

NAI Labs Report #02-006

Intruder Detection and Isolation Protocol (IDIP)

Application Layer Protocol Definition
Active Networks Intrusion Detection and Response Program
Technical Information Report

February 2002

Prepared Under Contract N66001-00-C-8602 for

SPAWARSYSCEN San Diego

53560 Hull Street
San Diego, California 92152-5410

Prepared By:

Kelly Djahandari
Dan Schnackenberg

Brett Wilson
Travis Reid

Jason Thorpe(

NAI Labs
Boeing Phantom Works

Network Associates, Inc.
MS 88-12

3060 Washington Road
PO Box 3999

Glenwood, Maryland 21738
Seattle, Washington 98124-2499

Abstract

This technical report documents the Application Layer of the Intruder Detection and Isolation Protocol (IDIP) developed under DARPA’s Dynamic, Cooperating Boundary Controllers program, Adaptive System Security Policy program, Automatic Response to Intrusion program, and Multicommunity Cyber Defense program. These programs developed and tested concepts for automated intrusion response, including IDIP. The focus of the Dynamic, Cooperating Boundary Controllers contract was to validate that using IDIP for automated intrusion response enables systems to track network intruders back to their origin and dynamically change network-level access control policies in response to network-based attacks. The Adaptive System Security Policy program extended the original concepts to develop mechanisms that allow optimal response for various network-based attacks. The response mechanisms adapt to changing threat environments. The Automatic Response to Intrusion program advanced the original concepts by integrating diverse access control, intrusion detection, and network management components into an intruder response system. The Multicommunity Cyber Defense program extended the ideas further to cooperate across small to very large-scale networks of networks that span numerous administrative domains.

IDIP consists of two distinct layers: the Application Layer and the Message Layer. This layer construct is based on the OSI Protocol Layer Model. This document details the objectives, specification, and operations of the IDIP Application Layer.

11
INTRODUCTION

1.1
IDIP Application Layer Objectives
1
1.2
IDIP Application Overview
1
2
IDIP ARCHITECTURE
3
3
IDIP APPLICATION LAYER MESSAGES
4
3.1
IDIP Application Message Header
4
3.2
Core IDIP Messages
8
3.2.1
Trace/Report/Do Message
8
3.2.1.1
Trace Header
9
3.2.1.2
Results Header
9
3.2.1.3
Requested Action Headers
10
3.2.1.4
Extensions
13
3.2.1.5
Trace Data
17
3.2.2
DC Report Message
19
3.2.3
DC Do/DC Do Response Message
20
3.2.4
DC Undo/DC Undo Response Message
20
3.2.5
DC Notify Message
21
3.2.6
Control Message
22
3.2.7
DC Query Message
23
3.2.8
File Transfer Message
23
3.3
DC Internal Messages
24
3.3.1
DC Merge Report
24
3.3.2
Attack-o-Meter Message
28
3.4
Vulnerability Scanning Support Messages
28
3.4.1
Scan Configuration Message
28
3.4.2
Scan Control Message
30
3.4.3
Scan Results Message
30
3.5
Inter-Community Support Messages
32
3.5.1
DC – EBC Messages
32
3.5.1.1
Trace Escalation Message
32
3.5.1.2
EBC Translation Message
34
3.5.2
DC to DC Messages
35
3.5.2.1
DC-to-DC Report Message
36
3.5.2.2
CONE Message
36
3.5.2.3
Alert Sharing Message
39
3.5.3
DC Internal Messages for Inter-Community Support
40
3.5.3.1
Trust Status Message
40
3.6
IDIP Message Requirements
41
4
CISL FORMAT
42
4.1
CIDF Header
45
4.2
CISL Trace/Report Message
45
4.2.1
ByMeansOf SID
45
4.2.1.1
Attack SID
45
4.2.1.2
SendMessage SID
46
4.2.2
Do SID
46
4.2.2.1
TraceMessage SID
46
4.2.2.2
BlockMessage SID
47
4.2.2.3
AuditMessage SID
47
4.2.2.4
LimitMessage SID
47
4.2.2.5
Request SID
47
4.2.3
Did SID
47
4.2.3.1
TraceMessage SID (Did)
47
4.2.3.2
BlockMessage SID (Did)
48
4.2.3.3
AuditMessage SID (Did)
48
4.2.3.4
LimitMessage SID (Did)
48
4.2.3.5
Request SID (Did)
48
4.3
CIDF Extensions
48
4.3.1
Original Message SIDs
48
4.3.2
MPOG SIDs
49
4.3.3
Local Response Data SIDs
50
4.3.4
Rate Limiting SIDs
50
4.3.5
Detector-Specific SIDs
51
4.3.6
Inter-Community SIDs
52
5
OPERATION
53
5.1
Inbound Messages
53
5.2
Outbound Messages
53
5.3
Core Message Processing
53
5.3.1
Trace/Report Message Processing
53
5.3.1.1
IDIP Agent node
53
5.3.1.2
Discovery Coordinator
53
5.3.2
DC Do
54
5.3.3
DC Undo
54
5.3.4
DC Do Response and DC Undo Response
54
5.3.5
DC Notify
55
5.3.6
DC Control Messages
55
5.3.7
DC Query
55
5.3.8
File Transfer
55
6
REFERENCES
56
A
Appendix: Attack Codes
57
A.1
Penetration Attack Codes
57
A.2
Denial of Service Attack Codes
60
A.3
Unusual Access Attack Codes
61
A.4
Flooding Attack Codes
62
A.5
Probing Attack Codes
62

3Figure 1 IDIP Protocol Layering

Figure 2 IDIP Application Message Header
4
Figure 3 IDIP Address Description
7
Figure 4 Trace Message
8
Figure 5 Trace Header
9
Figure 6 Results Header
10
Figure 7 Trace Requested Action Header
11
Figure 8 Audit Header
11
Figure 9 Block Header
11
Figure 10 Limit Header
12
Figure 11 Allow Header
12
Figure 12 Local Response Header
12
Figure 13 Trace Extensions
13
Figure 14 Refer Header
14
Figure 15 Response Header
14
Figure 16 Trace Response Header
14
Figure 17 Audit Response Header
15
Figure 18 Block Response Header
15
Figure 19 Limit Response Header
16
Figure 20 Request Response Header
16
Figure 21 Allow Response Header
16
Figure 22Data Format
17
Figure 23 CIDD
17
Figure 24 DC Undo Message
20
Figure 25 Notify Message Header
21
Figure 26 Notify Entry
22
Figure 27 Control Message
23
Figure 28 DC Query Message
23
Figure 29 File Transfer Message
24
Figure 30 Merge Report Message
25
Figure 31 Merge Report ID Description
26
Figure 32 Responder Description
27
Figure 33 Blocking Rule Description
27
Figure 34 Attack Path Description
28
Figure 35 Attack-o-Meter Message
28
Figure 36 Scan Configuration Message
29
Figure 37 Scan Description
29
Figure 38 Scan Control Message
30
Figure 39 Scan Results Message
31
Figure 40 Vulnerability List Description
31
Figure 41 Vulnerability Status Description
31
Figure 42 Trace Escalation Message
33
Figure 43 EBC Translation Message
34
Figure 44 DC-to-DC Message Header
35
Figure 45 CONE Message
37
Figure 46 Alert Sharing Message
40
Figure 47 Trust Status Message
40

7Table 1 Application Class IDs

Table 2 Local Response Actions
13
Table 3 Protocol Numbers
18
Table 4 IDIP Device Types
21
Table 5 Scan Flags
30
Table 6 Vulnerability Status Values
32
Table 7 DC-to-DC Message Types
36
Table 8 CONE Phases
38
Table 9 CONE Request and Offer Values
39
Table 10 IDIP CISL values
45

API
Application programmer’s interface

CIDD
Common IP Datagram Description

CIDF
Common Intrusion Detection Framework

CISL
Common Intrusion Specification Language

CONE
Cooperation Negotiation

DC
Discovery Coordinator

EBC
Edge Boundary Controller

GIDO
Generalized Intrusion Detection Objects

ICMP
Internet Control Message Protocol

IDIP
Intruder Detection and Isolation Protocol

IDS
Intrusion Detection System

IP
Internet Protocol

LAN
Local area network

MPOG
Multi-Protocol Object Gateway

NKID
Neighborhood Key Information Distribution

OSI
Open Systems Interconnection

SID
Semantic Identifier

TCP
Transmission Control Protocol

UDP
User Datagram Protocol

WAN
Wide area network

1 INTRODUCTION

The Intruder Detection and Isolation Protocol (IDIP) Application Layer defines the messages and procedures used by IDIP applications to support intruder isolation and containment. IDIP applications use IDIP Trace messages to describe network-based intrusions. These messages are passed to neighboring IDIP devices to trace the path of the intrusion, and provide the information necessary for each device along this path to determine an appropriate response. Other IDIP application messages are used to support this tracing and response mechanism.

IDIP is designed to minimize the size and number of messages required to support intrusion response. Application Layer messages are primarily sent only after an intrusion has been detected. Once the response has been initiated, the protocol attempts to only send messages to components that potentially could have witnessed part of the attack. In addition, IDIP components send reports of the responses to a centralized management component called the Discovery Coordinator (DC).

The IDIP Application Layer has been designed to be relatively independent of the other IDIP protocols. These protocols are described in references [1] through [7]. This document defines the IDIP Application Layer.

1.1 IDIP Application Layer Objectives

The IDIP Application Layer objectives include the following.

1. Support for autonomous operation by each IDIP response component. This requires that the IDIP Trace message include all information required for IDIP components to determine the appropriate response.

2. Support for both local and global policies. The application is not required to comply with a global policy, but the approach allows a central management component to set IDIP system-wide policies.

1.2 IDIP Application Overview

IDIP systems are organized into IDIP communities. Each community is an administrative domain, with intrusion detection and response functions managed by the Discovery Coordinator. Communities are furthered organized into IDIP neighborhoods. These neighborhoods are the collection of components with no other IDIP node between them. Boundary control devices are members of multiple IDIP neighborhoods. When an attack traverses an IDIP-protected network, each IDIP node along the path is responsible for auditing the event (i.e., the offending connection or datagram stream).

An IDIP Trace message is forwarded throughout the IDIP nodes when an event or event sequence is detected that is determined to be sufficiently intrusive to warrant a response. The IDIP node at the detector of the potential attack specifies what type of response is needed. Each node that gets the trace message can decide whether or not to follow the suggested response or take some other node-specific action based on local policy. This reaction to the attack is a temporary response until a DC directive is sent. After processing a Trace message, the IDIP node sends a Report message to the DC. The Report message is a copy of the Trace message and is sent so that the DC can devise a collective scheme to combat the attack. Once the DC determines an optimal response, it sends directives out to the nodes that need alerting. The directives are sent in a DC Do message. This communication is supported through CISL [8] developed by the CIDF working group. The three IDIP messages that follow the CISL format are the Trace, Report, and Do messages.

There are several types of IDIP devices. They are the intrusion detection systems (IDS), boundary controllers (i.e., firewalls and routers), edge boundary controls (EBC) (boundary controllers that are at a community boundary), Discovery Coordinators (DC), and agent nodes (end systems). The DC handles the network management and coordinates attack responses. It handles the distribution of cost models and policy rules.

2 IDIP ARCHITECTURE

The IDIP protocol comprises of two main protocol layers: the IDIP Application Layer and the IDIP Message Layer. The IDIP Application layer performs the application-specific processing and policy related functions (e.g., auditing and blocking). The IDIP Message Layer performs reliable exchange of IDIP messages across the UDP transport-layer protocol.

Internet Protocol Suite Layer

IDIP Protocol Entity

Application

IDIP Application

IDIP Message (includes NKID and HELLO protocols)

Transport

UDP

Network

IP

Figure 1 IDIP Protocol Layering

The Application layer is the highest level and is responsible for managing the content of IDIP messages. IDIP applications register with the Message Layer for certain types of Application layer messages. When a message of the specified type is received, it is forwarded to the Application layer.

When sending a message to another node or to the Discovery Coordinator, the application fills in certain fields of the IDIP Message Layer header[8]. It inserts the version number, the flags to be set, the length of the message, the destination IP address, message priority, application process’ ID and boot time. It also sends the next header type for the next type field.

The IDIP Application Layer depends on the IDIP Message Layer for reliable delivery of IDIP messages to neighbors and to route IDIP Discovery Coordinator message to and from the Discovery Coordinator node. The Application Layer relies on the Message Layer security and integrity/authentication features. The Application Layer also uses the neighbor time delta mechanism provided by the Message Layer, which determines the delta between the local clock and each neighbor’s clock.

3 IDIP APPLICATION LAYER MESSAGES

Most communication in the IDIP Application Layer is based on CIDF’s Common Intrusion Specification Language (CISL) [8]. Along with the use of several of the CISL’s Semantic Identifiers (SIDs), IDIP follows the same encoding and decoding guidelines.

The CISL is based on the use of S-Expressions and SIDs to express information about possible system intrusions. There are specific rules that are outlined in the CISL definition document[8] on the format and use of S-Expressions. When encoding and decoding an S-Expression, an IDIP node uses the same encoding and decoding rules of CISL. The only exception is that IDIP does not require the S-Expression to be canonicalized in lexicographical order, as does CISL.

Upon initialization, each IDIP application registers the types of messages that it will accept from the IDIP Message Layer. Upon receipt of an IDIP application message, if the message is in CISL, the message is decoded from CISL to IDIP data format. If the message is in IDIP wire format, the message is decoded to IDIP data format. Trace, Report, and DC Do messages are encoded into CIDF CISL before giving to the IDIP Message Layer for transmission. This section describes the IDIP data format.

Throughout this protocol specification, all fields are in network byte order. All headers and lists are 32-bit aligned. Each attack description must be 32-bit aligned (zero padded). The length for attack descriptions does not include any trailing padding required to cause the description to be 32-bit aligned. Throughout this protocol specification, all pad fields are set to 0 on transmission and ignored on receipt.

3.1 IDIP Application Message Header

Figure 2 shows the IDIP application message header format. The subsequent text describes the use of each field specified.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Version
Class ID

Length (4 octets)

Timestamp (4 octets)

Thread ID (4 octets)

Originator IDIP Address (16 octets)

Flags
Pad

Timediff (4 octets)

Figure 2 IDIP Application Message Header

· Version:

Identifies the version of protocol.

IDIP Version:

0x0010

CIDF Version:
0x0100

· Class ID:

Class IDs from the CISL and additional IDIP classes. A list of the class IDs is found below in Table 1 Application Class IDs.

Class ID
Class Name
Description

0x0020
Trace
Agent-to-agent trace message.

0x0022
Report
Agent-to-DC traceback report message.

0x0024
Notify
Agent-to-DC neighborhood change message.

0x0027
Exchange
Agent-to-Agent message of unspecified format.

0x002A
DC Undo
DC-to-agent message to undo a DC directive do response.

0x002C
DC INFOCON
DC-to-agent message to change INFOCON

0x002E
DC Do
DC-to-agent message to take a specified response.

0x0038
DEFPOS
DC-to-agent message to change DEFPOS

0x003A
DC Do Response
Agent-to-DC response to a DC Do message.

0x003B
DC Undo Response
Agent-to-DC response to a DC Undo message.

0x003E
DC to Agent Set
DC-to-Agent message to set some value.

0x003F
DC to Agent Set Response
Agent-to-DC message response to a DC–to-Agent Set message.

0x0040
DC to Agent Get
DC-to-Agent message to get some value.

0x0041
DC to Agent Get Rsp
Agent-to-DC message response to a DC-to-Agent Get message.

0x0042
DC to AgentD Set
DC–to-agent daemon message to set some value.

0x0043
AgentD to DC Set Rsp
Agent daemon-to-DC response to a DC to AgentD Set message.

0x0044
Agent to DC Get
Agent-to-DC message to get some value from the DC.

0x0045
DC to Agent Get Response
DC-to-Agent response to an Agent-to-DC Get message.

0x0046
Agent to DC Info
Agent-to-DC message to report status to the DC.

0x0047
Agent to Agent
Agent-to-Agent message from one agent to another.

0x0048
DC to DC
DC-to-DC message from one DC to another.

0x0049
DC to DC Set
DC-to-DC message to set some value.

0x004A
DC to DC Get
DC-to-DC message to get some value.

0x004B
DC to DC Info
DC-to-DC informational message.

0x4001
Log Request
Internal DC message. Unused but planned for future use.

0x4002
Log Rsp
Internal DC message. Unused but planned for future use.

0x4003
State
Internal DC message. Unused but planned for future use.

0x4005
Merge Report
Internal DC message that represents merged reports.

0x4006
Merge Undo
Internal DC message to undo report that is associated with an internal merge report.

0x4008
Attack-O-Meter
Internal DC message to direct changes in its attack-o-meter display.

0x400A
Operational Values
Internal DC message to pass new operational values.

Table 1 Application Class IDs

· Length:

Length of the header and the following data.

· Timestamp:

Timestamp of the last event that contributed to the message (either by adding to or creating the message).

· Thread ID:

Unique ID of the thread.

· Originator IDIP Address:
Unique identifier information for the originator. The data description is as follows in Figure 3 IDIP Address Description.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

IPv4 Address (4 octets)

Identifier (4 octets)

Boottime (4 octets)

Pad (4 octets)

Figure 3 IDIP Address Description

· IPv4 Address: IP address of the IDIP node.

· Identifier:
Process ID of the IDIP process.

· Boottime:
Boot time of the IDIP node.

· Flags:

Unused.

· Pad:

Zero-padded octets.

· Timediff:

Time difference between nodes. Used only by extensions.

3.2 Core IDIP Messages

The Class ID in the application header corresponds to the message type that follows the application header. IDIP has a set of core messages. This section describes these messages.

3.2.1 Trace/Report/Do Message

Class ID: Trace, Report, DC Do

IDIP Trace, Report and DC Do messages use the same types of headers. A Report message is simply a copy of a Trace message, and a DC Do is a directive from the DC node to a node in its domain. This section describes the IDIP formats of the trace message sections, both Report and DC Do messages use parts or all of these sections. Once the formats are supplied, the node encodes the IDIP format into the CIDF format for delivery. On receipt, the message can be decoded back to the IDIP format, or any other format.

The IDIP format of the Trace message is shown below in Figure 4 Trace Message.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Results Header (784 octets)

Trace Header (24 octets)

Requested Action Headers

Extension Headers

Data

Figure 4 Trace Message

· Results Header:

Details the information on the attack.

· Trace Header:

Gives information on the auditing of the session or process under investigation.

· Requested Action Header:
Suggested action to take by the originating IDIP node.

· Extension Headers:
Extension headers may or may not be present. They are added when a node receives a trace and forwards it on to its neighbors and/or sends the report to the DC. The extensions describe the action taken by a node and any translations of data.

· Data:

Details the actual data of the suspected attack.

3.2.1.1 Trace Header

Figure 5 shows the Trace header format. The subsequent text describes the use of each field specified.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Event Count (4 octets)

Examine From (4 octets)

Examine Until (4 octets)

Original Thread ID (4 octets)

Figure 5 Trace Header

· Event count:

Number of events of this type the originating IDIP node saw.

· Examine From:
Examine the audit log from this time.

· Examine Until:
Examine the audit log until this time.

· Original Thread ID:
Unique identification of the original thread.

3.2.1.2 Results Header

The Results header holds the information about the attack for which the trace message or report message is sent out. Following is the syntax of the Results header.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Severity
Certainty
Outcome

Attack code (4 octets)

Attack start (4 octets)

Attack end (4 octets)

Observer (256 octets)

Attack name (256 octets)

Detector Specific (256 octets)

Figure 6 Results Header

· Severity:

Severity of attack. 0xff is used for unknown.

· Certainty:

Certainty of attack. 0xff is used for unknown.

· Outcome:

Outcome of attack. 0x7fff is used for unknown.

· Attack code:

Code of attack. See Appendix A for list of attack codes.

· Attack start:

Time of the start of the attack.

· Attack end:

Time of the end of the attack.

· Observer:

String identifying the observer of the attack.

· Attack name:

String representing the detector’s name for the attack.

· Detector Specific:
String representing detector-specific data.

3.2.1.3 Requested Action Headers

The requested action headers contain the information on what the detecting node suggests should be done as a result of the attack. There can be one or more different types of actions that may be taken at the same time. The node receiving the trace decides on what actions, if any, are actually taken.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Audit Header

Block Header

Allow Header

Request Header

Limit Header

Figure 7 Trace Requested Action Header

· Audit Header:
This specifies the time interval for an event or group of events to be audited.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Audit From (4 octets)

Audit Until (4 octets)

Figure 8 Audit Header

Audit From:
Timestamp of the start of the audit.

Audit Until:
Timestamp of the end of the audit.

· Block Header:
This specifies the time interval for an event or group of events to be blocked.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Block From (4 octets)

Block Until (4 octets)

Figure 9 Block Header

· Block From:
Timestamp of the start of the block.

· Block Until:
Timestamp of the end of the block.

· Limit Header:
Certain types of attacks, call for limiting the burst rate and average rate of packets being received (e.g., flood attack). This specifies the time interval, packet and burst rate that an event or group of events is limited.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Limit From (4 octets)

Limit Until (4 octets)

Limit Rate (4 octets)

Burst Rate (4 octets)

Action (4 octets)

Figure 10 Limit Header

· Limit From:
Timestamp of the start of the rate limiting.

· Limit Until:
Timestamp of the end of the rate limiting.

· Limit Rate:
Allowable rate of packets to accept.

· Burst Rate:
Allowable burst rate of packets to accept.

· Action:

Drop packets (value of 0) or queue packets (value of 1).

· Allow Header:
When blocking a group of events the allow header can be used to identify exceptions to the group. This header specifies the time interval to allow the event or group of events to be allowed to process.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Allow From (4 octets)

Allow Until (4 octets)

Figure 11 Allow Header

· Allow From:
Timestamp of the start of the allow.

· Allow Until:
Timestamp of the end of the allow.

· Request Header:
This is a local message, where an IDS of the node has detected a possible attack.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Action (4 octets)

Request From (4 octets)

Request Until (4 octets)

Figure 12 Local Response Header

· Action:

Action requested by local detector.
The valid values are shown below in Table 2.

Value
Name
Description

1
No Local Response
No action is to be taken.

2
Local Response
Local response requested.

3
Terminated
Terminate the connection, user, process, session, and/or account.

4
Disabled
Disable connection, user, process, session, and/or account.

5
Enabled
Enable connection, user, process, session, and/or account. May be used with disabled to disable all with exceptions.

6
Halted
Halt the node.

7
Fireback
Respond back to attacking machine. Unused.

8
Rebooted
Reboot the node.

Table 2 Local Response Actions

· Request From:

When to start the requested action.

· Request Until:

When to end the requested action.

3.2.1.4 Extensions

An extension is an addendum to a trace that has been forwarded. Each node adds an extension to a trace message when forwarding it. The extension describes the node’s response to the trace message and necessary translations, if any.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Extension Header

Refer Header

Response Headers

Figure 13 Trace Extensions

· Extension Header:
The extension header has the same syntax as the application header (see Figure 2 IDIP Application Message Header). The two message types that use the extension are the DC Do Response and a forwarded trace message. The extension is used by the DC to determine the attack path and help with finding the optimal response for each of the nodes.

· Refer Header:
The refer header references who sent the original header, and from whom the trace message was received.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Originator IDIP Address (16 octets)

Thread ID (4 octets)

Received From (4 octets)

Figure 14 Refer Header

· Originator IDIP Address:
IDIP address information of the sender of the trace message. See Figure 3 IDIP Address Description.

· Thread ID:

Thread ID of the original packet.

· Received From:

Reference IP of node who sent request.

· Response Headers:

Response headers are included in the extension, and describe the action taken by the node that is forwarding the trace message.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Trace Response Header

Audit Response Header

Block Response Header

Allow Response Header

Limit Response Header

Request Response Header

Figure 15 Response Header

· Trace Response Header:

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Event Count (4 octets)

Examine From (4 octets)

Examine Until (4 octets)

Original Thread ID (4 octets)

I/O In (4 octets)

I/O Out (4 octets)

Figure 16 Trace Response Header

· Event count:

Number of events of this type the originating IDIP node saw.

· Examine From:

Examined the audit log from this time.

· Examine Until:

Examined the audit log until this time.

· Original Thread ID:
Unique identification of the original thread.

· I/O In:

Interface Trace request received.

· I/O Out:

Interface Trace response occurs.

· Audit Response Header

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Audit From (4 octets)

Audit Until (4 octets)

I/O In (4 octets)

I/O Out (4 octets)

Figure 17 Audit Response Header

· Audit From:
Time the audit started.

· Audit Until:
Time the audit will end

· I/O In:

Request interface.

· I/O Out:
Response interface.

· Block Response Header

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Block From (4 octets)

Block Until (4 octets)

I/O In (4 octets)

I/O Out (4 octets)

Figure 18 Block Response Header

· Audit From:
Time the audit started.

· Audit Until:
Time the audit will end

· I/O In:

Request interface.

· I/O Out:
Response interface.

· Limit Response Header

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Limit From (4 octets)

Limit Until (4 octets)

Limit Rate (4 octets)

Burst Rate (4 octets)

Action (4 octets)

I/O In (4 octets)

I/O Out (4 octets)

Figure 19 Limit Response Header

· Limit From:
Time the audit started.

· Limit Until:
Time the audit will end.

· Limit Rate:
Rate of packets per seconds.

· Burst Rate:
Maximum number of packets.

· Action:

Drop or queue packets.

· I/O In:

Request interface.

· I/O Out:
Response interface.

· Request Response Header

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Action (4 octets)

Request From (4 octets)

Request Until (4 octets)

Figure 20 Request Response Header

· Action:

Time the audit started.

· Request From:
Time the audit will end

· Request Until:
Rate of packets per seconds

· Allow Response Header

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Allow From (4 octets)

Allow Until (4 octets)

I/O In (4 octets)

I/O Out (4 octets)

Figure 21 Allow Response Header

· Allow From:
Time the audit started.

· Allow Until:
Time the audit will end

· I/O In:

Request interface.

· I/O Out:
Response interface.

3.2.1.5 Trace Data

Trace data describes the specific information known about the suspected attack. Trace data is used for the trace information as well as the response requested. Not every field is required. There simply needs to be enough information for a node to identify the event.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

CIDD

XCIDD

Session ID

PID

Username

Hostname

Groupname

Procname

Role

ReqSecProto

Figure 22Data Format
· CIDD:
A CIDD is a Common IP Datagram Description. The information in a CIDD describes the IP header of an attack packet(s). The CIDD is the most common type of Trace data for attack traceback.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

IP Protocol

(1 octet)
Protocol Mask

(1 octet)

IP Source (4 octets)

IP Source Mask (4 octets)

IP Destination (4 octets)

IP Destination Mask (4 octets)

Protocol Port Ranges (10 octets)

Figure 23 CIDD

· IP Protocol:

IP protocol used.

Protocol
Number

ICMP
0x01

TCP
0x06

UDP
0x17

Table 3 Protocol Numbers

· Protocol Mask:
Protocol Mask. If 0, then ignore the IP protocol.

· IP Source:

IP of the source of the attack message.

· IP Source Mask:
Source Mask. If 0, then ignore the source IP.

· IP Destination:
IP of the destination of the attack message.

· IP Destination Mask:
Destination Mask. If 0, then ignore the destination IP.

· Protocol Port Ranges: The format of the port ranges depends on the type of protocol used. The format is shown below.

· TCP:

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

TCP Source Port Min
TCP Source Port Max

TCP Dest. Port Min
TCP Dest. Port Max

Flags
Flags Mask

· TCP Source Port Min:
Minimum TCP source port.

· TCP Source Port Max:
Maximum TCP source port.

· TCP Dest. Port Min:
Minimum TCP destination port.

· TCP Dest. Port Max:
Maximum TCP destination port.

· Flags:

TCP/IP flags.

· Flags Mask:

TCP flags mask

· UDP:

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

UDP Source Port Min
UDP Source Port Max

UDP Dest. Port Min
UDP Dest. Port Max

· UDP Source Port Min:
Minimum UDP source port.

· UDP Source Port Max:
Maximum UDP source port.

· UDP Dest. Port Min:
Minimum UDP destination port.

· UDP Dest. Port Max:
Maximum UDP destination port.

· ICMP:

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

ICMP Type
Type Mask
Code
Code Mask

· ICMP Type:

ICMP Type

· Type Mask:

ICMP Type Mask

· Code:

ICMP Code

· Code Mask:

ICMP Code Mask

· Port:
This is the generic port range syntax. It can be used for both TCP and UDP.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Source Port Min
Source Port Max

Dest. Port Min
Dest Port Max

· Source Port Min:
Minimum source port.

· Source Port Max:
Maximum source port.

· Dest. Port Min:
Minimum destination port.

· Dest. Port Max:
Maximum destination port.

· XCIDD:

Translated CIDD. The format is the same as the CIDD, but with the translated information. See Figure 23 CIDD.

· UID:

User ID

· Session ID:
Session ID

· PID:

Process ID

· Username:

Name of user.

· Hostname:

Name of host.

· Groupname:
Name of group.

· Procname:

Name of process.

· Role:

MPOG role. Used when Trace data is in DC Do message.

· ReqSecProto:
MPOG requires security protocol. Used when Trace data is in DC Do message.

3.2.2 DC Report Message

Class ID: Report

When a node creates a Trace message, the node sends a copy of the Trace message to the Discovery Coordinator as a DC Report message by changing the Class ID in the application Header to Report.

On receipt of a Report message, the Discovery Coordinator reports the event to applications that register an interest in reports. These applications perform application-specific processing that may require sending DC Do messages to IDIP nodes.

See Section 3.2.1 for the format of a DC Report message.

3.2.3 DC Do/DC Do Response Message

Class ID: DC Do, DC Do Response

On sending a DC Do message, the Discovery Coordinator records the message as pending response. Failure to receive a DC Do Response message indicates failed IDIP components.

On receipt of a DC Do message, a node takes the action specified in the DC Do message, and sends the Discovery Coordinator a DC Do Response message.

See Section 3.2.1 for the format of the DC Do message.

3.2.4 DC Undo/DC Undo Response Message

Class ID: DC Undo, DC Undo Response

The DC Undo message is a DC to Agent DC directive to an IDIP node to undo a previous response.

On sending a DC Undo message, the Discovery Coordinator records the message as pending response. Failure to receive a DC Undo Response message indicates failed IDIP components.

On receipt of a DC Undo message, a node takes the action specified in the DC Undo message, and sends the Discovery Coordinator a DC Undo Response message.

Figure 24 shows the DC Undo Message format.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Originator IDIP Address (16 octets)

Thread ID (4 octets)

Succeeded
Pad

Figure 24 DC Undo Message

· Originator IDIP Address:
IDIP address information of the node that sent the original DC do directive. See Figure 3 IDIP Address Description.

· Thread ID:

Thread ID of the original DC Do directive.

· Succeeded:

Boolean used for the response to an undo directive to indicate if the original DC Do directive was successfully removed.

3.2.5 DC Notify Message

Class ID: Notify
A node sends the DC a Notify message whenever a neighbor’s state changes (e.g., neighbor becomes unresponsive).

On receipt of a Notify message, the DC updates its state representing the IDIP topology.

A Notify message comprises of a Notify message header and one or more Notify entries.

Notify Header:

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Length
Dev Type
Comm Type

Node IP (4 octets)

Figure 25 Notify Message Header

· Length:

Number of bytes in the Notify Header and Notify Entries.

· Device Type:
Bit field describing the type of device of sender. A node can be a combination of these device types. The valid values are found below in Table 4 IDIP Device Types.

Bit Value
Name
Description

0x01
DC
Device is a Discovery Coordinator.

0x02
End System
Device is an end system.

0x04
Router
Device is a network router.

0x08
Application Proxy
Device is an application proxy.

0x16
Network IDS
Device is a network intrusion detection system.

0x32
Remote DC
Device is a remote Discovery Coordinator.

0x64
Edge
Device is an IDIP edge node.

Table 4 IDIP Device Types

· Comm Type:
Type of communication used by sender, multicast (value of 1) or unicast (value of 2).

· Node IP:

IP address of the interface to the DC.

Notify Entry:

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Interface (4 octets)

Identity (4 octets)

Time Delta (4 octets)

Dev Type
Comm Type
Proxy
Alive

Time Signd
Pad

Figure 26 Notify Entry

· Interface:

IP address of the interface to the neighbor.

· Identity:

IP address of neighbor.

· Time Delta:
Time difference between the node and neighbor (in seconds).

· Device Type:
Bit field describing the type of device of neighbor. A node can be a combination of these device types. See Table 4 IDIP Device Types.

· Comm Type:
Type of communication, multicast or unicast of neighbor.

· Proxy:

Identifies if neighbor is a proxy to the DC.

· Alive:

Indicates if the neighbor is alive.

· Time Signed:
Indicates if time delta is from signed source.

3.2.6 Control Message

Class ID:
DC_INFOCON, DEFPOS

The DC sends an INFOCON or DEFPOS control message to all IDIP components in the Discovery Coordinator’s community when the local INFOCON or DEFPOS level changes.

On receipt of a control message, an IDIP node changes its local control value and takes the local actions required for control changes (e.g., policy change). The value (INFOCON or DEFPOS) that needs to change is specified by the message’s class id.

Figure 27 shows the DC INFOCON and DEFPOS message format.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Control Value (4 octets)

Figure 27 Control Message

· Control Value:
Number between 1 and 5 indicating the control value.

3.2.7 DC Query Message

Class ID: DC-to-Agent Get, Agent–to-DC Get Response
Message Type: Table Update, Get Neighborhood Status
DC sends a DC Query message requesting information from the agent, such as neighborhood status or current blocking table.

Figure 28 shows the DC Query message format.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Message Type (4 octets)

Type-Specific Data (variable length)

Figure 28 DC Query Message

· Message Type:

Type of message. This value is either Table Update (value of 4) for sending current blocking table, or Get Neighborhood Status (value of 6) for sending current neighborhood status.

· Type-Specific Data:
For the DC-to-Agent Get message, the data is null. For the Agent-to-DC Get Response message, the data is the neighbor table if Table Update requested, or the neighborhood table if Get Neighborhood Status requested.

3.2.8 File Transfer Message

Class ID: DC-to-Agent Get Response, DC-to-AgentD Set, DC-to-Agent Set, Agent-to-DC Get
Message Type: Push File, Get File
A node can request a file from the DC using an Agent-to-DC Get message with the Get File message type. Upon receipt of an Agent-to-DC Get message with Get File message type, the DC responds to the request by sending the node the file using a DC-to-Agent Get Response File Transfer message.

A DC can send a node a file, without the node requesting a file. The DC uses a DC-to-Agent Set or DC-to-AgentD Set message with the Push File message type. This is used to update files, such as sending modified cost models to the agents. Upon receipt of a DC-to-Agent Set or DC-to-AgentD Set message, the agent saves the file then processes its contents.

Figure 29 shows the File Transfer message format.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Message Type (4 octets)

Filename (256 octets)

File (variable length)

Figure 29 File Transfer Message

· Message type:
Type of message. This value is either Push File (value of 1) or a Get File (value of 3).

· Filename:

Name of file being transferred from DC to Agent. It is a null-terminated ASCII string.

· File:

The file, if the DC is sending a file. Null if the agent is sending a request for a file.

3.3 DC Internal Messages

DC Internal Messages are used to communicate between DC applications.

3.3.1 DC Merge Report

Class ID: Merge Report, Merge Undo

DC attack reports of ongoing attacks are merged together to create a more comprehensive report. The DC outputs a DC Merge Report for other DC processes to use, such as the process displaying the attack path.

Figure 30 shows the Merge Report message format.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Merger ID (276 octets)

Merged ID 0 (276 octets each)

…

Merged ID 4

Attack ID (4 octets)

Start (4 octets)

End (4 octets)

Protocol
Severity
Pad

Min Source Port
Max Source Port

Min Target Port
Max Target Port

Detector Count (4 octets)

Detector 0 (4 octets each)

…

Detector 5

Responder Count (4 octets)

Responder 0 (1 octet each)

…

Responder 4

Path Count (4 octets)

Path 0 (50 octets each)

…

Path 9

Figure 30 Merge Report Message

· Merger ID:

Identification for this merged report. See Figure 31 Merge Report ID for the format.

· Merged IDs:

Previous IDs that have been merged (maximum of 5). The data description is as follows in Figure 31 Merge Report ID.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Originator IDIP Address (16 octets)

Thread ID (4 octets)

From Community (256 octets)

ID (4 octets)

Figure 31 Merge Report ID Description

· Originator IDIP Address:
Unique IDIP address information of the node. See Figure 3 IDIP Address Description.

· Thread ID:

Unique identifier of the thread.

· From Community:
Community that is the source of the trace in an EBC-to-EBC trace message. Source of the message in a DC-to-DC report message. Community is a null-terminated ASCII string.

· ID:

DC-generated ID assigned to attack.

· Attack ID:

Attack ID from the list of attack codes. See Appendix A.

· Start:

Start time of the attack.

· End:

End time of the attack.

· Protocol:

Attack protocol number. See Table 3 Protocol Numbers.

· Severity:

Attack severity. Range of 0-100 with 100 being highest severity.

· Pad:

Zero-filled bits.

· Min Source Port:

Attack source port range start.

· Max Source Port:

Attack source port range end.

· Min Target Port:

Attack target port range start.

· Max Target Port:

Attack target port range end.

· Detector Count:

Number of detectors listed (maximum of 6).

· Detectors:

IP Addresses of detectors of the attack.

· Responder Count:

Number of responders listed (maximum of 5).

· Responders:

Responders of the attack. The data description is as follows in Figure 32 Responder Description.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Response Node (4 octets)

Merger ID (4 octets)

Response Count (4 octets)

Blocking Rule 0 (38 octets each)

…

Blocking Rule 3

Figure 32 Responder Description

· Response Node:
IP address of node that responded.

· Merger ID:

Merged ID of report first placed in.

· Response Count:
Number of blocking rules in report (maximum of 4).

· Blocking Rule:
Description of the response taken. The data description is as follows in Figure 33 Blocking Rule Description.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Type
Pad

From (4 octets)

Until (4 octets)

Blocks (28 octets)

Figure 33 Blocking Rule Description

· Type:

Type of blocking response.

Block UID
1

Block SID
2

Block PID
3

Block CIDD
4

· From:

Time response initiated.

· Until:

Time response ends.

· Blocks:
The CIDD or ID blocked depending on the blocking type.

· Path Count:
Number of paths listed (maximum of 10).

· Path:

Path of the attack. The data description is as follows in Figure 34 Attack Path Description.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Node 0 (4 octets each)

…

Node 11

Length (4 octets)

Direction (4 octets)

Figure 34 Attack Path Description

· Node:

IP Addresses of nodes in attack path.

· Length:
Length of path.

· Direction:
Direction of the attack along the path. If direction is source to target, the value is greater than 0. If the direction is unknown, the value is 0. If the direction is target to source, the value is less than 0.

3.3.2 Attack-o-Meter Message

Class ID: Attack-O-Meter
Internal DC message used to change the attack-o-meter display.

The Attack-o-Meter message format is described below in Figure 35.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Value (4 octets)

Figure 35 Attack-o-Meter Message

· Value:
Attack-o-Meter value, ranges from 0 to 99 (inclusive). 0 being the lowest.

.

3.4 Vulnerability Scanning Support Messages

Vulnerability Scanning Support Messages are used to inform the scanner node what to scan and inform responder nodes when a vulnerability scan is to occur.

3.4.1 Scan Configuration Message

Class ID: DC-to-Agent Set

Message Type: Scan Config
This is a message from the DC to a scanner to schedule a scan or remove a scan request from the schedule.

Figure 36 shows the Scan Configuration message format.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Message Type (4 octets)

Scan Handle (4 octets)

Time (4 octets)

Delta (4 octets)

Scan List: Scan Description 0 (4 octets each)

…

Scan Description 3

Figure 36 Scan Configuration Message

· Message Type:
Message type of Scan Config (value of 4).

· Scan Handle:
A DC assigned handle for a scan schedule. It is used when the DC wants to remove a scan from the schedule.

· Time:

When to scan the first time.

· Delta:

Repeat scan every delta seconds.

· Scan List:

The scan list is comprised of 4 scan descriptions, one for each IP address to be scanned. Figure 37 shows the syntax of a scan description.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Scan Set (4 octets)

IP (4 octets)

Vulnerability ID 0 (4 octets each)

…

Vulnerability ID 699

Figure 37 Scan Description

· Scan Set:
Flag to allow special sets of scans. It is an integer value. Table 5 Scan Flags lists the possible values.

Value
Name
Description

1
Normal
Perform all scans listed.

2
Default
Perform all default scans.

3
As Above
Perform the same set of scans as previous scan description in the scan list.

4
All Scans
Perform all available scans.

5
All But
Perform all but listed scans.

6
Class C
Perform scan on all addresses in a Class C network.

Table 5 Scan Flags

· IP:

IP address of node to be scanned.

· Vulnerability ID:
Identifies the vulnerability to scan for on a node.

3.4.2 Scan Control Message

Class ID: Agent-to-agent
Message Type: Start Scan, Stop Scan
This is a message from one IDIP node to another, to notify the node of a vulnerability scan is to start or that a scan is finished.

Figure 38 shows the Scan Control message format.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Message Type (4 octets)

Scan List: Scan Description 0

…

Scan Description 3

Figure 38 Scan Control Message

· Message Type:
This either notifies that the scan is to be stopped (value of 1) or that it is to be started (value of 2).

· Scan List:

Describes scans to be performed or finished. See Figure 37 Scan Description
3.4.3 Scan Results Message

Class ID: Agent-to-DC Info

Message Type: Scan Results
When an agent has the results of a vulnerability scan, the results are sent to the DC using a Scan Results message. The DC uses this information to change response policy.

Figure 39 shows the Scan Results message format.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Message Type (4 octets)

Vulnerability List (variable length)

Figure 39 Scan Results Message

· Message Type:

Message type of Scan Results (value of 5).

· Vulnerability List:

List of the vulnerability scan results. The end of the list is marked by a zero-filled entry. Figure 40 shows the vulnerability list format.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

IP (4 octets)

Vulnerability Status 0 (8 octets)

…

Vulnerability Status 699

Figure 40 Vulnerability List Description

· IP:

IP address of node scanned.

· Vulnerability Status:
List of vulnerabilities and the status of the node for that vulnerability. The vulnerability status has the data format shown in Figure 41.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Vulnerability ID (4 octets)

Status (4 octets)

Figure 41 Vulnerability Status Description

· Vulnerability ID:
The vulnerability scanner’s id for the vulnerability.

· Status:

Status of the scan. List of values is shown below in Table 6.

Value
Name
Description

1
Not Tested
Vulnerability test of that vulnerability not performed.

2
Not Vulnerable
Node is not vulnerable to that vulnerability.

3
Vulnerable
Node is vulnerable to that vulnerability.

Table 6 Vulnerability Status Values

3.5 Inter-Community Support Messages

3.5.1 DC – EBC Messages

Messages between a Boundary Controller on the edge of a community (Edge Boundary Controller (EBC)) and its DC are described here.

3.5.1.1 Trace Escalation Message

Class ID: Agent-to-DC Get, DC-to-Agent Get Response
Message Type: Trace Escalation
When an EBC receives a Trace message from inside its community and determines the attack path is through it or an EBC receives a Trace message from outside its community, the EBC checks its policy as to what it should do with the Trace message. If the policy is to Ask Operator, the EBC sends a Trace Escalation message to its DC to request what action it should take with the trace message. On receipt of a Trace Escalation message, the DC gets operator input as to the action the EBC should take. The operator response to continue or terminate is sent back to the EBC in a Trace Escalation Response message. A new EBC policy may also be included in the response message.

The Trace Escalation message follows the IDIP Application Header. The Trace Escalation message format is shown in Figure 42.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Message Type (4 octets)

Trace ID (4 octets)

EBC IP Address (4 octets)

Name (256 octets)

Message Direction (4 octets)

Message Severity (4 octets)

Message Certainty (4 octets)

Message Attack ID (4 octets)

Trace Status (4 octets)

Policy Size (4 octets)

Figure 42 Trace Escalation Message

· Message Type:

Message Type of Trace Escalation (value of 8).

· Trace ID:

Unique trace message ID.

· EBC address:

IP address of the edge boundary controller.

· Name:

Name of community trace message is ‘going to’ or ‘coming from’.

· Message Direction:
Defines if the message is an inbound or outbound message.

Inbound:
1

Outbound:
2

· Message Severity:

Trace message severity, number from 0-100. The higher the value the more severe.

· Message Certainty:
Trace message certainty, number from 0-100. The higher the value, the more certain.

· Message Attack ID:
Attack ID in the Trace message.

· Trace Status:

Used in the DC response. An Approve Trace response will continue the traceback. A Reject Trace response will terminate the traceback.

Reject Trace:

1

Approve Trace:
2

· Policy Size:

The size of a policy file, if appended. If no policy file is appended, the policy size is 0.

3.5.1.2 EBC Translation Message

Class ID: Agent-to-DC Info
Message Type: New EBC Translation
The Edge Boundary Controller (EBC) sends an EBC Translation Message to its DC if it makes changes to the trace message before continuing the trace message to/from a remote community. The EBC can translate IP addresses to hide internal network address information. If the translation occurs, the DC needs to know about the changes to apply to the DC-to-DC report message from the remote community.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Message Type (4 octets)

Community (256 octets)

Local Address (16 octets)

Remote Address (16 octets)

Local Thread ID (4 octets)

Remote Thread ID (4 octets)

Local Path 1 (4 octets)

…

Local Path IP 12 (4 octets)

Remote Path 1 (4 octets)

…

Remote Path 12 (4 octets)

Local Path Length (4 octets)

Remote Path Length (4 octets)

Figure 43 EBC Translation Message

· Message Type:

Message type of New EBC Translation (value of 12).

· Community:

The destination community on an outgoing trace message. The source community on an incoming trace message. Community is a null-terminated ASCII string.

· Local Address:

Local address information of originator.

· Remote Address:

Translated address information of originator of trace message.

· Local Thread ID:

Local Thread ID.

· Remote Thread ID:
New Thread ID used for trace message.

· Local Paths:

Local community IP addresses of traceback path.

· Remote Paths:

Translated IP addresses of traceback path.

· Local Path Length:
Number of IP addresses in local path.

· Remote Path Length:
Number of IP addresses in remote path.

3.5.2 DC to DC Messages

A DC-to-DC Message is sent from one community’s DC to another community’s DC. A DC-to-DC message comprises of a DC-to-DC Message header and a message. The data in the message depends on the message type.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Message Type (4 octets)

Community Name (256 octets)

Remote DC (4 octets)

Figure 44 DC-to-DC Message Header

· Message Type:

Type of DC-to-DC Message. The valid values are listed below in Table 7.

Value
Name
Description

0x09
DC-to-DC
DC to DC message

0x0A
DC-to-DC Report
Merged traceback report

0x0B
Cone Protocol
Cooperation Negotiation message

0x0D
Alert Sharing
Alert Sharing message

0x0E
Correlator Data
Correlation data sharing message

Table 7 DC-to-DC Message Types

· Community Name:
Name of the community sending the message.

· DC Remote:

IP address of remote Discovery Coordinator. Unused.

3.5.2.1 DC-to-DC Report Message

Class ID: DC-to-DC INFO
Message type: DC-to-DC Report
DC-to-DC report messages are used to collect information from different communities about a single attack. DC attack reports of ongoing attacks are merged together to create a more comprehensive report. Before the DC sends a report message, the information may be sanitized, based on the policy for sending reports to the other community.

The DC-to-DC Report message consists of the Application Header, followed by the DC-to-DC message header, followed by the Merge Report message as shown in Figure 30.

3.5.2.2 CONE Message

Class ID: DC-to-DC
Message type: CONE

The Cooperation Negotiation message is sent from one community DC to another community DC to negotiate intrusion traceback and response services. On receipt of a CONE message, the DC gets operator input for the need of services such as traceback, report, blocking, propagation, alert sharing, and correlation data sharing. The negotiation continues until one of the communities accepts or rejects the proposed service offering and requirements.

The CONE message header follows the DC-to-DC message header. Figure 45 describes the CONE message.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Message Type (4 octets)

Version
Phase
Sequence Number

Originating Community (256 octets)

Trace & Rpt Req

(1 octet)
Trace & Rpt Offer

(1 octet)
Trace & Block Req

(1 octet)
Trace & Block Offer

(1 octet)

Limit Traceback Req

(1 octet)
Limit Traceback Offer

(1 octet)
Send Intrusion Alert Req

(1 octet)
Send Intrusion Alert Offer

(1 octet)

Send Anomalous Events Req

(1 octet)
Send Anomalous

Events Offer

(1 octet)

Text Message (256 octets)

Figure 45 CONE Message

· Message Type:
Type of message. Cone Message has the value of CONE Protocol, a value of 11.

· Version:

Version of CONE protocol.

· Phase:

Phase of the negotiation. The valid values are listed below.

Value
Name
Description

0x00
None
No negotiation

0x01
Initiator Proposal
Initiator offer

0x02
Responder Proposal
Responder offer

0x03
Initiator Accept
Initiator initially accepts proposal

0x04
Initiator Accept Final
Initiator accepts responder-accepted proposal

0x05
Initiator Terminate
Initiator terminates negotiation

0x06
Responder Accept
Responder initially accepts proposal

0x07
Responder Accept Final
Responder accepts initiator-accepted proposal

0x08
Responder Terminate
Responder terminates negotiation

Table 8 CONE Phases

· Sequence Number:
Sequence number of message.

· Originating Community:
Name of sender’s community as a null terminated ASCII string.

· Trace & Rpt Req:

Trace and Report request value. The sender specifies if it requests the other community to continue traceback messages from the sender’s community and to report the status of the traceback to the sender’s community.

· Trace & Rpt Offer:
Trace and Report offer value. The sender specifies if the sender’s community will continue traceback messages from the other community and to report the status of the traceback to the other community.

· Trace & Block Req:
Trace and Block request value. The sender specifies if it requests the other community to perform the traceback and suggested response if the other community is along the attack path.

· Trace & Block Offer:
Trace and Block offer value. The sender specifies if the sender’s community will perform the traceback and suggested response if the sender’s community is along the attack path.

· Limit Traceback Req:
Propagation request value. The sender specifies if it wants the other community to limit traceback to its community boundary.

· Limit Traceback Offer:
Propagation offer value. The sender specifies if the sender’s community will limit traceback to its community boundary.

· Send Intrusion Alert Req:

Send Intrusion Alert request value. The sender specifies if it requests intrusion alert messages from the other community.

· Send Intrusion Alert Offer:
Send Intrusion Alert offer value. The sender specifies if it will send intrusion alert messages to the other community.

· Send Anomalous Events Req:
Send Anomalous Events request value. The sender specifies if it requests correlation data from the other community.

· Send Anomalous Events Offer:
Send Anomalous Events offer value. The sender specifies if it will send correlation data to the other community.

The CONE request and offer values are listed below.

Value
Name
Value for

0x00
None
Request or Offer

0x01
Yes
Request or Offer

0x02
Ask Operator
Request or Offer

0x04
Preferred
Request only.

0x08
Non Essential
Request only.

0x10
No
Request or Offer

Table 9 CONE Request and Offer Values

· Text Message:
Optional text message.

3.5.2.3 Alert Sharing Message

Class ID: DC-to-DC Info

Message types: Alert Sharing, Correlator Data
The Alert Sharing message is used to exchange correlation data or intrusion detection alert information between DCs in different communities. The message is sent out to all participating communities. Participating communities are those that allow alert messages according to their community policy.

The Alert Sharing message follows the DC-to-DC message header. Figure 46 shows the Alert Sharing message format.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Originating Community (256 octets)

Data Length (4 octets)

Type-Specific Data (variable length)

Figure 46 Alert Sharing Message

· Originating Community:

Sender’s community name as a null-terminated ASCII string.

· Data Length:

Length of Type-Specific data in octets.

· Type-Specific Data:

Variable-length alert or correlator data.

3.5.3 DC Internal Messages for Inter-Community Support

3.5.3.1 Trust Status Message

Class ID: Trust Notify
The Trust Status message is used to notify DC applications when the trust status of a community has changed.

The Trust Status message follows the IDIP Application Header. Figure 47 shows the Trust Status message format.

1
2
3

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1

Community (256 octets)

Status (4 octets)

Figure 47 Trust Status Message

· Community:
Community Name as a null-terminated ASCII string.

· Status:

New trust status.

High Trust

90

Medium Trust

50

Low Trust

10

3.6 IDIP Message Requirements

Each Application Layer message must meet a set of minimal requirements. In general, each message must contain a valid class id and valid length fields. The length of the message must also match with the specified size of the format. In addition, each class of messages may have certain aspects that must be correct for the message to be processed.

Trace, Report, and DC Do messages must follow the CISL format. A CISL message is composed of a CISL header, followed by one or more GIDO’s. The size of the message must be at least the size of the CIDF header. Each GIDO must in turn be large enough to hold the SID and the GIDO length.

In addition to conforming to the specified length requirements, each GIDO must contain a valid SID. SID data that is in the form of null-terminated strings must be at least the size of one character and not greater than the max value.

4 CISL FORMAT

CIDF’s CISL [8] is used to transport IDIP Trace, Report, and DC Do messages from one IDIP node to another. The on-the-wire format is the octet break down of the SID. IDIP data format is encoded into CISL before sending a Trace, Report, or DC Do message to another IDIP node.

The CISL S-Expression GIDOs (Generalized Intrusion Detection Objects) are built from the IDIP format to be transmitted. GIDO fields are of the form (length, SID, data). Each IDIP format header (described in Section 3) or segment of data in the message is encoded into a GIDO.

The following is a table of the CISL values used in IDIP.

Name
SID

And
0x08004001

Allow MPOG
0x08B0E005

Attack
0x08000081

Attack ID
0x06000073

Attack Name
0x04B0E013

Attack Specifics
0x08001014

Audit Path
0x08001065

Audit Message
0x08000072

Begin Time
0x02000002

Block Account
0x08B0E00b

Block Message
0x08000073

Block MPOG
0x08B0E004

Block Path
0x08001066

By Means Of
0x08004007

Certainty
0x00000006

CIDF Originator
0x04B0E002

CIDF Return Code
0x01000008

Copy
0x08000001

Detector Specific Data
0x04B0E014

Did
0x08000824

Do
0x08000811

End Time
0x02000003

Entering New Community (IDIP extension)
0x08B0E015

Execute
0x08000011

Filename
0x04000012

File Source
0x08001021

Fireback
0x08B0E00d

Groupname
0x04000024

Hostname
0x0400000c

Initiator
0x08001001

Limit Message
0x08B0E00d

Local Response
0x08B0E00c

Machine
0x08001043

Message
0x08001051

MPOG Role
0x04B0E006

MPOG Security Protocol
0x04B0E007

Multiplier
0x0200007b

Observer
0x08001003

Outcome
0x08005001

Process
0x08001011

Process ID
0x02000027

Process name
0x04000028

Rate
0x08B0E00f

Reboot
0x08000091

Refer To GIDO (IDIP extension)
0x02000078

Request
0x08000801

Send Message
0x08000041

Session ID
0x02B0E00a

Severity
0x00000007

Shutdown
0x08000092

Source IP Address
0x0200003b

Target
0x08001004

Terminate
0x08000014

Thread ID
0x02B0E003

Trace Message
0x08000074

Trace Path
0x08001062

Translate
0x08000821

User ID
0x0200001f

Username
0x0400001c

When
0x08005002

Table 10 IDIP CISL values

The following briefly describes the conversion from IDIP format to CISL.

4.1 CIDF Header

CIDF header information comes from the IDIP header information. Following the CIDF header is the CISL encoded IDIP Trace, Report, or DC Do message.

4.2 CISL Trace/Report Message

A Trace or Report message describes the attack and actions to take by combining ByMeansOf SID with Do SIDs using an And SID.

4.2.1 ByMeansOf SID

ByMeansOf SID describes the attack (Attack SID) and the cause of the attack (SendMessage SID).

4.2.1.1 Attack SID

The Attack SID describes the specific attack information such as the observer (Observer SID), the target (Target SID), the certainty, the severity, the attack id (AttackSpecifics SID), the outcome of the attack (Outcome SID), and the time of the attack (When SID).

· Observer SID - consists of the ProcessName SID. The ProcessName comes from the IDIP observer field in the Results header (see Figure 6).

· Target SID - describes the attack destination, which can be an IPV4Address SID and/or a HostName SID. The IPV4 address comes from the IDIP CIDD data field IPdestination. The HostName SID comes from the Hostname Trace data. See Section 3.2.1.5 for more information about Trace data.

· AttackSpecifics SID - describes the attack. The AttackSpecifics SID values come from the Results header (see Figure 6). It can include:

· Certainty SID – value from the certainty field.

· Severity SID – value from severity field.

· AttackID SID – value from attack_code field.

· AttackName SID – value from attack_name field.

· DetectorSpecificData SID – value from detector_specific field.

· Outcome SID - describes the attack outcome. The Outcome SID contains the CIDFReturnCode SID whose value come from the outcome field in the Results header (see Figure 6).

· When SID - When used in the Attack description, the When SID describes the time of the attack. It gets its values from the Attack Start and Attack End fields in the Results header (see Figure 6).

4.2.1.2 SendMessage SID

The SendMessage SID describes the message specifics of the attack. The SendMessage SID may contain an Initiator SID, Receiver SID, Message SID, and When SID.

· Initiator SID - data comes from the Trace data. Initiator SID may contain the following SIDs:

· SourceIPV4Address – value from IPsource in CIDD data field.

· UserID – value from UID data field.

· ProcessID – value from PID data field.

· SessionID – value from SID data field.

· UserName – value from Username data field.

· GroupName – value from Groupname data field.

· ProcessName – value from Procname data field.

· Receiver SID - data comes from the Trace data. Receiver SID may contain the DestinationIPV4Address SID that gets its value from the IPdestination data field in the IDIP CIDD data. The Receiver SID may also contain the UserID, ProcessID, SessionID, UserName, GroupName, or ProcessName SIDs like the Initiator SID.

· Message SID - Message SIDs get their data from the Trace data and Results header. The Message SID may contain the following SIDs:

· IPV4Protocol – value from CIDD data field.

· DestinationIPV4Address – value from CIDD data field.

· Multiplier – If the event count is more than one (from the Trace header), the Multipler SID is used.

· When SID- The When SID in the SendMessage SID gets its data from the Trace header Examine From and Examine Until fields (see Figure 5).

4.2.2 Do SID

The Do SID includes the requested actions. There are usually multiple Do SIDS in a Trace or Report message. There is a separate Do SID clause for each TraceMessage SID, BlockMessage SID, AuditMessage SID, LimitMessage SID, and local response Request SID.

4.2.2.1 TraceMessage SID

The TraceMessage SID includes the timeframe used for traceback (When SID), a description of the attacker (Initiator SID), and the attack description information (Message SID). The Message SID uses a ReferTo SID to not replicate the attack description data. The TraceMessage SID may include an Initiator SID (see above description of Initiator SID). The When SID contains the Examine From and Examine Until values from the Trace Header (see Figure 5).

4.2.2.2 BlockMessage SID

The BlockMessage SID includes the timeframe to block (When SID) and the block request information (Message SID). The Message SID data comes from the IDIP Trace data, and is usually the CIDD data (see Figure 23). The When SID contains the Block From and Block Until values from the Block Header (see Figure 9).

4.2.2.3 AuditMessage SID

The AuditMessage SID includes the timeframe to audit (When SID) and the audit request information (Message SID). The Message SID data comes from the IDIP Trace data, usually the CIDD data (see Figure 23). The When SID contains the Audit From and Audit Until values from the Audit Header (see Figure 8).

4.2.2.4 LimitMessage SID

The LimitMessage SID includes the timeframe to rate limit (When SID) and the limit request information (Message SID). The Message SID data comes from the IDIP Trace data, usually the CIDD data (see Figure 23) and the rate limiting data (LimitRate, BurstRate, Action) from the Limit header. The When SID contains the Limit From and Limit Until values from the Limit header (see Figure 10).

4.2.2.5 Request SID

The Request SID specifies the local response request. The Request SID includes the timeframe of the request (When SID) and the specific local responses (Local_Response, Terminate, Fireback, Rebooted, and Halted SIDs)

4.2.3 Did SID

The Did sentence specifies the response taken. The IDIP extensions are expressed in a Did SID. The Did sentence may be composed of a TraceMessage SID, BlockMessage SID, LimitMessage SID, AuditMessage SID, and Request SID. These SIDs used in the Did sentence have additional information from the Do sentence SIDs.

4.2.3.1 TraceMessage SID (Did)

The TraceMessage SID includes the thread id (ThreadID SID), attack outcome (Outcome SID), TracePath SID, translated time (When SID using attack start and end times from Results header (Figure 6)), and attack description information (Message SID).

The TracePath SID may contain the following SIDs:

· ReceivedFrom – IPv4 address of the sending node (from Received From field in Refer header (Figure 14)).

· ReceivedVia – IPv4 interface address on which Trace message received (from I/O In field in Response header (Figure 15)).

· IPV4Path – Array of two IPv4 addresses indicating path through IDIP node (from I/O In and I/O Out fields in Response header).

4.2.3.2 BlockMessage SID (Did)

The BlockMessage SID includes the BlockPath SID, the timeframe of blocking (When SID) and the block information (Message SID). The Message SID data comes from the IDIP Trace data, and is usually the CIDD data (see Figure 23). The BlockPath SID contains an array of two IPv4 addresses indicating the blocked path through the IDIP node (from I/O In and I/O Out fields in Trace Response header (Figure 16)).

4.2.3.3 AuditMessage SID (Did)

The AuditMessage SID includes the AuditPath SID, the timeframe of auditing (When SID) and the audit information (Message SID). The Message SID data comes from the IDIP Trace data, usually the CIDD data (see Figure 23). The When SID contains the Audit From and Audit Until values from the Audit Header (see Figure 8). The AuditPath SID contains an array of two IPv4 addresses indicating the audited path through the IDIP node (from I/O In and I/O Out fields in the Trace Response header (Figure 16)).

4.2.3.4 LimitMessage SID (Did)

The LimitMessage SID includes the LimitPath SID, the timeframe of the rate limiting (When SID) and the limit request information (Message SID). The Message SID data comes from the IDIP Trace data, usually the CIDD data (see Figure 23) and the rate limiting data (LimitRate, BurstRate, Action) from the Limit header. The When SID contains the Limit From and Limit Until values from the Limit header (see Figure 10). The LimitPath SID contains an array of two IPv4 addresses indicating the rate limited path through the IDIP node (from I/O In and I/O Out fields in the Trace Response header (Figure 16)).

4.2.3.5 Request SID (Did)

The Request SID specifies the local response request. The Request SID includes the outcome (Outcome SID), the timeframe of the request (When SID) and the specific local responses (Local_Response, Terminate, Fireback, Rebooted, and Halted SIDs)

4.3 CIDF Extensions

IDIP had to extend the CISL language with the following SIDs.

4.3.1 Original Message SIDs

All IDIP application messages have an originator that identifies the source of the message. There is also a unique thread identifier. These CISL extensions are needed for indicating the IDIP originator of a message and for one message to refer to another message. These SIDs extended CISL for unique IDIP originator information.

Name: ReferToGido
Code: 0x08B0E001

Type: attribute

Description: Used to reference the original packet.

May Contain: CIDFOriginator, ThreadID

Name: CIDFOriginator
Code: 0x04B0E002

Type: array of bytes

Description: Description of the message originator. Contains three components, the first is the IP address of the originator node, the second is the process id of the originator process, and the third is the boot time of the originating node.

Name: ThreadId
Code: 0x02B0E003

Type: ulong

Description: Unique identifier for the thread.

4.3.2 MPOG SIDs

Multi-Protocol Object Gateway (MPOG) is a security gateway for CORBA and Java RMI traffic. MPOG acts as an application firewall proxy to protect CORBA and Java RMI servers by providing selective access to them by remote clients. MPOG is another IDIP boundary controller device. The following SID extensions were needed for MPOG. These SIDs extended CISL for MPOG-specific responses.

Name: BlockMPOG
Code: 0x08B0E004

Type: Verb

Description: Specified entities to be blocked or were blocked by MPOG.

May Contain: MPOG_Role, MPOG_Securitiy_Protocol, UserName, Account

Name: AllowMPOG
Code: 0x08B0E005

Type: Verb

Description: Specified entities to be allowed or were allowed by MPOG.

May Contain: MPOG_Role, MPOG_Securitiy_Protocol, UserName, Account

Name: MPOG_Role
Code: 0x04B0E006

Type: String

Description: The MPOG RoleName.

Name: MPOG_Security_Protocol
Code: 0x04B0E007

Type: String

Description: Security Protocol required by MPOG.

4.3.3 Local Response Data SIDs

These SIDs extended CISL for IDIP local responses.

Name: SessionID
Code: 0x02B0E00a

Type: ulong

Description: The ID number of a session.

Name: BlockAccount
Code: 0x08B0E00b

Type: role

Description: Describes entities to be blocked or were blocked.

May Contain: UserName, UserID, GroupName, FileName, Did

Name: Local_Response
Code: 0x08B0E00c

Type: role

Description: Describes the local node response data.

May Contain: Account Data (UserName, GroupName, UserID, or Account), Process Data (ProcessID, SessionID, ProcessName), or Connection Data.

Name: Fireback
Code: 0x08B0E00d

Type: verb

Description: Send a response attack to an attacking machine. Unused.

4.3.4 Rate Limiting SIDs

These SIDs extended CISL for IDIP rate limiting responses.

Name: LimitMessage
Code: 0x08B0E00e

Type: verb

Description: Specified messages are rated limited.

May Contain:

When: This contains the time at which (or during which) the rate limiting was performed.

LimitPath: The path(s) being rate limited.

Message: The message(s) being rate limited.

Rate: The rate limiting values.

Name: LimitPath

Code: 0x08001067

Type: role

Description: Information about how a component rate limited an event.

May Contain:

IPV4Path: Contains two elements, the first representing the connection into the component, the second the connection out of the component that the specified audit is being performed on.

Name: Rate
Code: 0x08B0E00f

Type: adverb

Description: Describes the rate limiting.

May Contain: LimitRate, BurstRate, Action

Name: LimitRate
Code: 0x02B0E010

Type: ulong

Description: The maximum packets per second at which to transmit packets.

Name: BurstRate
Code: 0x02B0E011

Type: ulong

Description: The maximum number of packets that can be transmitted at one time. If the BurstRate is reached, packets are filtered.

Name: Action
Code: 0x02B0E012

Type: ulong

Description: Rate Limit Action: drop packets or queue packets.

4.3.5 Detector-Specific SIDs

These SIDs extended CISL for when a detector needs to add additional information not currently in IDIP.

Name: AttackName
Code: 0x04B0E013

Type: String

Description: String representing the detector’s name for the attack.

Name: DetectorSpecificData
Code: 0x04B0E014

Type: String

Description: String representing detector-specific data.

4.3.6 Inter-Community SIDs

This SID extended CISL to indicate a message came from another community.

Name: EnteringNewCommunity
Code: 0x08B0E015

Type: role

Description: Indicates message received from another community

May Contain:

DomainName: String indicating the community name.

SourceIPV4Address: The source address of the inter-community message.

DestinationIPV4Address: The destination address of the inter-community message.

5 OPERATION

5.1 Inbound Messages

Upon initialization, each IDIP node registers the types of message classes that it will accept.

5.2 Outbound Messages

When sending out an IDIP message, the Application Layer fills out the IDIP header information. When sending a message, the application fills in certain fields of the IDIP Message Layer header[8]. It inserts the version number, the flags to be set, the length of the message, the destination IP address, message priority, application process’ ID and boot time. It also sends the next header type for the next type field.

For most IDIP response messages, the syntax is the same as the initial message. The difference is in the class field, which indicates that it is a response message.

5.3 Core Message Processing

5.3.1 Trace/Report Message Processing

5.3.1.1 IDIP Agent node

On receipt of a Trace message, an IDIP agent node searches its audit trail for events matching the attack description. If a match is found, the node

1. Determines the response that will be done by the node and enacts the response.

2. Forwards the trace request to all neighbors along the attack path. This forwarded trace message must include addendums that describe the response taken, plus any translation required.

3. Sends a copy of the trace message as a report message to the Discovery Coordinator.

If the node does not find a match because the node was not monitoring for the data, the node sends a trace message out each interface and a report to the Discovery Coordinator.

If the node does not find a match and was monitoring for the data, the node only sends a report to the Discovery Coordinator.

5.3.1.2 Discovery Coordinator

When a DC receives a report from an agent node, the DC merger process stores the report in a database. It also combines like attacks into an internal report. If the originator of the report matches an existing database entry, the new report is merged with the database entry. Then it checks the database for any overlaps. If the report was merged with a database entry, then check the merged report for a match with the database. If there is a match, then merge the data entry with the merged reports. If the original report was not merged with a database entry, create a new entry with a new report ID. After the report sent in is processed the node decides if it should send an internal report out. If the report sent in is valid and all of its information not already covered in another report, an internal report is sent out to the other DC applications.

5.3.2 DC Do

The IDIP Application layer uses the CIDF’s CISL’s Do message. The message follows the same basic structural format of a Trace or Report message. The block/allow/limit directives are given in the block/allow/limit headers.

Upon receiving a DC Do message, an agent node extracts the results header and refer header. Next it extracts all the block headers. For each block header, the node adds the specified instance to its block database to be blocked. It uses the block from and block to fields to determine how long to block. Afterwards it adds a block response to the outgoing message for each block header it receives. The same thing is done for the allow headers. The allow header, allows for exceptions to the block command. For example, a block directive will command that a group of sessions, except for two specific ones in that group, to be blocked. The group will be described in the block header, while the exceptions will be shown in an allow header or headers. Limit headers are also extracted. Valid headers are added to the block database, with the limit information that is sent in the limit header. The agent node also searches for local request headers. When found, the node completes the request.

The block/allow/limit headers will only be added to the database if the following is true.

· The entry is not already in the database

· At least one valid data entry (e.g. - CIDD, username, process name)

· The block, allow, or limit time has not already passed

After the DC Do message has been processed, an extension is added to the return message, describing the action taken, if any, by the node. The return message is the DC Do response message.

5.3.3 DC Undo

The DC sends a DC Undo message to an agent node to remove a response directed via a previously sent DC Do message. The DC sends the DC Undo message with the originator and thread id of the previous DC Do message (see Figure 24). On sending a DC Undo message, the Discovery Coordinator records the message as pending response. Failure to receive a DC Undo Response message indicates failed IDIP components.

When the agent node receives a DC Undo message, it removes all block, allow, and audit responses involved with the originator and thread id. The agent node sets the Boolean value Succeeded in the DC Undo Message to indicate whether the undo response was successful.

5.3.4 DC Do Response and DC Undo Response

DC Do/Undo response messages are received by the DC from an agent node. The message is a response to a DC Do or DC Undo directive. If the DC Do or DC Undo response is not received before the timeout expires, the DC acts as if the IDIP node has failed and updates its topology accordingly.

5.3.5 DC Notify

A node sends the DC a Notify message whenever a neighbor’s state changes (e.g., neighbor becomes unresponsive). When the neighborhood changes, a value is sent to indicate a DC Notify message needs to be sent to the DC. Periodically the sender process of the IDIP Message Layer checks this value and sends a DC Notify message if the value is set. The sender process fills in the Notify Message Header (Figure 25) with information about itself and a Notify Entry (Figure 26) for each neighbor.

On receipt of a Notify message, the DC updates its state representing the IDIP topology.

5.3.6 DC Control Messages

The DC sends an INFOCON or DEFPOS control message to all IDIP components in the Discovery Coordinator’s community when the local INFOCON or DEFPOS level changes.

On receipt of an INFOCON control message, an IDIP node changes its local INFOCON value. On receipt of a DEFPOS control message, an IDIP node changes its local DEFPOS value. A node may have different response policies for different INFOCON and/or DEFPOS values.

5.3.7 DC Query

DC sends a DC Query message requesting information from the agent node, such as neighborhood status or current blocking table.

When an agent node receives a request for its current blocking table, it formats the block and allow tables into human readable strings and sends the buffer to the DC in an Agent-to-DC Get Response message.

When an agent node receives a request for its current neighborhood status, the agent node sets a value to indicate to the sender process to send a DC Notify message to the DC. It then forwards the DC Query message to its other neighbors.

5.3.8 File Transfer

An agent node can request a file from the DC using an Agent-to-DC Get message with the Get File message type. Upon receipt of an Agent-to-DC Get message with Get File message type, the DC responds to the request by sending the node the file using a DC-to-Agent Get Response File Transfer message.

A DC can send a node a file, without the node requesting a file. The DC uses a DC-to-Agent Set or DC-to-AgentD Set message with the Push File message type. This is used to update files, such as sending modified cost models to the agents. Upon receipt of a DC-to-Agent Set or DC-to-AgentD Set message, the agent saves the file then processes its contents.

6 REFERENCES

[1] The Boeing Company. Neighborhood Key Information Distribution (NKID) Protocol (Draft), Boeing Document Number D658-10818-1, February 1998.

[2] Trusted Information Systems, Inc. Intruder Detection Isolation Protocol (IDIP) Authentication Header (AH), TIS Report Number 0699D, November 1997.

[3] Trusted Information Systems, Inc., Intruder Detection Isolation Protocol (IDIP) Encapsulating Security Payload (ESP), TIS Report Number 0698D, November 1997.

[4] Trusted Information Systems, Inc., IDIP AH with Hashed Message Authentication Codes (HMAC)-SHA-1, TIS Report Number 0700D, November 1997.

[5] Trusted Information Systems, Inc., IDIP ESP with SKIPJACK Cipher Block Chaining (CBC), TIS Report Number 0701D, November 1997.

[6] Trusted Information Systems, Inc., Intruder Detection and Isolation Protocol (IDIP) Transport Security Protocol Interface, TIS Report Number 0697D, November 1997.

[7] NAI Labs and The Boeing Company. Intruder Detection and Isolation Protocol (IDIP) Message Layer, NAI Labs Report #02-005, February 2002.

[8] Rich Feiertag, Cliff Kahn, Phil Porras, Dan Schnackenberg, Stuart Staniford-Chen, Brian Tung, “A Common Intrusion Specification Language (CISL)”, http://www.isi.edu/~brian/cidf/drafts/language.txt/, June 1999.

A Appendix: Attack Codes

A.1 Penetration Attack Codes

Code
Attack
Description

0x0001002
Password
Password Guessing attack. Multiple failed attempts to log into a host.

0x0001003
Unserviced Ports
Use of ports that are not supported within a network or at a host.

0x0001004
Door Knob
Doorknob Rattling attack. Attempts to use well-known account and passwords.

0x0001005
ICMP Redirect
Use of ICMP redirect message.

0x0001006
Routing Protocol
Attempts to change routing information inappropriately.

0x0001007
Network File System
General NFS attack.

0x0001008
Mail From Pipe
RFC-822 “Reply-to” field has the “|” character to trigger one of Sendmail’s flaws.

0x0001009
Remote Finger
Sending a large remote finger request in an attempt to overflow the finger daemon’s buffer.

0x000100a
Seq Num Guess
Sequence number guessing attack.

0x000100b
Admind
Unauthorized access attempt using Rpc.Admind.

0x000100c
BackOrifice
BackOrifice command detection.

0x000100d
DNS Hostname Overflow
DNS hostname overflow attack (CA-98.05).

0x000100e
DNS Length Overflow
DNS length overflow attack (CA-98.05).

0x000100f
Email Debug
Email debug attack.

0x0001010
Email Decode
SMTP decode attack.

0x0001011
Email Listserv Overflow
Email listserv buffer overflow attack.

0x0001012
Email Wiz
Email WIZ attack.

0x0001013
Finger Perl
Perl and DGUX fingerd exploit check.

0x0001014
FTP Args
FTP args core dump exploit check.

0x0001015
FTP Bounce
FTP Bounce attack check (CA-97.27)

0x0001016
FTP Privilegedbounce
FTP Privileged port bounce attack check.

0x0001017
FTP Privilegedport
FTP Privileged port attack check.

0x0001018
FTP Root
FTP CWD ~root attack.

0x0001019
FTP Site Exec Dotdot
FTP site exec .. attack.

0x000101a
FTP Site Exec Tar
FTP site exec tar attack.

0x000101b
HTTP Campas
HTTP campas cgi-bin attack.

0x000101c
HTTP Count
HTTP count cgi-bin exploit check (CA-97.24).

0x000101d
HTTP Dotdot
HTTP .. attack.

0x000101e
HTTP Glimpse
HTTP glimpse cgi-bin attack.

0x000101f
HTTP IE BAT
HTTP Internet Explorer .BAT file attack.

0x0001020
HTTP IE3 URL
HTTP Internet Exploerer 3.0 .URL/.LNK attack.

0x0001021
HTTP IIS3 ASP 2e
HTTP IIS 3.0 ASP %2e attack.

0x0001022
HTTP IIS3 ASP Dot
HTTP IIS 3.0 ASP . attack.

0x0001023
HTTP NCSA Buffer Overflow
HTTP NCSA httpd buffer overflow attack.

0x0001024
HTTP Novell Convert
HTTP Novell convert cgi-bin attack.

0x0001025
HTTP PHF
HTTP PHF attack.

0x0001026
HTTP PHP Overflow
HTTP PHP buffer overflow attack.

0x0001027
HTTP PHP Read
HTTP PHP cgi-bin file read attack.

0x0001028
HTTP SCO View Source
HTTP SCO view-source cgi-bin attack.

0x0001029
HTTP SGI Handler
HTTP SGI handler cgi-bin attack.

0x000102a
HTTP SGI Webdist
HTTP SGI Webdist cgi-bin attack.

0x000102b
HTTP Unix Passwords
HTTP access of Unix password file.

0x000102c
HTTP Website Sample
HTTP WebSite Win-C-Sample exploit check.

0x000102d
HTTP Website Uploader
HTTP WebSite Uploader File Upload check.

0x000102e
Ident Newline
Ident newlines attack.

0x000102f
Ident Overflow
Ident buffer overflow attack.

0x0001030
IMAP overflow
IMAP buffer overflow attack.

0x0001031
INN Control
INN control message attack.

0x0001032
INN Overflow
INN buffer overflow attack.

0x0001033
IPFrag
IP fragmentation attack.

0x0001034
IRC Daemon Overflow
IRCd buffer overflow attack.

0x0001035
Kerberos User Snarf
Kerberos IV user snarf attack (CA-96.03).

0x0001036
NFSGUESS
NFS file handle guess attack.

0x0001037
NFSMKNOD
Detect NFS mknod attempt.

0x0001038
NFSUID
NFS UID bug attack.

0x0001039
NIS Overflow
NIS Buffer overflow attack (CA-98.06).

0x000103a
PCNFSDEXEC
PCNFSd exec attack (CA-96.08).

0x000103b
POP Overflow
POP buffer overflow attack (CA-97.09 and CA-98.08).

0x000103c
Remotewatch
HP/UX remote watch attack.

0x000103d
Rlogin Froot
Rlogin –froot attack.

0x000103e
SMB Password Overflow
SMB SessionSetupAndX password overflow.

0x000103f
Statd Dotdot
Statd file creation attack.

0x0001040
Statd Overflow
Statd buffer overflow attack.

0x0001041
Sun SNMP Backdoor
Sun SNMP Backdoor.

0x0001042
TFTP Get
Decode TFTP get command.

0x0001043
TFTP Put
Decode TFTP put command.

0x0001044
Windows Pwl access
Windows .pwl password file access attempt.

0x0001045
Ypupdate Exec
Ypupdated exec attack (CA-95.17).

0x0001046
Mountd
Mountd buffer overflow (CA-98.12).

0x0001047
Tooltalk Overflow
Tooltalk stack overflow (CA-98.11).

0x0001048
MIME Buffer Overflows
MIME buffer overflow (CA-98.10).

0x0001049
FTPD
FTP Signal handling vulnerability (CA-97.16).

0x000104a
Metamail
Metamail MIME vulnerability (CA-97.14).

0x000104b
Rlogin Term
Rlogin buffer overflow (CA-97.06).

0x000104c
Sendmail
Email MIME buffer overflow (CA-97.05).

0x000104d
Talkd
Talkd stack smashing (CA-97.04).

0x000104e
FTP Site Exec Any
FTP site exec .. attack.

0x000104f
Buffer Overflow
General buffer overflow, such as eject, ffbconfig, fdformat.

0x0001050
Reserved User Exec
Reserved account (not intended to run processes) executed code.

0x0001051
Rserved Auth Violation
Authority violation (EUID not Author).

0x0001052
Unauth Environment Mod
User altered environment configuration of other user.

0x0001053
PS Exploit
Unix PS vulnerability.

0x0001054
Bad Passwd Mod
Unauthorized password modification.

0x0001055
Bad System Bin Mod
Unauthorized modification to system executable.

0x0001056
Root By Nonadmin
Root was acquired by user not designated as an administrator.

0x0001057
Root By Unknown Method
Root was acquired by an unknown method (not SU, not setuid).

0x0001058
FTP Anon Fsmod
Anonymous FTP user modified filesystem.

0x0001059
FTP Reservd Name
FTP login using reserved account name.

0x000105a
FTP Sensitive File Retr
FTP sensitive file retrieval.

0x000105b
FTP Site Exec
FTP site exec attack.

0x000105c
FTP Core Dump
FTP core attack.

0x000105d
Syslog Buffer Overflow
Syslog buffer overflow (CA-95.13).

0x000105e
Frame Spoofer
Frame spoofer attack.

0x000105f
FTP Write
FTP write attack.

0x0001060
HTTP Tunnel
HTTP tunnel attack.

0x0001061
NCFTP
NCFTP attack.

0x0001062
NETBUS
Netbus attack.

0x0001063
NETCAT
Netcat attack.

0x0001064
PPMACRO
PPMACRO attack.

0x0001065
SSH Trojan
SSH trojan attack.

0x0001066
XLOCK
Xlock attack.

0x0001067
XSNOOP
Xsnoop attack.

0x0001068
ANYPW
Anypw attack.

0x0001069
CASESEN
Casesen attack.

0x000106a
Loadmodule
Loadmodule attack.

0x000106b
NTFSDOS
NTFSDOS attack.

0x000106c
PERL
Perl attack.

0x000106d
SECHOLE
Sechole attack.

0x000106e
XTERM
Xterm attack.

0x000106f
YAGA
Yaga attack.

A.2 Denial of Service Attack Codes

Code
Attack
Description

0x0002001
Domain Name Service
DNS Cache Poisoning (CA-98.05).

0x0002002
SYN Flood
SYN Flood attack (CA-96.21). Multiple connection attempts with no SYN acknowledgement.

0x0002003
ICMP Bomb
Ping of Death attack (CA-96.26). Very large ICMP ping.

0x0002004
Source Is Target
Land denial of service attack (CA-97.28).

0x0002005
ICMP Broadcast
Smurf denial of service attack (CA-98.01).

0x0002006
UDP Echo
Chargen/echo denial of service attack, aka Pepsi (CA-96.01).

0x0002007
Ascend Kill
Ascend kill denial of service attack.

0x0002008
Email Qmail Length
SMTP Qmail length denial of service attack.

0x0002009
Email Qmail RCPT
SMTP Qmail RCPT denial of service attack.

0x000200a
Finger Bomb
Redirecting finger.

0x000200b
HTTP Apache DOS
HTTP Apache denial of service attack.

0x000200c
Rwhod Overflow
Rwhod buffer overflow attack.

0x000200d
SNMP Delete WINS
SNMP attack against WINS server.

0x000200e
Talk Flash
Talk flash attack.

0x000200f
Teardrop
TearDrop fragmentation attack and variations (CA-97.28).

0x0002010
UDPBomb
UDP mal-formed packet attack.

0x0002011
Windows OOB
Windows out-of-band denial of service attack (WinNuke).

0x0002012
Processtable Exhaustion
Resource Exhaustion: process table.

0x0002013
Filesystem Exhaustion
Resource Exhaustion: file system.

0x0002014
FTP Nlist
FTP NLIST denial of service.

0x0002015
Cisco CR COS
Cisco_CR_Dos denial of service.

0x0002016
Email XCHG AUTH
EMAIL_XCHG_AUTH denial of service.

0x0002017
NNTP XCHG AUTH
NNTP XCHG AUTH denial of service.

0x0002018
Solaris Mail Bomb
Solaris mail bomb attack.

0x0002019
Unsolicited ICMP Replies
Unsolicited ICMP replies.

0x000201a
ARP Poison
ARP Poison attack.

0x000201b
HTTP Apache Back
HTTP Apache back attack.

0x000201c
CrashIIS
Crash IIS attack.

0x000201d
Selfping
Selfping attack.

0x000201e
SSHprocessTable
SSH process table attack.

0x000201f
Syslogd
Syslogd attack.

A.3 Unusual Access Attack Codes

Code
Attack
Description

0x0003001
Unusual File
Unusual get/put of a file, such as /etc/passwd.

0x0003002
Unusual Connection
Connection not usually expected, but permitted by policy. Connection need not complete.

0x0003003
Unusual Traffic
Unusual traffic pattern.

0x0003004
ARP
ARP “down host” check.

0x0003005
HTTP Shells
HTTP Shell interpreter accesses check.

0x0003006
Ident Error
Ident error in request

0x0003007
IPDuplicate
Check for duplicate IPs.

0x0003008
IPUnknownProtocol
Detect unknown IP protocol.

0x0003009
RealSecure Kill
Detect RealSecure session kills

0x000300a
SelSvch
SelSvc remote holdfile attack.

0x000300b
SourceRoute
Detect source-routed connections

0x000300d
Windows Registry Read
Decode Windows remote registry read.

0x000300e
HTTP ActiveX
Detect ActiveX controls in HTTP traffic.

0x000300f
HTTP Java
Detect Java in HTTP traffic.

0x0003010
HTTP ShockWave
Detect ShockWave applets in HTTP traffic.

0x0003011
HTTP Vulnerable Client
HTTP Vulnerable Client check.

0x0003012
IPProtocolViolation
Malformed packets that violate TCP/IP rules.

0x0003013
Packet Capturing Remote
Remote use of packet capturing tools.

0x0003014
Packet Capturing Tool
Local use of packet capturing tools.

0x0003015
Windows Access Error
Errors while connecting to Windows servers.

0x0003016
Windows Null Session
Windows null session login (possible anonymous user backdoor).

0x0003017
Illegal Login Attempt
Attempted illegal login.

0x0003018
Illegal Login
Successful illegal login.

0x0003019
Priv Escalate
Illegal Privilege Escalation.

0x000301a
TimeWarp
Local host clock has been set back more than “cnt” seconds.

0x000301b
Suspicious Argument
Suspicious Unix SYSCALL Argument name.

0x000301c
Root Core Create
Unix root core file creation.

0x000301d
Root Core Access
Unix root core file access.

0x000301e
Private File Alteration
Suspicious private file alteration.

0x000301f
Suspicious File Creation
Suspicious file creation.

0x0003020
System Resourc Alteration
Modification of system resource.

0x0003021
Suspicious SETUID File
Suspicious SETUID file created.

0x0003022
Warez Client
Warez Client activity.

0x0003023
Warez Server
Warez Server activity.

0x0003024
Trojan Horse Exec
Possible Trojan Horse execution.

0x0003025
Lost Critical Process
Critical process killed.

0x0003026
Lodmodule
Possible Loadmodule attack.

0x0003027
Access Denied
Access denied to a file or object.

0x0003028
Rexd
Rexd used to remotely execute a command.

0x0003029
Rexec
Rexec used to remotely execute a command.

0x000302a
Rsh
Rsh used to remotely execute a shell command.

0x000302b
SubSeven Scan
SubSeven_Scan a Windows 98 backdoor providing undetected access to an infected machine.

0x000302c
Disallowed Command
Command not allowed.

0x000302d
Device Permisc
Permiscuous device.

0x000302e
Disallowed Privalege
Privilege not allowed.

0x000302f
Process Subversion
Process subversion.

0x0003030
Process Abuse
Process abuse.

0x0003031
Multisource Echo Storm
Echo flood from multiple sources.

0x0003032
ICMP Unreachable Storm
ICMP unreachable flood.

0x0003033
Bad Fragement Flood
Bad fragment flood.

A.4 Flooding Attack Codes

Code
Attack
Description

0x0004001
UDP Service Flood
Unusually high number of UDP datagrams.

0x0004002
ICMP Flood
Unusually high number of ICMP datagrams.

0x0004003
HTTP Get
HTTP Get attack

A.5 Probing Attack Codes

Code
Attack
Description

0x0005001
Port Scan
Messages to a number of ports to determine which services are available on a component.

0x0005002
DNS Hinfo
DNS requests for host information.

0x0005003
DNS Zone High Port
DNS Zone transfer from high port number.

0x0005004
DNS Zone Transfer
DNS Zone transfers

0x0005005
Email Expn
Decode SMTP Expn: line.

0x0005006
Email Vrfy
Decode SMTP Vrfy: line.

0x0005007
FTP SYST
Use of FTP SYST command.

0x0005008
HTTP Nphtestcgi
HTTP nph-test-cgi attack (CA-97.07).

0x0005009
HTTP SGI Wrap
HTTP SGI wrap cgi-bin attack.

0x000500a
HTTP Testcgi
HTTP test-cgi attack.

0x000500b
IPHalfScan
TCP half scan attack.

0x000500c
ISS
Detect ISS scan (CA-93.14).

0x000500d
Pmapdump
Portmap dump attack.

0x000500e
Satan
Detect a normal or heavy SATAN scan of a machine (CA-95.07a).

0x000500f
Trace Route
Traceroute being used to map the net.

0x0005010
FTP CWD Probe
FTP Directory probing

0x0005011
HTTP Authentication
HTTP Authentication attack.

0x0005012
IMAP Password
IMAP password attack.

0x0005013
IMAP User
IMAP user attack.

0x0005014
POP User
POP user attack.

0x0005015
POP Password
POP password attack.

0x0005016
Light Satan
Light SATAN scan of a machine.

0x0005017
Ping Scan
Ping scan.

0x0005018
Finger Probe
Finger probe.

0x0005019
Port Map Dump
Port map dump scan.

0x000501a
Ruser
Ruser scan.

0x000501b
Mount Scan
Mount scan

0x000501c
Ping Sweep
Ping sweep.

0x000501d
Horizontal Scan
Horizontal scan.

0x000501e
ICMP Echo Scan
ICMP echo scan.

0x000501f
Inside Sniffer
Inside Sniffer scan.

0x0005020
NT Infoscan
NT Infoscan.

0x0005021
Queso
Queso scan.

0x0005022
Reset Scan
Reset scan.

(Integrated Technology Solutions, Inc. 8775 Cloudleap Ct, Suite 200, Columbia, MD 21045.

viii

