure 3‑2.
IDIP Generic Agent Architecture
16
Figure 3‑3.
Discovery Coordinator Application View
20
Figure 3‑4.
Topology Format
21
Figure 3‑5.
Example Network Configuration
22
Figure 3‑6.
Example Topology Specification
23
Figure 4‑1.
CISL Example
25
Figure 6‑1.
MCCD Communication
34

API
Application Programmer’s Interface

AH
Authentication Header

ACK
Acknowledgment

BSM
Basic Security Module

CA
Certification Authority

CBC
Cipher Block Chaining

CIDF
Common Intrusion Detection Framework

CISL
Common Intrusion Specification Language

CLIPS
C Language Integrated Production System

CORBA
Common Object Request Broker Architecture

COTS
Commercial Off The Shelf

DC
Discovery Coordinator

DEFPOS
Defensive Posture

EMERALD
Event Monitoring Enabling Responses to Anomalous Live Disturbances

ESP
Encapsulating Security Payload

FTP
File Transfer Protocol

HMAC
Hashed Message Authentication Code

HTTP
Hyper-Text Transfer Protocol

IDIP
Intruder Detection and Isolation Protocol

IDS
Intrusion Detection System

IP
Internet Protocol

IPSec
IP Security

LAN
Local Area Network

MPOG
Multi-Protocol Object Gateway

NKID
Neighborhood Key Information Distribution

SHA
Secure Hash Algorithm

SID
Semantic Identifier

SMARTS
System Management and Administration for Remote Trusted System

SNMP
Simple Network Management Protocol

SSL
Secure Socket Layer

SYN
TCP’s synchronization flag

TCP
Transmission Control Protocol

UDP
User Datagram Protocol

WAN
Wide Area Network

1. INTRODUCTION

The Cooperative Intrusion Traceback and Response Architecture (CITRA) and the Intruder Detection and Isolation Protocol (IDIP) were developed to support real-time tracking and containment of attacks that cross network boundaries. This report describes CITRA and provides a brief overview of IDIP.

The CITRA concept of operations has each response component independently deciding on what is an appropriate response. The system’s objective is to generate the response as close as possible to the attacker, minimizing the response impact on the critical functions of the system under attack. Each component’s objective is to allow this optimal response while protecting local resources as well. This report discusses improvements to how IDIP nodes respond through better cooperation and a more consistent set of response mechanisms.

The primary notion that has evolved through this effort is that IDIP responses should be taken in two stages: (1) an initial immediate response that may be relatively harsh (i.e., may cause damage to normal system functionality), but is relatively short-lived, and (2) a more reasoned “optimal” response that is more effective at meeting the system’s overall operational needs while attempting to contain the attack.

Figure 1‑1 shows the various components that can participate in an IDIP-based response. Intrusion detection components initiate IDIP response messages, and can support damage assessment and recovery within the local environment. Boundary controllers (e.g., routers and firewalls) provide network-based response mechanisms by blocking the intruder’s access to network resources. Hosts provide finer-grained responses by killing processes and connections associated with intruders. A centralized network management component (called the Discovery Coordinator) receives intrusion reports and audit data from other IDIP nodes, enabling it to (1) provide administrative personnel with a global picture of the system intrusion status and (2) coordinate the overall system response to attacks.

[image: image1.wmf]Intrusion Detection

System

Routers

Firewall

Server

Client

Network Manager

(Discovery Coordinator)

Intrusion Detection

System

Firewall

Firewall

Figure 1‑1.
IDIP Nodes

2. IDIP OVERVIEW

Intruder Discovery and Isolation Protocol (IDIP) has evolved into a number of protocols.

a. IDIP message layer [1] (which is also the CIDF message layer). This layer also includes the following protocols.

1. HELLO protocol for neighborhood management.

2. Neighborhood key information distribution (NKID) protocol [2].

3. IDIP authentication header ([3], [4]).

4. IDIP encapsulating security payload ([5], [6]).

b. IDIP application layer.

Each of these protocols is largely independent of the others allowing us to modify one with minimal impact on the others. The following sections provide an overview of IDIP, followed by details on how these protocols work and the current implementation architecture. This provides context for understanding the policy mechanisms described in Section 5.

The IDIP application layer protocol coordinates intrusion tracking and isolation. IDIP systems are organized into IDIP communities (as shown in Figure 2‑1). Each IDIP community is an administrative domain, with intrusion detection and response functions managed by a component called the Discovery Coordinator. Communities are further organized into IDIP neighborhoods. These neighborhoods are the collection of components with no other IDIP node between them. Boundary control devices are members of multiple IDIP neighborhoods.

[image: image2.wmf]Community

Boundary

Controllers

Discovery

Coordinator

Intrusion Detection

System

Neighborhood 2

Intrusion Detection

System

Neighborhood 1

Neighborhood 3

Boundary

Controllers

Boundary

Controller

Figure 2‑1.
IDIP Community

IDIP’s objective is to share the information necessary to enable intrusion tracking and containment. Figure 2‑2 through Figure 2‑7 illustrate how IDIP accomplishes intrusion response. When an attack traverses an IDIP-protected network, each IDIP node along the path is responsible for auditing the connection or datagram stream
.

[image: image3.wmf]Intrusion

Detection

System

Boundary

Controller

Discovery

Coordinator

Attacking

Host

Attacked Host

Boundary

Controller

Boundary

Controller

Boundary

Controller

Figure 2‑2.
Attack Scenario

On detection of an attack, the detecting IDIP node determines the appropriate response, and if a response is indicated, notifies its neighbors of the attack. Each IDIP node makes a local decision as to what type of response (e.g., kill the connection, install filtering rules, disable the user account) is appropriate based on the attack type, attack certainty, attack severity relative to the type of attack and vulnerability of components under attack, what other IDIP nodes have already done, and local policy constraints (e.g., never disable HTTP between 8 AM and 4 PM). The types of issues addressed by the response policy are shown in Figure 2‑3. The attack responses are appended to the attack description prior to forwarding the attack description to neighboring IDIP nodes. This enables IDIP to trace the attack back to the edge of the IDIP-protected system, taking appropriate responses at each IDIP node along the attack path. Nodes that receive reports from neighbors determine if they are on the attack path (i.e., whether they have seen the connection described by the attack report) before forwarding the attack report. This process continues (as shown in Figure 2‑4 and Figure 2‑5) until the IDIP system edge is reached.

[image: image4.wmf]Intrusion

Detection

System

Boundary

Controller

Attacking

Host

Attacked Host

Boundary

Controller

•

How severe is this?

•

How certain am I?

Trace attack and Block

attack for two minutes

•

Do I trust the detector?

•

Do I even care about the attacked

resources?

•

Are the lost resources from blocking

more valuable than the attacked

resources?

•

Is the requested blocking interval too

long? Too short?

Figure 2‑3.
IDIP Local Neighborhood Response

[image: image5.wmf]Intrusion

Detection

System

Attacking

Host

Attacked Host

Boundary

Controller

Boundary

Controller

Boundary

Controller

Trace attack and Block

attack for two minutes

•

Do I trust the detector?

•

Do I even care about the attacked

resources?

•

Are the lost resources from blocking

more valuable than the attacked

resources?

•

Is the requested blocking interval too

long? Too short?

Figure 2‑4.
IDIP Remote Boundary Controller Response

[image: image6.wmf]Intrusion

Detection

System

Boundary

Controller

Attacking

Host

Attacked Host

Boundary

Controller

Boundary

Controller

Boundary

Controller

Trace attack and Block

attack for two minutes

•

Do I trust the detector?

•

Do I even care about the attacked

resources?

•

Are the lost resources from blocking

more valuable than the attacked

resources?

•

Is the requested blocking interval too

long? Too short?

Figure 2‑5.
IDIP Remote Boundary Controller Response (Continued)

[image: image7.wmf]Intrusion

Detection

System

Discovery

Coordinator

Attacking

Host

Attacked Host

Saw attack and

Blocked attack for ten

minutes

Saw attack

Saw attack and did not

Block

Saw attack and did not

Block

Saw attack and

Blocked attack for two

minutes

Figure 2‑6.
IDIP Intrusion Reporting

[image: image8.wmf]Intrusion

Detection

System

Attacking

Host

Boundary

Controller

Boundary

Controller

Boundary

Controller

Discovery

Coordinator

•

Do I trust the detector?

•

Do I even care about the attacked resources?

•

Are the lost resources from blocking more valuable

than the attacked resources?

•

Is the requested blocking interval too long? Too short?

•

Are there alternate paths the attacker can take?

•

Is this part of a larger, more wide-spread attack?

•

Are there responses that are no longer needed?

•

Are additional responses needed by IDIP

components?

•

Can I use other resources (e.g., SNMP) to further

contain the attack?

Relax the blocking

Block indefinitely

Disable Ethernet port

Figure 2‑7.
IDIP Discovery Coordinator Optimal Response

Additionally, each IDIP node sends a copy of the attack report (along with the local responses) to the Discovery Coordinator (Figure 2‑6). The Discovery Coordinator can then correlate reports to gain a better overall picture of the situation, and also issue response directives back to individual nodes (Figure 2‑7) to either remove an unnecessary response (e.g., firewall filtering rule), or add a response (e.g., firewall filtering rule along an alternate attack path). The Discovery Coordinator is expected to be co-located with the domain’s network management facilities, providing the Discovery Coordinator with the network global topology, enabling the selection of the optimal points in the network to block harmful connections.

Figure 1‑1 not only shows intrusion detection systems and boundary controllers as IDIP nodes, but also shows that hosts may participate in an IDIP system. Hosts can provide more fine-grained responses as they can trace the intrusion back to the process and user initiating the intrusion from the local host. When an intruder is performing an attack after hopping through multiple hosts, IDIP-enabled hosts allow the intrusion to be traced back through these hosts, which is not possible if only boundary controllers participate in the IDIP system.

Note that allowing hosts to participate in IDIP raises two significant issues for the underlying protocol mechanisms: (1) IDIP neighborhoods may grow to be very large, and (2) some IDIP nodes may be significantly less “trustworthy” than others because they may have a number of vulnerabilities available for an attacker to use. Because neighborhoods may grow very large, IDIP is designed for multicast operation. At the application level, all neighborhood communication is multicast. This second factor implies that some IDIP nodes may be compromised and potentially used against the system. For this reason, IDIP has features that enable it to distinguish less trustworthy components from more trustworthy components.

2.1 IDIP Application-Layer Protocol

IDIP is organized into two primary protocol layers: the IDIP application layer and the IDIP message layer. The application layer protocol accomplishes intrusion tracking and containment through three major message types: (1) trace, (2) report, and (3) Discovery Coordinator directive.

An IDIP trace request message is sent when an event or event sequence is detected that is determined to be sufficiently intrusive to warrant a response (which may be to trace the events or to trace and block the events). The trace request message includes an event description, including a description of the connection used by the intruder. Each IDIP node receiving the trace request uses this information to determine if the attack passed through the node. At each hop in the path, there is a possibility that this description may need to be modified due to network address translation, firewall proxies, or a user passing through a host. The protocol supports translating the attack description by appending a translation record to the end of the trace message. This allows tracing through hosts, firewalls, and routers. The limitation is that once a non-IDIP node that modifies the connection is reached, the connection can be traced no further. Note that the tracing mechanism is based on what the components have seen and recorded in their audit trail, rather than based on network routing tables or other dynamic network state. This approach also enables tracing of connections that spoof source addresses.

In the trace message, the detector specifies whether this event requires blocking in addition to tracing. Each node receiving the trace message is not obligated to perform the specified blocking rules, but all must perform the trace function. Local nodes can either use the suggested blocking or take some other node-specific action based on local policy. Blocking can be inserted for a limited time or until the system administrator reverses the action. When timed blocking rules are applied, the IDIP software monitors the clock to determine when to remove the blocking rule. Most responses taken by IDIP nodes are capable of being reversed. They are viewed as short-term reactions to provide system administrators time to perform whatever damage assessment and recovery actions are required. In the current implementation, the node responses to trace messages will typically block traffic for a short duration (e.g., a few minutes) to provide time for the Discovery Coordinator to determine an optimal response.

An IDIP report is simply a copy of a trace message that is sent to the Discovery Coordinator by each component that receives a trace message. This enables the Discovery Coordinator to both discover the attack path and to determine an optimal global response based on mission constraints.

To help prevent flooding the IDIP network with trace and report messages, repeated detection events are accumulated at the detector and sent as a single summary report.

Once the Discovery Coordinator has determined an optimal response, it sends directives out to nodes whose response requires altering. There are two types of Discovery Coordinator directives: (1) an undo message requests that the node reverse a previously taken IDIP blocking action (e.g., open up a service that was blocked at a firewall) and (2) a do message to take another action (e.g., extend the duration of a blocking rule). The Discovery Coordinator may request any action supported by the local response component, such as disable a user account or modify a host’s policy. If the Discovery Coordinator is co-located with the system network management infrastructure, then the Discovery Coordinator can use the network management resources to take actions at non-IDIP nodes.

The Discovery Coordinator represents a single point of failure in the IDIP system, making it a target for denial of service attacks. If the Discovery Coordinator is not available for directing an optimal response, IDIP nodes can take increasingly severe responses when attacks continue following the initial response, reducing the reliance of IDIP on Discovery Coordinator actions.

To support communication between the varied IDIP nodes requires a flexible and extensible language. IDIP uses the CISL [7] developed by the CIDF working group as the language for describing attacks and responses. This language includes terms for describing the blocking actions used in the current IDIP implementation, and can be easily extended (by adding new terms) to support additional responses as they are developed. IDIP currently uses only two actions: block and allow. These can be used with various objects (e.g., users, processes, messages, or connections) to cause a number of different responses. Multiple block and allow actions can be specified in one message, each action having its own objects against which to apply the action. As an example, a “block user” message is interpreted as a request to stop that user from doing anything. A “block user and connection” message is interpreted as a request that the user be prevented from using the specified connection. Connection information includes protocol, source address, source port, destination address, and destination port. Any of these parameters may be wildcarded. Response messages can also include a specification of when to start and stop the actions.

There are several types of IDIP devices, including intrusion detection components, boundary controllers (i.e., firewalls and routers), network management (called the Discovery Coordinator), and end systems.

For IDIP, there are three terms that require special definition:

· Neighborhood – An IDIP neighborhood is a collection of adjacent IDIP nodes (i.e., two IDIP nodes are neighbors if they have no IDIP nodes between them).

· A Discovery Coordinator is an IDIP node that receives attack descriptions and descriptions of each IDIP node’s response, and potentially directs the overall system response. Each IDIP node currently has a single Discovery Coordinator.

· A “community” is a set of IDIP neighborhoods with a common Discovery Coordinator.

Communities may be either hierarchically related or may be peers. This models the administrative environment in which IDIP nodes operate. Within a large organization, there may be a single Discovery Coordinator that serves the entire organization. Different sub-organizations within the organization may have their own Discovery Coordinators that live below the organization’s Discovery Coordinator in the hierarchy. Different organizations will have peer Discovery Coordinators. Essentially, each Discovery Coordinator corresponds to an administrative domain and Discovery Coordinators have reporting relationships that follow the relationships of the corresponding administrative domains.

2.2 IDIP Message Layer

The IDIP message layer provides a simple, secure, reliable multicast mechanism for IDIP applications. This layer also supports unicast message transmission between IDIP nodes. The multicast functionality allows IDIP applications to communicate with all neighbors using a single Application Programmer’s Interface (API) call. The message layer multicast functionality can use either the IP multicast or IP unicast service, but provides a multicast interface to the application layer.

The message layer is responsible for reliably delivering the messages to each neighbor for multicast transmission and to the single destination for unicast transmission. The message layer determines and applies the cryptographic mechanisms required for the message.

The message layer has three major protocol components outside the reliable delivery mechanisms: (1) neighborhood management, (2) key distribution, and (3) cryptographic extensions. These are summarized below.

2.2.1 Neighborhood Management

The IDIP neighborhood management functions support the IDIP message layer by identifying which IDIP nodes are neighbors and maintaining the state of each neighbor so that the message layer can determine which neighbors are currently operational. The IDIP message layer provides the neighborhood management functions with notification of failed transmission, and the neighborhood management functions provide the IDIP message layer with notification of added and deleted neighbors.

2.2.2 Key Distribution

The IDIP key distribution protocol supports the cryptographic functions used by the message layer by distributing keys used for both confidentiality and integrity. Each node generates the keys it will use for transmitting messages and is responsible for distributing these keys to neighbors. This protocol is described in detail in [2] and has changed significantly from the initial IDIP key distribution protocol. The changes were made to make the key distribution process more robust.

2.2.3 Cryptographic Extensions to the Message Layer

Perceived threats to IDIP include falsification of data, one component assuming the identity of another component, or eavesdropping. If a component can masquerade as an IDIP node or modify IDIP messages, there is an opportunity for both (1) disabling detection and response mechanisms or (2) severe denial of service attacks on the system through malicious manipulation of automated response mechanisms. This is no different than the threat to a system using remote management services, as these services become a good target for an adversary. Eavesdropping is a concern primarily in hiding from attackers the details of what was detected and what automated responses are being taken.

The basic requirements for IDIP cryptography include the following.

a. Efficient cryptography for messages (e.g., trace messages) that must be sent to each node in a neighborhood. To minimize computational overhead, encryption and generation of integrity checksums for an IDIP message should occur once for each multicast transmission to the neighborhood. This is important because an IDIP neighborhood could grow quite large. This approach results in the cost of applying cryptography to messages for very large neighborhoods requiring the same amount of time as a message going to a small neighborhood. This approach also supports use of multicast operation for IDIP neighborhoods: each trace message is encrypted once and either unicast or multicast to the neighborhood.

b. Support for multicast, including multicast key distribution. For efficient operation, IDIP message layer provides a multicast interface to IDIP applications. To provide cryptographic protection for multicast IDIP messages requires support from the key distribution mechanisms. That is, the key distribution mechanism must be capable of providing to the multicast group the shared keys used for encryption and generation of integrity checksums.

c. Minimal impact on IDIP message size, as each IDIP message must fit within one UDP datagram which is 64 kilobytes.

d. Availability on multiple platforms, including Solaris(, BSD/OS(, Linux(, and Windows NT(.

e. Ease of integration.

f. Support for multiple multicast groups within a neighborhood (e.g., to segregate key sharing relationships among boundary controllers from those involving less secure hosts).

g. The number of messages for key change, due to key refresh or a change in the neighborhood membership should not noticeably affect normal IDIP message flow.

IDIP provides both privacy and authentication mechanisms. These mechanisms are modeled after IP Security (IPSec) [8], except that they provide protection above the transport layer. This enables IDIP support for cryptographic mechanisms in systems where the local infrastructure does not provide cryptographic protection.

3. IDIP SOFTWARE ARCHITECTURE

The two primary objectives for the IDIP software architecture were (1) ease of integration with various components and (2) flexibility in modifying the generic component behavior for specific components. The concept supports integration of boundary controllers, network and host-based intrusion detection systems, clients, servers, and network management components.

The IDIP software was designed for portability and is currently executing on Solaris, BSDI, Linux, and Windows NT platforms. Operating system dependencies were minimized during the development and have been encapsulated in a single file.

The IDIP software components comprise IDIP backplane and IDIP applications. IDIP applications developed to date include a generic agent and various Discovery Coordinator applications. These components are described below.

3.1 IDIP Backplane

The IDIP backplane executes on all IDIP nodes, providing reliable, secure communication between IDIP applications. Figure 3‑1 depicts the IDIP backplane showing the message layer, with neighborhood management, cryptographic key management, and cryptographic services. The message layer provides the following services.

· Reliable message delivery, including duplicate message removal.

· Multicast messaging.

· Hop-by-hop message authentication and privacy.

· Tracking of neighbor clock delta from the local clock.

[image: image9.wmf]IDIP Message Layer

 Reliable Delivery

 Duplicate Removal

 Multicast Support

 Time Management

 Message class

 subscription

Neighborhood Management

 Node status

Key Management

IDIP Cryptographic Services

 Authentication

 Integrity

 Privacy

User

 Datagram

 Protocol

Internet Protocol

IDIP Application

IDIP

 Backplane

Figure 3‑1.
IDIP Backplane Architecture

The IDIP message layer provides a socket-based interface to the application layer, enabling easy integration of new applications. An application subscribes for the message classes it needs, and the message layer delivers all messages of that class (including locally generated messages) to the application. This provides a local multicast capability that allows multiple applications on an IDIP node to share intrusion-related information.

The message layer provides reliable delivery over UDP through a simple acknowledgement mechanism. The message layer multicast functionality was designed to use IP multicast, but currently uses IP unicast services to send to each neighbor. It provides a multicast interface to the application layer regardless of whether the underlying implementation uses IP multicast or not. The time difference between neighbors is determined and adjusted using round-trip propagation delay of messages and is used by IDIP applications to adjust local time-related portions of messages, such as the time that an attack occurred. Each message has a unique message identifying number, so duplicate messages are not processed.

Neighborhood management includes maintaining status on each IDIP neighbor and forwarding that status to the Discovery Coordinator when it changes. An objective that has not yet been implemented is for this protocol to perform neighbor discovery. The implementation currently uses a list of neighbors provided by the Discovery Coordinator. The neighborhood management function provides other message layer components with notification messages when neighbors are added and deleted, detected via periodic “heartbeat” messages sent between neighbors.

During IDIP development there were no cryptographic mechanisms available that met the full set of requirements described in Section 2.2.3. This led to the development of a protocol for IDIP message protection modeled after IPSec, with a simple protocol for multicast key distribution. This development was facilitated through use of the open source cryptographic library from OpenSSL [9] for developing IDIP cryptographic services and key management software. This library is available for most platforms, supporting the portability requirements. Keeping the IDIP key management scheme as simple as possible reduced the number of implementation errors.

3.2 IDIP Applications

The IDIP applications manage the IDIP message content that is sent or delivered by the IDIP backplane. One IDIP node in a community executes the Discovery Coordinator application. All IDIP nodes execute an IDIP agent application.

3.2.1 IDIP Generic Agent
The IDIP generic agent application provides a framework for building component-specific detection and response engines. As shown in Figure 3‑2, the generic agent provides (1) the IDIP application protocol, (2) the interface to local detection mechanisms (via the IDIP detection interface) (3) the interface to local response mechanisms, and (4) the processing of the IDIP audit data.

[image: image10.wmf]IDIP Generic Agent

 Message processing

 Connection search

 Cost model

Component-Specific Functions

Local responses (e.g., service

blocking or kill process)

IDIP

 Backplane

IDIP Audit

IDIP

Audit

Data

IDIP

Detection

Interface

IDIP String

API

Detector

“Wrapper”

Detector

Figure 3‑2.
IDIP Generic Agent Architecture

The generic agent software is designed to minimize the cost of new component integration. Figure 3‑2 shows the IDIP agent application architecture with the component-specific routines highlighted. Figure 3‑2 also shows two additional IDIP processes that support the IDIP agent.

· IDIP detection interface. The detection interface process provides a simple bridge from the local detection system to the IDIP agent’s socket-based interface. The detection system (or a simple wrapper) writes intrusion alerts to a local file in an IDIP standard format (ASCII-formatted strings of name-value pairs). The detection interface process reads the alerts and forwards them over a socket to the generic agent. Using a file interface between the detection system and IDIP has simplified integration by allowing detection component wrappers to be developed and validated without the developer being required to install and run the IDIP software. This interface has also reduced integration debugging costs, as the file provides a good record of the messages between the detection system and IDIP. Detection systems that already produce CISL-formatted output can bypass this process by writing output directly to the IDIP backplane.

· IDIP audit. The audit process monitors connections to and from the local node and records this traffic in the IDIP audit data format. This software is based on a public domain package (libpcap [10]) for monitoring IP datagrams, which is available on most UNIX(platforms. This process stores connection data in shared memory, which can be read by the generic agent. As connections end, the connection record is written to an audit file. This auditing mechanism is adequate for most IDIP needs, however, when two distinct connections represent the same data stream, additional auditing is required to connect the two data streams. For example, typically a connection through a firewall proxy will have different source ports for the connections entering and leaving the proxy. The audit process records these as two separate connections. The proxy must record that these two connections are related. For devices that perform network address translation, the address translation mechanism must record that the original and translated connections are related. Likewise, when an attacker hops through multiple hosts, they must record the relationship between the inbound and outbound connections to enable tracing the attack through the host.

The generic agent process is designed to support detection-only components (e.g., network-based detectors), response-only components, and components that perform both detection and response.

· Detection functions. For detection, the generic agent supports reception of detection events from intrusion detection systems, as well as other significant intrusion-related data (e.g., denied access to local host resources). For pure detection components, no component-specific functions are needed in the generic agent. IDIP trace messages are initiated at a node when a local intrusion detection system detects an anomaly and reports the attack to IDIP via the local detection interface process. For these locally detected attacks, the IDIP agent creates the IDIP trace message to send to its neighbors. The IDIP trace message includes an anomaly description, a value indicating how certain the detector is of this attack, a severity value based on the potential services lost from this attack, and a requested response. The agent obtains the certainty value from a detector policy configuration table. This table represents an estimate of the false positive values for each attack type. One problem encountered is that this value is highly dependent on the local environment and the detector configuration, so that it must be calibrated whenever either of these changes. The severity value is generated from a simple “cost model” representing the cost to the system’s mission of losing the services affected by the attack. Penetration attacks are always rated a high severity as they could lead to further lost services if the penetration leads to further attacks. For the trace message to be sent, the severity and certainty must combine to exceed configurable threshold values. (The mechanisms for this are described in more detail in Section 5.5.2.) The IDIP agent also has a mechanism to accumulate repeated reports of the same detection events into a summary report. The first detection event is reported. Subsequent events are accumulated until either a time or event count threshold is reached, at which point the agent reports the summary event. This helps prevent a continuing attack from flooding other IDIP nodes.

· Response functions. For response, the generic agent executes the IDIP application layer protocol and performs local response actions. The agent receives IDIP trace messages from neighbors and directives from the Discovery Coordinator.

· Trace message processing. For trace messages, generic agents use the IDIP audit data to determine if they are in the attack path. If so, the agent executes the decision logic to determine the appropriate response. The agent uses a cost model of network resource values to determine the system mission cost of taking the action requested in the trace. If the response action cost (in terms of lost services) is less than or equal to the attack cost (derived from the certainty and severity in the trace message), then the response is taken. Additional policy constraints can be placed on the response to ensure that critical services are not disabled for long periods of time unless they are already lost to the attack. (The mechanisms for this are described in more detail in Section 5.5.3.) Although the trace message specifies the detector’s desired blocking action, the local node may perform a different action if local policy determines a better response. Most trace-initiated responses in the current implementation are short-lived (on the order of minutes), with the objective of providing the time needed for the Discovery Coordinator to develop a better global response. When attacks continue, however, these trace-initiated responses can be escalated to provide longer-term response actions.

· Discovery Coordinator directive message processing. On determining the optimal system-level response, the Discovery Coordinator sends do messages to nodes requiring additional blocking actions, and undo messages to nodes whose initial responses are no longer required. Discovery Coordinator do messages include a specification of both “block” and “allow” rules, which can be used on objects such as connections or users. The combination of both block and allow rules in a single message enables specification of responses such as “block all network traffic except management services.”

3.2.2 Custom IDIP Responders

The generic agent supports a flexible set of primitives that can be used to support a number of different responses. Although the generic agent provides most of the functionality required in many response components (e.g., boundary controllers), the framework allows for building component-specific response engines.

For IDIP agents that perform some response, there are two major component-specific functions required: (1) perform a blocking action, and (2) undo an IDIP blocking action. Note that blocking actions can have a different meaning for different component types. For a firewall agent, “block connection” means killing the connection and adding a filtering rule disallowing similar connections. This requires firewall-specific functions to add the appropriate filtering rule. Within a host the same “block connection” request may require reconfiguring the network services to disable a service.

Beyond these actions, a component may provide other component-specific response routines to perform more elaborate responses in specific situations. For each trace and Discovery Coordinator directive, the generic agent calls these routines. For example, in a system running an operating system wrapper technology [11], a suitable response might be to change wrapper policies on specific detection events. CISL provides a flexible language for specifying actions on a number of objects (e.g., process, user, message, or connection). Using CISL, new responses can be developed and carried over the IDIP system without changing the infrastructure.

3.2.3 Discovery Coordinator Applications

When an IDIP node sends or processes a trace message it sends a copy of the attack description and responses to the Discovery Coordinator in an IDIP report message. This enables the Discovery Coordinator to know the path of the attack and the response taken by each component along the attack path. The Discovery Coordinator also has access to other system-wide information, such as topology and component vulnerabilities. Thus the Discovery Coordinator has the information necessary to support situation understanding and generation of a system-level optimal response.

The Discovery Coordinator has a very flexible architecture allowing easy integration of new components. This is essential because cyber situation understanding and system-level course of action generation are not yet well understood. As depicted in Figure 3‑3, the Discovery Coordinator can support multiple application processes to perform various system-level functions.

[image: image11.wmf]Discovery Coordinator API

IDIP

 Backplane

Correlation

Engines

Response

Engines

Other

Applications

Response

Manager

Discovery Coordinator

Core Services

Policy

Projector

Figure 3‑3.
Discovery Coordinator Application View

Discovery Coordinator core services include those functions that need to be shared throughout the Discovery Coordinator applications to maintain consistent system behavior.

· Data management.

· Situation display.

· Access to network management.

· Response policy management.

The response concept is for multiple response engines to propose their optimal responses and the response manager to select the response from the component best able to handle the specific situation. Although the architecture supports multiple response engines, the current implementation uses a single response engine that searches for the optimal system response based on a cost model of network resource values. The engine uses the system topology to determine all locations where a specific attack might be blocked, and then determines which location and blocking rule minimizes the overall cost to the system’s mission. This cost model also reasons about user accounts with simple rules that determine when a user account should be disabled based on whether the account appears compromised.

To aid in situation understanding, multiple correlation engines can be employed. The IDIP backplane and Discovery Coordinator application programmers interface (API) allow each correlation engine to receive all attack reports from the system. These correlation engines may also produce attack reports that would be visible by other Discovery Coordinator processes.

Representing Topology in the Discovery Coordinator

The format shown in Figure 3‑4 was developed for exchange of topology information within the Discovery Coordinator. It is produced by the user interface component (using the network management database) and used by the cost model.

(Link id

(Attribute attribute-name attribute-value)

...

(Attribute attribute-name attribute-value)

(Node id)

...

(Node id)

)

(Node id

(Attribute attribute-name attribute-value)

...

(Attribute attribute-name attribute-value)

(Link id

(Attribute attribute-name attribute-value)

...

(Attribute attribute-name attribute-value)

)

...

(Link id

(Attribute attribute-name attribute-value)

...

(Attribute attribute-name attribute-value)

)

)

Figure 3‑4.
Topology Format

The terms Link, Node, and Attribute are all keywords. The “ID” values following the Link and Node keywords are uniquely assigned numeric values (essentially used as pointers). The list of valid attribute-names and the corresponding attribute-value types can be expanded as more is learned about what component information is useful in determining optimal responses.

Initial attributes-names include Name and Type. For links, the valid Types might be “LAN”, “WAN”, and “Uncharted”, meaning a LAN for which the Discovery Coordinator knows the topology, a WAN for which I know the topology, and a network for which I don’t know the topology, respectively. For nodes, the Types might include “IDIP-Firewall”, “IDIP-Router”, “IDIP-Host”, “IDIP-IDS”, “Host”, “SNMP Firewall”, “SNMP-Router”, “SNMP-Switch”, etc., which would help give clues to the response engine as to what response capabilities the target device might have.

Under the Link entry of a Node entry one lists the link-specific node attributes (e.g., address). Other attributes could give finer grained capability descriptions if they are needed.

As an example, consider the following network configuration.

[image: image12.wmf]hood

si

g1

baker

rainier

Figure 3‑5.
Example Network Configuration

This configuration would be described using the following message.

(Link 1

(Attribute Name link1)

(Attribute Type LAN)

(Node 1)

(Node 2)

(Node 3)

)

(Link 2

(Attribute Name link2)

(Attribute Type LAN)

(Node 3)

(Node 4)

(Node 5)

)

(Node 1

(Attribute Name baker)

(Attribute Type Host)

(Link 1

(Attribute IPAddress 134.52.160.240)

(Attribute EnetAddress 08:00:20:71:0c:3c)

)

)

(Node 2

(Attribute Name rainier)

(Attribute Type IDIP-IDS)

(Link 1

(Attribute IPAddress 134.52.160.244)

(Attribute EnetAddress 00:60:08:9b:ff:bc)

)

)
(Node 3

(Attribute Name g1)

(Attribute Type IDIP-Firewall)

(Link 1

(Attribute IPAddress 134.52.160.238)

(Attribute EnetAddress 00:40:9e:00:01:01)

)

(Link 2

(Attribute IPAddress 134.52.160.240)

(Attribute EnetAddress 00:40:9e:00:02:0a)

)

)

(Node 4

(Attribute Name hood)

(Attribute Type IDIP-IDS)

(Link 2

(Attribute IPAddress 134.52.160.240)

(Attribute EnetAddress 08:00:20:22:dc:a5)

)

)

(Node 5

(Attribute Name si)

(Attribute Type Host)

(Link 2

(Attribute IPAddress 134.52.160.240)

(Attribute EnetAddress 00:60:08:a8:1f:a5)

)

)

Figure 3‑6.
Example Topology Specification

4. IDIP INFORMATION SPECIFICATION LANGUAGE

CIDF’s CISL is used in IDIP to communicate trace and report information. CISL uses an S-expression syntax to form sentences describing events and responses. Figure 4‑1 shows a typical CISL S-expression.

CISL provides terms for describing an attack in terms of the time, source, target, observer, outcome, attack identity (in terms of a list of well-known attacks and attack classes), and cause. The cause of an attack (the statement beginning with “SendMessage”) describes the events used to conclude that the attack occurred. Finally, a component can specify response actions that should be taken to trace or stop the attack. Response actions are currently described using three terms: trace, audit, and block. The block response is locally interpreted as whatever action is needed to stop the attack. For example, on hosts, the block response could kill the connection, temporarily disable the service, kill the offending process tree, and disable the user account to which the process belongs. On firewalls, the block response might just kill the connection and install a filtering rule to temporarily disable the service.

CISL is able to specify a wide range of sentences ranging from raw sensor events (e.g., operating system audit record) to complex attack descriptions (e.g., description of a “worm” traversing a network). Using CISL as the language for IDIP trace messages and attack reports enables IDIP to easily integrate with other DARPA research prototypes that are either using CISL or planning to use CISL.

 (And

(ByMeansOf

(Attack

(Initiator

(IPV4Address 4.22.160.163)

)

(Observer

(ProcessName NetworkRadar)

)

(Target

(IPV4Address 4.22.160.140)

)

(AttackSpecifics

(Certainty 100)

(Severity 50)

(AttackID Unusual_Access Warez_server)

)

(Outcome

(CIDFReturnCode success)

)

(When

(BeginTime Wed Jun 16 09:07:46 1999 EDT)

(EndTime Wed Jun 16 09:08:46 1999 EDT)

)

)

(SendMessage

(Initiator

(TCPPort 28033)

(IPV4Address 4.22.160.163)

)

(Receiver

(TCPPort 21)

(IPV4Address 4.22.160.140)

)

(Message

(IPV4Protocol 6)

(TCPSourcePort 28033)

(TCPDestinationPort 21)

(SourceIPV4Address 4.22.160.163)

(DestinationIPV4Address 4.22.160.140)

(ReferAs 0)

)

(When

(BeginTime Wed Jun 16 08:57:46 1999 EDT)

(EndTime Wed Jun 16 09:08:46 1999 EDT)

)

)

)

(Do

(TraceMessage

(When

(BeginTime Wed Jun 16 09:07:46 1999 EDT)

(EndTime Wed Jun 16 09:08:46 1999 EDT)

)

(Initiator

(IPV4Address 4.22.160.163)

)

(Message

(ReferTo 0)

)

)

)

(Do

(BlockMessage

(Message

(IPV4Protocol 6)

(TCPDestinationPort 21)

(SourceIPV4Address 4.22.160.163)

(DestinationIPV4Address 4.22.160.140)

)

(When

(BeginTime Wed Jun 16 09:07:46 1999 EDT)

(EndTime Wed Jun 16 09:18:46 1999 EDT)

)

)

)

)

Figure 4‑1.
CISL Example

5. POLICY MECHANISMS

5.1 Requirements

Key IDIP requirements include-

a. The IDIP system must be able to respond to detected intrusions in real-time.

b. The IDIP system must support environments that span multiple administrative domains. This includes administrative domains that are hierarchical (e.g., divisions within a corporation that share a corporate master) and non-hierarchical domains (e.g., separate corporations).

c. The IDIP system must have minimal impact on system performance.

d. The IDIP system must be capable of operating while the system is under attack.

e. The IDIP system components should be capable of autonomously responding to the attack based on the IDIP message and administratively-set parameters.

To support the requirement for autonomous response, the protocol includes a detailed anomaly description and general descriptions of the desired response. That is, the trace messages do not indicate that the response should be to kill a process or connection, or initiate filtering rules, but rather to “block” the anomaly. The local IDIP response device uses this general response request to determine a specific set of response actions.

Note that the requirement for local autonomy does not eliminate the possibility of global control in environments where this is desired. The IDIP approach supports varying degrees of local and global control that is determined by an organization’s structure and policies.

5.2 IDIP Nodes and Roles

As shown in Figure 1‑1, the following components can participate in IDIP with the specified roles.

· Intrusion Detection Systems. Intrusion detection systems initiate IDIP trace messages on detection of an anomaly that requires system response. The detector determines the type of response required (tracing, increased monitoring, or blocking) based on the anomaly type, anomaly severity, and value of the resources under attack. The intrusion detection component may also initiate damage assessment and recovery in the local environment. When an intrusion detection component receives an IDIP trace message, the component determines whether the events specified in the anomaly description were seen by the component and sends an appropriate response. This provides corroborating evidence for other components in the system.

· Boundary Controllers. Boundary controllers provide network-based responses to IDIP trace messages. When boundary controllers receive trace messages, they determine the specific auditing and blocking actions to perform, and then pass the request to other IDIP nodes that are in the attack path. Boundary controllers also should generate their own trace messages when they detect an anomaly (e.g., attempted policy violation). Boundary controllers at the edge of administrative domains may also have additional requirements for modifying policy-related fields in incoming IDIP messages, and filtering outgoing IDIP messages.

· Hosts (clients and servers). Hosts provide fine-grained responses to IDIP trace messages. Like boundary controllers, when hosts receive trace messages, they determine the specific auditing and blocking actions that should be taken. These actions may include killing an offending process, killing a connection, disabling an account, or generating additional trace messages for activities related to the offending process. Hosts should also generate their own trace messages when they detect an anomaly (e.g., attempted policy violation) caused by a process whose parentage can be traced to a network connection.

· Network Managers. The network manager is the best location for the Discovery Coordinator. In IDIP, the Discovery Coordinator receives a copy of all trace messages sent, which includes the actions taken by each IDIP node along the attack path. Network managers are both a central location for receiving all IDIP anomaly response information and a component that can extend the IDIP response beyond the IDIP-enabled components to any component controlled by the network manager. For example, the network manager could command an Ethernet switch to disable a port even if the switch did not support IDIP. Because the Discovery Coordinator, coupled with the network manager, has both the network state information and the anomaly it can make better global decisions for intrusion response. This central component will have the information needed to assess coordinated, distributed attacks. The Discovery Coordinator then acts as an intrusion detection component, as well as a component that directs responses and recovery actions following the real-time responses triggered by the IDIP trace messages.

5.3 Parameters Used for Response Policy

Below is a summary of the parameters that may be of value in intrusion response. The summary includes the parameter’s purpose and source, and how the parameter might be used. Note that not all of these are implemented in the current IDIP prototypes.

a. Certainty. IDIP uses certainty to represent the detector’s certainty that this anomaly deserves the specified response. The detector specifies this value based on the detector’s false positive rate for detecting the specified type of attack. Response components and Discovery Coordinators use certainty in determining what actions to take.

b. Severity. IDIP uses severity to represent the potential damage that the specified type of attack could have on the system if the attack is not stopped. The detector specifies this value based on the type of damage that the attack can cause and administrator input specifying the value of the attacked resources. Response components and Discovery Coordinators use severity in determining what actions to take.

c. Thresholds. Thresholds are administratively-specified parameters to be used by a component in determining what actions to take.

d. Resource values. Resource values are administratively-specified parameters that are used by detection components in computing severity and by response components and the Discovery Coordinator to determine what actions to take. Resources include potential TCP connections, User Datagram Protocol (UDP) datagrams, network capacity, host throughput, etc.

e. Time of day constraints. These constraints are used to provide time-sensitive resource values. Component (or Discovery Coordinator) administrative personnel generate these constraints. Detection components use these constraints in computing severity, and response components and Discovery Coordinators use these constraints to determine what actions to take.

f. Monitoring costs. These costs represent the system performance degradation caused by added monitoring. They are determined based on local device capabilities and administrative personnel input. All IDIP nodes use this parameter in determining whether to increase monitoring during response.

g. Importance of remote systems. This is a factor that can be used to lower the severity value in trace messages received from remote domains. Component (or Discovery Coordinator) administrative personnel specify this information to be used during response in assessing whether to take the requested actions. A second use for this value within a local domain is to reduce the value of resources as the distance (either physically or organizationally) from the resource increases.

h. Trustworthiness of IDIP nodes. Component (or Discovery Coordinator) administrative personnel specify this information to be used during response in assessing whether to take the requested actions. This could also be a learned value based on exhibited behavior over time. One use for this value is in specifying the reliability of a detection component.

i. Response actions. Detectors specify general response actions on generation of an IDIP trace message. Specific responses requests (e.g., create a “padded cell”) could also be sent by the detector or the Discovery Coordinator. Administrative personnel should have some control over the set of desired responses. Response components use the suggested response to determine what specific local response should be performed.

j. Recovery actions. Recovery actions (e.g., send TCP reset to selected connections) could be generated by the detector or Discovery Coordinator and sent to IDIP response components. Administrative personnel should have some control over the set of desired recovery actions.

5.4 Concepts

In investigating optimal responses, the following were identified as central concepts that are further discussed in subsequent sections.

a. The IDIP mechanisms must support both hierarchical and peer relationships between IDIP communities. In attempting to respond to an attack, the organizations and their sub-organizations can have their responses centrally managed with a common view of the value of protected resources and the cost of specific responses. However, when the response crosses organizational boundaries, the view of resource values and response cost change. These different administrative domains will be reluctant to allow control from outside the domain.

b. To support real-time tracing and response that can stop the intruder before significant damage is caused, the IDIP response mechanisms that determine appropriate responses must have simple, efficient implementations in response components. If this quick response is effective at stopping the immediate attack effects, system has time to use more complex algorithms to determine a more reasoned (optimal) attack response.

c. To enable each component to determine what an appropriate response should be, we are using a “cost” model to determine which response has the best cost-benefit ratio. These cost models must be simple for the real-time response mechanisms, but can be more sophisticated for the reasoned response. The model represents the cost/benefit trade made in selecting the most appropriate response. This model depends on several factors and must balance the cost of a particular response (e.g., resources consumed and useful services disrupted) against the benefit (e.g., the intruder is stopped or slowed).

5.5 Cost Models

The current IDIP implementation uses cost models that assign values to resources (e.g., user accounts, access to services between components, etc.) to determine the cost of attacks and responses. Section 5.5.1 describes the generic IDIP agent cost models and Section 5.5.4 describes the Discovery Coordinator cost model. The agent cost models determine values locally, while the Discovery Coordinator cost model has the scope of the administrative domain.

5.5.1 Generic IDIP Agent Cost Model Implementation

Cost models provide a way to algorithmically make intrusion detection and response decisions. This section describes how the generic IDIP agents work.

5.5.2 Detector Agent Model

The detector IDIP agent determines both the certainty that the events represent an attack and the attack impact if it is left alone or dealt with later. These are reflected in the certainty and severity IDIP message fields. The certainty is dependent on the reliability of the sensors employed by the detector. The detector also determines an appropriate response based on the perceived cost of implementing the response. The detector’s model allows use of incomplete data. For example, the detector may not know how different components along the attack path will respond and may not know much about the system-level topology.

The detector’s model considers only the three “generic” responses: tracing, increased monitoring, and blocking. That is, the detector does not generally know the specific response to be taken in blocking (e.g., killing a host process, killing a proxy in a firewall, changing a filtering router’s filtering rules, or disabling an Ethernet port on an Ethernet switch), and therefore cannot evaluate the different blocking options. (For components that are local to the detector, the detector may be able to determine more specific responses.) This model operates using three thresholds for tracing, monitoring, and blocking. The product of attack certainty and potential damage determine which of the three generic response actions are to be included in the IDIP trace or whether no action should be taken.

The policy includes records that include the INFOCON, the DEFPOS, the source IP address, the destination IP address, the service port number, the mission value or importance of the service, and the times during which this importance is to be used. IP addresses may be wild carded or prefixed with a network mask. The mission value is used to communicate to response agents the severity (or potential damage) of an attack.

Note that computing severity is dependent on a number of environment-specific and attack-specific parameters. These include the attacked resources’ value, impact that the detected attack can have on the attacked system, and time of day. For example, the following policy could be specified.

Denial of service attacks at midnight are tolerable, but denial of service attacks at 10 AM are not tolerable.

The initial simple model uses three thresholds: trace, monitor, and block. For a specific detected anomaly, the detector determines the certainty and attack severity, and from these computes the attack value as the product of severity and certainty. Attack value is used as follows.

If attack value is equal to or greater than the local trace, monitor, and block thresholds then request the corresponding action.

The detector could optionally initiate some recovery action dependent on the type of attack. For example, the detector could reset TCP connections that were part of a SYN flood attack.

Another policy feature used in the generic detection agent is a throttling mechanism for controlling repeated reports of the same event type. When an attack is reported several times to the IDIP agent, the agent reports the first instance, and then collects subsequent instances until either a threshold count or threshold timeout occurs. At that point the agent reports a summary event describing all reported events of that type occurring since the first one. Both thresholds can be set in the policy file distributed by the Discovery Coordinator. This is particularly useful in reporting port scans. Detectors report the scans based on some threshold and keep reporting the event each time that threshold is reached. For example, in a default RealSecure policy, this threshold was set to 15 events over 30 seconds. When a subnet scan occurs, hundreds of ports are scanned across hundreds of addresses. In IFE 1.2, this created major problems by clogging up the IDIP system with thousands of reports of essentially one continuing event. This throttling mechanism addresses that problem by reporting only periodically that the scan is continuing, rather than reporting each event provided by the detector.

5.5.3 Response Agent Model

The response components must assess the certainty of attack based on (1) what the component has seen, (2) the certainty field in the IDIP message, and (3) the detector’s “reliability.” The cost of response is primarily based on local information. That is, the response component understands the local resources required for a response, the value of the data passing through the component through each interface (perhaps based on source and destination addresses), and the impact a response has on nodes accessible through the component. The response component also must determine how much the component should “trust” the detector and the IDIP nodes between the detector and the component. If one of the components is not trustworthy or is known to be easily penetrated, then the message validity is questionable. In this case, a decision must be based only on what the device has seen and what it can determine about the likelihood that the anomaly described in the IDIP message is an attack.

The response model parameters include factors for detectors to adjust their certainty and severity values.

The policy records for response contain the same information as those for the detection, except that a maximum and minimum response time is also present, which bounds the duration of the response.

The generic response agent is given the current INFOCON, DEFPOS, severity, datagram description for the attacker’s datagrams, and time-of-day. It searches the table top-down for the first match. The value associated with this table entry is used as the cost of response. If the cost of response is less than the severity, then the agent performs the requested block action for the time requested by the intrusion detection agent as bounded by the action duration times.

Note that these rules are parameterized by INFOCON and DEFPOS levels to enable changes to policy by changing INFOCON or DEFPOS. An example blocking rule is-

For any INFOCON level,

if the damage exceeds 30

and the protocol is 6 (TCP)

and the block request source is any address (and any port range) in the 134.52.160 network

and the block request destination is 134.52.160.200 within the port range 20-25

and the current time is between midnight and 11:59 PM

then perform the block request for at least 6 minutes, but no more than 50 minutes as requested by the Intrusion Detection agent.

In all cases, the response agent forwards the trace message.

5.5.4 Cost Model Implementation in the Discovery Coordinator

The Discovery Coordinator cost model, with the scope of the administrative domain, has been integrated into the Discovery Coordinator. This Discovery Coordinator cost model is implemented in CLIPS, a publicly available rule based system. Each path of mission importance, as described by an n-tuple shown below, is assigned a value ranging from 0 to 100.

(source address range, source port range, destination address range, destination port range)

The Discovery Coordinator cost model’s goal is to calculate a response the represents the least reduction in connectivity at the administrative domain level and which cuts off the attack closest to the attacker’s source. While the distributed IDIP agents act as the first line of defense, taking local action based on their local cost models, the Discovery Coordinator cost model can override the decisions made locally and specify blocking instructions which can have a longer effect. The Discovery Coordinator cost model issues these override decisions as Discovery Coordinator do directives using CISL messages as well as SNMP commands. In addition, messages can be issued to System Management and Administration for Remote Trusted System (SMARTS) to disable specific user accounts once they have been identified as compromised.

The Discovery Coordinator sees all IDIP trace messages (sent as IDIP report messages), and therefore knows how each component along the attack path responded to the attack. In addition, if the Discovery Coordinator is co-located with the system’s network manager, then the Discovery Coordinator has global topology information that can be used to determine a more optimal response. The Discovery Coordinator also can know where the administrative domain boundaries exist and can know what to expect in terms of response from neighboring administrative domains. The Discovery Coordinator can base decisions on the cost of control at each response component and can use the network management platform to perform finer grained response (e.g., through shutting down an Ethernet interface on an Ethernet switch). The Discovery Coordinator uses second-hand information and therefore must assess its reliability based on some trust model. The Discovery Coordinator also can know what response components are capable and willing to do for various types of attacks.

The Discovery Coordinator’s model is much more complex than the detection and response agent models. The Discovery Coordinator can optimize response across all possible IDIP nodes, as well as non-IDIP nodes managed by the Discovery Coordinator’s network manager. However, the Discovery Coordinator does not know whether any specific requested action will be completed. Individual response components may be configured to accept or not accept specific Discovery Coordinator response requests.

Additionally, the Discovery Coordinator can only affect the behavior of devices within its community. It can request Discovery Coordinators higher in the hierarchy or peer Discovery Coordinators to provide additional responses, but has little assurance that the response will actually be accomplished and may get little feedback on response effectiveness.

Given a network-based attack, there are a number of ways to respond to stop the attack, alleviate some of its effects or prevent similar attacks in the future. The IDIP system should select a response that yields the most benefit (eliminates some of the potential damage from the attack), and has the least effect upon network resources. In many cases, these two goals are conflicting. The extreme cases illustrate this: the attack can be eliminated and future attacks prevented by disconnecting all hosts; and conversely, minimal effect on network performance can be ensured by doing nothing. To provide this range of flexibility, a cost model is used that utilizes a single currency for measuring the potential damage of attacks and the strain on resources caused by responses. When an attack is detected, the Discovery Coordinator considers each possible response. If the potential attack damage is less than the cost of all applicable responses, then the Discovery Coordinator does nothing or perhaps relaxes the responses already imposed by the real-time response components. Otherwise, the Discovery Coordinator selects the response with the maximum yield (reduced attack damage minus cost of response).

Finding the optimal response entails enumerating all of the possible responses, computing the cost for each and then selecting the one with the best yield. If the number of responses is small enough, then an exhaustive search is possible and the methodology is straight forward; look at all of them and select the best one. However, if the Discovery Coordinator considers all possible response locations, the problem space becomes quite large. Even finding the minimal cut-set between the attacker and target is NP-complete. In this case, a variety of search techniques become considerations (gradient descent, heuristic based).

6. MULTI COMMUNITY CYBER DEFENSE

6.1 Concepts

CITRA was extended under the Multi-Community Cyber Defense (MCCD) contract from DARPA to allow traceback and response to attacks to continue across multiple IDIP communities. Previously traceback and response would end when the last IDIP node in the community along the path of the attack was reached. With the extensions made to CITRA under MCCD attacks could now be traced into other IDIP communities and those communities could be requested to respond to attack. For MCCD, there are two terms that require special definition:

· Remote Neighborhood – A Remote Neighborhood is a collection of adjacent Edge Boundary Controllers. (I.e., two IDIP nodes are neighbors if they have no IDIP nodes between them).

· Edge Boundary Controller (EBC) – An Edge Boundary Controller is an IDIP boundary controller with one or more neighbors belonging to a differing IDIP community from itself.

[image: image13.wmf]DC

Detector

EBC

BC

BC

DC

EBC

BC

BC

Reporting

Trace

Escalation

Escalation

Community 1

Community 2

Sanitizer

Translator

DC

-

Discovery Coordinator (Management Console)

BC

-

Boundary Controller (Firewalls, Routers, etc.)

EBC

-

Edge Boundary Controller (e.g., Corporate Firewall)

Figure 6‑1.
MCCD Communication
6.2 Communication Between IDIP Communities

Communication between IDIP communities is handled through the edge boundary controllers. Trace requests are handled by the IDIP agents on the nodes as per the instructions in the Inter-Community EBC policy. Discovery Coordinator to Discovery Coordinator communication is facilitated by an IDIP application running on the EBC. Messages are passed from one DC to the other DC through both EBCs using normal IDIP message layer protocols.

6.3 Multi-Community Policies

Inter-Community policies are established for the edge boundary controllers on how they will handle requests from other edge boundary controllers in their remote neighborhood. This policy determines if the request is continued, ignored or requires a human in the loop to authorize the request (Escalation). The policy also dictates if outgoing trace messages should be sanitized and if so which fields require sanitization. The policy specifies if incoming trace messages should be translated and if so which fields require translation. The policy also includes whether intrusion alert warnings or correlation events will be sent to another community.

The following messages cause the EBC or DC to check or modify inter-community policy rules:

· Trace Request message from an EBC to a remote EBC: EBCs check the Policy before sending or receiving. If the policy’s action is to escalate, a Trace Escalation Request message is sent from the EBC to its DC.

· Trace Escalation Request message from an EBC to its DC: DC displays to the operator the current policy and allows the operator to change the policy. The Trace Escalation Response message to the EBC indicates if the trace request is accepted or denied continuation.

· Cooperation Negotiation message from a DC to a remote DC: DC modifies the policy depending on the negotiation results.

· Report message from a DC to a remote DC: Traceback results are sent to the community that the trace message came from if the policy allows reporting.

If the policy involves a human, the human response can override any part of the current policy. The human operator views the current policy that the EBC would use, and possibly modifies the various fields before accepting or denying the request. If modifications to the policy are made, it becomes a new policy rule and is sent to the EBCs. The new policy rule is sent to the EBC with a Trace Escalation Response message. The DC can also send policies to the EBCs with a New Policy message. All community EBCs should receive the new policy information. For more details about these messages, see [12].

6.4 Cooperative Negotiation

Cooperative negotiation (CONE) can be performed when an EBC has a trace request it would like to forward to another EBC but has no policy locally to determine how that request should be handled. The trace request it put on hold until the results of the CONE process is finished. The CONE process allows the administrators of both IDIP communities to agree to a policy. Once the policy is agreed upon the EBC then continues processing of the trace request according to the policy. Cooperation negotiation can occur at anytime to modify the policy.

7. REFERENCES

[1] Clifford Kahn, Don Bolinger, Dan Schnackenberg, “Communication in the Common Intrusion Detection Framework, v 0.7”, http://www.gidos.org/drafts/communication.txt, June 1998.

[2] The Boeing Company. Neighborhood Key Information Distribution (NKID) Protocol (Draft), Boeing Document Number D658-10818-1, February 1998.

[3] Trusted Information Systems, Inc. Intruder Detection Isolation Protocol (IDIP) Authentication Header (AH), TIS Report Number 0699D, November 1997.

[4] Trusted Information Systems, Inc., IDIP AH with Hashed Message Authentication Codes (HMAC)-SHA-1, TIS Report Number 0700D, November 1997.

[5] Trusted Information Systems, Inc., Intruder Detection Isolation Protocol (IDIP) Encapsulating Security Payload (ESP), TIS Report Number 0698D, November 1997.

[6] Trusted Information Systems, Inc., IDIP ESP with SKIPJACK Cipher Block Chaining (CBC), TIS Report Number 0701D, November 1997.

[7] Rich Feiertag, Cliff Kahn, Phil Porras, Dan Schnackenberg, Stuart Staniford-Chen, Brian Tung, “A Common Intrusion Specification Language”, http://www.gidos.org/, June 1999

[8] S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol”, Network Working Group, Request for Comments 2401, November 1998

[9] OpenSSL Project, http://www.openssl.org/.

[10] LBNL’s Network Research Group, “libpcap, the Packet Capture library”, http://ee.lbl.gov/.

[11] T. Fraser, L. Badger, M. Feldman, “Generic Software Wrappers “Hardening COTS Software with Generic Software Wrappers”, Proceedings of the 1999 IEEE Symposium on Security and Privacy, IEEE, Oakland, California, May 1999.

[12] NAI Labs and Boeing Phantom Works. Intruder Detection and Isolation Protocol (IDIP) Application Layer, NAI Labs Report #02-006, February 2002.

� For brevity we will henceforth use the term connection generically to refer to both TCP connections and datagram packet streams.

(Solaris is a registered trademark of Sun Microsystems, Inc. BSD/OS is a registered trademark of Berkeley Software Design, Inc. Linux is a registered trademark of Linus Torvalds. Windows NT is a registered trademark of Microsoft Corporation.

(UNIX is a registered trademark of X/Open Company, Ltd.

NAI Labs Report #02-008
ii

_1076911558.ppt

Intrusion Detection System

Boundary Controller

Attacking Host

Attacked Host

Boundary Controller

		How severe is this?

		How certain am I?

Trace attack and Block attack for two minutes

		Do I trust the detector?

		Do I even care about the attacked resources?

		Are the lost resources from blocking more valuable than the attacked resources?

		Is the requested blocking interval too long? Too short?

_1076911695.ppt

Intrusion Detection System

Boundary Controller

Attacking Host

Attacked Host

Boundary Controller

Boundary Controller

Boundary Controller

Trace attack and Block attack for two minutes

		Do I trust the detector?

		Do I even care about the attacked resources?

		Are the lost resources from blocking more valuable than the attacked resources?

		Is the requested blocking interval too long? Too short?

_1076914422.ppt

Intrusion Detection System

Discovery Coordinator

Attacking Host

Attacked Host

Saw attack and Blocked attack for ten minutes

Saw attack

Saw attack and did not Block

Saw attack and did not Block

Saw attack and Blocked attack for two minutes

_1076914502.ppt

Intrusion Detection System

Attacking Host

Boundary Controller

Boundary Controller

Boundary Controller

Discovery Coordinator

		Do I trust the detector?

		Do I even care about the attacked resources?

		Are the lost resources from blocking more valuable than the attacked resources?

		Is the requested blocking interval too long? Too short?

		Are there alternate paths the attacker can take?

		Is this part of a larger, more wide-spread attack?

		Are there responses that are no longer needed?

		Are additional responses needed by IDIP components?

		Can I use other resources (e.g., SNMP) to further contain the attack?

Relax the blocking

Block indefinitely

Disable Ethernet port

_1076911612.ppt

Intrusion Detection System

Attacking Host

Attacked Host

Boundary Controller

Boundary Controller

Boundary Controller

Trace attack and Block attack for two minutes

		Do I trust the detector?

		Do I even care about the attacked resources?

		Are the lost resources from blocking more valuable than the attacked resources?

		Is the requested blocking interval too long? Too short?

_1002540433.ppt

Community

Boundary Controllers

Discovery Coordinator

Intrusion Detection System

Neighborhood 2

Intrusion Detection System

Neighborhood 1

Neighborhood 3

Boundary Controllers

Boundary Controller

_1002603033.ppt

Intrusion Detection System

Boundary Controller

Discovery Coordinator

Attacking Host

Attacked Host

Boundary Controller

Boundary Controller

Boundary Controller

UNKNOWN-0

UNKNOWN-1

UNKNOWN-2

UNKNOWN-3

UNKNOWN-4

UNKNOWN-5

UNKNOWN-6

UNKNOWN-7

_1011427197.ppt

IDIP Generic Agent

 Message processing

 Connection search

 Cost model

Component-Specific Functions

	Local responses (e.g., service blocking or kill process)

IDIP Backplane

IDIP Audit

IDIP Audit Data

IDIP Detection

Interface

IDIP String API

Detector “Wrapper”

Detector

_1076508616.ppt

DC

Detector

EBC

BC

BC

DC

EBC

BC

BC

Reporting

Trace

Escalation

Escalation

Community 1

Community 2

Sanitizer

Translator

DC - Discovery Coordinator (Management Console)

BC - Boundary Controller (Firewalls, Routers, etc.)

EBC - Edge Boundary Controller (e.g., Corporate Firewall)

_1002558035.ppt

Discovery Coordinator API

IDIP Backplane

Correlation Engines

Response Engines

Other Applications

Response Manager

Discovery Coordinator Core Services

Policy Projector

_1002480742.ppt

Intrusion Detection

System

Routers

Firewall

Server

Client

Network Manager

(Discovery Coordinator)

Intrusion Detection

System

Firewall

Firewall

_1002486266.doc

baker

g1

hood

rainier

si

_1002480653.ppt

IDIP Message Layer

 Reliable Delivery

 Duplicate Removal

 Multicast Support

 Time Management

 Message class

 subscription

User Datagram Protocol

Internet Protocol

IDIP Application

IDIP Backplane

Neighborhood Management

 Node status

Key Management

IDIP Cryptographic Services

 Authentication

 Integrity

 Privacy

