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Abstract 

Automated response to intrusions has become a major 
issue in defending critical systems. Because the adversary 
can take actions at computer speeds, systems need the 
capability to react without human intervention. An 
infrastructure that supports development of automated 
response systems is critically needed. This infrastructure 
must allow easy integration of detection and response 
components to enable experimentation with automated 
response strategies. This paper provides an overview of 
the Intruder Detection and Isolation Protocol (IDIP) 
architecture and how it supports the need for an intrusion 
detection and response infrastructure. 
 

1. Introduction 

Today’s information systems in government and 
commercial sectors are distributed and highly 
interconnected via local area and wide area computer 
networks. While indispensable, these networks provide 
potential avenues of attack by hackers, international 
competitors, and other adversaries. To monitor and 
protect against such threats, organizations increasingly 
deploy intrusion detection systems and network boundary 
control devices (i.e., firewalls, filtering routers, and 
guards). When suspicious activities are detected, intrusion 
detection systems alert human administrators or 
automated processes that undertake corrective action, for 
example, reconfiguring a firewall to block incoming 
traffic from offending Internet addresses or terminating 
suspicious local processes. 

Several COTS vendors have developed products that 
support intrusion response (e.g., [1], [2], and [3]). 
However these products all use proprietary protocols and 
are limited by an architecture that requires all response 
decisions to be made at a central controller. Devices such 

as firewalls are simply response mechanisms and not full 
participants in the response decision making process. 

While useful, these automated mechanisms have 
important limitations, especially when applied to large 
internetworked environments or the information 
infrastructure. First, intrusion detection systems detect 
local intrusion symptoms and can only react locally (e.g., 
by reconfiguring local boundary controllers and hosts). 
Because an attacker may cross many network boundaries, 
a response local to the target can’t identify or mitigate the 
true source of the attack, which may be several networks 
removed. Second, even if intrusion detection systems 
were capable of communicating with remote boundary 
controllers near the attacker, there is no common language 
for remotely instructing them to block selected traffic. It is 
also unlikely that intrusion detection systems would know 
enough about all such devices to be able to reconfigure 
them remotely using low-level, device-specific 
commands. Nor is it likely that the owners of such devices 
would allow it. Third, if intrusion “symptoms” are 
detected in different areas of an internetworked 
environment by different intrusion detection systems, 
current technology lacks the infrastructure and protocol 
for (1) pooling this information to allow intrusion 
correlation and (2) development and promulgation of a 
coordinated, uniform response throughout the 
environment. 

Under DARPA funding1, researchers at Boeing’s 
Phantom Works, Network Associates’ NAI Labs, and 
University of California Davis’ Computer Security Lab 
                                                 
1 This research was supported by DARPA/Rome Laboratory Contracts 
F30602-96-C-0318, F30602-97-C-0217, and F30602-97-C-0309.  
 
This paper appeared in the Proceedings of the DARPA Information 
Survivability Conference and Exposition (DISCEX) 2000, held in 
Hilton Head, S.C. on January 25-27, 2000.  Copyright  © 1999 by the 
Institute of Electrical and Electronics Engineers, Inc.  All rights 
reserved.  Reprinted with permission. 
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are jointly developing a technology to address these 
limitations. The technology consists of the Intruder 
Detection and Isolation Protocol (IDIP) and a collection 
of infrastructure components that implement IDIP. These 
components have been integrated with a variety of 
boundary control devices, hosts, and intrusion detection 
systems in testbeds at Boeing and at government sites. In 
testbed demonstrations, IDIP-enhanced networks have 
demonstrated the following automated capabilities: 
(1) cooperative tracing of intrusions across network 
boundaries and blocking of intrusions at boundary 
controllers near attack sources; (2) use of device-
independent tracing and blocking directives; and 
(3) centralized reporting and coordination of intrusion 
responses. 

The research described in this paper represents the 
beginning of research in the area of automated intrusion 
response. A small number of other research efforts ([4], 
[5]) are also underway in this area. [4] uses a more 
centralized architecture that does not attempt cooperation 
between boundary controllers in locating and isolating 
intruders. [5] is investigating methods of using operating 
system wrapper technology to perform intrusion detection 
and isolation within a host. 

This paper provides an overview of IDIP. Section 2 
presents the IDIP concept, rationale, and terminology. 
Sections 3 and 4 describe the IDIP protocol and 
associated communications security requirements. Section 
5 discusses the IDIP software architecture including the 
IDIP backplane and IDIP applications. Section 6 provides 
a summary. 

2. IDIP Concept 

IDIP is an application layer protocol that coordinates 
intrusion tracking and isolation. IDIP systems are 
organized into IDIP communities (as shown in Figure 1). 
Each IDIP community is an administrative domain, with 
intrusion detection and response functions managed by a 
component called the Discovery Coordinator. 
Communities are further organized into IDIP 
neighborhoods. These neighborhoods are the collection of 
components with no other IDIP component between them. 
Boundary control devices are members of multiple IDIP 
neighborhoods. 

IDIP’s objective is to share the information necessary 
to enable intrusion tracking and containment. Figure 2 
illustrates how IDIP accomplishes intrusion response: 
(1) when an attack traverses an IDIP-protected network, 
each IDIP node along the path is responsible for auditing 

the connection or datagram stream2; (2) when a 
component detects an intrusion attempt, the detector 
distributes an attack report to its neighbors who can then 
help trace the attack path and respond to the intrusion; and 
(3) these neighbors further distribute the attack 
description along the path of the attack. 
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Figure 1: IDIP communities 
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Figure 2: IDIP intrusion response 

Each IDIP node makes a local decision as to what type 
of response (e.g., kill the connection, install filtering rules, 
disable the user account) is appropriate based on the 
attack type, attack certainty, attack severity relative to the 
type of attack and vulnerability of components under 
attack, what other IDIP nodes have already done, and 
local policy constraints (e.g., never disable http between 
8AM and 4PM). The attack responses are appended to the 
attack description prior to forwarding the attack 
description to neighboring IDIP nodes. This enables IDIP 
to trace the attack back to the edge of the IDIP-protected 
system, taking appropriate responses at each IDIP node 
along the attack path. Nodes that receive reports from 
neighbors determine if they are on the attack path (i.e., 

                                                 
2 For brevity we will henceforth use the term connection generically to 
refer to both TCP connections and datagram packet streams. 
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whether they have seen the connection described by the 
attack report) before forwarding the attack report. 

Additionally, each IDIP node sends a copy of the 
attack report (along with the local responses) to the 
Discovery Coordinator. The Discovery Coordinator can 
then correlate reports to gain a better overall picture of the 
situation, and also issue response directives back to 
individual nodes to either remove an unnecessary 
response (e.g., firewall filtering rule), or add a response 
(e.g., firewall filtering rule along an alternate attack path). 
The Discovery Coordinator is expected to be co-located 
with the domain’s network management facilities, 
providing the Discovery Coordinator with the network 
global topology, enabling the selection of the optimal 
points in the network to block harmful connections. 

Although Figure 1 depicts only intrusion detection 
systems and boundary controllers as IDIP components, 
hosts may also participate in an IDIP system. Hosts can 
provide more fine-grained responses as they can trace the 
intrusion back to the process and user initiating the 
intrusion from the local host. When an intruder is 
performing an attack after hopping through multiple hosts, 
IDIP-enabled hosts allow the intrusion to be traced back 
through these hosts, which is not possible if only 
boundary controllers participate in the IDIP system. 

Note that allowing hosts to participate in IDIP raises 
two significant issues for the underlying protocol 
mechanisms: (1) IDIP neighborhoods may grow to be 
very large, and (2) some of the IDIP nodes may be 
significantly less “trustworthy” than others because they 
may have a number of vulnerabilities available for an 
attacker to use. Because neighborhoods may grow very 
large, IDIP is designed for multicast operation. At the 
application level, all neighborhood communication is 
multicast. This second factor implies that some IDIP 
nodes may be compromised and potentially used against 
the system. For this reason, IDIP has features that enable 
it to distinguish less trustworthy components from more 
trustworthy components. 

3. IDIP Application-Layer Protocol 

IDIP is organized into two primary protocol layers: the 
IDIP application layer and the IDIP message layer. The 
application layer protocol accomplishes intrusion tracking 
and containment through three major message types: 
(1) trace, (2) report, and (3) Discovery Coordinator 
directive. 

An IDIP trace request message is sent when an event 
or event sequence is detected that is determined to be 
sufficiently intrusive to warrant a response (which may be 
to trace the events or to trace and block the events). The 
trace request message includes a description of the event, 

including a description of the connection used by the 
intruder. This information is used by each IDIP node that 
receives the trace request to determine if the attack 
passed through the node. At each hop in the path, there is 
a possibility that this description may need to be modified 
due to network address translation, firewall proxies, or a 
user passing through a host. The protocol supports 
translating the attack description by appending a 
translation record to the end of the trace message. This 
allows tracing through hosts, firewalls, and routers. The 
limitation is that once a non-IDIP component that 
modifies the connection is reached, the connection can be 
traced no further. Note that the tracing mechanism is 
based on what the components have seen and recorded in 
their audit trail, rather than based on network routing 
tables or other dynamic network state. This approach also 
enables tracing of connections that spoof source 
addresses. 

In the trace message, the detector specifies whether 
this event requires blocking in addition to tracing. Each 
node receiving the trace message is not obligated to 
perform the specified blocking rules, but all must perform 
the trace function. Local nodes can either use the 
suggested blocking or take some other node-specific 
action based on local policy. Blocking can be inserted for 
a limited time or until the system administrator reverses 
the action. When timed blocking rules are applied, the 
IDIP software monitors the clock to determine when to 
remove the blocking rule. Most of the responses taken by 
IDIP components are capable of being reversed. They are 
viewed as short-term reactions to provide system 
administrators time to perform whatever damage 
assessment and recovery actions are required. In the 
current implementation, the node responses to trace 
messages will typically block traffic for a short duration 
(e.g., a few minutes) to provide time for the Discovery 
Coordinator to determine an optimal response. 

An IDIP report is simply a copy of a trace message 
that is sent to the Discovery Coordinator by each 
component that receives a trace message. This enables 
the Discovery Coordinator to both discover the attack 
path and to determine an optimal global response based 
on mission constraints. 

To help prevent flooding the IDIP network with trace 
and report messages, repeated detection events are 
accumulated at the detector and sent as a single summary 
report. 

Once the Discovery Coordinator has determined an 
optimal response, it sends directives out to nodes whose 
response requires altering. There are two types of 
Discovery Coordinator directives: (1) an undo message 
requests that the node reverse a previously taken IDIP 
blocking action (e.g., open up a service that was blocked 



 4

at a firewall) and (2) a do message to take another action 
(e.g., extend the duration of a blocking rule). The 
Discovery Coordinator may request any action supported 
by the local response component, such as disable a user 
account or modify a host’s policy. If the Discovery 
Coordinator is co-located with the system network 
management infrastructure, then the Discovery 
Coordinator can use the network management resources 
to take actions at non-IDIP components. 

The Discovery Coordinator represents a single point of 
failure in the IDIP system, which makes it a target for 
denial of service attacks. If the Discovery Coordinator is 
not available for directing an optimal response, IDIP 
nodes can take increasingly severe responses to repeated 
attacks, reducing the reliance of IDIP on Discovery 
Coordinator actions. 

To support communication between the varied IDIP 
components requires a flexible and extensible language. 
IDIP uses the Common Intrusion Specification Language 
(CISL) [6] developed by the Common Intrusion Detection 
Framework (CIDF) working group as the language for 
describing attacks and responses. This language includes 
terms for describing the blocking actions used in the 
current IDIP implementation, and can be easily extended 
(by adding new terms) to support additional responses as 
they are developed. IDIP currently uses only two actions: 
block and allow. These can be used with various objects 
(e.g., users, processes, messages, or connections) to cause 
a number of different responses. Multiple block and allow 
actions can be specified in one message, each action 
having its own objects against which to apply the action. 
As an example, a “block user” message is interpreted as a 
request to stop that user from doing anything. A “block 
user and connection” message is interpreted as a request 
that the user be prevented from using the specified 
connection. Connection information includes protocol, 
source address, source port, destination address, and 
destination port. Any of these parameters may be 
wildcarded. Response messages can also include a 
specification of when to start and stop the actions. 

4. Cryptographic requirements 

Perceived threats to IDIP include falsification of data, 
one component assuming the identity of another 
component, or eavesdropping. If a component can 
masquerade as an IDIP component, or modify IDIP 
messages, there is an opportunity for both (1) disabling 
detection and response mechanisms or (2) severe denial of 
service attacks on the system through malicious 
manipulation of automated response mechanisms. This is 
no different than the threat to a system using remote 
management services as these services become a good 

target for an adversary. Eavesdropping is a concern 
primarily in hiding from attackers the details of what was 
detected and what automated responses are being taken. 

The basic requirements for IDIP cryptography include 
the following. 
•= Efficient cryptography for messages (e.g., trace 

messages) that must be sent to each node in a 
neighborhood. To minimize computational overhead, 
encryption and generation of integrity checksums for 
an IDIP message should occur once for each 
multicast transmission to the neighborhood. This is 
important because an IDIP neighborhood could grow 
quite large. This approach results in the cost of 
applying cryptography to messages for very large 
neighborhoods requiring the same amount of time as 
a message going to a small neighborhood. This 
approach also supports use of multicast operation for 
IDIP neighborhoods: each trace message is 
encrypted once and either unicast or multicast to the 
neighborhood. 

•= Support for multicast, including multicast key 
distribution. For efficient operation, IDIP message 
layer provides a multicast interface to IDIP 
applications. To provide cryptographic protection of 
the multicast IDIP messages requires support from 
the key distribution mechanisms. That is, the key 
distribution mechanism must be capable of providing 
to the multicast group the shared keys used for 
encryption and generation of integrity checksums. 

•= Minimal impact on IDIP message size, as each IDIP 
message must fit within one UDP datagram which is 
64 kilobytes. 

•= Availability on multiple platforms, including 
Solaris, BSD/OS, Linux, and Windows NT. 

•= Ease of integration. 
•= Support for multiple multicast groups within a 

neighborhood (e.g., to segregate key sharing 
relationships among boundary controllers from those 
involving less secure hosts). 

•= The number of messages for key change, due to key 
refresh or a change in the neighborhood membership 
should not noticeably affect normal IDIP message 
flow. 

5. Software Architecture 

The two primary objectives for the IDIP software 
architecture were (1) ease of integration with various 

                                                 
 Solaris is a registered trademark of Sun Microsystems, Inc. BSD/OS 
is a registered trademark of Berkeley Software Design, Inc. Linux is a 
registered trademark of Linus Torvalds. Windows NT is a registered 
trademark of Microsoft Corporation. 
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components and (2) flexibility in modifying the generic 
component behavior for specific components. The 
concept supports integration of boundary controllers, 
network and host-based intrusion detection systems, 
clients, servers, and network management components. 

The IDIP software was designed for portability and is 
currently executing on Solaris, BSDI, Linux, and 
Windows NT platforms. Operating system dependencies 
were minimized during the development and have been 
encapsulated in a single file. 

The IDIP software components consist of the IDIP 
backplane and IDIP applications. IDIP applications 
developed to date include a generic agent and various 
Discovery Coordinator applications. These components 
are described below. 

5.1. IDIP Backplane 

The IDIP backplane executes on all IDIP nodes, 
providing reliable, secure communication between IDIP 
applications. Figure 3 depicts the IDIP backplane showing 
the message layer, with neighborhood management, 
cryptographic key management, and cryptographic 
services. The message layer provides the following 
services. 
•= Reliable message delivery, including duplicate 

message removal. 
•= Multicast messaging. 
•= Hop-by-hop message authentication and privacy. 
•= Tracking of neighbor clock delta from the local 

clock. 

IDIP Message Layer
    Reliable Delivery
    Duplicate Removal
    Multicast Support
    Time Management
    Message class
      subscription

Neighborhood Management
   Node status

Key Management

IDIP Cryptographic Services
    Authentication
    Integrity
    Privacy

User Datagram Protocol
Internet Protocol

IDIP Application

IDIP Backplane

Figure 3: IDIP backplane architecture 

The IDIP message layer provides a socket-based 
interface to the application layer, enabling easy 
integration of new applications. An application subscribes 

for the message classes it needs, and the message layer 
delivers all messages of that class (including locally 
generated messages) to the application. This provides a 
local multicast capability that allows multiple applications 
on an IDIP node to share intrusion-related information. 

The message layer provides reliable delivery over 
UDP through a simple acknowledgement mechanism. The 
message layer multicast functionality was designed to use 
IP multicast, but currently uses IP unicast services to send 
to each neighbor. It provides a multicast interface to the 
application layer regardless of whether the underlying 
implementation uses IP multicast or not. The time 
difference between neighbors is determined and adjusted 
using round-trip propagation delay of messages and is 
used by IDIP applications to adjust local time-related 
portions of messages, such as the time that an attack 
occurred. Each message has a unique message identifying 
number, so duplicate messages are not processed. 

Neighborhood management includes maintaining status 
on each IDIP neighbor and forwarding that status to the 
Discovery Coordinator when it changes. An objective that 
has not yet been implemented is for this protocol to 
perform neighbor discovery. The implementation 
currently uses a list of neighbors provided by the 
Discovery Coordinator. The neighborhood management 
function provides other message layer components with 
notification messages when neighbors are added and 
deleted, detected via periodic “heartbeat” messages sent 
between neighbors. 

During IDIP development there were no cryptographic 
mechanisms available that met the full set of requirements 
described in Section 4. This led to the development of a 
protocol for IDIP message protection modeled after IP 
Security (IPSec) [7], with a simple protocol for multicast 
key distribution. This development was facilitated through 
use of the open source cryptographic library from 
OpenSSL [8] for developing IDIP cryptographic services 
and key management software. This library is available 
for most platforms, which supports the portability 
requirements. Keeping the IDIP key management scheme 
as simple as possible reduced the number of 
implementation errors. 

5.2. IDIP Applications 

The IDIP applications manage the IDIP message 
content that is sent or delivered by the IDIP backplane. 
One IDIP node in a community executes the Discovery 
Coordinator application. All IDIP nodes execute an IDIP 
agent application. 

5.2.1. IDIP generic agent. The IDIP generic agent 
application provides a framework for building 
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component-specific detection and response engines. As 
shown in Figure 4, the generic agent provides the IDIP 
application protocol, the interface to local detection and 
response mechanisms, and the processing of the IDIP 
audit data. 

IDIP Generic Agent
    Message processing
    Connection search
    Cost model

Component-Specific Functions
    Service blocking

IDIP Backplane

IDIP Detection
Interface

IDIP Audit

IDIP
Audit
Data

Figure 4: IDIP Generic agent architecture 

The generic agent software is designed to minimize the 
cost of new component integration. Figure 4 shows the 
IDIP agent application architecture with the component-
specific routines highlighted. Figure 4 also shows two 
additional IDIP processes that support the IDIP agent. 
•= IDIP detection interface. The detection interface 

process provides a simple bridge from the local 
detection system to the socket-based interface of the 
IDIP agent. The detection system (or a simple 
wrapper) writes intrusion alerts to a local file in an 
IDIP standard format (ASCII-formatted strings of 
name-value pairs). The detection interface process 
reads the alerts and forwards them over a socket to 
the generic agent. Using a file interface between the 
detection system and IDIP has simplified integration 
by allowing detection component wrappers to be 
developed and validated without the developer being 
required to install and run the IDIP software. This 
interface has also reduced integration debugging 
costs, as the file provides a good record of the 
messages between the detection system and IDIP. 
Detection systems that already produce CISL-
formatted output can bypass this process by writing 
output directly to the IDIP backplane. 

•= IDIP audit. The audit process monitors connections 
to and from the local node and records this traffic in 
the IDIP audit data format. This software is based on 
a public domain package (libpcap [9]) for monitoring 
IP datagrams, which is available on most UNIX 
platforms. This process stores connection data in 
shared memory, which can be read by the generic 
agent. As connections end, the connection record is 

                                                 
 UNIX is a registered trademark of X/Open Company, Ltd. 

written to an audit file. This auditing mechanism is 
adequate for most IDIP needs, however, when two 
distinct connections represent the same data stream, 
additional auditing is required to connect the two data 
streams. For example, typically a connection through 
a firewall proxy will have different source ports for 
the connections entering and leaving the proxy. The 
audit process records these as two separate 
connections. The proxy must record that these two 
connections are related. For devices that perform 
network address translation, the address translation 
mechanism must record that the original and 
translated connections are related. Likewise, when an 
attacker hops through multiple hosts, they must 
record the relationship between the inbound and 
outbound connections to enable tracing the attack 
through the host. 

The generic agent process is designed to support 
detection-only components (e.g., network-based 
detectors), response-only components, and components 
that perform both detection and response. 
•= Detection functions. For detection, the generic agent 

supports reception of detection events from intrusion 
detection systems, as well as other significant 
intrusion-related data (e.g., denied access to local 
host resources). For pure detection components, no 
component-specific functions are needed in the 
generic agent. IDIP trace messages are initiated at a 
node when a local intrusion detection system detects 
an anomaly and reports the attack to IDIP via the 
local detection interface process. For these locally 
detected attacks, the IDIP agent creates the IDIP 
trace message to send to its neighbors. The IDIP 
trace message includes a description of the anomaly, 
a value indicating how certain the detector is of this 
attack, a severity value based on the potential 
services lost from this attack, and a requested 
response. The certainty value is obtained by the agent 
from a configuration table for the detector. This 
configuration table represents an estimate of the false 
positive values for each attack type. One problem 
encountered is that this value is highly dependent on 
the local environment and the configuration of the 
detector, so that it must be calibrated whenever either 
of these changes. The severity value is generated 
from a simple “cost model” representing the cost to 
the system’s mission of losing the services affected 
by the attack. Penetration attacks are always rated a 
high severity as they could lead to further lost 
services if the penetration leads to further attacks. For 
the trace message to be sent, the severity and 
certainty must combine to exceed configurable 
threshold values. The IDIP agent also has a 
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mechanism to accumulate repeated reports of the 
same detection events into a summary report. The 
first detection event is reported. Subsequent events 
are accumulated until either a time or event count 
threshold is reached, at which point the agent reports 
the summary event. This helps prevent a continuing 
attack from flooding other IDIP nodes. 

•= Response functions. For response, the generic agent 
executes the IDIP application layer protocol and 
performs local response actions. The agent receives 
IDIP trace messages from neighbors and directives 
from the Discovery Coordinator. 
��Trace message processing. For trace messages, 

generic agents use the IDIP audit data to 
determine if they are in the attack path. If so, the 
agent executes the decision logic to determine 
the appropriate response. The agent uses a cost 
model of network resource values to determine 
the system mission cost of taking the action 
requested in the trace. If the cost of the response 
action (in terms of lost services) is less than or 
equal to the cost of the attack (derived from the 
certainty and severity in the trace message), then 
the response is taken. Additional policy 
constraints can be placed on the response to 
ensure that critical services are not disabled for 
long periods of time unless they are already lost 
to the attack. Although the trace message 
specifies the detector’s desired blocking action, 
the local node may perform a different action if 
local policy determines a better response. Most 
of the trace-initiated responses in the current 
implementation are short-lived (on the order of 
minutes), with the objective of providing the 
time needed for the Discovery Coordinator to 
develop a better global response. When attacks 
continue, however, these trace-initiated 
responses can be escalated to provide longer-
term response actions. 

��Discovery Coordinator directive message 
processing. On determining the optimal system-
level response, the Discovery Coordinator sends 
do messages to nodes requiring additional 
blocking actions, and undo messages to nodes 
whose initial responses are no longer required. 
Discovery Coordinator do messages include a 
specification of both “block” and “allow” rules, 
which can be used on objects such as 
connections or users. The combination of both 
block and allow rules in a single message enables 
specification of responses such as “block all 
network traffic except management services.” 

5.2.2. Custom IDIP responders. The generic agent 
supports a flexible set of primitives that can be used to 
support a number of different responses. Although the 
generic agent provides most of the functionality required 
in many response components (e.g., boundary 
controllers), the framework allows for building 
component-specific response engines. 

For IDIP agents that perform some response, there are 
two major component-specific functions required: 
(1) perform a blocking action, and (2) undo an IDIP 
blocking action. Note that blocking actions can have a 
different meaning for different component types. For a 
firewall agent, “block connection” means killing the 
connection and adding a filtering rule disallowing similar 
connections. This requires firewall-specific functions to 
add the appropriate filtering rule. Within a host the same 
“block connection” request may require reconfiguring the 
network services to disable a service. 

Beyond these actions, a component may provide other 
component-specific response routines to perform more 
elaborate responses in specific situations. These routines 
are accessed by the generic agent for each trace and 
Discovery Coordinator directive. For example, in a 
system running an operating system wrapper technology 
[10], a suitable response might be to change wrapper 
policies on specific detection events. CISL provides a 
flexible language for specifying actions on a number of 
objects (e.g., process, user, message, connection). Using 
CISL, new responses can be developed and carried over 
the IDIP system without changing the infrastructure. 

5.2.3. Discovery Coordinator applications. When an 
IDIP node sends or processes a trace message it sends a 
copy of the attack description and responses to the 
Discovery Coordinator in an IDIP report message. This 
enables the Discovery Coordinator to know the path of the 
attack and the response taken by each component along 
the attack path. The Discovery Coordinator also has 
access to other system-wide information, such as topology 
and component vulnerabilities. Thus the Discovery 
Coordinator has the information necessary to support 
situation understanding and generation of a system-level 
optimal response. 

The Discovery Coordinator has a very flexible 
architecture allowing easy integration of new components. 
This is essential because cyber situation understanding 
and system-level course of action generation are not yet 
well understood. As depicted in Figure 5, the Discovery 
Coordinator can support multiple application processes to 
perform various system-level functions. 
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Figure 5: Discovery coordinator application view 

Discovery Coordinator core services include those 
functions that need to be shared throughout the Discovery 
Coordinator applications to maintain consistent system 
behavior. 
•= Data management. 
•= Situation display. 
•= Access to network management. 
•= Response policy management. 

The response concept is for multiple response engines 
to propose their optimal responses and the response 
manager to select the response from the component best 
able to handle the specific situation. Although the 
architecture supports multiple response engines, the 
current implementation uses a single response engine that 
searches for the optimal system response based on a cost 
model of network resource values. The engine (developed 
by U. C. Davis) uses the system topology to determine all 
locations where a specific attack might be blocked, and 
then determines which location and blocking rule 
minimizes the overall cost to the system’s mission. This 
cost model also reasons about user accounts with simple 
rules that determine when a user account should be 
disabled based on whether the account appears 
compromised. 

To aid in situation understanding, multiple correlation 
engines can be employed. The IDIP backplane and 
Discovery Coordinator application programmers interface 
(API) allow each correlation engine to receive all attack 
reports from the system. These correlation engines may 
also produce attack reports that would be visible by other 
Discovery Coordinator processes. At this time, four 
correlation engines have been integrated into the 
Discovery Coordinator: (1) a simple process that attempts 
to combine multiple reports of the same event into a 
single report; (2) Graph-based Intrusion Detection System 
(GrIDS [11]), which combines reports based on graph 
algorithms to locate coordinated distributed attacks; (3) a 
Perl-based component developed by Silicon Defense that 

filters out false positives by looking for corroboration of 
attack reports for events known to represent false alarms; 
and (4) the Stanford Complex Event Processor [12]. 

5.3. Integrated Components 

A number of components have been integrated with 
IDIP including boundary controllers, intrusion detection 
systems, and host security mechanisms. Both COTS 
products and research prototypes have been used for 
demonstrations and experiments. Table 1 shows the 
current components integrated with IDIP. 

Table 1: Integrated Components 

Boundary 
Controllers 

Intrusion 
Detection 
Systems 

Host Based 
Responders 

NAI Gauntlet 
Internet 
Firewall [13] 

Net Squared 
Network Radar 
[18] 

NAI Labs 
Generic Software 
Wrappers 
Prototype [10] 

Secure 
Computing 
Corporation 
Sidewinder 
Firewall [14] 

SRI EMERALD 
BSM and 
EMERALD FTP 
Monitors 
Prototypes [19] 

TCP Wrappers 
[23] 

Linux Router 
[15] 

U.C. Davis 
Graphical 
Intrusion 
Detection System 
Prototype [11] 

IP Filter [24] 

NAI Labs 
ARGuE 
Prototype [16] 

Oregon Graduate 
Institute 
StackGuard [20] 

 

NAI Labs Multi-
Protocol Object 
Gateway 
Prototype [17] 

ORA CORBA 
Immune System 
Prototype[21] 

 

 NAI CyberCop 
Server and 
CyberCop 
Monitor [22] 

 

 Internet Security 
Systems 
RealSecure [2] 

 

                                                 
 Gauntlet is a registered trademark of NAI. Sidewinder is a registered 
trademark of Secure Computing Corporation. CyberCop is a registered 
trademark of NAI. RealSecure is a registered trademark of ISS. 
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6. Future Work 

NAI Labs, with Boeing Phantom Works, has recently 
begun an investigation into the use of active network 
technology for automated intrusion response. Also, 
Boeing Phantom Works, with NAI Labs, U.C. Davis, and 
Silicon Defense, has just been awarded a contract to 
investigate issues involved in scaling this intrusion 
detection and response framework to a cyber defense 
system that spans multiple administrative domains. 

7. Summary 

Research has only recently started in determining 
appropriate strategies for automated intrusion response. 
The architecture presented here provides a foundation 
upon which experimentation in automated intrusion 
response can be performed. This architecture enables low 
cost integration of new intrusion detection technologies, 
new response mechanisms, and new algorithms for 
determining responses either at a local node level or at a 
system level. 

By providing a mechanism that collects intrusion-
related information at a central site, the IDIP architecture 
also enables correlation of intrusion reports to aid in 
situation understanding. 

Use of CIDF’s CISL as the attack description language 
provides a flexible approach to expressing new analysis 
results. This will be particularly helpful in enabling 
expression of correlation results. 

The architecture has already proven useful in 
supporting integration and experimentation with intrusion 
detection and response technology within the DARPA 
research community. 
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