
Data collection mechanisms for intrusion detection systems∗

Eugene Spafford Diego Zamboni

Center for Education and Research in Information Assurance and Security
1315 Recitation Building

Purdue University
West Lafayette, IN 47907-1315

CERIAS Technical Report 2000-08

June 2, 2000

Abstract

Drawing from the experience obtained during the devel-
opment and testing of a distributed intrusion detection
system, we reflect on the data collection needs of in-
trusion detection systems, and on the limitations that
are faced when using the data collection mechanisms
built into most operating systems. We claim that it
is best for an intrusion detection system to be able to
collect its data by looking directly at the operations of
the host, instead of indirectly through audit trails or
network packets. Furthermore, for collecting data in an
efficient, reliable and complete fashion, incorporation of
monitoring mechanisms in the source code of the oper-
ating system and its applications is needed.

1 Introduction

In the last fifteen years, since the publication of the first
widely known works about intrusion detection [2, 3], a
large number of intrusion detection systems have been
developed, both as research prototypes and as commer-
cial products.

One of the common classifications of intrusion detec-
tion systems is that of host-based and network-based in-
trusion detection systems [8]. Host-based systems base
their decisions on information obtained from a single
host, while network-based systems obtain data by mon-
itoring the traffic in the network to which the hosts are
connected.

The classification of intrusion detection systems as
host-based or network-based usually refers to the way
data is collected by the intrusion detection system, and
not to how or where it is processed. To make this dis-

∗Portions of this work were supported by sponsors of CERIAS.

tinction clear, we use the terms host-based data collec-
tion and network-based data collection.

With respect to where and how data is processed by
the intrusion detection system, we classify intrusion de-
tection systems into distributed and centralized. A dis-
tributed intrusion detection system is one where data is
collected and analyzed in multiple hosts, as opposed to
a centralized intrusion detection system, in which data
may be collected in a distributed fashion, but is pro-
cessed centrally. Both distributed and centralized intru-
sion detection systems may use host- or network-based
data collection methods, or a combination of them.

The study of the data collection mechanisms is im-
portant because the detection performed by an intru-
sion detection system can only be as good (in terms of
accuracy, reliability and efficiency) as the data on which
it bases its decisions. If the data is acquired with a sig-
nificant delay, detection could be performed too late to
be useful. If the data is incomplete, detection abilities
could be degraded. And if the data is incorrect (due to
error or to the actions of an intruder), the intrusion de-
tection system could stop detecting certain intrusions,
giving its users a false sense of security. Unfortunately,
these problems have been identified in existing products.
After examining the needs of different misuse detection
systems and the data provided by different operating
systems, Price concluded that “the audit data supplied
by conventional operating systems lack content useful
for misuse detection.” [10, p. 107]

In this paper we describe different ways of classify-
ing data collection mechanisms for intrusion detection,
and discuss the advantages and disadvantages of each
one of them according to our experiences in the design
and implementation of the AAFID distributed intrusion
detection system.

1



2 Host-based and network-based
data collection

Most of the intrusions that existing intrusion detection
systems can detect are caused by actions performed in
a host: executing a command, accessing a service and
providing it improper data, etc. The attacks act on the
end host, although they may occur over a network.

The only attacks that act on the network itself are
those that flood the network to its capacity, preventing
legitimate packets from flowing. However, we claim that
most of these attacks can also be detected at the end
hosts. For example, a ping flood could be detected at
the ICMP layer in the host by looking for the occurrence
of a large number of ECHO REQUEST packets.

The only case in which network-based data collection
could be better suited than host-based data collection
is for attacks that flood the network with packets that
do not cause any reaction on the hosts (for example,
packets destined to a port that is closed on all hosts).
However, even in this case the attack could be detected
at the end hosts in the low levels of the networking
stack.

In general, we think it is better to use host-based data
collection, for the following reasons:

• Host-based data collection allows the collection of
data that reflect accurately what is happening on
the host, instead of trying to guess based on the
packets that flow through the network.

• In high-traffic networks, a network monitor could
potentially miss packets, whereas properly imple-
mented host monitors can report every single event
that occurs on each host.

• Network-based data collection mechanisms are sub-
ject to insertion and evasion attacks, as docu-
mented by Ptacek and Newsham [11]. These prob-
lems do not occur on host-based data collection,
because they act on data that the host already has.

In a more general sense, these problems reflect the
distinction between direct and indirect data collection,
which we describe next.

3 Direct and indirect monitoring

At a more general level, we offer the classification of
data collection methods in direct and indirect methods,
according to the following definitions:

Direct monitoring: Obtaining data directly from the
object that generates it, or to which the data per-
tains. For example, to perform direct monitoring

of the CPU load of a host, we need to get the data
directly from the appropriate kernel structures in
the host. To perform direct monitoring of accesses
to network services provided by the inetd daemon,
we would need to get the data about those accesses
directly from inetd.

Indirect monitoring: Obtaining data from a source
that reflects the behavior of the object that is be-
ing monitored. Using the previous examples, indi-
rect monitoring of the CPU load of a host could
be done by reading a log file where the CPU loads
get recorded. Indirect monitoring of network ser-
vice accesses could be done by reading a log file
generated by the inetd daemon or by an auxil-
iary program such as TCP-wrappers [12]. Indirect
monitoring could also be performed by looking at
the network for packets destined to the appropriate
ports in the host.

For performing intrusion detection, direct monitor-
ing is better than indirect monitoring, for the following
reasons:

• Data on an indirect data source (for example, an
audit trail) could potentially be altered by an in-
truder before the intrusion detection system uses
them.

• Some events may not be recorded on an indirect
data source. For example, not every action of the
inetd daemon gets recorded to a log file. Further-
more, an indirect data source may not be able to ac-
cess internal information on the object being mon-
itored. For example, TCP-Wrappers is not able to
examine the internal operations of the inetd dae-
mon, only the data that gets passed to it through
its external interface.

• With indirect monitoring, the data is generated
by mechanisms (for example, the code that writes
the audit trail) that have no knowledge of the
needs of the intrusion detection system that will
be using the data. For this reason, indirect data
sources usually carry a high volume of data. For
example, Kumar and Spafford [5] mention that a
C2-generated audit trail might contain 50K-500K
records per user per day. For a modest-size user
community, this could amount to hundreds of
megabytes of audit data per day, as pointed out
by Mounji [7].

For this reason, when indirect data sources are
used, the intrusion detection system has to spend
more resources in filtering and reducing the data,
even before being able to use them for detection
purposes.

2



On the other hand, a direct monitoring method
can obtain just the information it needs, resulting
in smaller amounts of data being generated. Addi-
tionally, the monitoring components could analyze
the data themselves and only produce results when
relevant events are detected, therefore practically
eliminating the need for storing data, other than
for forensic purposes (after-the-fact investigation of
the events that took place).

• The previous item results in a lack of scalability
when indirect monitoring is used, because as the
number of hosts (and monitoring elements within
each host) increases, the overhead resulting from
filtering data can cause degradation in the perfor-
mance of the hosts being monitored.

• Indirect data sources usually introduce a delay be-
tween the moment the data is produced and when
the intrusion detection system can have access to
them. Direct monitoring, allows for shorter delays,
enabling the intrusion detection system to react in
a more timely fashion.

4 Experiences in building a dis-
tributed intrusion detection
system

During the implementation of the AAFID system [1]
we faced decisions regarding the use of direct and in-
direct monitoring, and even when trying to do direct
monitoring, we encountered problems with the specific
techniques used to perform it. In this section we relate
those experiences and how they made us think about
data collection methods for intrusion detection systems.

AAFID is a framework for distributed monitoring of
hosts in a network, specifically oriented towards intru-
sion detection. AAFID uses a hierarchical structure of
entities, exemplified in Figure 1. At the lowest level in
the hierarchy, AAFID agents perform monitoring func-
tions on a host and report their findings to the higher
levels of the hierarchy, where data reduction is per-
formed.

AAFID was designed to use host-based data collec-
tion, therefore the agents run in each host and collect
data from it. To collect reliable data, we wanted to get
it directly from each host.

Audit trails are the most abundant source of data in
a Unix system, and are the data source used by most
intrusion detection systems. In the first implementa-
tion of the AAFID system, most of the agents obtained
their data from log files. Unfortunately, audit trails are

UI

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

C

� �
� �
� �
� �

� �
� �
� �
� �

Transceivers

Monitors
Data flow
Control flow

Agents

HostsLegend

Filters

A

E

B

D

Figure 1: Example of the hierarchical structure of the
AAFID system.

an indirect data source, and suffer from the drawbacks
mentioned in Section 3.

To perform direct data collection appropriately, we
would have needed operating system support, possibly
in the form of hooks to allow insertion of checks at ap-
propriate points in the system kernel and its services.
Lacking this support, we decided to implement direct
monitoring ourselves using the following mechanisms:

• Separate entities that run continuously, obtaining
information and looking for intrusions or notable
events. This is the form that most existing AAFID
agents have. Some agents obtain information from
the system by running commands (such as ps, net-
stat or df), others by looking at the state of the
file system (for example, checking file permissions
or contents), others by capturing packets from a
network interface (note that this is not necessarily
the same as doing network-based monitoring, be-
cause in most cases these agents will only capture
packets destined to the local host, and not to other
hosts), and yet others by looking at audit trails (in
some cases, an audit trail is the only place where
some information can be obtained).

• Wrapper programs that interact with existing ap-
plications or utilities, and that try to observe their
behavior by looking at their inputs and outputs.

• Wrapper libraries using library interposition [6].
Using this technique, calls to library functions can
be intercepted, monitored, modified or even can-
celled by the interposing library. This technique
can detect a wide range of attacks, but it is limited
because it can only look at the data available as
arguments to each call. It cannot have access to
any internal data on the calling program.

3



We classify these techniques of data collection as ex-
ternal sensors, because the monitoring components are
separate from the programs that are being monitored.
The opposite of an external sensor is an internal sen-
sor, which is built into the code of the program being
monitored.

5 External and internal sensors

External and internal sensors for direct data collection
have different strengths and weaknesses, and can be
used together in an intrusion detection system. Table 1
lists the advantages and disadvantages of each type of
sensor.

From the point of view of software engineering, inter-
nal and external sensors present different characteristics
in the following aspects:

Introduction of errors: It is potentially easier to in-
troduce errors in the operation of a program
through the use of internal sensors, because the
code of the program being monitored has to be
modified. Errors can also be introduced by external
sensors (for example, an agent that consumes and
excessive amount of resources, or an interposed li-
brary call that incorrectly modifies its arguments).
However, we think that most internal sensors can
be fairly small pieces of code, allowing them to be
extensively checked for errors.

Maintenance: External sensors are easier to maintain
because they are separate from the programs they
monitor.

Size: Internal sensors can be smaller than external sen-
sors, because they become part of an existing pro-
gram, thus avoiding the base overhead associated
with the creation of a separate process.

Completeness: Internal sensors can access any piece
of information in the program they are monitoring,
whereas external sensors are limited to externally-
available data. For this reason, internal sensors can
have more complete information about the behav-
ior of the monitored program. Furthermore, be-
cause internal sensors can be placed anywhere in
the program they are monitoring, their coverage
can be more complete than that of an external sen-
sor, which can only look at the program “from the
outside”.

Correctness: Because internal sensors have access to
more complete data, we expect them to produce
more correct results than external sensors, which
often have to make educated guesses using the in-
formation available.

Our overall comparison of the two types of sensors
is that external sensors are better in terms of ease of
use and maintainability, whereas internal sensors are
superior in terms of monitoring and detection abilities,
as well as resilience and host impact. Both types of
sensors can be used in an intrusion detection system
to take advantage of their strengths according on the
specific task each sensor has to accomplish.

In the AAFID system we have experienced first-hand
the limitations of indirect monitoring techniques and of
external sensors. For this reason, we have started work-
ing on using internal sensors for intrusion detection.

6 Implementing internal sensors

Work has started at CERIAS on the implementation of
internal sensors on a Unix system. This work is still
in its early stages, but the current results are worth
mentioning here.

On an OpenBSD [9] system, Kerschbaum [4] has im-
plemented and tested internal sensors for 15 different
network attacks, including Land, Teardrop, Ping of
Death, Linux blind spoofing, Win Nuke, SYN flood-
ing, port scanning (including full TCP scans, half-open
scans and FIN, XMAS and NULL scans) and others.
These sensors were implemented by adding only 73 lines
of code to the OpenBSD kernel, plus two support files
(mostly for data structure manipulation) with a total of
354 lines of code. Most sensors are no longer than 4 lines
of code. Also, some sensors are for platforms other than
OpenBSD (like Win Nuke, which is a Windows-specific
attack), which shows that a single host instrumented
with internal sensors can detect attacks for different ar-
chitectures and operating systems.

The sensors allow detection of attacks in real time,
and without the need to execute any additional pro-
cesses on the system. Although these are only prelim-
inary results, they offer a promising glimpse into the
flexibility, efficiency and detection capabilities that in-
ternal sensors, implemented with small amounts of code,
may offer.

7 Conclusions and related work

We have shown the following (non-exclusive) classifica-
tions of data collection techniques for intrusion detec-
tion systems:

• Host-based and network-based techniques. We
showed why host-based techniques are better than
network-based techniques, except in few specific
cases.

4



External sensors Internal sensors

Advantages Easily modified, added or removed from a
host.
Can be implemented in any programming
language that is appropriate for the task.

Minimum delay between the generation of
the information and its use.
Cannot be easily disabled or modified be-
cause they are not separate processes.
If implemented correctly, may cause a much
smaller performance overhead on the host.
Because they are implemented as part of the
program they are monitoring, they can ac-
cess any information that is necessary for
their task.

Disadvantages Can potentially be disabled or modified by
an intruder.
There is a delay between the generation of
the data and their use, because after the
data are produced, they have to be made
available on an external source before a sen-
sor can access them.
Added performance impact because the sen-
sors are separate processes (or additional
loaded libraries), running continuously most
of the time.
Limited in the information they can obtain
because they depend on information pro-
vided by the system or on information they
can gather using existing mechanisms (such
as Unix commands).

Much harder to implement, because they
need to be incorporated into the program
that is going to be monitored.
Need to be implemented in the same lan-
guage as the program they are going to mon-
itor.
If designed or implemented incorrectly, can
severely harm the performance or the func-
tionality of the program they are part of.
Much harder to update or modify.

Table 1: Advantages and disadvantages of external and internal sensors.

• Direct and indirect data collection techniques. We
discussed why direct data collection is more desir-
able in every case.

• Data collection techniques can be implemented
with external or internal sensors. We presented
a comparison of the two techniques, an concluded
that although external sensors are easier to im-
plement and use, internal sensors have advantages
that make their use worthwhile.

It is important for intrusion detection system design-
ers and implementers to study the data sources they
use, to carefully consider the benefits and disadvantages
they offer, and whether better techniques could be ap-
plied. An intrusion detection system is only as reliable
as the data on which it bases its decisions, so it is in
our best interest to try to provide our intrusion detec-
tion systems with the best possible sources of data.

Finally, we have presented some preliminary re-
sults on the implementation of internal sensors on an
OpenBSD system. These sensors are capable of detect-

ing a wide variety of attacks with very little code em-
bedded into the OpenBSD kernel. This work is still in
its early stages, but the results so far are very exciting
and worthy of further investigation.

References

[1] Jai Sundar Balasubramaniyan, Jose Omar Garcia-
Fernandez, David Isacoff, Eugene Spafford, and
Diego Zamboni. An architecture for intrusion de-
tection using autonomous agents. In Proceedings of
the Fourteenth Annual Computer Security Appli-
cations Conference, pages 13–24. IEEE Computer
Society, December 1998.

[2] Dorothy E. Denning. An Intrusion-Detection
Model. IEEE Transactions on Software Engineer-
ing, 13(2):222–232, February 1987.

[3] Dorothy E. Denning and Peter G. Neumann. Re-
quirements and Model for IDES – A Real-Time In-

5



trusion Detection System. Technical report, Com-
puter Science Laboratory, SRI International, Au-
gust 1985.

[4] Florian Kerschbaum. Network attack sensing. Un-
published technical report, May 2000.

[5] Sandeep Kumar and Eugene H. Spafford. A soft-
ware architecture to support misuse intrusion de-
tection. In Proceedings of the 18th National Infor-
mation Systems Security Conference, pages 194–
204. National Institute of Standards and Technol-
ogy, October 1995.

[6] Benjamin A. Kuperman and Eugene H. Spaf-
ford. Generation of application level au-
dit data via library interposition. CERIAS
TR 99-11, COAST Laboratory, Purdue Uni-
versity, West Lafayette, IN, October 1998.
URL https://www.cerias.purdue.edu/
techreports-ssl/public/99-11.ps.

[7] Abdelaziz Mounji. Languages and Tools for
Rule-Based Distributed Intrusion Detection. D.Sc.
thesis, Facultés Universitaires, Notre-Dame de
la Paix, Namur (Belgium), September 1997.
URL ftp://ftp.cerias.purdue.edu/pub/doc/
intrusion_detection/mounji_phd_thesis.ps.
Z.

[8] Biswanath Mukherjee, Todd L. Heberlein, and
Karl N. Levitt. Network intrusion detection. IEEE
Network, 8(3):26–41, May/June 1994.

[9] OpenBSD. Web page at http://www.openbsd.
org/, 1999–2000.

[10] Katherine E. Price. Host-based misuse detection
and conventional operating systems’ audit data col-
lection. Master’s thesis, Purdue University, Decem-
ber 1997. URL http://www.cerias.purdue.edu/
techreports/public/97-15.ps.

[11] Thomas H. Ptacek and Timothy N. Newsham. In-
sertion, evasion, and denial of service: Eluding net-
work intrusion detection. Technical report, Secure
Networks, Inc., January 1998.

[12] Wietse Venema. TCP WRAPPER: Network moni-
toring, access control and booby traps. In USENIX
Association, editor, UNIX Security III Symposium,
September 14–17, 1992. Baltimore, MD, pages 85–
92, Berkeley, CA, USA, September 1992. USENIX.

6


