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Abstract
Cooperative frameworks for intrusion detection and
response exemplify a key area of today’s computer
research: automating defenses against malicious attacks
that increasingly are taking place at grander speeds and
scales to enhance the survivability of distributed systems
and maintain mission critical functionality. At the
individual host-level, intrusion response often includes
security policy reconfiguration to reduce the risk of
further penetrations. However, runtime policy changes
may cause traditional software components, designed
without (dynamic) security in mind, to fail in varying
degrees, including termination of critical processes. This
paper presents security agility1, a strategy to provide
software components with the security awareness and
adaptability to address runtime security policy changes,
describes how security agility is packaged in a prototype
toolkit, and illustrates how the toolkit can be integrated
with intrusion detection and response frameworks to help
automate flexible host-based response to intrusions.

1.�Introduction

Attacks against distributed systems that compose our
technological infrastructure are increasingly taking place
at speeds and scales that decrease the effectiveness of
human response. To increase the survivability of critical
systems and maintain mission crucial functionality, much
of today’s computer security research, including
cooperative frameworks for intrusion detection and
response, seeks to develop automated defenses capable of
rapid, intelligent responses to address attacks and
anomalies as they occur. Two fundamental host-based
responses to attacks, the primary focus of this paper, are
discrete administrative actions (e.g., killing processes)
and security policy reconfiguration to reduce the risk of
furthers penetrations. However, dynamic policy changes
may degrade a system’s functionality because traditional
software components, designed without (dynamic)
security in mind, often exhibit shortcomings when
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confronted with policy changes that alter their execution
environment in unexpected ways. For example, programs
may crash or fail silently when critical resources are no
longer accessible or they may allow the continuation of
processing in violation of new security rules.

As a specific illustration, consider the TCP Wrappers
[1] program commonly employed on UNIX2 system-
based hosts. This process enforces an access control
policy on receipt of service requests to restrict hosts
and/or users that can connect to local network services.
When a runtime modification of its file-based policy
restricts additional hosts/users from service use, the new
policy will mediate access on subsequent service
requests. However, since previous security decisions are
“grandfathered”, services initiated before the change may
continue in violation of the new policy rules. Without
human intervention to terminate violating processes,
those services will persist, allowing possibly malicious
entities to continue their exploits. The UNIX logging
daemon, syslogd provides another example of a process
that may be negatively affected by dynamic policy
changes. Syslogd records important events to log files
during system operation, such as failed login attempts and
attempt to gain the specially privileged root user access.
However, should an error occur while writing information
to a file, as might be produced by tightening an access
control policy, syslogd will cease attempting to output
further information to that file. Thus, subsequent
information, which might be critical in nature, will be lost
even after proper access to the file is restored. Similar
issues abound in many other processes that are sensitive
to changes in security policies and functions, such as
cryptographic algorithms, discretionary access control
schemes and enhanced access control policies (e.g.,
information disclosure policies, integrity policies, and
firewall configuration policies).

Security agility [2] is a software flexibility technique
that extends the functionality of software components to
accommodate the dynamic security properties of their
environment. An agile software component (process) is
aware of its security environment, is able to enforce “its
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part” of a more global policy, and contains internal
mechanisms that can adapt its functionality to reliably
conform to authorized policy changes. Security agility
can be provided in a toolkit for software developers or, in
many cases, added via wrappers [3] without recompiling
software. We have developed a Security Agility Toolkit3

for UNIX-based platforms (whose general techniques can
be extended to Windows NT4), that combines elements of
both approaches. The toolkit unobtrusively integrates into
a host’s environment and transparently provides a variety
of prepackaged functionality for both mission-specific
and standard system processes without requiring source
code modification or recompilation. Additionally, the
awareness and adaptive techniques provided by the
toolkit can be customized to meet the specific needs of
individual components and/or the security environment in
which they are deployed.

The Security Agility Toolkit can also elevate a host’s
level of effective responses to intrusions that to date have
been quite limited (e.g., kill offending processes). In part,
this limited capability may reflect basic limitations in
current-generation software. If components were more
flexible and expressive with regard to security policies,
we believe more practical response choices would be
available. The toolkit provides the means to integrate
such capabilities into processes to realize more flexible
intrusion-tolerant systems without requiring human
intervention at the critical period when attacks take place.

Our proposal to integrate intrusion detection and
security agility assumes the presence of a framework for
intrusion detection and response information exchange,
such as proposed by the Common Intrusion Detection
Framework (CIDF) working group [9] and the Intrusion
Detection Working Group (IDWG) ([11], [12]) of the
Internet Engineering Task Force (IETF). These
frameworks include intrusion detection systems, event
analysis, and response units that share information using
expressive languages. The information exchanged
includes general intrusion detection events (e.g., scan and
probe activity, buffer overflow attacks), discrete response
directives (e.g., copy, move, or delete files; suspend,
resume, or terminate processes), and response directives
of a more continuous nature (e.g., account auditing and
message blocking). The Intrusion Detection and Isolation
Protocol (IDIP) [13] provides a concrete example of an
intrusion detection and response framework. In addition
to tracing intruders to the point of origin, IDIP
incorporates elements of the CIDF, including its Common
Intrusion Specification Language (CISL) [10], to marshal
response units. In such a framework, the Security Agility
Toolkit can be utilized as a response unit on individual
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hosts to automate discrete response directives, help
automate policy changes based on the information
exchanged, and provide component adaptation to policy
changes. We intend to construct a simple simulation
testbed to demonstrate these security agility response
capabilities to further enhance the survivability of
systems under attack.

This paper presents an overview of security agility,
discusses security agility response capabilities, and
provides a scenario to demonstrate how the security
agility response capabilities can be integrated with a
framework for intrusion detection and response
information exchange. Finally, this paper presents the
implementation of the Security Agility Toolkit, discusses
related work, and presents some possible future security
agility enhancements.

2.�Security agility and its response overview

The security policy awareness and adaptability
provided by security agility was designed to be applicable
to the many execution contexts and security semantics
that may comprise a heterogeneous distributed execution
environment. To attain this goal, the Security Agility
Toolkit employs a two-fold strategy to overcome
heterogeneity obstacles. First, it limits the problem space
by embedding processes with pre-formulated security
policy models and mechanisms to support security
reconfiguration. Second, it provides a flexible component
software architecture that can be extended to support
additional security semantics and execution contexts and
supports dynamic code extensions to add or change
security-relevant behavior to maintain compatibility with
new security rules. We consider some aspects of each
strategy in the following paragraphs and provide
additional toolkit implementation details in section 4.

Domain and Type Enforcement (DTE) [4], an
elaboration of type enforcement [5], was chosen as the
embedded policy model to base initial security agility
research on for reasons that included its common
organization with other important security models5 and its
robust UNIX prototype that supports dynamic policy
change. Another important feature of the DTE kernel-
based access control mechanism is its implicit attribute
management framework that was developed as a non-
invasive means of associating DTE security attributes on
unmodified file system hierarchies. Our toolkit employs a
modification of this framework to help implement an
expressive and flexible embedded dynamic application-
level policy model that provides components running on
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DTE and non-DTE systems a basis for uniform and
unobtrusive security decisions. Like TCP Wrappers, the
application policy model, referred to as the Access
Decision Function (ADF), provides an additional layer to
a “defense-in-depth” strategy. Moreover, the toolkit can
reevaluate prior ADF policy decisions when its rules
change to support the current environment.

The Security Agility Toolkit’s architectural goals are
carried out by three primary elements: an agile policy, an
AGility Authority (AGA), and an agility subsystem.
Together, these elements also provide much of the
infrastructure to support the toolkit’s intrusion response
capabilities. The agile policy, which is entered on a per-
host basis, specifies the embedded security models,
application-level security policy rules, and dynamic code
extensions for a host’s agile components. The agility
authority provides the policy management service for a
host, including the run-time representation of its agile
policy. The agility subsystem is a collection of interactive
libraries that are grafted onto components to perform all
the security-specific processing directed by the agile
policy. The subsystem libraries contain the embedded
policy models and the control framework to transition
component-specific processing to the subsystem when
key runtime events occur, such as access to external
resources (e.g., system calls, retrieval of password
information) and after policy changes take place. The
subsystem’s primary libraries are structured in object
oriented classes to support security semantic extensibility,
such as the inclusion of additional embedded security
policy models or cryptographic algorithms. By
coordinating agile policy modifications and underlying
security policy changes (e.g., DTE) with the toolkit’s
agility authority, agile components’ security services can
be reconfigured during runtime. To assist in this
coordination of security agility in distributed systems, an
additional toolkit component, the AGility Authority
Manager (AGAM), has been developed to provide a
centralized service for policy entry and distribution6.

Figure 1 shows our approach to integrate security
agility into an intrusion detection and response
information exchange framework. Response functionality
will be inserted into both the agility authority and the
agility authority manager components, which run as
privileged processes. The AGAs will immediately invoke
discrete response directives (e.g., delete file X) and
coordinate continuous response directives (e.g., audit user
joe) with agile components with minimal latency. The
AGAM and the AGAs will extract response directives
and other information exchanged in the intrusion
detection framework (e.g., events such as probes, scans,
and specific attacks) into additional security policy rules
                                                          
6 The prototype’s runtime policy distribution is not secured. For an
operational system, authentication and encryption would be added.

and dynamic code extensions. Policy changes directed by
the AGAM will be forwarded to the appropriate hosts’
agility authorities in the distributed system, while the
AGA will monitor events for policy changes that will take
effect on the host it serves. The dynamic policy changes
produced by this approach can help safeguard the entire
system against related attacks and extend detection and
deterrent capabilities.

While it is clear that a privileged process can be
designed to implement many discrete response directives,
the more interesting and challenging portion of
integrating the Security Agility Toolkit into intrusion
detection and response frameworks lies in the policy
reconfiguration capabilities the toolkit can provide. There
are a number of questions concerning policy
reconfiguration that must be answered, including:

�� How does security agility make components more
flexible and expressive with regard to security
policies to enable more practical response choices?

�� How can the toolkit use general response directives
and additional detection and response information to
enable defensive security policy changes?
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�� How can the Security Agility Toolkit assist in
supporting the continuation of vital mission
processing when defensive policy changes occur?

�� How can automated policy changes be implemented
with confidence?

�� Can the toolkit fully automate policy changes based
on information exchanged in an intrusion detection
and response framework?

The next section addresses these questions by
describing the toolkit’s policy reconfiguration response
capability and providing a scenario to illustrate their use.

3.�Security agility intrusion response

Our goal in proposing to integrate the Security Agility
Toolkit into an intrusion detection and response
framework is to provide automated policy changes in
response to intrusions for many execution environments.
In the context of the toolkit, policy changes refer to both
embedded security policy modifications and
reconfiguration of dynamic code extensions to adapt to
new policy states. It is this combination of policy
awareness, enforcement, and adaptation the toolkit
provides that enables more practical response choices.
Since the Access Decision Function (ADF) is applicable
to heterogeneous environments, our discussion of
dynamic security policy changes will focus on the ADF
policy model, although similar techniques could be
developed for other dynamic security policy models, such
as DTE, that are specific to more limited environments.
We provide a closer look at the agile policy introduced in
section 2 since it provides the complete specification of
policy changes we will consider.

A host’s agile policy specification consists of the
construction of policy “statements” from pre-formulated
rule-sets to direct the agility subsystem’s security relevant

component processing. As shown in Figure 2, the rule-
sets are classified into two primary categories: the ADF
policy and dynamic code extension specifications. Figure
2 shows the general text form of the rule-sets used to
construct policy statements, although the statements are
actually written using an agile policy language
representation of the text. The rule-sets consist of an
action item and a description of the action, though not all
the description fields will be relevant for all actions. Each
rule-set will be extended to include a when description
field, or activation criteria, to help automate the
enforcement of rules based on identified conditions (e.g.,
“deny except tom root privilege when ID event X is
received”). The following paragraphs examine each
category of agile policy rule-sets.

ADF policy - The ADF security policy provides agile
components with application-level access control
based on the actions deny and deny except. A “deny
except” action is the equivalent of an “allow only”
option to express limited access rules that are difficult
to specify with the deny action (e.g., allowing only the
administrator write access to password files). Security
attribute association is an important part of security
specification and enforcement for any policy model,
including the ADF model, though it is often an
administrative “killer” in security enhanced systems.
However, the ADF policy representation leverages a
modification of the Domain and Type Enforcement
(DTE) [4] implicit attribute management framework
to unobtrusively associate security attributes with
hierarchically organized objects (e.g., directories and
files) in the address space of an agile process. To help
support fine-grain ADF rule statements for intrusion
response, the ADF policy extends the DTE implicit
labeling of objects to allow labels to be associated
with specific file types (e.g., binary files, shell scripts,
etc.) and supports time-activation and deactivation of
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labels. Combining the description and object labeling,
the ADF policy can be used, for example, to deny the
execution of binaries for an hour after creation.

dynamic code extensions - Dynamic code extensions
provide components with security policy awareness,
enforcement, and adaptive functionality and can also
extend a component’s processing for such events as
auditing or encryption. Run is the only action directive
for this rule-set, however, it is not required to
implement every dynamic code extension. For
instance, when ADF policy statements are associated
with a process, its agility subsystem will
automatically invoke internal code extensions that
consult the embedded policy model for access
decisions. ADF policy enforcement is an example of
the toolkit’s prepackaged code extensions that provide
default functionality without requiring any further
development. Additional default functionality
includes embedded auditing capabilities, resource-
state tracking to revisit grandfathered decisions on
policy change, and default adaptive behaviors to
implement when resource accesses are denied (e.g.,
wait until available, ignore errors, internally buffer
data, terminate, suspend, and resume processing).
Dynamic code policy statements can take advantage
of the toolkit’s embedded default functionality,
supplement default processing by associating custom
functions with resources, or use the “in place of”
statement field to completely replace the default
functionality associated with specific function calls
with customized processing. Using the UNIX system
logging function syslogd, a statement that uses default
processing might look like “run wait on access failure
of all system calls to all resources for
/usr/sbin/syslogd”. Similarly “run
/agility/msgs:msg_callback on access failure of write
to /var/log/messages for /usr/bin/syslogd” would
invoke the msg_callback function when a write to
messages file fails. The msg_callback function might
be used to write log events to a secondary file until the
original /var/log/messages file is again available.

Insightful code extensions will be a key in enabling
defensive security policy changes that may be
required to respond to general intrusions and
anomalies. For example, extensions to suspend,
resume, or terminate connection-oriented processes
may be included as statements in a defensive policy
specification that automatically trigger according to
specified activation criteria. However, UNIX servers
that validate connection attempts (e.g., telnetd or
rshd) typically authenticate a client’s credentials
without retaining the information. Dynamic code
extensions to capture and retain this information for

such processes will be needed to re-authenticate
connections when security policy changes occur.
Similarly, allowing critical processes to continue
functioning to the fullest extent possible when policy
changes occur can be accomplished by introducing
well defined dynamic code extensions, such as those
that use alternative resources and/or algorithms (e.g.,
the previous paragraph’s /agility/msgs:msg_callback
function).

The toolkit will automate agile policy changes to
counter intrusion detection events to the greatest extent
possible. Toolkit functionality can be directly used to
automate a subset of policy changes, (e.g., suspend all
processes for user sue when a response directive specifies
termination of a user sue process, enable fine-grain
auditing when a directive orders an account audit of user
joe). For such constrained policies, automation consists of
specifying a set of rules that adequately cover a policy
space of concern, and automatically triggering the rules
when their enabling conditions become true. Complete
automation of less constrained changes, however, is a
subject of ongoing research. For example, complete
automation of policies that inject new code into running
components would require significant advances in
software specification and composition techniques. To
increase adaptability without waiting for such changes,
we have formulated an approach to transition an agile
system between pre-specified comprehensive agile
policies.

Our approach is to provide a three-tiered strategy to
allow an operator to specify the agile policy that will be
enforced based on the current environment. First, it will
allow the operator to define the agile policy in multiple
levels (e.g., normal or alert) that contain rule-statements
to address varying degrees of security postures. Second,
the activation criteria of the agile policy rule-statements
will support specification of explicit rules to be
automatically enforced when anticipated events occur.
This will reduce the burden on operator interaction to
activate policy change when attacks are taking place at
machine speed. Third, it will support rule-statement
templates that the agility authorities and the agility
authority manager will complete based on intrusion
responses received.

The three-tiered agile policy specification approach
provides the basis for defining defensive security policies
that can respond to general intrusions and anomalies that
are not specified in response directives. It allows the
operator to fashion policy levels based on known and
followed practices used to attack systems. By monitoring
intrusion detection exchange traffic for events and
evaluating their ramifications, the operator can manually
initiate a change of policy level. Optionally, activation



criteria could be associated with the operator-defined
policy levels.

The next section presents a scenario to illustrate our
security agile policy specification approach and the
intrusion response capabilities of security agility.

3.1.�Security agility intrusion response scenario

Buffer overflow attacks against well-known services
continue to be a primary vulnerability for system
penetration. A visit to the CERT Coordination Center7

web site illustrates the need for concern. It states: “We
receive many daily reports of scanning and probing
activity. The most frequent reports tend to involve
services that have well-known vulnerabilities. Hosts
continue to be affected by exploitation of well-known
vulnerabilities in these services.”

To illustrate how the three-tiered agile policy
specification approach might be implemented, we
formulate a simple defensive security policy that monitors
and reacts to attack and probe events that are normally
associated with attempts to penetrate systems using buffer
overflow attacks. This policy must carefully balance its
defensive strategies so that systems vulnerabilities are
sufficiently reduced to safeguard against anticipated
attacks and counter actual attacks, but maintain critical
services and functionality to the fullest extent possible.

We will consider a scenario where an operator defines
three levels of security: normal, alert, and survive. The
high-level strategy to implement these three-levels of
security is for the normal policy to allow a relatively
permissive environment when detection information
indicates little hostile intent. The alert policy will
supplement any normal policy restrictions with additional
policy statements and activation criteria to increase
component awareness and response capabilities when
probe and scan information indicates a higher probability
of a pending attack. Finally, the survive policy will build
on the alert policy statements to quickly enforce stringent
countermeasures to suppress penetrations on the attacked
hosts, and safeguard other hosts from similar attacks.
Additionally, specific response directives will supplement
the agile policy in effect. Although tightening of security
rules could hamper the mission objectives of the system,
security agility’s adaptive behavior to dynamic policy
changes can minimize lost functionality during restrictive
policy periods. Careful specification of activation criteria
and thresholds associated with activation criteria can also
ensure that the policy level and its active statements are
sufficient to address the security needs of the current
situation without being overly restrictive. To complete the
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policy discussion, we concentrate on detailing some
specific policy statements that might comprise each of the
normal, alert, and survive policy levels and the activation
criteria that may be applied to automate statement
enforcement and policy level transitions.

Figure 3 presents our policy specification8. The
statements contained in the policy are associated with the
UNIX internet “super-server” inetd initiated services
which are often the target of buffer overflow attacks. The
normal policy can be thought of as the base policy. Its
most important statement, in the context of this
discussion, is a dynamic code extension to retain
connection information for inetd spawned services. While
the connection information serves no purpose at this
policy level, it may be relevant to a statement in the alert
or survive levels should a transition to either policy level
occur to enable suspension or termination of processing.

Activation and deactivation criteria9 are specified in
the policy to transition from the normal to the alert policy
and visa versa. The policy level activation criteria, which
the AGility Authority Manager (AGAM) will monitor,
looks for scans and/or probes that could raise the
likelihood of a remote break-in attempt. The criteria
assumes the presence of data, such as specified in the
Common Intrusion Specification Language (CISL) [10],
to identify the class of information, the certainty of the
event, and the host target the event applies to. Criteria to
activate to and deactivate from the alert policy should be
set so a continuous transitioning between policy levels
does not occur. In general, if a situation warrants policy
constriction, the more restrictive policy should continue
to be enforced until it is clear the threat has subsided.

The statements contained in the alert policy, shown in
Figure 3, provide a subset of the additional restrictions
that would likely be introduced in a more complete
policy. However, they further demonstrate the defensive
policy reactionary approach, including additional
dynamic code extensions to provide supplement auditing
and statement activation criteria to automatically suspend
suspicious connections as well as ADF statements to deny
future connections from questionable sites. The statement
activation criteria associated with two of the policy
statements, one which might well make use of connection
information collected by the normal policy’s dynamic
code extension, are slight modifications of the activation
criteria to activate to and deactivate from the alert policy.
Activation criteria for statements will be monitored by a
host’s AGA, which may have to coordinate activation
criteria, as illustrated by the dynamic code extension’s
suspend action, with agile components. The more

                                                          
8 For readability, the policy is represented in text form rather that its
agile policy language representation.
9 The activation criteria used in this model are consistent with Intrusion
Detection Exchange Format Internet draft proposed by IETF’s IDWG.



restrictive alert policy simply adds to the rule statements
contained in the normal policy. This ensures that a
properly formed base policy remains intact.

Transition to the most restrictive policy level, survive,
can once again automatically occur whenever a buffer
overflow attack event is received. However, in this
example, transition from the survive policy to a lower
policy level will require an operator to be initiated.

The security agile policy specification approach
presented in this section can be applied to other policy
specification techniques. For example, Domain and Type
Enforcement (DTE) supports policy specification and
extensions to be encapsulated in modules. DTE defines
strict rules that apply to proper module formation to
maintain the intent of the original policy. With some
extension, activation criteria could be associated with
DTE modules or even DTE policy rules within modules.

4.�The security agility toolkit implementation

In this section, we highlight the prototype Security
Agility Toolkit to explain how its previously discussed
techniques are implemented. The toolkit was initially
developed on the now outdated UNIX system-based

BSD/OS10 2.1 operating system that hosted Domain and
Type Enforcement (DTE) (and is described in a previous
paper [2]), but is now implemented on up-to-date
FreeBSD and Linux environments. While the primary
architecture of the toolkit has remained consistent across
platforms, the Executable and Linking Format (ELF)
binary format employed by FreeBSD and Linux supports
a more transparent implementation of agile techniques
than that offered by the a.out binary format of BSD/OS.
In ELF environments, security agility is implemented
without any system or component source code
modification or recompilation. This allows the toolkit to
be unobtrusively integrated into previous, current, and
future FreeBSD and Linux releases and facilitates porting
agility to other UNIX variants, such as Solaris, even if
system or component source code is unavailable.

The design of the Security Agility Toolkit closely
follows the two-fold strategy presented in section 2. It
limits the problem space using the DTE11 and Access
Decision Function (ADF) embedded security models but
provides a flexible and extendable architecture that
supports dynamic code extensions to add or change

                                                          
10 BSD/OS is a trademark of Berkley Software Design, Inc.
11 A (nearly complete) version of DTE now exists for the FreeBSD 3.2
operating system and is being ported to FreeBSD 5.0.

key: ADF - Access Decision Function (application-level policy)
DCX - Dynamic Code eXtension

normal policy - base ADF policy statements plus DCX that retains connection information for inetd spawned services  

activation criteria to alert policy:  X1 number of accepted intrusion detection events are received in Y1 seconds  
• � accept event if:

1)� its class is contained in a specified list of probes/scans (e.g., finger probe, port scan, mount scan, etc.) and
2)� its certainty exceeds a specified minimum threshold value

deactivation criteria to normal policy: X2 number of accepted intrusion detection events are not received in Y2 seconds  (event acceptance  
conditions match activation criteria to alert policy)

alert policy  -  normal policy statements plus:  
• � DCX to:

−� enable suspension of inetd spawned services,
−� audit all inetd spawned connection attempts and child sessions
−� suspend active inetd spawned connections when an accepted event is received

• � accept event if:
1)� its class is contained in a specified list of  probes/scans and
2)� its certainty exceeds a specified minimum threshold value and
3)� its source host address matches the connection request source address

• � ADF statement to:
−� deny host(s) connection access to inetd spawned services when an accepted events is  received

• � accept event if:
1)� its class is contained in a specified list of probes/scans and
2)� its certainty exceeds a specified minimum threshold value

• � additional policy statements to audit/restrict services

activation criteria to survive policy: alert of any buffer overflow attack  

deactivation criteria to alert policy: Not applicable, requires manual deactivation  

survive policy - alert policy statements plus:  
• � DCX to terminate active inetd spawned sessions of attack host
• � ADF to:

−� deny connection access for attack host
−� deny except administrator access to compromised service

Figure 3: Agile policy example



security-relevant behavior to maintain compatibility with
new security rules. Figure 4 depicts the general
architecture of a security agile component and displays
the interaction of the key elements of the security agility
toolkit: the AGility Authority (AGA), the agile policy,
and the (security) agility subsystem. The component-
specific code represented by the agile component’s oval
in Figure 4 implements the component’s non-security
responsibilities. The security-specific functionality is
carried out by the agility subsystem.

The agility subsystem contains the toolkit’s embedded
policy models and its framework to employ dynamic code
extension. The subsystem is primarily composed of
object-oriented C++ libraries to provide the base classes
for additional embedded policy models and security
semantic extensions, to take advantage of standard
compiler and linking techniques for unobtrusive
integration with components, and to support cross-
platform development and porting. The “extensions”
shown in Figure 4 depict the dynamic code extensions the
agile policy directs a component’s security agility
subsystem to employ. The agility subsystem utilizes two
mechanisms to invoke dynamic code extensions that are
also displayed in Figure 4: Control Transition Points
(CTPs) and security-relevant callback functions.

Control transition points intercept component function
calls to transfer control to the agility subsystem during
normal component operation. CTPs are implemented in
dynamically loadable libraries that overlay the libraries
containing the original function calls. The CTP libraries
are automatically generated during toolkit compilation
from files that prototype the functions to be intercepted
and are compiled dependent on their original library as
well as the other agility subsystem libraries. Dynamically
linked binaries load the CTP libraries and their
dependencies during process startup to inject the agility
subsystem into components. By default, the toolkit
associates control transition points with the C library

routines that bracket access to external resources, in effect
making most dynamically linked processes agile by
default. However, the toolkit supports customization of
the C library CTPs through modification of the prototype
file as well as creation of CTP libraries for any system or
custom library. The default functionality and behaviors
provided by the toolkit, as discussed in section 3, are
embedded in the CTP library that overlays the system’s C
library. Security-relevant callback functions are invoked
by the agility subsystem on notification of a security
policy update. Although invoked at different periods of
component processing, the mission of CTPs and callback
functions often overlap: both may provide security
awareness and adaptive behavior for an agile component.

At system startup, a host’s AGA is initialized to parse
the host’s agile policy file into a shared memory
representation for agile processes and create sockets for
external communications (e.g., for policy updates and
response directives). The AGA updates the shared
memory policy structures as policy changes are received
but will leave the previous policy intact to assist the
components’ agility subsystems in addressing policy
change synchronization (e.g., to mediate a server’s
decision to a client’s request whose policy has not yet
been updated). The agility authority will also monitor the
(de) activation criteria of the active policy as intrusion
detection events are received to (de) activate ADF and
dynamic code specification statements.

When an agile process begins execution, control
passes to the agility subsystem using common ELF and
C++ language/compiler techniques before executing any
of the original component code. The subsystem’s
initialization routine configures the component according
to its agile policy by loading all relevant dynamic code
extensions and determining the Access Decision Function
rules that apply to it. During component operation, each
occurrence of a library call that is wrapped by a control
transition point will transfer processing control to the
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agility subsystem. When the agility subsystem receives
control, it checks if a policy update occurred since the
subsystem last returned processing to component-specific
code, and, if so, reconfigures the component accordingly.
Dependent on the type of policy change received (e.g.,
security policy model or dynamic code extensions) this
reconfiguration might include reevaluation of previous
security decisions, invocation of custom or default
security specific callback processing, and reconfiguration
of dynamic code extensions. After completing its policy
change processing, the agility subsystem will invoke any
default or custom processing specified for the control
transition point. If no additional processing is specified,
the original library call simply will be invoked and its
results will be returned to the calling function.

Although our discussion has focused on UNIX
system-based hosts, a Windows NT version of the
security agility toolkit has been explored, though not fully
developed.  With some success, the NT toolkit attempted
to inject the agility subsystem onto processes using a
modified registry entry and a technique to patch the
import address table described in [14] to add the agility
subsystem processing. Finally, the current UNIX-based
toolkit implementation is not applicable to ELF statically
linked binaries. However, the BSD/OS toolkit employed
libdld, a GNU General Public License library, to
incorporate agility techniques with static binaries.
Development of a similar library may be able to support
integration of security agility with statically linked ELF
binaries.

5.�Related work

Our work relates most closely to work in intrusion
response, and adaptive systems.

The Common Intrusion Detection Framework (CIDF)
working group ([9], [10]) and the Internet Engineering
Task Force (IETF) working group ([11], [12]), named the
Intrusion Detection Working Group (IDWG), provide a
framework for intrusion detection and response
information exchange. The Intruder Detection and
Isolation Protocol (IDIP) [13] focuses on tracing intruders
to their points of origin and marshalling response
components. A number of Generic Software Wrappers [4]
have been written to respond to IDIP messages by
suspending processes, revoking users, etc. Firewalls can
also be used as response components, by restricting
services or remote clients. A variety of response
techniques are possible. For example, [15] employs a
system-call interception layer and proposes intruder
isolation using active networks.

A number of efforts focus on extensible, or adaptable,
systems. The SPIN system [16] allows code to be
dynamically loaded into the operating system kernel, and

controlled via type-safety, while [17] applies domain/type
techniques to further control dynamic kernel extensions.
The Cactus system [18] builds on the x-kernel to provide
a high level of service and service-implementation
configurability. The MARX system [19] applies market-
based techniques to help software components survive
resource shocks. Work at the Oregon Graduate Institute
[20] has investigated the use of adaptation spaces, which
are spaces of alternative implementations for functions
within a component along with conditions that might
prompt a change. This is a generic framework that seeks
to express well-formed adaptations. Several techniques
also add security policy enforcement after-the-fact. The
Naccio [21] system allows a safety policy to be added at a
wrapper library layer in applications. The SASI [22] work
edits byte-codes at load-time to add Java 2 stack-
inspection policies to programs. Recent developments in
the Flask operating system architecture [23] enable
support for a wide range of security policies, including
the revocation of previously granted access rights.

These techniques differ primarily from security agility
in that the toolkit combines a management infrastructure
(the agility authority) with a predefined notion of security
policy rules and dynamic code extensions for adaptive
behavior specification. The toolkit also offers
extensibility for additional security semantics and
application to system and custom mission components.

6.�Future directions

Although the Security Agility project concluded in
September 2000, there are many additional features we
hope to independently add to the toolkit to increase its
robustness and simplify its management. For instance,
incorporation of and experimentation with additional
security semantics and optimization of the agility
subsystem’s performance would certainly enhance the
toolkit, as would an agility authority manager GUI to
assist in initial policy specification and visual analysis of
the runtime situation to help guide dynamic policy
modifications that deviate from the current policy.

7.�Conclusions

Attacks against distributed systems are increasingly
taking place at speeds and scales that lessen the
effectiveness of human response. To combat such attacks,
much of today’s computer security research seeks to
develop automated defenses capable of rapid, intelligent
responses. This paper has presented a strategy to help
automate host-based responses to intrusions by
combining security agility with cooperative frameworks
for intrusion detection and response, such as that
demonstrated by the Intrusion Detection and Isolation



Protocol (IDIP) [13], to realize more flexible, intrusion-
tolerant systems. In addition to discrete host-based
responses (e.g., kill process X), we explained how
security agility can automate a second host-level intrusion
response: security policy reconfiguration on constrained
policies. This automation consists of specifying a set of
rules to adequately cover a policy space of concern, and
then automatically triggering the rules when their
enabling conditions become true. Our approach provides
the basis for defining multi-level defensive security
policies to respond to general intrusion detection events.
Although this paper presented automated policy changes
in the context of a single security policy model, the
prototype Security Agility Toolkit is intended to be a
general tool that can be extended to conform to additional
security models and semantics.
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