
Infrastructure for Intrusion Detection and Response

Dan Schnackenberg
Boeing Phantom Works

daniel.d.schnackenberg@boeing.com

Kelly Djahandari
Dan Sterne

NAI Labs, Network Associates
kelly_djahandari@nai.com

dan_sterne@nai.com

Abstract

Automated response to intrusions has become a major
issue in defending critical systems. Because the adversary
can take actions at computer speeds, systems need the
capability to react without human intervention. An
infrastructure that supports development of automated
response systems is critically needed. This infrastructure
must allow easy integration of detection and response
components to enable experimentation with automated
response strategies. This paper provides an overview of
the Intruder Detection and Isolation Protocol (IDIP)
architecture and how it supports the need for an intrusion
detection and response infrastructure.

1. Introduction

Today’s information systems in government and
commercial sectors are distributed and highly
interconnected via local area and wide area computer
networks. While indispensable, these networks provide
potential avenues of attack by hackers, international
competitors, and other adversaries. To monitor and
protect against such threats, organizations increasingly
deploy intrusion detection systems and network boundary
control devices (i.e., firewalls, filtering routers, and
guards). When suspicious activities are detected, intrusion
detection systems alert human administrators or
automated processes that undertake corrective action, for
example, reconfiguring a firewall to block incoming
traffic from offending Internet addresses or terminating
suspicious local processes.

Several COTS vendors have developed products that
support intrusion response (e.g., [1], [2], and [3]).
However these products all use proprietary protocols and
are limited by an architecture that requires all response
decisions to be made at a central controller. Devices such

as firewalls are simply response mechanisms and not full
participants in the response decision making process.

While useful, these automated mechanisms have
important limitations, especially when applied to large
internetworked environments or the information
infrastructure. First, intrusion detection systems detect
local intrusion symptoms and can only react locally (e.g.,
by reconfiguring local boundary controllers and hosts).
Because an attacker may cross many network boundaries,
a response local to the target can’t identify or mitigate the
true source of the attack, which may be several networks
removed. Second, even if intrusion detection systems
were capable of communicating with remote boundary
controllers near the attacker, there is no common language
for remotely instructing them to block selected traffic. It is
also unlikely that intrusion detection systems would know
enough about all such devices to be able to reconfigure
them remotely using low-level, device-specific
commands. Nor is it likely that the owners of such devices
would allow it. Third, if intrusion “symptoms” are
detected in different areas of an internetworked
environment by different intrusion detection systems,
current technology lacks the infrastructure and protocol
for (1) pooling this information to allow intrusion
correlation and (2) development and promulgation of a
coordinated, uniform response throughout the
environment.

Under DARPA funding1, researchers at Boeing’s
Phantom Works, Network Associates’ NAI Labs, and
University of California Davis’ Computer Security Lab

1 This research was supported by DARPA/Rome Laboratory Contracts
F30602-96-C-0318, F30602-97-C-0217, and F30602-97-C-0309.

This paper appeared in the Proceedings of the DARPA Information
Survivability Conference and Exposition (DISCEX) 2000, held in
Hilton Head, S.C. on January 25-27, 2000. Copyright © 1999 by the
Institute of Electrical and Electronics Engineers, Inc. All rights
reserved. Reprinted with permission.

 2

are jointly developing a technology to address these
limitations. The technology consists of the Intruder
Detection and Isolation Protocol (IDIP) and a collection
of infrastructure components that implement IDIP. These
components have been integrated with a variety of
boundary control devices, hosts, and intrusion detection
systems in testbeds at Boeing and at government sites. In
testbed demonstrations, IDIP-enhanced networks have
demonstrated the following automated capabilities:
(1) cooperative tracing of intrusions across network
boundaries and blocking of intrusions at boundary
controllers near attack sources; (2) use of device-
independent tracing and blocking directives; and
(3) centralized reporting and coordination of intrusion
responses.

The research described in this paper represents the
beginning of research in the area of automated intrusion
response. A small number of other research efforts ([4],
[5]) are also underway in this area. [4] uses a more
centralized architecture that does not attempt cooperation
between boundary controllers in locating and isolating
intruders. [5] is investigating methods of using operating
system wrapper technology to perform intrusion detection
and isolation within a host.

This paper provides an overview of IDIP. Section 2
presents the IDIP concept, rationale, and terminology.
Sections 3 and 4 describe the IDIP protocol and
associated communications security requirements. Section
5 discusses the IDIP software architecture including the
IDIP backplane and IDIP applications. Section 6 provides
a summary.

2. IDIP Concept

IDIP is an application layer protocol that coordinates
intrusion tracking and isolation. IDIP systems are
organized into IDIP communities (as shown in Figure 1).
Each IDIP community is an administrative domain, with
intrusion detection and response functions managed by a
component called the Discovery Coordinator.
Communities are further organized into IDIP
neighborhoods. These neighborhoods are the collection of
components with no other IDIP component between them.
Boundary control devices are members of multiple IDIP
neighborhoods.

IDIP’s objective is to share the information necessary
to enable intrusion tracking and containment. Figure 2
illustrates how IDIP accomplishes intrusion response:
(1) when an attack traverses an IDIP-protected network,
each IDIP node along the path is responsible for auditing

the connection or datagram stream2; (2) when a
component detects an intrusion attempt, the detector
distributes an attack report to its neighbors who can then
help trace the attack path and respond to the intrusion; and
(3) these neighbors further distribute the attack
description along the path of the attack.

Community

Boundary
Controllers

Discovery
Coordinator

Intrusion
Detection
System

Neighborhood 2

Intrusion
Detection
System

Neighborhood 1

Neighborhood 3
Boundary

Controllers

Boundary
Controller

Figure 1: IDIP communities

1

2

3

Figure 2: IDIP intrusion response

Each IDIP node makes a local decision as to what type
of response (e.g., kill the connection, install filtering rules,
disable the user account) is appropriate based on the
attack type, attack certainty, attack severity relative to the
type of attack and vulnerability of components under
attack, what other IDIP nodes have already done, and
local policy constraints (e.g., never disable http between
8AM and 4PM). The attack responses are appended to the
attack description prior to forwarding the attack
description to neighboring IDIP nodes. This enables IDIP
to trace the attack back to the edge of the IDIP-protected
system, taking appropriate responses at each IDIP node
along the attack path. Nodes that receive reports from
neighbors determine if they are on the attack path (i.e.,

2 For brevity we will henceforth use the term connection generically to
refer to both TCP connections and datagram packet streams.

 3

whether they have seen the connection described by the
attack report) before forwarding the attack report.

Additionally, each IDIP node sends a copy of the
attack report (along with the local responses) to the
Discovery Coordinator. The Discovery Coordinator can
then correlate reports to gain a better overall picture of the
situation, and also issue response directives back to
individual nodes to either remove an unnecessary
response (e.g., firewall filtering rule), or add a response
(e.g., firewall filtering rule along an alternate attack path).
The Discovery Coordinator is expected to be co-located
with the domain’s network management facilities,
providing the Discovery Coordinator with the network
global topology, enabling the selection of the optimal
points in the network to block harmful connections.

Although Figure 1 depicts only intrusion detection
systems and boundary controllers as IDIP components,
hosts may also participate in an IDIP system. Hosts can
provide more fine-grained responses as they can trace the
intrusion back to the process and user initiating the
intrusion from the local host. When an intruder is
performing an attack after hopping through multiple hosts,
IDIP-enabled hosts allow the intrusion to be traced back
through these hosts, which is not possible if only
boundary controllers participate in the IDIP system.

Note that allowing hosts to participate in IDIP raises
two significant issues for the underlying protocol
mechanisms: (1) IDIP neighborhoods may grow to be
very large, and (2) some of the IDIP nodes may be
significantly less “trustworthy” than others because they
may have a number of vulnerabilities available for an
attacker to use. Because neighborhoods may grow very
large, IDIP is designed for multicast operation. At the
application level, all neighborhood communication is
multicast. This second factor implies that some IDIP
nodes may be compromised and potentially used against
the system. For this reason, IDIP has features that enable
it to distinguish less trustworthy components from more
trustworthy components.

3. IDIP Application-Layer Protocol

IDIP is organized into two primary protocol layers: the
IDIP application layer and the IDIP message layer. The
application layer protocol accomplishes intrusion tracking
and containment through three major message types:
(1) trace, (2) report, and (3) Discovery Coordinator
directive.

An IDIP trace request message is sent when an event
or event sequence is detected that is determined to be
sufficiently intrusive to warrant a response (which may be
to trace the events or to trace and block the events). The
trace request message includes a description of the event,

including a description of the connection used by the
intruder. This information is used by each IDIP node that
receives the trace request to determine if the attack
passed through the node. At each hop in the path, there is
a possibility that this description may need to be modified
due to network address translation, firewall proxies, or a
user passing through a host. The protocol supports
translating the attack description by appending a
translation record to the end of the trace message. This
allows tracing through hosts, firewalls, and routers. The
limitation is that once a non-IDIP component that
modifies the connection is reached, the connection can be
traced no further. Note that the tracing mechanism is
based on what the components have seen and recorded in
their audit trail, rather than based on network routing
tables or other dynamic network state. This approach also
enables tracing of connections that spoof source
addresses.

In the trace message, the detector specifies whether
this event requires blocking in addition to tracing. Each
node receiving the trace message is not obligated to
perform the specified blocking rules, but all must perform
the trace function. Local nodes can either use the
suggested blocking or take some other node-specific
action based on local policy. Blocking can be inserted for
a limited time or until the system administrator reverses
the action. When timed blocking rules are applied, the
IDIP software monitors the clock to determine when to
remove the blocking rule. Most of the responses taken by
IDIP components are capable of being reversed. They are
viewed as short-term reactions to provide system
administrators time to perform whatever damage
assessment and recovery actions are required. In the
current implementation, the node responses to trace
messages will typically block traffic for a short duration
(e.g., a few minutes) to provide time for the Discovery
Coordinator to determine an optimal response.

An IDIP report is simply a copy of a trace message
that is sent to the Discovery Coordinator by each
component that receives a trace message. This enables
the Discovery Coordinator to both discover the attack
path and to determine an optimal global response based
on mission constraints.

To help prevent flooding the IDIP network with trace
and report messages, repeated detection events are
accumulated at the detector and sent as a single summary
report.

Once the Discovery Coordinator has determined an
optimal response, it sends directives out to nodes whose
response requires altering. There are two types of
Discovery Coordinator directives: (1) an undo message
requests that the node reverse a previously taken IDIP
blocking action (e.g., open up a service that was blocked

 4

at a firewall) and (2) a do message to take another action
(e.g., extend the duration of a blocking rule). The
Discovery Coordinator may request any action supported
by the local response component, such as disable a user
account or modify a host’s policy. If the Discovery
Coordinator is co-located with the system network
management infrastructure, then the Discovery
Coordinator can use the network management resources
to take actions at non-IDIP components.

The Discovery Coordinator represents a single point of
failure in the IDIP system, which makes it a target for
denial of service attacks. If the Discovery Coordinator is
not available for directing an optimal response, IDIP
nodes can take increasingly severe responses to repeated
attacks, reducing the reliance of IDIP on Discovery
Coordinator actions.

To support communication between the varied IDIP
components requires a flexible and extensible language.
IDIP uses the Common Intrusion Specification Language
(CISL) [6] developed by the Common Intrusion Detection
Framework (CIDF) working group as the language for
describing attacks and responses. This language includes
terms for describing the blocking actions used in the
current IDIP implementation, and can be easily extended
(by adding new terms) to support additional responses as
they are developed. IDIP currently uses only two actions:
block and allow. These can be used with various objects
(e.g., users, processes, messages, or connections) to cause
a number of different responses. Multiple block and allow
actions can be specified in one message, each action
having its own objects against which to apply the action.
As an example, a “block user” message is interpreted as a
request to stop that user from doing anything. A “block
user and connection” message is interpreted as a request
that the user be prevented from using the specified
connection. Connection information includes protocol,
source address, source port, destination address, and
destination port. Any of these parameters may be
wildcarded. Response messages can also include a
specification of when to start and stop the actions.

4. Cryptographic requirements

Perceived threats to IDIP include falsification of data,
one component assuming the identity of another
component, or eavesdropping. If a component can
masquerade as an IDIP component, or modify IDIP
messages, there is an opportunity for both (1) disabling
detection and response mechanisms or (2) severe denial of
service attacks on the system through malicious
manipulation of automated response mechanisms. This is
no different than the threat to a system using remote
management services as these services become a good

target for an adversary. Eavesdropping is a concern
primarily in hiding from attackers the details of what was
detected and what automated responses are being taken.

The basic requirements for IDIP cryptography include
the following.
•= Efficient cryptography for messages (e.g., trace

messages) that must be sent to each node in a
neighborhood. To minimize computational overhead,
encryption and generation of integrity checksums for
an IDIP message should occur once for each
multicast transmission to the neighborhood. This is
important because an IDIP neighborhood could grow
quite large. This approach results in the cost of
applying cryptography to messages for very large
neighborhoods requiring the same amount of time as
a message going to a small neighborhood. This
approach also supports use of multicast operation for
IDIP neighborhoods: each trace message is
encrypted once and either unicast or multicast to the
neighborhood.

•= Support for multicast, including multicast key
distribution. For efficient operation, IDIP message
layer provides a multicast interface to IDIP
applications. To provide cryptographic protection of
the multicast IDIP messages requires support from
the key distribution mechanisms. That is, the key
distribution mechanism must be capable of providing
to the multicast group the shared keys used for
encryption and generation of integrity checksums.

•= Minimal impact on IDIP message size, as each IDIP
message must fit within one UDP datagram which is
64 kilobytes.

•= Availability on multiple platforms, including
Solaris, BSD/OS, Linux, and Windows NT.

•= Ease of integration.
•= Support for multiple multicast groups within a

neighborhood (e.g., to segregate key sharing
relationships among boundary controllers from those
involving less secure hosts).

•= The number of messages for key change, due to key
refresh or a change in the neighborhood membership
should not noticeably affect normal IDIP message
flow.

5. Software Architecture

The two primary objectives for the IDIP software
architecture were (1) ease of integration with various

 Solaris is a registered trademark of Sun Microsystems, Inc. BSD/OS
is a registered trademark of Berkeley Software Design, Inc. Linux is a
registered trademark of Linus Torvalds. Windows NT is a registered
trademark of Microsoft Corporation.

 5

components and (2) flexibility in modifying the generic
component behavior for specific components. The
concept supports integration of boundary controllers,
network and host-based intrusion detection systems,
clients, servers, and network management components.

The IDIP software was designed for portability and is
currently executing on Solaris, BSDI, Linux, and
Windows NT platforms. Operating system dependencies
were minimized during the development and have been
encapsulated in a single file.

The IDIP software components consist of the IDIP
backplane and IDIP applications. IDIP applications
developed to date include a generic agent and various
Discovery Coordinator applications. These components
are described below.

5.1. IDIP Backplane

The IDIP backplane executes on all IDIP nodes,
providing reliable, secure communication between IDIP
applications. Figure 3 depicts the IDIP backplane showing
the message layer, with neighborhood management,
cryptographic key management, and cryptographic
services. The message layer provides the following
services.
•= Reliable message delivery, including duplicate

message removal.
•= Multicast messaging.
•= Hop-by-hop message authentication and privacy.
•= Tracking of neighbor clock delta from the local

clock.

IDIP Message Layer
 Reliable Delivery
 Duplicate Removal
 Multicast Support
 Time Management
 Message class
 subscription

Neighborhood Management
 Node status

Key Management

IDIP Cryptographic Services
 Authentication
 Integrity
 Privacy

User Datagram Protocol
Internet Protocol

IDIP Application

IDIP Backplane

Figure 3: IDIP backplane architecture

The IDIP message layer provides a socket-based
interface to the application layer, enabling easy
integration of new applications. An application subscribes

for the message classes it needs, and the message layer
delivers all messages of that class (including locally
generated messages) to the application. This provides a
local multicast capability that allows multiple applications
on an IDIP node to share intrusion-related information.

The message layer provides reliable delivery over
UDP through a simple acknowledgement mechanism. The
message layer multicast functionality was designed to use
IP multicast, but currently uses IP unicast services to send
to each neighbor. It provides a multicast interface to the
application layer regardless of whether the underlying
implementation uses IP multicast or not. The time
difference between neighbors is determined and adjusted
using round-trip propagation delay of messages and is
used by IDIP applications to adjust local time-related
portions of messages, such as the time that an attack
occurred. Each message has a unique message identifying
number, so duplicate messages are not processed.

Neighborhood management includes maintaining status
on each IDIP neighbor and forwarding that status to the
Discovery Coordinator when it changes. An objective that
has not yet been implemented is for this protocol to
perform neighbor discovery. The implementation
currently uses a list of neighbors provided by the
Discovery Coordinator. The neighborhood management
function provides other message layer components with
notification messages when neighbors are added and
deleted, detected via periodic “heartbeat” messages sent
between neighbors.

During IDIP development there were no cryptographic
mechanisms available that met the full set of requirements
described in Section 4. This led to the development of a
protocol for IDIP message protection modeled after IP
Security (IPSec) [7], with a simple protocol for multicast
key distribution. This development was facilitated through
use of the open source cryptographic library from
OpenSSL [8] for developing IDIP cryptographic services
and key management software. This library is available
for most platforms, which supports the portability
requirements. Keeping the IDIP key management scheme
as simple as possible reduced the number of
implementation errors.

5.2. IDIP Applications

The IDIP applications manage the IDIP message
content that is sent or delivered by the IDIP backplane.
One IDIP node in a community executes the Discovery
Coordinator application. All IDIP nodes execute an IDIP
agent application.

5.2.1. IDIP generic agent. The IDIP generic agent
application provides a framework for building

 6

component-specific detection and response engines. As
shown in Figure 4, the generic agent provides the IDIP
application protocol, the interface to local detection and
response mechanisms, and the processing of the IDIP
audit data.

IDIP Generic Agent
 Message processing
 Connection search
 Cost model

Component-Specific Functions
 Service blocking

IDIP Backplane

IDIP Detection
Interface

IDIP Audit

IDIP
Audit
Data

Figure 4: IDIP Generic agent architecture

The generic agent software is designed to minimize the
cost of new component integration. Figure 4 shows the
IDIP agent application architecture with the component-
specific routines highlighted. Figure 4 also shows two
additional IDIP processes that support the IDIP agent.
•= IDIP detection interface. The detection interface

process provides a simple bridge from the local
detection system to the socket-based interface of the
IDIP agent. The detection system (or a simple
wrapper) writes intrusion alerts to a local file in an
IDIP standard format (ASCII-formatted strings of
name-value pairs). The detection interface process
reads the alerts and forwards them over a socket to
the generic agent. Using a file interface between the
detection system and IDIP has simplified integration
by allowing detection component wrappers to be
developed and validated without the developer being
required to install and run the IDIP software. This
interface has also reduced integration debugging
costs, as the file provides a good record of the
messages between the detection system and IDIP.
Detection systems that already produce CISL-
formatted output can bypass this process by writing
output directly to the IDIP backplane.

•= IDIP audit. The audit process monitors connections
to and from the local node and records this traffic in
the IDIP audit data format. This software is based on
a public domain package (libpcap [9]) for monitoring
IP datagrams, which is available on most UNIX
platforms. This process stores connection data in
shared memory, which can be read by the generic
agent. As connections end, the connection record is

 UNIX is a registered trademark of X/Open Company, Ltd.

written to an audit file. This auditing mechanism is
adequate for most IDIP needs, however, when two
distinct connections represent the same data stream,
additional auditing is required to connect the two data
streams. For example, typically a connection through
a firewall proxy will have different source ports for
the connections entering and leaving the proxy. The
audit process records these as two separate
connections. The proxy must record that these two
connections are related. For devices that perform
network address translation, the address translation
mechanism must record that the original and
translated connections are related. Likewise, when an
attacker hops through multiple hosts, they must
record the relationship between the inbound and
outbound connections to enable tracing the attack
through the host.

The generic agent process is designed to support
detection-only components (e.g., network-based
detectors), response-only components, and components
that perform both detection and response.
•= Detection functions. For detection, the generic agent

supports reception of detection events from intrusion
detection systems, as well as other significant
intrusion-related data (e.g., denied access to local
host resources). For pure detection components, no
component-specific functions are needed in the
generic agent. IDIP trace messages are initiated at a
node when a local intrusion detection system detects
an anomaly and reports the attack to IDIP via the
local detection interface process. For these locally
detected attacks, the IDIP agent creates the IDIP
trace message to send to its neighbors. The IDIP
trace message includes a description of the anomaly,
a value indicating how certain the detector is of this
attack, a severity value based on the potential
services lost from this attack, and a requested
response. The certainty value is obtained by the agent
from a configuration table for the detector. This
configuration table represents an estimate of the false
positive values for each attack type. One problem
encountered is that this value is highly dependent on
the local environment and the configuration of the
detector, so that it must be calibrated whenever either
of these changes. The severity value is generated
from a simple “cost model” representing the cost to
the system’s mission of losing the services affected
by the attack. Penetration attacks are always rated a
high severity as they could lead to further lost
services if the penetration leads to further attacks. For
the trace message to be sent, the severity and
certainty must combine to exceed configurable
threshold values. The IDIP agent also has a

 7

mechanism to accumulate repeated reports of the
same detection events into a summary report. The
first detection event is reported. Subsequent events
are accumulated until either a time or event count
threshold is reached, at which point the agent reports
the summary event. This helps prevent a continuing
attack from flooding other IDIP nodes.

•= Response functions. For response, the generic agent
executes the IDIP application layer protocol and
performs local response actions. The agent receives
IDIP trace messages from neighbors and directives
from the Discovery Coordinator.
��Trace message processing. For trace messages,

generic agents use the IDIP audit data to
determine if they are in the attack path. If so, the
agent executes the decision logic to determine
the appropriate response. The agent uses a cost
model of network resource values to determine
the system mission cost of taking the action
requested in the trace. If the cost of the response
action (in terms of lost services) is less than or
equal to the cost of the attack (derived from the
certainty and severity in the trace message), then
the response is taken. Additional policy
constraints can be placed on the response to
ensure that critical services are not disabled for
long periods of time unless they are already lost
to the attack. Although the trace message
specifies the detector’s desired blocking action,
the local node may perform a different action if
local policy determines a better response. Most
of the trace-initiated responses in the current
implementation are short-lived (on the order of
minutes), with the objective of providing the
time needed for the Discovery Coordinator to
develop a better global response. When attacks
continue, however, these trace-initiated
responses can be escalated to provide longer-
term response actions.

��Discovery Coordinator directive message
processing. On determining the optimal system-
level response, the Discovery Coordinator sends
do messages to nodes requiring additional
blocking actions, and undo messages to nodes
whose initial responses are no longer required.
Discovery Coordinator do messages include a
specification of both “block” and “allow” rules,
which can be used on objects such as
connections or users. The combination of both
block and allow rules in a single message enables
specification of responses such as “block all
network traffic except management services.”

5.2.2. Custom IDIP responders. The generic agent
supports a flexible set of primitives that can be used to
support a number of different responses. Although the
generic agent provides most of the functionality required
in many response components (e.g., boundary
controllers), the framework allows for building
component-specific response engines.

For IDIP agents that perform some response, there are
two major component-specific functions required:
(1) perform a blocking action, and (2) undo an IDIP
blocking action. Note that blocking actions can have a
different meaning for different component types. For a
firewall agent, “block connection” means killing the
connection and adding a filtering rule disallowing similar
connections. This requires firewall-specific functions to
add the appropriate filtering rule. Within a host the same
“block connection” request may require reconfiguring the
network services to disable a service.

Beyond these actions, a component may provide other
component-specific response routines to perform more
elaborate responses in specific situations. These routines
are accessed by the generic agent for each trace and
Discovery Coordinator directive. For example, in a
system running an operating system wrapper technology
[10], a suitable response might be to change wrapper
policies on specific detection events. CISL provides a
flexible language for specifying actions on a number of
objects (e.g., process, user, message, connection). Using
CISL, new responses can be developed and carried over
the IDIP system without changing the infrastructure.

5.2.3. Discovery Coordinator applications. When an
IDIP node sends or processes a trace message it sends a
copy of the attack description and responses to the
Discovery Coordinator in an IDIP report message. This
enables the Discovery Coordinator to know the path of the
attack and the response taken by each component along
the attack path. The Discovery Coordinator also has
access to other system-wide information, such as topology
and component vulnerabilities. Thus the Discovery
Coordinator has the information necessary to support
situation understanding and generation of a system-level
optimal response.

The Discovery Coordinator has a very flexible
architecture allowing easy integration of new components.
This is essential because cyber situation understanding
and system-level course of action generation are not yet
well understood. As depicted in Figure 5, the Discovery
Coordinator can support multiple application processes to
perform various system-level functions.

 8

Discovery Coordinator API

IDIP Backplane

Correlation
Engines

Response
Engines

Other
Applications

Response
Manager

Discovery
Coordinator Core
Services

Figure 5: Discovery coordinator application view

Discovery Coordinator core services include those
functions that need to be shared throughout the Discovery
Coordinator applications to maintain consistent system
behavior.
•= Data management.
•= Situation display.
•= Access to network management.
•= Response policy management.

The response concept is for multiple response engines
to propose their optimal responses and the response
manager to select the response from the component best
able to handle the specific situation. Although the
architecture supports multiple response engines, the
current implementation uses a single response engine that
searches for the optimal system response based on a cost
model of network resource values. The engine (developed
by U. C. Davis) uses the system topology to determine all
locations where a specific attack might be blocked, and
then determines which location and blocking rule
minimizes the overall cost to the system’s mission. This
cost model also reasons about user accounts with simple
rules that determine when a user account should be
disabled based on whether the account appears
compromised.

To aid in situation understanding, multiple correlation
engines can be employed. The IDIP backplane and
Discovery Coordinator application programmers interface
(API) allow each correlation engine to receive all attack
reports from the system. These correlation engines may
also produce attack reports that would be visible by other
Discovery Coordinator processes. At this time, four
correlation engines have been integrated into the
Discovery Coordinator: (1) a simple process that attempts
to combine multiple reports of the same event into a
single report; (2) Graph-based Intrusion Detection System
(GrIDS [11]), which combines reports based on graph
algorithms to locate coordinated distributed attacks; (3) a
Perl-based component developed by Silicon Defense that

filters out false positives by looking for corroboration of
attack reports for events known to represent false alarms;
and (4) the Stanford Complex Event Processor [12].

5.3. Integrated Components

A number of components have been integrated with
IDIP including boundary controllers, intrusion detection
systems, and host security mechanisms. Both COTS
products and research prototypes have been used for
demonstrations and experiments. Table 1 shows the
current components integrated with IDIP.

Table 1: Integrated Components

Boundary
Controllers

Intrusion
Detection
Systems

Host Based
Responders

NAI Gauntlet
Internet
Firewall [13]

Net Squared
Network Radar
[18]

NAI Labs
Generic Software
Wrappers
Prototype [10]

Secure
Computing
Corporation
Sidewinder
Firewall [14]

SRI EMERALD
BSM and
EMERALD FTP
Monitors
Prototypes [19]

TCP Wrappers
[23]

Linux Router
[15]

U.C. Davis
Graphical
Intrusion
Detection System
Prototype [11]

IP Filter [24]

NAI Labs
ARGuE
Prototype [16]

Oregon Graduate
Institute
StackGuard [20]

NAI Labs Multi-
Protocol Object
Gateway
Prototype [17]

ORA CORBA
Immune System
Prototype[21]

 NAI CyberCop
Server and
CyberCop
Monitor [22]

 Internet Security
Systems
RealSecure [2]

 Gauntlet is a registered trademark of NAI. Sidewinder is a registered
trademark of Secure Computing Corporation. CyberCop is a registered
trademark of NAI. RealSecure is a registered trademark of ISS.

 9

6. Future Work

NAI Labs, with Boeing Phantom Works, has recently
begun an investigation into the use of active network
technology for automated intrusion response. Also,
Boeing Phantom Works, with NAI Labs, U.C. Davis, and
Silicon Defense, has just been awarded a contract to
investigate issues involved in scaling this intrusion
detection and response framework to a cyber defense
system that spans multiple administrative domains.

7. Summary

Research has only recently started in determining
appropriate strategies for automated intrusion response.
The architecture presented here provides a foundation
upon which experimentation in automated intrusion
response can be performed. This architecture enables low
cost integration of new intrusion detection technologies,
new response mechanisms, and new algorithms for
determining responses either at a local node level or at a
system level.

By providing a mechanism that collects intrusion-
related information at a central site, the IDIP architecture
also enables correlation of intrusion reports to aid in
situation understanding.

Use of CIDF’s CISL as the attack description language
provides a flexible approach to expressing new analysis
results. This will be particularly helpful in enabling
expression of correlation results.

The architecture has already proven useful in
supporting integration and experimentation with intrusion
detection and response technology within the DARPA
research community.

8. References

[1] Network Associates, Active Security,
http://www.nai.com/asp_set/products/tns/activesecurity/
acts_intro.asp/.

[2] Internet Security Systems, RealSecure,
http://www.iss.net/prod/.

[3] AXENT Technologies Inc., Intruder Alert,
http://www.axent.com/product/smsbu/ITA/

[4] Mountain Wave, Inc., “Adaptive Network Security
Management”, http://www.mountainwave.com/darpa-
report/.

[5] R. Sekar, Y. Cai and M. Segal, “A Specification-Based
Approach for Building Survivable Systems”, Proceedings
of the 21st National Information Systems Security
Conference, Arlington VA, October 1998.

[6] Rich Feiertag, Cliff Kahn, Phil Porras, Dan
Schnackenberg, Stuart Staniford-Chen, Brian Tung, “A
Common Intrusion Specification Language”,
http://www.gidos.org/, June 1999

[7] S. Kent and R. Atkinson, “Security Architecture for the
Internet Protocol”, Network Working Group, Request for
Comments 2401, November 1998

[8] OpenSSL Project, http://www.openssl.org/.
[9] LBNL’s Network Research Group, “libpcap, the Packet

Capture library”, http://ee.lbl.gov/.
[10] T. Fraser, L. Badger, M. Feldman, “Generic Software

Wrappers “Hardening COTS Software with Generic
Software Wrappers”, Proceedings of the 1999 IEEE
Symposium on Security and Privacy, IEEE, Oakland,
California, May 1999.

[11] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J.
Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, D. Zerkle,
“GrIDS -- A Graph-Based Intrusion Detection System for
Large Networks”, Proceedings of the 19th National
Information Systems Security Conference, October 1996.

[12] L. Perrochon, W. Mann, S. Kasriel, and D. C. Luckham,
“Event Mining with Event Processing Networks”,
Proceedings of the Third Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Beijing, China,
April 1999.

[13] Network Associates, Gauntlet Firewall,
http://www.nai.com/asp_set/products/tns/intro.asp.

[14] Secure Computing Corporation, Sidewinder,
http://www.securecomputing.com/.

[15] Linux, http://www.linux.org/.
[16] J. Epstein, “Architecture and Concepts of the ARGuE

Guard”, to be published in Proceedings of the 15th Annual
Computer Security Applications Conference, Phoenix AZ,
December 1999.

[17] G. Lamperillo, “Architecture and Concepts of the MPOG”,
NAI Labs Reference Number #0768, June 1999.

[18] Net Squared, Network Radar,
http://www.NetSQ.com/Radar/.

[19] Ulf Lindqvist and Phillip A. Porras, “Detecting Computer
and Network Misuse Through the Production-Based Expert
System Toolset (P-BEST)”, Proceedings of the 1999 IEEE
Symposium on Security and Privacy, IEEE, Oakland CA,
May 1999.

[20] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S.
Beattie, A. Grier, P. Wagle, and Q. Zhang, “StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks”, Proceedings of the 7th USENIX
Security Conference, San Antonio TX, January 1998.

[21] Odyssey Research Associates, Inc., “Computational
Immunology for Distributed Large Scale Systems”,
http://www.oracorp.com/Projects/Current/CompImm.htm

[22] Network Associates, CyberCop Intrusion Protection,
http://www.nai.com/asp_set/products/tns/intro.asp.

[23] TCP Wrappers http://cs-www.ncsl.nist.gov/tools/tools.htm
[24] IP Filter, http://coombs.anu.edu.au/~avalon/ip-filter.html.

	Abstract

