

Statistical Approaches to DDoS Attack Detection and Response1

1 This research was supported by DARPA under contract N66001-01-C-8048.

Laura Feinstein, Dan Schnackenberg
The Boeing Company, Phantom Works

Laura.C.Feinstein@boeing.com
Daniel.D.Schnackenberg@boeing.com

Ravindra Balupari, Darrell Kindred
Network Associates Laboratories

Ravindra_Balupari@nai.com
Darrell_Kindred@nai.com

Abstract

The nature of the threats posed by Distributed Denial of
Service (DDoS) attacks on large networks, such as the
Internet, demands effective detection and response
methods. These methods must be deployed not only at
the edge but also at the core of the network. This paper
presents methods to identify DDoS attacks by comput-
ing entropy and frequency-sorted distributions of
selected packet attributes. The DDoS attacks show
anomalies in the characteristics of the selected packet
attributes. The detection accuracy and performance are
analyzed using live traffic traces from a variety of
network environments ranging from points in the core
of the Internet to those inside an edge network. The
results indicate that these methods can be effective
against current attacks and suggest directions for
improving detection of more stealthy attacks. We also
describe our detection-response prototype and how the
detectors can be extended to make effective response
decisions.

1. Introduction

Powerful DDoS toolkits are available to potential
attackers, and essential networks are ill prepared for
defense. The security community has long known that
DDoS attacks are possible, but only in the past three
years have such attacks become popular with hackers.
As ominous as the threat is today, it will only worsen as
tools are built to evade defenses. Soon, DDoS floods
will appear that are difficult to distinguish from legiti-
mate traffic, and packet rates from individual flood
sources will be low enough to escape notice by local
administrators. To meet the increasing need for detec-
tion and response, researchers face these major issues:
• A stand-alone router on the attack path should

automatically recognize that the network is under
attack and adjust its traffic flow to ease the attack
impact downstream.

• The detection and response techniques should be
adaptable to a wide range of network environ-
ments, preferably without significant manual tun-
ing.

• Attack detection should be as accurate as possible.
False positives can lead to inappropriate responses
that cause denial of service to legitimate users.
False negatives result in attacks going unnoticed.

• Attack response should employ intelligent packet
discard mechanisms to reduce the downstream im-
pact of the flood while preserving and routing the
non-attack packets.

• The detection method should be effective against a
variety of attack tools available today and also ro-
bust against future attempts by attackers to evade
detection.

These are demanding goals, but we contend that
there are several reasons to believe that satisfactory
detection and response methods can be designed. DDoS
traffic generated by today’s tools often has packet-
crafting characteristics that make it possible to distin-
guish from normal traffic. For example, in some con-
figurations the Stacheldraht attack tool crafts packets so
that the source port is random and the destination port
is sequentially increased from one packet to the next
 [1], [10]. Future DDoS tools may include improvements
to packet crafting. However, we claim that these tools
are unlikely to model legitimate traffic closely enough
to produce crafted packets that do not distort statistical
measurements of the composition of the traffic. Our
hypothesis is that relatively simple statistical measures
can be used to discriminate DDoS traffic from legiti-
mate traffic in core routers with sufficient accuracy to
mitigate the effect of the attack downstream.

Research conducted by other organizations suggests
that statistical measurements and statistical processing
are an effective approach to the DDoS problem. The
EMERALD project at SRI International uses intrusion

detection signatures with Bayesian inference to detect
distributed attacks [12].

Researchers at Florida Institute of Technology have
created an intrusion detection system (IDS) that is non-
stationary and models probabilities based on time since
the last event rather than on average rate [6]. This IDS
operates on many of the same fields our detector
monitors and has similar training requirements to set up
initial thresholds and baselines. The system has two
components, PHAD and ALAD. PHAD operates on the
packet header while ALAD operates on an incoming
server TCP connection. The PHAD component clusters
observed values and then compares the size of the
clusters to accepted thresholds to determine anomalies.

Mazu Networks uses a similar architecture to PHAD
and our chi-square detector. The Mazu system collects
network statistics through a monitoring device and
similarly sorts the collected items into buckets [3]. An
algorithm determines whether buckets should be
divided or combined and a threshold detects anomalies
depending on the number and size of the buckets.

We have imposed some significant constraints on
our DDoS defense development: no explicit coordina-
tion (e.g., pushback [7]) between defending network
components, no built-in knowledge of applications or
protocols, and no instrumentation at end hosts. These
approaches are being actively explored in other re-
search, and we believe that the techniques described
here can complement these others in a comprehensive
DDoS defense solution.

2. Detection Algorithms

Our detection algorithms measure statistical proper-
ties of specific fields in the packet headers at various
points in the Internet. For instance, if a detector cap-
tures 1000 consecutive packets at a peering point and
computes the frequency of occurrence of each unique
source IP address in those 1000 packets, then the
detector will have a model of the distribution of the
source address. Further computations with this distribu-
tion allow us to measure the randomness or uniformity
of the addresses as well as the “goodness-of-fit” of the
distribution with respect to prior measurements.

2.1. Entropy

Let an information source have n independent sym-
bols each with probability of choice pi. Then, the
entropy H is defined as [17]:

i

n

i
i ppH 2

1
log∑

=

−=

Hence, entropy can be computed on a sample of con-
secutive packets. Comparing the value for entropy of

some sample of packet header fields to that of another
sample of packet header fields from the same peering
point provides a mechanism for detecting changes in
the randomness. We have observed through experimen-
tation that while a network is not under attack, the
entropy values for various header fields each fall in a
narrow range. While the network is under attack with
current attack tools, these entropy values exceed these
ranges in a detectable manner.

The algorithm to compute entropy can be optimized
to perform only a few simple computations per packet.
In our implementation, the entropy of a source will be
calculated through a sliding window of fixed width, W.
The probability value pi in this algorithm is actually the
frequency of occurrence of each unique symbol divided
by the total number of symbols in the sample. The
process of computing entropy of W packets is as fol-
lows:
1. Compute the entropy of the first W packets with

reference to a specific header parameter (e.g.
source IP address).

2. Isolate the term in the summation corresponding to
the probability of the first symbol in the window
(label this symbol with i=1) and also the value for
the corresponding probability (pi-1).

3. Slide the window so the new first term was previ-
ously the second term and the next W-1 consecu-
tive terms are contained in the window.

4. Isolate the term in the summation corresponding to
the probability of the symbol acquired from shift-
ing the window.

5. Subtract off the terms isolated in steps 2 and 4
from the value computed in step 1.

6. Recompute the affected probabilities for the
current window of data. That is, recompute pi-1 and
the probability of the symbol that was added by
sliding the window.

7. Using the values computed in step 6, add the two
terms missing from the entropy summation back in
and compare this new entropy value to the previous
entropy computations.

8. Repeat steps 2-7 to determine subsequent entropy
values.

A sophisticated attacker would likely attempt to de-
feat the detection algorithm by creating stealthy traffic
floods that mimic the legitimate traffic the detector
would expect. An attacker who knew that the entropy
of various packet attributes was being monitored could
build an attack tool that generates floods with tunable
entropy levels. Through guesswork, penetration, or trial
and error, the attacker could determine typical entropy
levels seen at the detector and tune the flood to match.
This may not be as easy as it sounds, particularly if
there are multiple detectors deployed between the flood
sources and the targets, as the typical entropy values

seen by detectors in different network environments are
likely to differ. Stealthy attacks are explored further in
Section 3.4.

The window size, W, is a tunable parameter that con-
trols how much smoothing of short-term fluctuations
the detector will do. Increasing W will reduce the
variation in entropy and may reduce the rate of false-
positives resulting from brief and presumably insignifi-
cant anomalies. However, W should be kept small
enough that attacks are detected quickly. We have
found that a window size of 10,000 packets is a reason-
able compromise in the network environments we have
explored.

2.2. Chi-Square Statistic

Pearson’s chi-square (χ2) Test is used for distribu-
tion comparison in cases where the measurements
involved are discrete values. For example, it could be
used to test the distribution of TCP SYN flag values (0
or 1) or protocol numbers. The test works best when the
number of possible values is small. In particular, a rule
of thumb is that the expected number of packets in a
sample having each possible value be at least five.
However, this can often be achieved through “binning”,
that is combining a set or range of possible values and
treating them as one. For example, the chi-square test
can be applied to service ports by considering four
values: HTTP, FTP, DNS, and “other.” Similarly,
packet lengths can be binned into ranges such as 0-64
bytes, 65-128 bytes, 129-255 bytes, etc.

For a sample of N packets, let B be the number of
available bins. Define Ni as the number of packets
whose value falls in the ith bin and ni as the expected
number of packets in the ith bin under the typical
distribution. Then the chi-square statistic is computed
as follows:

∑
=

−
=

B

i i

ii

n
nN

1

2
2)(χ .

When the Ni and ni values are large and the N meas-
urements are independent and drawn from the expected
distribution, this value follows the well-known chi-
square distribution with B-1 degrees of freedom. These
assumptions (in particular, independence) do not
typically hold for packet field values even under normal
conditions. Hence, comparison with the chi-square
distribution is of limited utility. However, the chi-
square statistic does provide a useful measure of the
deviation of a current traffic profile from the baseline.

A current-traffic profile, mapping packet attribute
values to frequencies, is maintained as follows:

1. For each packet that arrives, extract the value, v,
of the desired attribute (e.g., source address).

2. Apply exponential decay to the stored frequency
for v based on its age (time since last update).
The stored frequency is multiplied by








 ⋅
halflife

age)5.0ln(exp .

3. Increment the frequency for v and store the cur-
rent time (or packet count) as its last-update
time.

Periodically, this current-traffic profile is compared
with a baseline profile using the chi-square statistic, as
follows:

1. Apply exponential decay to the stored current-
traffic frequencies, as above.

2. Group the attribute values into bins based on
frequency. For example, the 16 most common
values might go in one bin, the next 64 in an-
other, the next 256 in another, and the rest in
another.

3. Calculate the total frequency for each bin.
4. Calculate the chi-square statistic, comparing

these bin-frequency totals with the bin-
frequency values in the baseline profile.

The baseline profile can be maintained as decaying
averages of the current-traffic bin frequencies. Each
time the current-traffic bin frequencies are computed,
the average is updated as follows:

1. Exponential decay is applied to the stored bin-
frequency averages, using a significantly longer
half-life than is used for the current-traffic pro-
file.

2. The new set of bin frequencies is multiplied by








 ⋅
−

halflifebaseline
age

_
)5.0ln(exp1

and the result is added to the decayed average.
The user can tune the detector by modifying the fol-

lowing parameters: traffic profile half-life, baseline
profile half-life, bin definitions and hash function
range. Values in the current-traffic profile whose
frequencies decay below a certain threshold can be
purged without substantially affecting the chi-square
computation. This purging reduces memory consump-
tion and processing requirements. For packet attributes
such as IP addresses that have a very large range, a
hash of the attribute's value may be used instead of the
value itself in order to reduce memory consumption and
processing requirements in the worst case (many
distinct values). When the baseline frequency value for
a given bin is very low, the chi-square statistic may be
excessively influenced by that bin's value. Ideally, the
bins will be defined such that this is unlikely, but as a
fallback, low-value bins can be automatically merged
with adjoining bins prior to computing the chi-square
statistic.

It is unlikely that an outside attacker without access
to the detector itself or a large fraction of its network
neighbors will know the exact characteristics of net-
work traffic typically seen by the detector. Therefore,
we hypothesize that the attack traffic will differ from
typical traffic in measurable ways.

3. Detector Evaluation

In order to evaluate thoroughly the potential effec-
tiveness of DDoS detection methods such as those
described in Section 2, we must address the following
questions.

How well can the method distinguish attack condi-
tions from normal conditions? To answer this question,
we must determine what kinds of DDoS attacks the
method can detect, and what fraction of the monitored
traffic the attacks must comprise in order to be detected.
Ideally, a detector should pick up not only attacks
generated by tools found “in the wild” to date, but also
more stealthy attacks using more sophisticated tools
wielded by attackers familiar with the detection method
and detector’s network environment. Finally, we must
assess the frequency and consequences of false-
positives, ordinary fluctuations in legitimate traffic
interpreted by the detector as attacks.

To what network environments and platforms is the
method best suited? Characteristics of the monitored
network traffic will vary significantly depending on
where detectors are deployed. The protocols used,
diversity of addresses seen, typical session durations,
response latency, and daily volume fluctuations will
differ dramatically among LAN environments, edge
routers, and core routers. A detection method effective
in one of these environments may fare poorly in others.
In addition, if the method is to be applied in core
routers, its per-packet computational requirements and
memory usage must be modest in order to make real-
time processing at high bandwidths practical (see
Section 3.5).

Once an attack is detected, can the detector charac-
terize the attack traffic sufficiently to produce a tar-
geted response that mitigates the attack’s effects?
Detection alone may be useful for alerting human
administrators to attacks in progress or notifying
upstream (closer to attack sources) devices that some-
thing should be done. However, many DDoS attacks
today are only two minutes in duration [8], so the
ability to generate automated responses, at least as a
preliminary measure, is important. A detection method
that can effectively describe the nature of the attack will
make such automated response more practical.

The remainder of this section describes attempts an-
swer these questions for the entropy and chi-square
DDoS detection methods.

3.1. Prototype Implementation

To evaluate the DDoS attack detection methods de-
scribed in Section 2 under realistic conditions, we
implemented prototype detector modules as plug-ins for
Snort, the popular, open-source network intrusion
detection system [13], [14]. In addition to real-time
traffic monitoring, Snort supports off-line processing of
previously captured network traffic, making it possible
to conduct reproducible detection experiments with
traffic data from a variety of environments.

The chi-square and entropy detectors were built as
Snort preprocessors, operating on every IP datagram
received by Snort prior to stream reassembly and other
packet manipulation. The two detectors can be indi-
vidually enabled and configured in the snort.conf
configuration file, and can trigger alarms through
Snort’s modular alerting facility.

In addition to issuing alerts, these plug-ins record
data to log files in the Snort log directory. The entropy
detector logs periodically computed entropy values for
each packet attribute specified in the initialization file
(e.g., source and destination IP addresses and
TCP/UDP ports, datagram length, and TCP window
size). The chi-square detector logs the periodically
computed chi-square statistics for each of the specified
packet attributes, along with the current and baseline
bin frequency values used to compute those statistics.
This data can be useful for manual or automatic detec-
tor tuning and alert threshold setting.

3.2. Network Trace Data

A critical element of evaluating these detectors is
exposing them to traffic from a variety of network
environments. This allows us to determine how stable
the traffic statistics monitored by the detectors are in
those environments, and how effectively the detectors
can identify DDoS attack traffic in different contexts.

For this purpose, we obtained several publicly avail-
able network traces as well as some traces collected
specifically for our experiments. These traces are not
known to contain substantial DDoS attacks, so we treat
them as consisting of legitimate traffic. To test the
effects of DDoS attacks, we simulate these attacks by
overlaying the kind of attack traffic generated by some
existing DDoS attack tools onto the traces at various
concentrations [10]. Ideally, we would make use of
traces containing identifiable periods during which
actual DDoS attacks were in progress, but few of these
are publicly available.

The traces used were drawn from a variety of net-
work environments, as described below, and most have
IP addresses that have been transformed via an un-
known but one-to-one function for privacy purposes.

This address re-mapping is irrelevant to the currently
implemented detectors, since they make no assumptions
about relationships between different IP addresses.

The following traces were used:
• NZIX. This trace, from July 2000, includes five

consecutive days of IP headers sent through the
New Zealand Internet Exchange (NZIX), a peer-
ing point for several major New Zealand ISPs
and the University of Waikato; throughput
ranges roughly from 4 to 12 Mbits/s. Two six-
hour periods were used for detector experimen-
tation.

• Bell Labs. This trace contains one week of IP
headers observed outside the firewall for Bell
Labs, a 9Mbit/s connection serving a staff of
about 450. One full day of this traffic was used
for experimentation.

• University. This trace was collected from the
Stocker Engineering and Technology network at
Ohio University. It contains all the packets en-
tering and leaving the network, with throughput
ranging from 8 to 16 Mbit/s. Three sets of data,
each having around 30,000,000 packets, were
collected at different times during a day for ex-
perimentation.

• Small Company. This trace contains one week
of network traffic observed outside the firewall
of a small technology company in the United
States. The connection served a staff of about
200 users in the company. One 24-hour week-
day trace was used for experimentation.

3.3. Detection Example

To illustrate the effects of an attack on the entropy
and chi-square statistics, we examined a 1,000,000-
packet excerpt from the NZIX data set with a simulated
DDoS attack comprising 25% of all packets, starting at
packet number 700,000 and ending at packet number
800,000. (Packets in this excerpt are numbered from
200,000 to 1,200,000.) In this attack, IP source ad-
dresses are chosen at random from a uniform distribu-
tion; we will focus on source-address-based detection.

Figure 1 shows the output (entropy values) of an
entropy detector examining the IP source address
packet attribute with a window size of 10,000 packets.
Before the attack begins, source address entropy meas-
urements fall entirely within the range 7.0-7.5. During
the attack, the entropy increases by approximately 1.5.
Any maximum-entropy threshold setting between 7.5
and 8.75 would detect this attack without generating
any false-positives in this example.

In Figure 2, the bin frequency profile for a source
address chi-square detector (current traffic half-life is

Figure 1: Entropy for a brief DDoS attack

Figure 2: Bin frequencies for a brief attack

Figure 3: Chi-square values for a brief attack
20000 packets; bins defined as most frequent source
address, next 4 most frequent, next 16, next 256, next
4096, and the remainder) is displayed for the same
example. The six colored regions represent the percent-

age of packets falling in each of the six bins over time.
Like many network characteristics [2], source address
frequency for this trace follows roughly a power-law
distribution, so the bins of exponentially increasing size
have roughly equal frequencies. When the attack begins
at packet 700,000, the total frequency of bin 6 (repre-
senting packets whose source addresses are least
frequently seen) grows noticeably, as we would expect
since the source addresses in the attack traffic are drawn
from a uniform, rather than power-law, distribution.
The chi-square values for this trace are shown in Figure
3, using a baseline profile taken from the previous day’s
traffic. Note the spike shortly past 700,000 packets,
when the bin 6 frequency significantly exceeds the
baseline value and other bin frequencies are lower than
baseline. In this example, any chi-square threshold
between 1500 and 5000 would catch the attack without
generating false positives.

An attack in which the source addresses were fixed
or drawn from a small set would produce similarly
dramatic results for both entropy and chi-square detec-
tors. The measured entropy values would drop signifi-
cantly and bins 1-3 would have unusually high fre-
quency.

3.4. Distribution of Statistics

We now look more closely at the distribution of chi-
square and entropy measurements for legitimate traffic
traces and for the same traces with different kinds of
simulated DDoS attack traffic overlaid.

For the first set of measurements, we run source-
address entropy and chi-square detectors over a six-
hour period (50 million packets from 6pm-midnight
local time, July 7, 2002) from the NZIX trace, using the
parameter settings described in the previous section.
The chi-square baseline is taken from the matching six-
hour period on the previous day (July 6). We then run
the same detector configuration over the same trace,
with a random 25% of packets replaced with simulated
DDoS attack traffic using uniformly random source
addresses. The distributions of entropy and chi-square
values resulting from these runs are shown in Figure 4
and Figure 5. It is clear from these histograms that the
variation in entropy and chi-square statistics due to
fluctuations in legitimate traffic is small when com-
pared to the deviation caused by this DDoS attack.
Therefore, with simple automatic threshold setting, both
detectors will identify this attack consistently while
yielding very few false-positives.

If we make more generous assumptions about the
attack tools’ sophistication and the attacker’s knowl-
edge, the detection task becomes significantly harder.
Figure 6 show the results of repeating the previous
experiment with a stealthy DDoS attack. The attacker is

assumed to know the shape of the source address
distribution in the legitimate traffic, but not the actual
IP addresses in the frequency ranking.

Figure 4: Distribution of source address en-
tropy under normal and typical-DDoS attack
conditions

Figure 5: Distribution of source address chi-
square values under normal and typical-DDoS
attack conditions

 The simulated attack traffic thus has the same
source-address frequency distribution as the legitimate
traffic, but uses a different set of source addresses.
There is now significant overlap between the chi-square
values observed under normal conditions and under
attack, suggesting that, depending on the threshold
chosen, the chi-square detector would either frequently
fail to detect such attacks or issue a large number of
false-positive alerts.

Under the same stealthy attack, the entropy detector
(Figure 6) fares somewhat better, but a different form
of stealthy attack would be more effective against
entropy detection. Specifically, if the attacker knows
approximate values for (1) the average source address

entropy value observed by the detector and (2) the
fraction of traffic seen by the detector that will be attack
traffic, then he or she can emit attack traffic with an
entropy somewhat lower than the average value to
compensate for the entropy increase resulting from the
use of a disjoint sets of source addresses. This way, an
attacker armed with this knowledge of the detector
environment could produce attack traffic that would
produce little change in the entropy observed at the
detector.

Figure 6: Distribution of source address en-
tropy under normal and stealthy-DDoS attack
conditions

Figure 7: Distribution of chi-square values for
source address under normal and stealthy-
DDoS attack conditions

Tables 1 and 2 show the results of running similar

experiments on the different traffic traces described in
Section 3.2, with a variety of attack and detector com-
binations. Each entry in the table represents the fraction
of DDoS measurements that fall above the 95th percen-
tile for legitimate traffic (for entropy detectors, the
fraction that fall below the 2.5th percentile or above the

97.5th). Values close to one suggest that effective attack
detection is possible. The “random,” “fixed,” and
“sequential” attack characteristics are typical of current
DDoS attack tools; the “stealth” characteristics repre-
sent potential future attack tools using the approach
described above.

These tables indicate at least two noteworthy effects.
First, random source address and sequential destination
port attacks are easily detected in most environments.
Legitimate traffic in almost any network contains
relatively small sets of addresses and ports that consti-
tute a substantial fraction of traffic. Hence, uniform
distributions will usually stand out. Second, results are
consistently better for the NZIX trace, which is the
most representative of core Internet traffic, our target
environment. The other data sets, especially “Small
Company,” exhibit substantially more variability in
legitimate traffic patterns, so attacks are harder to
distinguish from legitimate fluctuations. These traces
are taken from “edge” networks in which during quieter
periods, traffic is frequently dominated by a handful or
even a single pair of hosts. To avoid false positives
from these harmless anomalies while preserving sensi-
tivity to attack, detectors can be modified to suppress
alarms when overall throughput is low. Some low-rate
attacks may be missed with this approach, but the high-
volume floods should still be detected.

Table 1: Entropy detector accuracy for cur-

rent and future attack types

Table 2: Chi-square detector accuracy for
current and future attack types

We contend that the prospects for detecting stealthy

attacks are not as bleak as they might appear, for
several reasons. There are many situations in which,
even if the attackers had full knowledge of the detec-
tor’s network environment, their ability to emulate the
typical traffic mix and “blend in” would be limited.
Some of the most powerful DDoS attacks do not use
completely compromised machines as the flood

attack characteristic NZIX University Bell Labs Small Co.
 random src addr 1.000 1.000 1.000 0.999
 stealth src addr 0.540 0.159 0.253 0.000
 fixed dest addr 1.000 0.076 0.074 0.045
 sequential dest port 1.000 1.000 0.999 0.247
 stealth dest port 0.970 0.466 0.030 0.096

data set

attack characteristic NZIX University Bell Labs Small Co.
 random src addr 0.999 0.850 0.920 0.544
 stealth src addr 0.982 0.283 0.475 0.339
 fixed dest addr 1.000 0.012 0.005 0.000
 sequential dest port 1.000 0.940 0.857 0.949
 stealth dst port 0.987 0.328 0.340 0.606

data set

sources, but rather exploit “reflectors” that can be
caused to respond to and amplify particular kinds of
traffic. In such situations, the attacker does not have full
control over the reflected packets’ form; for instance
source address spoofing is typically impossible. In
addition, attack traffic may have to use certain ports,
flags, addresses, and other characteristics to achieve its
primary goal or to evade other countermeasures such as
firewalls and egress filtering. These and other con-
straints on the attackers may cause the attack traffic to
exhibit atypical characteristics at one or more points
along the path to the victims, so detectors at those
points may be able to identify the attack.

3.5. Detector Performance

Since we are proposing to use these detection meth-
ods in high-speed core routers, it is imperative that they
have low computational cost, especially for the opera-
tions that must be carried out for each packet. The
prototype Snort detector implementation exhibits
adequate performance for its purposes: on a 1GHz
Pentium-III-based machine, a Snort process running a
single chi-square detector observing source addresses
can process 240,000-270,000 packets per second (pps)
offline. (The Snort infrastructure without any plugins
can handle 435,000 pps.) Adding chi-square detectors
for four additional packet attributes brings performance
down to around 100,000 pps. A single-attribute entropy
detector can manage about 294,000 pps, while adding
six others yields 130,000 pps. These speeds are roughly
in the OC3 range. Improving performance is a primary
goal of future detector development. We expect to
achieve improved performance by implementing some
optimizations that approximate the true frequency
profile while reducing or eliminating floating-point
operations in the packet-handling code. Most of the
partitioning and computation of chi-square and entropy
values can be handled asynchronously in background
processes that should not impede the packet-handling
fast path.

4. Response

Our defense approach involves response modules
that use a characterization of the attack provided by the
detection module to take defensive measures. The
response module classifies individual packets as benign
or suspect based on the attack characteristics provided
by the detector. Once identified, the suspect packets are
subjected to rate limiting or packet-filtering methods
based on the intensity of the attack or pre-defined
response policies. In the case of stealthy DDoS attacks,
the response module should communicate with the
detector and share the data structures and statistical

models maintained by the detector to identify the attack
packets with high confidence; the prototype described
below does not yet offer such coordination.

4.1. Prototype DDoS Response Module

The current response prototype is implemented on a
Linux router as a kernel module. It uses netfilter and
Linux Advanced Routing and Traffic Control (LARTC)
to filter and rate-limit packets [15], [4]. An API is
provided to take alerts from the detection module and
generate filter rules to be issued to the response mod-
ule. We have also produced an extension to the Linux
iptables mechanism that provides similar functionality,
for better integration with iptables-based router/firewall
configurations.

Currently, the response module implements three
packet-filtering rules. They are constant, random and
allow. These filter rules are automatically generated by
the Snort-based DDoS detector when it issues an alert.

When the detector module detects a DDoS flood, it
uses its detection algorithms and the statistical models
to characterize the DDoS packets. The characteristics of
the DDoS packets are used to form one of the three
packet filter rules. The detector can then insert the
packet filtering rules using the /proc file system inter-
face. These rules will filter out the DDoS attack pack-
ets. Once the detector determines that the attack has
subsided, it can remove the appropriate filtering rules.

4.1.1. Constant Filter Rule. A constant filter rule is
used to drop packets that match the values specified in
the rule to the values of the protocol header fields in the
packet. This filter rule can be applied to the IP header
fields, TCP source and destination ports, UDP source
and destination ports and ICMP type and code fields.
For example, the rule “const {daddr=10.1.1.10 proto-
col=6 dport=80 sport=31137};” will drop TCP pack-
ets going to the particular destination IP address
10.1.1.10 and TCP destination port 80 from the TCP
source port 31137. A number of such constant filter
rules can be applied to the response module. If none of
the constant filter rules match the values of the header
fields, the packet is allowed to pass.

4.1.2. Random Filter Rule. A number of DDoS
attack tools create packets with random values in the
header fields. That is, a random number generator is
used to assign a value to certain fields in the header. In
such a case, a random filter rule can be specified to
drop packets with random values in the header field.
The random filter rule can be applied to the IP header
fields, TCP source and destination ports, UDP source
and destination ports, and ICMP type and code fields.

Currently, a simple algorithm is used to determine if
a packet has a random value for a particular header
field. When a random filter rule is invoked for a header
field (for example source IP address), the count of each
distinct source IP address seen at the detector is re-
corded. The count is started from the instant that
particular filter rule is applied to the response module.
If the count is less than a pre-determined threshold
value, it is assumed that a random number generator is
setting the source IP address and the packet is dropped.
If the count is more than the threshold value then the
packet is allowed to pass. The count is reset to zero
when the random filter rule is removed.

Random filter rules can be applied in the following
cases:
• A packet has only one random item in the header

field. For example, the rule “rand {saddr};” will
drop packets with only random source IP ad-
dresses.

• A packet with more than one random item in the
header field. For example, the rule “rand {tot_len
saddr protocol};” will drop packets with random
values for total IP packet length, source IP address
and IP protocol.

Since this simple approach allows all packets with a
given value to pass after the threshold is reached for
that value, an attacker could choose a distribution of
attack packets that limits the filter’s effectiveness. For
example, if the attack packets have source addresses
drawn at random from a set of 100 addresses, the filter
will drop the first few packets with each source, but
permit the rest. However, by limiting the range of
values used, the attacker loses part of the benefit of
using randomly chosen values; in particular, it becomes
easier to detect and block the attack by other means.
Another problem with this approach is that in some
network environments, dropping the first few packets
with (for example) a previously unseen source address
may have an unacceptable impact on legitimate traffic.
Filtering on multiple packet attributes simultaneously
and replacing the threshold with a graduated quality-of-
service scheme could mitigate this drawback.

4.1.3. Allow Filter Rule. During a DDoS attack,
there may be a need to allow a particular kind of traffic
to pass through, such as the communication traffic
between routers or between routers and command
centers or between critical applications. The allow
packet rule is used to allow packets to pass that match
the values specified in the rule to the values of the
protocol header fields in the packet. The allow filter
rule can be applied to IP header fields, TCP source and
destination ports, UDP source and destination ports, and
ICMP type and code fields. For example, the rule
“allow {daddr=10.1.1.10 saddr=10.60.33.1 protocol=6

dport=80};” will allow TCP packets going to destina-
tion IP address 10.1.1.10 and TCP destination port 80
from source IP address 10.60.33.1 to pass. A number of
such allow filter rules can be applied to the response
module to permit regularly occurring traffic to pass.

The use of the allow rule can also be envisioned in
the case where the overhead of adding the random or
constant rules to block a large sub-set of the traffic (i.e.
DDoS traffic) is far greater than the overhead of adding
allow rules to allow a smaller sub-set of the traffic (i.e.
good traffic).

4.1.4. /proc File System Interface. A /proc file
system interface is provided for the detector to commu-
nicate with the response module. The interface allows
the detector to configure the response module with
different packet filter rules. The interface provides two
options to configure the response module: insert and
clear.

The insert option is used to insert/add new packet
filter rules. A rule number and one of the three filter
rules discussed above must be specified. The insert
rules are evaluated in the following order of prece-
dence: constant, random, and allow. . Within each of
the filter types, the rules are evaluated in the ascending
order of the rule numbers.

The clear option is used to remove filter rules. The
filter type in conjunction with the rule number or
header field is required as a parameter to the clear
option.

4.2. Extending detectors to recommend re-
sponse

Both chi-square and entropy DDoS detectors can be
extended to provide attack characterization information
that can be used to target packet-filtering or rate-
limiting responses to mitigate the effects of DDoS
attacks.

4.2.1. Chi-Square Detector. In chi-square detectors,
attack detection is triggered by an unusually high chi-
square statistic. That unusually high value, in turn, must
result from one or more bins whose frequency differs
substantially from the baseline. In order to determine
the most anomalous bin, the detector need only find the
largest terms in the chi-square sum. A reasonable
approximate attack characterization can be constructed
by simply identifying the most anomalous bin whose
frequency is too high. For example, if the distribution
of source addresses is unusually dispersed, the last bin
will have a high frequency, so an appropriate response
would be to rate-limit traffic belonging to that bin. This
is not an exact characterization and some legitimate
traffic will be adversely affected by the response, but

the legitimate traffic belonging to other bins will be
unaffected by the rate limiting and should benefit from
the reduced flood traffic.

One minor problem with this approach is that the
assignment of values to bins normally changes at each
new chi-square computation, since the assignment is
based on sorted frequency. However, the response can
use the most recent bin assignment to classify packets.
Assuming re-sorting is done at intervals comparable to
the current profile decay half-life this should provide a
good approximation.

One direction for future work is to correlate informa-
tion about different packet attributes in order to more
narrowly target the response. The more precisely the
attack traffic can be characterized, the smaller the
“collateral damage” done by the response rate limiting
will be. Furthermore, by looking simultaneously at
multiple attributes, detectors may achieve greater
accuracy. Traffic that seems borderline anomalous or
even typical when different attributes are examined in
isolation may stand out clearly when the combined
distribution of different attributes is considered. For
example, a high rate of connection attempts on TCP
port 80 with the destination address of a large web
server may be normal, while the same rate of port-80
attempts targeting a DNS server may indicate an attack.
Monitoring multiple packet attributes simultaneously in
a way that detects such anomalies without requiring
excessive memory usage by the detector could yield
significant benefits for both detection and response.

4.2.2. Entropy Detector. If the entropy detector
determines that the current entropy for some attribute is
below the normal range, that suggests that traffic with a
relatively small number of values for that attribute is
dominating. Since the entropy detector tracks value
frequency, it can identify which values are the most
common and are likely candidates for rate limiting. For
finer targeting, the detector could watch for specific
values with dramatic increases in frequency and treat
those as suspicious.

Conversely, an unusually high entropy value sug-
gests that the low-frequency values are causing trouble,
so the detector might suggest that packets having high-
frequency values be given preferential treatment.

4.2.3. Integrating detection and response. We have
implemented two detection/response integration
mechanisms.

First, we have built a Snort alerting module that can
issue alerts using the Intruder Detection and Isolation
Protocol [16]. By modifying the Snort alert model to be
more extensible, we enabled the Snort-based chi-square
and entropy detectors to communicate additional
information on attack characteristics to the IDIP alert-

ing module for reporting to a remote response module
closer to the attacker.

Second, we modified the Snort-based chi-square and
entropy detectors to issue rate-limiting directives to the
iptables-based response module described in Section
 4.1.

Both of these integration approaches impose fairly
strict limits on the amount of information that can be
exchanged between the detector and the responder. This
means that, while a chi-square detector might ideally
instruct the responder to rate-limit all traffic in a given
bin, it must instead approximate this order by providing
a small number of values (e.g., IP addresses) to be rate-
limited, since only the detector knows all the IP ad-
dresses belonging to the bin. With a more tightly
integrated pair of detection and response modules, the
responder could query the detector for each new IP
address it sees, in order to determine whether to apply a
rate limit for that address. This approach would allow
response decisions to take full advantage of the infor-
mation already collected by the detector. We plan to
implement such an approach using a netfilter-based
kernel module with access to the address space of a
user-level detection process, as described in Section 5.

4.3. DDoS Response Module Evaluation

The current response prototype is an initial imple-
mentation of the response system. Initial experimental
results have indicated that the response prototype
blocks substantial DDoS attack traffic generated by the
Stacheldraht attack tool. The Stacheldraht attack tool
generates DDoS attacks with constant packet attributes.
Though this is not an evidence for actual effectiveness
of the response system, it is a promising step.

The constant rule implemented by the current proto-
type is a case of an extreme response method, which is
to block or drop all the traffic. The random rule has the
basic drawback of dropping the first few packets of
every new good connection. These two rules could
potentially increase the false negatives. The allow rule
could allow through some of the DDoS attack traffic
that matches the rule, increasing the false positives.

Further experimentation is planned to determine the
effectiveness of the response system and also to deter-
mine the rate of false positives and false negatives.

5. Summary and Future Extensions

The focus thus far has been on detection and re-
sponse algorithms and the implementation of these
algorithms in software. At issue is whether these
algorithms can reliably detect and respond to DDoS
attacks.

Against today’s relatively unsophisticated DDoS
toolkits, our prototype detector is able to determine that
the network is under attack and deploy accurate filter-
ing rules. The filtering effort is immediate and reduces
the impact of the attack downstream almost instantly.
Because baseline measurements and thresholds can be
established automatically, and because detectors can
generate filtering rules automatically based on the
traffic statistics they gather, the system is adaptable to a
wide range of network environments with minimal
manual tuning. While our initial goal was to provide
effective defense against existing DDoS tools, we are
continuing to explore techniques for better defense
against future stealthy attacks.

Future research and development will focus on
tighter integration of detection and response modules.
In the current implementation, detectors generate
concise recommended rules for responders to impose,
and there is no further detector/responder coordination.
In a more tightly coupled detection/response system,
the individual packet classification decisions made by
the responder could make use of the rich data structures
maintained by the detector. This would enable more
focused filtering and rate limiting, and reduce the
possible impact of responses on legitimate traffic.

Another approach to providing more narrowly tar-
geted response while avoiding computationally expen-
sive analysis would be to enable detectors to dynami-
cally tune themselves and “drill down” to investigate
detected anomalies more closely. A detector with these
capabilities could more effectively allocate its limited
computational resources where they are most needed.
Such drill-down could be triggered by a vague or
uncertain detection by a quick analysis, or by com-
plaints received from downstream network devices.

The Linux implementation of this system has been
appropriate for demonstration environments and evalua-
tion of alternative detection approaches. The next step
is to port this prototype system to the Intel IXP-1200
network processor. We consider this processor repre-
sentative of the next generation of network hardware in
that it is a highly programmable device with the capa-
bility of forwarding network traffic at high bandwidth.
By implementing detection and response methods on
this platform and testing their performance, we can
validate the claim that they are appropriate for use in
future high-speed routers.

6. Acknowledgements

This research is supported by grants from DARPA.
Our experiments have benefited from a large supply of
internet traffic data provided by the Measurement and
Network Analysis Group at the National Laboratory for
Applied Network Research (NLANR), Waikato Ap-

plied Network Dynamics research group at the Univer-
sity of Waikato Computer Science Department, Lincoln
Laboratories and the Computer Science Department at
UCLA. We also thank Dr. Brett Tjaden and Dr. Shawn
Ostermann for providing network trace data from the
Engineering and Technology network at Ohio Univer-
sity.

7. References

[1] D. Dittrich, “The ‘Stacheldraht’ Distributed Denial of
Service Attack Tool”, http://staff.washington.edu/dittrich/
misc/stacheldraht.analysis, 1999.

[2] C. Faloutsos, M. Faloutsos, and P. Faloutsos, “On
Power-Law Relationships of the Internet Topology,” Proc. of
ACM SIGCOMM, Aug. 1999, pp. 251-262.

[3] T.M. Gil, M.A. Poletto and E.W. Kohler, Jr. “Statistics
Collection for Network Traffic”, United States Patent Appli-
cation, March 21, 2002.

[4] B. Hubert, “Linux Advanced Routing and Traffic
Control HOWTO”, http://lartc.org/howto/.

[5] D. Knuth, The Art of Computer Programming: Semi-
numerical Algorithms, Third edition, Vol. 2, Addison-
Wesley, Reading, Massachusetts, 1997.

[6] M.V. Mahoney and P.K. Chan, “Learning Nonstationary
Models of Normal Network Traffic for Detecting Novel
Attacks”, SIGKDD ’02, Edmonton, Alberta, Canada, July 23-
26, 2002, pp. 376-385.

[7] R. Manajan, et al., “Controlling High Bandwidth
Aggregates in the Network”, SIGCOMM Computer Commu-
nications Review, 32(3), July 2002.

[8] D. Moore, G. Voelker, and S. Savage, “Inferring Internet
Denial-of-Service Activity”, Proceedings of USENIX Security
Symposium 2001, pp. 9-22.

[9] E. Mouw, “Linux Kernel Procfs Guide”,
http://www.kernelnewbies.org/documents/kdoc/procfs-guide/
lkprocfsguide.html.

[10] Netflood Infosec Tools & Resources, Source Code to
Stacheldraht, http://netflood.net/files/Dos/DDoS.

[11] O. Pomerantz, “Linux Kernel Module Programming
Guide”, http://www.tldp.org/LDP/lkmpg/mpg.html.

[12] P.A. Porras, and P.G. Neumann, “EMERALD: Event
Monitoring Enabling Responses to Anomalous Live Distur-
bances,” Proceedings of the National Information Systems
Security Conference (NISSC), October 1997, pp. 353-365.

[13] M. Roesch, (March 2002), “Snort Users Manual: Snort
Release 1.8.5”, http://www.snort.org/documentation.html,
March 2002.

[14] M. Roesch, “Snort - Lightweight Intrusion Detection for
Networks” Proceedings of the 13th Systems Administration
Conference (LISA'99), USENIX Association, 1999, pp. 229-
238, http://www.snort.org/docs/lisapaper.txt.

[15] R. Russell and H. Welte, “Linux Netfilter Hacking
HOWTO”, http://cvs.netfilter.org/cgi-bin/cvsweb/netfilter/
documentation/HOWTO/.

[16] D. Schnackenberg, K. Djahandari, and D. Sterne,
“Infrastructure for Intrusion Detection and Response”,
DISCEX 2000, January 2000, pp. 1003-1011.

[17] C.E. Shannon, and W. Weaver, The Mathematical
Theory of Communication, University of Illinois Press, 1963.

