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Abstract 
 
The nature of the threats posed by Distributed Denial of 
Service (DDoS) attacks on large networks, such as the 
Internet, demands effective detection and response 
methods. These methods must be deployed not only at 
the edge but also at the core of the network. This paper 
presents methods to identify DDoS attacks by comput-
ing entropy and frequency-sorted distributions of 
selected packet attributes. The DDoS attacks show 
anomalies in the characteristics of the selected packet 
attributes. The detection accuracy and performance are 
analyzed using live traffic traces from a variety of 
network environments ranging from points in the core 
of the Internet to those inside an edge network. The 
results indicate that these methods can be effective 
against current attacks and suggest directions for 
improving detection of more stealthy attacks. We also 
describe our detection-response prototype and how the 
detectors can be extended to make effective response 
decisions.  

1. Introduction 

Powerful DDoS toolkits are available to potential 
attackers, and essential networks are ill prepared for 
defense. The security community has long known that 
DDoS attacks are possible, but only in the past three 
years have such attacks become popular with hackers. 
As ominous as the threat is today, it will only worsen as 
tools are built to evade defenses. Soon, DDoS floods 
will appear that are difficult to distinguish from legiti-
mate traffic, and packet rates from individual flood 
sources will be low enough to escape notice by local 
administrators. To meet the increasing need for detec-
tion and response, researchers face these major issues:  
• A stand-alone router on the attack path should 

automatically recognize that the network is under 
attack and adjust its traffic flow to ease the attack 
impact downstream. 

• The detection and response techniques should be 
adaptable to a wide range of network environ-
ments, preferably without significant manual tun-
ing. 

• Attack detection should be as accurate as possible. 
False positives can lead to inappropriate responses 
that cause denial of service to legitimate users. 
False negatives result in attacks going unnoticed. 

• Attack response should employ intelligent packet 
discard mechanisms to reduce the downstream im-
pact of the flood while preserving and routing the 
non-attack packets. 

• The detection method should be effective against a 
variety of attack tools available today and also ro-
bust against future attempts by attackers to evade 
detection. 

These are demanding goals, but we contend that 
there are several reasons to believe that satisfactory 
detection and response methods can be designed. DDoS 
traffic generated by today’s tools often has packet-
crafting characteristics that make it possible to distin-
guish from normal traffic. For example, in some con-
figurations the Stacheldraht attack tool crafts packets so 
that the source port is random and the destination port 
is sequentially increased from one packet to the next 
 [1], [10]. Future DDoS tools may include improvements 
to packet crafting. However, we claim that these tools 
are unlikely to model legitimate traffic closely enough 
to produce crafted packets that do not distort statistical 
measurements of the composition of the traffic. Our 
hypothesis is that relatively simple statistical measures 
can be used to discriminate DDoS traffic from legiti-
mate traffic in core routers with sufficient accuracy to 
mitigate the effect of the attack downstream.  

Research conducted by other organizations suggests 
that statistical measurements and statistical processing 
are an effective approach to the DDoS problem. The 
EMERALD project at SRI International uses intrusion 



 

   

detection signatures with Bayesian inference to detect 
distributed attacks  [12].  

Researchers at Florida Institute of Technology have 
created an intrusion detection system (IDS) that is non-
stationary and models probabilities based on time since 
the last event rather than on average rate  [6]. This IDS 
operates on many of the same fields our detector 
monitors and has similar training requirements to set up 
initial thresholds and baselines. The system has two 
components, PHAD and ALAD. PHAD operates on the 
packet header while ALAD operates on an incoming 
server TCP connection. The PHAD component clusters 
observed values and then compares the size of the 
clusters to accepted thresholds to determine anomalies.  

Mazu Networks uses a similar architecture to PHAD 
and our chi-square detector. The Mazu system collects 
network statistics through a monitoring device and 
similarly sorts the collected items into buckets  [3]. An 
algorithm determines whether buckets should be 
divided or combined and a threshold detects anomalies 
depending on the number and size of the buckets. 

We have imposed some significant constraints on 
our DDoS defense development: no explicit coordina-
tion (e.g., pushback  [7]) between defending network 
components, no built-in knowledge of applications or 
protocols, and no instrumentation at end hosts. These 
approaches are being actively explored in other re-
search, and we believe that the techniques described 
here can complement these others in a comprehensive 
DDoS defense solution. 

2. Detection Algorithms 

Our detection algorithms measure statistical proper-
ties of specific fields in the packet headers at various 
points in the Internet. For instance, if a detector cap-
tures 1000 consecutive packets at a peering point and 
computes the frequency of occurrence of each unique 
source IP address in those 1000 packets, then the 
detector will have a model of the distribution of the 
source address. Further computations with this distribu-
tion allow us to measure the randomness or uniformity 
of the addresses as well as the “goodness-of-fit” of the 
distribution with respect to prior measurements. 

2.1. Entropy 

Let an information source have n independent sym-
bols each with probability of choice pi. Then, the 
entropy H is defined as  [17]: 
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Hence, entropy can be computed on a sample of con-
secutive packets. Comparing the value for entropy of 

some sample of packet header fields to that of another 
sample of packet header fields from the same peering 
point provides a mechanism for detecting changes in 
the randomness. We have observed through experimen-
tation that while a network is not under attack, the 
entropy values for various header fields each fall in a 
narrow range. While the network is under attack with 
current attack tools, these entropy values exceed these 
ranges in a detectable manner. 

The algorithm to compute entropy can be optimized 
to perform only a few simple computations per packet. 
In our implementation, the entropy of a source will be 
calculated through a sliding window of fixed width, W. 
The probability value pi in this algorithm is actually the 
frequency of occurrence of each unique symbol divided 
by the total number of symbols in the sample. The 
process of computing entropy of W packets is as fol-
lows: 
1. Compute the entropy of the first W packets with 

reference to a specific header parameter (e.g. 
source IP address).  

2. Isolate the term in the summation corresponding to 
the probability of the first symbol in the window 
(label this symbol with i=1) and also the value for 
the corresponding probability (pi-1). 

3. Slide the window so the new first term was previ-
ously the second term and the next W-1 consecu-
tive terms are contained in the window. 

4. Isolate the term in the summation corresponding to 
the probability of the symbol acquired from shift-
ing the window. 

5. Subtract off the terms isolated in steps 2 and 4 
from the value computed in step 1. 

6. Recompute the affected probabilities for the 
current window of data. That is, recompute pi-1 and 
the probability of the symbol that was added by 
sliding the window. 

7. Using the values computed in step 6, add the two 
terms missing from the entropy summation back in 
and compare this new entropy value to the previous 
entropy computations. 

8. Repeat steps 2-7 to determine subsequent entropy 
values. 

A sophisticated attacker would likely attempt to de-
feat the detection algorithm by creating stealthy traffic 
floods that mimic the legitimate traffic the detector 
would expect. An attacker who knew that the entropy 
of various packet attributes was being monitored could 
build an attack tool that generates floods with tunable 
entropy levels. Through guesswork, penetration, or trial 
and error, the attacker could determine typical entropy 
levels seen at the detector and tune the flood to match. 
This may not be as easy as it sounds, particularly if 
there are multiple detectors deployed between the flood 
sources and the targets, as the typical entropy values 



 

   

seen by detectors in different network environments are 
likely to differ. Stealthy attacks are explored further in 
Section  3.4. 

The window size, W, is a tunable parameter that con-
trols how much smoothing of short-term fluctuations 
the detector will do. Increasing W will reduce the 
variation in entropy and may reduce the rate of false-
positives resulting from brief and presumably insignifi-
cant anomalies. However, W should be kept small 
enough that attacks are detected quickly. We have 
found that a window size of 10,000 packets is a reason-
able compromise in the network environments we have 
explored. 

2.2. Chi-Square Statistic 

Pearson’s chi-square (χ2) Test is used for distribu-
tion comparison in cases where the measurements 
involved are discrete values. For example, it could be 
used to test the distribution of TCP SYN flag values (0 
or 1) or protocol numbers. The test works best when the 
number of possible values is small. In particular, a rule 
of thumb is that the expected number of packets in a 
sample having each possible value be at least five. 
However, this can often be achieved through “binning”, 
that is combining a set or range of possible values and 
treating them as one. For example, the chi-square test 
can be applied to service ports by considering four 
values: HTTP, FTP, DNS, and “other.” Similarly, 
packet lengths can be binned into ranges such as 0-64 
bytes, 65-128 bytes, 129-255 bytes, etc. 

For a sample of N packets, let B be the number of 
available bins. Define Ni as the number of packets 
whose value falls in the ith bin and ni as the expected 
number of packets in the ith bin under the typical 
distribution. Then the chi-square statistic is computed 
as follows: 
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When the Ni and ni values are large and the N meas-
urements are independent and drawn from the expected 
distribution, this value follows the well-known chi-
square distribution with B-1 degrees of freedom. These 
assumptions (in particular, independence) do not 
typically hold for packet field values even under normal 
conditions. Hence, comparison with the chi-square 
distribution is of limited utility. However, the chi-
square statistic does provide a useful measure of the 
deviation of a current traffic profile from the baseline. 

A current-traffic profile, mapping packet attribute 
values to frequencies, is maintained as follows: 

1. For each packet that arrives, extract the value, v, 
of the desired attribute (e.g., source address). 

2. Apply exponential decay to the stored frequency 
for v based on its age (time since last update). 
The stored frequency is multiplied by 








 ⋅
halflife

age )5.0ln(exp . 

3. Increment the frequency for v and store the cur-
rent time (or packet count) as its last-update 
time. 

Periodically, this current-traffic profile is compared 
with a baseline profile using the chi-square statistic, as 
follows: 

1. Apply exponential decay to the stored current-
traffic frequencies, as above. 

2. Group the attribute values into bins based on 
frequency. For example, the 16 most common 
values might go in one bin, the next 64 in an-
other, the next 256 in another, and the rest in 
another. 

3. Calculate the total frequency for each bin. 
4. Calculate the chi-square statistic, comparing 

these bin-frequency totals with the bin-
frequency values in the baseline profile. 

The baseline profile can be maintained as decaying 
averages of the current-traffic bin frequencies. Each 
time the current-traffic bin frequencies are computed, 
the average is updated as follows: 

1. Exponential decay is applied to the stored bin-
frequency averages, using a significantly longer 
half-life than is used for the current-traffic pro-
file. 

2. The new set of bin frequencies is multiplied by  






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−

halflifebaseline
age

_
)5.0ln(exp1  

and the result is added to the decayed average. 
The user can tune the detector by modifying the fol-

lowing parameters: traffic profile half-life, baseline 
profile half-life, bin definitions and hash function 
range. Values in the current-traffic profile whose 
frequencies decay below a certain threshold can be 
purged without substantially affecting the chi-square 
computation. This purging reduces memory consump-
tion and processing requirements. For packet attributes 
such as IP addresses that have a very large range, a 
hash of the attribute's value may be used instead of the 
value itself in order to reduce memory consumption and 
processing requirements in the worst case (many 
distinct values). When the baseline frequency value for 
a given bin is very low, the chi-square statistic may be 
excessively influenced by that bin's value. Ideally, the 
bins will be defined such that this is unlikely, but as a 
fallback, low-value bins can be automatically merged 
with adjoining bins prior to computing the chi-square 
statistic. 



 

   

It is unlikely that an outside attacker without access 
to the detector itself or a large fraction of its network 
neighbors will know the exact characteristics of net-
work traffic typically seen by the detector. Therefore, 
we hypothesize that the attack traffic will differ from 
typical traffic in measurable ways. 

3. Detector Evaluation 

In order to evaluate thoroughly the potential effec-
tiveness of DDoS detection methods such as those 
described in Section  2, we must address the following 
questions. 

How well can the method distinguish attack condi-
tions from normal conditions? To answer this question, 
we must determine what kinds of DDoS attacks the 
method can detect, and what fraction of the monitored 
traffic the attacks must comprise in order to be detected. 
Ideally, a detector should pick up not only attacks 
generated by tools found “in the wild” to date, but also 
more stealthy attacks using more sophisticated tools 
wielded by attackers familiar with the detection method 
and detector’s network environment. Finally, we must 
assess the frequency and consequences of false-
positives, ordinary fluctuations in legitimate traffic 
interpreted by the detector as attacks. 

To what network environments and platforms is the 
method best suited? Characteristics of the monitored 
network traffic will vary significantly depending on 
where detectors are deployed. The protocols used, 
diversity of addresses seen, typical session durations, 
response latency, and daily volume fluctuations will 
differ dramatically among LAN environments, edge 
routers, and core routers. A detection method effective 
in one of these environments may fare poorly in others. 
In addition, if the method is to be applied in core 
routers, its per-packet computational requirements and 
memory usage must be modest in order to make real-
time processing at high bandwidths practical (see 
Section  3.5). 

Once an attack is detected, can the detector charac-
terize the attack traffic sufficiently to produce a tar-
geted response that mitigates the attack’s effects? 
Detection alone may be useful for alerting human 
administrators to attacks in progress or notifying 
upstream (closer to attack sources) devices that some-
thing should be done. However, many DDoS attacks 
today are only two minutes in duration  [8], so the 
ability to generate automated responses, at least as a 
preliminary measure, is important. A detection method 
that can effectively describe the nature of the attack will 
make such automated response more practical. 

The remainder of this section describes attempts an-
swer these questions for the entropy and chi-square 
DDoS detection methods. 

3.1. Prototype Implementation 

To evaluate the DDoS attack detection methods de-
scribed in Section  2 under realistic conditions, we 
implemented prototype detector modules as plug-ins for 
Snort, the popular, open-source network intrusion 
detection system  [13],  [14]. In addition to real-time 
traffic monitoring, Snort supports off-line processing of 
previously captured network traffic, making it possible 
to conduct reproducible detection experiments with 
traffic data from a variety of environments. 

The chi-square and entropy detectors were built as 
Snort preprocessors, operating on every IP datagram 
received by Snort prior to stream reassembly and other 
packet manipulation. The two detectors can be indi-
vidually enabled and configured in the snort.conf 
configuration file, and can trigger alarms through 
Snort’s modular alerting facility. 

In addition to issuing alerts, these plug-ins record 
data to log files in the Snort log directory. The entropy 
detector logs periodically computed entropy values for 
each packet attribute specified in the initialization file 
(e.g., source and destination IP addresses and 
TCP/UDP ports, datagram length, and TCP window 
size). The chi-square detector logs the periodically 
computed chi-square statistics for each of the specified 
packet attributes, along with the current and baseline 
bin frequency values used to compute those statistics. 
This data can be useful for manual or automatic detec-
tor tuning and alert threshold setting. 

3.2. Network Trace Data 

A critical element of evaluating these detectors is 
exposing them to traffic from a variety of network 
environments. This allows us to determine how stable 
the traffic statistics monitored by the detectors are in 
those environments, and how effectively the detectors 
can identify DDoS attack traffic in different contexts. 

For this purpose, we obtained several publicly avail-
able network traces as well as some traces collected 
specifically for our experiments. These traces are not 
known to contain substantial DDoS attacks, so we treat 
them as consisting of legitimate traffic. To test the 
effects of DDoS attacks, we simulate these attacks by 
overlaying the kind of attack traffic generated by some 
existing DDoS attack tools onto the traces at various 
concentrations  [10]. Ideally, we would make use of 
traces containing identifiable periods during which 
actual DDoS attacks were in progress, but few of these 
are publicly available. 

The traces used were drawn from a variety of net-
work environments, as described below, and most have 
IP addresses that have been transformed via an un-
known but one-to-one function for privacy purposes. 



 

   

This address re-mapping is irrelevant to the currently 
implemented detectors, since they make no assumptions 
about relationships between different IP addresses. 

The following traces were used: 
• NZIX. This trace, from July 2000, includes five 

consecutive days of IP headers sent through the 
New Zealand Internet Exchange (NZIX), a peer-
ing point for several major New Zealand ISPs 
and the University of Waikato; throughput 
ranges roughly from 4 to 12 Mbits/s. Two six-
hour periods were used for detector experimen-
tation. 

• Bell Labs. This trace contains one week of IP 
headers observed outside the firewall for Bell 
Labs, a 9Mbit/s connection serving a staff of 
about 450. One full day of this traffic was used 
for experimentation. 

• University. This trace was collected from the 
Stocker Engineering and Technology network at 
Ohio University. It contains all the packets en-
tering and leaving the network, with throughput 
ranging from 8 to 16 Mbit/s. Three sets of data, 
each having around 30,000,000 packets, were 
collected at different times during a day for ex-
perimentation. 

• Small Company. This trace contains one week 
of network traffic observed outside the firewall 
of a small technology company in the United 
States. The connection served a staff of about 
200 users in the company. One 24-hour week-
day trace was used for experimentation. 

3.3. Detection Example 

To illustrate the effects of an attack on the entropy 
and chi-square statistics, we examined a 1,000,000-
packet excerpt from the NZIX data set with a simulated 
DDoS attack comprising 25% of all packets, starting at 
packet number 700,000 and ending at packet number 
800,000. (Packets in this excerpt are numbered from 
200,000 to 1,200,000.) In this attack, IP source ad-
dresses are chosen at random from a uniform distribu-
tion; we will focus on source-address-based detection. 

Figure 1 shows the output (entropy values) of an 
entropy detector examining the IP source address 
packet attribute with a window size of 10,000 packets. 
Before the attack begins, source address entropy meas-
urements fall entirely within the range 7.0-7.5. During 
the attack, the entropy increases by approximately 1.5. 
Any maximum-entropy threshold setting between 7.5 
and 8.75 would detect this attack without generating 
any false-positives in this example. 

In Figure 2, the bin frequency profile for a source 
address chi-square detector (current traffic half-life is 

 
Figure 1: Entropy for a brief DDoS attack 

 

Figure 2: Bin frequencies for a brief attack 

 
Figure 3: Chi-square values for a brief attack 
20000 packets; bins defined as most frequent source 
address, next 4 most frequent, next 16, next 256, next 
4096, and the remainder) is displayed for the same 
example. The six colored regions represent the percent-



 

   

age of packets falling in each of the six bins over time. 
Like many network characteristics  [2], source address 
frequency for this trace follows roughly a power-law 
distribution, so the bins of exponentially increasing size 
have roughly equal frequencies. When the attack begins 
at packet 700,000, the total frequency of bin 6 (repre-
senting packets whose source addresses are least 
frequently seen) grows noticeably, as we would expect 
since the source addresses in the attack traffic are drawn 
from a uniform, rather than power-law, distribution. 
The chi-square values for this trace are shown in Figure 
3, using a baseline profile taken from the previous day’s 
traffic. Note the spike shortly past 700,000 packets, 
when the bin 6 frequency significantly exceeds the 
baseline value and other bin frequencies are lower than 
baseline. In this example, any chi-square threshold 
between 1500 and 5000 would catch the attack without 
generating false positives. 

An attack in which the source addresses were fixed 
or drawn from a small set would produce similarly 
dramatic results for both entropy and chi-square detec-
tors. The measured entropy values would drop signifi-
cantly and bins 1-3 would have unusually high fre-
quency. 

3.4. Distribution of Statistics 

We now look more closely at the distribution of chi-
square and entropy measurements for legitimate traffic 
traces and for the same traces with different kinds of 
simulated DDoS attack traffic overlaid.  

For the first set of measurements, we run source-
address entropy and chi-square detectors over a six-
hour period (50 million packets from 6pm-midnight 
local time, July 7, 2002) from the NZIX trace, using the 
parameter settings described in the previous section. 
The chi-square baseline is taken from the matching six-
hour period on the previous day (July 6). We then run 
the same detector configuration over the same trace, 
with a random 25% of packets replaced with simulated 
DDoS attack traffic using uniformly random source 
addresses. The distributions of entropy and chi-square 
values resulting from these runs are shown in Figure 4 
and Figure 5. It is clear from these histograms that the 
variation in entropy and chi-square statistics due to 
fluctuations in legitimate traffic is small when com-
pared to the deviation caused by this DDoS attack. 
Therefore, with simple automatic threshold setting, both 
detectors will identify this attack consistently while 
yielding very few false-positives. 

If we make more generous assumptions about the 
attack tools’ sophistication and the attacker’s knowl-
edge, the detection task becomes significantly harder. 
Figure 6 show the results of repeating the previous 
experiment with a stealthy DDoS attack. The attacker is 

assumed to know the shape of the source address 
distribution in the legitimate traffic, but not the actual 
IP addresses in the frequency ranking. 

 

 
Figure 4: Distribution of source address en-
tropy under normal and typical-DDoS attack 
conditions 

 
Figure 5: Distribution of source address chi-
square values under normal and typical-DDoS 
attack conditions 

  The simulated attack traffic thus has the same 
source-address frequency distribution as the legitimate 
traffic, but uses a different set of source addresses. 
There is now significant overlap between the chi-square 
values observed under normal conditions and under 
attack, suggesting that, depending on the threshold 
chosen, the chi-square detector would either frequently 
fail to detect such attacks or issue a large number of 
false-positive alerts. 

Under the same stealthy attack, the entropy detector 
(Figure 6) fares somewhat better, but a different form 
of stealthy attack would be more effective against 
entropy detection. Specifically, if the attacker knows 
approximate values for (1) the average source address 



 

   

entropy value observed by the detector and (2) the 
fraction of traffic seen by the detector that will be attack 
traffic, then he or she can emit attack traffic with an 
entropy somewhat lower than the average value to 
compensate for the entropy increase resulting from the 
use of a disjoint sets of source addresses. This way, an 
attacker armed with this knowledge of the detector 
environment could produce attack traffic that would 
produce little change in the entropy observed at the 
detector.  

 

 
Figure 6: Distribution of source address en-
tropy under normal and stealthy-DDoS attack 
conditions 

 
Figure 7: Distribution of chi-square values for 
source address under normal and stealthy-
DDoS attack conditions 

 
Tables 1 and 2 show the results of running similar 

experiments on the different traffic traces described in 
Section  3.2, with a variety of attack and detector com-
binations. Each entry in the table represents the fraction 
of DDoS measurements that fall above the 95th percen-
tile for legitimate traffic (for entropy detectors, the 
fraction that fall below the 2.5th percentile or above the 

97.5th). Values close to one suggest that effective attack 
detection is possible. The “random,” “fixed,” and 
“sequential” attack characteristics are typical of current 
DDoS attack tools; the “stealth” characteristics repre-
sent potential future attack tools using the approach 
described above. 

These tables indicate at least two noteworthy effects. 
First, random source address and sequential destination 
port attacks are easily detected in most environments. 
Legitimate traffic in almost any network contains 
relatively small sets of addresses and ports that consti-
tute a substantial fraction of traffic. Hence, uniform 
distributions will usually stand out. Second, results are 
consistently better for the NZIX trace, which is the 
most representative of core Internet traffic, our target 
environment. The other data sets, especially “Small 
Company,” exhibit substantially more variability in 
legitimate traffic patterns, so attacks are harder to 
distinguish from legitimate fluctuations. These traces 
are taken from “edge” networks in which during quieter 
periods, traffic is frequently dominated by a handful or 
even a single pair of hosts. To avoid false positives 
from these harmless anomalies while preserving sensi-
tivity to attack, detectors can be modified to suppress 
alarms when overall throughput is low. Some low-rate 
attacks may be missed with this approach, but the high-
volume floods should still be detected. 

 
Table 1: Entropy detector accuracy for cur-

rent and future attack types 

Table 2: Chi-square detector accuracy for 
current and future attack types 

 
We contend that the prospects for detecting stealthy 

attacks are not as bleak as they might appear, for 
several reasons. There are many situations in which, 
even if the attackers had full knowledge of the detec-
tor’s network environment, their ability to emulate the 
typical traffic mix and “blend in” would be limited. 
Some of the most powerful DDoS attacks do not use 
completely compromised machines as the flood 

attack characteristic NZIX     University Bell Labs Small Co.
 random src addr        1.000 1.000 1.000 0.999
  stealth src addr       0.540 0.159 0.253 0.000
  fixed dest addr        1.000 0.076 0.074 0.045
 sequential  dest port  1.000 1.000 0.999 0.247
  stealth dest port       0.970 0.466 0.030 0.096

data set

attack characteristic NZIX University Bell Labs Small Co.
  random src addr 0.999 0.850 0.920 0.544
  stealth src addr 0.982 0.283 0.475 0.339
  fixed dest addr 1.000 0.012 0.005 0.000
  sequential dest port 1.000 0.940 0.857 0.949
  stealth dst port 0.987 0.328 0.340 0.606

data set



 

   

sources, but rather exploit “reflectors” that can be 
caused to respond to and amplify particular kinds of 
traffic. In such situations, the attacker does not have full 
control over the reflected packets’ form; for instance 
source address spoofing is typically impossible. In 
addition, attack traffic may have to use certain ports, 
flags, addresses, and other characteristics to achieve its 
primary goal or to evade other countermeasures such as 
firewalls and egress filtering. These and other con-
straints on the attackers may cause the attack traffic to 
exhibit atypical characteristics at one or more points 
along the path to the victims, so detectors at those 
points may be able to identify the attack. 

3.5. Detector Performance 

Since we are proposing to use these detection meth-
ods in high-speed core routers, it is imperative that they 
have low computational cost, especially for the opera-
tions that must be carried out for each packet. The 
prototype Snort detector implementation exhibits 
adequate performance for its purposes: on a 1GHz 
Pentium-III-based machine, a Snort process running a 
single chi-square detector observing source addresses 
can process 240,000-270,000 packets per second (pps) 
offline. (The Snort infrastructure without any plugins 
can handle 435,000 pps.) Adding chi-square detectors 
for four additional packet attributes brings performance 
down to around 100,000 pps. A single-attribute entropy 
detector can manage about 294,000 pps, while adding 
six others yields 130,000 pps. These speeds are roughly 
in the OC3 range. Improving performance is a primary 
goal of future detector development. We expect to 
achieve improved performance by implementing some 
optimizations that approximate the true frequency 
profile while reducing or eliminating floating-point 
operations in the packet-handling code. Most of the 
partitioning and computation of chi-square and entropy 
values can be handled asynchronously in background 
processes that should not impede the packet-handling 
fast path. 

4. Response 

Our defense approach involves response modules 
that use a characterization of the attack provided by the 
detection module to take defensive measures. The 
response module classifies individual packets as benign 
or suspect based on the attack characteristics provided 
by the detector. Once identified, the suspect packets are 
subjected to rate limiting or packet-filtering methods 
based on the intensity of the attack or pre-defined 
response policies. In the case of stealthy DDoS attacks, 
the response module should communicate with the 
detector and share the data structures and statistical 

models maintained by the detector to identify the attack 
packets with high confidence; the prototype described 
below does not yet offer such coordination. 

4.1. Prototype DDoS Response Module 

The current response prototype is implemented on a 
Linux router as a kernel module. It uses netfilter and 
Linux Advanced Routing and Traffic Control (LARTC) 
to filter and rate-limit packets  [15], [4]. An API is 
provided to take alerts from the detection module and 
generate filter rules to be issued to the response mod-
ule. We have also produced an extension to the Linux 
iptables mechanism that provides similar functionality, 
for better integration with iptables-based router/firewall 
configurations. 

Currently, the response module implements three 
packet-filtering rules. They are constant, random and 
allow. These filter rules are automatically generated by 
the Snort-based DDoS detector when it issues an alert.  

When the detector module detects a DDoS flood, it 
uses its detection algorithms and the statistical models 
to characterize the DDoS packets. The characteristics of 
the DDoS packets are used to form one of the three 
packet filter rules. The detector can then insert the 
packet filtering rules using the /proc file system inter-
face. These rules will filter out the DDoS attack pack-
ets. Once the detector determines that the attack has 
subsided, it can remove the appropriate filtering rules. 

4.1.1. Constant Filter Rule. A constant filter rule is 
used to drop packets that match the values specified in 
the rule to the values of the protocol header fields in the 
packet. This filter rule can be applied to the IP header 
fields, TCP source and destination ports, UDP source 
and destination ports and ICMP type and code fields. 
For example, the rule “const {daddr=10.1.1.10 proto-
col=6 dport=80 sport=31137};” will drop TCP pack-
ets going to the particular destination IP address 
10.1.1.10 and TCP destination port 80 from the TCP 
source port 31137. A number of such constant filter 
rules can be applied to the response module. If none of 
the constant filter rules match the values of the header 
fields, the packet is allowed to pass. 

4.1.2. Random Filter Rule. A number of DDoS 
attack tools create packets with random values in the 
header fields. That is, a random number generator is 
used to assign a value to certain fields in the header. In 
such a case, a random filter rule can be specified to 
drop packets with random values in the header field. 
The random filter rule can be applied to the IP header 
fields, TCP source and destination ports, UDP source 
and destination ports, and ICMP type and code fields.  



 

   

Currently, a simple algorithm is used to determine if 
a packet has a random value for a particular header 
field. When a random filter rule is invoked for a header 
field (for example source IP address), the count of each 
distinct source IP address seen at the detector is re-
corded. The count is started from the instant that 
particular filter rule is applied to the response module. 
If the count is less than a pre-determined threshold 
value, it is assumed that a random number generator is 
setting the source IP address and the packet is dropped. 
If the count is more than the threshold value then the 
packet is allowed to pass. The count is reset to zero 
when the random filter rule is removed.  

Random filter rules can be applied in the following 
cases:  
• A packet has only one random item in the header 

field. For example, the rule “rand {saddr};” will 
drop packets with only random source IP ad-
dresses. 

• A packet with more than one random item in the 
header field. For example, the rule “rand {tot_len 
saddr protocol};” will drop packets with random 
values for total IP packet length, source IP address 
and IP protocol. 

Since this simple approach allows all packets with a 
given value to pass after the threshold is reached for 
that value, an attacker could choose a distribution of 
attack packets that limits the filter’s effectiveness. For 
example, if the attack packets have source addresses 
drawn at random from a set of 100 addresses, the filter 
will drop the first few packets with each source, but 
permit the rest. However, by limiting the range of 
values used, the attacker loses part of the benefit of 
using randomly chosen values; in particular, it becomes 
easier to detect and block the attack by other means. 
Another problem with this approach is that in some 
network environments, dropping the first few packets 
with (for example) a previously unseen source address 
may have an unacceptable impact on legitimate traffic. 
Filtering on multiple packet attributes simultaneously 
and replacing the threshold with a graduated quality-of-
service scheme could mitigate this drawback. 

4.1.3. Allow Filter Rule. During a DDoS attack, 
there may be a need to allow a particular kind of traffic 
to pass through, such as the communication traffic 
between routers or between routers and command 
centers or between critical applications. The allow 
packet rule is used to allow packets to pass that match 
the values specified in the rule to the values of the 
protocol header fields in the packet. The allow filter 
rule can be applied to IP header fields, TCP source and 
destination ports, UDP source and destination ports, and 
ICMP type and code fields. For example, the rule 
“allow {daddr=10.1.1.10 saddr=10.60.33.1 protocol=6 

dport=80};” will allow TCP packets going to destina-
tion IP address 10.1.1.10 and TCP destination port 80 
from source IP address 10.60.33.1 to pass. A number of 
such allow filter rules can be applied to the response 
module to permit regularly occurring traffic to pass.  

The use of the allow rule can also be envisioned in 
the case where the overhead of adding the random or 
constant rules to block a large sub-set of the traffic (i.e. 
DDoS traffic) is far greater than the overhead of adding 
allow rules to allow a smaller sub-set of the traffic (i.e. 
good traffic). 

4.1.4. /proc File System Interface. A /proc file 
system interface is provided for the detector to commu-
nicate with the response module. The interface allows 
the detector to configure the response module with 
different packet filter rules. The interface provides two 
options to configure the response module: insert and 
clear. 

The insert option is used to insert/add new packet 
filter rules. A rule number and one of the three filter 
rules discussed above must be specified. The insert 
rules are evaluated in the following order of prece-
dence: constant, random, and allow. . Within each of 
the filter types, the rules are evaluated in the ascending 
order of the rule numbers.  

The clear option is used to remove filter rules. The 
filter type in conjunction with the rule number or 
header field is required as a parameter to the clear 
option. 

4.2. Extending detectors to recommend re-
sponse 

Both chi-square and entropy DDoS detectors can be 
extended to provide attack characterization information 
that can be used to target packet-filtering or rate-
limiting responses to mitigate the effects of DDoS 
attacks. 

4.2.1. Chi-Square Detector. In chi-square detectors, 
attack detection is triggered by an unusually high chi-
square statistic. That unusually high value, in turn, must 
result from one or more bins whose frequency differs 
substantially from the baseline. In order to determine 
the most anomalous bin, the detector need only find the 
largest terms in the chi-square sum. A reasonable 
approximate attack characterization can be constructed 
by simply identifying the most anomalous bin whose 
frequency is too high. For example, if the distribution 
of source addresses is unusually dispersed, the last bin 
will have a high frequency, so an appropriate response 
would be to rate-limit traffic belonging to that bin. This 
is not an exact characterization and some legitimate 
traffic will be adversely affected by the response, but 



 

   

the legitimate traffic belonging to other bins will be 
unaffected by the rate limiting and should benefit from 
the reduced flood traffic. 

One minor problem with this approach is that the 
assignment of values to bins normally changes at each 
new chi-square computation, since the assignment is 
based on sorted frequency. However, the response can 
use the most recent bin assignment to classify packets. 
Assuming re-sorting is done at intervals comparable to 
the current profile decay half-life this should provide a 
good approximation. 

One direction for future work is to correlate informa-
tion about different packet attributes in order to more 
narrowly target the response. The more precisely the 
attack traffic can be characterized, the smaller the 
“collateral damage” done by the response rate limiting 
will be. Furthermore, by looking simultaneously at 
multiple attributes, detectors may achieve greater 
accuracy. Traffic that seems borderline anomalous or 
even typical when different attributes are examined in 
isolation may stand out clearly when the combined 
distribution of different attributes is considered. For 
example, a high rate of connection attempts on TCP 
port 80 with the destination address of a large web 
server may be normal, while the same rate of port-80 
attempts targeting a DNS server may indicate an attack. 
Monitoring multiple packet attributes simultaneously in 
a way that detects such anomalies without requiring 
excessive memory usage by the detector could yield 
significant benefits for both detection and response.  

4.2.2. Entropy Detector. If the entropy detector 
determines that the current entropy for some attribute is 
below the normal range, that suggests that traffic with a 
relatively small number of values for that attribute is 
dominating. Since the entropy detector tracks value 
frequency, it can identify which values are the most 
common and are likely candidates for rate limiting. For 
finer targeting, the detector could watch for specific 
values with dramatic increases in frequency and treat 
those as suspicious. 

Conversely, an unusually high entropy value sug-
gests that the low-frequency values are causing trouble, 
so the detector might suggest that packets having high-
frequency values be given preferential treatment. 

4.2.3. Integrating detection and response. We have 
implemented two detection/response integration 
mechanisms. 

First, we have built a Snort alerting module that can 
issue alerts using the Intruder Detection and Isolation 
Protocol  [16]. By modifying the Snort alert model to be 
more extensible, we enabled the Snort-based chi-square 
and entropy detectors to communicate additional 
information on attack characteristics to the IDIP alert-

ing module for reporting to a remote response module 
closer to the attacker. 

Second, we modified the Snort-based chi-square and 
entropy detectors to issue rate-limiting directives to the 
iptables-based response module described in Section 
 4.1. 

Both of these integration approaches impose fairly 
strict limits on the amount of information that can be 
exchanged between the detector and the responder. This 
means that, while a chi-square detector might ideally 
instruct the responder to rate-limit all traffic in a given 
bin, it must instead approximate this order by providing 
a small number of values (e.g., IP addresses) to be rate-
limited, since only the detector knows all the IP ad-
dresses belonging to the bin. With a more tightly 
integrated pair of detection and response modules, the 
responder could query the detector for each new IP 
address it sees, in order to determine whether to apply a 
rate limit for that address. This approach would allow 
response decisions to take full advantage of the infor-
mation already collected by the detector. We plan to 
implement such an approach using a netfilter-based 
kernel module with access to the address space of a 
user-level detection process, as described in Section  5. 

4.3. DDoS Response Module Evaluation 

The current response prototype is an initial imple-
mentation of the response system. Initial experimental 
results have indicated that the response prototype 
blocks substantial DDoS attack traffic generated by the 
Stacheldraht attack tool. The Stacheldraht attack tool 
generates DDoS attacks with constant packet attributes. 
Though this is not an evidence for actual effectiveness 
of the response system, it is a promising step.  

The constant rule implemented by the current proto-
type is a case of an extreme response method, which is 
to block or drop all the traffic. The random rule has the 
basic drawback of dropping the first few packets of 
every new good connection. These two rules could 
potentially increase the false negatives. The allow rule 
could allow through some of the DDoS attack traffic 
that matches the rule, increasing the false positives.  

Further experimentation is planned to determine the 
effectiveness of the response system and also to deter-
mine the rate of false positives and false negatives. 

5. Summary and Future Extensions 

The focus thus far has been on detection and re-
sponse algorithms and the implementation of these 
algorithms in software. At issue is whether these 
algorithms can reliably detect and respond to DDoS 
attacks.  



 

   

Against today’s relatively unsophisticated DDoS 
toolkits, our prototype detector is able to determine that 
the network is under attack and deploy accurate filter-
ing rules. The filtering effort is immediate and reduces 
the impact of the attack downstream almost instantly. 
Because baseline measurements and thresholds can be 
established automatically, and because detectors can 
generate filtering rules automatically based on the 
traffic statistics they gather, the system is adaptable to a 
wide range of network environments with minimal 
manual tuning. While our initial goal was to provide 
effective defense against existing DDoS tools, we are 
continuing to explore techniques for better defense 
against future stealthy attacks. 

Future research and development will focus on 
tighter integration of detection and response modules. 
In the current implementation, detectors generate 
concise recommended rules for responders to impose, 
and there is no further detector/responder coordination. 
In a more tightly coupled detection/response system, 
the individual packet classification decisions made by 
the responder could make use of the rich data structures 
maintained by the detector. This would enable more 
focused filtering and rate limiting, and reduce the 
possible impact of responses on legitimate traffic. 

Another approach to providing more narrowly tar-
geted response while avoiding computationally expen-
sive analysis would be to enable detectors to dynami-
cally tune themselves and “drill down” to investigate 
detected anomalies more closely. A detector with these 
capabilities could more effectively allocate its limited 
computational resources where they are most needed. 
Such drill-down could be triggered by a vague or 
uncertain detection by a quick analysis, or by com-
plaints received from downstream network devices. 

The Linux implementation of this system has been 
appropriate for demonstration environments and evalua-
tion of alternative detection approaches. The next step 
is to port this prototype system to the Intel IXP-1200 
network processor. We consider this processor repre-
sentative of the next generation of network hardware in 
that it is a highly programmable device with the capa-
bility of forwarding network traffic at high bandwidth. 
By implementing detection and response methods on 
this platform and testing their performance, we can 
validate the claim that they are appropriate for use in 
future high-speed routers. 
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